WorldWideScience

Sample records for asia water resources

  1. Water resources and multilateral security organisations in Central Asia

    OpenAIRE

    Miguel Ángel Pérez Martín

    2013-01-01

    At present, Central Asia faces serious conflicts over water management, most of them of a transnational nature: humanitarian crises, droughts, floods, pollution, ethnic problems, nepotism and corruption in the allocation of water resources, etc. In July 2010 the United Nations declared access to water and sanitation to be a human right, with the aim of resolving or mitigating such conflicts. In this region, there are several multilateral security organizations which for over two decades have ...

  2. South Asia Water Resources Workshop: An effort to promote water quality data sharing in South Asia

    Energy Technology Data Exchange (ETDEWEB)

    RAJEN,GAURAV; BIRINGER,KENT L.; BETSILL,J. DAVID

    2000-04-01

    To promote cooperation in South Asia on environmental research, an international working group comprised of participants from Bangladesh, India, Nepal, Pakistan, Sri Lanka, and the US convened at the Soaltee Hotel in Kathmandu, Nepal, September 12 to 14, 1999. The workshop was sponsored in part by the Cooperative Monitoring Center (CMC) at Sandia National Laboratories in Albuquerque, New Mexico, through funding provided by the Department of Energy (DOE) Office of Nonproliferation and National Security. The CMC promotes collaborations among scientists and researchers in regions throughout the world as a means of achieving common regional security objectives. In the long term, the workshop organizers and participants are interested in the significance of regional information sharing as a means to build confidence and reduce conflict. The intermediate interests of the group focus on activities that might eventually foster regional management of some aspects of water resources utilization. The immediate purpose of the workshop was to begin the implementation phase of a project to collect and share water quality information at a number of river and coastal estuary locations throughout the region. The workshop participants achieved four objectives: (1) gaining a better understanding of the partner organizations involved; (2) garnering the support of existing regional organizations promoting environmental cooperation in South Asia; (3) identifying sites within the region at which data is to be collected; and (4) instituting a data and information collection and sharing process.

  3. Some aspects of integrated water resources management in central Asia

    Science.gov (United States)

    Khaydarova, V.; Penkova, N.; Pak, E.; Poberejsky, L.; Beltrao, J.

    2003-04-01

    Two main tasks are to be implemented for elaboration of the governmental water distribution criteria in Central Asia: 1 -development of the common methodological basis for the intergovernmental water distribution; and 2 - to reopen and continue both theoretical and experimental researches of various aspects of the wastewater reuse. The prospects of socio economic development of all Central Asian countries are substantially defined by the water resources availability. The water resources of Central Asia belong, mainly, watersheds of the Syr-Darya and Amu Darya rivers. The basic flow of Amu Darya is formed in territory of Tajikistan. Then the Amu Darya river proceeds along border of Afghanistan with Uzbekistan, crosses Turkmenistan and again comes back to Uzbekistan and then runs into the Aral Sea. The Syr-Darya is second river on the water discharge and is first river on length in Central Asia. The basic flow of Syr Darya is formed in territory of Kyrgyzstan. Then the Syr-Darya river crosses of Uzbekistan and Tajikistan and runs into the Aral Sea in territory of Kazakhstan. During the Soviet Union the water resources of two river watersheds were divided among the Central Asian republics on the basis of the general plans developed by the center in Moscow. In the beginning of 90s years, after taking of sovereignty by the former Soviet republics, the unified control system of water resources management was abolished and the various approaches to its transformation caused by features of the national economy developing, elected models of transition from command to market mechanisms of economic activity, and also specificity of political and social processes in each of the states of region were planned. The distinctions of modern priorities of economic development of the states of region have generated the contradiction of interests in the intergovernmental water distribution that can in the long term become complicated even more in connection with the increasing of water

  4. EU-Russia Relations Regarding Water Resources in Central Asia

    Directory of Open Access Journals (Sweden)

    Anastasia Likhacheva

    2014-05-01

    Full Text Available In Central Asia, the water deficit and water-energy problem have been one of among the most acute and conflict-ridden challenges for the sustainable development of the region and for regional security. Key trade and investment partners, including Russia and the European Union, could play a considerable role in influencing this issue, due to the long-lasting status quo, the inability to find a solution through intra-regional dialogue and the region’s rising dependence on foreign trade. Indeed, water-related interactions between Russia and the EU have been developing in a complementary manner. The EU possesses new technologies and its members have access to long-term capital markets, while Russia carries influence through providing security, regulating migration and holding a favourable political position for offering mediation services to the republics of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. This article examines EU-Russia relations regarding water issues in Central Asia over the medium term. By analyzing cooperative and non-cooperative strategies used by the major stakeholders in the water conflict (the five republics and the third parties of Russia and the EU, it confirms the continuous complementary character of EU and Russian activities in this context. Russia will take responsibility for moderating the principal questions (as with the construction of big dams such as Rogunor Kambarata, as they relate to the provision of security guarantees. The EU will act through providing support for water companies from small and medium-sized enterprises, and promoting the European Water Initiative principles and by developing its investment policy. The intersection of interests is possible when if Russia will attracts an independent arbiter, such as an actor available to provide guarantees related to the values of professional objectivism, human rights support and environment protection. These issues inevitably arise with

  5. South Asia river flow projections and their implications for water resources

    Directory of Open Access Journals (Sweden)

    C. Mathison

    2015-06-01

    Full Text Available South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs, which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM for the periods; 1990–2006 for ERA-Interim and 1960–2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM

  6. South Asia river-flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  7. Statistical prediction of seasonal discharge in the Naryn basin for water resources planning in Central Asia

    Science.gov (United States)

    Apel, Heiko; Gafurov, Abror; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Merkushkin, Aleksandr; Merz, Bruno

    2016-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt water of the rivers originating in the mountains provides the only water resource available for agricultural production but also for water collection in reservoirs for energy production in winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources.. In fact, seasonal forecasts are mandatory tasks of national hydro-meteorological services in the region. Thus this study aims at a statistical forecast of the seasonal water availability, whereas the focus is put on the usage of freely available data in order to facilitate an operational use without data access limitations. The study takes the Naryn basin as a test case, at which outlet the Toktogul reservoir stores the discharge of the Naryn River. As most of the water originates form snow and glacier melt, a statistical forecast model should use data sets that can serve as proxy data for the snow masses and snow water equivalent in late spring, which essentially determines the bulk of the seasonal discharge. CRU climate data describing the precipitation and temperature in the basin during winter and spring was used as base information, which was complemented by MODIS snow cover data processed through ModSnow tool, discharge during the spring and also GRACE gravimetry anomalies. For the construction of linear forecast models monthly as well as multi-monthly means over the period January to April were used to predict the seasonal mean discharge of May-September at the station Uchterek. An automatic model selection was performed in multiple steps, whereas the best models were selected according to several performance measures and their robustness in a leave-one-out cross validation. It could be shown that the seasonal discharge can be predicted with

  8. Contemporary changes of water resources, water and land use in Central Asia based on observations and modeling.

    Science.gov (United States)

    Shiklomanov, A. I.; Prousevitch, A.; Sokolik, I. N.; Lammers, R. B.

    2015-12-01

    Water is a key agent in Central Asia ultimately determining human well-being, food security, and economic development. There are complex interplays among the natural and anthropogenic drivers effecting the regional hydrological processes and water availability. Analysis of the data combined from regional censuses and remote sensing shows a decline in areas of arable and irrigated lands and a significant decrease in availability of arable and irrigated lands per capita across all Central Asian countries since the middle of 1990thas the result of post-Soviet transformation processes. This change could lead to considerable deterioration in food security and human system sustainability. The change of political situation in the region has also resulted in the escalated problems of water demand between countries in international river basins. We applied the University of New Hampshire - Water Balance Model - Transport from Anthropogenic and Natural Systems (WBM-TrANS) to understand the consequences of changes in climate, water and land use on regional hydrological processes and water availability. The model accounts for sub-pixel land cover types, glacier and snow-pack accumulation/melt across sub-pixel elevation bands, anthropogenic water use (e.g. domestic and industrial consumption, and irrigation for most of existing crop types), hydro-infrastructure for inter-basin water transfer and reservoir/dam regulations. A suite of historical climate re-analysis and temporal extrapolation of MIRCA-2000 crop structure datasets has been used in WBM-TrANS for this project. A preliminary analysis of the model simulations over the last 30 years has shown significant spatial and temporal changes in hydrology and water availability for crops and human across the region due to climatic and anthropogenic causes. We found that regional water availability is mostly impacted by changes in extents and efficiency of crop filed irrigation, especially in highly arid areas of Central Asia

  9. Modelling Climate Change Impacts on the Seasonality of Water Resources in the Upper Ca River Watershed in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Pham Quy Giang

    2014-01-01

    Full Text Available The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4°C in the 2090s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season. The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ±25% for the highest monthly changes in the 2090s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season.

  10. Preparing for Future Water Resources Conflicts through Climate Change Adaptation Planning: A Case Study in Eastern Europe and Central Asia

    Science.gov (United States)

    Boehlert, B. B.; Neumann, J. E.; Strzepek, K.; Sutton, W.; Srivastava, J.

    2011-12-01

    Uncertainties posed by climate change and rapidly rising global water demand suggest that existing conflicts over water resources are likely to be exacerbated and new conflicts will appear where little or no conflict occurs today. Successfully planning for and preventing conflicts first requires a sound scientific understanding of the timing, location, and magnitude of water resource shortfalls, identification of the most appropriate climate adaptation options based on multiple criteria, and development of broad, multi-level consensus within the affected community. We recently applied this approach in a World Bank-funded adaptation assessment for the agricultural sectors of four countries in Eastern Europe and Central Asia-Albania, Macedonia, Moldova, and Uzbekistan. For each major basin, we first used a hydrological model to project changes in water availability through 2050 under country-specific high, medium, and low climate impact scenarios. Next, under the three climate scenarios, we projected changes in agricultural water demand using a crop model (i.e., AquaCrop and DSSAT), and changes in water demand in other sectors based on population projections and sectoral forecasts of changes in per capita use. We incorporated these water availability and demand projections-along with other characteristics of the water system such as water supply priorities, environmental and transboundary flow requirements, irrigation efficiency, and reservoir locations and volumes-into a monthly integrated water resource planning tool (the Water Evaluation And Planning tool, or WEAP) to generate projected unmet water demand under each climate scenario and to each sector through 2050. The findings suggest that the agricultural sector in each country (except the relatively water-rich Albania) would experience significant unmet water demands, up to 52 percent in the Syr Darya and Amu Darya River basins of Uzbekistan. Potential adaptation responses to address unmet water demands-such as

  11. Future of water resources in the Aral Sea Region, Central Asia - Reality-checked climate model projections

    Science.gov (United States)

    Asokan, Shilpa M.; Destouni, Georgia

    2014-05-01

    The future of water resources in a region invariably depends on its historic as well as present water use management policy. In order to understand the past hydro-climatic conditions and changes, one needs to analyze observation data and their implications for climate and hydrology, such as Temperature, Precipitation, Runoff and Evapotranspiration in the region. In addition to the changes in climate, human re-distribution of water through land- and water­use changes is found to significantly alter the water transfer from land to atmosphere through an increase or decrease in evapotranspiration. The Aral region in Central Asia, comprising the Aral Sea Drainage Basin and the Aral Sea, is an example case where the human induced changes in water-use have led to one of the worst environmental disasters of our time, the desiccation of the Aral Sea. Identification of the historical hydro-climatic changes that have happened in this region and their drivers is required before one can project future changes to water and its availability in the landscape. Knowledge of the future of water resources in the Aral region is needed for planning to meet increasing water and food demands of the growing population in conjunction with ecosystem sustainability. In order to project future scenarios of water on land, the Global Climate Model (GCM) ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) was analyzed for their performance against hydrologically important, basin-scale observational climate and hydrological datasets. We found that the ensemble mean of 22 GCMs over-estimated the observed temperature by about 1°C for the historic period of 1961-1990. For the future extreme climate scenario RCP8.5 the increase in temperature was projected to be about 5°C by 2070-2099, the accuracy of which is questionable from identified biases of GCMs and their ensemble results compared with observations for the period 1961-1990. In particular, the water balance components

  12. Climate change impact on future water resources availability for a semi-arid area (Ferghana Valley, Central Asia)

    Science.gov (United States)

    Radchenko, Iuliia; Breuer, Lutz; Mannig, Birgit; Frede, Hans-Georg

    2014-05-01

    Considering increasing temperatures and glacier recession during the last decades, it is of high interest to study the climate change impact on water resources availability in semi-arid regions of Central Asia. The Ferghana Valley is surrounded by the Tien-Shan and Pamiro-Alay mountain systems that store big amounts of water in snowpacks and glaciers. In the valley the agricultural activity of local people strongly depends on available water from the Syrdarya River. The river is formed by the confluence of the Naryn and Karadarya Rivers, which are mainly fed by the glacier and snow melt from the Akshiirak and Ferghana ridges of the aforementioned mountain systems. The small upper river basins of the valley also contribute with runoff (~34 %) to the Syrdarya River. These small rivers are mainly fed by precipitation and seasonal snow melt. Thus, because of climate change and glacier decline, it is necessary to investigate the comparative contribution of the small catchments versus two big river basins to the Syrdarya River system, as these small upper catchments could become more important for future water consumption. In this study the conceptual hydrological HBV-light model has been calibrated and validated for the period 1980-1985 over 18 upper catchments that feed the Syrdarya River from the surrounding mountain ridges. Dynamically downscaled climate change scenarios were then applied up to the year 2100 for these basins. The scenarios were generated by means of Global Circulation Model (ECHAM5) and Regional Climate Model (REMO) with a baseline period from 1971 till 2000. We will present modelling results of water resources, the contribution of small rivers to the Syrdarya River and to what extent this contribution is likely to change in the future. Moreover, the results of simulated potential runoff will be used to develop future climate change adaptation strategies regarding socio-economic and environmental sustainable water use.

  13. The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries.

    Science.gov (United States)

    Rafindadi, Abdulkadir Abdulrashid; Yusof, Zarinah; Zaman, Khalid; Kyophilavong, Phouphet; Akhmat, Ghulam

    2014-10-01

    The objective of the study is to examine the relationship between air pollution, fossil fuel energy consumption, water resources, and natural resource rents in the panel of selected Asia-Pacific countries, over a period of 1975-2012. The study includes number of variables in the model for robust analysis. The results of cross-sectional analysis show that there is a significant relationship between air pollution, energy consumption, and water productivity in the individual countries of Asia-Pacific. However, the results of each country vary according to the time invariant shocks. For this purpose, the study employed the panel least square technique which includes the panel least square regression, panel fixed effect regression, and panel two-stage least square regression. In general, all the panel tests indicate that there is a significant and positive relationship between air pollution, energy consumption, and water resources in the region. The fossil fuel energy consumption has a major dominating impact on the changes in the air pollution in the region.

  14. Water resources in Central Asia - status quo and future conflicts in transboundary river catchments - the example of the Zarafshan River (Tajikistan-Uzbekistan)

    Science.gov (United States)

    Groll, Michael; Opp, Christian; Kulmatov, Rashid; Normatov, Inom; Stulina, Galina; Shermatov, Nurmakhmad

    2014-05-01

    Water is the most valuable resource in Central Asia and due to its uneven distribution and usage among the countries of the region it is also the main source of tension between upstream and downstream water users. Due to the rapidly shrinking glaciers in the Pamir, Tien-Shan and Alai mountains, the available water resources will, by 2030, be 30% lower than today while the water demand of the growing economies will increase by 30%. This will further aggravate the pressure on the water resources and increase the water deficit caused by an unsustainable water use and political agendas. These challenges can only be overcome by an integrated water resource management for the important transboundary river catchments. The basis for such an IWRM approach however needs to be a solid data base about the status quo of the water resources. To that end the research presented here provides a detailed overview of the transboundary Zarafshan River (Tajikistan-Uzbekistan), the lifeline for more than 6 mln people. The Zarafshan River is well suited for this as it is not only one of the most important rivers in Central Asia but because the public availability of hydrological and ecological data is very limited, Furthermore the catchment is characterized by the same imbalances in the Water-Energy-Food-Nexus as most river systems in that region, which makes the Zarafshan a perfect model river for Central Asia as a whole. The findings presented here are based on field measurements, existing data from the national hydrometeorological services and an extensive literature analysis and cover the status quo of the meteorological and hydrological characteristics of the Zarafshan as well as the most important water quality parameters (pH, conductivity, nitrate, phosphate, arsenic, chromate, copper, zinc, fluoride, petroleum products, phenols and the aquatic invertebrate fauna). The hydrology of the Zarafshan is characterized by a high natural discharge dynamic in the mountainous upper parts of

  15. Petroleum systems, resources of Southeast Asia, Australasia

    Energy Technology Data Exchange (ETDEWEB)

    Howes, J. [Atlantic Richfield Indonesia Inc., Jakarta (Indonesia)

    1997-12-15

    The Southeast Asia-Australasia region has over 100 productive petroleum systems ranging in age from the Paleozoic to the Pliocene. Plate tectonics have played a fundamental role in controlling the distribution and character of the region`s petroleum systems. There is a clear division between those systems on the Eurasian plate and those on the Indo-Australian plate. The distribution of significant oil and gas resources is highly concentrated in just a few chrono-stratigraphic units. Early Tertiary Paleogene source rocks account for over 50% of the region`s in-place petroleum resources. This article summarizes the region`s systems and resources, and compares and contrasts some of their essential elements in Southeast Asia and Australasia. With average production of 3.2 million b/d of oil and 18 bscfd of gas, the region accounts for almost 6% of world oil and gas production.

  16. Comparative analysis of two hydrological models with different glacier parameterisations for climate impact assessment and water resources management in the Syrdarya Basin, Central Asia

    Science.gov (United States)

    Gafurov, Abror; Duethmann, Doris; Agaltseva, Natalya; Merkushkin, Alexander; Pak, Alexander; Kriegel, David; Huss, Matthias; Güntner, Andreas; Merz, Bruno; Unger-Shayesteh, Katy; Mannig, Birgit; Paeth, Heiko; Vorogushyn, Sergiy

    2014-05-01

    Central Asian river basins in general and zones of run-off formation in particular are currently experiencing the impact of increasing temperatures and changes in precipitation. The headwaters thus exhibit negative glacier mass balances, decreasing glacierisation, changes in snow cover characteristics and changing runoff response. These changes are likely to intensify in future under the changing climate. Both hydropower industry and irrigated agriculture in the downstream areas strongly depend on the water amount, its seasonal and long-term distribution. This fact calls for an effort to reliably assess water availability in the runoff formation zone of Central Asia in order to improve water management policy in the region. One of the approaches to assessment of water resources is the evaluation of climate scenarios with the climate-and-hydrology model chain. Application of several models allows reducing the modeling uncertainty and proceeding with more robust water balance components assessment. We present the comparison of the two hydrological models AISHF (Automated Information System for Hydrological Forecasting) developed at the Centre for Hydrometeorology of Uzbekistan and WASA run at GFZ Potsdam, implemented for the Naryn and Karadarya basins (Syrdarya). These models use different parameterization and calibration schemes. Whereas in the AISHF model glacier dynamics is considered in scenarios of glacier area loss, the WASA model simulates continuous glacier mass balance, glacier area and volume evolution based on meteorological drivers. Consideration of initial glacier volume and its temporal dynamics can be essential for climate impact assessment in transient model simulations. The impact of climate change scenarios, developed with the regional climate model REMO at the University of Würzburg, are compared with respect to total discharge dynamics and runoff contributions from glacier, snowmelt and rainfall. Implications of water availability assessment

  17. Central Asia's raging waters the prospects of water conflict in Central Asia

    OpenAIRE

    Hartman, William B.

    2007-01-01

    This thesis examines the prospects of conflict caused by water scarcity in Central Asia. The thesis analyzes the three most recent political eras of Central Asia, Tsarist Russia, the Soviet Union and independence, utilizing indicators of water tensions including: water quality, water quantity, the management of water for multiple uses, the political divisions and geopolitical setting, state institutions and national water ethos. Although water is not likely to be the sole cause of a majo...

  18. The PROSEA project (Plant Resources of Southeast Asia)

    NARCIS (Netherlands)

    Jansen, P.C.M.

    1987-01-01

    In the Bulletin of 1986 (p. 281) the revival of the PROSEA Project has been announced. Some more information on its background and progress seems in order. Historical background. In the field of plant resources of SE. Asia there are no other publications giving such thorough and comprehensive inform

  19. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  20. Integrated water resources management in central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia.

    Science.gov (United States)

    Hofmann, J; Venohr, M; Behrendt, H; Opitz, D

    2010-01-01

    Within the framework of Integrated Water Resources Management (IWRM) the nutrient and heavy metal levels within the Kharaa river basin were investigated. By the application of the MONERIS model, which quantifies nutrient emissions into river basins, various point and diffuse pathways, as well as nutrient load in rivers, could be analysed. Despite seasonal variations and inputs of point sources (e.g. Wastewater Treatment Plant Darkhan) the nutrient concentrations in most of the subbasins are on a moderate level. This shows evidence for a nutrient limited ecosystem as well as dilution effects. However, in the middle and lower reaches heavy metal concentrations of arsenic and mercury, which are linked to mining activities in many cases, are a point of concern. Thus measures are necessary to protect the valuable chemical and ecological status of the Kharaa River and its tributaries. As a result of the growing economic pressure Mongolia will enhance the agricultural production by irrigation. Until 2015 about 60% of the agricultural land shall be irrigated. In addition the gold mining activities shall increase by 20% a year. Both sectors have a high demand for water quantity and quality. The model MONERIS allows the assessment of measures which are inevitable to protect the water quality under shrinking water availability. PMID:20651440

  1. Integrated water resources management in central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia.

    Science.gov (United States)

    Hofmann, J; Venohr, M; Behrendt, H; Opitz, D

    2010-01-01

    Within the framework of Integrated Water Resources Management (IWRM) the nutrient and heavy metal levels within the Kharaa river basin were investigated. By the application of the MONERIS model, which quantifies nutrient emissions into river basins, various point and diffuse pathways, as well as nutrient load in rivers, could be analysed. Despite seasonal variations and inputs of point sources (e.g. Wastewater Treatment Plant Darkhan) the nutrient concentrations in most of the subbasins are on a moderate level. This shows evidence for a nutrient limited ecosystem as well as dilution effects. However, in the middle and lower reaches heavy metal concentrations of arsenic and mercury, which are linked to mining activities in many cases, are a point of concern. Thus measures are necessary to protect the valuable chemical and ecological status of the Kharaa River and its tributaries. As a result of the growing economic pressure Mongolia will enhance the agricultural production by irrigation. Until 2015 about 60% of the agricultural land shall be irrigated. In addition the gold mining activities shall increase by 20% a year. Both sectors have a high demand for water quantity and quality. The model MONERIS allows the assessment of measures which are inevitable to protect the water quality under shrinking water availability.

  2. Vulnerability of Water Resources

    OpenAIRE

    Znaor, Darko

    2009-01-01

    Water is a critical natural resource. It is used for drinking water, agriculture, wetlands services, and the production of hydroelectric energy, amongst others. Croatian fresh-water resources are abundant - indeed they are among the richest in Europe. Therefore, water resources are not considered a limiting factor for development in Croatia. However, while there is no shortage of water per se for use in Croatia, problems do exist. - First, a large amount of pumped water is wasted, which...

  3. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    Science.gov (United States)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent

  4. Security of water, energy, and food nexus in the Asia-Pacific region

    Science.gov (United States)

    Taniguchi, M.; Endo, A.; Fujii, M.; Shoji, J.; Baba, K.; Gurdak, J. J.; Allen, D. M.; Siringan, F. P.; Delinom, R.

    2014-12-01

    Water, energy, and food are the most important and fundamental resources for human beings and society. Demands for these resources are escalating rapidly because of increases in populations and changes in lifestyles. Therefore intensive demand for those resources makes conflicts between resources. Securities of water, energy, and food are treated separately, however they should be considered as one integrated matter, because water-energy-food are connected and it makes nexus and tradeoff. Security in terms of self-production, diversity of alternatives, and variability are evaluated for water, energy and food for thirty two countries in the Asia-Pacific region. The water and energy nexus includes water consumption for the cooling of power plant systems, water use for hydro power generation, and energy consumption for water allocation and pumping. The water and food nexus consists of water consumption for agriculture and aquaculture. The energy and food nexus includes energy consumption for food production and biomass for energy. Analyses of 11 countries within the Asia- Pacific region show that energy consumption for fish is the largest among foods in Japan, Philippines, and Peru, while energy consumption for cereals is the largest among foods in Canada, US, Indonesia, and others. Water consumption for different types of food and energy are also analyzed, including nexus ratio to total water consumption. The water-energy-food nexus at a local level in the Asia Pacific region are examined by the Research Institute for Humanity and Nature project "Human environmental security in Asia Pacific Ring of Fire". Themes including geothermal power plants for energy development and hot springs as water, shale gas for energy development and water consumption/contamination, aquaculture for food and water contamination are used to evaluate the water-energy-food nexus in the Asia-Pacific region.

  5. Regional Approaches to the Development of Human and Economic Resources: Asia.

    Science.gov (United States)

    Profeta, Lydia; Davie, Robert S.

    1981-01-01

    This examination of human resource development in Asia focuses on the role of education in the development plans of the Philippines, and the contributions of Australia to the growth of developing countries in Southeast Asia. (SK)

  6. Analyzing water resources

    Science.gov (United States)

    1979-01-01

    Report on water resources discusses problems in water measurement demand, use, and availability. Also discussed are sensing accuracies, parameter monitoring, and status of forecasting, modeling, and future measurement techniques.

  7. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  8. Modern water resources engineering

    CERN Document Server

    Yang, Chih

    2014-01-01

    The Handbook of Environmental Engineering series is an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. This exciting new addition to the series, Volume 15: Modern Water Resources Engineering , has been designed to serve as a water resources engineering reference book as well as a supplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. A critical volume in the Handbook of Environmental Engineering series, chapters employ methods of practical design and calculation illustrated by numerical examples, include pertinent cost data whenever possible, and explore in great detail the fundamental principles of the field. Volume 15: Modern Water Resources Engineering, provides information on some of the most innovative and ground-breaking advances in the field today from a panel of esteemed...

  9. Water - an inexhaustible resource?

    Science.gov (United States)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  10. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  11. Will climate change exacerbate water stress in Central Asia?

    DEFF Research Database (Denmark)

    Siegfried, Tobias; Bernauer, Thomas; Guiennet, Renaud;

    2012-01-01

    Millions of people in the geopolitically important region of Central Asia depend on water from snow- and glacier-melt driven international rivers, most of all the Syr Darya and Amu Darya. The riparian countries of these rivers have experienced recurring water allocation conflicts ever since the S...

  12. Review - Water resources development

    International Nuclear Information System (INIS)

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  13. Water Resources Handbook for Economics

    OpenAIRE

    United States Department of Agriculture, Natural Resources Conservation Service

    1998-01-01

    The purpose of the USDA Natural Resources Conservation Service Water Resources Handbook for Economics is to provide guidance for the economic analysis of water resource projects. Established economic theory and principles, and the economic concepts stated in the Economic and Environmental Principles and Guidelines for Water and Related Land Resource Implementation Studies (P&G) serve as the primary foundation for this document. P&G was issued March 10, 1983, by the Water Resources Council. Th...

  14. Central Asia Water (CAWa) - A visualization platform for hydro-meteorological sensor data

    Science.gov (United States)

    Stender, Vivien; Schroeder, Matthias; Wächter, Joachim

    2014-05-01

    Water is an indispensable necessity of life for people in the whole world. In central Asia, water is the key factor for economic development, but is already a narrow resource in this region. In fact of climate change, the water problem handling will be a big challenge for the future. The regional research Network "Central Asia Water" (CAWa) aims at providing a scientific basis for transnational water resources management for the five Central Asia States Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Kazakhstan. CAWa is part of the Central Asia Water Initiative (also known as the Berlin Process) which was launched by the Federal Foreign Office on 1 April 2008 at the "Water Unites" conference in Berlin. To produce future scenarios and strategies for sustainable water management, data on water reserves and the use of water in Central Asia must therefore be collected consistently across the region. Hydro-meteorological stations equipped with sophisticated sensors are installed in Central Asia and send their data via real-time satellite communication to the operation centre of the monitoring network and to the participating National Hydro-meteorological Services.[1] The challenge for CAWa is to integrate the whole aspects of data management, data workflows, data modeling and visualizations in a proper design of a monitoring infrastructure. The use of standardized interfaces to support data transfer and interoperability is essential in CAWa. An uniform treatment of sensor data can be realized by the OGC Sensor Web Enablement (SWE) , which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service

  15. Soil Resources and Land Use in Tropical Asia

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Tropical Asia is a region comprising South and Southeast Asia and under strong influence of the Asianmonsoon climate. It is characterized by an extremely high population density and by high land use intensity.Paddy rice cultivation is the most important form of agriculture in the greater part of the region. Soilresources of tropical Asia have a specific feature in comparison with tropical Africa and America. Ultisolsdominate in uplands, and lowland soils like Inceptisols and Histosols are relatively abundant. The latterpoint is made clearer if we take the landforms of the region with a vast extent of lowlands into consideration.Geologically, tropical Asia with the Himalayan orogeny and active volcanism exhibits a conspicuous contrastto tropical Africa and America with the dominance of the shield structure. This along with the monsoonclimate should have determined the basic features of landforms and soil, and accordingly all the agriculturaland social characteristics of tropical Asia today. Although paddy rice cultivation in the lowland is highlysustainable, upland cultivation in extensive Ultisol areas tends to be handicapped by low fertility and higherodibility of the soil, resulting in low sustainability. Land shortage is compelling people to exploit slopelandsin hills and mountains, on the one hand, and thus far unutilized coastal lowlands, on the other. Both ofthese new reclamations are facing to serious land degradation problems today. Tropical Asia will continueto be the most densely populated region of the world with ever-increasing population. In order to meet theincreasing food demand lowland rice cultivation should be intensified by the infrastructure development toease the stresses on slopelands and vulnerable coastal lowlands. At the same time, upland crop productionin Ultisol areas should be stabilized and enhanced, providing integrated nutrient management and measuresfor soil conservation.

  16. Water balance modeling using remote sensing information : focus on Central Asia

    OpenAIRE

    Abror Gafurov

    2010-01-01

    The whole Central Asian population is dependent on water resources stored as solid in high mountains and feed the population in summer. The agriculture in Central Asia is possible only by irrigating the land in regular basis. The water for it comes from snow and glacier melt in high mountains. Thus, it is important to estimate possible water stored in mountains during planting season to better plan agricultural activities in summer. As an example, the year of 2002 or 2007 were drought years w...

  17. Niger : Towards Water Resource Management

    OpenAIRE

    World Bank

    2000-01-01

    The study reviews Niger's water resources, and planning process, through its short- and medium-term water investment program, and priorities in the water supply, and sanitation sector. Critical challenges are examined for improving its complex water resources management to support economic growth, given its landlocked situation, with diffuse, and mostly rural population, and immense, untap...

  18. South Asia transboundary water quality monitoring workshop summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.; Rajen, Gaurav

    2003-04-01

    The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification

  19. Fourth Tennessee water resources symposium

    International Nuclear Information System (INIS)

    The annual Tennessee Water Resources Symposium was initiated in 1988 as a means to bring together people with common interests in the state's important water-related resources at a technical, professional level. Initially the symposium was sponsored by the American Institute of Hydrology and called the Hydrology Symposium, but the Tennessee Section of the American Water Resources Association (AWRA) has taken on the primary coordination role for the symposium over the last two years and the symposium name was changed in 1990 to water resources to emphasize a more inter-disciplinary theme. This year's symposium carries on the successful tradition of the last three years. Our goal is to promote communication and cooperation among Tennessee's water resources professionals: scientists, engineers, and researchers from federal, state, academic, and private institutions and organizations who have interests and responsibilities for the state's water resources. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  20. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson,, Gilpin R.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of Southeast Asia and Melanesia as part of a global mineral resource assessment. The region hosts world-class porphyry copper deposits and underexplored areas that are likely to contain undiscovered deposits. Examples of known porphyry copper deposits include Batu Hijau and Grasberg in Indonesia; Panguna, Frieda River, and Ok Tedi in Papua New Guinea; and Namosi in Fiji.

  1. Crop-specific seasonal estimates of irrigation water demand in South Asia

    Science.gov (United States)

    Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B.

    2015-08-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight in these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation water demand resulting from the typical practice of multiple-cropping in South Asia was accounted for by introducing double-cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest subnational statistics of India, Pakistan, Bangladesh and Nepal. The representation of seasonal land use and more accurate cropping periods lead to lower estimates of irrigation water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation water demand differs sharply between seasons and regions; in Pakistan, winter (Rabi) and summer (Kharif) irrigation demands are almost equal, whereas in Bangladesh the Rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply vs. rain decreases sharply from west to east. Given the size and importance of South Asia, improved regional estimates of food production and its irrigation water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple-cropping and monsoon-dependent planting dates should not be ignored.

  2. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    Science.gov (United States)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  3. Game theory and water resources

    Science.gov (United States)

    Madani, Kaveh

    2010-02-01

    SummaryManaging water resources systems usually involves conflicts. Behaviors of stakeholders, who might be willing to contribute to improvements and reach a win-win situation, sometimes result in worse conditions for all parties. Game theory can identify and interpret the behaviors of parties to water resource problems and describe how interactions of different parties who give priority to their own objectives, rather than system's objective, result in a system's evolution. Outcomes predicted by game theory often differ from results suggested by optimization methods which assume all parties are willing to act towards the best system-wide outcome. This study reviews applicability of game theory to water resources management and conflict resolution through a series of non-cooperative water resource games. The paper illustrates the dynamic structure of water resource problems and the importance of considering the game's evolution path while studying such problems.

  4. Water Scarcity in South Asia: A Dynamic Computable General Equilibrium Analysis

    OpenAIRE

    Narayanan, Badri G.; Taheripour, Farzad; Hertel, Thomas W.; Sahin, Sebnem; Escurra, Jorge J.

    2015-01-01

    The economy of South Asia faces serious challenges in water availability, which are expected to aggravate over the coming decades. In this context, we assess the long-run economy-wide impact of potential water scarcity in South Asia within a global context. This paper uses a dynamic Computable General Equilibrium (CGE) model, in tandem with an advanced comparative static CGE model, to examine the differences in economic growth possibilities in South Asia with and without water scarcity. Alter...

  5. Preliminary publications Book 1 from Project on Mineral Resources, Metallogenesis and Tectonics of Northeast Asia

    Science.gov (United States)

    Ariunbileg, Sodov; Badarch, Gombosuren; Berzin, Nikolai A.; Bulgatov, Alexander N.; Chimed, Noosoi; Deikunenko, Aleksey V.; Dejidmaa, Gunchin; Diggles, Michael F.; Distanov, Elimir G.; Dorjgotov, Dangindorjiin; Gerel, Ochir; Gordienko, Ivan V.; Gotovsuren, Ayurzana; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Koch, Richard D.; Miller, Robert J.; Nokleberg, Warren J.; Obolenskiy, Alexander A.; Ogasawara, Masatsugu; Orolmaa, Demberel; Oxman, Vladimir S.; Parfenov, Leonid M.; Popeko, Ludmila I.; Prokopiev, Andrey V.; Smelov, Alexander P.; Sotnikov, Vitaliy I.; Sudo, Sadahisa; Timofeev, Vladimir F.; Tret'yakov, Felix F.; Vernikovsky, Valery A.; Ye, Mao; Zadgenizov, Alexander P.

    1999-01-01

    This report consists of preliminary data tables, maps, and interpretative articles compiled in late 1997 and early 1998 for a new project on the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia (Eastern and Southern Siberia, Mongolia, North-eastern China, South Korea, and Japan).

  6. Contextualization of Open Educational Resources in Asia and Europe

    OpenAIRE

    Pawlowski, Jan M.; Pirkkalainen, Henri; Gervacio, Juvy Lizette; Nordin, Norazah; Embi, Mohamed Amin

    2014-01-01

    Open Educational Resources (OER) are a promising concept for international collaborations: sharing, utilizing, and collaborating around OER across borders might help educational institutions and their staff to internationalize their activities. However, several barriers exist keeping stakeholders away from engaging in international collaborations. In this paper, we discuss the main challenges of OER uptake in international settings. Three case studies show potential solutions f...

  7. Water Conservation Resource List.

    Science.gov (United States)

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  8. Uncertainties in hydrological modelling and its consequences for water management in Central Asia

    Science.gov (United States)

    Malsy, Marcus; aus der Beek, Tim; Flörke, Martina

    2013-04-01

    Central Asia features an extreme continental climate with mostly arid to semi-arid conditions. Due to low precipitation and therefore low water availability, water is a scarce resource and often the limiting factor in terms of socio-economic development. The aim of this model study is to compare the uncertainties of hydrological modelling induced by global and regional climate datasets and to calculate the impacts on estimates of local water resources. Within this integrated model study the hydrological and water use model WaterGAP 3 (Global Assessment and Prognosis) is being applied to all river basins located in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, and Mongolia in five arc minutes spatial resolution (~ 6 x 9 km per grid cell). First of all, water abstractions for the sectors households, irrigation, livestock, manufacturing industries, and electricity production are being computed and fed into the hydrological module of WaterGAP. Then, water fluxes of the terrestrial water cycle are being modelled. The performance of the model is then being evaluated by comparing modelled and observed river discharge for the time period 1971 to 2000. As WaterGAP input, various global and regional climate datasets are available for the study region. In detail, these are the global TS dataset of the Climate Research Unit (CRU), the WATCH forcing data (WFD) developed within the EU-FP6 Project WATer and global CHange (WATCH) and the regional Aphrodités Water Resources dataset. Finally, the uncertainties in modelled water availability induced by the different datasets are quantified to point out the consequences for a sustainable water management. The results show that the datasets differ in both aspects, temporal and spatial goodness. At this, not only differences between the regional and the global datasets, but also among the global datasets are evident.

  9. Energy and water resources

    International Nuclear Information System (INIS)

    This book presents data and other information for those who desire an understanding of the relationship between water and energy development. The book is not a tract for a grand plan. It does not present solutions. Many of the issues, especially regarding conflict over water allocations and use, are controlled and reconciled at the state level. This report draws together some of the physical and institutional data useful for identifying and understanding water issues which rise in regard to the various aspects of energy development. Three basic water-energy areas are considered in this report: water quality, water supply, and their institutional framework. Water consumption by energy was three percent of the nation's total consumption in 1975, not a large proportion. It is projected to increase to six percent by 2000. Water consumption rates by the energy technologies addressed in this document are tabulated. Water pollutant loadings expected from these technologies are summarized. Finally, a summary of water-related legislation which have particular ramifications in regard to the production of energy is presented

  10. Philippines : Country Water Resources Assistance Strategy 2003

    OpenAIRE

    World Bank

    2003-01-01

    The Water Resources Sector Strategy (WRSS) supports implementation of the Bank's 1993 Water Resources Management Policy, using the experience updated internationally, with water resources and management. This country Water Resources Assistance Strategy (CWRAS) identifies the Philippines principal water resource challenges, the current situation, how the Bank is assisting at present, and wh...

  11. Water-Energy-Food Nexus in Asia-Pacific Ring of Fire

    Science.gov (United States)

    Taniguchi, M.; Endo, A.; Gurdak, J. J.; Allen, D. M.; Siringan, F.; Delinom, R.; Shoji, J.; Fujii, M.; Baba, K.

    2013-12-01

    Climate change and economic development are causing increased pressure on water, energy and food resources, presenting communities with increased levels of tradeoffs and potential conflicts among these resources. Therefore, the water-energy-food nexus is one of the most important and fundamental global environmental issues facing the world. For the purposes of this research project, we define human-environmental security as the joint optimization between human and environmental security as well as the water-energy-food nexus. To optimize the governance and management within these inter-connected needs, it is desirable to increase human-environmental security by improving social managements for the water-energy-food nexus. In this research project, we intend to establish a method to manage and optimize the human-environmental security of the water-energy-food nexus by using integrated models, indices, and maps as well as social and natural investigations with stakeholder analyses. We base our approach on the viewpoint that it is important for a sustainable society to increase human-environmental security with decreasing risk and increasing resilience by optimizing the connections within the critical water-energy and water-food clusters. We will take a regional perspective to address these global environmental problems. The geological and geomorphological conditions in our proposed study area are heavily influenced by the so-called 'Ring of Fire,' around the Pacific Ocean. Within these areas including Japan and Southeast Asia, the hydro-meteorological conditions are dominated by the Asia monsoon. The populations that live under these natural conditions face elevated risk and potential disaster as negative impacts, while also benefitting from positive ecological goods and services. There are therefore tradeoffs and conflicts within the water-energy-food nexus, as well as among various stakeholders in the region. The objective of this project is to maximize human

  12. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  13. Geology and undiscovered resource assessment of the potash-bearing Central Asia Salt Basin, Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan: Chapter AA in Global mineral resource assessment

    Science.gov (United States)

    Wynn, Jeff; Orris, Greta J.; Dunlap, Pamela; Cocker, Mark D.; Bliss, James D.

    2016-03-23

    Undiscovered potash resources in the Central Asia Salt Basin (CASB) of Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey. The term “potash” refers to potassium-bearing, water-soluble salts derived from evaporite basins, where seawater dried up and precipitated various salt compounds; the word for the element “potassium” is derived from potash. Potash is produced worldwide at amounts exceeding 30 million metric tons per year, mostly for use in fertilizers. The term “potash” is used by industry to refer to potassium chloride, as well as potassium in sulfate, nitrate, and oxide forms. For the purposes of this assessment, the term “potash” refers to potassium ores and minerals and potash ore grades. Resource and production values are usually expressed by industry in terms of K2O (potassium oxide) or muriate of potash (KCl, potassium chloride).

  14. A summary of the 2nd workshop on Human Resources Development (HRD) in the nuclear field in Asia. FY2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The Human Resources Development (HRD) Project was added in 1999 as a Cooperation Activity of 'the Forum for Nuclear Cooperation in Asia (FNCA)' which is organized by Nuclear Committee. The HRD Project supports to solidify the foundation of nuclear development utilization in Asia by promoting human resources development in Asian countries. The principal activity of the HRD Project is to hold the Workshop on Human Resources Development in the Nuclear Field in Asia once a year. The objective of the Workshop is to clarify problems and needs of the human resources development of each country and to support it mutually by exchanging information etc. The report consists of a summary of the 2nd Workshop on Human Resources Development in the Nuclear Field in Asia held on November 27 and 28, 2000 at Tokai Research Establishment of JAERI. (author)

  15. Virtual water trade and world water resources.

    Science.gov (United States)

    Oki, T; Kanae, S

    2004-01-01

    Global virtual water trade was quantitatively estimated and evaluated. The basic idea of how to estimate unit requirement of water resources to produce each commodity is introduced and values for major agricultural and stock products are presented. The concept of virtual water and the quantitative estimates can help in assessing a more realistic water scarcity index in each country, projecting future water demand for food supply, increasing public awareness on water, and identifying the processes wasting water in the production. Really required water in exporting countries is generally smaller than virtually required water in importing countries, reflecting the comparative advantage of water use efficiency, and it is estimated to be 680 km3/y for 2000. On the contrary the virtually required water for the same year is estimated to be 1,130 km3/y, and the difference of 450 km3/y is virtually saved by global trade. However, solely virtual water should not be used for any decision making since the idea of virtual water implies only the usage and influence of water and no concerns on social, cultural, and environmental implications. Virtual water trade also does not consider other limiting factors than water. PMID:15195440

  16. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    Science.gov (United States)

    Berger, Byron R.; Mars, John L.; Denning, Paul D.; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    The U.S. Geological Survey conducted an assessment of resources associated with porphyry copper deposits in the western Central Asia countries of Kyrgyzstan, Uzbekistan, Kazakhstan, and Tajikistan and the southern Urals of Kazakhstan and Russia as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits; (2) compile a database of known porphyry copper deposits and significant prospects; (3) where data permit, estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in those undiscovered deposits.

  17. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  18. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  19. Climate change and water resources

    International Nuclear Information System (INIS)

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  20. Evaluating the Marginal Land Resources Suitable for Developing Bioenergy in Asia

    Directory of Open Access Journals (Sweden)

    Jingying Fu

    2014-01-01

    Full Text Available Bioenergy from energy plants is an alternative fuel that is expected to play an increasing role in fulfilling future world energy demands. Because cultivated land resources are fairly limited, bioenergy development may rely on the exploitation of marginal land. This study focused on the assessment of marginal land resources and biofuel potential in Asia. A multiple factor analysis method was used to identify marginal land for bioenergy development in Asia using multiple datasets including remote sensing-derived land cover, meteorological data, soil data, and characteristics of energy plants and Geographic Information System (GIS techniques. A combined planting zonation strategy was proposed, which targeted three species of energy plants, including Pistacia chinensis (P. chinensis, Jatropha curcas L. (JCL, and Cassava. The marginal land with potential for planting these types of energy plants was identified for each 1 km2 pixel across Asia. The results indicated that the areas with marginal land suitable for Cassava, P. chinensis, and JCL were established to be 1.12 million, 2.41 million, and 0.237 million km2, respectively. Shrub land, sparse forest, and grassland are the major classifications of exploitable land. The spatial distribution of the analysis and suggestions for regional planning of bioenergy are also discussed.

  1. Preliminary publications book 2 from project on mineral resources, metallogenesis, and tectonics of northeast Asia

    Science.gov (United States)

    Nokleberg, Warren J.; Miller, Robert J.; Naumova, Vera V.; Khanchuk, Alexander I.; Parfenov, Leonid M.; Kuzmin, Mikhail I.; Bounaeva, Tatiana M.; Obolenskiy, Alexander A.; Rodionov, Sergey M.; Seminskiy, Zhan V.; Diggles, Michael F.

    2003-01-01

    This is the Web version of a CD-ROM publication. This report consists of summary major compilations and syntheses accomplished in the six-year project through April 2003 for the study on the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia (Eastern and Southern Siberia, Mongolia, Northeastern China, South Korea, and Japan). The major scientific goals and benefits of the project are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first, extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between the North America and Northeast Asia. Data from the project are providing sound scientific data and interpretations for commercial firms, governmental agencies, universities, and individuals that are developing new ventures and studies in the project area, and for land-use planning studies that deal with both mineral potential issues. Northeast Asia has vast potential for known and undiscovered mineral deposits; however, little information existed in English in the West until publication of products from this project. Consequently, data and interpretations from the project are providing basic knowledge for major scientific, commercial, national, and international endeavors by other interested individuals and groups.

  2. Quantitative status of resources for radiation therapy in Asia and Pacific region

    International Nuclear Information System (INIS)

    Purpose: Resources for radiation therapy in Asian and Pacific countries were analyzed to obtain a better understanding of the status of radiation oncological practice in the region. Methods and Materials: The data were obtained mainly through surveys on the availability of major equipment and personnel which were conducted through an International Atomic Energy Agency regional project. The study included 17 countries in South Asia, South East Asia, East Asia and Australasia. Data were related to national populations and economic and a general health care indices. Results: Large differences in equipment and personnel among countries were demonstrated. The availability of both teletherapy and brachytherapy was related to the economic status of the countries. The shortage of teletherapy machines was evident in more countries than that of brachytherapy. Many departments were found to treat patients without simulators or treatment planning systems. The number of radiation oncologists standardized by cancer incidence of a country did not correlate well with economic status. Conclusions: There were significant deficiencies in the availability of all components of radiation therapy in the analyzed countries. The deficiencies were linked predominantly to the economic status of the country. Cognisance should be taken of the specific shortfalls in each country to ensure that expansion or any assistance offered appropriately match its needs and can be fully utilized. The information on the resources currently available for radiation oncological practice in the region presented in this paper provides a valuable basis for planning of development aid programs on radiation therapy

  3. Lunar Water Resource Demonstration (LWRD)

    Science.gov (United States)

    Muscatello, Anthony C.

    2009-01-01

    Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith

  4. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    In the wake of the Chernobyl accident, the vulnerability of the water cycle to radionuclide contamination has been an issue of great concern. The impact of the event throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate the potential risk to drinking water supplies, soilwater and the food chain. This book provides information on radiological standards as they exist at present, on the methods of monitoring, and on concepts in design to minimize risk and to highlight the possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book is a unique source of information about present radiological standards and monitoring requirements. It also includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. There are 19 papers all indexed separately. These are divided into sections -introduction, present radiological standards relating to drinking water, radiological monitoring requirements, the consequences of a nuclear event on water resources and water resource management strategy. The discussion at the end of each section is recorded. (author)

  5. Comparative resource allocations to human resource development in Asia, Europe, and Latin America

    OpenAIRE

    Knight, P. T.; Wasty, S. S.

    1991-01-01

    This study compiles statistics for selected Latin American countries and two reference groupsof countries in East Asia and northern and southern Europe. The authors emphasize the need to increase attention to and expenditure on education and health systems in many developing countries, especially in Latin America, to improve the coverage and quality of the services they provide. This paper notes that wider access to secondary education and greater emphasis on the quality of higher education t...

  6. Water Resources Research supports water economics submissions

    Science.gov (United States)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  7. Green Growth, Resources and Resilience. Environmental Sustainability in Asia and the Pacific

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    While regional countries are driving the global 'green growth' agenda, policymakers are facing a new economic reality and heightened uncertainty. The challenge of eco-efficient economic growth and inclusive resource use is critical and growing in several countries. Fundamental, rather than incremental changes are needed. Governments must therefore take the lead in re-orienting both the 'visible' and the 'invisible' economic infrastructure. At the same time the implications of heightened uncertainty and risk for policymaking requires more attention. This report highlights changes in the policy landscape that have taken place since 2005, focuses on the emerging challenges of resources and resilience, presents new regional and country data produced by the Commonwealth Scientific and Industrial Research Organisation of Australia (CSIRO) and UNEP, and provides insights to key policy arenas for greening of growth. The report is the sixth in a series of reports produced every five years by ESCAP for the Ministerial Conference on Environment and Development. It is also the third in the ADB's Asian Environment Outlook series. This year, it complements a UNEP report: Resource Efficiency: Economics and Outlook for Asia and the Pacific (Canberra, CSIRO Publishing), providing new insights into regional use of key resources, and what that means for economies in the Asia-Pacific Region. The report is also intended to support stakeholders preparing for Rio+20.

  8. Water resources development in Turkey

    Institute of Scientific and Technical Information of China (English)

    Bulent Acma

    2010-01-01

    The Southeastern Anatolia Project(GAP),one of the most important projects for developing remarkable natural resources of the world,is accepted as a change for getting benefit from rich water and agricultural resources of the Southeastern Anatolia Region.The GAP Project has been considered as a regional development projects through years,but the dimensions of sustainability,protection of environment and participatory have been attached to the master of the project in recent years.When the GAP Project is completed,the Upper Mesopotomia,the centers of many civilisation,will re-again its importance as it had in the ancient times,and will be alive a center of civilisation.Moreover,when the problem of water shortage and water supplies in the world for the future is kept in mind,the importance of Southeastern Anatolia's water supplies will be doubled.For this reason,the GAP Project,developed by depending on water and natural resources of the region,will have an important place in the world.The aim of this study is to introduce the region with rich natural resources and the GAP Project.For this reason,firstly,the natural potential of the region will be introduced.Second,the GAP Project will be presented in details.In the third stage,the projects being processed for protecting the natural sources and environment will be analyzed.In the last stage,strategies and policies to develop and to protect the natural resources of the region in short,mid,and long terms will be proposed.

  9. Humble View on Soil Water Resources

    Institute of Scientific and Technical Information of China (English)

    CHENZHI-XIONG; ZHOULIU-ZONG

    1993-01-01

    Soil water is one of renewable water resources.Some properties of soil water concerning with its availability to plant are briefly described.An equation for estimating the amount of soil water resource is presented.Based on the evaporation demand of atmosphere,the evaluation coefficient for soil water resource is suggested.

  10. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  11. The role of B V O Amudarya Riverin questions of intergovernmental management of water resources in Amudarya River basin

    International Nuclear Information System (INIS)

    In this article author made conclusion that in the modern political and social-economy conditions-one of the rational ways of making of prosperity in region-is realisation of integrated control principals of Central Asia water resources

  12. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  13. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    Science.gov (United States)

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

  14. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    Science.gov (United States)

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  15. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  16. Human resources for health in southeast Asia: shortages, distributional challenges, and international trade in health services.

    Science.gov (United States)

    Kanchanachitra, Churnrurtai; Lindelow, Magnus; Johnston, Timothy; Hanvoravongchai, Piya; Lorenzo, Fely Marilyn; Huong, Nguyen Lan; Wilopo, Siswanto Agus; dela Rosa, Jennifer Frances

    2011-02-26

    In this paper, we address the issues of shortage and maldistribution of health personnel in southeast Asia in the context of the international trade in health services. Although there is no shortage of health workers in the region overall, when analysed separately, five low-income countries have some deficit. All countries in southeast Asia face problems of maldistribution of health workers, and rural areas are often understaffed. Despite a high capacity for medical and nursing training in both public and private facilities, there is weak coordination between production of health workers and capacity for employment. Regional experiences and policy responses to address these challenges can be used to inform future policy in the region and elsewhere. A distinctive feature of southeast Asia is its engagement in international trade in health services. Singapore and Malaysia import health workers to meet domestic demand and to provide services to international patients. Thailand attracts many foreign patients for health services. This situation has resulted in the so-called brain drain of highly specialised staff from public medical schools to the private hospitals. The Philippines and Indonesia are the main exporters of doctors and nurses in the region. Agreements about mutual recognition of professional qualifications for three groups of health workers under the Association of Southeast Asian Nations Framework Agreement on Services could result in increased movement within the region in the future. To ensure that vital human resources for health are available to meet the needs of the populations that they serve, migration management and retention strategies need to be integrated into ongoing efforts to strengthen health systems in southeast Asia. There is also a need for improved dialogue between the health and trade sectors on how to balance economic opportunities associated with trade in health services with domestic health needs and equity issues. PMID:21269674

  17. Human resources for health in southeast Asia: shortages, distributional challenges, and international trade in health services.

    Science.gov (United States)

    Kanchanachitra, Churnrurtai; Lindelow, Magnus; Johnston, Timothy; Hanvoravongchai, Piya; Lorenzo, Fely Marilyn; Huong, Nguyen Lan; Wilopo, Siswanto Agus; dela Rosa, Jennifer Frances

    2011-02-26

    In this paper, we address the issues of shortage and maldistribution of health personnel in southeast Asia in the context of the international trade in health services. Although there is no shortage of health workers in the region overall, when analysed separately, five low-income countries have some deficit. All countries in southeast Asia face problems of maldistribution of health workers, and rural areas are often understaffed. Despite a high capacity for medical and nursing training in both public and private facilities, there is weak coordination between production of health workers and capacity for employment. Regional experiences and policy responses to address these challenges can be used to inform future policy in the region and elsewhere. A distinctive feature of southeast Asia is its engagement in international trade in health services. Singapore and Malaysia import health workers to meet domestic demand and to provide services to international patients. Thailand attracts many foreign patients for health services. This situation has resulted in the so-called brain drain of highly specialised staff from public medical schools to the private hospitals. The Philippines and Indonesia are the main exporters of doctors and nurses in the region. Agreements about mutual recognition of professional qualifications for three groups of health workers under the Association of Southeast Asian Nations Framework Agreement on Services could result in increased movement within the region in the future. To ensure that vital human resources for health are available to meet the needs of the populations that they serve, migration management and retention strategies need to be integrated into ongoing efforts to strengthen health systems in southeast Asia. There is also a need for improved dialogue between the health and trade sectors on how to balance economic opportunities associated with trade in health services with domestic health needs and equity issues.

  18. DRINKING WATER RESOURCES IN CROATIA

    Directory of Open Access Journals (Sweden)

    Darko Mayer

    1996-12-01

    Full Text Available Annualy renewed resources of drinking water on the Earth are about 45000 cu. km. With today's stage of development that quantity is enough for living 4.5 to 9 billion of people. As it is expected that by 2025 the population on our planet will be over 8.5 billion people, it is clear that the next century will be characterized by the problem of ensuring enaugh quantities of drinking water. This problem will be particularly emphasized in the developing countries and large cities. In the poor countries of arid and subarid areas water deficit will cause the food production crisis and large migrations of the population with almost unpredistable sociological, economical and political consequences could be expected. In the developed world the "water crisis" will stimulate scientific and tehnological progress. The Republic of Croatia, if examined as a whole, regarding the climatic, hydrological, hydrogeological and demographic conditions, has planty of good quality water. It is our duty to preserve this resources for future generations (the paper is published in Croatian.

  19. Water Resources of Beauregard Parish

    Science.gov (United States)

    Prakken, Lawrence B.; Griffith, Jason M.; Fendick, Robert B.

    2012-01-01

    In 2005, about 30.6 million gallons per day (Mgal/d) of water was withdrawn in Beauregard Parish, Louisiana, including about 30.4 Mgal/d from groundwater sources and 0.1 Mgal/d from surface water sources. Industrial use, primarily for wood products, accounted for about 72 percent (22.0 Mgal/d) of the total water withdrawn. Other categories of use included public supply, rural domestic, livestock, rice irrigation, general irrigation, and aquaculture. Water-use data collected at 5-year intervals from 1960 to 2005 indicate water withdrawals in the parish peaked at about 43.5 Mgal/d in 1985. The large increase in groundwater usage from 1970 to 1975 was primarily due to industrial withdrawals, which increased from 3.64 Mgl/d in 1970 to 29.0 Mgal/d in 1975. This fact sheet summarizes information on the water resources of Beauregard Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the Selected References section.

  20. Assessment and utilization of soil water resources

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the analyses of water interactions and water balance, this paper discusses the issues on the assessment and regulation of soil water resources, which lays the scientific basis for limited irrigation and water-saving agriculture.

  1. Water resources. [mapping and management

    Science.gov (United States)

    Salomonson, V. V.

    1974-01-01

    Substantial progress has been made in applying ERTS-1 data to water resources problems, nevertheless, more time and effort still appear necessary for further quantification of results, including the specification of thematic measurement accuracies. More modeling can be done very profitably. In particular, more strategy models describing the processes wherein ERTS-1 data would be acquired, analyzed, processed, and utilized in operational situations could be profitably accomplished. It is generally observed that the ERTS-1 data applicability is evident in several areas and that the next most general and substantive steps in the implementation of the data in operational situations would be greatly encouraged by the establishment of an operational earth resources satellite organization and capability. Further encouragement of this operational capability would be facilitated by all investigators striving to document their procedures as fully as possible and by providing time and cost comparisons between ERTS-1 and conventional acquisition approaches.

  2. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  3. Summary Analysis [United States Water Resources Council].

    Science.gov (United States)

    Roose, John B.; Cobb, Gary D.

    This report contains a summary and analysis of public response to the Water Resources Council proposed principles and standards and its accompanying draft environmental impact statement for planning the use of water and related land resources as well as planning and evaluating water and related land resources programs and projects. Both written…

  4. Water Resources Compound Systems: A Macro Approach to Analysing Water Resource Issues under Changing Situations

    OpenAIRE

    Wei Wang; Deshan Tang; Melissa Pilgrim; Jinan Liu

    2015-01-01

    Water resource crises are an increasing threat to human survival and development. To reveal the nature of water resource issues under changing situations, the water resources system needs to be studied from a macro and systematic perspective. This report develops a water resources system into a water resources compound system that is constantly evolving under the combined action of the development, resistant, and coordination mechanisms. Additionally, the water quotient is defined as a quanti...

  5. Feasibility of large-scale water monitoring and forecasting in the Asia-Pacific region

    Science.gov (United States)

    van Dijk, A. I. J. M.; Peña-Arancibia, J. L.; Sardella, C. S. E.

    2012-04-01

    The Asian-Pacific region (including China, India and Pakistan) is home to 51% of the global population. It accounts for 53% of agricultural and 32% of domestic water use world wide. Due to the influence of Pacific Ocean and Indian Ocean circulation patterns, the region experiences strong inter-annual variations in water availability and occurrence of drought, flood and severe weather. Some of the countries in the region have national water monitoring or forecasting systems, but they are typically of fairly narrow scope. We investigated the feasibility and utility of an integrated regional water monitoring and forecasting system for water resources, floods and drought. In particular, we assessed the quality of information that can be achieved by relying on internationally available data sources, including numerical weather prediction (NWP) and satellite observations of precipitation, soil moisture and vegetation. Combining these data sources with a large scale hydrological model, we produced monitoring and forecast information for selected retrospective case studies. The information was compared to that from national systems, both in terms of information content and system characteristics (e.g. scope, data sources, and information latency). While national systems typically have better access to national observation systems, they do not always make effective use of the available data, science and technology. The relatively slow changing nature of important Pacific and Indian Ocean circulation patterns adds meaningful seasonal forecast skill for some regions. Satellite and NWP precipitation estimates can add considerable value to the national gauge networks: as forecasts, as near-real time observations and as historic reference data. Satellite observations of soil moisture and vegetation are valuable for drought monitoring and underutilised. Overall, we identify several important opportunities for better water monitoring and forecasting in the Asia-Pacific region.

  6. An Overview On Integrated Water Resource Management In Developing Countries With Reference To Global Efforts

    OpenAIRE

    V.V.Kulkarni

    2012-01-01

    Integrated Water Resources Management (IWRM) is a framework for the sustainable development and management of water resources for the whole society. IWRM plays a key role in social and economic development, particularly in sustainable development and poverty alleviation. The United Nations Economic and Social Commission for Western Asia (ESCWA), in coordination with a range of stakeholders, is implementing a programme for regional and national capacity building in IWRM. At t...

  7. Impacts of climate and land use change on ecosystem hydrology and net primary productivity: Linking water availability to food security in Asia

    Science.gov (United States)

    Dangal, S. R. S.; Tian, H.; Pan, S.; Zhang, B.; Yang, J.

    2015-12-01

    The nexus approach to food, water and energy security in Asia is extremely important and relevant as the region has to feed two-third of the world's population and accounts for 59% of the global water consumption. The distribution pattern of food, water and energy resources have been shaped by the legacy effect of both natural and anthropogenic disturbances and therefore are vulnerable to climate change and human activities including land use/cover change (LUCC) and land management (irrigation and nitrogen fertilization). In this study, we used the Dynamic Land Ecosystem Model (DLEM) to examine the effects of climate change, land use/cover change, and land management practices (irrigation and nitrogen fertilization) on the spatiotemporal trends and variability in water availability and its role in limiting net primary productivity (NPP) and food security in the 20th and early 21st centuries. Our specific objectives are to quantify how climate change, LUCC and other environmental changes have interactively affected carbon and water dynamics across the Asian region. In particular, we separated the Asian region into several sub-region based on the primary limiting factor - water, food and energy. We then quantified how changes in environmental factors have altered the water and food resources during the past century. We particularly focused on Net Primary Productivity (NPP) and water cycle (Evapotranspiration, discharge, and runoff) as a measure of available food and water resources, respectively while understanding the linkage between food and water resources in Asia.

  8. Assessing water resource use in livestock production

    NARCIS (Netherlands)

    Ran, Y.; Lannerstad, M.; Herrero, M.; Middelaar, Van C.E.; Boer, De I.J.M.

    2016-01-01

    This paper reviews existing methods for assessing livestock water resource use, recognizing that water plays a vital role in global food supply and that livestock production systems consumes a large amount of the available water resources. A number of methods have contributed to the development o

  9. International Human Resources Management of Japanese, American, and European Firms in Asia : The Roles of Headquarters and Subsidiaries

    OpenAIRE

    Hiromichi Shibata; Andrew Doyle

    2006-01-01

    The main role of the headquarters international human resources departments/business units of seven Japanese firms we researched is to manage the Japanese expatriates at their subsidiaries in Asia; they have little involvement with the management of local employees. The headquarters international human resources departments/business units at five researched American firms tend to maintain strong company value/mission that drives use of their performance appraisal/promotion systems for employe...

  10. Biofuels and resource use efficiency in developing Asia: Back to basics

    International Nuclear Information System (INIS)

    In Asia, as elsewhere in the world, countries rushed to promote biofuels during the dramatic oil price increases of 2007-2008 as way to enhance energy security, without waiting for the settlement of controversial debates about the environmental effects of biofuels, especially their effects on greenhouse gas emissions, deforestation, biodiversity, and whether biofuels cause a conflict between food and fuel. This paper does not settle this debate, but instead argues that there are straightforward, practical and feasible measures that can be implemented immediately in order to reduce the pressure of biofuels on the environment and food supply, and more generally increase food production. The key is to focus on increasing resource use efficiency in agriculture, especially different forms of energy use. Resource use efficiency in agriculture is low in many parts of Asia. Concrete measures that could be taken include reductions in market-distorting input subsidies and the introduction of resource-conserving technologies. These could be supplemented with greater use of non-fossil fuels in agricultural production, use of agricultural wastes in energy production, inclusion of input use levels in biofuel certification systems, and greater investment in agricultural research, extension systems, and infrastructure development. Biofuel fever has waned since the onset of the global financial crisis in late 2008, but it is likely to return when economic conditions eventually improve, and possible moves to strengthen the European Union biofuel blending requirements could further accelerate it. Much of the debate on biofuel-related impacts in the region has focused on deforestation, with little attention on agricultural input use, which could also have serious consequences for greenhouse gas (GHG) emissions. In sum, this paper argues that governments can still improve the environmental performance of biofuels while reducing potential conflicts with food security by implementing the

  11. Relative Abundance of Renewable Resources in Asia and Europe and the Future Demand for Renewable Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Danielsson, Peter [European Renewable Energies Federation (Sweden)

    2005-12-15

    In Europe and in many other parts of the world, energy consumption has reached unsustainable levels. As such, efforts must be made both to expand the use of renewable energy and to reduce the total level of energy consumption. If there are any pertinent driving forces for this, they would be the need to reduce harmful emissions; to increase sustainable energy supply, security, poverty, eradication and access to dignity for billions of people - the ending of a vicious circle of exploitation of scarce natural resources for inefficient energy use. Most European nations belong to the relatively small group of wealthy countries enjoying a comparatively high standard of living. They comprise of approximately 20% of the world's population, producing 80% of the world's GNP, while at the same time, consuming 60% of the world's energy, Ironically, more than half of the world's population, or close to 3 billion people, have almost no access to energy services - 1.2 billion live in Asia. There is, however, enough renewable energy flow worldwide to meet all demands. Renewable energies in general now provide some 14% of the world's primary energy and is mostly covered by traditional biomass. In the field of electricity, where renewables account for 20% worldwide, it is mostly hydropower which is used as source. We need a rapid and courageous worldwide change towards an energy-efficient, Renewable Energy Systems powered energy. Asia already offers a set of successful initiatives and examples of how renewables can be promoted. Some countries have set national targets for the future share of renewable energy. Targets are an excellent strategy to demonstrate political willingness and create a stimulating investment climate for the private sector. Financing schemes, adapted to regional situations, in particular microfinance systems, demonstrate how small-scale installations of renewables could become affordable to the population.

  12. WATER MARKETS AND DECENTRALIZED WATER RESOURCES MANAGEMENT

    OpenAIRE

    K. William Easter; Robert HEARNE

    1994-01-01

    Because of its importance and the perceived inability of private sector sources to meet water demands, many countries have depended on the public sector to provide water services for their populations. Yet this has resulted in many inefficient public water projects and in inadequate supplies of good quality and reliable water. Decentralization of water management, including the use of water markets, cannot solve all of the water problems, but it can improve the efficiency of water allocation....

  13. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...... efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment...

  14. Water resource management: an Indian perspective.

    Science.gov (United States)

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  15. International cooperation in water resources

    Science.gov (United States)

    Jones, J.R.; Beall, R.M.; Giusti, E.V.

    1979-01-01

    bewildering variety of organizations, there certainly exists, for any nation, group, or individual, a demonstrated mechanism for almost any conceivable form of international cooperation in hydrology and water resources. ?? 1979 Akademische Verlagsgesellschaft.

  16. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  17. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    NARCIS (Netherlands)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-01-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the s

  18. Porphyry copper assessment of East and Southeast Asia: Philippines, Taiwan (Republic of China), Republic of Korea (South Korea), and Japan: Chapter P in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Demarr, Michael W.; Dicken, Connie L.; Ludington, Stephen; Robinson,, Gilpin R.; Zientek, Michael L.

    2014-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of East and Southeast Asia as part of a global mineral resource assessment. The assessment covers the Philippines in Southeast Asia, and the Republic of Korea (South Korea), Taiwan (Province of China), and Japan in East Asia. The Philippines host world class porphyry copper deposits, such as the Tampakan and Atlas deposits. No porphyry copper deposits have been discovered in the Republic of Korea (South Korea), Taiwan (Province of China), or Japan.

  19. Promoting Green Growth through Water Resources Management

    OpenAIRE

    Ishiwatari, Mikio; Wataya, Eiko; Shin, Taesun; Kim, Daeil; Song, Jiseon; Kim, Seyi

    2016-01-01

    Water security and water quality affect numerous economic sectors and areas: agriculture, energy, disaster management, and others. Countries need balanced and integrated approaches that are economically, environmentally, and socially sustainable. Threats related to climate change have added to the complexity, and to the importance, of water resource management. Korea’s integrated water resources management approach since the 1990s reflects the country’s “green” climate-resilient development ...

  20. Water balance and fertigation for crop improvement in West Asia. Results of a technical co-operation project

    International Nuclear Information System (INIS)

    Mediterranean countries have a severe shortage of water resources for agricultural, municipal and industrial purposes. This situation is aggravated daily due to the rapidly increasing population in the area. Agriculture is the biggest consumer of water with about 80% of the renewable resource used for irrigation. Traditional irrigation methods are highly inefficient: only about one-third of the applied water is actually transpired by the crops. Clearly, there is great scope for improved irrigation management. Intensification of agricultural production to meet growing market demand requires the simultaneous application of irrigation water and fertilizers. Application of fertilizer in drip irrigation (fertigation) is an effective way to promote efficient use of these scarce and expensive resources. There is widespread interest in Mediterranean countries in fertigation. Nevertheless, information on the form and concentration of the nutrients required for different crops is presently inadequate. Moreover, the low fertilizer recoveries due to extensive fertilization practiced during the last few decades have created serious agricultural and environmental problems. High nitrate concentrations in groundwater and deterioration of some important quality parameters of agricultural products are the main concerns. Recognizing the potential role of nuclear techniques in identifying improved water and fertilizer management practices, the IAEA implemented two regional technical co-operation projects during the period 1995-2000 with eight participating countries from the West Asia region: The Islamic Republic of Iran, Jordan, Lebanon, Saudi Arabia, the Syria Arab Republic, Turkey, United Arab Emirates and Yemen. The main objective was to establish water balance and fertigation practices using nuclear techniques, with a view to improving crop production in arid and semi-arid zones. The projects aimed to compare the following parameters under conventional fertilizer and water

  1. Preface: Remote Sensing of Water Resources

    OpenAIRE

    Deepak R. Mishra; D’Sa, Eurico J.; Sachidananda Mishra

    2016-01-01

    The Special Issue (SI) on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  2. Overcoming data scarcity: Seasonal forecasting of reservoir inflows using public domain resources in Central Asia

    Science.gov (United States)

    Dixon, Samuel G.; Wilby, Robert L.

    2016-04-01

    Management of large hydropower reservoirs can be politically and strategically problematic. Traditional flow forecasting techniques rely on accurate ground based observations, a requirement not met in many areas of the globe (Artan et al., 2007). In particular, access to real-time observational data in transnational river basins is often not possible. In these regions, novel techniques are required to combat the challenges of flow forecasting for efficient reservoir management. Near real time remotely sensed information regarding flow predictors (e.g. satellite precipitation estimates) could combat data availability issues, improving the utility of seasonal reservoir inflow forecasts. This study investigates the potential for river flow forecasting using public domain resources, including satellite and re-analysis precipitation as well as climate indices for several strategically important reservoirs throughout Central Asia (including Toktogul, Andijan, Kayrakkum and Nurek). Using reservoir inflows from 2001-2010, parsimonious numerical models were created for each study site using selected significant predictors for lead times of 1-3 months as well half year averages. Preliminary investigation has shown that parsimonious statistical models can explain over 80% of the variance in monthly inflows with three month lead to the Toktogul reservoir, Kyrgyzstan (Dixon and Wilby, 2015). Such findings show promise for improving the safety and efficiency of reservoir operations as well as reducing risks emerging from climate change.

  3. Managing Water Resources to Maximize Sustainable Growth : A World Bank Water Resources Assistance Strategy for Ethiopia

    OpenAIRE

    Sadoff, Claudia

    2008-01-01

    This note contains a summary, for practitioners, of the World Bank Country Water Resources Assistance Strategy (CWRAS) report: it concerns managing water resources to maximize sustainable growth and focuses on World Bank water resources assistance strategy for Ethiopia (March 2006). Specifically, the note describes the scope and scale of the impacts of hydrological variability on Ethiopia'...

  4. Combining farm and regional level modelling for Integrated Resource Management in East and South-east Asia

    NARCIS (Netherlands)

    Roetter, R.P.; Berg, van den M.M.; Laborte, A.G.; Hengsdijk, H.; Wolf, J.; Ittersum, van M.K.; Keulen, van H.; Agustin, E.O.; Son, T.T.; Lai, N.X.; Guanghuo, W.

    2007-01-01

    Currently, in many of the highly productive lowland areas of East and South-east Asia a trend to further intensification and diversification of agricultural land use can be observed. Growing economies and urbanization also increase the claims on land and water by non-agricultural uses. As a result,

  5. Overview of the Environmental and Water Resources Institute's "Guidelines For Integrated Water Resources Management" Project

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Sehlke

    2005-03-01

    Integrated Water Resources Management is a systematic approach to optimizing our understanding, control and management of water resources within a basin to meet multiple objectives. Recognition of the need for integrating water resources within basins is not unique to the Environmental and Water Resources Institute’s Integrated Water Resources Management Task Committee. Many individuals, governments and other organizations have attempted to develop holistic water resources management programs. In some cases, the results have been very effective and in other cases, valiant attempts have fallen far short of their initial goals. The intent of this Task Committee is to provide a set of guidelines that discusses the concepts, methods and tools necessary for integrating and optimizing the management of the physical resources and to optimize and integrate programs, organizations, infrastructure, and socioeconomic institutions into comprehensive water resources management programs.

  6. Water resources of Livingston Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in Livingston Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  7. Water resources of St. Helena Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in St. Helena Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  8. Water resources of Tangipahoa Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-25

    Information concerning the availability, use, and quality of water in Tangipahoa Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  9. Water resources of Washington Parish, Louisiana

    Science.gov (United States)

    White, Vincent E.; Prakken, Lawrence B.

    2016-06-13

    Information concerning the availability, use, and quality of water in Washington Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  10. Internet-based information resource and discussion platform on GHG reduction strategies in Asia

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-28

    The website (www.ccasia.teri.res.in) provides a consolidated Internet based information source and platform for discussions on climate change issues in Asia. The effort has been successful in reaching the target audience and in stimulating awareness about the crucial debate on GHG (greenhouse gas) reduction strategies in Asia.

  11. Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang Province, China as an example

    Directory of Open Access Journals (Sweden)

    Wentai Zhang

    2015-06-01

    Full Text Available Located in the inland arid area of Central Asia and northwest China, Xinjiang has recently received heightened concerns over soil water erosion, which is highly related with the sustainable utilization of barren soil and limited water resources. Data from the national soil erosion survey of China (1985–2011 and Xinjiang statistical yearbook (2000–2010 was used to analyze the trend, intensity, and serious soil water erosion regions. Results showed that the water erosion area in Xinjiang was 87.6×103 km2 in 2011, mainly distributed in the Ili river valley and the northern and southern Tian Mountain. Soil erosion gradient was generally slight and the average erosion modulus was 2184 t/(km2 a. During the last 26 years, the water erosion area in Xinjiang decreased by 23.2%, whereas the intensity was still increasing. The driving factors from large to small impact included: population boom and human activities>vegetation degradation>rainfall and climate change>topography and soil erodibility>tectonics movement. Soil water erosion resulted in eco-environmental and socioeconomic losses, such as destroying farmland and grassland, triggering floods, sedimentation of reservoirs, damaging transportation and irrigation facilities, and aggravating poverty. A landscape ecological design approach is suggested for integrated control of soil erosion. Currently, an average of 2.07×103 km2 of formerly eroded area is conserved each year. This study highlighted the importance and longevity of soil and water conservation efforts in Xinjiang, and offered some suggestions on ecological restoration and combating desertification in arid regions of Central Asia.

  12. Land resource development and utilization in Central Asia%中亚土地资源开发与利用分析

    Institute of Scientific and Technical Information of China (English)

    范彬彬; 罗格平; 胡增运; 李超凡; 韩其飞; 王渊刚; 李小玉; 艳燕

    2012-01-01

    rapidly, and then increase slowly. The area of the farmland decreases from 43. 1 x 104 km2 (10. 9% ) in 1992 to 29. 8 x 104 km2 (7. 58% ) in 2000, and then increases to 31.6 x 104 km2(8.04% ) in 2009 which is still far from the farmland area in 1992. Because of the breakup of the Soviet Union, a series of problem including the shortage of means of production, the destruction of the agricultural infrastructure and the market economy is still not established which had been caused the waste of land. After that, the independent of the states in Central Asia leads the recovery of the social economy and the area of farmland. (2) The areas of forest and grassland in Central Asia are varied little. However, the grassland grazing capacity has changed in large degree. In details; the grazing capacity of Kazakhstan has been decreased continually with the number 6. 25 × 107 sheep in 2009 that is only accounts to 63. 1% of the 9. 91 ×10 sheep in 1992; on the contrary, the grazing capacity of Turkmenistan has been increasing from 1. 04 × 10 sheep in 1992 to 2.96×107 sheep in 2009 that is triple of 1.04 x 107 sheep in 1992; the grazing capacity of Uzbekistan, Tajikistan and Kyrgyzstan increases at different degree, respectively. The privatization of pasture in the most of Central Asia and the damage of seasonal pasture contribute to the change of the grassland grazing capacity. (3) The potential productivity of the land resource is great in Central Asia. However, ecological problems such as soil erosion and soil-salinization of the farmland and pasture overgrazing, have been discovered in this area. In addition , the reasonable application of water resources in Central Asia has great important ecological significance and e-conomic value, especially in the arid land. But, as well know, the water resources are shortage and the distribution is not reasonable, and there are still some problems in the application of the water resources, such as, the waste of water, the pollution of water

  13. Simulating the Energy and Water Fluxes from Two Alkaline Desert Ecosystems over Central Asia

    Directory of Open Access Journals (Sweden)

    Chang-Qing Jing

    2016-01-01

    Full Text Available The Central Asia region is covered by vast desert ecosystems, where the characteristic of energy and water fluxes is different from other humid ecosystems. The application of land surface models (LSMs in arid and semiarid ecosystems was largely limited. This paper presents a detailed evaluation of Common Land Model (CoLM at two eddy covariance (EC sites in alkaline desert ecosystems over Central Asia. Simulations of the net radiation (Rnet, latent heat flux (Qle, sensible heat flux (Qh, and soil temperature showed that refined estimate of roughness length (Z0m significantly improved the performance of CoLM in simulating turbulent heat fluxes. Qle was increased but Qh was decreased, which were in better agreement with the observations from EC system. The results indicated that accurate parameterization of Z0m is of crucial importance for predicting energy and water fluxes in LSM when applied in Central Asia desert ecosystems. Sensitivity analysis regarding leaf area index (LAI, Z0m, and albedo (α showed that Rnet is very sensitive to α but Qle, Qh, and soil temperature (Tsoil are sensitively varying with the estimate of Z0m at the two EC sites over Central Asia.

  14. Earth Observation for Water Resources Management

    OpenAIRE

    García, Luis; Rodríguez, Juan Diego; Wijnen, Marcus; Pakulski, Inge

    2015-01-01

    This book describes some key global water challenges, perspectives for remote sensing approaches, and their importance for water resources-related activities. It presents eight key types of water resources management variables, a list of sensors that can produce such information, and a description of existing data products with examples. This book provides a series of practical guidelines that can be used by project leaders to decide whether remote sensing may be useful for the problem a...

  15. Teale Department of Water Resources

    Data.gov (United States)

    California Department of Resources — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state...

  16. Water Resources Compound Systems: A Macro Approach to Analysing Water Resource Issues under Changing Situations

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-12-01

    Full Text Available Water resource crises are an increasing threat to human survival and development. To reveal the nature of water resource issues under changing situations, the water resources system needs to be studied from a macro and systematic perspective. This report develops a water resources system into a water resources compound system that is constantly evolving under the combined action of the development, resistant, and coordination mechanisms. Additionally, the water quotient is defined as a quantitative representation of the sustainable development state of the water resources compound system. Four cities in China, Beijing, Fuzhou, Urumqi, and Lhasa, were selected as the study areas. The differences in the three types of mechanisms and the water quotient of the water resources compound system of each city in 2013 were compared. The results indicate that the different subsystems that comprise the compound system of a given area have different development mechanisms and resistant mechanisms. There are clear differences in the mechanisms and the water quotients for the water resources compound systems of different regions. Pertinent measures should be taken into account during integrated water resource management to improve the sustainable development status of regional water resources compound systems.

  17. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  18. 18 CFR 701.76 - The Water Resources Council Staff.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The...

  19. Preface: Remote Sensing of Water Resources

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-02-01

    Full Text Available The Special Issue (SI on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  20. Porphyry copper assessment of the Tethys region of western and southern Asia: Chapter V in Global mineral resource assessment

    Science.gov (United States)

    Zürcher, Lukas; Bookstrom, Arthur A.; Hammarstrom, Jane M.; Mars, John C.; Ludington, Stephen; Zientek, Michael L.; Dunlap, Pamela; Wallis, John C.; Drew, Lawrence J.; Sutphin, David M.; Berger, Byron R.; Herrington, Richard J.; Billa, Mario; Kuşcu, Ilkay; Moon, Charles J.; Richards, Jeremy P.; Zientek, Michael L.; Hammarstrom, Jane M.; Johnson, Kathleen M.

    2015-11-18

    A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in the Tethys region of western and southern Asia was carried out as part of a global mineral resource assessment led by the U.S. Geological Survey (USGS). The purpose of the study was to delineate geographic areas as permissive tracts for the occurrence of porphyry copper deposits at a scale of 1:1,000,000 and to provide probabilistic estimates of amounts of copper likely to be contained in undiscovered porphyry copper deposits in those tracts. The team did the assessment using the USGS three-part form of mineral resource assessment, which is based on (1) mineral deposit and grade-tonnage models constructed from known deposits as analogs for undiscovered deposits, (2) delineation of permissive tracts based on geoscientific information, and (3) estimation of numbers of undiscovered deposits.

  1. Porphyry copper assessment of the Tethys region of western and southern Asia: Chapter V in Global mineral resource assessment

    Science.gov (United States)

    Zürcher, Lukas; Bookstrom, Arthur A.; Hammarstrom, Jane M.; Mars, John C.; Ludington, Stephen; Zientek, Michael L.; Dunlap, Pamela; Wallis, John C.; Drew, Lawrence J.; Sutphin, David M.; Berger, Byron R.; Herrington, Richard J.; Billa, Mario; Kuşcu, Ilkay; Moon, Charles J.; Richards, Jeremy P.

    2015-01-01

    A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in the Tethys region of western and southern Asia was carried out as part of a global mineral resource assessment led by the U.S. Geological Survey (USGS). The purpose of the study was to delineate geographic areas as permissive tracts for the occurrence of porphyry copper deposits at a scale of 1:1,000,000 and to provide probabilistic estimates of amounts of copper likely to be contained in undiscovered porphyry copper deposits in those tracts. The team did the assessment using the USGS three-part form of mineral resource assessment, which is based on (1) mineral deposit and grade-tonnage models constructed from known deposits as analogs for undiscovered deposits, (2) delineation of permissive tracts based on geoscientific information, and (3) estimation of numbers of undiscovered deposits.

  2. Water resources activities, Georgia District, 1986

    Science.gov (United States)

    Casteel, Carolyn A.; Ballew, Mary D.

    1987-01-01

    The U.S. Geological Survey, through its Water Resources Division , investigates the occurrence, quantity, quality, distribution, and movement of the surface and underground water that composes the Nation 's water resources. Much of the work is a cooperative effort in which planning and financial support are shared by state and local governments and other federal agencies. This report contains a brief description of the water-resources investigations in Georgia in which the Geological Survey participates, and a list of selected references. Water-resources data for the 1985 water year for Georgia consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and groundwater levels. These data include discharge records for 108 gaging stations; water quality for 43 continuous stations, 109 periodic stations, and miscellaneous sites; peak stage and discharge only for 130 crest-stage partial-record stations and 44 miscellaneous sites; and water levels of 27 observation wells. Nineteen Georgia District projects are summarized. (Lantz-PTT)

  3. WaterWatch -- Current Water Resources Conditions

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — WaterWatch (http://waterwatch.usgs.gov) is a U.S. Geological Survey (USGS) World Wide Web site that displays maps, graphs, and tables describing real-time, recent,...

  4. Sustainable use of water resources

    DEFF Research Database (Denmark)

    Battilani, A; Jensen, Christian Richardt; Liu, Fulai;

    2013-01-01

    , there was no difference between RDI and PRD for the total and marketable yield. In 2008, PRD increased the marketable yield by 14.8% while the total yield was similar to RDI. Water Use Efficiency (WUE) was higher with PRD (+14%) compared to RDI. PRD didn’t improve fruit quality, although in 2007 a better °Brix, colour...... and acidity were observed. PRD reduced irrigation water volume (-9.0% of RDI) while a higher dry matter accumulation in the fruits was recorded both in 2007 and 2008. The income for each cubic meter of irrigation water was 10.6 € in RDI and 14.8 € in PRD, respectively. The gross margin obtained with each kg...

  5. Radon removal from the water resource

    International Nuclear Information System (INIS)

    Concerning the presence of radioactive substances in groundwater used for public supply, particular attention is paid to radon removal in water treatment process. The processes based on water aeration are the most common methods for the reduction of radon concentrations in water. Simple spraying, bubble aeration in the deeper layers of water and various modifications of water aeration in a horizontal arrangement - Inka system and aeration towers - are used for radon removal from water. Vacuum de-aeration is another possibility of reducing the concentration of radon in water. However, this procedure is not widely used in practice as compared to the above methods. The article presents the results obtained from the pilot tests for radon removal by using the aeration tower and Inka aeration system in the water resource supplying the city of Istebné with drinking water. Key words: radon, radon removal , aeration tower , Inka aerator , water quality

  6. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  7. Water Resources Availability in Kabul, Afghanistan

    Science.gov (United States)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  8. Water Resources System Archetypes: Towards a Holistic Understanding of Persistent Water Resources Problems

    Science.gov (United States)

    Mirchi, A.; Watkins, D. W.; Madani, K.

    2011-12-01

    Water resources modeling, a well-established tool in water resources planning and management practice, facilitates understanding of the physical and socio-economic processes impacting the wellbeing of humans and ecosystems. While watershed models continue to become more holistic, there is a need for appropriate frameworks and tools for integrated conceptualization of problems to provide reliable qualitative and quantitative bases for policy selection. In recent decades, water resources professionals have become increasingly cognizant of important feedback relationships within water resources systems. We contend that a systems thinking paradigm is required to facilitate characterization of the closed-loop nature of these feedbacks. Furthermore, a close look at different water resources issues reveals that, while many water resources problems are essentially very similar in nature, they continuously appear in different geographical locations. In the systems thinking literature, a number of generic system structures known as system archetypes have been identified to describe common patterns of problematic behavior within systems. In this research, we identify some main system archetypes governing water resources systems, demonstrating their benefits for holistic understanding of various classes of persistent water resources problems. Using the eutrophication problem of Lake Allegan, Michigan, as a case study, we illustrate how the diagnostic tools of system dynamics modeling can facilitate identification of problematic feedbacks within water resources systems and provide insights for sustainable development.

  9. Water resources in the next millennium

    Science.gov (United States)

    Wood, Warren

    As pressures from an exponentially increasing population and economic expectations rise against a finite water resource, how do we address management? This was the main focus of the Dubai International Conference on Water Resources and Integrated Management in the Third Millennium in Dubai, United Arab Emirates, 2-6 February 2002. The invited forum attracted an eclectic mix of international thinkers from five continents. Presentations and discussions on hydrology policy/property rights, and management strategies focused mainly on problems of water supply, irrigation, and/or ecosystems.

  10. Redressing China's Strategy of Water Resource Exploitation

    Science.gov (United States)

    Ran, Lishan; Lu, Xi Xi

    2013-03-01

    China, with the confrontation of water-related problems as an element of its long history, has been investing heavily in water engineering projects over the past few decades based on the assumption that these projects can solve its water problems. However, the anticipated benefits did not really occur, or at least not as large as expected. Instead, the results involved additional frustrations, such as biodiversity losses and human-induced disasters (i.e., landslides and earthquakes). Given its inherent shortcomings, the present engineering-dominated strategy for the management of water resources cannot help solve China's water problems and achieve its goal of low-carbon transformation. Therefore, the present strategy for water resources exploitation needs to be reevaluated and redressed. A policy change to achieve better management of Chinese rivers is urgently needed.

  11. Water Resources by 2100 in Mountains with Declining Glaciers

    Science.gov (United States)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a

  12. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... Bureau of Reclamation Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement... Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The Washington State... Integrated Water Resource Management Alternative in June 2009 under SEPA. The......

  13. Sustainability of ground-water resources

    Science.gov (United States)

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  14. Water, Society and the future of water resources research (Invited)

    Science.gov (United States)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  15. Population and water resources: a delicate balance.

    Science.gov (United States)

    Falkenmark, M; Widstrand, C

    1992-11-01

    Various avenues exist to minimize the effects of the current water crisis in some regions of the world and the more widespread problems that will threaten the world in the future. Active management of existing water resources and a reduction in population growth in water-scarce areas are needed to minimize the effects of the water crisis. National boundaries do not effect water systems. Cooperation and commitment of local, national, and international governments, institutions, and other organizations are needed to manage water systems. Development in each country must entail conscientious and effective balancing of unavoidable manipulations of the land and the unavoidable environmental impacts of those manipulations. The conditions of environmental sustainability must include protection of land productivity, ground water potability, and biodiversity. Humans must deal with these factors either by adopting methods to protect natural systems or by correcting existing damage and reducing future problems. They need to understand the demographic forces in each country so they can balance society's rising needs for clean water with the finite amount of water available. Factors affecting future needs at all levels include rapid rural-urban migration, high fertility, and changing patterns of international population movement. Given an increased awareness of global water systems, demographic trends, and active management of resources, the fragile balance between population and water can be maintained. PMID:12344702

  16. Urban Fresh Water Resources Consumption of China

    Institute of Scientific and Technical Information of China (English)

    ZHU Peng; LU Chunxia; ZHANG Lei; CHENG Xiaoling

    2009-01-01

    From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban fresh water consumption was presented based on the theory of urban basic material consumption and the input-output method, which was utilized to calculate urban fresh water consumption of China, and to analyze its structural change and causes. The results show that the total urban fresh water consumption increased 561.7×109m3, and the proportion to the total national fresh water resources increased by 20 percentage points from 1952 to 2005. The proportion of direct and induced water consumption had been continuously rising, and it increased by 15 and 35 percentage points separately from 1952 to 2005, while the proportion of indirect water consumption decreased by 50 percentage points. Urban indi-rect water consumption was mainly related to urban grain, beef and mutton consumption, and urban induced water consumption had a close relationship with the amount of carbon emission per capita. Finally, some countermeasures were put forward to realize sustainable utilization of urban fresh water resources in China.

  17. Hydrologic effects of land and water management in North America and Asia: 1700–1992

    Directory of Open Access Journals (Sweden)

    I. Haddeland

    2006-09-01

    Full Text Available The hydrologic effects of land use changes, dams, and irrigation in North America and Asia over the past 300 years are studied using a macroscale hydrologic model. The simulation results indicate that the expansion of croplands over the last three centuries has resulted in 2.5 and 6 percent increases in annual runoff volumes for North America and Asia, respectively, and that these increases in runoff to some extent have been compensated by increased evapotranspiration caused by irrigation practices. Averaged over the year and the continental scale, the accumulated anthropogenic impacts on surface water fluxes are hence relatively minor. However, for some regions within the continents human activities have altered hydrologic regimes profoundly. Reservoir operations and irrigation practices in the western part of USA and Mexico have resulted in a 25 percent decrease in streamflow in June, and a 9 percent decrease in annual runoff volumes reaching the Pacific Ocean. In the area in South East Asia draining to the Pacific Ocean, land use changes have caused an increase in runoff volumes throughout the year, and the average annual increase in runoff is 12 percent.

  18. 亚洲地下水资源与环境地质系列图及GIS系统结构%Groundwater Resources and Environmental Geology Serial Maps of Asia and the GIS System Structure

    Institute of Scientific and Technical Information of China (English)

    董华; 张健康; 程彦培; 倪增石; 张发旺; 黄志兴; 田廷山; 赵继昌; 高昀; 刘坤

    2011-01-01

    “亚洲地下水资源及环境地质系列图件”(1∶800万)属于洲际尺度图件,包括亚洲水文地质图、亚洲地下水资源图、亚洲地热图和亚洲地下水环境背景图等.针对全球变化,能源危机、资源短缺、环境恶化地质灾害频发的状况,特别是水资源安全保障与地质环境优劣更是直接影响亚洲地区可持续发展,编制上述图件,意义十分重大.亚洲地下水资源及环境地质系列图件,是在亚洲地下水资源及环境地质综合研究基础上,全面分析了国际国内近年来地下水资源与环境地质方面的编图模式,用编制系列图的系统理念,研究制订适合亚洲特点的编图内容及编图方法.应用GIS信息平台,构建亚洲地下水资源与环境GIS系统结构下的数据库,以反映亚洲地下水资源及环境地质时空特征分布规律,为亚洲各国和跨国的自然资源开发利用,水资源规划和地质环境保护防灾减灾,提供科学依据.%"Serial maps of groundwater resource and environmental geology of Asia"(at scale of 1∶8 000 000), including Hydrogeological Map of Asia, Groundwater Resources Map of Asia, Geothermal Map of Asia and Groundwater Environment Background Map of Asia, has been completed based on the research of groundwater resource and environmental geology and overall analysis of mapping pattern of groundwater resource and environmental geology in recent years at home and abroad. The compilation of series maps is of great significance at present for issues over global climate change, energy crisis, resource shortage and environment deterioration and frequent geological hazards we are facing, especially under the condition that water resource safe guarantee and geological environment directly affect the sustainable development in Asia. The mapping content and method suitable for Asia has been developed in consideration of systematical concept of compiling serial maps. The serial maps reflect spatio

  19. Internet GIS and water resource information

    International Nuclear Information System (INIS)

    GIS is Geographic Information System, a computer system capable of integrating, storing, editing, analyzing, sharing and displaying geographically referenced information. At present, GIS is not only limited to cartography but also involves in various activities i.e. scientific investigation, natural resource management, environmental impact assessment, etc. Internet GIS allows more information sharing as many users can access GIS at the same time. Another progress in GIS is GIS/MIS where non geographical information (customized to users' purposes) regarding the particular area was overlaid with GIS. Internet GIS/MIS is useful for water resource management as it gives users better understanding of the overall picture i.e. GIS: locations of rivers/basins, topography of the flooded/drought areas, linkages of geographical factors and natural disasters occurred and MIS: water demand and supply thus gives users the ability to find best solution for each area and manage water resource in a sustainable manner. (author)

  20. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  1. Relative Efficiency Evaluation on Water Resource Utilization

    Institute of Scientific and Technical Information of China (English)

    MA Ying

    2011-01-01

    Water resource allocation was defined as an input-output question in this paper, and a preliminary input-output index system was set up. Then GEM (group eigenvalue method)-MAUE (multi-attribute utility theory) model was applied to evaluate relative efficiency of water resource allocation plans. This model determined weights of indicators by GEM, and assessed the allocation schemes by MAUE. Compared with DEA (Data Envelopment Analysis) or ANN (Artificial Neural Networks), the mode was more applicable in some cases where decision-makers had preference for certain indicators

  2. Health risks from large-scale water pollution: trends in Central Asia.

    Science.gov (United States)

    Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor

    2011-02-01

    Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. PMID:21131050

  3. 30 CFR 402.6 - Water-Resources Research Program.

    Science.gov (United States)

    2010-07-01

    ... governments for research concerning any aspect of a water-resource related problem deemed to be in the... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH...

  4. Higher Resolution for Water Resources Studies

    Science.gov (United States)

    Dumenil-Gates, L.

    2009-12-01

    The Earth system science community is providing an increasing range of science results for the benefit of achieving the Millennium Development Goals. In addressing questions such as reducing poverty and hunger, achieving sustainable global development, or by defining adaptation strategies for climate change, one of the key issues will be the quantitative description and understanding of the global water cycle, which will allow useful projections of available future water resources for several decades ahead. The quantities of global water cycle elements that we observe today - and deal with in hydrologic and atmospheric modeling - are already very different from the natural flows as human influence on the water cycle by storage, consumption and edifice has been going on for millennia, and climate change is expected to add more uncertainty. In this case Tony Blair’s comment that perhaps the most worrying problem is climate change does not cover the full story. We shall also have to quantify how the human demand for water resources and alterations of the various elements of the water cycle may proceed in the future: will there be enough of the precious water resource to sustain current and future demands by the various sectors involved? The topics that stakeholders and decision makers concerned with managing water resources are interested in cover a variety of human uses such as agriculture, energy production, ecological flow requirements to sustain biodiversity and ecosystem services, or human cultural aspects, recreation and human well-being - all typically most relevant at the regional or local scales, this being quite different from the relatively large-scale that the IPCC assessment addresses. Halfway through the Millennium process, the knowledge base of the global water cycle is still limited. The sustainability of regional water resources is best assessed through a research program that combines high-resolution climate and hydrologic models for expected

  5. Modeling Renewable Water Resources under Climate Change

    Science.gov (United States)

    Liu, X.; Tang, Q.

    2014-12-01

    The impacts of climate change on renewable water resources are usually assessed using hydrological models driven by downscaled climate outputs from global climate models. Most hydrological models do not have explicit parameterization of vegetation and thus are unable to assess the effects of elevated atmospheric CO2 on stomatal conductance and water loss of leaf. The response of vegetation to elevated atmospheric CO2 would reduce evaporation and affect runoff and renewable water resources. To date, the impacts of elevated CO2 on vegetation transpiration were not well addressed in assessment of water resources under climate change. In this study, the distributed biosphere-hydrological (DBH) model, which incorporates a simple biosphere model into a distributed hydrological scheme, was used to assess the impacts of elevated CO2 on vegetation transpiration and consequent runoff. The DBH model was driven by five General Circulation Models (GCMs) under four Representative Concentration Pathways (RCPs). For each climate scenario, two model experiments were conducted. The atmospheric CO2 concentration in one experiment was assumed to remain at the level of 2000 and increased as described by the RCPs in the other experiment. The results showed that the elevated CO2 would result in decrease in evapotranspiration, increase in runoff, and have considerable impacts on water resources. However, CO2 induced runoff change is generally small in dry areas likely because vegetation is usually sparse in the arid area.

  6. Linking water resources to food security through virtual water

    Science.gov (United States)

    Tamea, Stefania

    2014-05-01

    The largest use of global freshwater resources is related to food production. While each day we drink about 2 liters of water, we consume (eating) about 4000 liters of ''virtual water'', which represents the freshwater used to produce crop-based and livestock-based food. Considering human water consumption as a whole, most part originates from agriculture (85.8%), and only minor parts come from industry (9.6%) or households (4.6%). These numbers shed light on the great pressure of humanity on global freshwater resources and justify the increasing interest towards this form of environmental impact, usually known as ''water footprint''. Virtual water is a key variable in establishing the nexus between water and food. In fact, water resources used for agricultural production determine local food availability, and impact the international trade of agricultural goods. Trade, in turn, makes food commodities available to nations which are not otherwise self-sufficient, in terms of water resources or food, and it establishes an equilibrium between food demand and production at the global scale. Therefore, food security strongly relies on international food trade, but also on the use of distant and foreign water resources, which need to be acknowledged and investigated. Virtual water embedded in production and international trade follows the fate of food on the trade network, generating virtual flows of great magnitude (e.g., 2800 km3 in 2010) and defining local and global virtual water balances worldwide. The resulting water-food nexus is critical for the societal and economic development, and it has several implications ranging from population dynamics to the competing use of freshwater resources, from dietary guidelines to globalization of trade, from externalization of pollution to policy making and to socio-economic wealth. All these implications represent a great challenge for future research, not only in hydrology but in the many fields related to this

  7. Water. A key resource in energy production

    Energy Technology Data Exchange (ETDEWEB)

    Rio Carrillo, Anna Merce [EPFL, Geneva (Switzerland); Frei, Christoph [World Economic Forum and EPFL, Geneva (Switzerland)

    2009-11-15

    Water and energy are the key resources required for both economic and population growth, and yet both are increasingly scarce. The distribution of water takes large amounts of energy, while the production of energy requires large amounts of water in processes such as thermal plant cooling systems or raw materials extraction. This study analyzes the water needs for energy production in Spain according to the energy source sector (electricity, transportation or domestic) and process type (extraction and refining of raw materials or thermal plant use). Current and future water needs are quantified according to energy demand and technology mix evolution. Hypothetical scenarios that simulate the risks of promoting specific energy policies are also analyzed. Results show that the combination of energy resources used in Spain is projected to be more than 25% more water consumptive in 2030 than in 2005 under ceteris paribus conditions. Renewable energies are mixed in terms of their consequences on the water supply; wind power can reduce water withdrawal, while the biofuels production is a water-intensive process. (author)

  8. Water: A key resource in energy production

    Energy Technology Data Exchange (ETDEWEB)

    Rio Carrillo, Anna Merce, E-mail: annamerce.rio@gmail.co [EPFL (Switzerland); Frei, Christoph [World Economic Forum and EPFL (Switzerland)

    2009-11-15

    Water and energy are the key resources required for both economic and population growth, and yet both are increasingly scarce. The distribution of water takes large amounts of energy, while the production of energy requires large amounts of water in processes such as thermal plant cooling systems or raw materials extraction. This study analyzes the water needs for energy production in Spain according to the energy source sector (electricity, transportation or domestic) and process type (extraction and refining of raw materials or thermal plant use). Current and future water needs are quantified according to energy demand and technology mix evolution. Hypothetical scenarios that simulate the risks of promoting specific energy policies are also analyzed. Results show that the combination of energy resources used in Spain is projected to be more than 25% more water consumptive in 2030 than in 2005 under ceteris paribus conditions. Renewable energies are mixed in terms of their consequences on the water supply; wind power can reduce water withdrawal, while the biofuels production is a water-intensive process.

  9. Isotope techniques in water resources development 1991

    International Nuclear Information System (INIS)

    Water resources are scarce in many parts of the world. Often, the only water resource is groundwater. Overuse usually invites a rapid decline in groundwater resources which are recharged insufficiently, or not at all, by prevailing climatic conditions. These and other problems currently encountered in hydrology and associated environmental fields have prompted an increasing demand for the utilization of isotope methods. Such methods have been recognized as being indispensable for solving problems such as the identification of pollution sources, characterization of palaeowater resources, evaluation of recharge and evaporative discharge under arid and semi-arid conditions, reconstruction of past climates, study of the interrelationships between surface and groundwater, dating of groundwater and validation of contaminant transport models. Moreover, in combination with other hydrogeological and geochemical methods, isotope techniques can provide useful hydrological information, such as data on the origin, replenishment and dynamics of groundwater. It was against this background that the International Atomic Energy Agency, in co-operation with the United Nations Educational, Scientific and Cultural Organization and the International Association of Hydrological Sciences, organized this symposium on the Use of Isotope Techniques in Water Resources Development, which took place in Vienna from 11 to 15 March 1991. The main themes of the symposium were the use of isotope techniques in solving practical problems of water resources assessment and development, particularly with respect to groundwater protection, and in studying environmental problems related to water, including palaeohydrological and palaeoclimatological problems. A substantial part of the oral presentations was concerned with the present state and trends in groundwater dating, and with some methodological aspects. These proceedings contain the papers of 37 oral and the extended synopses of 47 poster

  10. Isotope techniques in water resources development

    International Nuclear Information System (INIS)

    These proceedings contain the papers of 41 oral and the extended synopses of 40 poster presentations at the seventh symposium on the use of isotope techniques in water resources development. The topics of the sessions were as follows: Thermal water studies, groundwater dating, hydrology of arid and semi-arid areas, field studies with environmental isotopes, precipitation-surface-groundwater relationships, pollution, artificial tracers and sediment transport. Refs, figs, tabs

  11. Game Theory in water resources management

    Science.gov (United States)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  12. Water Resources Research and Interdisciplinary Hydrology

    Science.gov (United States)

    Freeze, R. Allan

    1990-09-01

    Water Resource Research was born under the watchful eye of Walter Langbein, a modern-day Renaissance man whose interests spanned not only hydrology but all of the earth sciences, and not only the earth sciences but all of science. From its founding in1965 to the present day, the editors of WRR have always seen the journal as a medium of interdisciplinary interaction. On this 25th anniversary of WRR, I thought it might be worthwhile to look back on the interdisciplinary successes and failures of the past quarter decade, in our journal and in our science. There is no question that research in water resources is an interdisciplinary endeavor. At my university we have a graduate program in interdisciplinary hydrology on the books, and on those occasions when we gather together, there are students and faculty there from as many as seven different departments: geography, geology, soil science, forestry, civil engineering, mining engineering, and bioresource engineering. In addition, our campus hosts the Westwater Research Institute where physical scientists can get involved in interdisciplinary research with social scientists from regional and community planning, resource management, resource economics, commerce, and law. I suspect that many campuses have a similar breadth of water resources interests. It is this breadth that WRR is designed to serve.

  13. Marine Spatial Planning in Asia and the Caribbean: Application and Implications for Fisheries and Marine Resource Management

    Directory of Open Access Journals (Sweden)

    Robert S. Pomeroy

    2014-12-01

    Full Text Available Marine spatial planning (MSP has emerged as a highly promoted approach to implementing integrated management of coastal and ocean areas. It is linked to ecosystem-based management (EBM, the ecosystem approach to fisheries (EAF, geographic information systems (GIS, marine protected areas (MPAs and more. Although MSP has gained global attention, its use appears to be less prominent in small island developing states (SIDS and other developing countries than in developed countries. The purpose of this paper is to discuss the implications and practical application of MSP as an ocean resource management paradigm in Asia and the Caribbean. Where will MSP fit in the range of management paradigms? Where and how can it be best utilized for integrated resource management? What are challenges for implementation? Examples of use of MSP and marine zoning are presented and discussed.

  14. Policy Sciences in Water Resources Research

    Science.gov (United States)

    Cummings, Ronald G.

    1984-07-01

    As the newly appointed Policy Sciences Editor for this journal, I would like to take this opportunity to introduce myself to WRR's readership as well as to offer a few comments concerning my views of policy sciences in water resources research. I am an economist working in the area of natural resources and environmental management. As such, I've spent a good part of my research career working with noneconomists. During 1969-1972, I worked in Mexico with hydrologists and engineers from Mexico's Water Resources Ministry in efforts to assess management/investment programs for reservoir systems and systems for interbasin water transfers. Between 1972 and 1975, while serving as Chairman of the Department of Resource Economics at the University of Rhode Island, my research involved collaborative efforts with biologists and soil scientists in studies concerning the conjunctive management of reservoirs for agricultural and lagoon systems and the control of salinity levels in soils and aquifers. Since 1975, at which time I joined the faculty at the University of New Mexico, I have worked with engineers at the Los Alamos National Laboratory in developing operation/management models for hot, dry rock geothermal systems and, more recently, with legal scholars and hydrologists in analyses of water rights issues. Thus I am comfortable with and appreciative of research conducted by my colleagues in systems engineering, operations research, and hydrology, as well as those in economics, law, and other social sciences.

  15. Climate change and water resources in Britain

    International Nuclear Information System (INIS)

    This paper explores the potential implications of climate change for the use and management of water resources in Britain. It is based on a review of simulations of changes in river flows, groundwater recharge and river water quality. These simulations imply, under feasible climate change scenarios, that annual, winter and summer runoff will decrease in southern Britain, groundwater recharge will be reduced and that water quality - as characterised by nitrate concentrations and dissolved oxygen contents - will deteriorate. In northern Britain, river flows are likely to increase throughout the year, particularly in winter. Climate change may lead to increased demands for water, over and above that increase which is forecast for non-climatic reasons, primarily due to increased use for garden watering. These increased pressures on the water resource base will impact not only upon the reliability of water supplies, but also upon navigation, aquatic ecosystems, recreation and power generation, and will have implications for water management. Flood risk is likely to increase, implying a reduction in standards of flood protection. The paper discusses adaptation options. 39 refs., 5 figs

  16. Water resource conflicts in the Middle East.

    Science.gov (United States)

    Drake, C

    1997-01-01

    This article discusses the causes and sources of water resource conflict in the 3 major international river basins of the Middle East: the Tigris-Euphrates, the Nile, and the Jordan-Yarmuk. The physical geography of the Middle East is arid due to descending air, northeast trade winds, the southerly location, and high evaporation rates. Only Turkey, Iran, and Lebanon have adequate rainfall for population needs. Their mountainous geography and more northerly locations intercept rain and snow bearing westerly winds in winter. Parts of every other country are vulnerable to water shortages. Rainfall is irregular. Water resource conflicts are due to growing populations, economic development, rising standards of living, technological developments, political fragmentation, and poor water management. Immigration to the Jordan-Yarmuk watershed has added to population growth in this location. Over 50% of the population in the Middle East lives in urban areas where populations consume 10-12 times more water than those in rural areas. Water is wasted in irrigation schemes and huge dams with reservoirs where increased evaporation occurs. Technology results in greater water extraction of shallow groundwater and pollution of rivers and aquifers. British colonial government control led to reduced friction in most of the Nile basin. Now all ethnic groups have become more competitive and nationalistic. The Cold War restrained some of the conflict. Israel obtains 40% of its water from aquifers beneath the West Bank and Gaza. Geopolitical factors determine the mutual goodwill in managing international water. The 3 major water basins in the Middle East pose the greatest risk of water disputes. Possible solutions include conservation, better management, prioritizing uses, technological solutions, increased cooperation among co-riparians, developing better and enforceable international water laws, and reducing population growth rates. PMID:12178551

  17. Application of Fuzzy Projection Method to Water Resource Planning

    OpenAIRE

    Yanqiu Zeng; Lianwu Yang

    2015-01-01

    Water resource planning is very important for water resources management. A desirable water resource planning is typically made in order to satisfy multiple objectives as much as possible. Thus the water resource planning problem is actually a Multiple Attribute Decision Making (MADM) problem. The aim of this study is to put forward a new decision method to solve the problem of water resource planning in which attribute values expressed with triangular fuzzy numbers. The new method is an exte...

  18. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    Science.gov (United States)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  19. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  20. Dynamic Programming Applications in Water Resources

    Science.gov (United States)

    Yakowitz, Sidney

    1982-08-01

    The central intention of this survey is to review dynamic programming models for water resource problems and to examine computational techniques which have been used to obtain solutions to these problems. Problem areas surveyed here include aqueduct design, irrigation system control, project development, water quality maintenance, and reservoir operations analysis. Computational considerations impose severe limitation on the scale of dynamic programming problems which can be solved. Inventive numerical techniques for implementing dynamic programming have been applied to water resource problems. Discrete dynamic programming, differential dynamic programming, state incremental dynamic programming, and Howard's policy iteration method are among the techniques reviewed. Attempts have been made to delineate the successful applications, and speculative ideas are offered toward attacking problems which have not been solved satisfactorily.

  1. Entropy, recycling and macroeconomics of water resources

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  2. WATER RESOURCES MANAGEMENT IN PORT TERMINALS

    Directory of Open Access Journals (Sweden)

    Sérgio Sampaio Cutrim

    2014-06-01

    Full Text Available After Mar del Plata World Conference, water resources management is a matter of considerable importance in environmental issues. In Brazil, the National Water Agency – ANA created by Law N. 9433/97, regulates and controls water resources use and management. The Ponta da Madeira Maritime Terminal with a storage area up to 6.4 million tonnes of ore is privately operated and dedicated to iron ore, manganese ore and pellets handling. Its area and access to operational processes require wetting and spraying to control particulate material dispersion, which is accomplished by sprinkler systems, on the conveyor belts, on unloading wagons trains and loading ships equipment. The paper objective is to map water resources use, to understand its management efficiency and to cover a gap in academic literature applied to port terminals, responsible for 95% of Brazilian exportation in volume. The single case study comprised literature review, technical visits on site and interviews applied to responsible executives. In TPPM, water is captured for wetting from tailing ponds and recirculated by water trucks and it also counts with six wells. The results showed that the management is based upon a decentralized model supported by a multidisciplinary team. The Pellet Mill uses a large amount of water and in 2012, due to little rain there was an increase in water recirculation compared with previous years. The management comprises the legislation and its objectives are accomplished by a continuous monitoring based upon managerial dedicated systems, employees compromise and capabilities regarding the activity, considered strategic for the organization.

  3. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  4. Integrated water resources modelling for assessing sustainable water governance

    Science.gov (United States)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  5. The Integrated Management Policies of Water Resources

    Directory of Open Access Journals (Sweden)

    Maria Magdalena TUREK RAHOVEANU

    2010-08-01

    Full Text Available The balance between water demand and availability has reached a critical level in many areas of Europe, the result of over-abstraction and prolonged periods of low rainfall or drought. Reduced river flows, lowered lake and groundwater levels, and the drying up of wetlands are widely reported, alongside detrimental impacts on freshwater ecosystems, including fish and bird life. Where the water resource has diminished, a worsening of water quality has normally followed because there is less water to dilute pollutants. In addition, salt water increasingly intrudes into 'over-pumped' coastal aquifers throughout Europe. Climate change will almost certainly exacerbate these adverse impacts in the future, with more frequent and severe droughts expected across Europe.

  6. Sustainable water resources management in Pakistan

    International Nuclear Information System (INIS)

    Total river discharge in Pakistan in summer season vary from 3 thousand to 34 thousand cusses (100 thousand Cusses to 1,200 thousand Cusses) and can cause tremendous loss to human lives, crops and property, this causes the loss of most of the flood water in the lower Indus plains to the sea. Due to limited capacity of storage at Tarbela and Mangla Dams on river Indus and Jhelum, with virtually no control on Chenab, Ravi and Sutlej, devastating problems are faced between July and October in the event of excessive rainfall in the catchments. Due to enormous amounts of sediments brought in by the feeding rivers, the three major reservoirs -Tarbela, Mangla and Chashma will lose their storage capacity, by 25 % by the end of the year 2010, which will further aggravate the water-availability situation in Pakistan. The quality of water is also deteriorating due to urbanization and industrialization and agricultural developments. On the Environmental Front the main problems are water-logging and salinity, salt-imbalance, and increasing pollution of water-bodies. World's largest and most integrated system of irrigation was installed almost a hundred years ago and now its efficiency has been reduced to such an extent that more than 50 per cent of the irrigation-water is lost in transit and during application. On the other side, there are still not fully exploited water resources for example groundwater, the alluvial plains of Pakistan are blessed with extensive unconfined aquifer, with a potential of over 50 MAF, which is being exploited to an extent of about 38 MAF by over 562,000 private and 10,000 public tube-wells. In case of Balochistan, out of a total available potential of about 0.9 MAF of groundwater, over 0.5 MAF are already being utilized, but there by leaving a balance of about 0.4 MAF that can still be utilized. Future water resources management strategies should includes starting a mass-awareness campaign on a marshal scale in rural and urban areas to apply water

  7. Water resources review: Wheeler Reservoir, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  8. The Water Resources Board: England and Wales’ Venture into National Water Resources Planning, 1964-1973

    Directory of Open Access Journals (Sweden)

    Christine S. McCulloch

    2009-10-01

    Full Text Available An era of technocratic national planning of water resources is examined against the views of a leading liberal economist and critics, both contemporary and retrospective. Post Second World War Labour Governments in Britain failed to nationalise either land or water. As late as 1965, the idea of public ownership of all water supplies appeared in the Labour Party manifesto and a short-lived Ministry of Land and Natural Resources, 1964-1966, had amongst its duties the development of plans for reorganising the water supply industry under full public ownership. However, instead of pursuing such a politically dangerous takeover of the industry, in July 1964, a Water Resources Board (WRB, a special interest group dominated by engineers, was set up to advise on the development of water resources. In its first Annual Report (1965 WRB claimed its role as "the master planner of the water resources of England and Wales". The WRB had a great deal of influence and justified its national planning role by promoting large-scale supply schemes such as interbasin transfers of water, large reservoirs and regulated rivers. Feasibility studies were even carried out for building innovative, large storage reservoirs in tidal estuaries. Less progress was made on demand reduction. Yet the seeds of WRB’s demise were contained in its restricted terms of reference. The lack of any remit over water quality was a fatal handicap. Quantity and quality needed to be considered together. Privatisation of the water industry in 1989 led to a shift from national strategic planning by engineers to attempts to strengthen economic instruments to fit supply more closely to demand. Engineers have now been usurped as leaders in water resources management by economists and accountants. Yet climate change may demand a return to national strategic planning of engineered water supply, with greater democratic input.

  9. Water Resource Inventory and Assessment- Port Louisa NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Inventory, assessment, and summary of water rights, water quantity, water quality, water management, climate, and other water resource issues

  10. Porphyry copper assessment of northeast Asia: Far East Russia and northeasternmost China: Chapter W in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre

    2015-01-01

    The U.S. Geological Survey assesses resources (mineral, energy, water, environmental, and biologic) at regional, national, and global scales to provide science in support of land management and decision making. Mineral resource assessments provide a synthesis of available information about where mineral deposits are known and suspected to be in the Earth’s crust, which commodities may be present, and estimates of amounts of resources in undiscovered deposits.

  11. Perspectives on the utilization of aquaculture coproduct in Europe and Asia: prospects for value addition and improved resource efficiency.

    Science.gov (United States)

    Newton, Richard; Telfer, Trevor; Little, Dave

    2014-01-01

    Aquaculture has often been criticized for its environmental impacts, especially efficiencies concerning global fisheries resources for use in aquafeeds among others. However, little attention has been paid to the contribution of coproducts from aquaculture, which can vary between 40% and 70% of the production. These have often been underutilized and could be redirected to maximize the efficient use of resource inputs including reducing the burden on fisheries resources. In this review, we identify strategies to enhance the overall value of the harvested yield including noneffluent processing coproducts for three of the most important global aquaculture species, and discuss the current and prospective utilization of these resources for value addition and environmental impact reduction. The review concludes that in Europe coproducts are often underutilized because of logistical reasons such as the disconnected nature of the value chain, and perceived legislative barriers. However, in Asia, most coproducts are used, often innovatively but not to their full economic potential and sometimes with possible human health and biosecurity risks. These include possible spread of diseased material and low traceability in some circumstances. Full economic and environmental appraisal is long overdue for the current and potential strategies available for coproduct utilization.

  12. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao;

    2015-01-01

    resources optimal allocation model and④The hydrological ecosystem analysis in irrigation district. Our analysis showed that there are four major problems in domestic irrigation water resources allocation:Policies for rational water resources allocation and protection are not in place, unified management......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area....... The progress of research on the rational allocation of water resources in irrigation districts both at home and abroad may be summarized in four key aspects of the policy regarding water re?sources management:① The mechanism of water resource cycle and ② Transformation in irrigation district, ③ The water...

  13. Impact of climate change on the hydrology of High Mountain Asia

    OpenAIRE

    A. F. Lutz

    2016-01-01

    In Asia, water resources largely depend on water generated in the mountainous upstream parts of several large river basins and hundreds of millions of people depend on their waters downstream. The large-scale impacts of climate change for the water resources in High Mountain Asia are poorly understood, because the area has a complex climate, which is poorly monitored. Climate change may have large consequences for water availability, seasonal changes in runoff generation and the frequency and...

  14. Game theory and shared water resource management

    Science.gov (United States)

    Najafi, H.; Bagheri, A.

    2011-12-01

    Based on the "New Periodic Table" (NPT) of 2×2 order games by Robinson and Goforth (2005) this study explores all possible game structures, representing a conflict over a shared water resource between two countries. Each game is analyzed to find the possible outcomes (equilibria), Pareto-optimal outcomes, as well as dominant strategies of the players. It is explained why in practice, parties may behave in a way, resulting in Pareto-inferior outcomes and how parties may change their behavior with the structural changes of the game. Further, how parties may develop cooperative solutions through negotiations and involvement of third parties. This work provides useful policy insights into shared water resource problems and identifies the likely structure of such games in the future and the evolution path of the games.

  15. The Connotation and Extension of Agricultural Water Resources Security

    Institute of Scientific and Technical Information of China (English)

    LIU Bu-chun; MEI Xu-rong; LI Yu-zhong; YANG You-lu

    2007-01-01

    The objective of this study is to define agricultural water resources security and its connotation and extension. The definitions of water security, water resources security, and water environment security were summarized, and their relationship was differentiated and analyzed. Based on these, the elements of the conception of agricultural water resources security were hashed and the conception was defined. Agricultural water resources security is the provision of water resource that ensures protection of agriculture against threat, hazards, destruction, and loss. Moreover, the connotation and extension of agricultural water resources security were ascertained. In detail, the connotation of the definition has natural attributes, socioeconomic attributes, and cultural attributes. The extensions of agricultural water resources security include both broad and narrow ones, as well as, food security, agroenvironmental security, agroeconomic security, rural society security, etc. The definition will serve as the frame of reference for developing the researches, limiting the frame of the theory, and founding a appraising system for agricultural water resources security.

  16. Water resource monitoring in Iran using satellite altimetry and satellite gravimetry (GRACE)

    Science.gov (United States)

    Khaki, Mehdi; Sneeuw, Nico

    2015-04-01

    Human civilization has always been in evolution by having direct access to water resources throughout history. Water, with its qualitative and quantitative effects, plays an important role in economic and social developments. Iran with an arid and semi-arid geographic specification is located in Southwest Asia. Water crisis has appeared in Iran as a serious problem. In this study we're going to use various data sources including satellite radar altimetry and satellite gravimetry to monitor and investigate water resources in Iran. Radar altimeters are an invaluable tool to retrieve from space vital hydrological information such as water level, volume and discharge, in particular from regions where the in situ data collection is difficult. Besides, Gravity Recovery and Climate Experiment (GRACE) provide global high resolution observations of the time variable gravity field of the Earth. This information is used to derive spatio-temporal changes of the terrestrial water storage body. This study isolates the anthropogenic perturbations to available water supplies in order to quantify human water use as compared to available resources. Long-term monitor of water resources in Iran is contain of observing freshwaters, lakes and rivers as well as exploring ground water bodies. For these purposes, several algorithms are developed to quantitatively monitor the water resources in Iran. The algorithms contain preprocessing on datasets, eliminating biases and atmospheric corrections, establishing water level time series and estimating terrestrial water storage considering impacts of biases and leakage on GRACE data. Our primary goal in this effort is to use the combination of satellite radar altimetry and GRACE data to study on water resources as well as methods to dealing with error sources include cross over errors and atmospheric impacts.

  17. Traditional Water Resource Use and Adaptation Efforts in Nepal

    OpenAIRE

    Shrestha, Ranjan Prakash; Maharjan, Keshav Lall

    2016-01-01

    Rapid population growth, unplanned urbanization and the drying up of traditional water resources have caused water scarcity in the Kathmandu Valley of Nepal. The impact of climate change has further exacerbated the increasing problem of water scarcity. Traditional water resources such as stone spouts and wells play an important role in meeting the increasing water demand in the Kathmandu Valley. This paper examines water use and conservation efforts of traditional water resources, especially ...

  18. Exploring the Modifiable Areal Unit Problem in Spatial Water Assessments: A Case of Water Shortage in Monsoon Asia

    Directory of Open Access Journals (Sweden)

    Aura Salmivaara

    2015-03-01

    Full Text Available Water shortage (availability per capita is a key indicator of vulnerability to water scarcity. Spatial datasets enable the assessment of water shortage on multiple scales. The use of river basins and subbasins as analysis and management units is currently commonplace. An important but less acknowledged fact is that spatial assessments are strongly influenced by the choice of the unit of analysis due to the Modifiable Areal Unit Problem (MAUP. Climate conditions, agricultural activities, and access to groundwater also influence water availability and demand. In this study, a total of 21 different criteria were used to define areal units of analysis, i.e., zonings, for which water shortage was calculated. Focusing on Monsoon Asia, where water scarcity is a pressing problem, we found that zoning had a considerable impact, resulting in up to three-fold differences in the population under high water shortage (<1000 m3/cap/year, ranging from 782 million to 2.11 billion. In most zonings, however, the Indus and Yellow River Basins and northwest parts of India and China are under high water shortage. The study indicates that a multizonal and multiscale analysis is needed to minimize skewed or even misleading information that might be produced when using only one zoning.

  19. Management of adult and paediatric acute lymphoblastic leukaemia in Asia: resource-stratified guidelines from the Asian Oncology Summit 2013

    Science.gov (United States)

    Yeoh, Allen EJ; Tan, Daryl; Li, Chi-Kong; Hori, Hiroki; Tse, Eric; Pui, Ching-Hon

    2014-01-01

    The survival rates for both adult and children with acute lymphoblastic leukaemia have improved substantially in recent years with wider use of improved risk-directed therapy and supportive care. In nearly all developed countries, clinical practice guidelines have been formulated by multidisciplinary panels of leukaemia experts, with the goal of providing recommendations on standard treatment approaches based on current evidence. However, those guidelines do not take into account resource limitations in low-income countries, including financial and technical challenges. In Asia, there are huge disparities in economy and infrastructure among the countries, and even among different regions in some large countries. This review summarizes the recommendations developed for Asian countries by a panel of adult and paediatric leukaemia therapists, based on the availability of financial, skill and logistical resources, at a consensus session held as part of the 2013 Asian Oncology Summit in Bangkok, Thailand. The management strategies described here are stratified by a four-tier system (basic, limited, enhanced and maximum) based on the resources available to a particular country or region. PMID:24176570

  20. Micropolitics in Resistance: The Micropolitics of Large-Scale Natural Resource Extraction in South East Asia

    NARCIS (Netherlands)

    Rasch, E.D.; Kohne, F.M.

    2015-01-01

    This article analyzes Southeast Asian local communities’ resistance against the globalizing large-scale exploitation of natural resources using a micropolitical ecology approach. It focuses on how communities struggle for livelihoods, both resisting and appropriating globalized practices and narrati

  1. Okefenokee National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Resource Inventory and Assessment (WRIA) for Okefenokee National Wildlife Refugesummarizes available information relevant to refuge water resources,...

  2. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  3. Cape Romain National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes available information relevant to refuge water resources, provides an assessment of refuge water resource needs and issues of concern, and...

  4. Younos president-elect of Universities Council on Water Resources

    OpenAIRE

    Trulove, Susan

    2004-01-01

    The Universities Council on Water Resources (UCOWR) has elected Tamim Younos, of Blacksburg, as president-elect. Younos is interim director of the Water Resources Research Center (www.vwrrc.vt.edu) at Virginia Tech.

  5. Quivira National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Quivira NWR describes current hydrologic information, provides an assessment of water resource needs and...

  6. Water Resources Inventory and Assessment: Patuxent Research Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Patuxent Research Refuge describes current hydrologic information, provides an assessment of water resource...

  7. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  8. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    OpenAIRE

    T.M. CORNEA; Dima, M.; Roca, D.

    2011-01-01

    Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC) [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ...

  9. Resources sustainable management of ground water

    International Nuclear Information System (INIS)

    Evaluation executive interinstitutional of the state of knowledge of the Raigon aquifer in the mark of the Project RLA/8/031 (sustainable Administration of Resources of groundwaters), elaborate of an I diagnose and definition of the necessities with a view to the formulation of the plan of activities of the project to develop. In the development of this work shop they were the following topics: Geology and hidrogeology, numeric modelation of the Aquifer and letter of vulnerability of the Aquifer Raigon. soils, quality and water demand, juridical and institutionals aspects

  10. AOIPS water resources data management system

    Science.gov (United States)

    Vanwie, P.

    1977-01-01

    The text and computer-generated displays used to demonstrate the AOIPS (Atmospheric and Oceanographic Information Processing System) water resources data management system are investigated. The system was developed to assist hydrologists in analyzing the physical processes occurring in watersheds. It was designed to alleviate some of the problems encountered while investigating the complex interrelationships of variables such as land-cover type, topography, precipitation, snow melt, surface runoff, evapotranspiration, and streamflow rates. The system has an interactive image processing capability and a color video display to display results as they are obtained.

  11. MENEKAN LAJU PENYEBARAN KOLERA DI ASIA DENGAN 3SW (STERILIZATION, SEWAGE, SOURCES, AND WATER PURIFICATION

    Directory of Open Access Journals (Sweden)

    Bagus Anggaraditya Anggaraditya

    2015-08-01

    Full Text Available ABSTRAK Penyakit taun atau kolera (juga disebut Asiatic cholera adalah penyakit menular di saluran pencernaan yang disebabkan oleh bakterium Vibrio cholerae. Kolera ditemukan pada tahun 1883 karena infeksi Vibrio cholerae, bakteri berbentuk koma. Penemuan ini ditemukan oleh bakteriologi Robert Koch (Jerman, 1843-1910.Penyebab kolera, adalah bakteri Vibrio cholerae, yang merupakan bakteri gram negatif, berbentuk basil (batang dan bersifat motil (dapat bergerak, memiliki struktur antogenik dari antigen flagelar H dan antigen somatik O, gamma-proteobacteria, mesofilik dan kemoorganotrof, berhabitat alami di lingkungan akuatik dan umumnya berasosiasi dengan eukariot. Pada orang yang feacesnya ditemukan bakteri kolera mungkin selama 1-2 minggu belum merasakan keluhan berarti, Tetapi saat terjadinya serangan infeksi maka tiba-tiba terjadi diare dan muntah dengan kondisi cukup serius sebagai serangan akut yang menyebabkan samarnya jenis diare yg dialamiCara pencegahan dan memutuskan tali penularan penyakit kolera adalah dengan prinsip sanitasi lingkungan, terutama kebersihan air dan pembuangan kotoran (feaces pada tempatnya yang memenuhi standar lingkungan. Lainnya ialah meminum air yang sudah dimasak terlebih dahulu, cuci tangan dengan bersih sebelum makan memakai sabun/antiseptik, cuci sayuran dangan air bersih terutama sayuran yang dimakan mentah (lalapan, hindari memakan ikan dan kerang yang dimasak setengah matang. Kolera memang sudah menjadi momok yang menakutkan di dunia, dan belajar dari negara-negara di Asia yang sudah pernah mengalami wabah kolera, dapat diambil kesimpulan bahwa pengobatan dengan vaksin tidak memiliki pengaruh yang signifikan.Selain karena tidak menjangkau seluruh warga miskin di sebuah negara, harga vaksin kolera juga dirasa cukup memberatkan anggaran negara-negara yang sedang berkembang di Asia.Cara yang dirasa paling tepat dalam menekan laju penyebara kolera adalah 3SW (Sterilization, Sewage, Sources, and Water

  12. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P–E). Here, we compute P–E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P–E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P–E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P–E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  13. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses.

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  14. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P–E). Here, we compute P–E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P–E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P–E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P–E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  15. Alternative medicines for AIDS in resource-poor settings: insights from exploratory anthropological studies in Asia and Africa.

    Science.gov (United States)

    Hardon, Anita; Desclaux, Alice; Egrot, Marc; Simon, Emmanuelle; Micollier, Evelyne; Kyakuwa, Margaret

    2008-01-01

    The emergence of alternative medicines for AIDS in Asia and Africa was discussed at a satellite symposium and the parallel session on alternative and traditional treatments of the AIDSImpact meeting, held in Marseille, in July 2007. These medicines are heterogeneous, both in their presentation and in their geographic and cultural origin. The sessions focused on the role of these medications in selected resource poor settings in Africa and Asia now that access to anti-retroviral therapy is increasing. The aims of the sessions were to (1) identify the actors involved in the diffusion of these alternative medicines for HIV/AIDS, (2) explore uses and forms, and the way these medicines are given legitimacy, (3) reflect on underlying processes of globalisation and cultural differentiation, and (4) define priority questions for future research in this area. This article presents the insights generated at the meeting, illustrated with some findings from the case studies (Uganda, Senegal, Benin, Burkina Faso, China and Indonesia) that were presented. These case studies reveal the wide range of actors who are involved in the marketing and supply of alternative medicines. Regulatory mechanisms are weak. The efficacy claims of alternative medicines often reinforce a biomedical paradigm for HIV/AIDS, and fit with a healthy living ideology promoted by AIDS care programs and support groups. The AIDSImpact session concluded that more interdisciplinary research is needed on the experience of people living with HIV/AIDS with these alternative medicines, and on the ways in which these products interact (or not) with anti-retroviral therapy at pharmacological as well as psychosocial levels. PMID:18616794

  16. Alternative medicines for AIDS in resource-poor settings: Insights from exploratory anthropological studies in Asia and Africa

    Directory of Open Access Journals (Sweden)

    Simon Emmanuelle

    2008-07-01

    Full Text Available Abstract The emergence of alternative medicines for AIDS in Asia and Africa was discussed at a satellite symposium and the parallel session on alternative and traditional treatments of the AIDSImpact meeting, held in Marseille, in July 2007. These medicines are heterogeneous, both in their presentation and in their geographic and cultural origin. The sessions focused on the role of these medications in selected resource poor settings in Africa and Asia now that access to anti-retroviral therapy is increasing. The aims of the sessions were to (1 identify the actors involved in the diffusion of these alternative medicines for HIV/AIDS, (2 explore uses and forms, and the way these medicines are given legitimacy, (3 reflect on underlying processes of globalisation and cultural differentiation, and (4 define priority questions for future research in this area. This article presents the insights generated at the meeting, illustrated with some findings from the case studies (Uganda, Senegal, Benin, Burkina Faso, China and Indonesia that were presented. These case studies reveal the wide range of actors who are involved in the marketing and supply of alternative medicines. Regulatory mechanisms are weak. The efficacy claims of alternative medicines often reinforce a biomedical paradigm for HIV/AIDS, and fit with a healthy living ideology promoted by AIDS care programs and support groups. The AIDSImpact session concluded that more interdisciplinary research is needed on the experience of people living with HIV/AIDS with these alternative medicines, and on the ways in which these products interact (or not with anti-retroviral therapy at pharmacological as well as psychosocial levels.

  17. Pakistan : Country Water Resources Assistance Strategy, Water Economy : Running Dry

    OpenAIRE

    World Bank

    2005-01-01

    The water economy of Pakistan depends fundamentally on a gigantic and complex hydraulic infrastructure system. There are now a set of related challenges which have to be addressed - how to maintain what has been built, what major new system-wide infrastructure needs to be built, what infrastructure needs to be built for populations who have not been served and for environmental protection, and how to build institutions that will manage the resource effectively in the looming era of scarcity. ...

  18. Water Resources Council Proposed Principles and Standards for Planning Water and Related Land Resources. Notice of Public Review and Hearing.

    Science.gov (United States)

    National Archives and Records Services (GSA), Washington, DC. Office of the Federal Register.

    Presented in this notice of a public review and hearing are the proposed Principles and Standards for planning water and related land resources of the United States. Developed by the Water Resources Council pursuant to the Water Resources Planning Act of 1965 (Public Law 89-80), the purpose is to achieve objectives, determined cooperatively,…

  19. Applications of NST in water resources management

    International Nuclear Information System (INIS)

    At first instance, Nuclear Science and Technology (NST) appears to have no relation to water resource management. Its dark side, the sole purpose of which is weaponry, has for a long time overshadowed its bright side, which has plenty of peaceful applications in the main socio-economic development sectors: power generation, agriculture, health and medicine, industry, manufacturing and environment. Historically, the medical sector is one of the early beneficiaries of the applications of NST. The same is true for Malaysia when the first x-ray machine was installed in 1897 at Taiping Hospital, Perak. In the environment sector, the use of little or no chemical in nuclear processes contributes to a cleaner environment. Nuclear power plants for example do not emit polluting gases and do not harm to the ozone layer. At the end of 2004, there are more than 440 nuclear power reactors operating in more than 30 countries fulfilling 17% of the world electricity demand, and it is growing. While nuclear power is yet to arrive in Malaysia the uses of NST in other areas are increasing. The application of radiotracer techniques in water resource management, in the environment, as well as in industry is an example. (Author)

  20. Ultimate recourse protected underground water resources

    Energy Technology Data Exchange (ETDEWEB)

    Mesny, M.; Comte, J.P.

    1995-08-01

    The French BRGM (Bureau de Recherches Geologiques et Minieres), by order of the environment ministry, has carried out an exhaustive inventory of the available drinking water reserves in the French territory in the case of a major pollution crisis. These 98 protected ultimate recourse aquifers have been reported on a 1/1500000 scale map with their extension limits. Most of them correspond to the captive groundwaters of the Parisian and Aquitanian basins. Regional files have been established for the stratigraphic, structural and chemical characteristics of the protected waters. 16 departments over 97 dispose of protected water resources on their whole territory while 24 do not have any. 61 over the 103 towns of more than 50000 inhabitants (61% of the urban population) also dispose of protected aquifers under their feet. The protection degree of bottling water (mineral springs) has not been objectively evaluated yet. The constraints of underground aquiferous storage of natural gas has been also examined. (J.S.). 1 fig. Short communication.

  1. 33 CFR 209.345 - Water resource policies and authorities.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Water resource policies and authorities. 209.345 Section 209.345 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.345 Water resource policies and authorities. Reimbursement for Advance...

  2. Hydrography - MO 2014 Outstanding National Resource Water Watersheds (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains watersheds associated with Missouri's use designations for waters listed in Table D - Outstanding National Resource Waters of the Water...

  3. Water resources of the Yap Islands

    Science.gov (United States)

    Van der Brug, Otto

    1984-01-01

    The Yap Islands consist of four major islands, Yap, Gagil-Tamil, Maap, and Rumung. Of these, Yap Island has more than half the total land area, most of the population, and almost all of the economic development. The islands of Maap and Rumung together compose only 15 percent of the land area and population. Average annual rainfall over the Yap Islands amounts to 122 inches. Rainfall-runoff comparisons indicate that about half of the annual rainfall runs off to the ocean on Yap Island and Gagil-Tamil. Streams on Gagil-Tamil are perennial but streams on Yap Island are dry an average of 3 months per year due to geologic differences. Analyses of water samples from 23 sources show the good quality and the chemical similarity of surface and ground water. This report summarizes the hydrologic data collected and provides interpretations that can be used by the planning and public works officials of Yap to make decisions concerning development and management of their water resources.

  4. Integrated Water Resources Simulation Model for Rural Community

    Science.gov (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  5. Methodological Approach to Comprehensive Economic Evaluation of Water Resources

    OpenAIRE

    Valeriy Mandzyk

    2014-01-01

    As a result of this research, the methodical approaches to comprehensive economic assessment of water resources are worked out. In particular, it is offered to conduct the comprehensive economic assessment in three stages. In the first stage, the economic assessment of water resources as the basis of human life is carried out. The result of this assessment is the monetary value of social and environmental significance of water resource of water body for human and the environment. The main met...

  6. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    Directory of Open Access Journals (Sweden)

    M. Ueyama

    2009-08-01

    Full Text Available Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales.

    The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE, gross primary productivity (GPP, ecosystem respiration (RE, and evapotranspiration (ET. Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values.

    The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although

  7. Overcoming undernutrition with local resources in Africa, Asia and Latin America.

    Science.gov (United States)

    Krawinkel, Michael B

    2012-11-01

    Even in the 21st century, undernutrition is a challenge to be overcome. In the year 2009, 1.02 billion people were reported as food insecure and 180 million children were undernourished. Food insecurity and undernutrition are more than a lack of food energy: they are not reflected countrywide by prevalence means; they are mostly not permanent but seasonal; they are mostly not caused by insufficient amounts of food being produced; and they first affect parents and later children. Food insecurity and undernutrition often manifest themselves as micronutrient deficiency. While undernutrition is still a challenge for global nutrition, a second challenge has arisen: preventing caloric overnutrition. In various countries, food pyramids or food circles have been plotted supporting nutrition education and illustrating the challenge. Such integrative approaches are desirable for all countries of the world, as in all countries, to a smaller or larger extent, undernutrition and caloric overnutrition are the problems of today and tomorrow. The International Assessment of Agriculture for Science Technology and Development (IAASTD) has paid attention to the inescapable interconnectedness of agriculture's different roles and functions in the world and in all societies. Overcoming undernutrition with local resources means first protecting and promoting the use of local resources against imports of low-priced processed foods from subsidised production in industrialised countries; second, it means developing education and training material for regional food production with a nutrition orientation; and third, the experiences of organic farming can contribute much to support farmers in developing countries in planting their indigenous varieties and applying integrated pest management strategies.

  8. Water Resources Management Issues in Turkey and Recommendations

    Science.gov (United States)

    Emin Baris, Mehmet; Ayfer Karadag, Aybike

    The prevailing trends towards rising population, increasing urbanization, spread of more water intensive life styles as well as widespread use of water intensive agriculture sweeping around the world are going to make water resources even scarcer especially in countries like Turkey with scarce water resources and high development and population growth rate, economic and social aspects of water resources become even more important. Turkey, like many countries today, faces challenges in efficiently developing and managing its limited water resources while maintaining water quality and protecting the environment. To add to the challenge, Turkey will need to continue to develop its water resources in order for its economic and social development to keep pace with its rapidly growing and urbanizing population. This article deals with water resources management problems in Turkey and provides recommendations on water resources management issues at the country level. Its objectives are to summarize key water resources management issues to review institutional and legal framework and to provide suggestions for effective water resources management in Turkey.

  9. Disinfection Tests of MF-2 Disinfectant on Nature Water Resource

    Institute of Scientific and Technical Information of China (English)

    WANG Jinlan; LIU Qingzeng; CUI Ying

    2002-01-01

    Objective To furnish evidence for practical application by examining the disinfection effect of MF - 2 disinfectant on different degree of contaminated water. Methods According to the determining methods of total bacterial count and coli - index of drinking water stimulated by the state conduct the forthwith disinfection experiments and accumulate disinfection experiments. Results Adding the MF - 2 into water resource to specific concentration according with the water resource sanitation criterion stipulated by the sater, after pointed time, it can chang water quality of severe contaminated water and questionable contaminated water into that of clean water, the quality of less contaminated water into that of drinking water. Conclusions MF - 2 disinfectant is applicable for disinfection of nature contaminated water resource in an outlying district and field - operation especially for urgent drinking water disinfection the area where there is neither clean water nor heating condition.

  10. Managing Scarce Water Resources in China's Coal Power Industry.

    Science.gov (United States)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China. PMID:26908125

  11. Managing Scarce Water Resources in China's Coal Power Industry

    Science.gov (United States)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  12. New technology and illness self-management: Potential relevance for resource-poor populations in Asia.

    Science.gov (United States)

    Lucas, Henry

    2015-11-01

    Advances in technology have made it possible for many standard diagnostic and health monitoring procedures, traditionally carried out by qualified personnel within medical facilities, to be reliably undertaken by patients or carers in their own homes with a minimum of basic training. There has also been a dramatic increase in the number and diversity of both sources of information on health issues and the possibilities for sharing information and experiences over ICT-based social networks. It has been suggested that these developments have the potential to 'empower' patients, reducing their dependence on providers and possibly improving their quality of care by increasing the volume and timeliness of diagnostic data and encouraging active self-management of their condition, for example through lifestyle changes. Perhaps more significantly, it is also seen by many economies with ageing populations as a way to contain high and ever rising healthcare costs. It has also been suggested that a move to greater self-management supported by expert networks and smart phone technology could improve the treatment of many millions of patients with chronic diseases in low and middle income economies that are also confronting the potential cost implications of epidemiological and demographic transitions, combined with the higher expectations of a more educated and knowledgeable population. There is now limited evidence that some fairly basic e- and mHealth interventions, for example in the areas of MNCH, malaria and HIV/AIDS can have a positive impact, even in resource-poor contexts. The aim here is to explore the extent to which further investment in technology could play a role in the development of an effective and affordable health sector strategy for at least some developing economies. It is suggested that the effectiveness of the approach may be highly dependent on the specific health conditions addressed, the nature of existing health systems and the overall socio

  13. Water Resources Sector Strategy : Strategic Directions for World Bank Engagement

    OpenAIRE

    World Bank

    2004-01-01

    In 1993 the Board of the World Bank endorsed a Water Resources Management Policy Paper (WRMPP). In that paper, and in this Strategy, water resources management comprises the institutional framework (legal, regulatory and organizational roles), management instruments (regulatory and financial), and the development, maintenance and operation of infrastructure (including water storage structu...

  14. Republic of Yemen Country Water Resources Assistance Strategy

    OpenAIRE

    World Bank

    2008-01-01

    This note contains a summary, for practitioners, of the World Bank report Republic of Yemen country Water Resources Assistance Strategy (CWRAS). The preparation of a CWRAS is timely, given the rising pressure placed on water resources by the rapidly growing population and the emergence of lessons learned from a recent review of World Bank water projects in Yemen. This section reviews the c...

  15. Water resources by orbital remote sensing: Examples of applications

    Science.gov (United States)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  16. Facts and Perspectives of Water Reservoirs in Central Asia: A Special Focus on Uzbekistan

    Directory of Open Access Journals (Sweden)

    Shavkat Rakhmatullaev

    2010-06-01

    Full Text Available The political transformation of the Central Asian region has induced the implosion of the interconnected physical hydraulic infrastructure and its institutional management system. Land-locked Central Asian countries, with their climatic conditions and transboundary water resources, have been striving to meet their food security, to increase agricultural production, to sustain energy sectors, and to protect the environment. The existing water reservoirs are strategic infrastructures for irrigation and hydropower generation. Upstream countries (Tajikistan and Kyrgyzstan favor the reservoirs’ operation for energy supply, while downstream countries (Uzbekistan, Turkmenistan and Kazakhstan push for irrigation use. This paper provides an overview of the current challenges and perspectives (technical, institutional, and legal regulations and presents recommendations for the sustainable management of man-made water reservoirs in Uzbekistan.

  17. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Science.gov (United States)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  18. Multi-agent Water Resources Management

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in

  19. Current perspectives in contaminant hydrology and water resources sustainability

    Science.gov (United States)

    Bradley, Paul M.

    2013-01-01

    Human society depends on liquid freshwater resources to meet drinking, sanitation and hygiene, agriculture, and industry needs. Improved resource monitoring and better understanding of the anthropogenic threats to freshwater environments are critical to efficient management of freshwater resources and ultimately to the survival and quality of life of the global human population. This book helps address the need for improved freshwater resource monitoring and threat assessment by presenting current reviews and case studies focused on the fate and transport of contaminants in the environment and on the sustainability of groundwater and surface-water resources around the world. It is intended for students and professionals working in hydrology and water resources management.

  20. Integrated Water Resources Management in Latin America and the Caribbean

    OpenAIRE

    Inter-American Development Bank (IDB)

    1998-01-01

    This technical study contains the strategy of the Inter-American Development Bank for its involvement in integrated water resources management in Latin America and the Caribbean. The strategy was developed through an iterative step by step procedure in consultation with country water resource officials, Bank staff, nongovernmental organizations, and international lending and technical assistance organizations. The first part of the study is an overview of water resource management in Latin Am...

  1. Estimating the Ground Water Resources of Atoll Islands

    OpenAIRE

    Olsen, Arne E.; Bailey, Ryan T.; Jenson, John W.

    2010-01-01

    Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state ...

  2. Porphyry copper assessment of the Mesozoic of East Asia: China, Vietnam, North Korea, Mongolia, and Russia: Chapter G in Global mineral resource assessment

    Science.gov (United States)

    Ludington, Steve; Mihalasky, Mark J.; Hammarstrom, Jane M.; Robinson, Giplin R., Jr.; Frost, Thomas P.; Gans, Kathleen D.; Light, Thomas D.; Miller, Robert J.; Alexeiev, Dmitriy V.

    2012-01-01

    The U.S. Geological Survey (USGS) collaborated with the China Geological Survey (CGS) to conduct a mineral resource assessment of Mesozoic porphyry copper deposits in East Asia. This area hosts several very large porphyry deposits, exemplified by the Dexing deposit in eastern China that contains more than 8,000,000 metric tons of copper. In addition, large parts of the area are undergoing active exploration and are likely to contain undiscovered porphyry copper deposits.

  3. Thailand Environment Monitor : Integrated Water Resources Management - A Way Forward

    OpenAIRE

    World Bank

    2011-01-01

    Water is everyone's business. Beside a necessity for living, water has implications on public health and, most importantly, can cause social conflicts. This is because water is limited, is difficult to control, and can easily be polluted. The Integrated Water Resource Management (IWRM) process is considered worldwide as a means to reduce social conflicts from competing water needs as well ...

  4. Extent of Salt Affected Land in Central Asia: Biosaline Agriculture and Utilization of the Salt-affected Resources

    OpenAIRE

    Toderich, Kristina; Tsukatani, Tsuneo; Shoaib, Ismail; Massino, Igor; Wilhelm, Margarita; Yusupov, Surat; Kuliev, Tajiddin; Ruziev, Serdar

    2008-01-01

    The current status and trends of salinization are discussed with waterlogging of marginal land/plant and water resources problems including strategies for development of integrated biosaline crop-livestock agriculture based system on food-feed crops and forage legumes for better livelihood of poor farmers in Central Asian (Uzbekistan, Kazakhstan, Turkmenistan and Tajikistan). Transfer of technologies and/or methodology of ICBA (International Centre for Biosaline Agriculture) in planting of bo...

  5. Impact of biomass burning on surface water quality in Southeast Asia through atmospheric deposition: field observations

    Science.gov (United States)

    Sundarambal, P.; Balasubramanian, R.; Tkalich, P.; He, J.

    2010-03-01

    Atmospheric nutrients have recently gained attention as a significant additional source of new nitrogen (N) and phosphorus (P) loading to the ocean. The effect of atmospheric N on marine productivity depends on the biological availability of both inorganic and organic N and P forms. During October 2006, the regional smoke haze episode in Southeast Asia (SEA) that resulted from uncontrolled forest fires in Sumatra and Borneo blanketed large tracts of the region. In this work, we determined the composition of nutrients in aerosols and rainwater during haze and non-haze periods to assess their impacts on aquatic ecosystem in SEA for the first time. We compared atmospheric dry and wet deposition of N and P species in aerosol and rainwater in Singapore between haze and non haze periods. Air mass back trajectories showed that large-scale forest and peat fires in Sumatra and Kalimantan were a significant source of atmospheric nutrients to aquatic environments in Singapore and SEA region on hazy days. It was observed that the average concentrations of nutrients increased approximately by a factor of 3 to 8 on hazy days when compared with non-hazy days. The mean dry atmospheric fluxes (g/m2/year) of TN and TP observed during hazy and non-hazy days were 4.77±0.775 and 0.3±0.082, and 0.91±0.471 and 0.046±0.01, respectively. The mean wet deposition fluxes (g/m2/year) of TN and TP were 12.2±3.53 and 0.726±0.074, and 2.71±0.989 and 0.144±0.06 for hazy and non-hazy days, respectively. The occurrences of higher concentrations of nutrients from atmospheric deposition during smoke haze episodes may have adverse consequences on receiving aquatic ecosystems with cascading impacts on water quality.

  6. Cache River National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) for Cache River National Wildlife Refuge summarizes available and relevant information for refuge water...

  7. Water Resource References: Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Reports and publications relevant to the CCNWR Water Resource Inventory and Assessment. List of references involving water quality and/or quantity data that...

  8. Water resources of the Menominee Indian Reservation of Wisconsin

    Science.gov (United States)

    Krohelski, J.T.; Kammerer, P.A.; Conlon, Terrence D.

    1994-01-01

    Water resources of the Menominee Indian Reservation, Wisconsin, were investigated during the period October 1981 through September 1987. The report presents baseline data and some interpretation of ground- and surface-water hydrology and quality of the Reservation.

  9. Water Resource Inventory and Assessment: Ruby Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Ruby Lake National Wildlife Refuge describes current hydrologic information, provides an assessment of water...

  10. Hydrography - MO 2013 Outstanding National Resource Waters (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains Missouri's Outstanding National Resource Waters listed in Table D of the Water Quality Standards rule as published in the Code of State...

  11. Hydrography - MO 2013 Outstanding Resource Waters - Marshes (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains Missouri's Outstanding State Resource Waters - Marshes listed in Table E of the Water Quality Standards rule as published in the Code of...

  12. Hydrography - MO 2013 Outstanding Resource Waters - Rivers and Streams (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains Missouri's Outstanding State Resource Waters - Rivers and Streams listed in Table E of the Water Quality Standards rule as published in...

  13. Water Resources Inventory and Assessment: Cape May National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Cape May National Wildlife Refuge describes current hydrologic information, provides an assessment of water...

  14. Thoughts on access to water in Peru within the new Water Resources Law framework

    OpenAIRE

    Lucía Ruiz Ostoic

    2013-01-01

    The difficulty involved addressing issues related with water management in Peru is the article’s starting point. Therefore, the water issue approach is introduced explaining its administrative procedures, the rights involved and making a critical analysis of 2008 Water Resources Law. Finally, the need for an integrated management analysis of the water resource is highlighted by integrally understanding the General Water Law as well as the current Water Resources Law, and encouraging dialogue ...

  15. Decentralizing water resource management : economic incentives, accountability, and assurance

    OpenAIRE

    Easter, K. William; Hearne, Robert R.; DEC

    1993-01-01

    Private sector involvement and user participation in water resource management are not new, say the authors. They give examples that demonstrate how willing users and the private sector are able to improve water use and play a larger role in water resources management. User participation and private sector involvement, if properly structured, can provide the incentives needed to stabilize and improve the efficiency of irrigation and water supply systems. They can add flexibility, transparency...

  16. Improving Decision Support Systems for Water Resource Management

    OpenAIRE

    Chen, Chen; Dilley, Maura; Valente, Marco

    2008-01-01

    The Water Framework Directive (WFD) structures long-term plans for Europe's threatened water resources. Owning to the inherent and human-made complexities of the water cycle, stakeholders must move strategically to avoid crisis and restore sustainability. Yet, the reality of water resource management today is falling short on delivery. Stakeholders require strategic tools that will help them to build consensus and take action in the right direction. Using the Framework for Strategic Sustainab...

  17. The water footprint and its relationship with the virtual water: nuances of the water resources commodification

    Directory of Open Access Journals (Sweden)

    Jairo Bezerra Silva

    2014-03-01

    Full Text Available The aim of this article is to examine how the concepts of water footprint and virtual water articulate themselves under an ideological matrix which has been justified by alleged situations of global hydric resources scarcity. Due to the idea of an increasing shortage of water in the world, new discourses on that subject promote strategies to solve the alleged global water crisis without focusing on deep material and cultural changes. We discuss here the nuances of the international agenda for the hydric resources field, which is based in the general idea according to which in order to face the water scarcity, large international corporations should control their increasing need of water using methodologies to calculate the amount they should use as those of water footprint and virtual water.JEL-Code | O13; Q25; Q56.

  18. Harmful Algal Blooms in Asia: an insidious and escalating water pollution phenomenon with effects on ecological and human health

    Directory of Open Access Journals (Sweden)

    Patricia M Glibert

    2014-02-01

    Full Text Available Harmful Algal Blooms (HABs, those proliferations of algae that causeenvironmental, economic, or human health problems, are increasing in frequency,duration, and geographic extent due to nutrient pollution. The scale of the HABproblem in Asia has escalated in recent decades in parallel with the increase in useof agricultural fertilizer, the development of aquaculture, and a growing population.Three examples, all from China but illustrative of the diversity of events and theirecological, economic, and human health effects throughout Asia, are highlightedhere. These examples include inland (Lake Tai or Taihu as well as offshore (EastChina Sea and Yellow Sea waters. The future outlook for controlling these bloomsis bleak. The effects of advancing industrialized agriculture and a continually growingpopulation will continue to result in more nutrient pollution and more HABs—-and more effects - in the foreseeable future.

  19. Water pricing towards sustainability of water resources: A case study in Beijing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The role of water pricing for managing water resources iswidely recognized in many areas of the world because of theincreasing scarcity of water resources, a high competition betweenwater uses and environmental degradation. Based on the analysis ofcost of water, this paper explores which types of cost should bereflected in the water pricing enhancing the sustainability ofwater resources. The principle of full cost pricing in which thecost should include supply cost, opportunity cost and externalitiesis proposed as a means to achieve the sustainability of waterresources. In a case study of Beijing, low water price is analyzedas one reason for unsustainable water consumption. Thus waterpricing justified is necessary and pressing. It is proposed tojustify water price in phased manner and eventually towards fullcost pricing. The assessment of impacts on water resources byraising water price shows water pricing could alleviate the conflict between water supply and demand. This paper concludes thatwater pricing can play an effective role in enhancing thesustainability of water resources in Beijing.

  20. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    Science.gov (United States)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  1. Hydroeconomic modeling to support integrated water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus

    resources. In this context, the PhD study focused on development of approaches to inform integrated water resources management to cope with multiple and coupled challenges faced in China. The proposed method is to formulate river water management as a joint hydroeconomic optimization problem that minimizes...... problem with a single surface water reservoir state variable. A comparison of different management scenarios was used to evaluate how the South-to-North Water Transfer Project will impact optimal water resources management. Scenarios with unregulated groundwater pumping at realistic pumping costs verified...... the system and allowed overdraft in dry years in return for increased recharge in wet years. Further, cost-effective recovery of an overdrafted groundwater aquifer was demonstrated. The third implementation assessed interactions of water resources and water quality management. Biochemical oxygen demand (BOD...

  2. Security of Ukrainian Water Resources: Analysis, Evaluation, Priorities of Providing

    OpenAIRE

    Lyudmyla Levkovska; Anatoliy Sunduk

    2014-01-01

    The article covers the basic principles of investigation of security parameters of Ukrainian water resources. Theoretical and methodological features of scientific category are defined and the description of the main indicators of the security sector is provided. The priorities of ensuring the safety of water resources of the state based on current social and economic parameters are substantiated.

  3. The Wealth of Water: The Value of an Essential Resource

    Science.gov (United States)

    Rathburn, Melanie K.; Baum, Karina J.

    2011-01-01

    Many students take water availability for granted and yet, by 2025, two-thirds of the world will not have access to clean drinking water. This case study is designed to encourage students to think about water as a limited natural resource and is used to highlight how the exploitation of water can have far-reaching social, political, and economic…

  4. Transboundary water resource issues on the US-Mexico border

    OpenAIRE

    Brown, Christopher

    2005-01-01

    The beginning of the 21st century sees the U.S.-Mexico borderlands facing a range of water resource management challenges. These challenges include balancing increasing demands for water with limited water supplies in an arid region, reconciling upstream versus downstream riparian demands and uses of surface water, managing the overdraft of aquifers (especially in regions of sole source aquifer supply), and dealing with a host of water quality issues, both as regards surface water and groundw...

  5. Learning about water resource sharing through game play

    Science.gov (United States)

    Ewen, Tracy; Seibert, Jan

    2016-10-01

    Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  6. Vegetation plays an important role in mediating future water resources

    Science.gov (United States)

    Ukkola, A. M.; Keenan, T. F.; Kelley, D. I.; Prentice, I. C.

    2016-09-01

    Future environmental change is expected to modify the global hydrological cycle, with consequences for the regional distribution of freshwater supplies. Regional precipitation projections, however, differ largely between models, making future water resource projections highly uncertain. Using two representative concentration pathways and nine climate models, we estimate 21st century water resources across Australia, employing both a process-based dynamic vegetation model and a simple hydrological framework commonly used in water resource studies to separate the effects of climate and vegetation on water resources. We show surprisingly robust, pathway-independent regional patterns of change in water resources despite large uncertainties in precipitation projections. Increasing plant water use efficiency (due to the changing atmospheric CO2) and reduced green vegetation cover (due to the changing climate) relieve pressure on water resources for the highly populated, humid coastal regions of eastern Australia. By contrast, in semi-arid regions across Australia, runoff declines are amplified by CO2-induced greening, which leads to increased vegetation water use. These findings highlight the importance of including vegetation dynamics in future water resource projections.

  7. Addressing the water resource management issue

    OpenAIRE

    Orprecio, J.; Rola, Agnes C.; Deutsch, William; Coxhead, Ian; Sumbalan, Antonio

    2002-01-01

    Metadata only record The rapid growth in demand for water by the agricultural, industrial and household sectors will place greater pressure on Philippine water supplies in the future. Among the many water management issues, surface water management, watershed management or more precisely, river basin management is prominent in both the local and national scenes.

  8. Water resources investigations in Mississippi, 1984-85

    Science.gov (United States)

    Lamonds, A.G.; Moss, Carol

    1984-01-01

    This report describes the activities of the Water Resources Division in Mississippi. It summarizes progress made in water-resources investigations and related activities in the current fiscal year ending September 30, 1984, and outlines the work to be accomplished during the fiscal year ending September 30, 1985. Its specific purpose is to inform cooperating State, local, and other Federal agencies about all activities of this Division in water investigations in Mississippi and to give those cooperators a better understanding of how their participation fits into the total USGS program of water resources investigations. (USGS)

  9. The water resources of Jersey : an overview.

    OpenAIRE

    Robins, N.S.

    2000-01-01

    The groundwater and surface waters of Jersey together form a single interactive water body which is sourced by rainfall over the Island. • The water body is currently stressed by a number of factors which constrain the volumes of water available for consumption and the quality of that water. • All the surface and groundwater on Jersey is vulnerable to pollution from both point source (spills, leaking septic tanks etc.) and diffuse (nitrate fertilizer, pesticides) forms of po...

  10. Growing more food with less water: how can revitalizing Asia's irrigation help?

    NARCIS (Netherlands)

    Mukherji, A.; Facon, T.; Fraiture, de C.M.S.; Molden, D.; Chartres, C.

    2012-01-01

    Asia accounts for 70% of the world's irrigated area and is home to some of the oldest and largest irrigation schemes. While these irrigation schemes played an important role in ensuring food security for billions of people in the past, their current state of affairs leaves much to be desired. This p

  11. Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: field observations

    Science.gov (United States)

    Sundarambal, P.; Balasubramanian, R.; Tkalich, P.; He, J.

    2010-12-01

    Atmospheric nutrients have recently gained considerable attention as a significant additional source of new nitrogen (N) and phosphorus (P) loading to the ocean. The effect of atmospheric macro nutrients on marine productivity depends on the biological availability of both inorganic and organic N and P forms. During October 2006, the regional smoke haze episodes in Southeast Asia (SEA) that resulted from uncontrolled forest and peat fires in Sumatra and Borneo blanketed large parts of the region. In this work, we determined the chemical composition of nutrients in aerosols and rainwater during hazy and non-hazy days to assess their impacts on aquatic ecosystem in SEA for the first time. We compared atmospheric dry and wet deposition of N and P species in aerosol and rainwater in Singapore between hazy and non-hazy days. Air mass back trajectories showed that large-scale forest and peat fires in Sumatra and Kalimantan were a significant source of atmospheric nutrients to aquatic environments in Singapore and SEA region on hazy days. It was observed that the average concentrations of nutrients increased approximately by a factor of 3 to 8 on hazy days when compared with non-hazy days. The estimated mean dry and wet atmospheric fluxes (mg/m2/day) of total nitrogen (TN) were 12.72 ± 2.12 and 2.49 ± 1.29 during non-hazy days and 132.86 ± 38.39 and 29.43 ± 10.75 during hazy days; the uncertainty estimates are represented as 1 standard deviation (1σ) here and throughout the text. The estimated mean dry and wet deposition fluxes (mg/m2/day) of total phosphorous (TP) were 0.82 ± 0.23 and 0.13 ± 0.03 for non-hazy days and 7.89 ± 0.80 and 1.56 ± 0.65 for hazy days. The occurrences of higher concentrations of nutrients from atmospheric deposition during smoke haze episodes may have adverse consequences on receiving aquatic ecosystems with cascading impacts on water quality.

  12. Ground-water resources of Kansas

    Science.gov (United States)

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Introduction: Water is a necessity of life. Accordingly, every person is deeply interested in the subject of water supply. He knows that he must have water to drink. He depends indirectly on water for all his food and clothing. He may want water in which to wash. Civilized man has learned also that water serves admirably for a large and ever enlarging list of uses that depend on its easy convertibility from a liquid to a solid or gaseous state and its adaptability as a chemical solvent, a medium for transfer of matter or energy, and a regulator of temperature. 

  13. Evaluating participation in water resource management: A review

    Science.gov (United States)

    Carr, G.; BlöSchl, G.; Loucks, D. P.

    2012-11-01

    Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.

  14. Water resource management and the poor

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Schoengold, K.; Zilberman, D.

    2008-01-01

    Water allocations as well as water quality and health concerns are often due to inadequate policies and institutions, which pose major challenges for policy reform. The necessary ingredients of such reform include four elements: rules to improve the decision-making process about water projects, prin

  15. Mainstreaming Water Resources Management in Urban Projects

    OpenAIRE

    World Bank Group

    2016-01-01

    This note provides guidance for cities in developing countries for managing the urban water cycle in a sustainable manner by using an Integrated Urban Water Management (IUWM) approach. After a brief introduction to the concept of IUWM, this note profiles the different IUWM approaches applied in three types of cities: a water-scarce, fast-developing city (Windhoek, Namibia), an expanding city ...

  16. Landsat - What is operational in water resources

    Science.gov (United States)

    Middleton, E. M.; Munday, J. C., Jr.

    1981-01-01

    Applications of Landsat data in hydrology and water quality measurement were examined to determine which applications are operational. In hydrology, the principal applications have been surface water inventory, and land cover analysis for (1) runoff modeling and (2) abatement planning for non-point pollution and erosion. In water quality measurement, the principal applications have been: (1) trophic state assessment, and (2) measurement of turbidity and suspended sediment. The following applications were found to be operational: mapping of surface water, snow cover, and land cover (USGS Level 1) for watershed applications; measurement of turbidity, Secchi disk depth, suspended sediment concentration, and water depth.

  17. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    Science.gov (United States)

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns.

  18. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    Science.gov (United States)

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns. PMID:26718947

  19. Theory and model of water resources complex adaptive allocation system

    Institute of Scientific and Technical Information of China (English)

    ZHAOJianshi; WANGZhongjing; WENGWenbin

    2003-01-01

    Complex adaptive system theory is a new and important embranchment of system science,which provides a new thought to research water resources allocation system.Based on the analysis of complexity and complex adaptive mechanism of water resources allocation system,a fire-new analysis model is presented in this paper.With the description of Dynamical mechanism of system,behavior characters of agents and the evalustion method of system status,an integrity research system is built to analyse the evolvement rule of water resources allocation system.And a brief research for the impact of water resources allocation in beneficial regions of the Water Transfer from south to North China Project is conducted.

  20. Reallocation of Water Resources in the Arab Region: An Emerging Challenge in Water Governance

    Directory of Open Access Journals (Sweden)

    Kannan Ambalam

    2014-10-01

    Full Text Available Water is an integral part of ecosystems. It is essential to earth’s living creatures and central to maintaining the earth’s ecosystems. In most part of the world, both water quantity andquality problems are becoming more acute, since the limited available water resource are being over-utilized and stressed beyond the sustainability point. The contemporary globalwater crises including inefficient use and lack of equitable distribution are mainly due to the crises of governance. Water governance emerged as a comprehensive framework byreplacing all the existing paradigms including integrated water resource management. Though water governance focuses many aspects in ensuring sustainable use of water resources and its equitable distribution, reallocation of water resources may be most appropriate policy option to achieve these objectives. Reallocation systematically addresses the problems of uneven distribution of water resources across the sectors as well asprevents excessive allocation of water to a particular sector. Based on the secondary sources, this paper analyzes the challenges involved in water governance in terms of waterreallocation in the Arab countries where the allocation of water for agriculture is reasonable very high. Addressing water scarcity in the Arab region lies mainly in effectively managing the growing demand. Major water governance challenges with respectreallocation of water resources in the Arab region are tariff, metering and billing, which led to the excessive use in an unprecedented manner.Keywords: Arab Region, Global Water Crisis, Reallocation, Water Governance, WaterManagement, Water Rights

  1. Weighted Bankruptcy Rules and Transboundary Water Resources Allocation

    NARCIS (Netherlands)

    Mianabadi, H.; Mostert, E.; Pande, S.; Van de Giesen, N.C.

    2015-01-01

    One significant problem of transboundary river basins causing various challenges and disputes throughout the world is that because of increasing water resource variability and consumption, the water demand often exceeds water availability. Hence, one of the main challenges in transboundary river bas

  2. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water d

  3. Water resources. [monitoring and management from ERTS-1 data

    Science.gov (United States)

    Salomonson, V. V.

    1974-01-01

    ERTS-1 applications in snow and ice monitoring, surface water monitoring, including monitoring of wetland areas and flood inundated area mapping, and also watershed monitoring for runoff prediction are discussed. Results also indicate that geological features can be noted which relate to ground water. ERTS-1 data can be used successfully in operational situations by water resources management agencies.

  4. Study on the water related disaster risks using the future socio-economic scenario in Asia

    Science.gov (United States)

    Kiguchi, M.; Hatono, M.; Ikeuchi, H.; Nakamura, S.; Hirabayashi, Y.; Kanae, S.; Oki, T.

    2014-12-01

    In this study, flood risks in the present and the end of the 21st century in Asia are estimated using a future socio-economic scenario. Using the runoff data of 7 GCMs (RCP 8.5) of CMIP5, the river discharge, inundation area, and inundation depth are calculated for the assessment of flood risk. Finally, the flood risk is estimated using a function of damage. The flood frequency in the end of the 21st century in Asia tends to increase. Inundation area in Japan, Taiwan, and Kyrgyz is almost unchanged. At the same time, that in Sri Lanka, Bangladesh, Laos, and Myanmar reached about 1.4-1.6 times compared to present. Damage cost is largely influenced by economic growth, however, we show that it is important that we distinguish the influence of climate change from economic development and evaluate it when we think about an adaptation.

  5. INFLUENCE OF CLIMATE CHANGES ON WATER RESOURCES IN MOLDOVA

    Directory of Open Access Journals (Sweden)

    Violeta Ivanov

    2012-06-01

    Full Text Available The paper aims to analyze the current state of affairs with water resources in Moldova, the challenges it faces for its national human and economic development, having in mind that the water resources are quite limited in Moldova, which encounters pollution, degradation influenced by climate change and unwise human activity to their biodiversity and ecosystems, availability and accessibility. It also attempts to highlight the relationship between climate change and water resources in Moldova, which has adverse effects on both environment and people’s health, and raise significant hurdles to the international, regional and sectoral development.

  6. Radio resource management using geometric water-filling

    CERN Document Server

    He, Peter; Zhou, Sheng; Niu, Zhisheng

    2014-01-01

    This brief introduces the fundamental theory and development of managing radio resources using a water-filling algorithm that can optimize system performance in wireless communication. Geometric Water-Filling (GWF) is a crucial underlying tool in emerging communication systems such as multiple input multiple output systems, cognitive radio systems, and green communication systems. Early chapters introduce emerging wireless technologies and provide a detailed analysis of water-filling. The brief investigates single user and multi-user issues of radio resource management, allocation of resources

  7. Assessment of radon levels in some water resources in Egypt

    International Nuclear Information System (INIS)

    Radon is a naturally occurring radioactive gas that is produced by the radioactive decay of radium. Breathing high concentrations of radon can cause lung cancer. When radon gas migrates through the atmosphere, the solid radon progeny are deposited on the soil and water below, entering into the food chain. Radon generated from rocks containing its parents may escape to the underground or surface running water, which ultimately used as drinking water or for irrigation. In this work radon level was determined in different water resources in Egypt. Water from spring, tap water Nile and some commercially available drinking water were subjected to radon measurements using CR-39 detectors. Radon concentration in different water resources was found the range from 8.94 to 10.00 Bq/m3 while in trapped air above water was 9.3 to 10.38 Bq/m3

  8. Alternative medicines for AIDS in resource-poor settings: Insights from exploratory anthropological studies in Asia and Africa

    NARCIS (Netherlands)

    A. Hardon; A. Desclaux; M. Egrot; E. Simon; E. Micollier; M. Kyakuwa

    2008-01-01

    The emergence of alternative medicines for AIDS in Asia and Africa was discussed at a satellite symposium and the parallel session on alternative and traditional treatments of the AIDSImpact meeting, held in Marseille, in July 2007. These medicines are heterogeneous, both in their presentation and i

  9. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia.

    Directory of Open Access Journals (Sweden)

    Michael P Wallace

    Full Text Available In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp. was regularly grown in wetter conditions than barley (Hordeum sp., indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices.

  10. Diagnosing Causes of Water Scarcity in Complex Water Resources Systems and Identifying Risk Management Actions

    OpenAIRE

    Martín Carrasco, Francisco Javier; Garrote de Marcos, Luis; Ana IGLESIAS; Mediero Orduña, Luis

    2013-01-01

    From the water management perspective, water scarcity is an unacceptable risk of facing water shortages to serve water demands in the near future. Water scarcity may be temporary and related to drought conditions or other accidental situation, or may be permanent and due to deeper causes such as excessive demand growth, lack of infrastructure for water storage or transport, or constraints in water management. Diagnosing the causes of water scarcity in complex water resources systems is a prec...

  11. Subsidiarity in Principle: Decentralization of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Ryan Stoa

    2014-05-01

    Full Text Available The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1 the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2 decentralization promotes community and stakeholder engagement when decision-making is localized; 3 inefficiencies are reduced by eliminating reliance on central government bureaucracies and budgetary constraints; and 4 laws and institutions can be adapted to reflect localized conditions at a scale where integrated natural resources management and climate change adaptation is more focused. Accordingly, the principle of subsidiarity has been welcomed by many states committed to decentralized governance, integrated water resources management, and/or civic participation. However, applications of decentralization have not been uniform, and in some cases have produced frustrating outcomes for states and water resources. Successful decentralization strategies are heavily dependent on dedicated financial resources and human resource capacity. This article explores the nexus between the principle of subsidiarity and the enabling environment, in the hope of articulating factors likely to contribute to, or detract from, the success of decentralized water resources management. Case studies from Haiti, Rwanda, and the United States’ Florida Water Management Districts provide examples of the varied stages of decentralization.

  12. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  13. Isotope methods in water resources assessment and environmental management

    International Nuclear Information System (INIS)

    Availability of water and protection of water resources have become top environmental issues in many countries. Governments are forced to issue strict guidelines to protect the environment and create agencies to pursue these aspects as well as enforce such regulations. The supply of good-quality water from rivers and lakes is becoming a costly and complex problem for many institutes responsible for water supply. Because of the high pollution levels in surface waters, ground water is the main source of drinking water in many countries. It is estimated that 1.5 billion people world-wide depend on it for drinking water. Since ground water cannot be directly measured, and despite its importance for drinking purposes there is not enough public concern about its protection. In other cases, it is found that the exploited ground water is not a renewable resource. In many countries in arid and semi-arid regions, fossil ground water is being tapped for extensive agricultural development, but such extraction depletes the reserves, in the same way as an oil reservoir. The availability of correct information, before decisions are taken will lead to improved management of water resources, distributing the available resources for different uses according to their quality, and ultimately, to manage the resource. Nuclear science has developed a series of methodologies based on the use of naturally-occurring isotopes and artificial tracers to study the processes involved in the occurrence and circulation of water. The discipline called 'Isotope Hydrology' provides a deep insight into many parts of the water cycle; from the evaporation over the ocean or the continents, to the formation of surface runoff and ground water and in the discharge of aquifer systems into the ocean. Isotope hydrology, as a scientific and applied discipline in earth sciences, was created during the late 1950s and early 1960s, beyond the classical hydrological science. In these early stages, new methodologies

  14. WATER QUALITY INDEX – AN INSTRUMENT FOR WATER RESOURCES MANAGEMENT

    OpenAIRE

    PAIU MĂDĂLINA; BREABĂN IULIANA GABRIELA

    2014-01-01

    Water quality status assessment can be defined as the evaluation of physical, chemical, biological state of the water in relation with the natural state, anthropogenic effects and future uses. Water quality index reduces the number of parameters used in monitoring water quality to a simple expression in order to facilitate interpretation of the data, allowing public access to water quality data. This study is a summary of an interdisciplinary research program on surface water quality monit...

  15. Water resources and hydrology of Mars

    Science.gov (United States)

    Baker, V. R.; Gulick, V. C.; Kargel, J. S.; Strom, R. G.

    1991-01-01

    The surface of Mars has been extensively modified by a large variety of water erosional and depositional processes. Although liquid water is presently unstable on the planet's surface, in its cold, hyperarid climate, there is abundant geomorphological evidence of past fluvial valley development multiple episodes of catastrophic flooding, periglacial landforms, ice-related permafrost, lake deposits, eroded impact craters and possible glacial landforms throughout much of Mars' geological history. The amount of water required to form such features is estimated to be equivalent to a planet-wide layer approximately 50 meters deep. Some of this water undoubtedly was removed from the planet by atmospheric escape processes, but much probably remains in the subsurface of Mars. Jakosky summarized the present partitioning of water on Mars, expressed as an average global depth, as follows: in the polar caps, 30 meters; in the megaregolith, 500 to 1000 meters; structurally bound in clays, 10 meters; and in high latitude regolith, a few meters. However, most of this water is probably in the form of ice, except in anomalous areas of possible near surface liquid water, and in regions where hydrothermal systems are still active. The best locations for prospecting are those areas where water or ice is sufficiently concentrated at shallow enough depths to make it feasible to pump out or mine.

  16. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of...

  17. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  18. Hydrogeology and water resources of Ruby Valley northeastern Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This water-resources evaluation of Ruby Valley was divided into two 3-year phases. Phase 1 was designed to quantify annual evapotranspiration (ET) from the Ruby...

  19. Water Resource Inventory and Assessment (WRIA) - Shiawassee National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Shiawassee National Wildlife Refuge (NWR) describes current hydrologic information, provides...

  20. Index of current water-resources activities in Ohio, 1985

    Science.gov (United States)

    Eberle, Michael

    1985-01-01

    This report summarizes the U. S. Geological Survey 's Water Resources Division 's program in Ohio in 1985. The work of the Ohio District is carried out through the District office in Columbus and a field office in New Philadelphia. Collection of basic data needed for continuing determination and evaluation of the quantity, quality, and use of Ohio 's water resources is the responsibility of the District 's Hydrologic Surveillance Section. The Hydrologic Investigations Section conducts analytical and interpretive water-resource appraisals describing the occurrence, availability, and the physical, chemical, and biological characteristics of surface and groundwater. In addition to introductory material describing the structure of the Ohio District, information is presented on current projects, sites at which basic surface- and groundwater data are collected , and reports of Ohio 's water resources published by the U.S. Geological Survey and cooperating agencies. (USGS)

  1. Cahaba River National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) report for Cahaba River National Wildlife Refuge describes current hydrologic information, provides an...

  2. A model for water resource governance for the Philippines

    OpenAIRE

    Malayang, B.

    2002-01-01

    This is an attempt to apply a model of forest governance on water resource governance based on a previous work on adaptive collaborative management (ACM) and forest governance of the Centre for International Forestry Research (CIFOR)

  3. Water Resource Inventory and Assessment (WRIA) - Horicon National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Horicon National Wildlife Refuges describes current hydrologic information, provides an...

  4. Atchafalaya Basin (Water and Land Resources), Louisiana Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Atchafalaya Basin (Water and Land Resources), Louisiana, study is being conducted in response to resolutions adopted by the United States Senate and House of...

  5. Environmental monitoring of Norwegian water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tollan, A.

    1980-01-01

    A national environmental monitoring program was started in Norway in 1980, under the auspices of the Norwegian State Pollution Control Authority. Within this program The Norwegian Institute for Water Research is responsible for: (1) Chemical and biological monitoring of selected rivers and fjord areas. Typically, the monitoring of a particular river or fjord starts with a basic investigation of 1-3 years, comprising physiography, human impacts on the water quality and a broad description of the present water quality status. This stage is followed by a permanent monitoring of carefully selected variables at a limited number of stations. Special water quality problems may be studied separately. (2) Participation in a coordinated monitoring of long-range transported atmospheric pollution, and its effects on water chemistry, aquatic life and soil properties. (3) Methodological development, standardization of analytical procedures and evaluation techniques for water quality assessment, and assistance as a national reference laboratory for water analyses. (4) Depository for environmental data collected within the national monitoring program.

  6. A Citizen's Guide to Coastal Water Resource Management.

    Science.gov (United States)

    Kennedy, Jim; Miller, Todd

    More people than ever are using coastal waters for recreation and business activities and living along the shores. This puts more pressure on natural resources and creates more conflicts between the people using the resources. This guidebook is designed to help citizens develop an understanding of how coastal management works. Four chapters in…

  7. Water resources assessment issues and isotope hydrology application in China

    Institute of Scientific and Technical Information of China (English)

    刘恒; 陈明忠

    2001-01-01

    As one of the largest countries in the world, China has a highest population and great potential in water resources and land. Water is a key issue for sustainable development in the fu-rure, because the average water and land availability per-capita is much lower than the world averages. Water resources assessment plays a very important role. However, certain problems could not be solved due to lack of hydrological data, such as groundwater in arid and semi-arid zones. Environment isotope technologies have been applied and show promise of wide application.

  8. Balancing water resources conservation and food security in China

    OpenAIRE

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2014-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targ...

  9. Towards more inclusive long-term bulk water resource management

    OpenAIRE

    De Lange, Willem J.; Kleynhans, Theo E.

    2007-01-01

    Fresh water resources provide a platform for complex and often emotional issues to develop, particularly in resource scarcity situations. Bulk water infrastructure contains elements of a public good and proved vulnerable to failures in market and government driven allocation strategies. Common to both are uncaptured costs and benefits due to shortcomings in cost quantification techniques. Natural ecosystems stands to lose the most since ecosystem services are often not quantifiable in monetar...

  10. Risk Management of Water Resources in a Changing Climate

    OpenAIRE

    Gonen, Amnon; Zeitouni, Naomi

    2010-01-01

    Efficient and flexible management of fresh water resources are critical for the wellbeing of human society. Without it, human society would be unable to prosper or even exist. Conflicting demands coupled with decreasing usable water may lead to inefficient and unsustainable use of resources, which may result in significant economic, social, and environmental ramifications. In the current work, risk management methodology is utilized to increase flexibility and security over the management of ...

  11. Water on Mars - Volatile history and resource availability

    Science.gov (United States)

    Jakosky, Bruce M.

    1990-01-01

    An attempt is made to define the available deposits of water in the near-surface region of Mars which will be available to human exploration missions. The Martian seasonal water cycle is reviewed, and geochemical and geological constraints on the availability of water are examined. It is concluded that the only sure source of water in amounts significant as a resource are in the polar ice deposits.

  12. Water Efficient Energy Production for Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  13. GRACE Data-based Estimation of Spatial Variations in Water Storage over the Central Asia during 2003-2013

    Science.gov (United States)

    Sun, Q.; Tashpolat, T.; Ding, J. L.; Zhang, F.; Mamat, S.

    2014-11-01

    We used the GRACE (Gravity Recovery And Climate Experiment) satellite gravity data obtained from January 2003 to January 2013, with supports of other data, including the TRMM (Tropical Rainfall Measuring Mission) and CMAP (Climate Prediction Center's Merged Analysis of Precipitation) precipitation data, the NDVI (Normalized Difference Vegetation Index) data, and the DEM (Digital Elevation Model) data, to analyze the annual variations in water storage over central Asia. Following conclusions can be drawn from this study. (1) The amplitudes of the annual variations in the water storage exhibit a general E-W increasing trend. (2) The water storage has an increasing trend in the following areas: the Balkhash Basin, the Ob River Basin, and the middle and lower reaches of the Yenisei River Basin. This is caused by the global warming, the melting of permafrost, and the vegetation coverage continued to increase, as well as the improved industrial technologies to reduce water usage, and the other natural and human factors. (3) The water storage has a decreasing trend in the following areas: the Syr Darya River Basin, the Amu Darya River Basin, and the conjunction area between the Euphrates-Tigris Basin and the southwestern shore of the Caspian Sea. (4) The water storage is primarily influenced by the precipitation, the evaporation, the vegetation coverage, and the topography. (5) The water storage maximum normally responds to the precipitation maximum with certain time lags.

  14. Study on the holistic model for water resources system

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Jianshi; WANG; Zhongjing; WENG; Wenbin

    2004-01-01

    Based on the Theory of Complex Adaptive System developed recently, a holistic model for water resources system is established at the basin level for analyzing water resources management and allocation of the basin. In this holistic model framework,the subsystems of the water resources system, including hydrologic components,agricultural and industrial production, human living, ecosystem and enviorenment are combined in a dynamic connection with inner variables. According to the characteristics of the holistic model framework, a nesting genetic arithmetic is employed to solve the nonlinear optimal model. The model is applied in the Yellow River basin to analyze the rational amount of diversion water for the West Line of Water Transfer Project form South China to North China and its marginal benifit.

  15. Climate Change and Water Resources Management: A Federal Perspective

    Science.gov (United States)

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  16. Isotope techniques in water resources development and management. Proceedings

    International Nuclear Information System (INIS)

    The 10th International Symposium on Isotope Techniques in Water Resources Development and Management was organized by the International Atomic Energy Agency in co-operation with UNESCO, WMO and International Association of Hydrological Sciences and was held at IAEA Headquarters, Vienna, during 10-14 May 1999. The symposium provided an international forum for assessing the status and recent advances in isotope applications to water resources and an exchange of information on the following main themes: processes at the interface between the atmosphere and hydrosphere; investigations in surface waters and groundwaters: their origin, dynamics, interrelations; problems and techniques for investigating sedimentation; water resources issues: pollution, source and transport of contaminants, salinization, water-rock interaction and processes in geothermal systems; isotope data interpretation and evaluation methodologies: modelling approaches. The proceedings contain the 46 papers presented and extended synopses of poster presentations; each of them was indexed individually

  17. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia.

    Science.gov (United States)

    Park, Ji-Hyung; Duan, Lei; Kim, Bomchul; Mitchell, Myron J; Shibata, Hideaki

    2010-02-01

    An overview is provided of the potential effects of climate change on the watershed biogeochemical processes and surface water quality in mountainous watersheds of Northeast (NE) Asia that provide drinking water supplies for large populations. We address major 'local' issues with the case studies conducted at three watersheds along a latitudinal gradient going from northern Japan through the central Korean Peninsula and ending in southern China. Winter snow regimes and ground snowpack dynamics play a crucial role in many ecological and biogeochemical processes in the mountainous watersheds across northern Japan. A warmer winter with less snowfall, as has been projected for northern Japan, will alter the accumulation and melting of snowpacks and affect hydro-biogeochemical processes linking soil processes to surface water quality. Soils on steep hillslopes and rich in base cations have been shown to have distinct patterns in buffering acidic inputs during snowmelt. Alteration of soil microbial processes in response to more frequent freeze-thaw cycles under thinner snowpacks may increase nutrient leaching to stream waters. The amount and intensity of summer monsoon rainfalls have been increasing in Korea over recent decades. More frequent extreme rainfall events have resulted in large watershed export of sediments and nutrients from agricultural lands on steep hillslopes converted from forests. Surface water siltation caused by terrestrial export of sediments from these steep hillslopes is emerging as a new challenge for water quality management due to detrimental effects on water quality. Climatic predictions in upcoming decades for southern China include lower precipitation with large year-to-year variations. The results from a four-year intensive study at a forested watershed in Chongquing province showed that acidity and the concentrations of sulfate and nitrate in soil and surface waters were generally lower in the years with lower precipitation, suggesting year

  18. Thoughts on access to water in Peru within the new Water Resources Law framework

    Directory of Open Access Journals (Sweden)

    Lucía Ruiz Ostoic

    2013-12-01

    Full Text Available The difficulty involved addressing issues related with water management in Peru is the article’s starting point. Therefore, the water issue approach is introduced explaining its administrative procedures, the rights involved and making a critical analysis of 2008 Water Resources Law. Finally, the need for an integrated management analysis of the water resource is highlighted by integrally understanding the General Water Law as well as the current Water Resources Law, and encouraging dialogue among social actors involved in order to avoid future conflicts.

  19. The European Union-Central Asia : in the light of the New Strategy

    OpenAIRE

    Abdulhamidova, Nurangez

    2009-01-01

    Central Asia is a region strategically located at the crossroads of the two continents: Asia and Europe. The region is represented by five states (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) with different level of economic development and with the population amounting to over 60 million people. The region is rich in energy resources represented by oil, gas, coal and water resources. The thesis analyses, assesses and scrutinises one of the topical issues of the contempora...

  20. Bringing ecosystem services into integrated water resources management.

    Science.gov (United States)

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment.

  1. Integrated Water Resources Management Improving Langat Basin Ecosystem Health

    Directory of Open Access Journals (Sweden)

    Mazlin B. Mokhtar

    2008-01-01

    Full Text Available The ecosystem provides us with all the goods and services that form the base of our economic, social cultural and spiritual life. Good scientific information will be required for managing the environment by using the Ecosystem approach. The groundwater is considered as a possible supplementary of alternative water source, and some factories already started shifting their water source from surface water to groundwater. Uncontrolled use of groundwater, however, may induce serious environmental problems, e.g., land subsidence, saltwater intrusion to the aquifer. The establishment of a balanced multi-sector and integrated groundwater resources and environmental management plan is deemed urgent to attain a sustainable groundwater resources use and to maintain a favorable groundwater quality in the Langat Basin. To achieve sustainable lifestyle in large scale ecosystem requires integrated and holistic approaches from all stakeholders. Through Aquifer Storage Recovery (ASR it was determined a revolutionized water resources management, providing a sustainable supply while minimizing the environmental impact of surface storage. By using underground geologic formations to store water, by integrated water resources management advisory system (IWRMAS aquifer recharge can now easily applied to obviate water resource and environmental problems, including seasonal shortages, emergency storage, ground subsidence and saline intrusion.

  2. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  3. Applications of remote sensing to water resources

    Science.gov (United States)

    1977-01-01

    Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.

  4. Climate change adaptation and Integrated Water Resource Management in the water

    NARCIS (Netherlands)

    Ludwig, F.; Slobbe, van E.J.J.; Cofino, W.P.

    2014-01-01

    Integrated Water Resources Management (IWRM) was introduced in 1980s to better optimise water uses between different water demanding sectors. However, since it was introduced water systems have become more complicated due to changes in the global water cycle as a result of climate change. The realiz

  5. Treatment Technology and Alternative Water Resources

    Science.gov (United States)

    Chapman, M. J.

    2014-12-01

    At this point in our settlement of the planet Earth, with over seven billion human inhabitants, there are very few unallocated sources of fresh water. We are turning slowly toward "alternatives" such as municipal and industrial wastewater, saline groundwater, the sea, irrigation return flow, and produced water that comes up with oil and gas deposits from deep beneath the surface of the earth. Slowly turning, not because of a lack in technological ability, but because it takes a large capital investment to acquire and treat these sources to a level at which they can be used. The regulatory system is not geared up for alternative sources and treatment processes. Permitting can be circular, contradictory, time consuming, and very expensive. The purpose for the water, or the value of the product obtained using the water, must be such that the capital and ongoing expense seem reasonable. There are so many technological solutions for recovering water quality that choosing the most reliable, economical, and environmentally sound technology involves unraveling the "best" weave of treatment processes from a tangled knot of alternatives. Aside from permitting issues, which are beyond the topic for this presentation, the "best" weave of processes will be composed of four strands specifically fitted to the local situation: energy, pretreatment, driving force for separation processes, and waste management. A range of treatment technologies will be examined in this presentation with a focus on how the quality of the feed water, available power sources, materials, and waste management opportunities aid in choosing the best weave of treatment technologies, and how innovative use of a wide variety of driving forces are increasing the efficiency of treatment processes.

  6. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  7. Water resources of Windward Oahu, Hawaii

    Science.gov (United States)

    Takasaki, K.J.; Hirashima, George Tokusuke; Lubke, E.R.

    1969-01-01

    Windward Oahu lies in a large cavity--an erosional remnant of the Koolau volcanic dome at its greatest stage of growth. Outcrops include volcanic rocks associated with caldera collapse and the main fissure zone which is marked by a dike complex that extends along the main axis of the dome. The fissure zone intersects and underlies the Koolau Range north of Waiahole Valley. South of Waiahole Valley, the crest of the Koolau Range is in the marginal dike zone, an area of scattered dikes. The crest of the range forms the western boundary of windward Oahu. Dikes, mostly vertical and parallel or subparallel to the fissure zone, control movement and discharge of ground water because they are less permeable than the rocks they intrude. Dikes impound or partly impound ground water by preventing or retarding its movement toward discharge points. The top of this water, called high-level water in Hawaii, is at an altitude of about 1,000 feet in the north end of windward Oahu and 400 feet near the south end in Waimanalo Valley. It underlies most of the area and extends near or to the surface in poorly permeable rocks in low-lying areas. Permeability is high in less weathered mountain areas and is highest farthest away from the dike complex. Ground-water storage fluctuates to some degree owing to limited changes in the level of the ground-water reservoir--maximum storage is about 60,000 million gallons. The fluctuations control the rate at which ground water discharges. Even at its lowest recorded level, the reservoir contains a major part of the storage capacity because most of the area is perennially saturated to or near the surface. Tunnels have reduced storage by about 26,000 million gallons--only a fraction of the total storage--by breaching dike controls. Much of the reduction in storage can be restored if the .breached dike controls are replaced by flow-regulating bulkheads. Perennial streams intersect high-level water and collectively form its principal discharge. The

  8. Hale Crater — Ancient Water Science, Contemporary Water Resource

    Science.gov (United States)

    Stillman, D. E.; Grimm, R. E.; Robbins, S. J.; Michaels, T. I.; Enke, B. L.

    2015-10-01

    Hale has easy access to liquid water via RSL. Scientifically the site has a rich history of water via outflow channel, fluidized ejecta, hydrothermal activity, gullies, and RSL. Lastly, the site would allow age dating of Aryge and Hale crater.

  9. Carbon and Water Resource Management for Water Distribution Systems

    OpenAIRE

    Hendrickson, Thomas Peter

    2013-01-01

    Water distribution systems (WDS) worldwide face increasing challenges as population growth strains a limited water supply in many areas. In the United States, existing water infrastructure systems require significant investments to refurbish an aging stock of assets. Much of this investment is required in drinking water transmission and distribution, where a substantial amount of material and economic inputs are lost as a result of pipeline leaks. With growing worldwide concern for reducing e...

  10. 78 FR 18562 - Economic and Environmental Principles and Guidelines for Water and Related Land Resources...

    Science.gov (United States)

    2013-03-27

    ... QUALITY Economic and Environmental Principles and Guidelines for Water and Related Land Resources... Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies... Principles and Guidelines for Water and Related Land Resources Implementation Studies,'' dated March 10,...

  11. 78 FR 18562 - Economic and Environmental Principles and Requirements for Water and Related Land Resources...

    Science.gov (United States)

    2013-03-27

    ... QUALITY Economic and Environmental Principles and Requirements for Water and Related Land Resources... Guidelines for Water and Related Land Resources Implementation Studies'' (Principles and Guidelines), dated... Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies,''...

  12. Impact of remote sensing upon the planning, management and development of water resources, appendix

    Science.gov (United States)

    Castruccio, P. A.; Loats, H. L.; Fowler, T. R.; Frech, S. L.

    1975-01-01

    Lists are presented of water resource agencies from the federal, state, Water Resources Research Institute, university, local, and private sectors. Information is provided on their water resource activities, computers, and models used. For Basic doc., see N75-25263.

  13. 78 FR 69404 - Massachusetts Water Resources Authority; Notice of Preliminary Determination of a Qualifying...

    Science.gov (United States)

    2013-11-19

    ... Energy Regulatory Commission Massachusetts Water Resources Authority; Notice of Preliminary Determination... November 5, 2013, the Massachusetts Water Resources Authority filed a notice of intent to construct a... Massachusetts Water Resources Authority's Ware Disinfection Facility in Hampshire County,...

  14. Environmental geophysics mapping salinity and water resources

    NARCIS (Netherlands)

    Dent, D.

    2007-01-01

    Salinity and fresh water are two sides of the same coin, most conveniently measured by electrical conductivity; they can now be mapped rapidly in three dimensions using airborne electromagnetics (AEM). Recent developments in the calibration of airborne data against in-field measurements and addition

  15. Adaptation to climate change and variability in Canadian water resources

    International Nuclear Information System (INIS)

    A survey is presented of topics and issues related to the adaptation to climate change in Canadian water resources. These resources are seen as especially sensitive to changes in variability in climate and hydrology. Based on current knowledge of global warming, significant changes in climate and hydrology are plausible within a time period that is significant for water resource management. Global warming will tend to exacerbate existing water resources problems in the southern Prairies and the Great Lakes. The Prairies can expect increased drought during summer, and the Great Lakes can expect a decline in mean lake levels to historic lows. Measures for adapting to climate change include traditional practices (supply management), which stress system reliability. They provide some adaptation to climate change but are limited in their ability to respond to rapid change. Nontraditional and non-management measures stress flexibility and resilience. These measures also address other concerns and can be implemented immediately, before the effects of climate change are evident. Water resources managers require methods of assessing the vulnerability of water resources systems to climate change to help identify when and where adaptive measures should be applied. Adaptation to climate change requires ongoing observation and interpretation of climate, hydrology, and related environmental processes. 29 refs., 1 fig., 3 tabs

  16. Modeling and analysis of collective management of water resources

    Directory of Open Access Journals (Sweden)

    A. Tilmant

    2006-09-01

    Full Text Available Integrated Water Resources Management (IWRM recommends, among other things, that the management of water resources systems be carried out at the lowest appropriate level in order to increase the transparency, acceptability and efficiency of the decision-making process. Empowering water users and stakeholders transforms the decision-making process by enlarging the number of point of views that must be considered as well as the set of rules through which decisions are taken. This paper investigates the impact of different group decision-making approaches on the operating policies of a water resource. To achieve this, the water resource allocation problem is formulated as an optimization problem which seeks to maximize the aggregated satisfaction of various water users corresponding to different approaches to collective choice, namely the utilitarian and the egalitarian ones. The optimal operating policies are then used in simulation and compared. The concepts are illustrated with a multipurpose reservoir in Chile. The analysis of simulation results reveals that if this reservoir were to be managed by its water users, both approaches to collective choice would yield significantly different operating policies. The paper concludes that the transfer of management to water users must be carefully implemented if a reasonable trade-off between equity and efficiency is to be achieved.

  17. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  18. Applications of space technology to water resources management

    Science.gov (United States)

    Salomonson, V. V.

    1977-01-01

    Space technology transfer is discussed in terms of applying visible and infrared remote sensing measurement to water resources management. Mapping and monitoring of snowcovered areas, hydrologic land use, and surface water areas are discussed, using information acquired from LANDSAT and NOAA satellite systems.

  19. Water Resource Uses and Recreational Activities in Rural Nigeria.

    Science.gov (United States)

    Adekoya, Adebola

    1991-01-01

    This study surveys rural Nigerian residents concerning local water resource uses and tourists' recreational activities with respect to scales of awareness, understanding, and incentive. Results indicate a public willingness to encourage and finance the rural development of water bodies for agricultural purposes exclusive of investment for tourism…

  20. A Public Education Program in Water Resources Management.

    Science.gov (United States)

    Amend, John R.; Armold, Anita A.

    1983-01-01

    Describes a program designed to improve public awareness/understanding of major factors in managing water resources. Use is made of an interactive computer simulator to place lay people and teachers in decision-making situations involving real variables and alternatives and to project for them the probable consequences of their water management…

  1. Modeling and analysis of collective management of water resources

    Science.gov (United States)

    Tilmant, A.; van der Zaag, P.; Fortemps, P.

    2007-01-01

    Integrated Water Resources Management (IWRM) recommends, among other things, that the management of water resources systems be carried out at the lowest appropriate level in order to increase the transparency, acceptability and efficiency of the decision-making process. Empowering water users and stakeholders transforms the decision-making process by enlarging the number of point of views that must be considered as well as the set of rules through which decisions are taken. This paper investigates the impact of different group decision-making approaches on the operating policies of a water resource. To achieve this, the water resource allocation problem is formulated as an optimization problem which seeks to maximize the aggregated satisfaction of various water users corresponding to different approaches to collective choice, namely the utilitarian and the egalitarian ones. The optimal operating policies are then used in simulation and compared. The concepts are illustrated with a multipurpose reservoir in Chile. The analysis of simulation results reveals that if this reservoir were to be managed by its water users, both approaches to collective choice would yield significantly different operating policies. The paper concludes that the transfer of management to water users must be carefully implemented if a reasonable trade-off between equity and efficiency is to be achieved.

  2. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Technology Development Program... RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources Programs § 402.7 Water-Resources Technology Development Program. (a) Subject to the availability...

  3. Assessing climate change impacts on water resources in remote mountain regions

    Science.gov (United States)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  4. Adapting an evidence-based intervention for autism spectrum disorder for scaling up in resource-constrained settings: the development of the PASS intervention in South Asia

    Directory of Open Access Journals (Sweden)

    Gauri Divan

    2015-08-01

    Full Text Available Background: Evidence-based interventions for autism spectrum disorders evaluated in high-income countries typically require highly specialised manpower, which is a scarce resource in most low- and middle-income settings. This resource limitation results in most children not having access to evidence-based interventions. Objective: This paper reports on the systematic adaptation of an evidence-based intervention, the Preschool Autism Communication Therapy (PACT evaluated in a large trial in the United Kingdom for delivery in a low-resource setting through the process of task-shifting. Design: The adaptation process used the Medical Research Council framework for the development and adaptation of complex interventions, focusing on qualitative methods and case series and was conducted simultaneously in India and Pakistan. Results: The original intervention delivered by speech and language therapists in a high-resource setting required adaptation in some aspects of its content and delivery to enhance contextual acceptability and to enable the intervention to be delivered by non-specialists. Conclusions: The resulting intervention, the Parent-mediated intervention for Autism Spectrum Disorder in South Asia (PASS, shares the core theoretical foundations of the original PACT but is adapted in several respects to enhance its acceptability, feasibility, and scalability in low-resource settings.

  5. Fiscal year 1990 program report: Louisiana Water Resources Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Constant, W.D.

    1991-10-01

    The 1990 cooperative research program of the Louisiana Water Resources Research Institute (LWRRI) addressed priority water resources problem areas identified for Louisiana - management of surface water supplies, groundwater control and restoration, wastewater treatment alternatives, and treatment of point and nonpoint sources of pollution. Four research projects funded to address these priority issues were: (1) A Feasibility Analysis of the Use of Louisiana Wetlands for Wastewater Treatment, (2) Use of Soil Biofilter Beds for Treating High Organic, Low Toxicity Wastewater, (3) Studies on the Uptake, Accumulation and Metabolism of 2,4-Dichlorophenol and Pentachlorophenol by Lemna gibba, and (4) Application of Colloidal Gas Aphrons for Soil Washing and Groundwater Remediation.

  6. Southwest: a region under stress. [Analysis of environmental, resource-revenues, and water-resources issues

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.; Kneese, A.V.

    1978-05-01

    The southwestern states of New Mexico, Colorado, Utah, and Arizona share some of the nation's richest natural resources and the poorest people. One goal in the development of the area's resources will be to provide a means of raising the economic level of these people. Three major regional issues (environmental preservation, resource revenues, and water resources) must be faced in terms of the conflicting claims of the states involved. A summary of these issues illustrates the emotional and political strains that have developed. Justification for optimism is seen in the adaptability of new water users, the institutional evolution toward more flexibility in the water rights market, and the growing sophistication and assertiveness of interested parties determined to see that all positions are heard. 14 references.

  7. NASA Data for Water Resources Applications

    Science.gov (United States)

    Toll, David; Houser, Paul; Arsenault, Kristi; Entin, Jared

    2004-01-01

    Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1

  8. On the Law Right of the Gas Water of Water Resources

    Institute of Scientific and Technical Information of China (English)

    Liu Shujun

    2007-01-01

    With the development of science and technology,there searches and application of water resources including the gas water have been constantly developed.Through an analysis on the flaws of the water right theory,and by executing reconstruction and renewal of the theory and system of water fight in modern society,the water right position of the gas water will be established,leading to the maturity of the whole law effectiveness and substantial results of water right.

  9. Remote sensing applications in water resources

    OpenAIRE

    Kumar, Nagesh D; Reshmidevi, TV

    2013-01-01

    With the introduction of the earth observing satellites, remote sensing has become an important tool in analyzing the Earth's surface characteristics, and hence in supplying valuable information necessary for the hydrologic analysis. Due to their capability to capture the spatial variations in the hydro-meteorological variables and frequent temporal resolution sufficient to represent the dynamics of the hydrologic processes, remote sensing techniques have significantly changed the water resou...

  10. Availability and historical development of ground-water resources on Long Island, New York: An introduction. Water Resources Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Nemickas, B.; Mallard, G.E.; Reilly, T.E.

    1990-01-01

    The report explains the scientific aspects of Long Island's ground-water resources, summarizes much of the information obtained during the more than 45 years of the U.S. Geological Survey's study of Long Island's ground-water system, and describes the causes of four selected ground-water-contamination problems and the management responses. The first two sections introduce the basic principles of ground-water occurrence and describe some techniques used to obtain information on this resource. The third section describes the physical characteristics of the Long Island ground-water system, and the fourth section describes the development of Long Island's ground-water resources since the time of the earliest European settlers. The fifth section presents four historic examples of problems that have developed to illustrate the variety of threats to the island's ground-water resources and how management, through a scientific understanding of the resource, has addressed such problems.

  11. Water resources of Paraiba: a juridical and institutional approach

    Directory of Open Access Journals (Sweden)

    Erivaldo Moreira Barbosa

    2009-03-01

    Full Text Available This article presents information on water resources management of Paraiba through a juridical and institutional approach. Therefore, legal and managerial aspects for instance, the concession on the right to use and tax the water resources, besides the procedures and position of the “Paraiba State Water Agency” – AESA , have been analyzed by the hermeneutic and systemic method. From the hermeneutics contained in the juridical documents as well as an applied questionnaire, it came to the conclusion that the concession has being partially implemented since the files have not been concluded yet. In relation to the taxing, the government proposal has not been made yet; in relation to AESA management procedures, there is a process of deconcentration causing consequently, a relative power centralization in the hands of the Executive power as well as the negligent attention by the government in relation to the effective society participation in state water resources issues.

  12. How Climate Change Affects Water Resources in the Alps

    Science.gov (United States)

    Schädler, B.

    2009-04-01

    Water resources in the Alps are abundant, but long term observed climatological, glaciological and hydrological time series clearly show ongoing climate changes. And regional climate change scenarios indicate even more changes. Will we experience more severe natural disasters in the Alps and will water scarcity affect alpine agriculture and tourism? Or might the importance of the Alps as «Water Tower of Europe» even grow?

  13. Sustainability in Water Resources Management: Changes in Meaning and Perception

    OpenAIRE

    Hermanowicz, S W

    2005-01-01

    The meaning of sustainability in the context of water resources management has changed through the time. Initially meeting water demand was the dominant concern. While later quality issues became more important followed by wider water reuse, today sustainability must include a whole range of aspects (e.g., energy, pollution, persistent chemicals), spatial and time scales. New approaches to define sustainability metrics are needed. A possible approach is to use fundamentallybased entropy and e...

  14. Climate change impacts on water availability: developing regional scenarios for agriculture of the Former Soviet Union countries of Central Asia

    Science.gov (United States)

    Kirilenko, A.; Dronin, N.

    2010-12-01

    Water is the major factor, limiting agriculture of the five Former Soviet Union (FSU) of Central Asia. Elevated topography prevents moist and warm air from the Atlantic and Indian Oceans from entering the region.With exception of Kazakhstan, agriculture is generally restricted to oases and irrigated lands along the major rivers and canals. Availability of water for irrigation is the major factor constraining agriculture in the region, and conflicts over water are not infrequent. The current water crisis in the region is largely due to human activity; however the region is also strongly impacted by the climate. In multiple locations, planned and autonomous adaptations to climate change have already resulted in changes in agriculture, such as a dramatic increase in irrigation, or shift in crops towards the ones better suited for warmer and dryer climate; however, it is hard to differentiate between the effects of overall management improvement and the avoidance of climate-related losses. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and

  15. Urban Water Resources Quota Management: The Core Strategy for Water Demand Management in China

    OpenAIRE

    Jiang, Yanling; Chen, Yuansheng; Younos, Tamim; Huang, Heqing; He, Jianping

    2010-01-01

    Since China has the largest population in the world, the available water resources per capita in China are very limited. With the rapid economic development that is currently occurring, the shortage of water resources at the national level has become extremely critical. How to solve the problems due to water scarcity and water pollution has received increasing attention from the Chinese government and various communities. In order to provide a sustainable development environment for 1.6 billi...

  16. Colloquium on Central Asia

    International Nuclear Information System (INIS)

    This colloquium on Azerbaijan was organized by the direction of international relations of the French Senate and the French center of foreign trade (CFCE). This document gathers the interventions of the participants and the debates with the audience following these interventions. The topics treated concern: - the present day political-economical situation of Central Asia countries (problem of borders, relations with Russia and China); - the economies of Central Asia countries: short term problems and medium-term perspectives; - the relations with the European Union (political, economical, trade and investments, perspectives); - the European energy stakes of Caspian sea (oil and gas reserves, development of hydrocarbon resources, exploitation and transport constraints, stakes for Europe and France); - TotalFinaElf company in Central Asia (Kazakhstan, Azerbaijan, enclavement problem); - the economical impacts of the TRACECA pathway (Transport Corridor Europe Caucasus Asia). (J.S.)

  17. Gender and property rights in the commons : Examples of water rights in South Asia

    NARCIS (Netherlands)

    Zwarteveen, M.Z.; Meinzen-Dick, R.

    2001-01-01

    In many countries and resource sectors, the state is devolving responsibility for natural resource management responsibility to ``communities'' or local user groups. However, both policymakers and researchers in this area have tended to ignore the implications of gender and other forms of intra-comm

  18. Local Technical Resources for Development of Seismic Monitoring in Caucasus and Central Asia - GMSys2009 Data Acquisition System

    Science.gov (United States)

    Chkhaidze, D.; Basilaia, G.; Elashvili, M.; Shishlov, D.; Bidzinashvili, G.

    2012-12-01

    Caucasus and Central Asia represents regions of high seismic activity, composing a significant part of Alpine-Himalayan continental collision zone. Natural catastrophic events cause significant damage to the infrastructure worldwide, among these approximately ninety percent of the annual loss is due to earthquakes. Monitoring of Seismic Activity in these regions and adequate assessment of Seismic Hazards represents indispensible condition for safe and stable development. Existence of critical engineering constructions in the Caucasus and Central Asia such as oil and gas pipelines, high dams and nuclear power plants dramatically raises risks associated with natural hazards and eliminates necessity of proper monitoring systems. Our initial efforts were focused on areas that we are most familiar; the geophysical community in the greater Caucuses and Central Asia experiencing many of the same problems with the monitoring equipment. As a result, during the past years GMSys2009 was develop at the Institute of Earth Sciences of Ilia State University. Equipment represents a cost-effective, multifunctional Geophysical Data Acquisition System (DAS) to monitor seismic waves propagating in the earth and related geophysical parameters. Equipment best fits local requirements concerning power management, environmental protection and functionality, the same time competing commercial units available on the market. During past several years more than 30 units were assembled and what is most important installed in Georgia, Armenia, Azerbaijan and Tajikistan. GMSys2009 utilizes standard MiniSEED data format and data transmission protocols, making it possible online waveform data sharing between the neighboring Countries in the region and international community. All the mentioned installations were technically supported by the group of engineers from the Institute of Earth Sciences, on site trainings for local personnel in Armenia, Azerbaijan and Tajikistan was provided creating a

  19. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    OpenAIRE

    B. CZELLECZ; I. GÁBOR; L. RAVASZ; G. ȘCHIOPU; N. SZOPOS

    2016-01-01

    Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the ...

  20. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Science.gov (United States)

    2012-07-20

    ... Land Resources, LLC; and Eagle Creek Water Resources, LLC. e. Name of Project: Rio Hydroelectric... President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land... Energy Regulatory Commission Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle...

  1. Resources

    Science.gov (United States)

    ... palate - resources Colon cancer - resources Cystic fibrosis - resources Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - ...

  2. Methodological Aspects Of Conservation And Protection Of Water Resources In The Water Treatment

    OpenAIRE

    Julia Cherednichenko

    2011-01-01

    The article examines the methodological aspects of management of conservation and reproduction of water resources in water treatment systems. In view of the proposed resource and normative theoretical approaches to solving the problem of optimizing the basic scheme is designed drainage.

  3. Water Foundations Teachers Guide. The Science of Florida's Water Resources: Lesson Plans for Teachers and Students.

    Science.gov (United States)

    2001

    This document features lesson plans for teachers and students on Florida's water resources. The guide is divided into four grade levels: K-2, 3-5, 6-8, and 9-12. Each grade level includes objectives, guides, and five lesson plans. K-2 lesson plans include: (1) "We Are Water"; (2) "Why Water is Extra Special"; (3) "Water's Changing Shapes"; (4)…

  4. ANALYSIS AND CALCULATION OF REGULATED WATER RESOURCES OF GROUNDWATER RESERVOIR

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; GAO Shu-qin

    2005-01-01

    Groundwater reservoir is a kind of important engineering, which can optimize water resources arran-gement by means of artificial regulation. Regulated water is the blood and value performance of groundwater reser-voir. To resolve the problem of real-time quantification of regulated water, the paper analyzed sources and composi-tions of regulated water in detail. Then, under the conditions of satisfying water demand inside research area, the pa-per analyzed quantity available and regulation coefficient of different regulated water and established a formula tocalculate regulated water. At last, based on a pore groundwater reservoir in the middle reaches of the Yinma River,Jilin Province, the paper calculated regulated water with the formula and the result shows that the method is feasible.With some constraint conditions, the formula can be adopted in other similar areas.

  5. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    . Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded.......A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup...... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria...

  6. Sustainable water services and interaction with water resources in Europe and in Brazil

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Britto, A. L.

    2007-09-01

    The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services - including public water supply, sewage collection and treatment, and in large cities, storm water control -, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  7. Sustainable water services and interaction with water resources in Europe and in Brazil

    Directory of Open Access Journals (Sweden)

    B. Barraqué

    2007-09-01

    Full Text Available The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services – including public water supply, sewage collection and treatment, and in large cities, storm water control –, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  8. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  9. Managing Water Resource Challenges in the Congo River Basin

    Science.gov (United States)

    Aloysius, N. R.

    2015-12-01

    Water resources in the tropical regions are under pressure from human appropriation and climate change. Current understanding of interactions between hydrology and climate in the tropical regions is inadequate. This is particularly true for the Congo River Basin (CRB), which also lacks hydroclimate data. Global climate models (GCM) show limited skills in simulating CRB's climate, and their future projections vary widely. Yet, GCMs provide the most credible scenarios of future climate, based upon which changes in water resources can be predicted with coupled hydrological models. The objectives of my work are to i) elucidate the spatial and temporal variability of water resources by developing a spatially explicit hydrological model suitable for describing key processes and fluxes, ii) evaluate the performance of GCMs in simulating precipitation and temperature and iii) develop a set of climate change scenarios for the basin. In addition, I also quantify the risks and reliabilities in smallholder rain-fed agriculture and demonstrates how available water resources can be utilized to increase crop yields. Key processes and fluxes of CRB's hydrological cycle are amply characterized by the hydrology model. Climate change projections are evaluated using a multi-model ensemble approach under different greenhouse gas emission scenarios. The near-term projections of climate and hydrological fluxes are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. These increases present new opportunities and challenges for augmenting human appropriation of water resources. By evaluating agricultural water requirements, and timing and availability of precipitation, I challenge the conventional wisdom that low agriculture productivities in the CRB are primarily attributable to nutrient limitation. Results show that

  10. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  11. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  12. The current state of water resources of Transcarpathia

    Directory of Open Access Journals (Sweden)

    V. І. Nikolaichuk

    2015-07-01

    Full Text Available Throughout their existence, humans use the water of rivers, lakes and underground sources not only for water supply but also for dumping of polluted waters and wastes into it. Significant development of urbanization, concentration of urban industrial enterprises, transport, increase in mining, expansion of drainage and irrigation reclamation, plowing of the river channels, creating a large number of landfills resulted in significant, and in some regions critical, depletion and contamination of the surface and ground waters. Because of this disastrous situation, the society is getting more and more concerned about the state of the environment. The public became increasingly interested in the state of the soil cover, air, water resources, and biotic diversity. Transcarpathian region (Zakarpattya is situated in the heart of Europe, bordered by four Central European countries (Poland, Slovakia, Hungary and Romania and two regions of Ukraine (Lviv and Ivano-Frankivsk regions. Transcarpathian region (Zakarpattya is one of the richest regions of Ukraine in terms of water resources. The territory is permeated by the dense network of rivers. There are in total 9,429 rivers of 19,866 kmlength flowing in the region. Among them, the rivers Tysa, Borzhava, Latoryca, Uzh have the length of over 100 kmeach. 25 cities and urban settlements of the area are substantially provided with the centralized water intake of underground drinking water. The rural areas have virtually no centralized water supply; mainly, it is carried out due to domestic wells or water boreholes. Predicted resources of underground drinking waters in the region are equal to 1,109,300 m3/day. The use of fresh water in 2014 per capita amounted to 23,769 m3, 15% less than in 2009. The main pollutants of surface water bodies are the facilities of utility companies in the region. Analysis of studies of surface water quality in Transcarpathian region in 2014 shows that water quality meets the

  13. The development of water services and their interaction with water resources in European and Brazilian cities

    Science.gov (United States)

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-08-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  14. The development of water services and their interaction with water resources in European and Brazilian cities

    Directory of Open Access Journals (Sweden)

    B. Barraqué

    2008-08-01

    Full Text Available The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  15. Governance of water resources in Colombia: Between progress and challenges

    International Nuclear Information System (INIS)

    This work is an overview of water management in Colombia, emphasizing governance as a key element in this type of process. Therefore, from the collection and analysis of secondary data, identifies the evolution of water management in the country and, to that extent, aspects that reveal a crisis of governance in this area. In this sense, initially some relevant issues are raised in order to analyze the integrated water resource management and water governance. Later, it addresses factors that show that, despite significant progress in water management in the country, it is still to emerge a comprehensive approach that considers multiple criteria to provide governance on water resources. Thus, we propose that there is a crisis of governance on water expressed in terms of lack of experience and international context, lack of coordination and dispersion of water policy, ignorance of the various forms of local government, a wrong perception on the water abundance and richness of the country, and dissimulation or disinterest ignoring the many pressures that threaten water.

  16. Roadmap for sustainable water resources in southwestern North America.

    Science.gov (United States)

    Gleick, Peter H

    2010-12-14

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades. PMID:21149725

  17. Roadmap for sustainable water resources in southwestern North America.

    Science.gov (United States)

    Gleick, Peter H

    2010-12-14

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades.

  18. CONSTRAINING FACTORS TO SUSTAINABLE UTILIZATION OF WATER RESOURCES AND THEIR COUNTERMEASURES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    ZHAI Jin-liang; FENG Ren-guo; XIA Jun

    2003-01-01

    This paper discusses the constraining factors to sustainable utilization of water resources in China, and the countermeasures to realize sustainable water utilization. The result of comprehensive analysis shows that constraining factors to sustainable utilization of water resources in China are complicated, including physical geographical factors and socio-economic factors, such as uneven distribution of water resources at temporal and spatial scales,inappropriate institutional arrangement and non-water-saving and non-water-conservation production and life mode.The countermeasures against constraining factors to water resources sustainable development are put forward as follows: 1) using wetlands and forests, and through spatial conversion to realize temporally sustainable supply of water resources; 2) transferring water between basins and areas and developing various water resources in water shortage area; 3) establishing water-saving society; 4) strengthening water pollution control and water resources protection;and 5) establishing unified water resources management mechanism.

  19. Operating Water Resources Systems Under Climate Change Scenarios

    Science.gov (United States)

    Ahmad, S.

    2002-12-01

    Population and industrial growth has resulted in intense demands on the quantity and quality of water resources worldwide. Moreover, climate change/variability is making a growing percentage of the earth's population vulnerable to extreme weather events (drought and flood). The 1996 Saguenay flood, 1997 Red River flood, the 1998 ice storm, and recent droughts in prairies are few examples of extreme weather events in Canada. Rising economic prosperity, growth in urban population, aging infrastructure, and a changing climate are increasing the vulnerability of Canadians to even more serious impacts. This growing threat can seriously undermine the social and economic viability of the country. Our ability to understand the impacts of climate change/variability on water quantity, quality, and its distribution in time and space can prepare us for sustainable management of this precious resource. The sustainability of water resources, over the medium to long-term, is critically dependent on the ability to manage (plan and operate) water resource systems under a more variable and perhaps warmer future climate. Studying the impacts of climate change/variability on water resources is complex and challenging. It is further complicated by the fact that impacts vary with time and are different at different locations. This study deals with the impacts of climate change/variability on water resources in a portion of the Red River Basin in Canada, both in terms of change in quantity and spatial-temporal distribution. A System Dynamics model is developed to describe the operation of the Shellmouth Reservoir located on the Red River in Canada. The climate data from Canadian Global Coupled Model, CGCM1 is used. The spatial system dynamics approach, based on distributed parameter control theory, is used to model the impacts of climate change/variability on water resources in time and space. A decision support system is developed to help reservoir operators and decision makers in

  20. Impacts of Groundwater Pumping on Regional and Global Water Resources

    Science.gov (United States)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  1. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  2. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  3. Water reservoir as resource of raw material for ceramic industry

    Science.gov (United States)

    Irie, M.; Tarhouni, J.

    2015-04-01

    The industries related to the ceramics such as construction bricks, pottery and tile are the important sectors that cover the large part of the working population in Tunisia. The raw materials, clay or silt are excavated from opencast site of limestone clay stratum. The opencast site give the negative impact on landscape and environment, risks of landslide, soil erosion etc. On the other hand, a most serious problem in water resource management, especially in arid land such as Tunisia, is sedimentation in reservoirs. Sediment accumulation in the reservoirs reduces the water storage capacity. The authors proposed the exploitation of the sediment as raw material for the ceramics industries in the previous studies because the sediment in Tunisia is fine silt. In this study, the potential of the water reservoirs in Tunisia as the resource of the raw material for the ceramics industries is estimated from the sedimentation ratio in the water reservoirs.

  4. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  5. Development of a Water Recovery System Resource Tracking Model

    Science.gov (United States)

    Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael

    2015-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.

  6. Water-resources optimization model for Santa Barbara, California

    Science.gov (United States)

    Nishikawa, T.

    1998-01-01

    A simulation-optimization model has been developed for the optimal management of the city of Santa Barbara's water resources during a drought. The model, which links groundwater simulation with linear programming, has a planning horizon of 5 years. The objective is to minimize the cost of water supply subject to: water demand constraints, hydraulic head constraints to control seawater intrusion, and water capacity constraints. The decision variables are montly water deliveries from surface water and groundwater. The state variables are hydraulic heads. The drought of 1947-51 is the city's worst drought on record, and simulated surface-water supplies for this period were used as a basis for testing optimal management of current water resources under drought conditions. The simulation-optimization model was applied using three reservoir operation rules. In addition, the model's sensitivity to demand, carry over [the storage of water in one year for use in the later year(s)], head constraints, and capacity constraints was tested.

  7. Conceptual Model of Water Resources in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, L. Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  8. Evolving urban water and residuals management paradigms: water reclamation and reuse, decentralization, and resource recovery.

    Science.gov (United States)

    Daigger, Glen T

    2009-08-01

    Population growth and improving standards of living, coupled with dramatically increased urbanization, are placing increased pressures on available water resources, necessitating new approaches to urban water management. The tradition linear "take, make, waste" approach to managing water increasingly is proving to be unsustainable, as it is leading to water stress (insufficient water supplies), unsustainable resource (energy and chemicals) consumption, the dispersion of nutrients into the aquatic environment (especially phosphorus), and financially unstable utilities. Different approaches are needed to achieve economic, environmental, and social sustainability. Fortunately, a toolkit consisting of stormwater management/rainwater harvesting, water conservation, water reclamation and reuse, energy management, nutrient recovery, and source separation is available to allow more closed-loop urban water and resource management systems to be developed and implemented. Water conservation and water reclamation and reuse (multiple uses) are becoming commonplace in numerous water-short locations. Decentralization, enabled by new, high-performance treatment technologies and distributed stormwater management/rainwater harvesting, is furthering this transition. Likewise, traditional approaches to residuals management are evolving, as higher levels of energy recovery are desired, and nutrient recovery and reuse is to be enhanced. A variety of factors affect selection of the optimum approach for a particular urban area, including local hydrology, available water supplies, water demands, local energy and nutrient-management situations, existing infrastructure, and utility governance structure. A proper approach to economic analysis is critical to determine the most sustainable solutions. Stove piping (i.e., separate management of drinking, storm, and waste water) within the urban water and resource management profession must be eliminated. Adoption of these new approaches to urban

  9. 76 FR 27344 - Water Resources Management Plan/Environmental Impact Statement, Mojave National Preserve, San...

    Science.gov (United States)

    2011-05-11

    ... land use, water quality, geology, biological and cultural resources, human health and safety... facilitate sound planning and consideration of environmental resources, the NPS intends to gather information... National Park Service Water Resources Management Plan/Environmental Impact Statement, Mojave...

  10. Literacy in South Asia.

    Science.gov (United States)

    Srivastava, R. N.

    1983-01-01

    A study of the various facets and dimensions of literacy programs in South Asia indicates that literacy is viewed as a means of human resource development geared toward meaningful participation of all sectors in society, with individual programs varying according to the magnitude of illiteracy, national goals, linguistic setting, and regional…

  11. Subsidiarity in Principle: Decentralization of Water Resources Management

    OpenAIRE

    Ryan Stoa

    2014-01-01

    The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1) the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2) decentralization promotes community and stakeholder engagement when deci...

  12. Exploring climatic impacts on water resources in West Niger, Africa

    OpenAIRE

    Vieux, R.E.; Looper, J.P.; Cappelaere, Bernard; Peugeot, Christophe; Maia, A.

    1998-01-01

    Drought persisting in the Sahel for more than 25 years, impacting both surface and subsurface water resources, raises the question whether the hydrological impacts are proportional, dampened, or amplified in response to the climatic change manifested by the drought experienced since 1970. A physically-based distributed model, r.water.fea, applied to a 2.48 km2 endoreic drainage basin, typical of the Niamey area of West Niger, is used to evaluate the sensitivity of the hydrological system to s...

  13. GLOBAL WARMING AND ITS IMPACT ON WATER RESOURCES

    OpenAIRE

    Debu Mukherjee*

    2016-01-01

    Global warming is the gradual heating of earth's surface, oceans and atmosphere. Global warming is primarily a problem of too much carbon dioxide in the atmosphere which acts as a blanket, trapping heat and warming the planet. The relationship between water, energy, agriculture and climate is a significant one. As the earth’s temperature continues to rise, we can expect a significant impact on our fresh water supplies with the potential for devastating effects on these resources.&nb...

  14. Freshwater Ecosystem Conservation: Towards a Comprehensive Water Resources Management Strategy

    OpenAIRE

    Enrique Bucher; Gonzalo Castro; Vinio Floris

    1997-01-01

    Conservation of freshwater biodiversity has been seriously neglected throughout the world, and entire ecosystems are threatened with extinction. Unfortunately, freshwater sustainability issues do not appear to be a primary consideration in the planning and implementation of water use projects, nor in the allocation of use permits. This paper discusses the value and function of Latin American freshwater ecosystems and gives a comprehensive approach to developing a sustainable water resources m...

  15. Integrated Water-Less Management of Night Soil for Depollution of Water Resources and Water Conservation

    Directory of Open Access Journals (Sweden)

    Pramod R. Chaudhari

    2016-05-01

    Full Text Available Use of water for flushing night soil and enormous sewage disposal are responsible for pollution and depletion of fresh water resources in India and other countries. The review of traditional methods in the world provides idea of zero-waste discharge residential units. Experiences and research in India, China, Japan, America and Sweden has indicated feasibility of waterless management of night soil, composting and use of biofertilizer product in agriculture. A novel idea of ecological management of night soil and urine is presented in which night soil may be conditioned for transportation and treatment by adding suitable waste product(s from industry and other sources. Different night soil treatment methods are reviewed and emphasized the need for further research on whole cycle of ecological management or sustainable sanitation depending on local conditions. The benefits of this system are zero sewage discharge, reuse of waste as resource, recovery of nutrients in waste as fertilizer, production of fuel gas and reduction of pathogens in biofertilizer. This will help in water conservation and regenerating the quality and quantity of river flow for use as water ways and irrigation and to improve the public health. Potential technical intervention and research needs are discussed in this article

  16. Integrating Green and Blue Water Management Tools for Land and Water Resources Planning

    Science.gov (United States)

    Jewitt, G. P. W.

    2009-04-01

    The role of land use and land use change on the hydrological cycle is well known. However, the impacts of large scale land use change are poorly considered in water resources planning, unless they require direct abstraction of water resources and associated development of infrastructure e.g. Irrigation Schemes. However, large scale deforestation for the supply of raw materials, expansion of the areas of plantation forestry, increasing areas under food production and major plans for cultivation of biofuels in many developing countries are likely to result in extensive land use change. Given the spatial extent and temporal longevity of these proposed developments, major impacts on water resources are inevitable. It is imperative that managers and planners consider the consequences for downstream ecosystems and users in such developments. However, many popular tools, such as the vitual water approach, provide only coarse scale "order of magnitude" type estimates with poor consideration of, and limited usefulness, for land use planning. In this paper, a framework for the consideration of the impacts of large scale land use change on water resources at a range of temporal and spatial scales is presented. Drawing on experiences from South Africa, where the establishment of exotic commercial forest plantations is only permitted once a water use license has been granted, the framework adopts the "green water concept" for the identification of potential high impact areas of land use change and provides for integration with traditional "blue water" water resources planning tools for more detailed planning. Appropriate tools, ranging from simple spreadsheet solutions to more sophisticated remote sensing and hydrological models are described, and the application of the framework for consideration of water resources impacts associated with the establishment of large scale tectona grandis, sugar cane and jatropha curcas plantations is illustrated through examples in Mozambique

  17. Relationships demand-supply of water and the rate of water shortage as tools for evaluating water resources in Colombia

    International Nuclear Information System (INIS)

    This paper shows updated results about Colombian water resources and their requirements by the economic sectors. Water demand water availability relationship is used as a pressure index on water resources. This relationship is expressed through the water scarcity index, which applies constraints over water availability; due to the runoff temporal variability and to the low levels of water during the dry season each year and for each geographic region to characterize average and low runoff years. Different water availability scenarios were building. One for modal runoff values and another for 95 percents for 2025 also were prepared. To the results call our attention to problems caused by the concentration of high density settlements and the presence of economics sectors in regions with low water availability. The infrastructure lag for management of a scarce high variable and over pressured resources emerges as a key factor to avoid a looming crisis in the process of water management

  18. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia

    NARCIS (Netherlands)

    Belder, P.; Bouman, B.A.M.; Cabangon, R.; Lu, G.; Quilang, E.J.P.; Li, Y.H.; Spiertz, J.H.J.; Tuong, T.P.

    2004-01-01

    With decreasing water availability for agriculture and increasing demand for rice, water use in rice production systems has to be reduced and water productivity increased. Alternately submerged-nonsubmerged (ASNS) systems save water compared with continuous submergence (CS). However, the reported ef

  19. Exploration of Water Resource and Multiple Model for Water Resource Development in Karst Areas with the Preferred Plane Theory

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the theory of preferred plane, preferred planes (faults) always control the distribution of bedrock fissure water and hold abundant groundwater. Thus, the exploration of fissure or karst water can be converted into searching for the watery preferred plane (WPP). In the paper, the characteristic of watery preferred planes is analyzed and a series of superior indices has been set up. It is introduced that WPPs are determined by the methods of geological analysis, superior index and complex geophysical analysis. Meanwhile, new multiple model for water resource development in the water-scarce areas of karst mountainous regions are advanced.

  20. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  1. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Troppe, W. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  2. The Population Carrying Capacity of Water Resources in Yulin City

    Institute of Scientific and Technical Information of China (English)

    Lijuan; DANG; Yong; XU; Zhiqiang; WANG

    2014-01-01

    Assessing the water resource carrying capacity is beneficial for measuring the scale of industry and population agglomeration,and also avoiding the contradiction between increasing people and decreasing available water resource,due to the expansion of industry and city size.Based on the prediction model of optimum population development size,by using hydrological data,also with the demographic data from 1956 to 2010,this article analyzes and predicts the urban moderate scale under the limit of the water resource in the future of Yulin City by GIS. The main conclusions are as follows. There is growing tendency of water resources overloading. According to the result of model simulation,by2015,the overload rate of population size will be 1. 04. By 2020,the overload rate of population size will grow up to 1. 08. The oversized population mainly comes from cities and towns. The overload rate for cities and towns in 2015 and 2020 is 1. 89 and 1. 73,respectively. With the expansion of cities and industries,suburban areas could have a great potential for carrying population,because lots of suburban people may move to cities and towns according to prediction. In view of the above-mentioned facts,the population size should be controlled in a reasonable range.

  3. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    Science.gov (United States)

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  4. Knowledge and information management for integrated water resource management

    Science.gov (United States)

    Watershed information systems that integrate data and analytical tools are critical enabling technologies to support Integrated Water Resource Management (IWRM) by converting data into information, and information into knowledge. Many factors bring people to the table to participate in an IWRM fra...

  5. Water Resources Research Grant Program project descriptions, fiscal year 1985

    Science.gov (United States)

    ,

    1985-01-01

    Information on each of the 24 projects funded by the U.S. Geological Survey in FY 1985 under section 105 of Public Law 93-242 (the Water Resources Research Act of 1984) is presented, including the grant number, organization, the period of performance, and a brief description of the work to be carried out. (Lantz-PTT)

  6. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    Science.gov (United States)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  7. Remote Sensing of Water Resources During the California Drought

    Science.gov (United States)

    David, Cedric; Reager, John; Das, Narendra; Famiglietti, James; Farr, Thomas; Painter, Thomas

    2016-07-01

    The combination of human population growth and changes in water availability increasingly raises global awareness on the importance of sustainable water usage and management. While the traditional in situ measurements provide a detailed description of local water availability, space science and technology can depict a broader perspective that has great potential for securing our global water future. We use the severe drought that the State of California has been experiencing since the beginning of 2011 as an example of a comprehensive water resources characterization and monitoring allowed by satellites. We focus here on observations of water availability on and underneath the land surface, and provide a summary of the findings from the following remote sensing assets: the Soil Moisture Active Passive (SMAP) mission, the Gravity Recovery And Climate Experiment (GRACE) mission, the Airborne Snow Observatory (ASO), and Synthetic Aperture Radars (SAR) missions such as PALSAR, Radarsat-2, and UAVSAR.

  8. Formation and utilization of water resources of Tarim River

    Institute of Scientific and Technical Information of China (English)

    雷志栋; 甄宝龙; 尚松浩; 杨诗秀; 丛振涛; 张发旺; 毛晓辉; 周海鹰

    2001-01-01

    The Tarim River is a typical inland river in arid area without runoff yield of itself, and water resources are all supplied by its headstreams. The method of time series analysis is applied to annual runoff series of three headstreams, namely the Aksu River, Yarkant River and Hotan River to analyze their dynamic variations. A model is established to estimate water consumption in the headstream areas. Quantitative results indicate that both total annual runoff of headstreams and water consumption in the headstream areas have an increasing trend. The dynamic trends of annual runoff of hydrologic stations along the mainstream of the Tarim River are also presented to estimate the intermittence drying-up time at each station. Water consumption model of the mainstream area is used to analyze the characteristics of water consumption in the upper and middle reaches. It is shown that water consumption in each river reach of the mainstream decreases with the decrement of inflow and increases with human activities.

  9. PROBLEMS AND COUNTERMEASURES OF WATER RESOURCES FOR SUSTAINABLE UTILIZATION IN CHINA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the theory of sustainable development, the current situation and existent problems of the exploita-tion of water resources were analyzed in this paper. The results show that the contradiction between supply and demandof water resources is continually aggravating, water pollution is increasingly serious, water environment is worse, theover-extraction area of the underground water is expanding and water crisis stands out. gradually, so it is imperative underthe situation to actualize the sustainable exploitation strategies of water resources. It is necessary for sustainableutilizingwater resources to introduce the model of sustainable utilization of water resources -the model of wealth transferring be-tween the generations of water resources, establish water-saving society system and water market, form technology sys-tems, management systems and evaluation systems for many sorts of water resoturces, improve the utilization ratio of waterresources, transform waste water into resources and maintain and restore the water space of water environment.

  10. Mainstreaming the Participatory Approach in Water Resource Governance: The 2002 water law in Kenya

    OpenAIRE

    O A K'akumu

    2008-01-01

    O.A. K'Akumu examines reforms that have been put in place by the Water Act of 2002 in Kenya. He shows that the government remains an active and powerful player in the management of water while local institutions need to be strengthened for effective water resource governance. Development (2008) 51, 56–62. doi:10.1057/palgrave.development.1100457

  11. Be a Water Watcher: A Resource Guide for Water Conservation, K-12.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This is a resource guide (in response to the New York City water emergency) for grades K-12 on the subject of water conservation. Activities are suggested for science, industrial arts, social studies, and communications arts classes. A bibliography on water is also provided. (APM)

  12. Forecasting of Water Resource of China based on Grey Prediction Model

    OpenAIRE

    Shuqing Hou

    2015-01-01

    Water resource planning is very important for water resources management. A desirable water resource planning is typically made in order to satisfy multiple objectives as much as possible. Thus the water resource planning problem is actually a Multiple Attribute Decision Making (MADM) problem. The aim of this study is to put forward a new decision method to solve the problem of water resource planning in which attribute values expressed with triangular fuzzy numbers. The new method is an exte...

  13. Nature, Wealth and Power (Asia)

    OpenAIRE

    International Resources Group; USAID

    2005-01-01

    Metadata only record Asia, particularly South Asia, has the highest number of poor people in the world today. Many of these people are rural and depend on natural resources for their livelihoods and growth. If the United Nation's Millennium Development Goals are to be achieved in the region urgent action is needed on rural poverty. The critical linkages between natural resources, growth and poverty alleviation, and governance and democracy are becoming more evident every day. And these lin...

  14. Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: eutrophication modeling

    OpenAIRE

    P. Sundarambal; P. Tkalich; Balasubramanian, R

    2010-01-01

    Atmospheric deposition of nutrients (N and P species) can intensify anthropogenic eutrophication of coastal waters. It was found that the atmospheric wet and dry depositions of nutrients was remarkable in the Southeast Asian region during the course of smoke haze events, as discussed in a companion paper on field observations (Sundarambal et al., 2010b). The importance of atmospheric deposition of nutrients in terms of their biological responses in the coastal waters of the ...

  15. Vanishing Ponds and Regional Water Resources in Taoyuan, Taiwan

    Directory of Open Access Journals (Sweden)

    Yuei-An Liou

    2015-01-01

    Full Text Available Taiwan has a Subtropic to Tropical climate, but its precipitation varies widely in response to seasonal effects and weather events such as Typhoon and Meiyu systems. Precipitation must be held back in reservoirs to provide and regulate sufficient water supply. Balancing the irregular precipitation and increasing water demands generates tremendous pressure on water resources management for the water stored in the Shihmen Reservoir, which is the major unitary water supply system in the Greater Taoyuan Area. Such pressure will be significantly enlarged due to the huge 17 billion USD Taoyuan Aerotropolis Project. In earlier days many small artificial ponds (a common terminology in this article, including irrigation ponds, fishery ponds and others, were built to cope with water shortages in Taoyuan County. These small storage ponds provided a solution that resolved seasonal precipitation shortages. Unfortunately, these ponds have been vanishing one after another one due to regional industrialization and urbanization in recent decades and less than 40% of them still remain today. There is great urgency and importance to investigating the link between vanishing ponds and water resources management. Remote sensing technology was used in this study to monitor the environmental consequences in the Taoyuan area by conducting multi-temporal analysis on the changes in water bodies, i.e., ponds. SPOT satellite images taken in 1993, 2003, and 2010 were utilized to analyze and assess the importance of small-scale ponds as water conservation facilities. It was found that, during the seventeen years from 1993 - 2010, the number of irrigation ponds decreased by 35.94%. These ponds can reduce the burden on the major reservoir and increase the water recycling rate if they are properly conserved. They can also improve rainfall interception and surface detention capabilities, and provide another planning advantage for regional water management.

  16. 77 FR 12076 - Final Programmatic Environmental Impact Statement and Integrated Water Resource Management Plan...

    Science.gov (United States)

    2012-02-28

    ... analyzed the elements of the Integrated Water Resource Management Plan in the FPEIS. The FPEIS addresses... Bureau of Reclamation Final Programmatic Environmental Impact Statement and Integrated Water Resource Management Plan, Yakima River Basin, Water Enhancement Project, Benton, Kittitas, Klickitat, and...

  17. Engaging Southwestern Tribes in Sustainable Water Resources Topics and Management

    Directory of Open Access Journals (Sweden)

    Karletta Chief

    2016-08-01

    Full Text Available Indigenous peoples in North America have a long history of understanding their societies as having an intimate relationship with their physical environments. Their cultures, traditions, and identities are based on the ecosystems and sacred places that shape their world. Their respect for their ancestors and ‘Mother Earth’ speaks of unique value and knowledge systems different than the value and knowledge systems of the dominant United States settler society. The value and knowledge systems of each indigenous and non-indigenous community are different but collide when water resources are endangered. One of the challenges that face indigenous people regarding the management of water relates to their opposition to the commodification of water for availability to select individuals. External researchers seeking to work with indigenous peoples on water research or management must learn how to design research or water management projects that respect indigenous cultural contexts, histories of interactions with settler governments and researchers, and the current socio-economic and political situations in which indigenous peoples are embedded. They should pay particular attention to the process of collaborating on water resource topics and management with and among indigenous communities while integrating Western and indigenous sciences in ways that are beneficial to both knowledge systems. The objectives of this paper are to (1 to provide an overview of the context of current indigenous water management issues, especially for the U.S. federally recognized tribes in the Southwestern United States; (2 to synthesize approaches to engage indigenous persons, communities, and governments on water resources topics and management; and (3 to compare the successes of engaging Southwestern tribes in five examples to highlight some significant activities for collaborating with tribes on water resources research and management. In discussing the engagement

  18. RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization

    Science.gov (United States)

    2008-01-01

    To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).

  19. Integrated water resource assessment for the Adelaide region, South Australia

    Science.gov (United States)

    Cox, James W.; Akeroyd, Michele; Oliver, Danielle P.

    2016-10-01

    South Australia is the driest state in the driest inhabited country in the world, Australia. Consequently, water is one of South Australia's highest priorities. Focus on water research and sources of water in the state became more critical during the Millenium drought that occurred between 1997 and 2011. In response to increased concern about water sources the South Australian government established The Goyder Institute for Water Research - a partnership between the South Australian State Government, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Flinders University, University of Adelaide and University of South Australia. The Goyder Institute undertakes cutting-edge science to inform the development of innovative integrated water management strategies to ensure South Australia's ongoing water security and enhance the South Australian Government's capacity to develop and deliver science-based policy solutions in water management. This paper focuses on the integrated water resource assessment of the northern Adelaide region, including the key research investments in water and climate, and how this information is being utilised by decision makers in the region.

  20. Managing Water Resources for Drought: Insights from California

    Science.gov (United States)

    Medellin-Azuara, Josue; Lund, Jay

    2016-04-01

    Droughts bring great opportunities to better understand and improve water systems. California's economic powerhouse relies on highly engineered water systems to fulfill large and growing urban and agricultural water demands. Current and past droughts show these systems are highly robust and resilient to droughts, as they recover promptly. However, environmental systems remain highly vulnerable and have shown less resilience to drought, with each drought bringing additional native species closer to extinction, often with little recovery following the drought. This paper provides an overview of the economic and ecosystem impacts of the recent multi-year drought in California in the context of a global economy. We explore the potential of water markets, groundwater management and use of remote sensing technology to improve understanding of adaptation to drought. Insights for future management of water resources and scientific work are discussed.

  1. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  2. Alpine Snow Cover - Water Resources in Arid Regions

    Science.gov (United States)

    Czyzowska, E. H.; Van Leeuwen, W. J.; Hirschboeck, K. K.; Wisniewski, W. T.; Marsh, S. E.

    2013-12-01

    There is an undisputed need to increase accuracy of snow cover estimation in regions of complex terrain, especially in areas dependent on winter snow accumulation for a substantial portion of their water supply, such as the Western United States, Central Asia, and the Andes. Presently, the most pertinent monitoring and research needs related to alpine snow cover extent (SCE) are: (1) to improve SCE monitoring by providing detailed fractional snow cover (FSC) products which perform well in temporal/spatial heterogeneous forested and/or alpine terrains; (2) to provide accurate measurements of FSC at the watershed scale for use in snow water equivalent (SWE) estimation for regional water management; (3) to provide detailed distributions of FSC in mountainous regions to investigate the temporal/spatial distribution of SCE/SWE in relation to recent climate changes; (4) to use FSC products as input for climate models at multiple scales; and (5) to estimate SCE and SWE for use in ecological studies (e.g., vegetation cover, water stress, primary production, fire, insect outbreaks, and pulses in tree demography). To address the above our approach is based on Landsat/MODIS Fractional Snow Cover (LandsatFSC, ModisFSC), as a measure of the temporal/spatial distribution of alpine SCE. We used a fusion methodology between remotely sensed multispectral data from Landsat TM/ETM+/MODIS and Ikonos utilized at their highest respective spatial resolutions. Artificial Neural Networks (ANNs) are used to capture the multi-scale information structure of the data by means of the ANN training process, followed by the ANN extracting FSC from all available information in the Landsat images. The LandsatFSC/ModisFSC algorithms were validated (RMSE ~ 0.09; mean error ~ 0.001-0.01 FSC) in watersheds characterized by diverse environmental factors such as: terrain, slope, exposition, vegetation cover, and wide-ranging snow cover conditions.

  3. Optimizing water management practices for enhancing rice production and mitigating greenhouse gas emissions in Asia: The food-water-climate nexus approach

    Science.gov (United States)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Ren, W.

    2015-12-01

    Rice fields, supporting over half of the global population, consumed around 30% of the freshwater used for global crop growth and identified as one of the major methane (CH4) sources. Asia, in where 90% of rice is consumed, took over 90% of the total CH4 emission from the global rice field. With the increasing water scarcity and rapidly growth population, it is urgent to address how to simultaneously maintain or even increase food production, reduce water consumption, and benefit climate. In this study, we used a process-based model (Dynamic Land Ecosystem Model), which has the capability to simultaneously simulate the carbon, water, and nitrogen fluxes and storages within the terrestrial ecosystem, and also the exchanges of greenhouse gases between terrestrial ecosystems and the atmosphere, to quantify the magnitude, spatial and temporal variation of rice production and CH4 emissions under different water management practices. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of experimental simulations, the results could provide insights for reasonable implementation of optimum water management practices, which is also crucial for policy maker to make trade-off decisions to increase yield and reduce GHG emissions through effective mitigation strategies.

  4. Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

    NARCIS (Netherlands)

    Altenburger, R.; Ait-Aissa, S.; Antczak, P.; Backhaus, T.; Barcelo, D.; Seiler, T.; Brion, F.; Focks, A.

    2015-01-01

    Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a

  5. NASA Remote Sensing Technologies for Improved Integrated Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lee, C. M.

    2014-12-01

    This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts for improved Integrated Water Resources Management (IWRM). NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and international community to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. Key objectives of this talk will highlight NASA's Water Resources and Capacity Building Programs with their objective to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management in national and international applications. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. The presentation will also demonstrate how NASA is a major contributor to water tasks and activities in GEOSS (Global Earth Observing System of Systems) and GEO (Group on Earth Observations).

  6. Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia. Report of a FAO/IAEA consultants' meeting

    International Nuclear Information System (INIS)

    A Consultants' Meeting on 'Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia' was held at FAO, Rome, August 22-25, 2000. Five consultants, together with one staff from IAEA headquarters, one staff from IAEA Laboratories, Seibersdorf, five staff from FAO headquarters, two staff from FAO regional offices, one observer from ACIAR, one observer from Cornell University with expertise in crop, nutrient, soil and water management, attended the meeting. The consultants presented reviews of the situation regarding studies of water and nutrient dynamics in rice-wheat systems in South Asia. These were complemented by a paper on the development of 15N techniques to study the contribution of N from legumes. The consultants also provided recommendations on the formulation and implementation of an FAO/IAEA Co-ordinated Research Project (CRP). Refs, figs, tabs

  7. Searching for Lunar Water: The Lunar Volatile Resources Analysis Package

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Dewar, K. R.; Pillinger, J. M.; Sheridan, S.; Wright, I, P.; Gibson, E. K.; Merrifield, J. A.; Howe, C. J.; Waugh, L. J.; Pilinger, C. T.

    2012-01-01

    The ESA Lunar Lander has been conceived to demonstrate an autonomous landing capability. Once safely on the Moon the scientific payload will conduct investigations aimed at preparing the way for human exploration. As part of the provisional payload an instrument known as The Lunar Volatile Resources Analysis Package (L-VRAP) will analyse surface and exospheric volatiles. The presence and abundance of lunar water is an important consideration for ISRU (In Situ Resource Utilisation) since this is likely to be part of a strategy for supporting long-term human exploration of the Moon.

  8. Adaptation of water resource systems to an uncertain future

    Science.gov (United States)

    Walsh, Claire L.; Blenkinsop, Stephen; Fowler, Hayley J.; Burton, Aidan; Dawson, Richard J.; Glenis, Vassilis; Manning, Lucy J.; Jahanshahi, Golnaz; Kilsby, Chris G.

    2016-05-01

    Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be

  9. Water Productivity Mapping (WPM Using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia

    Directory of Open Access Journals (Sweden)

    Sabirjan Isaev

    2008-12-01

    Full Text Available The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing “more crop per drop” (increasing water productivity becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1 crop productivity (ton/ha maps (CPMs involvingcrop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2 crop water use (m3/ha maps (WUMs (or actual seasonal evapotranspiration or actual ET developed through Simplified Surface Energy Balance (SSEB model; and (3 water productivity (kg/m3 maps (WPMs produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET by multiplying the ET fractionby reference ET. The ETfraction was determined using Landsat thermal imagery by selecting the “hot” pixels (zero ET and “cold” pixels (maximum ET. The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m3 in water productivity of cotton fields with overwhelming proportion (87% of the area having WP less than 0.30 kg/m3, 11% of the area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 0.36 kg/m3. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements

  10. ASSESSMENT OF WATER RESOURCES AT HONGHE NATIONAL NATURE RESERVE

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng-Mao; LU Xian-Guo; ZHAO Chun-Hui; ZHAO Yan-Bo; QI Han-Qiang

    2004-01-01

    A detailed assessment on water resources of HNNR is to find the changing rules in time and space scale of water resources of HNNR and its adjacent areas, and the generating and degrading factors of wetland and provide scientific base on restoring and managing the hydrologic regime for planning and designing at HNNR. Both the assessment area and its adjacent watershed of Bielahong River belong to the same region in the climate and surface features. Total of 46 years of serial data from 1956-2001 in the Bielahong Hydrology Station was employed. Typical analysis of the serial runoff was conducted by adopting the residual mass curve method. The calculation methods of hydrological parameters are valuable for analyzing the water balance of HNNR. The results showed that the inputs of 118.29 × 106 m3 of the surface runoff and 1 478km2 of the areas of natural watershed in HNNR were decreased. At the same time some measurements to control and prevent water resources decreased have been proposed.

  11. Geomatic methods at the service of water resources modelling

    Science.gov (United States)

    Molina, José-Luis; Rodríguez-Gonzálvez, Pablo; Molina, Mª Carmen; González-Aguilera, Diego; Espejo, Fernando

    2014-02-01

    Acquisition, management and/or use of spatial information are crucial for the quality of water resources studies. In this sense, several geomatic methods arise at the service of water modelling, aiming the generation of cartographic products, especially in terms of 3D models and orthophotos. They may also perform as tools for problem solving and decision making. However, choosing the right geomatic method is still a challenge in this field. That is mostly due to the complexity of the different applications and variables involved for water resources management. This study is aimed to provide a guide to best practices in this context by tackling a deep review of geomatic methods and their suitability assessment for the following study types: Surface Hydrology, Groundwater Hydrology, Hydraulics, Agronomy, Morphodynamics and Geotechnical Processes. This assessment is driven by several decision variables grouped in two categories, classified depending on their nature as geometric or radiometric. As a result, the reader comes with the best choice/choices for the method to use, depending on the type of water resources modelling study in hand.

  12. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    Science.gov (United States)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  13. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  14. Integrated water resources management in the Ruhr River Basin, Germany.

    Science.gov (United States)

    Bode, H; Evers, P; Albrecht, D R

    2003-01-01

    The Ruhr, with an average flow of 80.5 m3/s at its mouth, is a comparatively small tributary to the Rhine River that has to perform an important task: to secure the water supply of more than 5 million people and of the industry in the densely populated region north of the river. The complex water management system and network applied by the Ruhrverband in the natural Ruhr River Basin has been developed step by step, over decades since 1913. And from the beginning, its major goal has been to achieve optimal conditions for the people living in the region. For this purpose, a functional water supply and wastewater disposal infrastructure has been built up. The development of these structures required and still requires multi-dimensional planning and performance. Since the river serves as receiving water and at the same time as a source of drinking water, the above-standard efforts of Ruhrverband for cleaner water also help to conserve nature and wildlife. Ruhrverband has summed up its environmental awareness in the slogan: "For the people and for the environment". This basic water philosophy, successfully applied to the Ruhr for more than 80 years, will be continued in accordance with the new European Water Framework Directive, enacted in 2000, which demands integrated water resources management in natural river basins, by including the good ecological status of surface waterbodies as an additional goal.

  15. Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins

    Science.gov (United States)

    Song, Chunqiao; Huang, Bo; Ke, Linghong; Ye, Qinghua

    2016-10-01

    For the period 1979-2011, eight gridded monthly precipitation datasets, including GPCP, CMAP-1/2, TRMM, PREC/L, APHRODITE, NCEP-2 and ERA-Interim, are inter-compared with each other and station observations over High Mountain Asia (HMA). The precipitation variability from the first six gauge-based or merged analysis datasets agree better with each other than with the two reanalysis data. The long-term trend analysis of GPCP, CMAP-1, PREC/L and APHRODITE precipitation datasets consistently reveals moderate increases in the inner and northeastern Tibetan Plateau (TP) and northwest Xinjiang, and obvious decreases in the southeast TP. However, in the Himalayas and Karakorum, there are large discrepancies among different datasets, where GPCP and APHRODITE precipitation datasets show significant decreases along the Himalayas while other datasets show strong spatial heterogeneity or slight variations. The larger uncertainties in the rugged area may be largely attributed to scarce station observations, as well as the stronger snow-induced scattering by microwave measurement. To assess which precipitation datasets tend to be more suitable for hydrologic analysis in HMA, we further investigate the accuracy of precipitation estimates at basin scale by comparing with gauge-based observations, and examine the coherences of annual lake water budgets and precipitation variability over four large closed lake catchments. The results indicate that two reanalysis precipitation datasets show evidently weaker correlations with station observations; the other six datasets perform better in indicating inter-annual variations of lake water budgets. It suggests that these merged analysis precipitation datasets, especially for GPCP, CMAP-1/2 and PREC/L, have the potential in examining regional water balances of the inner basins in HMA.

  16. Water accounting for stressed river basins based on water resources management models.

    Science.gov (United States)

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. PMID:27161139

  17. Water accounting for stressed river basins based on water resources management models.

    Science.gov (United States)

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions.

  18. Assessing the impacts of climatic change on mountain water resources.

    Science.gov (United States)

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades.

  19. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    Science.gov (United States)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  20. Integrated system dynamics toolbox for water resources planning.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward

  1. Necessity and feasibility for an ET-based modern water resources management strategy: A case study of soil water resources in the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The necessity and feasibility of an ET-based modern water resources management was analyzed to improve assessment of critical water resources scarcity in the region/basin. This analysis was based on the whole water cycle process and its analysis object is evapotranspiration (ET), a main consumption component in the water resources dynamic transformation process. A case study was undertaken by selecting soil water resources in the Yellow River Basin and employing the WEP-L distributed hydrological model with physics mechanisms. This paper discusses the amount and consumption efficiency of soil-water resources according to completely simulated results of water cycle elements throughout the basin. Results indicate that it is important for the ET-based modern water resources management strategy to alleviate water resources scarcity because it may not only avoid unused water wasting but also improve water use efficiency. Therefore, an ET-based modern water resources management scheme is a good complement to the traditional water resources demand management system.

  2. Integrating water resources management in eco-hydrological modelling.

    Science.gov (United States)

    Koch, H; Liersch, S; Hattermann, F F

    2013-01-01

    In this paper the integration of water resources management with regard to reservoir management in an eco-hydrological model is described. The model was designed to simulate different reservoir management options, such as optimized hydropower production, irrigation intake from the reservoir or optimized provisioning downstream. The integrated model can be used to investigate the impacts of climate variability/change on discharge or to study possible adaptation strategies in terms of reservoir management. The study area, the Upper Niger Basin located in the West African Sahel, is characterized by a monsoon-type climate. Rainfall and discharge regime are subject to strong seasonality. Measured data from a reservoir are used to show that the reservoir model and the integrated management options can be used to simulate the regulation of this reservoir. The inflow into the reservoir and the discharge downstream of the reservoir are quite distinctive, which points out the importance of the inclusion of water resources management.

  3. Water resources and the development of human civilization

    International Nuclear Information System (INIS)

    This paper presents available water resources in the world and the relation between socio-economic and natural systems throughout history of mankind. Some of the monuments of culture from the Iron Gate (hydro power constructions) region of the Danube river are described which illustrate old bond between man and water. The Danube river waters are of prime importance for Danubian counties and a change in people's treatment and relation to water is necessary at both national and international level. This implies application of long-term environmentally compatible economic strategies in accordance with bio-culture, which, at the bottom line, should lead to the concept of sustainable development. There is an interest in Yugoslavia for international co-operation with Danubian countries and vice versa, as well as the concern for environmental in the Yugoslavian part of the Danube basin, problems and means for management of pollution sources in the area. (author)

  4. Global Water Resources Under Future Changes: Toward an Improved Estimation

    Science.gov (United States)

    Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.

    2005-05-01

    Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From

  5. Protecting water resources from pollution in the Lake Badovc

    OpenAIRE

    Sabri Avdullahi, Islam Fejza, Ahmet Tmava

    2012-01-01

    In recent years, the international community has witnessed incidence of climate variability and human activities. The objective of this paper is protecting water resources from pollution in the catchments area of Lake Badovc. The catchments area of the Lake Badovc has a size of 109 km² and the active storage volume of the lake is assessed to 26.4 Mill.m3. Around 28% of the total population of Municipality of Prishtina supply with drinking water from Lake Badovc. The hydrologic modelling syste...

  6. Formation and utilization of water resources of Tarim River

    Institute of Scientific and Technical Information of China (English)

    LEI; Zhidong; (

    2001-01-01

    [1]Bedford, D.P., International management in the Aral Sea Basin, Water International, 1996, 21(2): 63—69.[2]Mao, D., Water Resources, Environment and Management of the Tarim Basin (in Chinese), Beijing: China Environmental Science Press, 1998.[3]Sudhaker, S. M., Wu, S. M., Time Series and System Analysis with Applications (in Chinese), Beijing: Mechanical Industry Press, 1988.[4]Yang, W., Gu, L., Time Series Analysis and Dynamic Data Modeling (in Chinese), Beijing: Beijing Institute of Technology Press, 1986.

  7. Water resources planning for rivers draining into Mobile Bay

    Science.gov (United States)

    April, G. C.

    1976-01-01

    The application of remote sensing, automatic data processing, modeling and other aerospace related technologies to hydrological engineering and water resource management are discussed for the entire river drainage system which feeds the Mobile Bay estuary. The adaptation and implementation of existing mathematical modeling methods are investigated for the purpose of describing the behavior of Mobile Bay. Of particular importance are the interactions that system variables such as river flow rate, wind direction and speed, and tidal state have on the water movement and quality within the bay system.

  8. Valuing water resources in Switzerland using a hedonic price model

    Science.gov (United States)

    van Dijk, Diana; Siber, Rosi; Brouwer, Roy; Logar, Ivana; Sanadgol, Dorsa

    2016-05-01

    In this paper, linear and spatial hedonic price models are applied to the housing market in Switzerland, covering all 26 cantons in the country over the period 2005-2010. Besides structural house, neighborhood and socioeconomic characteristics, we include a wide variety of new environmental characteristics related to water to examine their role in explaining variation in sales prices. These include water abundance, different types of water bodies, the recreational function of water, and water disamenity. Significant spatial autocorrelation is found in the estimated models, as well as nonlinear effects for distances to the nearest lake and large river. Significant effects are furthermore found for water abundance and the distance to large rivers, but not to small rivers. Although in both linear and spatial models water related variables explain less than 1% of the price variation, the distance to the nearest bathing site has a larger marginal contribution than many neighborhood-related distance variables. The housing market shows to differentiate between different water related resources in terms of relative contribution to house prices, which could help the housing development industry make more geographically targeted planning activities.

  9. Application of Satellite Gravimetry for Water Resource Vulnerability Assessment

    Science.gov (United States)

    Rodell, Matthew

    2012-01-01

    The force of Earth's gravity field varies in proportion to the amount of mass near the surface. Spatial and temporal variations in the gravity field can be measured via their effects on the orbits of satellites. The Gravity Recovery and Climate Experiment (GRACE) is the first satellite mission dedicated to monitoring temporal variations in the gravity field. The monthly gravity anomaly maps that have been delivered by GRACE since 2002 are being used to infer changes in terrestrial water storage (the sum of groundwater, soil moisture, surface waters, and snow and ice), which are the primary source of gravity variability on monthly to decadal timescales after atmospheric and oceanic circulation effects have been removed. Other remote sensing techniques are unable to detect water below the first few centimeters of the land surface. Conventional ground based techniques can be used to monitor terrestrial water storage, but groundwater, soil moisture, and snow observation networks are sparse in most of the world, and the countries that do collect such data rarely are willing to share them. Thus GRACE is unique in its ability to provide global data on variations in the availability of fresh water, which is both vital to life on land and vulnerable to climate variability and mismanagement. This chapter describes the unique and challenging aspects of GRACE terrestrial water storage data, examples of how the data have been used for research and applications related to fresh water vulnerability and change, and prospects for continued contributions of satellite gravimetry to water resources science and policy.

  10. Studies launched on integrated water resources management in Heihe

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ As a component of the CAS Action Plan for the Development of China's West, a research project on integrated management of water resources was initiated on 10 June at the Research and Experiment Station for Desert Ecological Hydrology in Alxa, Inner Mongolia, an outpost of the Cold and Arid Regions Environmental and Engineering Research Institute of CAS. CAS Vice President Li Jiayang attended the launching ceremony.

  11. 1993 Fiscal Year Water Resources Division Information Guide

    Science.gov (United States)

    U.S. Geological Survey

    1992-01-01

    This Guide briefly describes the Water Resources Division's mission, program, and organizational structure, and where and how to obtain specific types of hydrologic information. The Guide also contains a listing of addresses, telephone numbers, and office hours for Headquarters, Regional, District, and State offices. For some offices, two addresses are given: the mailing address of the office to which correspondence should be sent and the street address of the office. The map shows the location of the offices.

  12. Using Earth observation for Integrated Water Resources Management

    International Nuclear Information System (INIS)

    , deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS-WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and interagency coordination in Asia and Africa, GEOSS/WCI is now leading to effective actions and public awareness in support of water security and sustainable development. (author)

  13. High-performance cyberinfrastructure for water resource planning and management

    Science.gov (United States)

    Jones, N.; Ogden, F. L.; Nelson, J.

    2012-12-01

    Water resource managers face increasingly difficult challenges as population growth leads to unprecedented demands on our finite supply of fresh water. Resolving water disputes and planning for growth demand increasingly sophisticated simulation tools involving complex spatial data and high-performance models and hardware. In additional to technological complexity, the range of input from social, environmental, and political decision makers required to make appropriate decisions has widened. Unfortunately, running such models is often beyond the capability of water managers and other stakeholders and/or is cost prohibitive to be used on a routine basis. In this presentation, we present a new NSF EPSCoR-funded project featuring four universities from Utah and Wyoming. One of the objectives of this project is the development of cyberinfrastructure for community-based modeling tools hosted on the Cloud and accessed via web-based interfaces. A primary hurdle in developing such tools is that each model is unique and involves a different set of inputs, outputs, and criteria for analysis. Therefore, coding a custom web-application from scratch for each Cloud-based modeling application is not feasible. To address this issue, we are developing a library of low-level GIS-based geoprocessing tools which can be configured via a simple scripting language to build custom workflows involving complex spatial data and high-resolution numerical models. We are also developing a suite of tools for hosting such workflows via a simple, yet powerful web-interface. This library will provide a template for delivering powerful modeling tools and access to spatial information to the hands of the managers and decision makers involved in water resources. We demonstrate this strategy using a web-based simulation environment built for the State of Utah Department of Water Rights. This tool is used to simulate the impact of proposed wells on existing water rights, including water table drawdown

  14. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  15. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  16. The evolution and enlightenment of water resources accounting from accounts to balance sheet

    Institute of Scientific and Technical Information of China (English)

    FuHui Jian; XiaoYu Song; LiLi Li; WenQi Gao

    2016-01-01

    The Third Plenary Session of the 18th Central Committee of the Communist Party of China has proposed an important national strategic decision: to explore and establish the balance sheet of natural resources, to implement leaders' of-office auditing system about natural resources assets. Water is one of the most essential nature resources of human beings; water resources accounting, as an important water resources management tool, is an essential part of compiling the natural re-sources balance sheet. In this paper, we provide a summary of the historic evolution of water resources accounting and analyze its application in some typical countries. Although water resources accounting and water resources balance sheet reflect different implications and focus, both require water resources accounts as the basis in system establishment.

  17. Climatic data trend analysis and modeling for water resource management in Peloponnese, Greece.

    OpenAIRE

    Duwal, Sunil

    2011-01-01

    The fresh water resources of the world are stressed due to the increasing population. Theclimate change has also affected the water resource availability due to the occurrence offrequent and uneven extreme events such as drought and flash floods. In the context ofPeloponnese, Greece water resource management is an important issue for tourism developmentas well as the water supply for the people in the peninsula. To assess the potential climatechange and to quantify the water resource availabi...

  18. Managing Water for Sustainable Growth and Poverty Reduction : A Country Water Resources Assistance Strategy for Zambia

    OpenAIRE

    World Bank

    2009-01-01

    The country water resources assistance strategy for Zambia provides an analysis of the role of water in the economy and identifies the specific challenges, development opportunities and policies which inform an agreed framework for priority areas of assistance. Zambia lies entirely within the catchments of the Zambezi and Congo rivers and all internal runoff is shared by downstream and par...

  19. Water Resources and Agricultural Water Use in the North China Plain: Current Status and Management Options

    Science.gov (United States)

    Serious water deficits with deteriorating environmental quality are threatening agricultural sustainability in the North China Plain (NCP). This paper addresses spatial and temporal availability of water resources in the NCP, and identifies the effects of soil management, irrigation and crop genetic...

  20. Water resources transfers through southern African food trade: water efficiency and climate signals

    Science.gov (United States)

    Dalin, Carole; Conway, Declan

    2016-01-01

    Temporal and spatial variability of precipitation in southern Africa is particularly high. The associated drought and flood risks, combined with a largely rain-fed agriculture, pose a challenge for water and food security in the region. As regional collaboration strengthens through the Southern Africa Development Community and trade with other regions increases, it is thus important to understand both how climate variability affects agricultural productivity and how food trade (regional and extra-regional) can contribute to the region's capacity to deal with climate-related shocks. We combine global hydrological model simulations with international food trade data to quantify the water resources embedded in international food trade in southern Africa and with the rest of the world, from 1986-2011. We analyze the impacts of socio-economic changes and climatic variability on agricultural trade and embedded water resources during this period. We find that regional food trade is efficient in terms of water use but may be unsustainable because water-productive exporters, like South Africa, rely on increasingly stressed water resources. The role of imports from the rest of the world in the region's food supply is important, in particular during severe droughts. This reflects how trade can efficiently redistribute water resources across continents in response to a sudden gap in food production. In a context of regional and global integration, our results highlight opportunities for improved water-efficiency and sustainability of the region's food supply via trade.

  1. Estimating the Cost of Mining Pollution on Water Resources: Parametric and Nonparametric Resources

    OpenAIRE

    Pedro Herrera Catalán; Oscar Millones

    2012-01-01

    This study estimates the economic costs of mining pollution on water resources for the years 2008 and 2009 based on the conceptual framework of Environmental Efficiency. This framework identifies such costs as the mining companies’ trade-off between increasing production that is saleable at market prices (desirable output) and reducing the environmental pollution that emerges from the production process (undesirable output). These economic costs were calculated from parametric and non paramet...

  2. Does Integrated Water Resources Management Support Institutional Change? The Case of Water Policy Reform in Israel

    Directory of Open Access Journals (Sweden)

    Tanya Heikkila

    2010-03-01

    Full Text Available Many international efforts have been made to encourage integrated water resources management through recommendations from both the academic and the aid and development sectors. Recently, it has been argued that integrated water resources management can help foster better adaptation of management and policy responses to emerging water crises. Nevertheless, few empirical studies have assessed how this type of management works in practice and what an integrated water management system implies for institutional adaptation and change. Our assessment of the Israeli water sector provides one view of how they can be shaped by an integrated structure in the water sector. Our analysis of recent efforts to adapt Israel's water management system to new conditions and uncertainties reveals that the interconnectedness of the system and the consensus decision-making process, led by a dominant actor who coordinates and sets the policy agenda, tends to increase the complexity of negotiations. In addition, the physical integration of water management leads to sunk costs of large-scale physical infrastructure. Both these factors create a path dependency that empowers players who receive benefits from maintaining the existing system. This impedes institutional reform of the water management system and suggests that integrated water resources management creates policy and management continuity that may only be amenable to incremental changes. In contrast, real adaptation that requires reversibility and the ability to change management strategies in response to new information or monitoring of specific management outcomes.

  3. Water resources management, water pollution, and water protection in Japan; Wasserwirtschaft, Wasserverschmutzung und Gewaesserschutz in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, T. [Hokkaido Univ., Graduate School of Agriculture, Div. of Forestry, Institute of Forest Policy, Sapporo (Japan)

    1996-06-01

    Japan`s balance in environmental-oriented water resources management is contradictory. Some improvements have been achieved, for instance in the treatment of industrial discharges and, in particular, in reducing emissions of toxic heavy metals. Conversely, with other forms of pollution, such as the organic load, no progress has been made so far; in some instances the situation has even deteriorated. However, measures for an advanced protection of waters are planned. New construction, extension, and modernization of wastewater treatment plants are a priority objective in environmental policy. A positive impact on water quality can be expected when the implementation of an emission-charges system for industries and the development of sewerage systems for households, based on the polluter-pays-principle, will be completed. (orig.) [Deutsch] Japans umweltorientierte, wasserwirtschaftliche Bilanz ist zwiespaeltig. Es wurden partiell einige Verbesserungen erzielt, wie z.B. bei der Reinigung industrieller Abwaesser und besonders der Minderung von Eintraegen toxischer Schwermetalle. Bei anderen Belastungsformen, so etwa bei den organischen, liegen dagegen kaum Fortschritte, teilweise sogar Verschlechterungen vor. Ein weitergehender Gewaesserschutz ist jedoch geplant. Neu- und Ausbau sowie Verbesserung von Klaeranlagen sind erklaertes Hauptziel der Umweltpolitik. Mit einer Verbesserung der Gewaesserqualitaet ist zu rechnen, wenn die Installation des Emissionsabgabensystems fuer Industriebetriebe und der Ausbau der Entsorgungseinrichtungen fuer Haushalte, die sich nach dem Verursacherprinzip orientieren, erfolgreich abgeschlossen sind. (orig.)

  4. Compilation of Water-Resources Data for Montana, Water Year 2006

    Science.gov (United States)

    Ladd, P. B.; Berkas, W.R.; White, M.K.; Dodge, K.A.; Bailey, F.A.

    2007-01-01

    The U.S. Geological Survey, Montana Water Science Center, in cooperation with other Federal, State, and local agencies, and Tribal governments, collects a large amount of data pertaining to the water resources of Montana each water year. This report is a compilation of Montana site-data sheets for the 2006 water year, which consists of records of stage and discharge of streams; water quality of streams and ground water; stage and contents of lakes and reservoirs; water levels in wells; and precipitation data. Site-data sheets for selected stations in Canada and Wyoming also are included in this report. The data for Montana, along with data from various parts of the Nation, are included in 'Water-Resources Data for the United States, Water Year 2006', which is published as U.S. Geological Survey Water-Data Report WDR-US-2006 and is available at http://pubs.water.usgs.gov/wdr2006. Additional water year 2006 data collected at crest-stage gage and miscellaneous-measurement stations were collected but were not published. These data are stored in files of the U.S. Geological Survey Montana Water Science Center in Helena, Montana, and are available on request.

  5. Collaborative Research for Water Resource Management under Climate Change Conditions

    Science.gov (United States)

    Brundiers, K.; Garfin, G. M.; Gober, P.; Basile, G.; Bark, R. H.

    2010-12-01

    We present an ongoing project to co-produce science and policy called Collaborative Planning for Climate Change: An Integrated Approach to Water-Planning, Climate Downscaling, and Robust Decision-Making. The project responds to motivations related to dealing with sustainability challenges in research and practice: (a) state and municipal water managers seek research that addresses their planning needs; (b) the scientific literature and funding agencies call for more meaningful engagement between science and policy communities, in ways that address user needs, while advancing basic research; and (c) empirical research contributes to methods for the design and implementation of collaborative projects. To understand how climate change might impact water resources and management in the Southwest US, our project convenes local, state, and federal water management practitioners with climate-, hydrology-, policy-, and decision scientists. Three areas of research inform this collaboration: (a) the role of paleo-hydrology in water resources scenario construction; (b) the types of uncertainties that impact decision-making beyond climate and modeling uncertainty; and (c) basin-scale statistical and dynamical downscaling of climate models to generate hydrologic projections for regional water resources planning. The project engages all participants in the research process, from research design to workshops that build capacity for understanding data generation and sources of uncertainty to the discussion of water management decision contexts. A team of “science-practice translators” facilitates the collaboration between academic and professional communities. In this presentation we contextualize the challenges and opportunities of use-inspired science-policy research collaborations by contrasting the initial project design with the process of implementation. We draw from two sources to derive lessons learned: literature on collaborative research, and evaluations provided by

  6. Estimating the Cost of Mining Pollution on Water Resources: Parametric and Nonparametric Resources

    Directory of Open Access Journals (Sweden)

    Pedro Herrera Catalán

    2012-12-01

    Full Text Available This study estimates the economic costs of mining pollution on water resources for the years 2008 and 2009 based on the conceptual framework of Environmental Efficiency. This framework identifies such costs as the mining companies’ trade-off between increasing production that is saleable at market prices (desirable output and reducing the environmental pollution that emerges from the production process (undesirable output. These economic costs were calculated from parametric and non parametric production possibility frontiers for 28 and 37 mining units in 2008 and 2009, respectively, which were under the purview of the National Campaign for Environmental Monitoring of Effluent and Water Resources, conducted by the Energy and Mining Investment Supervisory Agency (Osinergmin in those years. The results show that the economic cost of mining pollution on water resources rose to U.S. $ 814.7 million and U.S. $ 448.8 million for 2008 and 2009, respectively. These economic costs were highly concentrated in a few mining units, within a few pollution parameters, and were also higher in mining units with average/low mineral production. Taking into consideration that at present the fine and penalty system in the mining sector is based on administrative criteria, this study proposes a System of Environmentally Efficient Sanctions based on economic criteria so as to establish a preventive mechanism for pollution. It is hoped that this mechanism will generate the necessary incentives for mining companies to address the negative externalities that emerge from their production process.

  7. Geochemistry's vital contribution to solving water resource problems

    International Nuclear Information System (INIS)

    As part of the events celebrating 40 a of IAGC, it is fitting to trace the modern evolution and development of hydrogeochemistry. However, fascination with water quality can be traced back more than 2 ka. In the post-war years, hydrogeochemistry was influenced heavily by the advances in other disciplines including physical chemistry, metallurgy and oceanography. Hydrological applications of isotope science also developed rapidly at this time, and important advances in analytical chemistry allowed multi-element and trace element applications to be made. Experimental studies on equilibrium processes and reaction kinetics allowed bench-scale insight into water-rock interaction. Consolidation of knowledge on processes in groundwaters and the current awareness of hydrogeochemistry by water professionals owe much to the work of Robert Garrels, John Hem, and co-workers in the early 1960s. Studies of down-gradient evolution enabled a field-scale understanding of groundwater quality and geochemical processes as a function of residence time (dissolution and precipitation processes in carbonate and non-carbonate aquifers; redox processes; cation exchange and salinity origins). Emerging water resource and water quality issues in the 1960s and 70s permitted the application of hydrogeochemistry to contaminant and related problems and this trend continues. The impacts of diffuse pollution from intensive agriculture, waste disposal and point source pollution from urban and industrial sources relied on geochemistry to solve questions of origin and attenuation. In semi-arid regions facing water scarcity, geochemical approaches have been vital in the assessment of renewability and characterising palaeowaters. The protection and new incoming regulation of water resources will rely increasingly on a sound geochemical basis for management.

  8. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  9. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extraterrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtration material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removal technique. Our studies have shown a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  10. Water governance, resilience and global environmental change - a reassessment of integrated water resources management (IWRM).

    Science.gov (United States)

    Galaz, V

    2007-01-01

    Integrated Water Resource Management (IWRM) is gaining increased acceptance among water policy makers and researchers as a way to create more effective governance institutions, leading towards integrated water development solutions for poverty alleviation, while addressing social, economic and environmental aspects of water challenges. However, global environmental change poses fundamental challenges to water policy makers as it implies vast scientific, and hence, policy uncertainty; its implications for international water governance initiatives remain unspecified, effectively hindering dialogue on how current IWRM initiatives should be modified. This paper addresses the lag between our growing understanding of resilient interconnected freshwater resources (and their governance) and the reforms being promoted by policy makers. In particular, there is a need to rethink some of IWRM's key components to better tackle the challenges posed by the complex behaviour of interconnected social-ecological systems and global environmental change.

  11. Water resource taxation with full-cost water pricing: lessons from Europe

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Pizzol, Massimo

    Green fiscal reform involves removal of environmentally harmful subsidies, introduction of taxes on pollution and resource depletion as well as full-cost pricing for environmental services. One sector which traditionally has been shielded against Green Fiscal Reform is the water sector, where...... under Art. 9 that EU Member States are to introduce full-cost water pricing including pricing of the environmental and resource costs related to water service provision. With relevance for the perspective of green fiscal reform, the European Union funded research project EPIWATER has surveyed the use...... of economic instruments for water management across the European Union in a series of case studies. Employing as well ex-post as ex-ante perspectives EPI-Water offers a synthesis of experiences with pricing and allocation mechanisms in the water sectors of EU Member States that are of relevance to Green...

  12. Evaluation of Water Resource Potential in Anhui Province Based on Allocation Model

    Institute of Scientific and Technical Information of China (English)

    Zhenyu; XU; Yanlin; ZHOU

    2013-01-01

    The nature of water resources can be divided into four categories:water for life,water for agriculture,water for industry,and water for ecology.On this basis,the regional right allocation model for water resources is built,and to make the model more operable,we calculate the weight of the key factors of model(four different types of water use:life,agriculture,industry,ecology),using analytic hierarchy process(AHP).Finally,based on the amount of available water resources in Anhui Province,we evaluate the water resource potential in Anhui Province according to the principle of rational allocation.

  13. Forest Management Challenges for Sustaining Water Resources in the Anthropocene

    Directory of Open Access Journals (Sweden)

    Ge Sun

    2016-03-01

    Full Text Available The Earth has entered the Anthropocene epoch that is dominated by humans who demand unprecedented quantities of goods and services from forests. The science of forest hydrology and watershed management generated during the past century provides a basic understanding of relationships among forests and water and offers management principles that maximize the benefits of forests for people while sustaining watershed ecosystems. However, the rapid pace of changes in climate, disturbance regimes, invasive species, human population growth, and land use expected in the 21st century is likely to create substantial challenges for watershed management that may require new approaches, models, and best management practices. These challenges are likely to be complex and large scale, involving a combination of direct and indirect biophysical watershed responses, as well as socioeconomic impacts and feedbacks. We discuss the complex relationships between forests and water in a rapidly changing environment, examine the trade-offs and conflicts between water and other resources, and propose new management approaches for sustaining water resources in the Anthropocene.

  14. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    Science.gov (United States)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture

  15. Analysis of Water Resource Utilization Potential for Jiangsu Coastal Area ' in Nantong City

    Science.gov (United States)

    Ren, Li; Liu, Jin-Tao; Ni, Jian-Jun

    2015-04-01

    Along with the advance of the growth of population and social economy, requirements for water quality and quantity in coastal areas is getting higher and higher, but due to the uneven distribution of rainfall years and water exploitation, use and management level, the influence of the shortage of water resources is increasingly prominent, seriously restricting the social and economic sustainable development in this region. Accordingly, water resource utilization potential in Jiangsu coastal region is vital for water security in the region. Taking Nantong City as the study area, the regional water resources development and utilization status were evaluated. In this paper, the meaning of water resources, water resources development and utilization, and water resources development and utilization of the three stages of concepts such as system were discussed. Then the development and utilization of regional water resource evaluation were carried out, and the significance of regional society, economy, resources and environment and its development status quo of water resources were exploited. According to conditions and area source, an evaluation index system for development and utilization of water resources of Nantong was built up. The index layer was composed of 16 indicators. In this study, analytic hierarchy process (AHP) was used to determine of weights of indicators at all levels in the index system. Multistage fuzzy comprehensive evaluation model was selected to evaluate the water resources development and utilization status of Nantong, and then water resource utilization potential of Nantong was analyzed.

  16. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin)

    Science.gov (United States)

    Sallam, Osama M.

    2014-12-01

    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  17. Water resources and ecological conditions in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    SONG; Yudong(宋郁东); WANG; Ranghui(王让会); PENG; Yongsheng(彭永生)

    2002-01-01

    Temporal sequential analyses of the hydrological observational data in the Tarim Ba-sin over the last forty years revealed an annual increase of 2 × 107m3 in the water quantities at thethree headstreams of the upper courses and an annual decrease of 3 × 107m3 in the water flowfrom Alaer, which is on the upper main stream. A prediction of the trends indicates that there canbe severe situations under which intermittent water interceptions occur. By means of approximateestimations on vegetative water consumption through phreatic evaporation combined with a quotaassessment, the ecological water demands required to maintain the ecological environment in themainstream area over the three different targeted years of 2005, 2010 and 2030 are defined asstanding at 31.86× 108m3, 36.27× 108m3 and 41.04× 108m3 respectively. Ecological fragility in-dexes are established on the basis of the selection of environmental sensitivity factors. Rationalevaluations give proof that the lower reaches of the mainstream have already turned into zoneswhere their ecological environments are gravely damaged. Multi-objective optimization should beconducted and protective schemes be framed within the threshold limits of the bearing capacitiesof water resources and the environment.

  18. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    OpenAIRE

    Juan Joaquín Suárez López; Jerónimo Puertas; Jose Anta; Alfredo Jácome; José Manuel Álvarez-Campana

    2014-01-01

    The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmenta...

  19. Remote sensing applications in water resources management by the California Department of Water Resources

    Science.gov (United States)

    Brown, B.

    1975-01-01

    The possibility of applying imagery from high altitude aircraft and satellites sensors to water management in California was evaluated. Results from seven applications studies comparing the costs of using high altitude imagery for various purposes to the costs of using conventional data sources, reveal the high altitude imagery to be more cost effective in six cases and equal to conventional data sources in one case. These results also reveal that the imagery provides a level of quality not generally achievable with uncorrected conventional imagery. Although satellite application studies are not yet complete, preliminary results indicate that some definite possibilities exist for employing satellite imagery on an operational basis within the next few years.

  20. Water Resource Inventory and Assessment (WRIA): Erwin National Fish Hatchery, Unicoi County, Tennessee

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Resource Inventory and Assessment (WRIA) for Erwin National Fish Hatchery (NFH) summarizes available and relevant information for hatchery water resources...

  1. Water Resource Inventory and Assessment (WRIA) - Great River NWR and Clarence Cannon NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report describes current hydrologic information, provides an assessment of water resource needs and...

  2. Integrating science, policy and stakeholder perspectives for water resource management

    Science.gov (United States)

    Barbour, Emily; Allan, Andrew; Whitehead, Paul; Salehin, Mashfiqus; Lazzar, Attila; Lim, Michelle; Munsur Rahman, Md.

    2015-04-01

    Successful management of water resources requires an integrated approach considering the complex relationships between different biophysical processes, governance frameworks and socio-economic factors. The Ecosystem Services for Poverty Alleviation (ESPA) Deltas project has developed a range of socio-economic scenarios using a participatory approach, and applied these across different biophysical models as well as an integrated environmental, socio-economic model of the Ganges-Brahmaputra-Meghna (GBM) Delta. This work demonstrates a novel approach through the consideration of multiple ecosystem services and related socio-economic factors in the development of scenarios; the application of these to multiple models at multiple scales; and the participatory approach to improve project outcomes and engage national level stakeholders and policy makers. Scenarios can assist in planning for an uncertain future through exploring plausible alternatives. To adequately assess the potential impacts of future changes and management strategies on water resources, the wider biophysical, socio-economic and governance context needs to be considered. A series of stakeholder workshops have been held in Bangladesh to identify issues of main concern relating to the GBM Delta; to iteratively develop scenario narratives for business as usual, less sustainable, and more sustainable development pathways; and to translate these qualitative scenarios into a quantitative form suitable for analysis. The combined impact of these scenarios and climate change on water quantity and quality within the GBM Basin are demonstrated. Results suggest that climate change is likely to impact on both peak and low flows to a greater extent than most socio-economic changes. However, the diversion of water from the Ganges and Brahmaputra has the potential to significantly impact on water availability in Bangladesh depending on the timing and quantity of diversions. Both climate change and socio

  3. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  4. Pakistan's water resources development and the global perspective

    International Nuclear Information System (INIS)

    Pakistan's economy is dependent on irrigated agriculture. About 80% of agriculture is irrigated. It contributes 30% of GDP. Agriculture provides 55% job opportunities. This sector provides 60% of country's exports. The development of agriculture will prosper and up-lift 70% of the total population that is annually growing by 3%. The total area of Pakistan is 197.7 MA (79.6 Mha). Out of which about 103.2 MA (41.77 Mha) comprises of rugged mountains, narrow valleys and foot hills, the remaining area of 93.5 MA (37.83 Mha) consists about 54.6 MA (22.1 Mha) is currently cultivated. Remaining 22.5 MA (9.1 Mha) is lying barren lacking water for irrigation. The total surface water availability is 154.5 MAF. Population density is the highest in the canal irrigated areas in the north east of Indus Plains. The increasing population and the associated social, technical and economic activities all depend, directly or indirectly, on the exploitation of water-as a resource. The total surface water availability is 154.5 MAF. Presently water diverted at canal heads is 106 MAF. In Vision 2025 Programme WAPDA has identified to build water sector and hydropower projects such as: i) Water Sector Projects (Gomal Zam, Mirani, Raised Mangla, Satpara. Kurram Tangi Dams and Greater Thai, Kachhi and Rainee Canals) and ii) Hydropower Projects (Jinnah Barrage, Allai Khwar, Khan Khwar, Duber Khwar, Golen Gole, Neelum Jhelum and Low Head Hydropower Project). Besides the above some more projects are under various stages of planning i.e.; (i) Basha Diamer Dam Project - Feasibility Detailed Design and Tenders, (ii) Akhori Dam Project - Feasibility, (iii) Sehwan Barrage - Feasibility. (iv) Chashma Right Bank Canal Lift Scheme Feasibility and Design, (v) Bunji Hydropower Project Pre-feasibility, (vi) Dasu Hydropower Project - Pre-feasibility and Skardu Dam - Prefeasibility. While, keeping in view the planning and development activities regarding water sector and hydropower projects, the country will

  5. Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

    OpenAIRE

    Altenburger, R; Ait-Aissa, S; Antczak, P; Backhaus, T.; Barceló, D; Seiler, T-B; Brion, F.; W. Busch; Chipman, K; de Alda, ML; de Aragão Umbuzeiro, G; Escher, BI; Falciani, F; Faust, M; Focks, A

    2015-01-01

    Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse b...

  6. Economic incentives for water resource management in the Pak Phanang river basin of southern Thailand

    OpenAIRE

    Janekarnkij, P.

    1995-01-01

    The study examines the existing water allocation methods and other policies that provide constraints or incentives for the most efficient use of water resources. Given the production condition of the local people, and the technical and physical attributes of water resources, the principal hypothesis of this study is that the benefits obtained from fresh water resources in the study area can be improved through better resource management.

  7. Saltwater Intrusion: Climate change mitigation or just water resources management?

    Science.gov (United States)

    Ferguson, G. A.; Gleeson, T.

    2011-12-01

    Climate change and population growth are expected to substantially increase the vulnerability of global water resources throughout the 21st century. Coastal groundwater systems are a nexus of the world's changing oceanic and hydrologic systems and a critical resource for the over one billion people living in coastal areas as well as for terrestrial and offshore ecosystems. Synthesis studies and detailed simulations predict that rising sea levels could negatively impact coastal aquifers by causing saltwater to intrude landward within coastal aquifers or by saltwater inundation of coastal regions. Saltwater intrusion caused by excessive extraction is already impacting entire island nations and globally in diverse regions such as Nile River delta in Egypt, Queensland, Australia and Long Island, USA. However, the vulnerability of coastal aquifers to sea level rise and excessive extraction has not been systematically compared. Here we show that coastal aquifers are much more vulnerable to groundwater extraction than predicted sea level rise in wide-ranging hydrogeologic conditions and population densities. Low lying areas with small hydraulic gradients are more sensitive to climate change but a review of existing coastal aquifer indicates that saltwater intrusion problems are more likely to arise where water demand is high. No cases studies were found linking saltwater intrusion to sea level rise during the past century. Humans are a key driver in the hydrology of coastal aquifers and that adapting to sea level rise at the expense of better water management is misguided.

  8. North Slope Decision Support for Water Resource Planning and Management

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  9. Case Studies on Coastal Wetlands and Water Resources in Nigeria

    Directory of Open Access Journals (Sweden)

    H.O Nwankwoala

    2012-06-01

    Full Text Available Wetlands play a very important role in the sustenance of both the surface andgroundwater resources of the country. It is sad to observe that the country is fast losingher wetlands, as the rich wetlands are being seriously threatened by a number ofanthropogenic and biophysical factors. Some of the notable human actions includepopulation pressure, rapid urbanization, mining, oil and industrial waste pollution,overgrazing, logging, dam construction, transportation routes and other physicalinfrastructure. Others factors are uncontrolled tilling for crop production andunprecedented/unregulated land reclamation. Subsidence, saltwater intrusion, sandstorm, desertification and droughts, invasion by alien floral and faunal species as well asmarine and coastal erosion are natural threats to wetlands in Nigeria. Wetlandsdestruction affects negatively water supply and water resources management. This studyexamines in great detail the fate of wetlands in the face of climate change andrecommends that efforts should be made to accurately document the country’s wetland.The paper therefore suggested sustainable options for wetlands and water resourcesmanagement in Nigeria. This, the paper opined, can be done through the strengtheningof wetlands preservation and conservation regulation, mitigating the effects of climatechange as well as the development of deliberate restoration programmes and policiesaimed at sustaining degraded wetlands in Nigeria.

  10. "拓展亚洲国际河流跨境水与生态安全合作"国际学术研讨会在大理召开%International Workshop on "Expanding Trans-boundary Cooperation for Water and Environment Security in Asia's International Rivers"

    Institute of Scientific and Technical Information of China (English)

    Katri Makkonen; 赵歆

    2006-01-01

    @@ The International Workshop on "Expanding Transboundary Cooperation for Water and Environment Security in Asia's International Rivers" was held on December 10-14, 2005, Dali, Yunnan, China. It was organized by Tsinghua University, the World Bank Institute (WBI), the United Nations University (UNU) and Asian International Rivers Center (AIRC). A total of over 60 scholars from the USA, Canada, Australia, Finland, Japan, Thailand, Vietnam, Laos, India, Sri Lanka, Iran and China participated in this workshop. The topics include seeking reasonable utilization and sustainable conflict resolutions related to transboundary water resources, and transboundary eco-security maintenance; expanding cooperation between Asia and the rest of the world on international river issues, identifying potential opportunities; and possibility of a common research agenda for addressing environment changes in Mekong River Basin.

  11. AHP Comprehensive Evaluation on Sustainable Utilization of Water Resources in Hengshui City, China

    Institute of Scientific and Technical Information of China (English)

    潘峰; 赵林

    2015-01-01

    In order to investigate the sustainable utilization of water resources in Hengshui City, quantitative analysis and comprehensive evaluation on 15 indexes of Hengshui City, such as the perspectives of social and economic devel-opment condition, water resource condition, environment condition, development and utilization of water resources, were conducted by using the analytic hierarchy process(AHP) method from 2004 to 2008. Although the sustainable utilization has been growing from 2004 to 2008, the situation and environment of water resources were not optimistic because of the severe water shortage in Hengshui. In the future, improving the supply capacity is the key target for promoting sustainable utilization of water resources.

  12. Assuming too much? Participatory water resource governance in South Africa.

    Science.gov (United States)

    Brown, Julia

    2011-01-01

    This paper argues that participation in natural resource management, which is often coupled with moves for more local ownership of decision making, is based on three sets of assumptions: about the role of the state, the universality of application of such approaches and the transformatory potential of institutional reform. The validity of these assumptions requires investigation in view of the rapid institutionalisation and scaling-up of participatory approaches, particularly in developing country contexts. Post-apartheid South Africa is widely recognised as a pioneer of participatory and devolutionary approaches, particularly in the field of water resources. It is 12 years since the promulgation of the forward-thinking 1998 National Water Act, and thus an opportune moment to reflect on South Africa's experiences of participatory governance. Drawing on empirical research covering the establishment of the first Catchment Management Agency, and the transformation of existing Irrigation Boards into more inclusive Water User Associations in the Inkomati Water Management Area, it emerges that there may be fundamental weaknesses in the participatory model and underlying assumptions, and indeed such approaches may actually reinforce inequitable outcomes: the legacy of long-established institutional frameworks and powerful actors therein continues to exert influence in post-apartheid South Africa, and has the potential to subvert the democratic and redistributive potential of the water reforms. It is argued that a reassessment of the role of the state is necessary: where there is extreme heterogeneity in challenging catchments more, rather than less, state intervention may be required to uphold the interests of marginalised groups and effect redistribution.

  13. Ethiopia's national strategy for improving water resources management

    International Nuclear Information System (INIS)

    Full text: Ethiopia's current approach to assessing and managing water resources, including geothermal, assigns very high priority to the use of isotope hydrology. Incorporation of this technology into government planning began with a few activities, in local groundwater assessment and in geothermal studies, kicked off by a 1993 National Isotope Hydrology Training Workshop that the IAEA helped arrange. The first results of isotope studies were useful in characterizing the Aluto Geothermal Field, where a 7.2 MW(e) power plant was later built with support from the UNDP and the EEC. And the Government is now hoping to introduce isotope techniques to improve utilization of the field. Isotope hydrology has successfully aided attempts to better understand ground water occurrence, flow and quality problems in arid regions of Ethiopia. These efforts are continuing through studies in the Dire Dawa, Mekelle and Afar regions. Rising water levels in Lake Beseka are threatening to submerge vital rail and highway links. Isotope hydrology made a unique contribution to understanding the surface and subsurface factors responsible, leading to an engineering plan for mitigating the problem. The Government has allocated substantial funding and construction work has begun. A similar success story is emerging at Awassa Lake, where isotope hydrology is proving a very useful complement to conventional techniques. Another promising application of isotope hydrology is taking place as part of the Akaki Groundwater Study near Addis Ababa. Preliminary isotopic results indicate that earlier conclusions based on conventional techniques may have to be revised. If so, there will be significant implications for the exploitation and management strategy of the resource. Based on these encouraging results, the Government is proceeding with the preparation of a project document for the Ethiopian Groundwater Resource Assessment Programme. With the assistance of the IAEA, the U.S. Geological Survey

  14. Multiunit water resource systems management by decomposition, optimization and emulated evolution.

    NARCIS (Netherlands)

    Milutin, D.

    1998-01-01

    Being one of the essential elements of almost any water resource system, reservoirs are indispensable in our struggle to harness, utilize and manage natural water resources. Consequently, the derivation of appropriate reservoir operating strategies draws significant attention in water resources plan

  15. 76 FR 71070 - Draft Programmatic Environmental Impact Statement for the Integrated Water Resource Management...

    Science.gov (United States)

    2011-11-16

    ... Environmental Impact Statement (FEIS) for the Yakima River Basin Integrated Water Resource Management Alternative in June 2009 under SEPA. The Integrated Water Resource Management Alternative evaluated in the... Integrated Water Resource Management Plan based on the following elements: 1. Fish Passage (fish......

  16. 76 FR 8722 - California Department of Water Resources; Notice of Application Accepted for Filing, Soliciting...

    Science.gov (United States)

    2011-02-15

    ... Energy Regulatory Commission California Department of Water Resources; Notice of Application Accepted for.... Applicant: California Department of Water Resources (DWR). e. Name of Project: Feather River Hydroelectric... of Water Resources, licensee for the Feather River Hydroelectric Project, has filed a request...

  17. 76 FR 50494 - Water Resources Management Plan/Environmental Impact Statement, Mojave National Preserve, San...

    Science.gov (United States)

    2011-08-15

    ... National Park Service Water Resources Management Plan/Environmental Impact Statement, Mojave National... Scoping Period for Water Resources Management Plan/Environmental Impact Statement for Mojave National... National Park Service is preparing a Water Resources Management Plan/Environmental Impact Statement...

  18. 78 FR 67393 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-11-12

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal...

  19. 76 FR 73674 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2011-11-29

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal...

  20. 78 FR 23288 - Proposed Information Collection: State Water Resources Research Institute Program; Annual...

    Science.gov (United States)

    2013-04-18

    ... Geological Survey Proposed Information Collection: State Water Resources Research Institute Program; Annual... collection (IC) to renew approval of the paperwork requirements for ``National Institutes for Water Resources...: eagreene@usgs.gov . SUPPLEMENTARY INFORMATION: I. Abstract The Water Resources Research Act of 1984,...

  1. 78 FR 16706 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-03-18

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal...

  2. 75 FR 8106 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2010-02-23

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal...

  3. Using FRAMES to Manage Environmental and Water Resources

    International Nuclear Information System (INIS)

    The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) is decision-support middleware that provides users the ability to design software solutions for complex problems. It is a software platform that provides seamless and transparent communication between modeling components by using a multi-thematic approach to provide a flexible and holistic understanding of how environmental factors potentially affect humans and the environment. It incorporates disparate components (e.g., models, databases, and other frameworks) that integrate across scientific disciplines, allowing for tailored solutions to specific activities. This paper discusses one example application of FRAMES, where several commercial off-the-shelf (COTS) software products are seamlessly linked into a planning and decision-support tool that helps manage water-based emergency situations and sustainable response. Multiple COTS models, including three surface water models, and a number of databases are linked through FRAMES to assess the impact of three asymmetric and simultaneous events, two of which impact water resources. The asymmetric events include (1) an unconventional radioactive release into a large potable water body, (2) a conventional contaminant (oil) release into navigable waters, and (3) an instantaneous atmospheric radioactive release

  4. Water resources transfers through southern African food trade: resource efficiency and climate adaptation

    Science.gov (United States)

    Dalin, Carole; Conway, Declan

    2015-04-01

    The connections between climate and the water-food nexus are strong and economically significant in southern Africa, yet the role of observed climate variability as a driver of production fluctuations is poorly understood. In addition, as regional collaboration strengthens through the SADC (Southern Africa Development Community) and trade with other regions increases, it is important to understand both how climate variability affects productivity and how intra- and extra-regional trade can contribute to the region's capacity to deal with climate-related productivity shocks. We use international food trade data (FAOSTAT) and a global hydrological model (H08) to quantify the water resources embedded in international food trade across southern Africa and with the rest of the world, from 1986-2011. We analyze the impacts of socio-economic, political and climatic changes on agricultural trade and embedded water resources during that period. In particular, the effects of climate variability on trade flows and crop yields are estimated, to provide insights on the potential of trade as a collaborative adaptation mechanism.

  5. Complexity vs. Simplicity: Tradeoffs in Integrated Water Resources Models

    Science.gov (United States)

    Gonda, J.; Elshorbagy, A. A.; Wheater, H. S.; Razavi, S.

    2014-12-01

    Integrated Water Resources Management is an interdisciplinary approach to managing water. Integration often involves linking hydrologic processes with socio-economic development. When implemented through a simulation or optimization model, complexities arise. This complexity is due to the large data requirements, making it difficult to implement by the end users. Not only is computational efficiency at stake, but it becomes cumbersome to future model users. To overcome this issue the model may be simplified through emulation, at the expense of information loss. Herein lies a tradeoff: Complexity involved in an accurate, detailed model versus the transparency and saliency of a simplified model. This presentation examines the role of model emulation towards simplifying a water allocation model. The case study is located in Southern Alberta, Canada. Water here is allocated between agricultural, municipal, environmental and energy sectors. Currently, water allocation is modeled through a detailed optimization model, WRMM. Although WRMM can allocate water on a priority basis, it lacks the simplicity needed by the end user. The proposed System Dynamics-based model, SWAMP 2.0, emulates this optimization model, utilizing two scales of complexity. A regional scale spatially aggregates individual components, reducing the complexity of the original model. A local scale retains the original detail, and is contained within the regional scale. This two tiered emulation presents relevant spatial scales to water managers, who may not be interested in all the details of WRMM. By evaluating the accuracy of SWAMP 2.0 against the original allocation model, the tradeoff of accuracy for simplicity can be further realized.

  6. Evaluation of water resources in part of central Texas

    International Nuclear Information System (INIS)

    Water resources in the Brazos, Red, Colorado, and Trinity River basins, in central Texas, were evaluated. In 1985 there was a little less than 81,000 acre-ft of groundwater pumped from all aquifers in the study area, with a little less than 77,000 acre-ft of groundwater pumped from the Trinity Group aquifer. Irrigation accounted for about 56% of all groundwater pumped. A serious problem associated with the development of groundwater from the Trinity Group aquifer is the decline of artesian pressure in areas of large groundwater withdrawals. Degradation of groundwater within the Antlers and Travis Peak Formations from oil-field brines and organic material are problems in several counties. The deterioration of water qualify for the City of Blum has occurred over a 26-year period and is associated with water level declines in the Hensell Member of the Travis Peak Formation. The Woodbine Group yields good quality water at or near the outcrop; however, the residual sodium carbonate and percent sodium limits its use for irrigation, while high iron and fluoride content restricts its use for public supply. Existing surface reservoirs in the study area alone can supply 296,400 acre-ft of water under 2010 conditions. Nearly all of this water is either currently owned or under contract to supply current and future needs. An additional 176,000 acre-ft of surface water could become available with the development of the proposed Lake Bosque and Paluxy Reservoir projects and with reallocation of storage in existing Lakes Waco and Whitney. The amount of groundwater currently pumped exceeds the estimated annual effective recharge to the Trinity Group aquifer; the groundwater supply for the area will continue to be drawn from storage within the aquifer. 84 refs., 21 figs., 3 tabs

  7. Evaluation of water resource economics within the Pasco Basin, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Leaming, G F

    1981-09-30

    The Columbia River basalt beneath the Hanford Site in south-central Washington is being considered for possible use as a terminal repository medium for high-level nuclear waste. Such underground storage would require that the facility be contiguous to at least a portion of the ambient groundwater system of the Pasco Basin. This report attempts to evaluate the economic factors and conditions related to the water resources of the Pasco Basin and the probable economic effects associated with selected hypothetical changes in local water demand and supply as a basis for eventual selection of credible water supply alternatives and more detailed analyses of the consequences of such alternative selection. It is most likely that total demand for water for consumptive uses in the Pasco Basin will increase from nearly 2.0 million acre-feet per year in 1980 to almost 2.8 million acre-feet in 2010, with total demand slightly more than 3.6 million acre-feet per year in 2080. The Columbia River and other surface streams constitute the source of more than 99 percent of the water available each year for all uses, both consumptive and non-consumptive, in the Pasco Basin. It is estimated that pumped groundwater accounted for 3 percent of the value of all water supplied to consumers of water in the Pasco Basin in 1980. Groundwater's share of the total cost is proportionately higher than groundwater's share of total use because it is generally more costly to acquire than is surface water and the value of water is considered equivalent to its cost of acquisition. Because groundwater represents such a small part of the total water supply and demand within the Pasco Basin, it is concluded that if the development of a nuclear waste repository on the Hanford Site were to result in changes in the groundwater supply during the next 100 years, the economic impact on the overall water supply picture for the entire basin would be insignificant.

  8. Evaluation of water resource economics within the Pasco Basin, Washington

    International Nuclear Information System (INIS)

    The Columbia River basalt beneath the Hanford Site in south-central Washington is being considered for possible use as a terminal repository medium for high-level nuclear waste. Such underground storage would require that the facility be contiguous to at least a portion of the ambient groundwater system of the Pasco Basin. This report attempts to evaluate the economic factors and conditions related to the water resources of the Pasco Basin and the probable economic effects associated with selected hypothetical changes in local water demand and supply as a basis for eventual selection of credible water supply alternatives and more detailed analyses of the consequences of such alternative selection. It is most likely that total demand for water for consumptive uses in the Pasco Basin will increase from nearly 2.0 million acre-feet per year in 1980 to almost 2.8 million acre-feet in 2010, with total demand slightly more than 3.6 million acre-feet per year in 2080. The Columbia River and other surface streams constitute the source of more than 99 percent of the water available each year for all uses, both consumptive and non-consumptive, in the Pasco Basin. It is estimated that pumped groundwater accounted for 3 percent of the value of all water supplied to consumers of water in the Pasco Basin in 1980. Groundwater's share of the total cost is proportionately higher than groundwater's share of total use because it is generally more costly to acquire than is surface water and the value of water is considered equivalent to its cost of acquisition. Because groundwater represents such a small part of the total water supply and demand within the Pasco Basin, it is concluded that if the development of a nuclear waste repository on the Hanford Site were to result in changes in the groundwater supply during the next 100 years, the economic impact on the overall water supply picture for the entire basin would be insignificant

  9. NASA Tools for Climate Impacts on Water Resources

    Science.gov (United States)

    Toll, David; Doorn, Brad

    2010-01-01

    Climate and environmental change are expected to fundamentally alter the nation's hydrological cycle and water availability. Satellites provide global or near-global coverage using instruments, allowing for consistent, well-calibrated, and equivalent-quality data of the Earth system. A major goal for NASA climate and environmental change research is to create multi-instrument data sets to span the multi-decadal time scales of climate change and to combine these data with those from modeling and surface-based observing systems to improve process understanding and predictions. NASA and Earth science data and analyses will ultimately enable more accurate climate prediction, and characterization of uncertainties. NASA's Applied Sciences Program works with other groups, including other federal agencies, to transition demonstrated observational capabilities to operational capabilities. A summary of some of NASA tools for improved water resources management will be presented.

  10. Water, stakeholders and common ground : challenges for multi-stakeholder platforms in water resource management in South Africa

    OpenAIRE

    Simpungwe, E.

    2006-01-01

    There is a growing global concern about future water supplies. Growing demands from agriculture, industry and urban growth are streching available water supplies while pollution is undermining the quality of the resource base. Physical data available indicate that in South Africa, full utilisation of water resources has been reached and even exceeded in many parts of the country. Now looming is the complete depletion of the overall conventional water resources of the country, which is likely ...

  11. Local Wisdom of Osing People in Conserving Water Resources

    Directory of Open Access Journals (Sweden)

    Sumarmi Sumarmi

    2015-03-01

    Full Text Available Each tribe in Indonesia has certain local wisdom to conserve their environment, including managing water resources. The purpose of this research is to identify the local wisdom of Osing people in conserving water resources in Kemiren, Glagah Sub-District, Banyuwangi. This research uses descriptive qualitative method. The data are taken through interview, observation and documentation. The local wisdom of Osing people in managing water resources involves knowledge, values, moral and ethics, and norms, which are applied in forms of suggestions, rules and sanctions, and also old sayings as a guideline for them to behave and act in maintaining, keeping and conserving Mbah Buyut Citi water spring. To keep a constant flow of water debit, they protect trees and plants around the spring (belik, both belik lanang and belik wadon. In maintaining this local culture, the older generations pass on the values, moral, ethics, and norms including Islamic norms (most of them are Moslem as the guidelines on how to behave and act in practicing the traditions and instincts for respecting the environment to their family, neighbours, relatives and children-grandchildren.Masing-masing suku di Indonesia memiliki kearifan lokal tertentu untuk melestarikan lingkungan mereka, termasuk kearifan untuk mengelola sumber daya air. Tujuan dari penelitian ini adalah untuk mengidentifikasi kearifan lokal masyarakat Osing dalam melestarikan sumber daya air di Kemiren, Kecamatan Glagah, Banyuwangi. Penelitian ini menggunakan metode deskriptif kualitatif. Data diambil melalui wawancara, observasi dan dokumentasi. Kearifan lokal masyarakat Osing dalam mengelola sumber daya air meliputi pengetahuan, nilai-nilai, moral dan etika, dan norma-norma yang diterapkan dalam bentuk saran, aturan dan sanksi, serta kata-kata bijak sebagai pedoman bagi mereka untuk bersikap dan bertindak dalam menjaga, menjaga dan melestarikan mata air Mbah Buyut Citi. Untuk menjaga aliran konstan debit air

  12. Global change and water resources in the next 100 years

    Science.gov (United States)

    Larsen, M. C.; Hirsch, R. M.

    2010-03-01

    We are in the midst of a continental-scale, multi-year experiment in the United States, in which we have not defined our testable hypotheses or set the duration and scope of the experiment, which poses major water-resources challenges for the 21st century. What are we doing? We are expanding population at three times the national growth rate in our most water-scarce region, the southwestern United States, where water stress is already great and modeling predicts decreased streamflow by the middle of this century. We are expanding irrigated agriculture from the west into the east, particularly to the southeastern states, where increased competition for ground and surface water has urban, agricultural, and environmental interests at odds, and increasingly, in court. We are expanding our consumption of pharmaceutical and personal care products to historic high levels and disposing them in surface and groundwater, through sewage treatment plants and individual septic systems. These substances are now detectable at very low concentrations and we have documented significant effects on aquatic species, particularly on fish reproduction function. We don’t yet know what effects on human health may emerge, nor do we know if we need to make large investments in water treatment systems, which were not designed to remove these substances. These are a few examples of our national-scale experiment. In addition to these water resources challenges, over which we have some control, climate change models indicate that precipitation and streamflow patterns will change in coming decades, with western mid-latitude North America generally drier. We have already documented trends in more rain and less snow in western mountains. This has large implications for water supply and storage, and groundwater recharge. We have documented earlier snowmelt peak spring runoff in northeastern and northwestern States, and western montane regions. Peak runoff is now about two weeks earlier than it was

  13. Selecting downscaled climate projections for water resource impacts and adaptation

    Science.gov (United States)

    Vidal, Jean-Philippe; Hingray, Benoît

    2015-04-01

    Increasingly large ensembles of global and regional climate projections are being produced and delivered to the climate impact community. However, such an enormous amount of information can hardly been dealt with by some impact models due to computational constraints. Strategies for transparently selecting climate projections are therefore urgently needed for informing small-scale impact and adaptation studies and preventing potential pitfalls in interpreting ensemble results from impact models. This work proposes results from a selection approach implemented for an integrated water resource impact and adaptation study in the Durance river basin (Southern French Alps). A large ensemble of 3000 daily transient gridded climate projections was made available for this study. It was built from different runs of 4 ENSEMBLES Stream2 GCMs, statistically downscaled by 3 probabilistic methods based on the K-nearest neighbours resampling approach (Lafaysse et al., 2014). The selection approach considered here exemplifies one of the multiple possible approaches described in a framework for identifying tailored subsets of climate projections for impact and adaptation studies proposed by Vidal & Hingray (2014). It was chosen based on the specificities of both the study objectives and the characteristics of the projection dataset. This selection approach aims at propagating as far as possible the relative contributions of the four different sources of uncertainties considered, namely GCM structure, large-scale natural variability, structure of the downscaling method, and catchment-scale natural variability. Moreover, it took the form of a hierarchical structure to deal with the specific constraints of several types of impact models (hydrological models, irrigation demand models and reservoir management models). The implemented 3-layer selection approach is therefore mainly based on conditioned Latin Hypercube sampling (Christierson et al., 2012). The choice of conditioning

  14. Water Electrolysis for In-Situ Resource Utilization (ISRU)

    Science.gov (United States)

    Lee, Kristopher A.

    2016-01-01

    Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.

  15. The Developing on Awareness of Water Resources Management of Grade 6 Students in Namphong Sub-Basin

    Science.gov (United States)

    Seehamat, Lumyai; Sanrattana, Unchalee; Tungkasamit, Angkana

    2016-01-01

    Awareness of water resources management is expression behavior as receive, response, valuing, and organization. Water resources is an important for everyone in the world and the recently water resources are be risky as lack of water, waste water, and blooding. The development on awareness of water resources management for grade 6 students is very…

  16. The dynamic relationship between property rights, water resource management and poverty in the Lake Victoria Basin.

    OpenAIRE

    Orindi, V.; Huggins, C.

    2005-01-01

    This review aims to synthesize information on the dynamic relationships between property rights to land and natural resources, water resource management and poverty in the Lake Victoria Basin of East Africa. It focuses on the way in which water management systems, under the conceptual umbrella of Integrated Water Resources Management (IWRM), address customary claims to land and water. The water sector in all the three countries is being reformed, decentralized and liberalized to improve effic...

  17. The role of United Nations Educational, Scientific and Cultural Organization-International Hydro-logical Programme in sustainable water resources management in East Asian countries%联合国教科文组织国际水文计划项目在东亚可持续水资源管理中的作用

    Institute of Scientific and Technical Information of China (English)

    段小丽; 刘可

    2009-01-01

    For over 30 years, IHP (International Hydrological Programme) has been actively operating as a UNESCO's (United Nations Educational, Scientific and Cultural Organization) international scientific cooperative programme in water research, water resources manage- ment, education and capacity-building, and the only broadly-based science programme of the UN (United Nations) system in this region. By a number of initiatives and networks, the IHP has progressively carried out activities on the quantity and quality of global/regional wate resources, transboundary water resources management, mitigation of water related hazard, and water education. While addressing comprehensive areas over water challenges, greater emphasis has been placed on the role of water resources management for sustainable de- velopment and with respect to the expected changes in climate and environmental conditions. WWAP (World Water Assessment Programme) and its major product WWDR (World Water Development Report) in East Asia are under the framework of IHP which supports field ori- ented activities on monitoring freshwater, developing case studies, enhancing national as- sessment capacity, and facilitating decision making processes. In light of transboundary wa- ters in IHP, RSC (Regional Steering Committee) plays a focal role for facilitating regional cooperation in the Southeast and East Asia and Pacific States. Furthermore, ISI (International Sediment Initiative) and IFI (International Flood Initiative) have significant roles, respectively, for the management of erosion and sedimentation in line with river system or reservoir man- agement, and for the flood management focusing on capacity building of each country in East Asia. There are other major areas of concern under UNESCO's IHP programme in East Asia, specifically in aspects including, mitigating water conflicts on transboundary aquifers through ISARM (International Shared Aquifer Resources Management), water management of arid areas

  18. Are shale gas exploitation and water resources security compatible?

    International Nuclear Information System (INIS)

    Shale gas- or more precisely gas from source rock- is a potential resource, diffused and largely distributed. The exploitation of non-conventional hydrocarbons raises issues even if most techniques are well known and properly controlled: drilling, casing cementing, the development of natural rock discontinuities for gas or oil production. The most worrying repercussions will be on the surface: multiple boreholes, usage conflicts, linear production infrastructures, access paths and safety of aging constructions. The potential impacts on groundwater at the depth it is traditionally exploited are more indirect than direct. The impacts in depth will be presumably less threatening due to a lack of elements at stake. The cost of projects at such a depth will impose to combine exploration and experimentation in real size. The potential resource is only known through the American administration's indirect and approximate assessment: France would appear to be the second country (after Poland) with the largest quantity in Europe. France must engage in producing its own assessment. The 'code for mines' yet referred to is no more adapted for non-conventional resources, thus minimizing the WFD objectives, the French law on water and the code for the environment, without involving the stake holders. Recently, the administration decided to ban the hydraulic fracturing technique, though in practice since a long time, thus penalizing a professional branch. Policies, regulation, communication, decision process, validation of techniques and security checks on works should be improved. (author)

  19. Enclosed waters : property rights, technology and ecology in the management of water resources in Palakkad, Kerala

    OpenAIRE

    Krishnan, J.

    2007-01-01

    This thesis is an enquiry into the persistent problem of water scarcity in the paddy growing regions in the southeastern part of Palakkad district, in the state of Kerala, in South India. It views the problem of scarcity as an outcome of the existing unsustainable and inequitable mode of water resources management and distribution. It therefore places the problem of scarcity in the particular irrigation and agricultural context of Kerala. Following the introductory chapter and the discussion ...

  20. Impacts of climate change on water resources and agriculture

    International Nuclear Information System (INIS)

    The changes in climate projected to result from increasing concentrations of greenhouse gases will lead to impacts on important resources, including agriculture, fresh water, natural ecosystems, and coastal developments. A growing body of climate impact research already suggests that important effects will be felt in all countries, sometimes in severe and dramatic ways. This chapter focuses on the potential impacts of changes in climate on water resources and agriculture in the US and the Soviet Union, although many other impacts will also occur. These other effects include a rising sea level that will threaten coastal regions and natural ecosystems; altered productivity of ocean and freshwater fisheries as a result of changes in temperatures, ocean currents, and nutrient flows; worsened urban air quality if rising temperatures increase the formation of low-level ozone; forest migration and diebacks, increased pest outbreaks, and greater frequency of fires; and more frequent and more intense storms. Better understanding of potential impacts, and the consequences of the relatively rapid rate at which they may occur, requires intensified efforts