WorldWideScience

Sample records for asia water resources

  1. Water resources and multilateral security organisations in Central Asia

    OpenAIRE

    Miguel Ángel Pérez Martín

    2013-01-01

    At present, Central Asia faces serious conflicts over water management, most of them of a transnational nature: humanitarian crises, droughts, floods, pollution, ethnic problems, nepotism and corruption in the allocation of water resources, etc. In July 2010 the United Nations declared access to water and sanitation to be a human right, with the aim of resolving or mitigating such conflicts. In this region, there are several multilateral security organizations which for over two decades have ...

  2. South Asia Water Resources Workshop: An effort to promote water quality data sharing in South Asia

    Energy Technology Data Exchange (ETDEWEB)

    RAJEN,GAURAV; BIRINGER,KENT L.; BETSILL,J. DAVID

    2000-04-01

    To promote cooperation in South Asia on environmental research, an international working group comprised of participants from Bangladesh, India, Nepal, Pakistan, Sri Lanka, and the US convened at the Soaltee Hotel in Kathmandu, Nepal, September 12 to 14, 1999. The workshop was sponsored in part by the Cooperative Monitoring Center (CMC) at Sandia National Laboratories in Albuquerque, New Mexico, through funding provided by the Department of Energy (DOE) Office of Nonproliferation and National Security. The CMC promotes collaborations among scientists and researchers in regions throughout the world as a means of achieving common regional security objectives. In the long term, the workshop organizers and participants are interested in the significance of regional information sharing as a means to build confidence and reduce conflict. The intermediate interests of the group focus on activities that might eventually foster regional management of some aspects of water resources utilization. The immediate purpose of the workshop was to begin the implementation phase of a project to collect and share water quality information at a number of river and coastal estuary locations throughout the region. The workshop participants achieved four objectives: (1) gaining a better understanding of the partner organizations involved; (2) garnering the support of existing regional organizations promoting environmental cooperation in South Asia; (3) identifying sites within the region at which data is to be collected; and (4) instituting a data and information collection and sharing process.

  3. Some aspects of integrated water resources management in central Asia

    Science.gov (United States)

    Khaydarova, V.; Penkova, N.; Pak, E.; Poberejsky, L.; Beltrao, J.

    2003-04-01

    Two main tasks are to be implemented for elaboration of the governmental water distribution criteria in Central Asia: 1 -development of the common methodological basis for the intergovernmental water distribution; and 2 - to reopen and continue both theoretical and experimental researches of various aspects of the wastewater reuse. The prospects of socio economic development of all Central Asian countries are substantially defined by the water resources availability. The water resources of Central Asia belong, mainly, watersheds of the Syr-Darya and Amu Darya rivers. The basic flow of Amu Darya is formed in territory of Tajikistan. Then the Amu Darya river proceeds along border of Afghanistan with Uzbekistan, crosses Turkmenistan and again comes back to Uzbekistan and then runs into the Aral Sea. The Syr-Darya is second river on the water discharge and is first river on length in Central Asia. The basic flow of Syr Darya is formed in territory of Kyrgyzstan. Then the Syr-Darya river crosses of Uzbekistan and Tajikistan and runs into the Aral Sea in territory of Kazakhstan. During the Soviet Union the water resources of two river watersheds were divided among the Central Asian republics on the basis of the general plans developed by the center in Moscow. In the beginning of 90s years, after taking of sovereignty by the former Soviet republics, the unified control system of water resources management was abolished and the various approaches to its transformation caused by features of the national economy developing, elected models of transition from command to market mechanisms of economic activity, and also specificity of political and social processes in each of the states of region were planned. The distinctions of modern priorities of economic development of the states of region have generated the contradiction of interests in the intergovernmental water distribution that can in the long term become complicated even more in connection with the increasing of water

  4. EU-Russia Relations Regarding Water Resources in Central Asia

    Directory of Open Access Journals (Sweden)

    Anastasia Likhacheva

    2014-05-01

    Full Text Available In Central Asia, the water deficit and water-energy problem have been one of among the most acute and conflict-ridden challenges for the sustainable development of the region and for regional security. Key trade and investment partners, including Russia and the European Union, could play a considerable role in influencing this issue, due to the long-lasting status quo, the inability to find a solution through intra-regional dialogue and the region’s rising dependence on foreign trade. Indeed, water-related interactions between Russia and the EU have been developing in a complementary manner. The EU possesses new technologies and its members have access to long-term capital markets, while Russia carries influence through providing security, regulating migration and holding a favourable political position for offering mediation services to the republics of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan. This article examines EU-Russia relations regarding water issues in Central Asia over the medium term. By analyzing cooperative and non-cooperative strategies used by the major stakeholders in the water conflict (the five republics and the third parties of Russia and the EU, it confirms the continuous complementary character of EU and Russian activities in this context. Russia will take responsibility for moderating the principal questions (as with the construction of big dams such as Rogunor Kambarata, as they relate to the provision of security guarantees. The EU will act through providing support for water companies from small and medium-sized enterprises, and promoting the European Water Initiative principles and by developing its investment policy. The intersection of interests is possible when if Russia will attracts an independent arbiter, such as an actor available to provide guarantees related to the values of professional objectivism, human rights support and environment protection. These issues inevitably arise with

  5. South Asia river flow projections and their implications for water resources

    Directory of Open Access Journals (Sweden)

    C. Mathison

    2015-06-01

    Full Text Available South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs, which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM for the periods; 1990–2006 for ERA-Interim and 1960–2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM

  6. South Asia river flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  7. South Asia river-flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  8. Changes of Glaciation and Their Probable Impact on Water Resources in Central Asia

    Science.gov (United States)

    Severskiy, I.

    2009-04-01

    In the Central Asia the main limiting factor of sustainable development is increasing water shortage. Even now the overwhelming part of territory of Kazakhstan and the adjacent countries of Central Asia are characterized by a condition of the strongest water stress. Fresh water deficiency is, to this or that extent, observed practically on all the territory of Central Asia and transboundary character of the main rivers is one of the main risk factors for sustainable development of national economy of the countries in this region. For the last 20 years a great number of scientific publications appeared in which their authors express an increasingly serious fears about significant reduction of water resources in the arid regions of the world as a reaction to global warming. One of the arguments substantiating such forecasts is the indisputable fact of a continuous intensive degradation of glaciers. Predominating opinion about the inevitability of glaciers disappearance in Central Asia Mountains cannot be accepted as an axiom. Taking into account stability in the sum of precipitation and especially in the snow resources, one can suppose that glaciers in this region will not disappear during this century. Despite the reduction of glaciers, annual runoff volumes and runoff distribution within a year remained unchanged during the last decades. During the same period, norms of atmospheric precipitation and maximum snow-water storage in the zone of runoff formation remained stable. All these suggest the existence of a certain compensation mechanism. Research, based on data analysis of repeated photogrammetric surveys of a group of glaciers and temperature regime of permafrost in Zailiyskiy Alatau range (Northern Tien Shan), suggests that such mechanism can be more and more significant (with climate warming) participation of melting waters of underground ice (buried glaciers, rock glaciers, permafrost) in runoff formation. During last decade the Global Climate system

  9. Statistical prediction of seasonal discharge in the Naryn basin for water resources planning in Central Asia

    Science.gov (United States)

    Apel, Heiko; Gafurov, Abror; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Merkushkin, Aleksandr; Merz, Bruno

    2016-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt water of the rivers originating in the mountains provides the only water resource available for agricultural production but also for water collection in reservoirs for energy production in winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources.. In fact, seasonal forecasts are mandatory tasks of national hydro-meteorological services in the region. Thus this study aims at a statistical forecast of the seasonal water availability, whereas the focus is put on the usage of freely available data in order to facilitate an operational use without data access limitations. The study takes the Naryn basin as a test case, at which outlet the Toktogul reservoir stores the discharge of the Naryn River. As most of the water originates form snow and glacier melt, a statistical forecast model should use data sets that can serve as proxy data for the snow masses and snow water equivalent in late spring, which essentially determines the bulk of the seasonal discharge. CRU climate data describing the precipitation and temperature in the basin during winter and spring was used as base information, which was complemented by MODIS snow cover data processed through ModSnow tool, discharge during the spring and also GRACE gravimetry anomalies. For the construction of linear forecast models monthly as well as multi-monthly means over the period January to April were used to predict the seasonal mean discharge of May-September at the station Uchterek. An automatic model selection was performed in multiple steps, whereas the best models were selected according to several performance measures and their robustness in a leave-one-out cross validation. It could be shown that the seasonal discharge can be predicted with

  10. Modelling Climate Change Impacts on the Seasonality of Water Resources in the Upper Ca River Watershed in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Pham Quy Giang

    2014-01-01

    Full Text Available The impact of climate change on the seasonality of water resources in the Upper Ca River Watershed in mainland Southeast Asia was assessed using downscaled global climate models coupled with the SWAT model. The results indicated that temperature and evapotranspiration will increase in all months of future years. The area could warm as much as 3.4°C in the 2090s, with an increase of annual evapotranspiration of up to 23% in the same period. We found an increase in the seasonality of precipitation (both an increase in the wet season and a decrease in the dry season. The greatest monthly increase of up to 29% and the greatest monthly decrease of up to 30% are expected in the 2090s. As a result, decreases in dry season discharge and increases in wet season discharge are expected, with a span of ±25% for the highest monthly changes in the 2090s. This is expected to exacerbate the problem of seasonally uneven distribution of water resources: a large volume of water in the wet season and a scarcity of water in the dry season, a pattern that indicates the possibility of more frequent floods in the wet season and droughts in the dry season.

  11. Preparing for Future Water Resources Conflicts through Climate Change Adaptation Planning: A Case Study in Eastern Europe and Central Asia

    Science.gov (United States)

    Boehlert, B. B.; Neumann, J. E.; Strzepek, K.; Sutton, W.; Srivastava, J.

    2011-12-01

    Uncertainties posed by climate change and rapidly rising global water demand suggest that existing conflicts over water resources are likely to be exacerbated and new conflicts will appear where little or no conflict occurs today. Successfully planning for and preventing conflicts first requires a sound scientific understanding of the timing, location, and magnitude of water resource shortfalls, identification of the most appropriate climate adaptation options based on multiple criteria, and development of broad, multi-level consensus within the affected community. We recently applied this approach in a World Bank-funded adaptation assessment for the agricultural sectors of four countries in Eastern Europe and Central Asia-Albania, Macedonia, Moldova, and Uzbekistan. For each major basin, we first used a hydrological model to project changes in water availability through 2050 under country-specific high, medium, and low climate impact scenarios. Next, under the three climate scenarios, we projected changes in agricultural water demand using a crop model (i.e., AquaCrop and DSSAT), and changes in water demand in other sectors based on population projections and sectoral forecasts of changes in per capita use. We incorporated these water availability and demand projections-along with other characteristics of the water system such as water supply priorities, environmental and transboundary flow requirements, irrigation efficiency, and reservoir locations and volumes-into a monthly integrated water resource planning tool (the Water Evaluation And Planning tool, or WEAP) to generate projected unmet water demand under each climate scenario and to each sector through 2050. The findings suggest that the agricultural sector in each country (except the relatively water-rich Albania) would experience significant unmet water demands, up to 52 percent in the Syr Darya and Amu Darya River basins of Uzbekistan. Potential adaptation responses to address unmet water demands-such as

  12. Future of water resources in the Aral Sea Region, Central Asia - Reality-checked climate model projections

    Science.gov (United States)

    Asokan, Shilpa M.; Destouni, Georgia

    2014-05-01

    The future of water resources in a region invariably depends on its historic as well as present water use management policy. In order to understand the past hydro-climatic conditions and changes, one needs to analyze observation data and their implications for climate and hydrology, such as Temperature, Precipitation, Runoff and Evapotranspiration in the region. In addition to the changes in climate, human re-distribution of water through land- and water­use changes is found to significantly alter the water transfer from land to atmosphere through an increase or decrease in evapotranspiration. The Aral region in Central Asia, comprising the Aral Sea Drainage Basin and the Aral Sea, is an example case where the human induced changes in water-use have led to one of the worst environmental disasters of our time, the desiccation of the Aral Sea. Identification of the historical hydro-climatic changes that have happened in this region and their drivers is required before one can project future changes to water and its availability in the landscape. Knowledge of the future of water resources in the Aral region is needed for planning to meet increasing water and food demands of the growing population in conjunction with ecosystem sustainability. In order to project future scenarios of water on land, the Global Climate Model (GCM) ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) was analyzed for their performance against hydrologically important, basin-scale observational climate and hydrological datasets. We found that the ensemble mean of 22 GCMs over-estimated the observed temperature by about 1°C for the historic period of 1961-1990. For the future extreme climate scenario RCP8.5 the increase in temperature was projected to be about 5°C by 2070-2099, the accuracy of which is questionable from identified biases of GCMs and their ensemble results compared with observations for the period 1961-1990. In particular, the water balance components

  13. Climate change impact on future water resources availability for a semi-arid area (Ferghana Valley, Central Asia)

    Science.gov (United States)

    Radchenko, Iuliia; Breuer, Lutz; Mannig, Birgit; Frede, Hans-Georg

    2014-05-01

    Considering increasing temperatures and glacier recession during the last decades, it is of high interest to study the climate change impact on water resources availability in semi-arid regions of Central Asia. The Ferghana Valley is surrounded by the Tien-Shan and Pamiro-Alay mountain systems that store big amounts of water in snowpacks and glaciers. In the valley the agricultural activity of local people strongly depends on available water from the Syrdarya River. The river is formed by the confluence of the Naryn and Karadarya Rivers, which are mainly fed by the glacier and snow melt from the Akshiirak and Ferghana ridges of the aforementioned mountain systems. The small upper river basins of the valley also contribute with runoff (~34 %) to the Syrdarya River. These small rivers are mainly fed by precipitation and seasonal snow melt. Thus, because of climate change and glacier decline, it is necessary to investigate the comparative contribution of the small catchments versus two big river basins to the Syrdarya River system, as these small upper catchments could become more important for future water consumption. In this study the conceptual hydrological HBV-light model has been calibrated and validated for the period 1980-1985 over 18 upper catchments that feed the Syrdarya River from the surrounding mountain ridges. Dynamically downscaled climate change scenarios were then applied up to the year 2100 for these basins. The scenarios were generated by means of Global Circulation Model (ECHAM5) and Regional Climate Model (REMO) with a baseline period from 1971 till 2000. We will present modelling results of water resources, the contribution of small rivers to the Syrdarya River and to what extent this contribution is likely to change in the future. Moreover, the results of simulated potential runoff will be used to develop future climate change adaptation strategies regarding socio-economic and environmental sustainable water use.

  14. Tropical organic soils ecosystems in relation to regional water resources in southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, T. V.

    1982-01-01

    Tropical organic soils have functioned as natural sinks for carbon, nitrogen, slfur and other nutrients for the past 4000 years or more. Topographic evolution in peat swamp forests towards greater oligotrophy has concentrated storage of the limited nutrient stock in surface soils and biota. Tropical peat systems thus share common ecosystem characteristics with northern peat bogs and certain tropical oligotrophic forests. Organic matter accumulation and high cation-exchange-capacity limit nutrient exports from undisturbed organic soils, although nutrient retention declines with increasing eutrophy and wetland productivity. Peat swamps are subject to irreversible degradation if severely altered because disturbance of vegetation, surface peats and detritus can disrupt nuttrient cycles and reduce forest recovery capacity. Drainage also greatly increases exports of nitrogen, phosphorus and other nutrients and leads to downstream eutrophication and water quality degradation. Regional planning for clean water supplies must recognize the benefits provided by natural peatlands in balancing water supplies and regulating water chemistry.

  15. Water resources in Central Asia - status quo and future conflicts in transboundary river catchments - the example of the Zarafshan River (Tajikistan-Uzbekistan)

    Science.gov (United States)

    Groll, Michael; Opp, Christian; Kulmatov, Rashid; Normatov, Inom; Stulina, Galina; Shermatov, Nurmakhmad

    2014-05-01

    Water is the most valuable resource in Central Asia and due to its uneven distribution and usage among the countries of the region it is also the main source of tension between upstream and downstream water users. Due to the rapidly shrinking glaciers in the Pamir, Tien-Shan and Alai mountains, the available water resources will, by 2030, be 30% lower than today while the water demand of the growing economies will increase by 30%. This will further aggravate the pressure on the water resources and increase the water deficit caused by an unsustainable water use and political agendas. These challenges can only be overcome by an integrated water resource management for the important transboundary river catchments. The basis for such an IWRM approach however needs to be a solid data base about the status quo of the water resources. To that end the research presented here provides a detailed overview of the transboundary Zarafshan River (Tajikistan-Uzbekistan), the lifeline for more than 6 mln people. The Zarafshan River is well suited for this as it is not only one of the most important rivers in Central Asia but because the public availability of hydrological and ecological data is very limited, Furthermore the catchment is characterized by the same imbalances in the Water-Energy-Food-Nexus as most river systems in that region, which makes the Zarafshan a perfect model river for Central Asia as a whole. The findings presented here are based on field measurements, existing data from the national hydrometeorological services and an extensive literature analysis and cover the status quo of the meteorological and hydrological characteristics of the Zarafshan as well as the most important water quality parameters (pH, conductivity, nitrate, phosphate, arsenic, chromate, copper, zinc, fluoride, petroleum products, phenols and the aquatic invertebrate fauna). The hydrology of the Zarafshan is characterized by a high natural discharge dynamic in the mountainous upper parts of

  16. Water resources

    International Nuclear Information System (INIS)

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on water resources describes how climate change will affect the supply of water in Canada. Water is one of Canada's greatest resources, which contributes about $7.5 to 23 billion per year to the Canadian economy. The decisions taken to adapt to climate change within the water resources sector will have profound implications in many other areas such as agriculture, human health, transportation and industry. The water related problems include water quality issues that relate to water shortages from droughts, or excesses from floods. The Intergovernmental Panel on Climate Change forecasts an increase in global average surface air temperatures of 1.4 to 5.8 degrees C by 2100. Such a change would impact the hydrological cycle, affecting runoff, evaporation patterns, and the amount of water stored in glaciers, lakes, wetlands and groundwater. The uncertainty as to the magnitude of these changes is due to the difficulty that climate models have in projecting future changes in regional precipitation patterns and extreme events. This chapter presents potential impacts of climate change on water resources in the Yukon, British Columbia, the Prairies, the Great Lakes basin, the Atlantic provinces, and the Arctic and Subarctic. The associated concerns for each region were highlighted. Adaptation research has focused on the impacts of supply and demand, and on options to adapt to these impacts. 60 refs., 2 tabs., 1 fig

  17. Central Asia's raging waters the prospects of water conflict in Central Asia

    OpenAIRE

    Hartman, William B.

    2007-01-01

    This thesis examines the prospects of conflict caused by water scarcity in Central Asia. The thesis analyzes the three most recent political eras of Central Asia, Tsarist Russia, the Soviet Union and independence, utilizing indicators of water tensions including: water quality, water quantity, the management of water for multiple uses, the political divisions and geopolitical setting, state institutions and national water ethos. Although water is not likely to be the sole cause of a majo...

  18. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  19. Will climate change exacerbate water stress in Central Asia?

    DEFF Research Database (Denmark)

    Siegfried, Tobias; Bernauer, Thomas; Guiennet, Renaud;

    2012-01-01

    Soviet Union collapsed. Will climate change exacerbate water stress and thus conflicts? We have developed a coupled climate, land-ice and rainfall-runoff model for the Syr Darya to quantify impacts and show that climatic changes are likely to have consequences on runoff seasonality due to earlier snow......Millions of people in the geopolitically important region of Central Asia depend on water from snow- and glacier-melt driven international rivers, most of all the Syr Darya and Amu Darya. The riparian countries of these rivers have experienced recurring water allocation conflicts ever since the......, and politically unstable Fergana Valley. Targeted infrastructural developments will be required in the region. If the current mismanagement of water and energy resources can be replaced with more effective resource allocation mechanisms through the strengthening of transboundary institutions, Central...

  20. Vulnerability of Water Resources

    OpenAIRE

    Znaor, Darko

    2009-01-01

    Water is a critical natural resource. It is used for drinking water, agriculture, wetlands services, and the production of hydroelectric energy, amongst others. Croatian fresh-water resources are abundant - indeed they are among the richest in Europe. Therefore, water resources are not considered a limiting factor for development in Croatia. However, while there is no shortage of water per se for use in Croatia, problems do exist. - First, a large amount of pumped water is wasted, which...

  1. The role of virtual water for sustainable economic restructuring: Evidence from Uzbekistan, Central Asia

    OpenAIRE

    Bekchanov, Maksud; Bhaduri, Anik; Lenzen, Manfred; Lamers, John P. A.

    2012-01-01

    Increases in water demand due to population growth, industrial development and urbanization necessitate economically efficient use of water resources worldwide. This is particularly true in the dryland zones of the world relying on irrigated agriculture for economic development such as in Uzbekistan, Central Asia. Due to ill-managed water resources and the dominance of high water intensive crops, water use efficiency in the region is very low. This challenges Uzbekistan to modernize its agric...

  2. Water resources management plan

    OpenAIRE

    Glauco Maia; Jorge Xavier da Silva; Tiago Marino

    2011-01-01

    Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI) represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assis...

  3. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    Science.gov (United States)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent

  4. Water resources and water pollution studies

    International Nuclear Information System (INIS)

    Nuclear techniques are widely used in the investigation of the dynamics of the water cycle. This paper focusses on their contributions to the development of strategies for the sustainability of environmental resources. Emphasis has been placed on the role of environmental isotopes and radiotracers in evaluating models of complex environmental systems. Specific reference is made to 1) the construction of a marine radioactivity database for Asia and the Pacific, 2) the sustainability of groundwater in regions challenged by climate change, and 3) the applications of radiotracers to off-shore transport of sediments and contaminants

  5. Security of water, energy, and food nexus in the Asia-Pacific region

    Science.gov (United States)

    Taniguchi, M.; Endo, A.; Fujii, M.; Shoji, J.; Baba, K.; Gurdak, J. J.; Allen, D. M.; Siringan, F. P.; Delinom, R.

    2014-12-01

    Water, energy, and food are the most important and fundamental resources for human beings and society. Demands for these resources are escalating rapidly because of increases in populations and changes in lifestyles. Therefore intensive demand for those resources makes conflicts between resources. Securities of water, energy, and food are treated separately, however they should be considered as one integrated matter, because water-energy-food are connected and it makes nexus and tradeoff. Security in terms of self-production, diversity of alternatives, and variability are evaluated for water, energy and food for thirty two countries in the Asia-Pacific region. The water and energy nexus includes water consumption for the cooling of power plant systems, water use for hydro power generation, and energy consumption for water allocation and pumping. The water and food nexus consists of water consumption for agriculture and aquaculture. The energy and food nexus includes energy consumption for food production and biomass for energy. Analyses of 11 countries within the Asia- Pacific region show that energy consumption for fish is the largest among foods in Japan, Philippines, and Peru, while energy consumption for cereals is the largest among foods in Canada, US, Indonesia, and others. Water consumption for different types of food and energy are also analyzed, including nexus ratio to total water consumption. The water-energy-food nexus at a local level in the Asia Pacific region are examined by the Research Institute for Humanity and Nature project "Human environmental security in Asia Pacific Ring of Fire". Themes including geothermal power plants for energy development and hot springs as water, shale gas for energy development and water consumption/contamination, aquaculture for food and water contamination are used to evaluate the water-energy-food nexus in the Asia-Pacific region.

  6. Analyzing water resources

    Science.gov (United States)

    1979-01-01

    Report on water resources discusses problems in water measurement demand, use, and availability. Also discussed are sensing accuracies, parameter monitoring, and status of forecasting, modeling, and future measurement techniques.

  7. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  8. Biodiversity and Natural Resource Management in Insular Southeast Asia

    Directory of Open Access Journals (Sweden)

    Gerald A. Persoon

    2006-05-01

    Full Text Available Indonesia and the Philippines are amongst the world’s mega-biodiversity countries. Their insular nature has certainly contributed to this level of diversity. However, at the same time, there is rapid environmental degradation in terms of forest loss, loss of plant and animal species and overexploitation of wildlife. Insular Southeast Asia, with a population of over 300 million, is more densely populated than any other insular area. Yet, remarkably, this region plays a low-key role in comparative island studies. Both Indonesia and the Philippines have recently moved from centralized forms of government to regional and even local autonomy. This article presents an overview of the present state of biological and cultural diversity of the two archipelagic states. Recent changes in styles of natural resource management are discussed, with a focus on forest resources in the area.

  9. Modern water resources engineering

    CERN Document Server

    Yang, Chih

    2014-01-01

    The Handbook of Environmental Engineering series is an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. This exciting new addition to the series, Volume 15: Modern Water Resources Engineering , has been designed to serve as a water resources engineering reference book as well as a supplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. A critical volume in the Handbook of Environmental Engineering series, chapters employ methods of practical design and calculation illustrated by numerical examples, include pertinent cost data whenever possible, and explore in great detail the fundamental principles of the field. Volume 15: Modern Water Resources Engineering, provides information on some of the most innovative and ground-breaking advances in the field today from a panel of esteemed...

  10. Protecting Our Water Resources.

    Science.gov (United States)

    Jewett, Jon

    1996-01-01

    Describes the watershed management approach for preserving water resources. Considers pollution sources ranging from industrial discharge to agricultural leachate and runoff and evaluates its impact on the total watershed environment. (JRH)

  11. Water - an inexhaustible resource?

    Science.gov (United States)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  12. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  13. Water resources management plan

    Directory of Open Access Journals (Sweden)

    Glauco Maia

    2011-12-01

    Full Text Available Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assist the Fire Department in its missions. This goal was reached, and in association with LAGEOP (Geoprocessing Laboratory, UFRJ, the Tactical Group started using GIS techniques. The plan provides for the register of existing operational structures within each group (troops, vehicles and special equipment, along with knowledge about the nature and operating conditions of fire hydrants, as well as a detailed survey of areas considered to be "critical". The survey helps to support actions related to environmental disasters involved in the aforementioned critical areas (hospital, churches, schools, and chemical industries, among others. The Caju neighborhood, in Rio de Janeiro, was defined as initial application area, and was the first jurisdiction to have the system implemented, followed by Copacabana, Leblon, Lagoa, and Catete districts.

  14. Review - Water resources development

    International Nuclear Information System (INIS)

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  15. Water resources for Africa

    International Nuclear Information System (INIS)

    Water scarcity is a matter of urgent, national, regional and international concern. For those people, usually women, who are responsible for the daily task of obtaining sufficient water for household use, water shortages are a perpetual worry. It is a situation which affects many individual families and communities throughout the arid and semi-arid regions of Africa. The isotope studies conducted thus far have proved that the majority of regional groundwater systems in northern Africa and the Sahel zone are paleowaters, replenished thousands of years ago, without the possibility of significant replenishment under present climatic conditions. Therefore, removal from such underground reservoirs will eventually deplete the resource. Mapping these paleowaters, and estimating their reservoir sizes, is a priority. (IAEA)

  16. Central Asia Water (CAWa) - A visualization platform for hydro-meteorological sensor data

    Science.gov (United States)

    Stender, Vivien; Schroeder, Matthias; Wächter, Joachim

    2014-05-01

    Water is an indispensable necessity of life for people in the whole world. In central Asia, water is the key factor for economic development, but is already a narrow resource in this region. In fact of climate change, the water problem handling will be a big challenge for the future. The regional research Network "Central Asia Water" (CAWa) aims at providing a scientific basis for transnational water resources management for the five Central Asia States Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Kazakhstan. CAWa is part of the Central Asia Water Initiative (also known as the Berlin Process) which was launched by the Federal Foreign Office on 1 April 2008 at the "Water Unites" conference in Berlin. To produce future scenarios and strategies for sustainable water management, data on water reserves and the use of water in Central Asia must therefore be collected consistently across the region. Hydro-meteorological stations equipped with sophisticated sensors are installed in Central Asia and send their data via real-time satellite communication to the operation centre of the monitoring network and to the participating National Hydro-meteorological Services.[1] The challenge for CAWa is to integrate the whole aspects of data management, data workflows, data modeling and visualizations in a proper design of a monitoring infrastructure. The use of standardized interfaces to support data transfer and interoperability is essential in CAWa. An uniform treatment of sensor data can be realized by the OGC Sensor Web Enablement (SWE) , which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service

  17. Soil Resources and Land Use in Tropical Asia

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Tropical Asia is a region comprising South and Southeast Asia and under strong influence of the Asianmonsoon climate. It is characterized by an extremely high population density and by high land use intensity.Paddy rice cultivation is the most important form of agriculture in the greater part of the region. Soilresources of tropical Asia have a specific feature in comparison with tropical Africa and America. Ultisolsdominate in uplands, and lowland soils like Inceptisols and Histosols are relatively abundant. The latterpoint is made clearer if we take the landforms of the region with a vast extent of lowlands into consideration.Geologically, tropical Asia with the Himalayan orogeny and active volcanism exhibits a conspicuous contrastto tropical Africa and America with the dominance of the shield structure. This along with the monsoonclimate should have determined the basic features of landforms and soil, and accordingly all the agriculturaland social characteristics of tropical Asia today. Although paddy rice cultivation in the lowland is highlysustainable, upland cultivation in extensive Ultisol areas tends to be handicapped by low fertility and higherodibility of the soil, resulting in low sustainability. Land shortage is compelling people to exploit slopelandsin hills and mountains, on the one hand, and thus far unutilized coastal lowlands, on the other. Both ofthese new reclamations are facing to serious land degradation problems today. Tropical Asia will continueto be the most densely populated region of the world with ever-increasing population. In order to meet theincreasing food demand lowland rice cultivation should be intensified by the infrastructure development toease the stresses on slopelands and vulnerable coastal lowlands. At the same time, upland crop productionin Ultisol areas should be stabilized and enhanced, providing integrated nutrient management and measuresfor soil conservation.

  18. Water balance modeling using remote sensing information : focus on Central Asia

    OpenAIRE

    Abror Gafurov

    2010-01-01

    The whole Central Asian population is dependent on water resources stored as solid in high mountains and feed the population in summer. The agriculture in Central Asia is possible only by irrigating the land in regular basis. The water for it comes from snow and glacier melt in high mountains. Thus, it is important to estimate possible water stored in mountains during planting season to better plan agricultural activities in summer. As an example, the year of 2002 or 2007 were drought years w...

  19. Niger : Towards Water Resource Management

    OpenAIRE

    World Bank

    2000-01-01

    The study reviews Niger's water resources, and planning process, through its short- and medium-term water investment program, and priorities in the water supply, and sanitation sector. Critical challenges are examined for improving its complex water resources management to support economic growth, given its landlocked situation, with diffuse, and mostly rural population, and immense, untap...

  20. Advances in water resources technology

    Science.gov (United States)

    The presentation of technological advances in the field of water resources will be the focus of Advances in Water Resources Technology, a conference to be held in Athens, Greece, March 20-23, 1991. Organized by the European Committee for Water Resources Management, in cooperation with the National Technical University of Athens, the conference will feature state-of-the art papers, contributed original research papers, and poster papers. Session subjects will include surface water, groundwater, water resources conservation, water quality and reuse, computer modeling and simulation, real-time control of water resources systems, and institutions and methods for technology.The official language of the conference will be English. Special meetings and discussions will be held for investigating methods of effective technology transfer among European countries. For this purpose, a wide representation of research institutions, universities and companies involved in water resources technology will be attempted.

  1. Biodiversity and Natural Resource Management in Insular Southeast Asia

    OpenAIRE

    Gerald A. Persoon; Merlijn van Weerd

    2006-01-01

    Indonesia and the Philippines are amongst the world’s mega-biodiversity countries. Their insular nature has certainly contributed to this level of diversity. However, at the same time, there is rapid environmental degradation in terms of forest loss, loss of plant and animal species and overexploitation of wildlife. Insular Southeast Asia, with a population of over 300 million, is more densely populated than any other insular area. Yet, remarkably, this region plays a low-key role in comparat...

  2. Integrated Water Resources Management: A Global Review

    Science.gov (United States)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  3. South Asia transboundary water quality monitoring workshop summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Betsill, Jeffrey David; Littlefield, Adriane C.; Luetters, Frederick O.; Rajen, Gaurav

    2003-04-01

    The Cooperative Monitoring Center (CMC) promotes collaborations among scientists and researchers in several regions as a means of achieving common regional security objectives. To promote cooperation in South Asia on environmental research, an international working group made up of participants from Bangladesh, India, Nepal, Pakistan, and the United States convened in Kathmandu, Nepal, from February 17-23,2002. The workshop was held to further develop the South Asia Transboundary Water Quality Monitoring (SATWQM) project. The project is sponsored in part by the CMC located at Sandia National Laboratories in Albuquerque, New Mexico through funding provided by the US. Department of State, Regional Environmental Affairs Office, American Embassy, Kathmandu, Nepal, and the National Nuclear Security Administration's (NNSA) Office of Nonproliferation and National Security. This report summarizes the SATWQM project, the workshop objectives, process and results. The long-term interests of the participants are to develop systems for sharing regional environmental information as a means of building confidence and improving relations among South Asian countries. The more immediate interests of the group are focused on activities that foster regional sharing of water quality data in the Ganges and Indus River basins. Issues of concern to the SATWQM network participants include studying the impacts from untreated sewage and industrial effluents, agricultural run-off, salinity increases in fresh waters, the siltation and shifting of river channels, and the environmental degradation of critical habitats such as wetlands, protected forests, and endangered aquatic species conservation areas. The workshop focused on five objectives: (1) a deepened understanding of the partner organizations involved; (2) garnering the support of additional regional and national government and non-government organizations in South Asia involved in river water quality monitoring; (3) identification

  4. Fourth Tennessee water resources symposium

    International Nuclear Information System (INIS)

    The annual Tennessee Water Resources Symposium was initiated in 1988 as a means to bring together people with common interests in the state's important water-related resources at a technical, professional level. Initially the symposium was sponsored by the American Institute of Hydrology and called the Hydrology Symposium, but the Tennessee Section of the American Water Resources Association (AWRA) has taken on the primary coordination role for the symposium over the last two years and the symposium name was changed in 1990 to water resources to emphasize a more inter-disciplinary theme. This year's symposium carries on the successful tradition of the last three years. Our goal is to promote communication and cooperation among Tennessee's water resources professionals: scientists, engineers, and researchers from federal, state, academic, and private institutions and organizations who have interests and responsibilities for the state's water resources. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  5. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson, Gilpin R., Jr.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of Southeast Asia and Melanesia as part of a global mineral resource assessment. The region hosts world-class porphyry copper deposits and underexplored areas that are likely to contain undiscovered deposits. Examples of known porphyry copper deposits include Batu Hijau and Grasberg in Indonesia; Panguna, Frieda River, and Ok Tedi in Papua New Guinea; and Namosi in Fiji.

  6. Climate Change and Water Infrastructure in Central Asia: adaptation capacities and institutional challenges

    Science.gov (United States)

    Abdullaev, Iskandar; Rakhmatullaev, Shavkat

    2014-05-01

    The paper discusses vulnerability areas of water sector in arid Central Asia due to climate change projections with particular focus on adaptation to sustainable operation of physical infrastructure capacities (from legal, institutional and technical aspects). Two types of technical installations are the main focus of this paper, i.e., electrical lift irrigation systems and water reservoirs. The first set of electrical lift infrastructure is strategic for delivering water to water users via pumps, diversion structures, vertical drainage facilities and groundwater boreholes; on the other hand, the primarily task of second set of structures is to accumulate the water resources for sectors of economy. In Central Asia, approximately, 20-50% of irrigation water is lifted, yet major of lift structures are in very poor technical conditions coupled with ever increasing of electricity tariffs. Furthermore, useful volumes capacities of water reservoirs are being severely diminished due to bio-physical geomorphologic processes, improper operational regimes and chronic financing for special in-house sedimentation surveys. Most importantly, the key argument is that irrigation sector should internalize its adaptation efforts, i.e., integrate renewable energy technologies, energy audit programs and lastly design comprehensive investment prioritization processes and programs. Otherwise, water sector will be at great risk for continued provision of fundamental services to the public, food security and industry

  7. Game theory and water resources

    Science.gov (United States)

    Madani, Kaveh

    2010-02-01

    SummaryManaging water resources systems usually involves conflicts. Behaviors of stakeholders, who might be willing to contribute to improvements and reach a win-win situation, sometimes result in worse conditions for all parties. Game theory can identify and interpret the behaviors of parties to water resource problems and describe how interactions of different parties who give priority to their own objectives, rather than system's objective, result in a system's evolution. Outcomes predicted by game theory often differ from results suggested by optimization methods which assume all parties are willing to act towards the best system-wide outcome. This study reviews applicability of game theory to water resources management and conflict resolution through a series of non-cooperative water resource games. The paper illustrates the dynamic structure of water resource problems and the importance of considering the game's evolution path while studying such problems.

  8. Crop-specific seasonal estimates of irrigation water demand in South Asia

    Science.gov (United States)

    Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B.

    2015-08-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight in these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation water demand resulting from the typical practice of multiple-cropping in South Asia was accounted for by introducing double-cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest subnational statistics of India, Pakistan, Bangladesh and Nepal. The representation of seasonal land use and more accurate cropping periods lead to lower estimates of irrigation water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation water demand differs sharply between seasons and regions; in Pakistan, winter (Rabi) and summer (Kharif) irrigation demands are almost equal, whereas in Bangladesh the Rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply vs. rain decreases sharply from west to east. Given the size and importance of South Asia, improved regional estimates of food production and its irrigation water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple-cropping and monsoon-dependent planting dates should not be ignored.

  9. Crop-specific seasonal estimates of irrigation water demand in South Asia

    Directory of Open Access Journals (Sweden)

    H. Biemans

    2015-08-01

    Full Text Available Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight in these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation water demand resulting from the typical practice of multiple-cropping in South Asia was accounted for by introducing double-cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest subnational statistics of India, Pakistan, Bangladesh and Nepal. The representation of seasonal land use and more accurate cropping periods lead to lower estimates of irrigation water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation water demand differs sharply between seasons and regions; in Pakistan, winter (Rabi and summer (Kharif irrigation demands are almost equal, whereas in Bangladesh the Rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply vs. rain decreases sharply from west to east. Given the size and importance of South Asia, improved regional estimates of food production and its irrigation water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple-cropping and monsoon-dependent planting dates should not be ignored.

  10. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    Science.gov (United States)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  11. Water Scarcity in South Asia: A Dynamic Computable General Equilibrium Analysis

    OpenAIRE

    Narayanan, Badri G.; Taheripour, Farzad; Hertel, Thomas W.; Sahin, Sebnem; Escurra, Jorge J.

    2015-01-01

    The economy of South Asia faces serious challenges in water availability, which are expected to aggravate over the coming decades. In this context, we assess the long-run economy-wide impact of potential water scarcity in South Asia within a global context. This paper uses a dynamic Computable General Equilibrium (CGE) model, in tandem with an advanced comparative static CGE model, to examine the differences in economic growth possibilities in South Asia with and without water scarcity. Alter...

  12. Preliminary publications Book 1 from Project on Mineral Resources, Metallogenesis and Tectonics of Northeast Asia

    Science.gov (United States)

    Ariunbileg, Sodov; Badarch, Gombosuren; Berzin, Nikolai A.; Bulgatov, Alexander N.; Chimed, Noosoi; Deikunenko, Aleksey V.; Dejidmaa, Gunchin; Diggles, Michael F.; Distanov, Elimir G.; Dorjgotov, Dangindorjiin; Gerel, Ochir; Gordienko, Ivan V.; Gotovsuren, Ayurzana; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Koch, Richard D.; Miller, Robert J.; Nokleberg, Warren J.; Obolenskiy, Alexander A.; Ogasawara, Masatsugu; Orolmaa, Demberel; Oxman, Vladimir S.; Parfenov, Leonid M.; Popeko, Ludmila I.; Prokopiev, Andrey V.; Smelov, Alexander P.; Sotnikov, Vitaliy I.; Sudo, Sadahisa; Timofeev, Vladimir F.; Tret'yakov, Felix F.; Vernikovsky, Valery A.; Ye, Mao; Zadgenizov, Alexander P.

    1999-01-01

    This report consists of preliminary data tables, maps, and interpretative articles compiled in late 1997 and early 1998 for a new project on the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia (Eastern and Southern Siberia, Mongolia, North-eastern China, South Korea, and Japan).

  13. Energy and water resources

    International Nuclear Information System (INIS)

    This book presents data and other information for those who desire an understanding of the relationship between water and energy development. The book is not a tract for a grand plan. It does not present solutions. Many of the issues, especially regarding conflict over water allocations and use, are controlled and reconciled at the state level. This report draws together some of the physical and institutional data useful for identifying and understanding water issues which rise in regard to the various aspects of energy development. Three basic water-energy areas are considered in this report: water quality, water supply, and their institutional framework. Water consumption by energy was three percent of the nation's total consumption in 1975, not a large proportion. It is projected to increase to six percent by 2000. Water consumption rates by the energy technologies addressed in this document are tabulated. Water pollutant loadings expected from these technologies are summarized. Finally, a summary of water-related legislation which have particular ramifications in regard to the production of energy is presented

  14. Contextualization of Open Educational Resources in Asia and Europe

    OpenAIRE

    Pawlowski, Jan M.; Pirkkalainen, Henri; Gervacio, Juvy Lizette; Nordin, Norazah; Embi, Mohamed Amin

    2014-01-01

    Open Educational Resources (OER) are a promising concept for international collaborations: sharing, utilizing, and collaborating around OER across borders might help educational institutions and their staff to internationalize their activities. However, several barriers exist keeping stakeholders away from engaging in international collaborations. In this paper, we discuss the main challenges of OER uptake in international settings. Three case studies show potential solutions f...

  15. Philippines : Country Water Resources Assistance Strategy 2003

    OpenAIRE

    World Bank

    2003-01-01

    The Water Resources Sector Strategy (WRSS) supports implementation of the Bank's 1993 Water Resources Management Policy, using the experience updated internationally, with water resources and management. This country Water Resources Assistance Strategy (CWRAS) identifies the Philippines principal water resource challenges, the current situation, how the Bank is assisting at present, and wh...

  16. Uncertainties in hydrological modelling and its consequences for water management in Central Asia

    Science.gov (United States)

    Malsy, Marcus; aus der Beek, Tim; Flörke, Martina

    2013-04-01

    Central Asia features an extreme continental climate with mostly arid to semi-arid conditions. Due to low precipitation and therefore low water availability, water is a scarce resource and often the limiting factor in terms of socio-economic development. The aim of this model study is to compare the uncertainties of hydrological modelling induced by global and regional climate datasets and to calculate the impacts on estimates of local water resources. Within this integrated model study the hydrological and water use model WaterGAP 3 (Global Assessment and Prognosis) is being applied to all river basins located in Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, and Mongolia in five arc minutes spatial resolution (~ 6 x 9 km per grid cell). First of all, water abstractions for the sectors households, irrigation, livestock, manufacturing industries, and electricity production are being computed and fed into the hydrological module of WaterGAP. Then, water fluxes of the terrestrial water cycle are being modelled. The performance of the model is then being evaluated by comparing modelled and observed river discharge for the time period 1971 to 2000. As WaterGAP input, various global and regional climate datasets are available for the study region. In detail, these are the global TS dataset of the Climate Research Unit (CRU), the WATCH forcing data (WFD) developed within the EU-FP6 Project WATer and global CHange (WATCH) and the regional Aphrodités Water Resources dataset. Finally, the uncertainties in modelled water availability induced by the different datasets are quantified to point out the consequences for a sustainable water management. The results show that the datasets differ in both aspects, temporal and spatial goodness. At this, not only differences between the regional and the global datasets, but also among the global datasets are evident.

  17. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  18. Geology and undiscovered resource assessment of the potash-bearing Central Asia Salt Basin, Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan: Chapter AA in Global mineral resource assessment

    Science.gov (United States)

    Wynn, Jeff; Orris, Greta J.; Dunlap, Pamela; Cocker, Mark D.; Bliss, James D.

    2016-01-01

    Undiscovered potash resources in the Central Asia Salt Basin (CASB) of Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey. The term “potash” refers to potassium-bearing, water-soluble salts derived from evaporite basins, where seawater dried up and precipitated various salt compounds; the word for the element “potassium” is derived from potash. Potash is produced worldwide at amounts exceeding 30 million metric tons per year, mostly for use in fertilizers. The term “potash” is used by industry to refer to potassium chloride, as well as potassium in sulfate, nitrate, and oxide forms. For the purposes of this assessment, the term “potash” refers to potassium ores and minerals and potash ore grades. Resource and production values are usually expressed by industry in terms of K2O (potassium oxide) or muriate of potash (KCl, potassium chloride).

  19. Cybernetics in water resources management

    International Nuclear Information System (INIS)

    The term Water Resources is used to refer to the management and use of water primarily for the benefit of people. Hence, successful management of water resources requires a solid understanding of Hydrology. Cybernetics in Water Resources Management is an endeavor to analyze and enhance the beneficial exploitation of diverse scientific approaches and communication methods; to control the complexity of water management; and to highlight the importance of making right decisions at the right time, avoiding the devastating effects of drought and floods. Recent developments in computer technology and advancement of mathematics have created a new field of system analysis i.e. Mathematical Modeling. Based on mathematical models, several computer based Water Resources System (WRS) Models were developed across the world, to solve the water resources management problems, but these were not adaptable and were limited to computation by a well defined algorithm, with information input at various stages and the management tasks were also formalized in that well structured algorithm. The recent advancements in information technology has revolutionized every field of the contemporary world and thus, the WRS has also to be diversified by broadening the knowledge base of the system. The updation of this knowledge should be a continuous process acquired through the latest techniques of networking from all its concerned sources together with the expertise of the specialists and the analysis of the practical experiences. The system should then be made capable of making inferences and shall have the tendency to apply the rules based on the latest information and inferences in a given stage of problem solving. Rigid programs cannot adapt to changing conditions and new knowledge. Thus, there is a need for an evolutionary development based on mutual independence of computational procedure and knowledge with capability to adapt itself to the increasing complexity of problem. The subject

  20. A summary of the 2nd workshop on Human Resources Development (HRD) in the nuclear field in Asia. FY2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    The Human Resources Development (HRD) Project was added in 1999 as a Cooperation Activity of 'the Forum for Nuclear Cooperation in Asia (FNCA)' which is organized by Nuclear Committee. The HRD Project supports to solidify the foundation of nuclear development utilization in Asia by promoting human resources development in Asian countries. The principal activity of the HRD Project is to hold the Workshop on Human Resources Development in the Nuclear Field in Asia once a year. The objective of the Workshop is to clarify problems and needs of the human resources development of each country and to support it mutually by exchanging information etc. The report consists of a summary of the 2nd Workshop on Human Resources Development in the Nuclear Field in Asia held on November 27 and 28, 2000 at Tokai Research Establishment of JAERI. (author)

  1. A summary of the 2nd workshop on Human Resources Development (HRD) in the nuclear field in Asia. FY2000

    International Nuclear Information System (INIS)

    The Human Resources Development (HRD) Project was added in 1999 as a Cooperation Activity of 'the Forum for Nuclear Cooperation in Asia (FNCA)' which is organized by Nuclear Committee. The HRD Project supports to solidify the foundation of nuclear development utilization in Asia by promoting human resources development in Asian countries. The principal activity of the HRD Project is to hold the Workshop on Human Resources Development in the Nuclear Field in Asia once a year. The objective of the Workshop is to clarify problems and needs of the human resources development of each country and to support it mutually by exchanging information etc. The report consists of a summary of the 2nd Workshop on Human Resources Development in the Nuclear Field in Asia held on November 27 and 28, 2000 at Tokai Research Establishment of JAERI. (author)

  2. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  3. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  4. Climate change and water resources

    International Nuclear Information System (INIS)

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  5. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    Science.gov (United States)

    Berger, Byron R.; Mars, John L.; Denning, Paul D.; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    The U.S. Geological Survey conducted an assessment of resources associated with porphyry copper deposits in the western Central Asia countries of Kyrgyzstan, Uzbekistan, Kazakhstan, and Tajikistan and the southern Urals of Kazakhstan and Russia as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits; (2) compile a database of known porphyry copper deposits and significant prospects; (3) where data permit, estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in those undiscovered deposits.

  6. Lunar Water Resource Demonstration (LWRD)

    Science.gov (United States)

    Muscatello, Anthony C.

    2009-01-01

    Lunar Water Resource Demonstration (LWRD) is part of RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). RESOLVE is an ISRU ground demonstration: (1) A rover to explore a permanently shadowed crater at the south or north pole of the Moon (2) Drill core samples down to 1 meter (3) Heat the core samples to 150C (4) Analyze gases and capture water and/or hydrogen evolved (5) Use hydrogen reduction to extract oxygen from regolith

  7. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    In the wake of the Chernobyl accident, the vulnerability of the water cycle to radionuclide contamination has been an issue of great concern. The impact of the event throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate the potential risk to drinking water supplies, soilwater and the food chain. This book provides information on radiological standards as they exist at present, on the methods of monitoring, and on concepts in design to minimize risk and to highlight the possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book is a unique source of information about present radiological standards and monitoring requirements. It also includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. There are 19 papers all indexed separately. These are divided into sections -introduction, present radiological standards relating to drinking water, radiological monitoring requirements, the consequences of a nuclear event on water resources and water resource management strategy. The discussion at the end of each section is recorded. (author)

  8. Water Resources Research supports water economics submissions

    Science.gov (United States)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  9. Water resources development in Turkey

    Institute of Scientific and Technical Information of China (English)

    Bulent Acma

    2010-01-01

    The Southeastern Anatolia Project(GAP),one of the most important projects for developing remarkable natural resources of the world,is accepted as a change for getting benefit from rich water and agricultural resources of the Southeastern Anatolia Region.The GAP Project has been considered as a regional development projects through years,but the dimensions of sustainability,protection of environment and participatory have been attached to the master of the project in recent years.When the GAP Project is completed,the Upper Mesopotomia,the centers of many civilisation,will re-again its importance as it had in the ancient times,and will be alive a center of civilisation.Moreover,when the problem of water shortage and water supplies in the world for the future is kept in mind,the importance of Southeastern Anatolia's water supplies will be doubled.For this reason,the GAP Project,developed by depending on water and natural resources of the region,will have an important place in the world.The aim of this study is to introduce the region with rich natural resources and the GAP Project.For this reason,firstly,the natural potential of the region will be introduced.Second,the GAP Project will be presented in details.In the third stage,the projects being processed for protecting the natural sources and environment will be analyzed.In the last stage,strategies and policies to develop and to protect the natural resources of the region in short,mid,and long terms will be proposed.

  10. Quantitative status of resources for radiation therapy in Asia and Pacific region

    International Nuclear Information System (INIS)

    Purpose: Resources for radiation therapy in Asian and Pacific countries were analyzed to obtain a better understanding of the status of radiation oncological practice in the region. Methods and Materials: The data were obtained mainly through surveys on the availability of major equipment and personnel which were conducted through an International Atomic Energy Agency regional project. The study included 17 countries in South Asia, South East Asia, East Asia and Australasia. Data were related to national populations and economic and a general health care indices. Results: Large differences in equipment and personnel among countries were demonstrated. The availability of both teletherapy and brachytherapy was related to the economic status of the countries. The shortage of teletherapy machines was evident in more countries than that of brachytherapy. Many departments were found to treat patients without simulators or treatment planning systems. The number of radiation oncologists standardized by cancer incidence of a country did not correlate well with economic status. Conclusions: There were significant deficiencies in the availability of all components of radiation therapy in the analyzed countries. The deficiencies were linked predominantly to the economic status of the country. Cognisance should be taken of the specific shortfalls in each country to ensure that expansion or any assistance offered appropriately match its needs and can be fully utilized. The information on the resources currently available for radiation oncological practice in the region presented in this paper provides a valuable basis for planning of development aid programs on radiation therapy

  11. Humble View on Soil Water Resources

    Institute of Scientific and Technical Information of China (English)

    CHENZHI-XIONG; ZHOULIU-ZONG

    1993-01-01

    Soil water is one of renewable water resources.Some properties of soil water concerning with its availability to plant are briefly described.An equation for estimating the amount of soil water resource is presented.Based on the evaporation demand of atmosphere,the evaluation coefficient for soil water resource is suggested.

  12. Comparative resource allocations to human resource development in Asia, Europe, and Latin America

    OpenAIRE

    Knight, P. T.; Wasty, S. S.

    1991-01-01

    This study compiles statistics for selected Latin American countries and two reference groupsof countries in East Asia and northern and southern Europe. The authors emphasize the need to increase attention to and expenditure on education and health systems in many developing countries, especially in Latin America, to improve the coverage and quality of the services they provide. This paper notes that wider access to secondary education and greater emphasis on the quality of higher education t...

  13. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  14. Green Growth, Resources and Resilience. Environmental Sustainability in Asia and the Pacific

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-02-15

    While regional countries are driving the global 'green growth' agenda, policymakers are facing a new economic reality and heightened uncertainty. The challenge of eco-efficient economic growth and inclusive resource use is critical and growing in several countries. Fundamental, rather than incremental changes are needed. Governments must therefore take the lead in re-orienting both the 'visible' and the 'invisible' economic infrastructure. At the same time the implications of heightened uncertainty and risk for policymaking requires more attention. This report highlights changes in the policy landscape that have taken place since 2005, focuses on the emerging challenges of resources and resilience, presents new regional and country data produced by the Commonwealth Scientific and Industrial Research Organisation of Australia (CSIRO) and UNEP, and provides insights to key policy arenas for greening of growth. The report is the sixth in a series of reports produced every five years by ESCAP for the Ministerial Conference on Environment and Development. It is also the third in the ADB's Asian Environment Outlook series. This year, it complements a UNEP report: Resource Efficiency: Economics and Outlook for Asia and the Pacific (Canberra, CSIRO Publishing), providing new insights into regional use of key resources, and what that means for economies in the Asia-Pacific Region. The report is also intended to support stakeholders preparing for Rio+20.

  15. The role of B V O Amudarya Riverin questions of intergovernmental management of water resources in Amudarya River basin

    International Nuclear Information System (INIS)

    In this article author made conclusion that in the modern political and social-economy conditions-one of the rational ways of making of prosperity in region-is realisation of integrated control principals of Central Asia water resources

  16. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  17. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  18. DRINKING WATER RESOURCES IN CROATIA

    Directory of Open Access Journals (Sweden)

    Darko Mayer

    1996-12-01

    Full Text Available Annualy renewed resources of drinking water on the Earth are about 45000 cu. km. With today's stage of development that quantity is enough for living 4.5 to 9 billion of people. As it is expected that by 2025 the population on our planet will be over 8.5 billion people, it is clear that the next century will be characterized by the problem of ensuring enaugh quantities of drinking water. This problem will be particularly emphasized in the developing countries and large cities. In the poor countries of arid and subarid areas water deficit will cause the food production crisis and large migrations of the population with almost unpredistable sociological, economical and political consequences could be expected. In the developed world the "water crisis" will stimulate scientific and tehnological progress. The Republic of Croatia, if examined as a whole, regarding the climatic, hydrological, hydrogeological and demographic conditions, has planty of good quality water. It is our duty to preserve this resources for future generations (the paper is published in Croatian.

  19. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    Science.gov (United States)

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  20. Human resources for health in southeast Asia: shortages, distributional challenges, and international trade in health services.

    Science.gov (United States)

    Kanchanachitra, Churnrurtai; Lindelow, Magnus; Johnston, Timothy; Hanvoravongchai, Piya; Lorenzo, Fely Marilyn; Huong, Nguyen Lan; Wilopo, Siswanto Agus; dela Rosa, Jennifer Frances

    2011-02-26

    In this paper, we address the issues of shortage and maldistribution of health personnel in southeast Asia in the context of the international trade in health services. Although there is no shortage of health workers in the region overall, when analysed separately, five low-income countries have some deficit. All countries in southeast Asia face problems of maldistribution of health workers, and rural areas are often understaffed. Despite a high capacity for medical and nursing training in both public and private facilities, there is weak coordination between production of health workers and capacity for employment. Regional experiences and policy responses to address these challenges can be used to inform future policy in the region and elsewhere. A distinctive feature of southeast Asia is its engagement in international trade in health services. Singapore and Malaysia import health workers to meet domestic demand and to provide services to international patients. Thailand attracts many foreign patients for health services. This situation has resulted in the so-called brain drain of highly specialised staff from public medical schools to the private hospitals. The Philippines and Indonesia are the main exporters of doctors and nurses in the region. Agreements about mutual recognition of professional qualifications for three groups of health workers under the Association of Southeast Asian Nations Framework Agreement on Services could result in increased movement within the region in the future. To ensure that vital human resources for health are available to meet the needs of the populations that they serve, migration management and retention strategies need to be integrated into ongoing efforts to strengthen health systems in southeast Asia. There is also a need for improved dialogue between the health and trade sectors on how to balance economic opportunities associated with trade in health services with domestic health needs and equity issues. PMID:21269674

  1. Assessment and utilization of soil water resources

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the analyses of water interactions and water balance, this paper discusses the issues on the assessment and regulation of soil water resources, which lays the scientific basis for limited irrigation and water-saving agriculture.

  2. Water resources. [mapping and management

    Science.gov (United States)

    Salomonson, V. V.

    1974-01-01

    Substantial progress has been made in applying ERTS-1 data to water resources problems, nevertheless, more time and effort still appear necessary for further quantification of results, including the specification of thematic measurement accuracies. More modeling can be done very profitably. In particular, more strategy models describing the processes wherein ERTS-1 data would be acquired, analyzed, processed, and utilized in operational situations could be profitably accomplished. It is generally observed that the ERTS-1 data applicability is evident in several areas and that the next most general and substantive steps in the implementation of the data in operational situations would be greatly encouraged by the establishment of an operational earth resources satellite organization and capability. Further encouragement of this operational capability would be facilitated by all investigators striving to document their procedures as fully as possible and by providing time and cost comparisons between ERTS-1 and conventional acquisition approaches.

  3. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  4. Summary Analysis [United States Water Resources Council].

    Science.gov (United States)

    Roose, John B.; Cobb, Gary D.

    This report contains a summary and analysis of public response to the Water Resources Council proposed principles and standards and its accompanying draft environmental impact statement for planning the use of water and related land resources as well as planning and evaluating water and related land resources programs and projects. Both written…

  5. Water Resources Compound Systems: A Macro Approach to Analysing Water Resource Issues under Changing Situations

    OpenAIRE

    Wei Wang; Deshan Tang; Melissa Pilgrim; Jinan Liu

    2015-01-01

    Water resource crises are an increasing threat to human survival and development. To reveal the nature of water resource issues under changing situations, the water resources system needs to be studied from a macro and systematic perspective. This report develops a water resources system into a water resources compound system that is constantly evolving under the combined action of the development, resistant, and coordination mechanisms. Additionally, the water quotient is defined as a quanti...

  6. An Overview On Integrated Water Resource Management In Developing Countries With Reference To Global Efforts

    OpenAIRE

    V.V.Kulkarni

    2012-01-01

    Integrated Water Resources Management (IWRM) is a framework for the sustainable development and management of water resources for the whole society. IWRM plays a key role in social and economic development, particularly in sustainable development and poverty alleviation. The United Nations Economic and Social Commission for Western Asia (ESCWA), in coordination with a range of stakeholders, is implementing a programme for regional and national capacity building in IWRM. At t...

  7. Climate disturbance and water resources

    International Nuclear Information System (INIS)

    The worldwide multiplication of extreme climatic events (heat waves, dryness, floods, storms..) and their impact on the precious water resources raises the question of climate change: is it a reality, are the consequences already visible, should we urgently take care of it, and if so who actually takes care of it and how? This books makes a comprehensive overview of our knowledge about these questions, in a relevant and pedagogical way. Solutions to contain the climate boom risk exist and are based on the shared solidarity and responsibility. They require a strong involvement of the entire international community and their implementation has to run counter to the traditional opposition between developed and developing countries. However, the present day economic crisis is often used as a pretext for not doing anything. (J.S.)

  8. Introduction To Water Resources and Environmental Issues

    Science.gov (United States)

    Bulkley, Jonathan W.

    2011-04-01

    Water is an essential life-sustaining resource whose existence and availability for human use are often taken for granted. It is often utilized by people who are unaware of where the water originated and what happens to the water following use. Beyond meeting direct human use, water enables all living species to survive and flourish and is a renewable natural resource. The authors' preface frames the context for this book; namely, it is to make the subject of water, water resources, and water's interactions in the environment understandable, approachable, and relevant to a wide range of students.

  9. Adapting water accounting for integrated water resource management. The Júcar Water Resource System (Spain)

    Science.gov (United States)

    Momblanch, Andrea; Andreu, Joaquín; Paredes-Arquiola, Javier; Solera, Abel; Pedro-Monzonís, María

    2014-11-01

    An increase in water demands, exacerbated by climate change and the tightening of environmental requirements, leads to a reduction in available water resources for economic uses. This situation poses challenges for water resource planning and management. Water accounting has emerged as an appropriate tool to improve transparency and control in water management. There are multiple water accounting approaches, but they generally involve a very exhaustive list of accounted concepts. According to our findings in this research, one of the best water accounting methodologies is the Australian Water Accounting Standard. However, its implementation for integrated water resource planning and management purposes calls into questioning the amount of information and level of detail necessary for the users of water accounts. In this paper, we present a different method of applying the Australian Water Accounting Standard in relation to water resource management, which improves its utility. In order to compare the original approach and that proposed here, we present and discuss an application to the Júcar Water Resource System, in eastern Spain.

  10. Assessing water resource use in livestock production

    NARCIS (Netherlands)

    Ran, Y.; Lannerstad, M.; Herrero, M.; Middelaar, Van C.E.; Boer, De I.J.M.

    2016-01-01

    This paper reviews existing methods for assessing livestock water resource use, recognizing that water plays a vital role in global food supply and that livestock production systems consumes a large amount of the available water resources. A number of methods have contributed to the development o

  11. WATER MARKETS AND DECENTRALIZED WATER RESOURCES MANAGEMENT

    OpenAIRE

    K. William Easter; Robert HEARNE

    1994-01-01

    Because of its importance and the perceived inability of private sector sources to meet water demands, many countries have depended on the public sector to provide water services for their populations. Yet this has resulted in many inefficient public water projects and in inadequate supplies of good quality and reliable water. Decentralization of water management, including the use of water markets, cannot solve all of the water problems, but it can improve the efficiency of water allocation....

  12. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like...... irrigation efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource...

  13. International Human Resources Management of Japanese, American, and European Firms in Asia : The Roles of Headquarters and Subsidiaries

    OpenAIRE

    Hiromichi Shibata; Andrew Doyle

    2006-01-01

    The main role of the headquarters international human resources departments/business units of seven Japanese firms we researched is to manage the Japanese expatriates at their subsidiaries in Asia; they have little involvement with the management of local employees. The headquarters international human resources departments/business units at five researched American firms tend to maintain strong company value/mission that drives use of their performance appraisal/promotion systems for employe...

  14. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  15. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  16. Biofuels and resource use efficiency in developing Asia: Back to basics

    International Nuclear Information System (INIS)

    In Asia, as elsewhere in the world, countries rushed to promote biofuels during the dramatic oil price increases of 2007-2008 as way to enhance energy security, without waiting for the settlement of controversial debates about the environmental effects of biofuels, especially their effects on greenhouse gas emissions, deforestation, biodiversity, and whether biofuels cause a conflict between food and fuel. This paper does not settle this debate, but instead argues that there are straightforward, practical and feasible measures that can be implemented immediately in order to reduce the pressure of biofuels on the environment and food supply, and more generally increase food production. The key is to focus on increasing resource use efficiency in agriculture, especially different forms of energy use. Resource use efficiency in agriculture is low in many parts of Asia. Concrete measures that could be taken include reductions in market-distorting input subsidies and the introduction of resource-conserving technologies. These could be supplemented with greater use of non-fossil fuels in agricultural production, use of agricultural wastes in energy production, inclusion of input use levels in biofuel certification systems, and greater investment in agricultural research, extension systems, and infrastructure development. Biofuel fever has waned since the onset of the global financial crisis in late 2008, but it is likely to return when economic conditions eventually improve, and possible moves to strengthen the European Union biofuel blending requirements could further accelerate it. Much of the debate on biofuel-related impacts in the region has focused on deforestation, with little attention on agricultural input use, which could also have serious consequences for greenhouse gas (GHG) emissions. In sum, this paper argues that governments can still improve the environmental performance of biofuels while reducing potential conflicts with food security by implementing the

  17. Biofuels and resource use efficiency in developing Asia: Back to basics

    International Nuclear Information System (INIS)

    In Asia, as elsewhere in the world, countries rushed to promote biofuels during the dramatic oil price increases of 2007-2008 as way to enhance energy security, without waiting for the settlement of controversial debates about the environmental effects of biofuels, especially their effects on greenhouse gas emissions, deforestation, biodiversity, and whether biofuels cause a conflict between food and fuel. This paper does not settle this debate, but instead argues that there are straightforward, practical and feasible measures that can be implemented immediately in order to reduce the pressure of biofuels on the environment and food supply, and more generally increase food production. The key is to focus on increasing resource use efficiency in agriculture, especially different forms of energy use. Resource use efficiency in agriculture is low in many parts of Asia. Concrete measures that could be taken include reductions in market-distorting input subsidies and the introduction of resource-conserving technologies. These could be supplemented with greater use of non-fossil fuels in agricultural production, use of agricultural wastes in energy production, inclusion of input use levels in biofuel certification systems, and greater investment in agricultural research, extension systems, and infrastructure development. Biofuel fever has waned since the onset of the global financial crisis in late 2008, but it is likely to return when economic conditions eventually improve, and possible moves to strengthen the European Union biofuel blending requirements could further accelerate it. Much of the debate on biofuel-related impacts in the region has focused on deforestation, with little attention on agricultural input use, which could also have serious consequences for greenhouse gas (GHG) emissions. In sum, this paper argues that governments can still improve the environmental performance of biofuels while reducing potential conflicts with food security by implementing the

  18. Relative Abundance of Renewable Resources in Asia and Europe and the Future Demand for Renewable Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Danielsson, Peter [European Renewable Energies Federation (Sweden)

    2005-12-15

    In Europe and in many other parts of the world, energy consumption has reached unsustainable levels. As such, efforts must be made both to expand the use of renewable energy and to reduce the total level of energy consumption. If there are any pertinent driving forces for this, they would be the need to reduce harmful emissions; to increase sustainable energy supply, security, poverty, eradication and access to dignity for billions of people - the ending of a vicious circle of exploitation of scarce natural resources for inefficient energy use. Most European nations belong to the relatively small group of wealthy countries enjoying a comparatively high standard of living. They comprise of approximately 20% of the world's population, producing 80% of the world's GNP, while at the same time, consuming 60% of the world's energy, Ironically, more than half of the world's population, or close to 3 billion people, have almost no access to energy services - 1.2 billion live in Asia. There is, however, enough renewable energy flow worldwide to meet all demands. Renewable energies in general now provide some 14% of the world's primary energy and is mostly covered by traditional biomass. In the field of electricity, where renewables account for 20% worldwide, it is mostly hydropower which is used as source. We need a rapid and courageous worldwide change towards an energy-efficient, Renewable Energy Systems powered energy. Asia already offers a set of successful initiatives and examples of how renewables can be promoted. Some countries have set national targets for the future share of renewable energy. Targets are an excellent strategy to demonstrate political willingness and create a stimulating investment climate for the private sector. Financing schemes, adapted to regional situations, in particular microfinance systems, demonstrate how small-scale installations of renewables could become affordable to the population.

  19. Agriculture, Water Resources and Water Policies in Italy

    OpenAIRE

    Antonio Massarutto

    1999-01-01

    This paper provides an overview of the Italian water management system, with particular reference to the links between agriculture and water resources, and emphasis on underground resources. Our objective is mainly descriptive at this level; nonetheless, we try to evaluate patterns of interaction between agriculture and water resources policy from the point of view of water sustainability. After a short description of the main hydrologic and institutional aspects, the paper goes into the anal...

  20. Promoting Green Growth through Water Resources Management

    OpenAIRE

    Ishiwatari, Mikio; Wataya, Eiko; Shin, Taesun; Kim, Daeil; Song, Jiseon; Kim, Seyi

    2016-01-01

    Water security and water quality affect numerous economic sectors and areas: agriculture, energy, disaster management, and others. Countries need balanced and integrated approaches that are economically, environmentally, and socially sustainable. Threats related to climate change have added to the complexity, and to the importance, of water resource management. Korea’s integrated water resources management approach since the 1990s reflects the country’s “green” climate-resilient development ...

  1. Porphyry copper assessment of East and Southeast Asia: Philippines, Taiwan (Republic of China), Republic of Korea (South Korea), and Japan: Chapter P in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Demarr, Michael W.; Dicken, Connie L.; Ludington, Stephen; Robinson, Gilpin R., Jr.; Zientek, Michael L.

    2014-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of East and Southeast Asia as part of a global mineral resource assessment. The assessment covers the Philippines in Southeast Asia, and the Republic of Korea (South Korea), Taiwan (Province of China), and Japan in East Asia. The Philippines host world class porphyry copper deposits, such as the Tampakan and Atlas deposits. No porphyry copper deposits have been discovered in the Republic of Korea (South Korea), Taiwan (Province of China), or Japan.

  2. Preface: Remote Sensing of Water Resources

    OpenAIRE

    Deepak R. Mishra; D’Sa, Eurico J.; Sachidananda Mishra

    2016-01-01

    The Special Issue (SI) on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  3. Managing Water Resources to Maximize Sustainable Growth : A World Bank Water Resources Assistance Strategy for Ethiopia

    OpenAIRE

    Sadoff, Claudia

    2008-01-01

    This note contains a summary, for practitioners, of the World Bank Country Water Resources Assistance Strategy (CWRAS) report: it concerns managing water resources to maximize sustainable growth and focuses on World Bank water resources assistance strategy for Ethiopia (March 2006). Specifically, the note describes the scope and scale of the impacts of hydrological variability on Ethiopia'...

  4. Overview of the Environmental and Water Resources Institute's "Guidelines For Integrated Water Resources Management" Project

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Sehlke

    2005-03-01

    Integrated Water Resources Management is a systematic approach to optimizing our understanding, control and management of water resources within a basin to meet multiple objectives. Recognition of the need for integrating water resources within basins is not unique to the Environmental and Water Resources Institute’s Integrated Water Resources Management Task Committee. Many individuals, governments and other organizations have attempted to develop holistic water resources management programs. In some cases, the results have been very effective and in other cases, valiant attempts have fallen far short of their initial goals. The intent of this Task Committee is to provide a set of guidelines that discusses the concepts, methods and tools necessary for integrating and optimizing the management of the physical resources and to optimize and integrate programs, organizations, infrastructure, and socioeconomic institutions into comprehensive water resources management programs.

  5. Water balance and fertigation for crop improvement in West Asia. Results of a technical co-operation project

    International Nuclear Information System (INIS)

    Mediterranean countries have a severe shortage of water resources for agricultural, municipal and industrial purposes. This situation is aggravated daily due to the rapidly increasing population in the area. Agriculture is the biggest consumer of water with about 80% of the renewable resource used for irrigation. Traditional irrigation methods are highly inefficient: only about one-third of the applied water is actually transpired by the crops. Clearly, there is great scope for improved irrigation management. Intensification of agricultural production to meet growing market demand requires the simultaneous application of irrigation water and fertilizers. Application of fertilizer in drip irrigation (fertigation) is an effective way to promote efficient use of these scarce and expensive resources. There is widespread interest in Mediterranean countries in fertigation. Nevertheless, information on the form and concentration of the nutrients required for different crops is presently inadequate. Moreover, the low fertilizer recoveries due to extensive fertilization practiced during the last few decades have created serious agricultural and environmental problems. High nitrate concentrations in groundwater and deterioration of some important quality parameters of agricultural products are the main concerns. Recognizing the potential role of nuclear techniques in identifying improved water and fertilizer management practices, the IAEA implemented two regional technical co-operation projects during the period 1995-2000 with eight participating countries from the West Asia region: The Islamic Republic of Iran, Jordan, Lebanon, Saudi Arabia, the Syria Arab Republic, Turkey, United Arab Emirates and Yemen. The main objective was to establish water balance and fertigation practices using nuclear techniques, with a view to improving crop production in arid and semi-arid zones. The projects aimed to compare the following parameters under conventional fertilizer and water

  6. An innovative method for water resources carrying capacity research--Metabolic theory of regional water resources.

    Science.gov (United States)

    Ren, Chongfeng; Guo, Ping; Li, Mo; Li, Ruihuan

    2016-02-01

    The shortage and uneven spatial and temporal distribution of water resources has seriously restricted the sustainable development of regional society and economy. In this study, a metabolic theory for regional water resources was proposed by introducing the biological metabolism concept into the carrying capacity of regional water resources. In the organic metabolic process of water resources, the socio-economic system consumes water resources, while products, services and pollutants, etc. are output. Furthermore, an evaluation index system which takes into the characteristics of the regional water resources, the socio-economic system and the sustainable development principle was established based on the proposed theory. The theory was then applied to a case study to prove its availability. Further, suggestions aiming at improving the regional water carrying capacity were given on the basis of a comprehensive analysis of the current water resources situation. PMID:26683766

  7. Earth Observation for Water Resources Management

    OpenAIRE

    García, Luis; Rodríguez, Juan Diego; Wijnen, Marcus; Pakulski, Inge

    2015-01-01

    This book describes some key global water challenges, perspectives for remote sensing approaches, and their importance for water resources-related activities. It presents eight key types of water resources management variables, a list of sensors that can produce such information, and a description of existing data products with examples. This book provides a series of practical guidelines that can be used by project leaders to decide whether remote sensing may be useful for the problem a...

  8. Overcoming data scarcity: Seasonal forecasting of reservoir inflows using public domain resources in Central Asia

    Science.gov (United States)

    Dixon, Samuel G.; Wilby, Robert L.

    2016-04-01

    Management of large hydropower reservoirs can be politically and strategically problematic. Traditional flow forecasting techniques rely on accurate ground based observations, a requirement not met in many areas of the globe (Artan et al., 2007). In particular, access to real-time observational data in transnational river basins is often not possible. In these regions, novel techniques are required to combat the challenges of flow forecasting for efficient reservoir management. Near real time remotely sensed information regarding flow predictors (e.g. satellite precipitation estimates) could combat data availability issues, improving the utility of seasonal reservoir inflow forecasts. This study investigates the potential for river flow forecasting using public domain resources, including satellite and re-analysis precipitation as well as climate indices for several strategically important reservoirs throughout Central Asia (including Toktogul, Andijan, Kayrakkum and Nurek). Using reservoir inflows from 2001-2010, parsimonious numerical models were created for each study site using selected significant predictors for lead times of 1-3 months as well half year averages. Preliminary investigation has shown that parsimonious statistical models can explain over 80% of the variance in monthly inflows with three month lead to the Toktogul reservoir, Kyrgyzstan (Dixon and Wilby, 2015). Such findings show promise for improving the safety and efficiency of reservoir operations as well as reducing risks emerging from climate change.

  9. Teale Department of Water Resources

    Data.gov (United States)

    California Department of Resources — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state...

  10. Water Resources Compound Systems: A Macro Approach to Analysing Water Resource Issues under Changing Situations

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-12-01

    Full Text Available Water resource crises are an increasing threat to human survival and development. To reveal the nature of water resource issues under changing situations, the water resources system needs to be studied from a macro and systematic perspective. This report develops a water resources system into a water resources compound system that is constantly evolving under the combined action of the development, resistant, and coordination mechanisms. Additionally, the water quotient is defined as a quantitative representation of the sustainable development state of the water resources compound system. Four cities in China, Beijing, Fuzhou, Urumqi, and Lhasa, were selected as the study areas. The differences in the three types of mechanisms and the water quotient of the water resources compound system of each city in 2013 were compared. The results indicate that the different subsystems that comprise the compound system of a given area have different development mechanisms and resistant mechanisms. There are clear differences in the mechanisms and the water quotients for the water resources compound systems of different regions. Pertinent measures should be taken into account during integrated water resource management to improve the sustainable development status of regional water resources compound systems.

  11. Internet-based information resource and discussion platform on GHG reduction strategies in Asia

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-28

    The website (www.ccasia.teri.res.in) provides a consolidated Internet based information source and platform for discussions on climate change issues in Asia. The effort has been successful in reaching the target audience and in stimulating awareness about the crucial debate on GHG (greenhouse gas) reduction strategies in Asia.

  12. Land resource development and utilization in Central Asia%中亚土地资源开发与利用分析

    Institute of Scientific and Technical Information of China (English)

    范彬彬; 罗格平; 胡增运; 李超凡; 韩其飞; 王渊刚; 李小玉; 艳燕

    2012-01-01

    rapidly, and then increase slowly. The area of the farmland decreases from 43. 1 x 104 km2 (10. 9% ) in 1992 to 29. 8 x 104 km2 (7. 58% ) in 2000, and then increases to 31.6 x 104 km2(8.04% ) in 2009 which is still far from the farmland area in 1992. Because of the breakup of the Soviet Union, a series of problem including the shortage of means of production, the destruction of the agricultural infrastructure and the market economy is still not established which had been caused the waste of land. After that, the independent of the states in Central Asia leads the recovery of the social economy and the area of farmland. (2) The areas of forest and grassland in Central Asia are varied little. However, the grassland grazing capacity has changed in large degree. In details; the grazing capacity of Kazakhstan has been decreased continually with the number 6. 25 × 107 sheep in 2009 that is only accounts to 63. 1% of the 9. 91 ×10 sheep in 1992; on the contrary, the grazing capacity of Turkmenistan has been increasing from 1. 04 × 10 sheep in 1992 to 2.96×107 sheep in 2009 that is triple of 1.04 x 107 sheep in 1992; the grazing capacity of Uzbekistan, Tajikistan and Kyrgyzstan increases at different degree, respectively. The privatization of pasture in the most of Central Asia and the damage of seasonal pasture contribute to the change of the grassland grazing capacity. (3) The potential productivity of the land resource is great in Central Asia. However, ecological problems such as soil erosion and soil-salinization of the farmland and pasture overgrazing, have been discovered in this area. In addition , the reasonable application of water resources in Central Asia has great important ecological significance and e-conomic value, especially in the arid land. But, as well know, the water resources are shortage and the distribution is not reasonable, and there are still some problems in the application of the water resources, such as, the waste of water, the pollution of water

  13. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  14. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  15. Techniques for integrated water resources management

    Science.gov (United States)

    The course, Decision Support Techniques for Integrated Water Resources Management, is designed mainly for technical managers and staff of water resources management agencies at the international, national, regional, and local water board level, as well as consultants in other professions working in or interested in the field of water resources development, planning, and operation. It will be held in Wageningen, The Netherlands, June 10-15, 1991.The course objective is to promote better understanding and dissemination of techniques to be applied in “real-world” integrated water resources management. The course offers an introduction to the concepts of decision modeling, plus ample case studies to demonstrate their applicability. It covers decision theory, operations research and simulation methods, as well as certain aspects of law and psychology. Selected multiple objective techniques will be presented, followed by an overview of recent trends in the field. Computer-based techniques will be demonstrated.

  16. Simulating the Energy and Water Fluxes from Two Alkaline Desert Ecosystems over Central Asia

    Directory of Open Access Journals (Sweden)

    Chang-Qing Jing

    2016-01-01

    Full Text Available The Central Asia region is covered by vast desert ecosystems, where the characteristic of energy and water fluxes is different from other humid ecosystems. The application of land surface models (LSMs in arid and semiarid ecosystems was largely limited. This paper presents a detailed evaluation of Common Land Model (CoLM at two eddy covariance (EC sites in alkaline desert ecosystems over Central Asia. Simulations of the net radiation (Rnet, latent heat flux (Qle, sensible heat flux (Qh, and soil temperature showed that refined estimate of roughness length (Z0m significantly improved the performance of CoLM in simulating turbulent heat fluxes. Qle was increased but Qh was decreased, which were in better agreement with the observations from EC system. The results indicated that accurate parameterization of Z0m is of crucial importance for predicting energy and water fluxes in LSM when applied in Central Asia desert ecosystems. Sensitivity analysis regarding leaf area index (LAI, Z0m, and albedo (α showed that Rnet is very sensitive to α but Qle, Qh, and soil temperature (Tsoil are sensitively varying with the estimate of Z0m at the two EC sites over Central Asia.

  17. 18 CFR 701.76 - The Water Resources Council Staff.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false The Water Resources Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The...

  18. Preface: Remote Sensing of Water Resources

    Directory of Open Access Journals (Sweden)

    Deepak R. Mishra

    2016-02-01

    Full Text Available The Special Issue (SI on “Remote Sensing of Water Resources” presents a diverse range of papers studying remote sensing tools, methods, and models to better monitor water resources which include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely ranging research topics related to water bodies. This preface summarizes each article published in the SI.

  19. Assessment of Undiscovered Oil and Gas Resources of Southeast Asia, 2010

    Science.gov (United States)

    2010-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey (USGS) estimated means of 21.6 billion barrels of oil and 299 trillion cubic feet of undiscovered natural gas in 22 provinces of southeast Asia.

  20. Innovative Strategies in Higher Education for Accelerated Human Resource Development in South Asia

    OpenAIRE

    Asian Development Bank (ADB)

    2014-01-01

    This publication highlights priorities and strategies in meeting current and emerging needs for skills development in South Asia. The report is in line with the Asian Development Bank’s effort to support its developing member countries’ priorities toward global competitiveness, increased productivity, and inclusive growth. It also identifies key issues, constraints and areas of improvement in making skills training more responsive to emerging labor market needs in South Asia as an important f...

  1. Water Availability and Management of Water Resources

    Science.gov (United States)

    One of the most pressing national and global issues is the availability of freshwater due to global climate change, energy scarcity issues and the increase in world population and accompanying economic growth. Estimates of water supplies and flows through the world's hydrologic c...

  2. WaterWatch -- Current Water Resources Conditions

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — WaterWatch (http://waterwatch.usgs.gov) is a U.S. Geological Survey (USGS) World Wide Web site that displays maps, graphs, and tables describing real-time, recent,...

  3. Sustainable use of water resources

    DEFF Research Database (Denmark)

    Battilani, A; Jensen, Christian Richardt; Liu, Fulai;

    2013-01-01

    difference between RDI and PRD for the total and marketable yield. In 2008, PRD increased the marketable yield by 14.8% while the total yield was similar to RDI. Water Use Efficiency (WUE) was higher with PRD (+14%) compared to RDI. PRD didn’t improve fruit quality, although in 2007 a better °Brix, colour...... and acidity were observed. PRD reduced irrigation water volume (-9.0% of RDI) while a higher dry matter accumulation in the fruits was recorded both in 2007 and 2008. The income for each cubic meter of irrigation water was 10.6 € in RDI and 14.8 € in PRD, respectively. The gross margin obtained with...

  4. Radon removal from the water resource

    International Nuclear Information System (INIS)

    Concerning the presence of radioactive substances in groundwater used for public supply, particular attention is paid to radon removal in water treatment process. The processes based on water aeration are the most common methods for the reduction of radon concentrations in water. Simple spraying, bubble aeration in the deeper layers of water and various modifications of water aeration in a horizontal arrangement - Inka system and aeration towers - are used for radon removal from water. Vacuum de-aeration is another possibility of reducing the concentration of radon in water. However, this procedure is not widely used in practice as compared to the above methods. The article presents the results obtained from the pilot tests for radon removal by using the aeration tower and Inka aeration system in the water resource supplying the city of Istebné with drinking water. Key words: radon, radon removal , aeration tower , Inka aerator , water quality

  5. Porphyry copper assessment of the Tethys region of western and southern Asia: Chapter V in Global mineral resource assessment

    Science.gov (United States)

    Zürcher, Lukas; Bookstrom, Arthur A.; Hammarstrom, Jane M.; Mars, John C.; Ludington, Stephen; Zientek, Michael L.; Dunlap, Pamela; Wallis, John C.; Drew, Lawrence J.; Sutphin, David M.; Berger, Byron R.; Herrington, Richard J.; Billa, Mario; Kuşcu, Ilkay; Moon, Charles J.; Richards, Jeremy P.

    2015-01-01

    A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in the Tethys region of western and southern Asia was carried out as part of a global mineral resource assessment led by the U.S. Geological Survey (USGS). The purpose of the study was to delineate geographic areas as permissive tracts for the occurrence of porphyry copper deposits at a scale of 1:1,000,000 and to provide probabilistic estimates of amounts of copper likely to be contained in undiscovered porphyry copper deposits in those tracts. The team did the assessment using the USGS three-part form of mineral resource assessment, which is based on (1) mineral deposit and grade-tonnage models constructed from known deposits as analogs for undiscovered deposits, (2) delineation of permissive tracts based on geoscientific information, and (3) estimation of numbers of undiscovered deposits.

  6. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  7. Water Resources Availability in Kabul, Afghanistan

    Science.gov (United States)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  8. Water Resources System Archetypes: Towards a Holistic Understanding of Persistent Water Resources Problems

    Science.gov (United States)

    Mirchi, A.; Watkins, D. W.; Madani, K.

    2011-12-01

    Water resources modeling, a well-established tool in water resources planning and management practice, facilitates understanding of the physical and socio-economic processes impacting the wellbeing of humans and ecosystems. While watershed models continue to become more holistic, there is a need for appropriate frameworks and tools for integrated conceptualization of problems to provide reliable qualitative and quantitative bases for policy selection. In recent decades, water resources professionals have become increasingly cognizant of important feedback relationships within water resources systems. We contend that a systems thinking paradigm is required to facilitate characterization of the closed-loop nature of these feedbacks. Furthermore, a close look at different water resources issues reveals that, while many water resources problems are essentially very similar in nature, they continuously appear in different geographical locations. In the systems thinking literature, a number of generic system structures known as system archetypes have been identified to describe common patterns of problematic behavior within systems. In this research, we identify some main system archetypes governing water resources systems, demonstrating their benefits for holistic understanding of various classes of persistent water resources problems. Using the eutrophication problem of Lake Allegan, Michigan, as a case study, we illustrate how the diagnostic tools of system dynamics modeling can facilitate identification of problematic feedbacks within water resources systems and provide insights for sustainable development.

  9. Help with Bolivia's water resources

    Science.gov (United States)

    The Regional State Corporation for Development (CORDECO) in Cochabamba, Bolivia, is seeking geoscientists who can help plan and carry out a variety of hydrological projects. Water pollution, erosion control, basin management, and small-scale irrigation programs are all within the scope of these projects, as are land control and reclamation, river regulation and control, and village water supplies.CORDECO will welcome scientists and graduate students who have relevant experience. CORDECO will provide local office and fieldwork facilities (including technicians) and will cover the projects' expenses. The participating scientists must arrange for their subsistence and travel expenses to and from Bolivia to be paid by their own institutions. It is not necessary for the participating scientists to know Spanish.

  10. Redressing China's Strategy of Water Resource Exploitation

    Science.gov (United States)

    Ran, Lishan; Lu, Xi Xi

    2013-03-01

    China, with the confrontation of water-related problems as an element of its long history, has been investing heavily in water engineering projects over the past few decades based on the assumption that these projects can solve its water problems. However, the anticipated benefits did not really occur, or at least not as large as expected. Instead, the results involved additional frustrations, such as biodiversity losses and human-induced disasters (i.e., landslides and earthquakes). Given its inherent shortcomings, the present engineering-dominated strategy for the management of water resources cannot help solve China's water problems and achieve its goal of low-carbon transformation. Therefore, the present strategy for water resources exploitation needs to be reevaluated and redressed. A policy change to achieve better management of Chinese rivers is urgently needed.

  11. Water Resources by 2100 in Mountains with Declining Glaciers

    Science.gov (United States)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a

  12. The Integrated Management Policies of Water Resources

    OpenAIRE

    Turek Rahoveanu, Maria Magdalena; Adrian ZUGRAVU

    2010-01-01

    The balance between water demand and availability has reached a critical level in many areas of Europe, the result of over-abstraction and prolonged periods of low rainfall or drought. Reduced river flows, lowered lake and groundwater levels, and the drying up of wetlands are widely reported, alongside detrimental impacts on freshwater ecosystems, including fish and bird life. Where the water resource has diminished, a worsening of water quality has normally followed because there is less wat...

  13. Sustainability of ground-water resources

    Science.gov (United States)

    Alley, William M.; Reilly, Thomas E.; Franke, O. Lehn

    1999-01-01

    The pumpage of fresh ground water in the United States in 1995 was estimated to be approximately 77 billion gallons per day (Solley and others, 1998), which is about 8 percent of the estimated 1 trillion gallons per day of natural recharge to the Nation's ground-water systems (Nace, 1960). From an overall national perspective, the ground-water resource appears ample. Locally, however, the availability of ground water varies widely. Moreover, only a part of the ground water stored in the subsurface can be recovered by wells in an economic manner and without adverse consequences.

  14. Water, Society and the future of water resources research (Invited)

    Science.gov (United States)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  15. Urban Fresh Water Resources Consumption of China

    Institute of Scientific and Technical Information of China (English)

    ZHU Peng; LU Chunxia; ZHANG Lei; CHENG Xiaoling

    2009-01-01

    From the point of view of urban consumption behavior, urban fresh water consumption could be classified as three types, namely, direct, indirect and induced water consumption. A calculation approach of urban fresh water consumption was presented based on the theory of urban basic material consumption and the input-output method, which was utilized to calculate urban fresh water consumption of China, and to analyze its structural change and causes. The results show that the total urban fresh water consumption increased 561.7×109m3, and the proportion to the total national fresh water resources increased by 20 percentage points from 1952 to 2005. The proportion of direct and induced water consumption had been continuously rising, and it increased by 15 and 35 percentage points separately from 1952 to 2005, while the proportion of indirect water consumption decreased by 50 percentage points. Urban indi-rect water consumption was mainly related to urban grain, beef and mutton consumption, and urban induced water consumption had a close relationship with the amount of carbon emission per capita. Finally, some countermeasures were put forward to realize sustainable utilization of urban fresh water resources in China.

  16. Population and water resources: a delicate balance.

    Science.gov (United States)

    Falkenmark, M; Widstrand, C

    1992-11-01

    Various avenues exist to minimize the effects of the current water crisis in some regions of the world and the more widespread problems that will threaten the world in the future. Active management of existing water resources and a reduction in population growth in water-scarce areas are needed to minimize the effects of the water crisis. National boundaries do not effect water systems. Cooperation and commitment of local, national, and international governments, institutions, and other organizations are needed to manage water systems. Development in each country must entail conscientious and effective balancing of unavoidable manipulations of the land and the unavoidable environmental impacts of those manipulations. The conditions of environmental sustainability must include protection of land productivity, ground water potability, and biodiversity. Humans must deal with these factors either by adopting methods to protect natural systems or by correcting existing damage and reducing future problems. They need to understand the demographic forces in each country so they can balance society's rising needs for clean water with the finite amount of water available. Factors affecting future needs at all levels include rapid rural-urban migration, high fertility, and changing patterns of international population movement. Given an increased awareness of global water systems, demographic trends, and active management of resources, the fragile balance between population and water can be maintained. PMID:12344702

  17. Internet GIS and water resource information

    International Nuclear Information System (INIS)

    GIS is Geographic Information System, a computer system capable of integrating, storing, editing, analyzing, sharing and displaying geographically referenced information. At present, GIS is not only limited to cartography but also involves in various activities i.e. scientific investigation, natural resource management, environmental impact, assessment, etc. Internet GIS allows more information sharing as many users can access GIS at the same time. Another progress in GIS is GIS/MIS where non-geographical information (customized to users' purposes) regarding the particular area was overlaid with GIS. Internet GIS/MIS is useful for water resource management, as it gives users better understanding of the overall picture i.e. GIS: locations of rivers/basins, topography of the flooded/drought areas, linkages of geographical factors and natural disasters occurred and MIS: water demand and supply thus gives users the ability to find best solution for each area and manage water resource in a sustainable manner. (author)

  18. Internet GIS and water resource information

    International Nuclear Information System (INIS)

    GIS is Geographic Information System, a computer system capable of integrating, storing, editing, analyzing, sharing and displaying geographically referenced information. At present, GIS is not only limited to cartography but also involves in various activities i.e. scientific investigation, natural resource management, environmental impact assessment, etc. Internet GIS allows more information sharing as many users can access GIS at the same time. Another progress in GIS is GIS/MIS where non geographical information (customized to users' purposes) regarding the particular area was overlaid with GIS. Internet GIS/MIS is useful for water resource management as it gives users better understanding of the overall picture i.e. GIS: locations of rivers/basins, topography of the flooded/drought areas, linkages of geographical factors and natural disasters occurred and MIS: water demand and supply thus gives users the ability to find best solution for each area and manage water resource in a sustainable manner. (author)

  19. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  20. 30 CFR 402.6 - Water-Resources Research Program.

    Science.gov (United States)

    2010-07-01

    ... governments for research concerning any aspect of a water-resource related problem deemed to be in the... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH...

  1. Modeling Renewable Water Resources under Climate Change

    Science.gov (United States)

    Liu, X.; Tang, Q.

    2014-12-01

    The impacts of climate change on renewable water resources are usually assessed using hydrological models driven by downscaled climate outputs from global climate models. Most hydrological models do not have explicit parameterization of vegetation and thus are unable to assess the effects of elevated atmospheric CO2 on stomatal conductance and water loss of leaf. The response of vegetation to elevated atmospheric CO2 would reduce evaporation and affect runoff and renewable water resources. To date, the impacts of elevated CO2 on vegetation transpiration were not well addressed in assessment of water resources under climate change. In this study, the distributed biosphere-hydrological (DBH) model, which incorporates a simple biosphere model into a distributed hydrological scheme, was used to assess the impacts of elevated CO2 on vegetation transpiration and consequent runoff. The DBH model was driven by five General Circulation Models (GCMs) under four Representative Concentration Pathways (RCPs). For each climate scenario, two model experiments were conducted. The atmospheric CO2 concentration in one experiment was assumed to remain at the level of 2000 and increased as described by the RCPs in the other experiment. The results showed that the elevated CO2 would result in decrease in evapotranspiration, increase in runoff, and have considerable impacts on water resources. However, CO2 induced runoff change is generally small in dry areas likely because vegetation is usually sparse in the arid area.

  2. Hydrologic effects of land and water management in North America and Asia: 1700–1992

    Directory of Open Access Journals (Sweden)

    I. Haddeland

    2006-09-01

    Full Text Available The hydrologic effects of land use changes, dams, and irrigation in North America and Asia over the past 300 years are studied using a macroscale hydrologic model. The simulation results indicate that the expansion of croplands over the last three centuries has resulted in 2.5 and 6 percent increases in annual runoff volumes for North America and Asia, respectively, and that these increases in runoff to some extent have been compensated by increased evapotranspiration caused by irrigation practices. Averaged over the year and the continental scale, the accumulated anthropogenic impacts on surface water fluxes are hence relatively minor. However, for some regions within the continents human activities have altered hydrologic regimes profoundly. Reservoir operations and irrigation practices in the western part of USA and Mexico have resulted in a 25 percent decrease in streamflow in June, and a 9 percent decrease in annual runoff volumes reaching the Pacific Ocean. In the area in South East Asia draining to the Pacific Ocean, land use changes have caused an increase in runoff volumes throughout the year, and the average annual increase in runoff is 12 percent.

  3. Hydrologic effects of land and water management in North America and Asia: 1700–1992

    Directory of Open Access Journals (Sweden)

    I. Haddeland

    2007-01-01

    Full Text Available The hydrologic effects of land use changes, dams, and irrigation in North America and Asia over the past 300 years are studied using a macroscale hydrologic model. The simulation results indicate that the expansion of croplands over the last three centuries has resulted in 2.5 and 6 percent increases in annual runoff volumes for North America and Asia, respectively, and that these increases in runoff to some extent have been compensated by increased evapotranspiration caused by irrigation practices. Averaged over the year and the continental scale, the accumulated anthropogenic impacts on surface water fluxes are hence relatively minor. However, for some regions within the continents human activities have altered hydrologic regimes profoundly. Reservoir operations and irrigation practices in the western part of USA and Mexico have resulted in a 25 percent decrease in runoff in June, and a 9 percent decrease in annual runoff volumes reaching the Pacific Ocean. In the area in South East Asia draining to the Pacific Ocean, land use changes have caused an increase in runoff volumes throughout the year, and the average annual increase in runoff is 12 percent.

  4. Linking water resources to food security through virtual water

    Science.gov (United States)

    Tamea, Stefania

    2014-05-01

    The largest use of global freshwater resources is related to food production. While each day we drink about 2 liters of water, we consume (eating) about 4000 liters of ''virtual water'', which represents the freshwater used to produce crop-based and livestock-based food. Considering human water consumption as a whole, most part originates from agriculture (85.8%), and only minor parts come from industry (9.6%) or households (4.6%). These numbers shed light on the great pressure of humanity on global freshwater resources and justify the increasing interest towards this form of environmental impact, usually known as ''water footprint''. Virtual water is a key variable in establishing the nexus between water and food. In fact, water resources used for agricultural production determine local food availability, and impact the international trade of agricultural goods. Trade, in turn, makes food commodities available to nations which are not otherwise self-sufficient, in terms of water resources or food, and it establishes an equilibrium between food demand and production at the global scale. Therefore, food security strongly relies on international food trade, but also on the use of distant and foreign water resources, which need to be acknowledged and investigated. Virtual water embedded in production and international trade follows the fate of food on the trade network, generating virtual flows of great magnitude (e.g., 2800 km3 in 2010) and defining local and global virtual water balances worldwide. The resulting water-food nexus is critical for the societal and economic development, and it has several implications ranging from population dynamics to the competing use of freshwater resources, from dietary guidelines to globalization of trade, from externalization of pollution to policy making and to socio-economic wealth. All these implications represent a great challenge for future research, not only in hydrology but in the many fields related to this

  5. Isotope techniques in water resources development 1991

    International Nuclear Information System (INIS)

    Water resources are scarce in many parts of the world. Often, the only water resource is groundwater. Overuse usually invites a rapid decline in groundwater resources which are recharged insufficiently, or not at all, by prevailing climatic conditions. These and other problems currently encountered in hydrology and associated environmental fields have prompted an increasing demand for the utilization of isotope methods. Such methods have been recognized as being indispensable for solving problems such as the identification of pollution sources, characterization of palaeowater resources, evaluation of recharge and evaporative discharge under arid and semi-arid conditions, reconstruction of past climates, study of the interrelationships between surface and groundwater, dating of groundwater and validation of contaminant transport models. Moreover, in combination with other hydrogeological and geochemical methods, isotope techniques can provide useful hydrological information, such as data on the origin, replenishment and dynamics of groundwater. It was against this background that the International Atomic Energy Agency, in co-operation with the United Nations Educational, Scientific and Cultural Organization and the International Association of Hydrological Sciences, organized this symposium on the Use of Isotope Techniques in Water Resources Development, which took place in Vienna from 11 to 15 March 1991. The main themes of the symposium were the use of isotope techniques in solving practical problems of water resources assessment and development, particularly with respect to groundwater protection, and in studying environmental problems related to water, including palaeohydrological and palaeoclimatological problems. A substantial part of the oral presentations was concerned with the present state and trends in groundwater dating, and with some methodological aspects. These proceedings contain the papers of 37 oral and the extended synopses of 47 poster

  6. Water: A key resource in energy production

    Energy Technology Data Exchange (ETDEWEB)

    Rio Carrillo, Anna Merce, E-mail: annamerce.rio@gmail.co [EPFL (Switzerland); Frei, Christoph [World Economic Forum and EPFL (Switzerland)

    2009-11-15

    Water and energy are the key resources required for both economic and population growth, and yet both are increasingly scarce. The distribution of water takes large amounts of energy, while the production of energy requires large amounts of water in processes such as thermal plant cooling systems or raw materials extraction. This study analyzes the water needs for energy production in Spain according to the energy source sector (electricity, transportation or domestic) and process type (extraction and refining of raw materials or thermal plant use). Current and future water needs are quantified according to energy demand and technology mix evolution. Hypothetical scenarios that simulate the risks of promoting specific energy policies are also analyzed. Results show that the combination of energy resources used in Spain is projected to be more than 25% more water consumptive in 2030 than in 2005 under ceteris paribus conditions. Renewable energies are mixed in terms of their consequences on the water supply; wind power can reduce water withdrawal, while the biofuels production is a water-intensive process.

  7. Water. A key resource in energy production

    Energy Technology Data Exchange (ETDEWEB)

    Rio Carrillo, Anna Merce [EPFL, Geneva (Switzerland); Frei, Christoph [World Economic Forum and EPFL, Geneva (Switzerland)

    2009-11-15

    Water and energy are the key resources required for both economic and population growth, and yet both are increasingly scarce. The distribution of water takes large amounts of energy, while the production of energy requires large amounts of water in processes such as thermal plant cooling systems or raw materials extraction. This study analyzes the water needs for energy production in Spain according to the energy source sector (electricity, transportation or domestic) and process type (extraction and refining of raw materials or thermal plant use). Current and future water needs are quantified according to energy demand and technology mix evolution. Hypothetical scenarios that simulate the risks of promoting specific energy policies are also analyzed. Results show that the combination of energy resources used in Spain is projected to be more than 25% more water consumptive in 2030 than in 2005 under ceteris paribus conditions. Renewable energies are mixed in terms of their consequences on the water supply; wind power can reduce water withdrawal, while the biofuels production is a water-intensive process. (author)

  8. Isotope techniques in water resources development

    International Nuclear Information System (INIS)

    These proceedings contain the papers of 41 oral and the extended synopses of 40 poster presentations at the seventh symposium on the use of isotope techniques in water resources development. The topics of the sessions were as follows: Thermal water studies, groundwater dating, hydrology of arid and semi-arid areas, field studies with environmental isotopes, precipitation-surface-groundwater relationships, pollution, artificial tracers and sediment transport. Refs, figs, tabs

  9. Game Theory in water resources management

    Science.gov (United States)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  10. Health risks from large-scale water pollution: trends in Central Asia.

    Science.gov (United States)

    Törnqvist, Rebecka; Jarsjö, Jerker; Karimov, Bakhtiyor

    2011-02-01

    Limited data on the pollution status of spatially extensive water systems constrain health-risk assessments at basin-scales. Using a recipient measurement approach in a terminal water body, we show that agricultural and industrial pollutants in groundwater-surface water systems of the Aral Sea Drainage Basin (covering the main part of Central Asia) yield cumulative health hazards above guideline values in downstream surface waters, due to high concentrations of copper, arsenic, nitrite, and to certain extent dichlorodiphenyltrichloroethane (DDT). Considering these high-impact contaminants, we furthermore perform trend analyses of their upstream spatial-temporal distribution, investigating dominant large-scale spreading mechanisms. The ratio between parent DDT and its degradation products showed that discharges into or depositions onto surface waters are likely to be recent or ongoing. In river water, copper concentrations peak during the spring season, after thawing and snow melt. High spatial variability of arsenic concentrations in river water could reflect its local presence in the top soil of nearby agricultural fields. Overall, groundwaters were associated with much higher health risks than surface waters. Health risks can therefore increase considerably, if the downstream population must switch to groundwater-based drinking water supplies during surface water shortage. Arid regions are generally vulnerable to this problem due to ongoing irrigation expansion and climate changes. PMID:21131050

  11. Climate change and water resources in Britain

    International Nuclear Information System (INIS)

    This paper explores the potential implications of climate change for the use and management of water resources in Britain. It is based on a review of simulations of changes in river flows, groundwater recharge and river water quality. These simulations imply, under feasible climate change scenarios, that annual, winter and summer runoff will decrease in southern Britain, groundwater recharge will be reduced and that water quality - as characterised by nitrate concentrations and dissolved oxygen contents - will deteriorate. In northern Britain, river flows are likely to increase throughout the year, particularly in winter. Climate change may lead to increased demands for water, over and above that increase which is forecast for non-climatic reasons, primarily due to increased use for garden watering. These increased pressures on the water resource base will impact not only upon the reliability of water supplies, but also upon navigation, aquatic ecosystems, recreation and power generation, and will have implications for water management. Flood risk is likely to increase, implying a reduction in standards of flood protection. The paper discusses adaptation options. 39 refs., 5 figs

  12. Water resources in the Japanese Islands

    Science.gov (United States)

    Takagi, T.

    2005-12-01

    Due to its limited land area and limited range of natural resources (particularly fuel), Japan has developed a highly efficient economy in terms of resource utilization. This also applies to water resources. For sustainable use of water resources in the Japanese Islands, integrated and unified analyses of the data of groundwater by the nation and local governments have been needed. Land area of the Japanese Islands is 377,000 square kilometers, which is equivalent to the area of the state of Montana, but extends for 3,600 kilometers along the margin of the Eurasian continent. Mountainous areas separated by isolated, narrow plains make up 80 % of the land area. Due to the topography of Japan, rivers are generally short with steep grades, the longest being only 367 kilometers in length. Average annual precipitation is 1,600 millimeters but is highly seasonal. The annual water demand was approximately 87 billion cubic meters during the past 25 years, which represents 21 % of the total usable water. The water demand for agriculture makes up 66 % of the total water demand, and 96 % of the water for agricultural uses is used for the irrigation of rice paddies. Municipal and industrial uses make up 15.4 and 18.9 % of the demand, respectively (as of 2000). Nearly 80 % of the water used by industry in recycled. Approximately 87 % of the water demand is supplied from surface water with the rest from ground water. Because of its mountainous topography, the extent of individual aquifers is far smaller than in United States. Groundwater basins in the Japanese Islands are classified into the following six types: plain type (thick Quaternary strata); basin type (intermontane terraces and fans; hill type (highly eroded old volcanoes); volcano type (permeable lava and pyroclasitc flows comprising Quaternary strato volcanoes); pyroclastic type (thick tuff associated with large caldera formations); and limestone type (limestone blocks with karsts). Of the above types, the only major

  13. Water resource conflicts in the Middle East.

    Science.gov (United States)

    Drake, C

    1997-01-01

    This article discusses the causes and sources of water resource conflict in the 3 major international river basins of the Middle East: the Tigris-Euphrates, the Nile, and the Jordan-Yarmuk. The physical geography of the Middle East is arid due to descending air, northeast trade winds, the southerly location, and high evaporation rates. Only Turkey, Iran, and Lebanon have adequate rainfall for population needs. Their mountainous geography and more northerly locations intercept rain and snow bearing westerly winds in winter. Parts of every other country are vulnerable to water shortages. Rainfall is irregular. Water resource conflicts are due to growing populations, economic development, rising standards of living, technological developments, political fragmentation, and poor water management. Immigration to the Jordan-Yarmuk watershed has added to population growth in this location. Over 50% of the population in the Middle East lives in urban areas where populations consume 10-12 times more water than those in rural areas. Water is wasted in irrigation schemes and huge dams with reservoirs where increased evaporation occurs. Technology results in greater water extraction of shallow groundwater and pollution of rivers and aquifers. British colonial government control led to reduced friction in most of the Nile basin. Now all ethnic groups have become more competitive and nationalistic. The Cold War restrained some of the conflict. Israel obtains 40% of its water from aquifers beneath the West Bank and Gaza. Geopolitical factors determine the mutual goodwill in managing international water. The 3 major water basins in the Middle East pose the greatest risk of water disputes. Possible solutions include conservation, better management, prioritizing uses, technological solutions, increased cooperation among co-riparians, developing better and enforceable international water laws, and reducing population growth rates. PMID:12178551

  14. Application of Fuzzy Projection Method to Water Resource Planning

    OpenAIRE

    Yanqiu Zeng; Lianwu Yang

    2015-01-01

    Water resource planning is very important for water resources management. A desirable water resource planning is typically made in order to satisfy multiple objectives as much as possible. Thus the water resource planning problem is actually a Multiple Attribute Decision Making (MADM) problem. The aim of this study is to put forward a new decision method to solve the problem of water resource planning in which attribute values expressed with triangular fuzzy numbers. The new method is an exte...

  15. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    Science.gov (United States)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  16. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  17. Dynamic Programming Applications in Water Resources

    Science.gov (United States)

    Yakowitz, Sidney

    1982-08-01

    The central intention of this survey is to review dynamic programming models for water resource problems and to examine computational techniques which have been used to obtain solutions to these problems. Problem areas surveyed here include aqueduct design, irrigation system control, project development, water quality maintenance, and reservoir operations analysis. Computational considerations impose severe limitation on the scale of dynamic programming problems which can be solved. Inventive numerical techniques for implementing dynamic programming have been applied to water resource problems. Discrete dynamic programming, differential dynamic programming, state incremental dynamic programming, and Howard's policy iteration method are among the techniques reviewed. Attempts have been made to delineate the successful applications, and speculative ideas are offered toward attacking problems which have not been solved satisfactorily.

  18. Entropy, recycling and macroeconomics of water resources

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  19. WATER RESOURCES MANAGEMENT IN PORT TERMINALS

    Directory of Open Access Journals (Sweden)

    Sérgio Sampaio Cutrim

    2014-06-01

    Full Text Available After Mar del Plata World Conference, water resources management is a matter of considerable importance in environmental issues. In Brazil, the National Water Agency – ANA created by Law N. 9433/97, regulates and controls water resources use and management. The Ponta da Madeira Maritime Terminal with a storage area up to 6.4 million tonnes of ore is privately operated and dedicated to iron ore, manganese ore and pellets handling. Its area and access to operational processes require wetting and spraying to control particulate material dispersion, which is accomplished by sprinkler systems, on the conveyor belts, on unloading wagons trains and loading ships equipment. The paper objective is to map water resources use, to understand its management efficiency and to cover a gap in academic literature applied to port terminals, responsible for 95% of Brazilian exportation in volume. The single case study comprised literature review, technical visits on site and interviews applied to responsible executives. In TPPM, water is captured for wetting from tailing ponds and recirculated by water trucks and it also counts with six wells. The results showed that the management is based upon a decentralized model supported by a multidisciplinary team. The Pellet Mill uses a large amount of water and in 2012, due to little rain there was an increase in water recirculation compared with previous years. The management comprises the legislation and its objectives are accomplished by a continuous monitoring based upon managerial dedicated systems, employees compromise and capabilities regarding the activity, considered strategic for the organization.

  20. Asia Oceania Geosciences Society's First Annual Meeting. A report

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Bhattacharya, G.C.; Chaubey, A.K.; Krishna, K.S.

    Working Groups (IWGs) 6. Hydrology and Water Resources (HW) The main emphasis of AOGS has been to evolve a common platform for active scientific interaction among the geoscientists of the Asia-Oceania region. About 1000 delegates participated...

  1. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  2. Integrated water resources modelling for assessing sustainable water governance

    Science.gov (United States)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  3. The Integrated Management Policies of Water Resources

    Directory of Open Access Journals (Sweden)

    Maria Magdalena TUREK RAHOVEANU

    2010-08-01

    Full Text Available The balance between water demand and availability has reached a critical level in many areas of Europe, the result of over-abstraction and prolonged periods of low rainfall or drought. Reduced river flows, lowered lake and groundwater levels, and the drying up of wetlands are widely reported, alongside detrimental impacts on freshwater ecosystems, including fish and bird life. Where the water resource has diminished, a worsening of water quality has normally followed because there is less water to dilute pollutants. In addition, salt water increasingly intrudes into 'over-pumped' coastal aquifers throughout Europe. Climate change will almost certainly exacerbate these adverse impacts in the future, with more frequent and severe droughts expected across Europe.

  4. Sustainable water resources management in Pakistan

    International Nuclear Information System (INIS)

    Total river discharge in Pakistan in summer season vary from 3 thousand to 34 thousand cusses (100 thousand Cusses to 1,200 thousand Cusses) and can cause tremendous loss to human lives, crops and property, this causes the loss of most of the flood water in the lower Indus plains to the sea. Due to limited capacity of storage at Tarbela and Mangla Dams on river Indus and Jhelum, with virtually no control on Chenab, Ravi and Sutlej, devastating problems are faced between July and October in the event of excessive rainfall in the catchments. Due to enormous amounts of sediments brought in by the feeding rivers, the three major reservoirs -Tarbela, Mangla and Chashma will lose their storage capacity, by 25 % by the end of the year 2010, which will further aggravate the water-availability situation in Pakistan. The quality of water is also deteriorating due to urbanization and industrialization and agricultural developments. On the Environmental Front the main problems are water-logging and salinity, salt-imbalance, and increasing pollution of water-bodies. World's largest and most integrated system of irrigation was installed almost a hundred years ago and now its efficiency has been reduced to such an extent that more than 50 per cent of the irrigation-water is lost in transit and during application. On the other side, there are still not fully exploited water resources for example groundwater, the alluvial plains of Pakistan are blessed with extensive unconfined aquifer, with a potential of over 50 MAF, which is being exploited to an extent of about 38 MAF by over 562,000 private and 10,000 public tube-wells. In case of Balochistan, out of a total available potential of about 0.9 MAF of groundwater, over 0.5 MAF are already being utilized, but there by leaving a balance of about 0.4 MAF that can still be utilized. Future water resources management strategies should includes starting a mass-awareness campaign on a marshal scale in rural and urban areas to apply water

  5. Water resources review: Wheeler Reservoir, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  6. The Water Resources Board: England and Wales’ Venture into National Water Resources Planning, 1964-1973

    Directory of Open Access Journals (Sweden)

    Christine S. McCulloch

    2009-10-01

    Full Text Available An era of technocratic national planning of water resources is examined against the views of a leading liberal economist and critics, both contemporary and retrospective. Post Second World War Labour Governments in Britain failed to nationalise either land or water. As late as 1965, the idea of public ownership of all water supplies appeared in the Labour Party manifesto and a short-lived Ministry of Land and Natural Resources, 1964-1966, had amongst its duties the development of plans for reorganising the water supply industry under full public ownership. However, instead of pursuing such a politically dangerous takeover of the industry, in July 1964, a Water Resources Board (WRB, a special interest group dominated by engineers, was set up to advise on the development of water resources. In its first Annual Report (1965 WRB claimed its role as "the master planner of the water resources of England and Wales". The WRB had a great deal of influence and justified its national planning role by promoting large-scale supply schemes such as interbasin transfers of water, large reservoirs and regulated rivers. Feasibility studies were even carried out for building innovative, large storage reservoirs in tidal estuaries. Less progress was made on demand reduction. Yet the seeds of WRB’s demise were contained in its restricted terms of reference. The lack of any remit over water quality was a fatal handicap. Quantity and quality needed to be considered together. Privatisation of the water industry in 1989 led to a shift from national strategic planning by engineers to attempts to strengthen economic instruments to fit supply more closely to demand. Engineers have now been usurped as leaders in water resources management by economists and accountants. Yet climate change may demand a return to national strategic planning of engineered water supply, with greater democratic input.

  7. Estimating continental water storage variations in Central Asia area using GRACE data

    International Nuclear Information System (INIS)

    The goal of GRACE satellite is to determine time-variations of the Earth's gravity, and particularly the effects of fluid mass redistributions at the surface of the Earth. This paper uses GRACE Level-2 RL05 data provided by CSR to estimate water storage variations of four river basins in Asia area for the period from 2003 to 2011. We apply a two-step filtering method to reduce the errors in GRACE data, which combines Gaussian averaging function and empirical de-correlation method. We use GLDAS hydrology to validate the result from GRACE. Special averaging approach is preformed to reduce the errors in GLDAS. The results of former three basins from GRACE are consistent with GLDAS hydrology model. In the Tarim River basin, there is more discrepancy between GRACE and GLDAS. Precipitation data from weather station proves that the results of GRACE are more plausible. We use spectral analysis to obtain the main periods of GRACE and GLDAS time series and then use least squares adjustment to determine the amplitude and phase. The results show that water storage in Central Asia is decreasing

  8. Water Resource Inventory and Assessment- Port Louisa NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Inventory, assessment, and summary of water rights, water quantity, water quality, water management, climate, and other water resource issues

  9. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao;

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The...... progress of research on the rational allocation of water resources in irrigation districts both at home and abroad may be summarized in four key aspects of the policy regarding water re?sources management:① The mechanism of water resource cycle and ② Transformation in irrigation district, ③ The water...... resources optimal allocation model and④The hydrological ecosystem analysis in irrigation district. Our analysis showed that there are four major problems in domestic irrigation water resources allocation:Policies for rational water resources allocation and protection are not in place, unified management...

  10. The Connotation and Extension of Agricultural Water Resources Security

    Institute of Scientific and Technical Information of China (English)

    LIU Bu-chun; MEI Xu-rong; LI Yu-zhong; YANG You-lu

    2007-01-01

    The objective of this study is to define agricultural water resources security and its connotation and extension. The definitions of water security, water resources security, and water environment security were summarized, and their relationship was differentiated and analyzed. Based on these, the elements of the conception of agricultural water resources security were hashed and the conception was defined. Agricultural water resources security is the provision of water resource that ensures protection of agriculture against threat, hazards, destruction, and loss. Moreover, the connotation and extension of agricultural water resources security were ascertained. In detail, the connotation of the definition has natural attributes, socioeconomic attributes, and cultural attributes. The extensions of agricultural water resources security include both broad and narrow ones, as well as, food security, agroenvironmental security, agroeconomic security, rural society security, etc. The definition will serve as the frame of reference for developing the researches, limiting the frame of the theory, and founding a appraising system for agricultural water resources security.

  11. Troubled waters: managing our vital resources.

    Science.gov (United States)

    1999-03-01

    Presented are articles from Global Issues, an electronic journal of the US Information Agency that focuses on managing the water resources of the world. The three main articles are as follows: 1) ¿The Quiet Revolution to Restore Our Aquatic Ecosystems¿, 2) ¿Charting a New Course to Save America's Waters¿, and 3) ¿Freshwater: Will the World's Future Needs be Met?¿ The journal also presents commentaries on the age-old water shortage in the Middle East; solutions to water waste on the farm and in cities; managing water scarcity in the driest region of the US; and a new approach to environmental management in the Bermejo River in Argentina and Bolivia. Furthermore, this issue contains statistics on water usage and supplies and a report that examines proposals for policies that could set the world on a better course for water management. Lastly, this issue provides a bibliography of books, documents, and articles on freshwater issues as well as a list of Internet sites offering further information on water quality, supplies, and conservation. PMID:12290381

  12. Traditional Water Resource Use and Adaptation Efforts in Nepal

    OpenAIRE

    Shrestha, Ranjan Prakash; Maharjan, Keshav Lall

    2016-01-01

    Rapid population growth, unplanned urbanization and the drying up of traditional water resources have caused water scarcity in the Kathmandu Valley of Nepal. The impact of climate change has further exacerbated the increasing problem of water scarcity. Traditional water resources such as stone spouts and wells play an important role in meeting the increasing water demand in the Kathmandu Valley. This paper examines water use and conservation efforts of traditional water resources, especially ...

  13. Water resource monitoring in Iran using satellite altimetry and satellite gravimetry (GRACE)

    Science.gov (United States)

    Khaki, Mehdi; Sneeuw, Nico

    2015-04-01

    Human civilization has always been in evolution by having direct access to water resources throughout history. Water, with its qualitative and quantitative effects, plays an important role in economic and social developments. Iran with an arid and semi-arid geographic specification is located in Southwest Asia. Water crisis has appeared in Iran as a serious problem. In this study we're going to use various data sources including satellite radar altimetry and satellite gravimetry to monitor and investigate water resources in Iran. Radar altimeters are an invaluable tool to retrieve from space vital hydrological information such as water level, volume and discharge, in particular from regions where the in situ data collection is difficult. Besides, Gravity Recovery and Climate Experiment (GRACE) provide global high resolution observations of the time variable gravity field of the Earth. This information is used to derive spatio-temporal changes of the terrestrial water storage body. This study isolates the anthropogenic perturbations to available water supplies in order to quantify human water use as compared to available resources. Long-term monitor of water resources in Iran is contain of observing freshwaters, lakes and rivers as well as exploring ground water bodies. For these purposes, several algorithms are developed to quantitatively monitor the water resources in Iran. The algorithms contain preprocessing on datasets, eliminating biases and atmospheric corrections, establishing water level time series and estimating terrestrial water storage considering impacts of biases and leakage on GRACE data. Our primary goal in this effort is to use the combination of satellite radar altimetry and GRACE data to study on water resources as well as methods to dealing with error sources include cross over errors and atmospheric impacts.

  14. Porphyry copper assessment of northeast Asia: Far East Russia and northeasternmost China: Chapter W in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre

    2015-01-01

    The U.S. Geological Survey assesses resources (mineral, energy, water, environmental, and biologic) at regional, national, and global scales to provide science in support of land management and decision making. Mineral resource assessments provide a synthesis of available information about where mineral deposits are known and suspected to be in the Earth’s crust, which commodities may be present, and estimates of amounts of resources in undiscovered deposits.

  15. Impact of climate change on the hydrology of High Mountain Asia

    OpenAIRE

    A. F. Lutz

    2016-01-01

    In Asia, water resources largely depend on water generated in the mountainous upstream parts of several large river basins and hundreds of millions of people depend on their waters downstream. The large-scale impacts of climate change for the water resources in High Mountain Asia are poorly understood, because the area has a complex climate, which is poorly monitored. Climate change may have large consequences for water availability, seasonal changes in runoff generation and the frequency and...

  16. Exploring the Modifiable Areal Unit Problem in Spatial Water Assessments: A Case of Water Shortage in Monsoon Asia

    Directory of Open Access Journals (Sweden)

    Aura Salmivaara

    2015-03-01

    Full Text Available Water shortage (availability per capita is a key indicator of vulnerability to water scarcity. Spatial datasets enable the assessment of water shortage on multiple scales. The use of river basins and subbasins as analysis and management units is currently commonplace. An important but less acknowledged fact is that spatial assessments are strongly influenced by the choice of the unit of analysis due to the Modifiable Areal Unit Problem (MAUP. Climate conditions, agricultural activities, and access to groundwater also influence water availability and demand. In this study, a total of 21 different criteria were used to define areal units of analysis, i.e., zonings, for which water shortage was calculated. Focusing on Monsoon Asia, where water scarcity is a pressing problem, we found that zoning had a considerable impact, resulting in up to three-fold differences in the population under high water shortage (<1000 m3/cap/year, ranging from 782 million to 2.11 billion. In most zonings, however, the Indus and Yellow River Basins and northwest parts of India and China are under high water shortage. The study indicates that a multizonal and multiscale analysis is needed to minimize skewed or even misleading information that might be produced when using only one zoning.

  17. Water Resources Inventory and Assessment: Patuxent Research Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Patuxent Research Refuge describes current hydrologic information, provides an assessment of water resource...

  18. Quivira National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Quivira NWR describes current hydrologic information, provides an assessment of water resource needs and...

  19. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  20. Okefenokee National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Resource Inventory and Assessment (WRIA) for Okefenokee National Wildlife Refugesummarizes available information relevant to refuge water resources,...

  1. Younos president-elect of Universities Council on Water Resources

    OpenAIRE

    Trulove, Susan

    2004-01-01

    The Universities Council on Water Resources (UCOWR) has elected Tamim Younos, of Blacksburg, as president-elect. Younos is interim director of the Water Resources Research Center (www.vwrrc.vt.edu) at Virginia Tech.

  2. Cape Romain National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes available information relevant to refuge water resources, provides an assessment of refuge water resource needs and issues of concern, and...

  3. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  4. Increasing life expectancy of water resources literature

    Science.gov (United States)

    Heistermann, M.; Francke, T.; Georgi, C.; Bronstert, A.

    2014-06-01

    In a study from 2008, Larivière and colleagues showed, for the field of natural sciences and engineering, that the median age of cited references is increasing over time. This result was considered counterintuitive: with the advent of electronic search engines, online journal issues and open access publications, one could have expected that cited literature is becoming younger. That study has motivated us to take a closer look at the changes in the age distribution of references that have been cited in water resources journals since 1965. Not only could we confirm the findings of Larivière and colleagues. We were also able to show that the aging is mainly happening in the oldest 10-25% of an average reference list. This is consistent with our analysis of top-cited papers in the field of water resources. Rankings based on total citations since 1965 consistently show the dominance of old literature, including text books and research papers in equal shares. For most top-cited old-timers, citations are still growing exponentially. There is strong evidence that most citations are attracted by publications that introduced methods which meanwhile belong to the standard toolset of researchers and practitioners in the field of water resources. Although we think that this trend should not be overinterpreted as a sign of stagnancy, there might be cause for concern regarding how authors select their references. We question the increasing citation of textbook knowledge as it holds the risk that reference lists become overcrowded, and that the readability of papers deteriorates.

  5. Optimality versus stability in water resource allocation.

    Science.gov (United States)

    Read, Laura; Madani, Kaveh; Inanloo, Bahareh

    2014-01-15

    Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an

  6. Resource recovery from black water. New concepts stimulate resource recovery; Resource recovery from black water. Nieuwe concepten bevorderen grondstofterugwinning

    Energy Technology Data Exchange (ETDEWEB)

    De Graaff, M.

    2011-02-15

    New sanitation concepts are based on separation at the source of domestic waste water into grey water and black water (faeces and urine) or in grey water, urine and Brown water (faeces). These concepts have a large potential for recovering important resources. The concepts therefore provide an alternative to the current sewer systems and central aerobe waste water purification. [Dutch] Nieuwe sanitatieconcepten zijn gebaseerd op het scheiden aan de bron van huishoudelijk afvalwater in grijs en zwart water (faeces en urine) of in grijs water, urine en bruin water (faeces). Deze concepten hebben een groot potentieel om belangrijke grondstoffen terug te winnen. De concepten zijn daarmee een alternatief voor de huidige rioleringssystemen en centrale aerobe afvalwaterzuiveringen.

  7. Water Resources Data - Texas Water Year 2000, Volume 6. Ground Water

    Science.gov (United States)

    Barbie, D.L.

    2001-01-01

    Water-resources data for the 2000 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 898 observation wells and 145 water-quality data for monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  8. Water Resources Data - Texas, Water Year 2002, Volume 6. Ground Water

    Science.gov (United States)

    Barbie, D.L.

    2003-01-01

    Water-resources data for the 2002 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 960 observation wells and water-quality data for 173 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  9. Water Resources Data, Texas Water Year 1998, Volume 4. Ground Water

    Science.gov (United States)

    Gandara, S.C.; Barbie, D.L.

    1999-01-01

    Water-resources data for the 1998 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 759 observation wells and 146 water-quality data for monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  10. Water resources data - Texas water year 2001 : Volume 6. Ground water

    Science.gov (United States)

    Barbie, D.L.

    2002-01-01

    Water-resources data for the 2001 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 908 observation wells and water-quality data for 155 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  11. Water Resources Data - Texas Water Year 1999, Volume 6. Ground Water

    Science.gov (United States)

    Gandara, S.C.; Barbie, D.L.

    2000-01-01

    Water-resources data for the 1999 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 759 observation wells and 146 water-quality data for monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  12. Resources sustainable management of ground water

    International Nuclear Information System (INIS)

    Evaluation executive interinstitutional of the state of knowledge of the Raigon aquifer in the mark of the Project RLA/8/031 (sustainable Administration of Resources of groundwaters), elaborate of an I diagnose and definition of the necessities with a view to the formulation of the plan of activities of the project to develop. In the development of this work shop they were the following topics: Geology and hidrogeology, numeric modelation of the Aquifer and letter of vulnerability of the Aquifer Raigon. soils, quality and water demand, juridical and institutionals aspects

  13. AOIPS water resources data management system

    Science.gov (United States)

    Vanwie, P.

    1977-01-01

    The text and computer-generated displays used to demonstrate the AOIPS (Atmospheric and Oceanographic Information Processing System) water resources data management system are investigated. The system was developed to assist hydrologists in analyzing the physical processes occurring in watersheds. It was designed to alleviate some of the problems encountered while investigating the complex interrelationships of variables such as land-cover type, topography, precipitation, snow melt, surface runoff, evapotranspiration, and streamflow rates. The system has an interactive image processing capability and a color video display to display results as they are obtained.

  14. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    OpenAIRE

    T.M. CORNEA; Dima, M.; Roca, D.

    2011-01-01

    Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC) [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ...

  15. Pakistan : Country Water Resources Assistance Strategy, Water Economy : Running Dry

    OpenAIRE

    World Bank

    2005-01-01

    The water economy of Pakistan depends fundamentally on a gigantic and complex hydraulic infrastructure system. There are now a set of related challenges which have to be addressed - how to maintain what has been built, what major new system-wide infrastructure needs to be built, what infrastructure needs to be built for populations who have not been served and for environmental protection, and how to build institutions that will manage the resource effectively in the looming era of scarcity. ...

  16. Water resources of the Palau Islands

    Science.gov (United States)

    Van der Brug, Otto

    1984-01-01

    The Palau Islands are a group of 350 islands, ranging in size from a few hundred square feet to the 153-square-mile island of Babelthuap. Babelthuap is the second largest island in the Western Pacific and comprises more than 80 percent of the total land area of the Palau Islands. Most of the islands are uninhabited limestone ridges covered with dense vegetation. These islands have no freshwater resources and are not included in this report. The island of Koror with an area of 3.6 square miles is the administrative, commercial, and population center of Palau and has an annual average rainfall of 148 inches. Short-term rainfall records at other locations in the islands indicate little variation in annual rainfall throughout the Palau Islands. Runoff-to-rainfall ratios for streams on Babelthuap show that about 70 percent of the rain falling on the island runs off to the ocean. The uniformity of rainfall and basin characteristics is shown by the excellent correlation between mean annual rainfall on Koror and streamflow on Babelthuap and by the close correlations between discharge at gaging stations and partial-record sites. Surface water quality is generally very good as shown by 55 chemical analyses of water from 18 sources. The dissolved solids concentration of water samples did not exceed 66 milligrams per liter. This report summarizes in one volume hydrologic data collection in a 14-year period of study and provides interpretations of the data than can be used by planners and public works officials as a basis for making decisions on the development and management of the islands ' water resources.

  17. Applications of NST in water resources management

    International Nuclear Information System (INIS)

    At first instance, Nuclear Science and Technology (NST) appears to have no relation to water resource management. Its dark side, the sole purpose of which is weaponry, has for a long time overshadowed its bright side, which has plenty of peaceful applications in the main socio-economic development sectors: power generation, agriculture, health and medicine, industry, manufacturing and environment. Historically, the medical sector is one of the early beneficiaries of the applications of NST. The same is true for Malaysia when the first x-ray machine was installed in 1897 at Taiping Hospital, Perak. In the environment sector, the use of little or no chemical in nuclear processes contributes to a cleaner environment. Nuclear power plants for example do not emit polluting gases and do not harm to the ozone layer. At the end of 2004, there are more than 440 nuclear power reactors operating in more than 30 countries fulfilling 17% of the world electricity demand, and it is growing. While nuclear power is yet to arrive in Malaysia the uses of NST in other areas are increasing. The application of radiotracer techniques in water resource management, in the environment, as well as in industry is an example. (Author)

  18. Water Resources Council Proposed Principles and Standards for Planning Water and Related Land Resources. Notice of Public Review and Hearing.

    Science.gov (United States)

    National Archives and Records Services (GSA), Washington, DC. Office of the Federal Register.

    Presented in this notice of a public review and hearing are the proposed Principles and Standards for planning water and related land resources of the United States. Developed by the Water Resources Council pursuant to the Water Resources Planning Act of 1965 (Public Law 89-80), the purpose is to achieve objectives, determined cooperatively,…

  19. Assessing the Roles of Regional Climate Uncertainty, Policy, and Economics on Future Risks to Water Stress: A Large-Ensemble Pilot Case for Southeast Asia

    Science.gov (United States)

    Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C. W.; Blanc, E.; Monier, E.; Sokolov, A. P.; Paltsev, S.; Arndt, C.; Prinn, R. G.; Reilly, J. M.; Jacoby, H.

    2013-12-01

    The fate of natural and managed water resources is controlled to varying degrees by interlinked energy, agricultural, and environmental systems, as well as the hydro-climate cycles. The need for risk-based assessments of impacts and adaptation to regional change calls for likelihood quantification of outcomes via the representation of uncertainty - to the fullest extent possible. A hybrid approach of the MIT Integrated Global System Model (IGSM) framework provides probabilistic projections of regional climate change - generated in tandem with consistent socio-economic projections. A Water Resources System (WRS) then tracks water allocation and availability across these competing demands. As such, the IGSM-WRS is an integrated tool that provides quantitative insights on the risks and sustainability of water resources over large river basins. This pilot project focuses the IGSM-WRS on Southeast Asia (Figure 1). This region presents exceptional challenges toward sustainable water resources given its texture of basins that traverse and interconnect developing nations as well as large, ascending economies and populations - such as China and India. We employ the IGSM-WRS in a large ensemble of outcomes spanning hydro-climatic, economic, and policy uncertainties. For computational efficiency, a Gaussian Quadrature procedure sub-samples these outcomes (Figure 2). The IGSM-WRS impacts are quantified through frequency distributions of water stress changes. The results allow for interpretation of: the effects of policy measures; impacts on food production; and the value of design flexibility of infrastructure/institutions. An area of model development and exploration is the feedback of water-stress shocks to economic activity (i.e. GDP and land use). We discuss these further results (where possible) as well as other efforts to refine: uncertainty methods, greater basin-level and climate detail, and process-level representation glacial melt-water sources. Figure 1 Figure 2

  20. Nuclear explosives in water-resource management

    International Nuclear Information System (INIS)

    Nuclear explosives afford diverse tools for managing our water resources. These include principally: the rubble column of a fully contained underground detonation, the similar rubble column of a retarc, the crater by subsidence, the throwout crater of maximum volume (the latter either singly or in-line), and the ejecta of a valley-slope crater. By these tools, one can create space in which to store water, either underground or on the land surface - in the latter instance, to a considerable degree independently of the topography. Underground, one can accelerate movement of water by breaching a confining bed, a partition of a compartmented aquifer, or some other obstruction in the natural 'plumbing system'. Finally, on the land surface, one can modify the natural pattern of water flow, by canals excavated with in-line detonation. In all these applications, the potential advantage of a nuclear explosive rests chiefly in undertakings of large scale, under a consequent small cost per unit of mechanical work accomplished

  1. Changing Hydrological Cycle in Asian Monsoon Region in Relation to Water Resources

    Science.gov (United States)

    Kabat, P.

    2006-12-01

    Water is a key resource for sustainable development in the Monsoon Asian Region. Frequent occurrence of flood disasters related to increasing Asian monsoon climate variability, progressing land degradation associated with anomalous monsoon dry climate and land overexploitation, increasing water use due to rapid social/economic development, and water pollution under the development of industrialization, urbanization and intensive agriculture, all pose fundamental questions about mid- and long term future carrying capacity of water systems in this key-region of the globe. We review some of the most recent data and methodological insights about how the hydrological cycle and hydroclimate in monsoon Asia is changing or has already changed in association with the global warming (GHG increase). Next,we analyze how regional-scale anthropogenic impacts such land cover/use changes, forest fire, dust increase, affect the hydrological cycle and water resources in the monsoon Asia and Northern China. The issues addressed in the presentation include: (i)the current regional hydrological cycle, especially causal chains leading to observable changes in droughts and floods;(ii)how the water cycle and the extremes may respond to future drivers of global change;(iii) feedbacks in the coupled system as they affect the hydrological cycle; (iv)the uncertainties in the predictions of coupled climate-hydrological- land use models and (v)the future vulnerability of water as a resource. We argue for a substantial increase of international collaborative research efforts into integrated impact assessment of climate change and human activity on water systems in this region.

  2. Alternative medicines for AIDS in resource-poor settings: insights from exploratory anthropological studies in Asia and Africa.

    Science.gov (United States)

    Hardon, Anita; Desclaux, Alice; Egrot, Marc; Simon, Emmanuelle; Micollier, Evelyne; Kyakuwa, Margaret

    2008-01-01

    The emergence of alternative medicines for AIDS in Asia and Africa was discussed at a satellite symposium and the parallel session on alternative and traditional treatments of the AIDSImpact meeting, held in Marseille, in July 2007. These medicines are heterogeneous, both in their presentation and in their geographic and cultural origin. The sessions focused on the role of these medications in selected resource poor settings in Africa and Asia now that access to anti-retroviral therapy is increasing. The aims of the sessions were to (1) identify the actors involved in the diffusion of these alternative medicines for HIV/AIDS, (2) explore uses and forms, and the way these medicines are given legitimacy, (3) reflect on underlying processes of globalisation and cultural differentiation, and (4) define priority questions for future research in this area. This article presents the insights generated at the meeting, illustrated with some findings from the case studies (Uganda, Senegal, Benin, Burkina Faso, China and Indonesia) that were presented. These case studies reveal the wide range of actors who are involved in the marketing and supply of alternative medicines. Regulatory mechanisms are weak. The efficacy claims of alternative medicines often reinforce a biomedical paradigm for HIV/AIDS, and fit with a healthy living ideology promoted by AIDS care programs and support groups. The AIDSImpact session concluded that more interdisciplinary research is needed on the experience of people living with HIV/AIDS with these alternative medicines, and on the ways in which these products interact (or not) with anti-retroviral therapy at pharmacological as well as psychosocial levels. PMID:18616794

  3. Alternative medicines for AIDS in resource-poor settings: Insights from exploratory anthropological studies in Asia and Africa

    Directory of Open Access Journals (Sweden)

    Simon Emmanuelle

    2008-07-01

    Full Text Available Abstract The emergence of alternative medicines for AIDS in Asia and Africa was discussed at a satellite symposium and the parallel session on alternative and traditional treatments of the AIDSImpact meeting, held in Marseille, in July 2007. These medicines are heterogeneous, both in their presentation and in their geographic and cultural origin. The sessions focused on the role of these medications in selected resource poor settings in Africa and Asia now that access to anti-retroviral therapy is increasing. The aims of the sessions were to (1 identify the actors involved in the diffusion of these alternative medicines for HIV/AIDS, (2 explore uses and forms, and the way these medicines are given legitimacy, (3 reflect on underlying processes of globalisation and cultural differentiation, and (4 define priority questions for future research in this area. This article presents the insights generated at the meeting, illustrated with some findings from the case studies (Uganda, Senegal, Benin, Burkina Faso, China and Indonesia that were presented. These case studies reveal the wide range of actors who are involved in the marketing and supply of alternative medicines. Regulatory mechanisms are weak. The efficacy claims of alternative medicines often reinforce a biomedical paradigm for HIV/AIDS, and fit with a healthy living ideology promoted by AIDS care programs and support groups. The AIDSImpact session concluded that more interdisciplinary research is needed on the experience of people living with HIV/AIDS with these alternative medicines, and on the ways in which these products interact (or not with anti-retroviral therapy at pharmacological as well as psychosocial levels.

  4. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P–E). Here, we compute P–E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P–E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P–E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P–E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  5. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses.

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-01-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making. PMID:27388837

  6. 33 CFR 209.345 - Water resource policies and authorities.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Water resource policies and authorities. 209.345 Section 209.345 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.345 Water resource policies and authorities. Reimbursement for Advance...

  7. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... Bureau of Reclamation Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement... Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The Washington State... water resource problems in the basin. The YRBWEP was charged with developing a plan to achieve...

  8. Hydrography - MO 2014 Outstanding National Resource Water Watersheds (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains watersheds associated with Missouri's use designations for waters listed in Table D - Outstanding National Resource Waters of the Water...

  9. Integrated Water Resources Simulation Model for Rural Community

    Science.gov (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  10. Methodological Approach to Comprehensive Economic Evaluation of Water Resources

    OpenAIRE

    Valeriy Mandzyk

    2014-01-01

    As a result of this research, the methodical approaches to comprehensive economic assessment of water resources are worked out. In particular, it is offered to conduct the comprehensive economic assessment in three stages. In the first stage, the economic assessment of water resources as the basis of human life is carried out. The result of this assessment is the monetary value of social and environmental significance of water resource of water body for human and the environment. The main met...

  11. Multidimensional Simulation Applied to Water Resources Management

    Science.gov (United States)

    Camara, A. S.; Ferreira, F. C.; Loucks, D. P.; Seixas, M. J.

    1990-09-01

    A framework for an integrated decision aiding simulation (IDEAS) methodology using numerical, linguistic, and pictorial entities and operations is introduced. IDEAS relies upon traditional numerical formulations, logical rules to handle linguistic entities with linguistic values, and a set of pictorial operations. Pictorial entities are defined by their shape, size, color, and position. Pictorial operators include reproduction (copy of a pictorial entity), mutation (expansion, rotation, translation, change in color), fertile encounters (intersection, reunion), and sterile encounters (absorption). Interaction between numerical, linguistic, and pictorial entities is handled through logical rules or a simplified vector calculus operation. This approach is shown to be applicable to various environmental and water resources management analyses using a model to assess the impacts of an oil spill. Future developments, including IDEAS implementation on parallel processing machines, are also discussed.

  12. Water Resources Management Issues in Turkey and Recommendations

    Science.gov (United States)

    Emin Baris, Mehmet; Ayfer Karadag, Aybike

    The prevailing trends towards rising population, increasing urbanization, spread of more water intensive life styles as well as widespread use of water intensive agriculture sweeping around the world are going to make water resources even scarcer especially in countries like Turkey with scarce water resources and high development and population growth rate, economic and social aspects of water resources become even more important. Turkey, like many countries today, faces challenges in efficiently developing and managing its limited water resources while maintaining water quality and protecting the environment. To add to the challenge, Turkey will need to continue to develop its water resources in order for its economic and social development to keep pace with its rapidly growing and urbanizing population. This article deals with water resources management problems in Turkey and provides recommendations on water resources management issues at the country level. Its objectives are to summarize key water resources management issues to review institutional and legal framework and to provide suggestions for effective water resources management in Turkey.

  13. Disinfection Tests of MF-2 Disinfectant on Nature Water Resource

    Institute of Scientific and Technical Information of China (English)

    WANG Jinlan; LIU Qingzeng; CUI Ying

    2002-01-01

    Objective To furnish evidence for practical application by examining the disinfection effect of MF - 2 disinfectant on different degree of contaminated water. Methods According to the determining methods of total bacterial count and coli - index of drinking water stimulated by the state conduct the forthwith disinfection experiments and accumulate disinfection experiments. Results Adding the MF - 2 into water resource to specific concentration according with the water resource sanitation criterion stipulated by the sater, after pointed time, it can chang water quality of severe contaminated water and questionable contaminated water into that of clean water, the quality of less contaminated water into that of drinking water. Conclusions MF - 2 disinfectant is applicable for disinfection of nature contaminated water resource in an outlying district and field - operation especially for urgent drinking water disinfection the area where there is neither clean water nor heating condition.

  14. Water Resources Data - Texas, Water Year 2003, Volume 6. Ground Water

    Science.gov (United States)

    Barbie, D.L.

    2003-01-01

    Water-resources data for the 2003 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 880 ground-water observation wells and water-quality data for 158 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  15. Scientific Basis of Water Resource Management

    Science.gov (United States)

    Morel-Seytoux, H. J.

    The least that one can say about the report is that it is very enjoyable reading. Every chapter has been carefully written, and the literary merit of some chapters is outstanding (particularly those by Klemes, ‘Empirical and Causal Models in Hydrology,’ and by Baker, ‘Geology, Determinism, and Risk Assessment’). The best that one can say about the report is that it does meet its stated objectives of (1) evaluation of the adequacy of present hydrologic knowledge and of the appropriateness of present research programs to provide information for decision making and (2) description of the impact of hydrologic knowledge on the planning and management of water resources. The worst that one can say about the report is that it is not particularly original and that there are few really fresh new arguments developed in it. One notable exception is provided in Chapter 11, by Matalas, Landwehr, and Wolman, which challenges the traditional (implicit) assumption that ‘human activity is an external perturbation of the hydrologic cycle.’ Though not the explicit intent of chapter 4, by Bredehoeft, Papadopulos, and Cooper, with the explosion of the water-budget myth in groundwater, this chapter illustrates clearly the profound interaction of man (through wells) in the hydrologic cycle, a situation that cannot be comprehended from a study of the system free from human influence.

  16. Simulating carbon and water cycles of larch forests in East Asia by the BIOME-BGC model with AsiaFlux data

    Directory of Open Access Journals (Sweden)

    M. Ueyama

    2009-08-01

    Full Text Available Larch forests are widely distributed across many cool-temperate and boreal regions, and they are expected to play an important role in global carbon and water cycles. Model parameterizations for larch forests still contain large uncertainties owing to a lack of validation. In this study, a process-based terrestrial biosphere model, BIOME-BGC, was tested for larch forests at six AsiaFlux sites and used to identify important environmental factors that affect the carbon and water cycles at both temporal and spatial scales.

    The model simulation performed with the default deciduous conifer parameters produced results that had large differences from the observed net ecosystem exchange (NEE, gross primary productivity (GPP, ecosystem respiration (RE, and evapotranspiration (ET. Therefore, we adjusted several model parameters in order to reproduce the observed rates of carbon and water cycle processes. This model calibration, performed using the AsiaFlux data, significantly improved the model performance. The simulated annual GPP, RE, NEE, and ET from the calibrated model were highly consistent with observed values.

    The observed and simulated GPP and RE across the six sites are positively correlated with the annual mean air temperature and annual total precipitation. On the other hand, the simulated carbon budget is partly explained by the stand disturbance history in addition to the climate. The sensitivity study indicates that spring warming enhances the carbon sink, whereas summer warming decreases it across the larch forests. The summer radiation is the most important factor that controls the carbon fluxes in the temperate site, but the VPD and water conditions are the limiting factors in the boreal sites. One model parameter, the allocation ratio of carbon between aboveground and belowground, is site-specific, and it is negatively correlated with the annual climate of annual mean air temperature and total precipitation. Although

  17. Managing Scarce Water Resources in China's Coal Power Industry.

    Science.gov (United States)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China. PMID:26908125

  18. Managing Scarce Water Resources in China's Coal Power Industry

    Science.gov (United States)

    Zhang, Chao; Zhong, Lijin; Fu, Xiaotian; Zhao, Zhongnan

    2016-06-01

    Coal power generation capacity is expanding rapidly in the arid northwest regions in China. Its impact on water resources is attracting growing concerns from policy-makers, researchers, as well as mass media. This paper briefly describes the situation of electricity-water conflict in China and provides a comprehensive review on a variety of water resources management policies in China's coal power industry. These policies range from mandatory regulations to incentive-based instruments, covering water withdrawal standards, technological requirements on water saving, unconventional water resources utilization (such as reclaimed municipal wastewater, seawater, and mine water), water resources fee, and water permit transfer. Implementing these policies jointly is of crucial importance for alleviating the water stress from the expanding coal power industry in China.

  19. Republic of Yemen Country Water Resources Assistance Strategy

    OpenAIRE

    World Bank

    2008-01-01

    This note contains a summary, for practitioners, of the World Bank report Republic of Yemen country Water Resources Assistance Strategy (CWRAS). The preparation of a CWRAS is timely, given the rising pressure placed on water resources by the rapidly growing population and the emergence of lessons learned from a recent review of World Bank water projects in Yemen. This section reviews the c...

  20. Water Resources Sector Strategy : Strategic Directions for World Bank Engagement

    OpenAIRE

    World Bank

    2004-01-01

    In 1993 the Board of the World Bank endorsed a Water Resources Management Policy Paper (WRMPP). In that paper, and in this Strategy, water resources management comprises the institutional framework (legal, regulatory and organizational roles), management instruments (regulatory and financial), and the development, maintenance and operation of infrastructure (including water storage structu...

  1. Assessment of undiscovered oil and gas resources of the Assam, Bombay, Cauvery, and Krishna-Godavari Provinces, South Asia, 2011

    Science.gov (United States)

    Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Cook, Troy A.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.

    2012-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the Assam, Bombay, Cauvery, and Krishna–Godavari Provinces, South Asia. The estimated mean volumes are as follows: (1) Assam Province, 273 million barrels of crude oil, 1,559 billion cubic feet of natural gas, and 43 million barrels of natural gas liquids; (2) Bombay Province, 1,854 million barrels of crude oil, 15,417 billion cubic feet of natural gas, and 498 million barrels of natural gas liquids; (3) Cauvery Province, 941 million barrels of crude oil, 25,208 billion cubic feet of natural gas, and 654 million barrels of natural gas liquids; and (4) Krishna–Godavari Province, 466 million barrels of crude oil, 37,168 billion cubic feet of natural gas, and 484 million barrels of natural gas liquids. The totals for the four provinces are 3,534 million barrels of crude oil, 79,352 billion cubic feet of natural gas, and 1,679 million barrels of natural gas liquids.

  2. Water resources by orbital remote sensing: Examples of applications

    Science.gov (United States)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  3. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Science.gov (United States)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  4. Multi-agent Water Resources Management

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in

  5. Social Learning and Water Resources Management

    Directory of Open Access Journals (Sweden)

    David Tabara

    2007-12-01

    Full Text Available Natural resources management in general, and water resources management in particular, are currently undergoing a major paradigm shift. Management practices have largely been developed and implemented by experts using technical means based on designing systems that can be predicted and controlled. In recent years, stakeholder involvement has gained increasing importance. Collaborative governance is considered to be more appropriate for integrated and adaptive management regimes needed to cope with the complexity of social-ecological systems. The paper presents a concept for social learning and collaborative governance developed in the European project HarmoniCOP (Harmonizing COllaborative Planning. The concept is rooted in the more interpretive strands of the social sciences emphasizing the context dependence of knowledge. The role of frames and boundary management in processes of learning at different levels and time scales is investigated. The foundation of social learning as investigated in the HarmoniCOP project is multiparty collaboration processes that are perceived to be the nuclei of learning processes. Such processes take place in networks or “communities of practice” and are influenced by the governance structure in which they are embedded. Requirements for social learning include institutional settings that guarantee some degree of stability and certainty without being rigid and inflexible. Our analyses, which are based on conceptual considerations and empirical insights, suggest that the development of such institutional settings involves continued processes of social learning. In these processes, stakeholders at different scales are connected in flexible networks that allow them to develop the capacity and trust they need to collaborate in a wide range of formal and informal relationships ranging from formal legal structures and contracts to informal, voluntary agreements.

  6. Societal applications of isotope techniques in water resource management

    International Nuclear Information System (INIS)

    A paramount issue in the 21st century is water - its availability, quality and management. Water resource management is a very important issue from several angles such as development of water bodies for future generations of man-kind, protection of available water bodies from pollution and over-exploitation and to prevent or resolve disputes. Extensive hydrological information is necessary to develop water resources and protect them. Isotope techniques along with remote-sensing gadgets are effective tools for obtaining critical hydrologic information which are vital for planning the development and management strategies for a particular water resource system

  7. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai and Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on _ water resources. Working from future rainfall data simulated by _ high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a _ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical _ level (L3 to _ (L4; and the future conditions for central Taiwan will be _ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  8. Current perspectives in contaminant hydrology and water resources sustainability

    Science.gov (United States)

    Bradley, Paul M.

    2013-01-01

    Human society depends on liquid freshwater resources to meet drinking, sanitation and hygiene, agriculture, and industry needs. Improved resource monitoring and better understanding of the anthropogenic threats to freshwater environments are critical to efficient management of freshwater resources and ultimately to the survival and quality of life of the global human population. This book helps address the need for improved freshwater resource monitoring and threat assessment by presenting current reviews and case studies focused on the fate and transport of contaminants in the environment and on the sustainability of groundwater and surface-water resources around the world. It is intended for students and professionals working in hydrology and water resources management.

  9. Integrated Water Resources Management in Latin America and the Caribbean

    OpenAIRE

    Inter-American Development Bank (IDB)

    1998-01-01

    This technical study contains the strategy of the Inter-American Development Bank for its involvement in integrated water resources management in Latin America and the Caribbean. The strategy was developed through an iterative step by step procedure in consultation with country water resource officials, Bank staff, nongovernmental organizations, and international lending and technical assistance organizations. The first part of the study is an overview of water resource management in Latin Am...

  10. Chinese Agricultural Water Resource Utilization in 21st Century

    OpenAIRE

    Hongyun, Han

    2002-01-01

    Firstly, the present situation of China’s water resources and its implications are discussed. As a large country, China is nonetheless resource poor on a per capita basis. With the development of industrialization and urbanization, more and more water resources will be transferred from low-value agricultural use to high-value industrial and residential uses. The challenge now facing irrigated agriculture is how to resolve the contradiction between increasing food demand and decreasing water s...

  11. Estimating the Ground Water Resources of Atoll Islands

    OpenAIRE

    Olsen, Arne E.; Bailey, Ryan T.; Jenson, John W.

    2010-01-01

    Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state ...

  12. Water resources data Texas, water year 2004, volume 6. ground water

    Science.gov (United States)

    Barbie, Dana L.; Reece, Brian D.; Eames, Deanna R.

    2005-01-01

    Water-resources data for the 2004 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 6 contains water levels for 913 groundwater observation wells and water-quality data for 150 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Texas.

  13. Thailand Environment Monitor : Integrated Water Resources Management - A Way Forward

    OpenAIRE

    World Bank

    2011-01-01

    Water is everyone's business. Beside a necessity for living, water has implications on public health and, most importantly, can cause social conflicts. This is because water is limited, is difficult to control, and can easily be polluted. The Integrated Water Resource Management (IWRM) process is considered worldwide as a means to reduce social conflicts from competing water needs as well ...

  14. New technology and illness self-management: Potential relevance for resource-poor populations in Asia.

    Science.gov (United States)

    Lucas, Henry

    2015-11-01

    Advances in technology have made it possible for many standard diagnostic and health monitoring procedures, traditionally carried out by qualified personnel within medical facilities, to be reliably undertaken by patients or carers in their own homes with a minimum of basic training. There has also been a dramatic increase in the number and diversity of both sources of information on health issues and the possibilities for sharing information and experiences over ICT-based social networks. It has been suggested that these developments have the potential to 'empower' patients, reducing their dependence on providers and possibly improving their quality of care by increasing the volume and timeliness of diagnostic data and encouraging active self-management of their condition, for example through lifestyle changes. Perhaps more significantly, it is also seen by many economies with ageing populations as a way to contain high and ever rising healthcare costs. It has also been suggested that a move to greater self-management supported by expert networks and smart phone technology could improve the treatment of many millions of patients with chronic diseases in low and middle income economies that are also confronting the potential cost implications of epidemiological and demographic transitions, combined with the higher expectations of a more educated and knowledgeable population. There is now limited evidence that some fairly basic e- and mHealth interventions, for example in the areas of MNCH, malaria and HIV/AIDS can have a positive impact, even in resource-poor contexts. The aim here is to explore the extent to which further investment in technology could play a role in the development of an effective and affordable health sector strategy for at least some developing economies. It is suggested that the effectiveness of the approach may be highly dependent on the specific health conditions addressed, the nature of existing health systems and the overall socio

  15. Porphyry copper assessment of the Mesozoic of East Asia: China, Vietnam, North Korea, Mongolia, and Russia: Chapter G in Global mineral resource assessment

    Science.gov (United States)

    Ludington, Steve; Mihalasky, Mark J.; Hammarstrom, Jane M.; Robinson, Giplin R., Jr.; Frost, Thomas P.; Gans, Kathleen D.; Light, Thomas D.; Miller, Robert J.; Alexeiev, Dmitriy V.

    2012-01-01

    The U.S. Geological Survey (USGS) collaborated with the China Geological Survey (CGS) to conduct a mineral resource assessment of Mesozoic porphyry copper deposits in East Asia. This area hosts several very large porphyry deposits, exemplified by the Dexing deposit in eastern China that contains more than 8,000,000 metric tons of copper. In addition, large parts of the area are undergoing active exploration and are likely to contain undiscovered porphyry copper deposits.

  16. Extent of Salt Affected Land in Central Asia: Biosaline Agriculture and Utilization of the Salt-affected Resources

    OpenAIRE

    Toderich, Kristina; Tsukatani, Tsuneo; Shoaib, Ismail; Massino, Igor; Wilhelm, Margarita; Yusupov, Surat; Kuliev, Tajiddin; Ruziev, Serdar

    2008-01-01

    The current status and trends of salinization are discussed with waterlogging of marginal land/plant and water resources problems including strategies for development of integrated biosaline crop-livestock agriculture based system on food-feed crops and forage legumes for better livelihood of poor farmers in Central Asian (Uzbekistan, Kazakhstan, Turkmenistan and Tajikistan). Transfer of technologies and/or methodology of ICBA (International Centre for Biosaline Agriculture) in planting of bo...

  17. Water Resource Inventory and Assessment: Ruby Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Ruby Lake National Wildlife Refuge describes current hydrologic information, provides an assessment of water...

  18. Water Resource References: Cypress Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Reports and publications relevant to the CCNWR Water Resource Inventory and Assessment. List of references involving water quality and/or quantity data that...

  19. Cache River National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) for Cache River National Wildlife Refuge summarizes available and relevant information for refuge water...

  20. Hydrography - MO 2013 Outstanding Resource Waters - Rivers and Streams (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains Missouri's Outstanding State Resource Waters - Rivers and Streams listed in Table E of the Water Quality Standards rule as published in...

  1. Water Resources Inventory and Assessment: Cape May National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Cape May National Wildlife Refuge describes current hydrologic information, provides an assessment of water...

  2. Crossing of drinking water resources protection zones by roads

    OpenAIRE

    Mihael Brenčič

    2004-01-01

    Crossing of drinking water protection zones by roads are very common phenomenon in Slovenia. Described are starting points for protection of drinking water resources implemented with new legislation. In the article emphasize is given on the road and drinking water interaction. This new legislation implements also procedures for new construction impact assessment on protected drinking water resources. Assessments are defined as risk analysis. Some theoretical bases for these procedures are given.

  3. Crossing of drinking water resources protection zones by roads

    Directory of Open Access Journals (Sweden)

    Mihael Brenčič

    2004-12-01

    Full Text Available Crossing of drinking water protection zones by roads are very common phenomenon in Slovenia. Described are starting points for protection of drinking water resources implemented with new legislation. In the article emphasize is given on the road and drinking water interaction. This new legislation implements also procedures for new construction impact assessment on protected drinking water resources. Assessments are defined as risk analysis. Some theoretical bases for these procedures are given.

  4. Decentralizing water resource management : economic incentives, accountability, and assurance

    OpenAIRE

    Easter, K. William; Hearne, Robert R.; DEC

    1993-01-01

    Private sector involvement and user participation in water resource management are not new, say the authors. They give examples that demonstrate how willing users and the private sector are able to improve water use and play a larger role in water resources management. User participation and private sector involvement, if properly structured, can provide the incentives needed to stabilize and improve the efficiency of irrigation and water supply systems. They can add flexibility, transparency...

  5. Improving Decision Support Systems for Water Resource Management

    OpenAIRE

    Chen, Chen; Dilley, Maura; Valente, Marco

    2008-01-01

    The Water Framework Directive (WFD) structures long-term plans for Europe's threatened water resources. Owning to the inherent and human-made complexities of the water cycle, stakeholders must move strategically to avoid crisis and restore sustainability. Yet, the reality of water resource management today is falling short on delivery. Stakeholders require strategic tools that will help them to build consensus and take action in the right direction. Using the Framework for Strategic Sustainab...

  6. The water footprint and its relationship with the virtual water: nuances of the water resources commodification

    Directory of Open Access Journals (Sweden)

    Jairo Bezerra Silva

    2014-03-01

    Full Text Available The aim of this article is to examine how the concepts of water footprint and virtual water articulate themselves under an ideological matrix which has been justified by alleged situations of global hydric resources scarcity. Due to the idea of an increasing shortage of water in the world, new discourses on that subject promote strategies to solve the alleged global water crisis without focusing on deep material and cultural changes. We discuss here the nuances of the international agenda for the hydric resources field, which is based in the general idea according to which in order to face the water scarcity, large international corporations should control their increasing need of water using methodologies to calculate the amount they should use as those of water footprint and virtual water.JEL-Code | O13; Q25; Q56.

  7. Water pricing towards sustainability of water resources: A case study in Beijing

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The role of water pricing for managing water resources iswidely recognized in many areas of the world because of theincreasing scarcity of water resources, a high competition betweenwater uses and environmental degradation. Based on the analysis ofcost of water, this paper explores which types of cost should bereflected in the water pricing enhancing the sustainability ofwater resources. The principle of full cost pricing in which thecost should include supply cost, opportunity cost and externalitiesis proposed as a means to achieve the sustainability of waterresources. In a case study of Beijing, low water price is analyzedas one reason for unsustainable water consumption. Thus waterpricing justified is necessary and pressing. It is proposed tojustify water price in phased manner and eventually towards fullcost pricing. The assessment of impacts on water resources byraising water price shows water pricing could alleviate the conflict between water supply and demand. This paper concludes thatwater pricing can play an effective role in enhancing thesustainability of water resources in Beijing.

  8. Security of Ukrainian Water Resources: Analysis, Evaluation, Priorities of Providing

    OpenAIRE

    Lyudmyla Levkovska; Anatoliy Sunduk

    2014-01-01

    The article covers the basic principles of investigation of security parameters of Ukrainian water resources. Theoretical and methodological features of scientific category are defined and the description of the main indicators of the security sector is provided. The priorities of ensuring the safety of water resources of the state based on current social and economic parameters are substantiated.

  9. The Wealth of Water: The Value of an Essential Resource

    Science.gov (United States)

    Rathburn, Melanie K.; Baum, Karina J.

    2011-01-01

    Many students take water availability for granted and yet, by 2025, two-thirds of the world will not have access to clean drinking water. This case study is designed to encourage students to think about water as a limited natural resource and is used to highlight how the exploitation of water can have far-reaching social, political, and economic…

  10. Simulated changes in the atmospheric water balance over South Asia in the eight IPCC AR4 coupled climate models

    Science.gov (United States)

    Prasanna, Venkatraman; Yasunari, Tetsuzo

    2011-05-01

    This paper evaluates the performance of eight state-of-art IPCC-AR4 coupled atmosphere-ocean general circulation models in their representation of regional characteristics of atmospheric water balance over South Asia. The results presented here are the regional climate change scenarios of atmospheric water balance components, precipitation, moisture convergence and evaporation ( P, C and E) up to the end of the twenty-second century based on IPCC AR4 modelling experiments conducted for (A1B) future greenhouse gas emission scenario. The AOGCMs, despite their relatively coarse resolution, have shown a reasonable skill in depicting the hydrological cycle over the South Asian region. However, considerable biases do exist with reference to the observed atmospheric water balance and also inter-model differences. The monsoon rainfall and atmospheric water balance changes under A1B scenario are discussed in detail. Spatial patterns of rainfall change projections indicate maximum increase over northwest India in most of the models, but changes in the atmospheric water balance are generally widespread over South Asia. While the scenarios presented in this study are indicative of the expected range of rainfall and water balance changes, it must be noted that the quantitative estimates still have large uncertainties associated with them.

  11. Hydroeconomic modeling to support integrated water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus

    . Population growth and rapid development of the Chinese economy have increased water scarcity and put the natural water resources and aquatic ecosystems on the North China Plain under pressure. Dry rivers, rapidly decreasing groundwater tables and heavily polluted surface water bodies are consequences...... of the growing demand for water to irrigation, industrial and domestic uses. As a response, the Chinese authorities have launched the 2011 No. 1 Central Policy Document, which set targets related to water scarcity and water quality and marks the first step towards sustainable management of the Chinese water...... resources. In this context, the PhD study focused on development of approaches to inform integrated water resources management to cope with multiple and coupled challenges faced in China. The proposed method is to formulate river water management as a joint hydroeconomic optimization problem that minimizes...

  12. Innovative Strategies in Technical and Vocational Education and Training for Accelerated Human Resource Development in South Asia

    OpenAIRE

    Asian Development Bank (ADB)

    2014-01-01

    This publication highlights priorities and strategies in meeting current and emerging needs for skills development in South Asia. The report is in line with the Asian Development Bank’s effort to support its developing member countries’ priorities toward global competitiveness, increased productivity, and inclusive growth. It also identifies key issues, constraints and areas of improvement in making skills training more responsive to emerging labor market needs in South Asia as an important f...

  13. Transboundary Water Resources in Southern Africa: Conflict or cooperation?

    OpenAIRE

    Anthony R. Turton.; Marian J Patrick; Frederic Julien

    2006-01-01

    Literature suggests a linkage between internationally shared water resources and conflict potential. Anthony R. Turton, Marian J. Patrick and Frédéric Julien examine transboundary water resource management in southern Africa, showing that empirical evidence indicates a propensity to cooperation. They use the Hydropolitical Complex concept to explain why states might choose cooperation over conflict where a critical shared resource could limit future development potential. Development (2006) 4...

  14. Harmful Algal Blooms in Asia: an insidious and escalating water pollution phenomenon with effects on ecological and human health

    Directory of Open Access Journals (Sweden)

    Patricia M Glibert

    2014-02-01

    Full Text Available Harmful Algal Blooms (HABs, those proliferations of algae that causeenvironmental, economic, or human health problems, are increasing in frequency,duration, and geographic extent due to nutrient pollution. The scale of the HABproblem in Asia has escalated in recent decades in parallel with the increase in useof agricultural fertilizer, the development of aquaculture, and a growing population.Three examples, all from China but illustrative of the diversity of events and theirecological, economic, and human health effects throughout Asia, are highlightedhere. These examples include inland (Lake Tai or Taihu as well as offshore (EastChina Sea and Yellow Sea waters. The future outlook for controlling these bloomsis bleak. The effects of advancing industrialized agriculture and a continually growingpopulation will continue to result in more nutrient pollution and more HABs—-and more effects - in the foreseeable future.

  15. Transboundary water resource issues on the US-Mexico border

    OpenAIRE

    Brown, Christopher

    2005-01-01

    The beginning of the 21st century sees the U.S.-Mexico borderlands facing a range of water resource management challenges. These challenges include balancing increasing demands for water with limited water supplies in an arid region, reconciling upstream versus downstream riparian demands and uses of surface water, managing the overdraft of aquifers (especially in regions of sole source aquifer supply), and dealing with a host of water quality issues, both as regards surface water and groundw...

  16. Addressing the water resource management issue

    OpenAIRE

    Orprecio, J.; Rola, Agnes C.; Deutsch, William; Coxhead, Ian; Sumbalan, Antonio

    2002-01-01

    Metadata only record The rapid growth in demand for water by the agricultural, industrial and household sectors will place greater pressure on Philippine water supplies in the future. Among the many water management issues, surface water management, watershed management or more precisely, river basin management is prominent in both the local and national scenes.

  17. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    Science.gov (United States)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  18. The development of water services and their interaction with water resources in European and Brazilian cities

    OpenAIRE

    Barraqué, B.; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-01-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cos...

  19. The development of water services and their interaction with water resources in European and Brazilian cities

    OpenAIRE

    B. Barraqué; Formiga Johnsson, R. M.; Nogueira de Paiva Britto, A. L.

    2008-01-01

    The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long ...

  20. Water resources management in Tanzania-Pangani river catchment

    OpenAIRE

    Dagestad, K; Lien, L.

    1995-01-01

    The need for a well functioning water resources management system in Tanzania is essential for further development of the country. The poorly developed water resources management combined with a fast growing population and industry, increased agriculture- and hydropower production cause uncertainty and conflicts for the potential use of the water in the future both with respect to quantity and quality. NIVA has carried out a project in Tanzania, with a focus on Pangani Basin, to study 1) the ...

  1. Water resource management and the poor

    NARCIS (Netherlands)

    Hellegers, P.J.G.J.; Schoengold, K.; Zilberman, D.

    2008-01-01

    Water allocations as well as water quality and health concerns are often due to inadequate policies and institutions, which pose major challenges for policy reform. The necessary ingredients of such reform include four elements: rules to improve the decision-making process about water projects, prin

  2. Mainstreaming Water Resources Management in Urban Projects

    OpenAIRE

    World Bank Group

    2016-01-01

    This note provides guidance for cities in developing countries for managing the urban water cycle in a sustainable manner by using an Integrated Urban Water Management (IUWM) approach. After a brief introduction to the concept of IUWM, this note profiles the different IUWM approaches applied in three types of cities: a water-scarce, fast-developing city (Windhoek, Namibia), an expanding city ...

  3. Growing more food with less water: how can revitalizing Asia's irrigation help?

    NARCIS (Netherlands)

    Mukherji, A.; Facon, T.; Fraiture, de C.M.S.; Molden, D.; Chartres, C.

    2012-01-01

    Asia accounts for 70% of the world's irrigated area and is home to some of the oldest and largest irrigation schemes. While these irrigation schemes played an important role in ensuring food security for billions of people in the past, their current state of affairs leaves much to be desired. This p

  4. Landsat - What is operational in water resources

    Science.gov (United States)

    Middleton, E. M.; Munday, J. C., Jr.

    1981-01-01

    Applications of Landsat data in hydrology and water quality measurement were examined to determine which applications are operational. In hydrology, the principal applications have been surface water inventory, and land cover analysis for (1) runoff modeling and (2) abatement planning for non-point pollution and erosion. In water quality measurement, the principal applications have been: (1) trophic state assessment, and (2) measurement of turbidity and suspended sediment. The following applications were found to be operational: mapping of surface water, snow cover, and land cover (USGS Level 1) for watershed applications; measurement of turbidity, Secchi disk depth, suspended sediment concentration, and water depth.

  5. The future of water resources systems analysis: Toward a scientific framework for sustainable water management

    Science.gov (United States)

    Brown, Casey M.; Lund, Jay R.; Cai, Ximing; Reed, Patrick M.; Zagona, Edith A.; Ostfeld, Avi; Hall, Jim; Characklis, Gregory W.; Yu, Winston; Brekke, Levi

    2015-08-01

    This paper presents a short history of water resources systems analysis from its beginnings in the Harvard Water Program, through its continuing evolution toward a general field of water resources systems science. Current systems analysis practice is widespread and addresses the most challenging water issues of our times, including water scarcity and drought, climate change, providing water for food and energy production, decision making amid competing objectives, and bringing economic incentives to bear on water use. The emergence of public recognition and concern for the state of water resources provides an opportune moment for the field to reorient to meet the complex, interdependent, interdisciplinary, and global nature of today's water challenges. At present, water resources systems analysis is limited by low scientific and academic visibility relative to its influence in practice and bridled by localized findings that are difficult to generalize. The evident success of water resource systems analysis in practice (which is set out in this paper) needs in future to be strengthened by substantiating the field as the science of water resources that seeks to predict the water resources variables and outcomes that are important to governments, industries, and the public the world over. Doing so promotes the scientific credibility of the field, provides understanding of the state of water resources and furnishes the basis for predicting the impacts of our water choices.

  6. The impact of the warm phase of ENSO (El Niño Southern Oscillation) events on water resource availability of tropical catchments in Central Sulawesi, Indonesia

    OpenAIRE

    Leemhuis, C.; Gerold, G.

    2006-01-01

    Precipitation anomalies caused by the warm phase (El Niño) of the ENSO cycle lead to a strong decrease of water resources in South-East Asia. The aim of this work is to study the impact of warm phase ENSO caused precipitation anomalies on the water balance of a mesoscale tropical catchment in Central Sulawesi, Indonesia using a scenario analysis. We applied statistically generated precipitation anomalies caused by warm phase ENSO events on a validated hydrological model...

  7. Theory and model of water resources complex adaptive allocation system

    Institute of Scientific and Technical Information of China (English)

    ZHAOJianshi; WANGZhongjing; WENGWenbin

    2003-01-01

    Complex adaptive system theory is a new and important embranchment of system science,which provides a new thought to research water resources allocation system.Based on the analysis of complexity and complex adaptive mechanism of water resources allocation system,a fire-new analysis model is presented in this paper.With the description of Dynamical mechanism of system,behavior characters of agents and the evalustion method of system status,an integrity research system is built to analyse the evolvement rule of water resources allocation system.And a brief research for the impact of water resources allocation in beneficial regions of the Water Transfer from south to North China Project is conducted.

  8. Reallocation of Water Resources in the Arab Region: An Emerging Challenge in Water Governance

    Directory of Open Access Journals (Sweden)

    Kannan Ambalam

    2014-10-01

    Full Text Available Water is an integral part of ecosystems. It is essential to earth’s living creatures and central to maintaining the earth’s ecosystems. In most part of the world, both water quantity andquality problems are becoming more acute, since the limited available water resource are being over-utilized and stressed beyond the sustainability point. The contemporary globalwater crises including inefficient use and lack of equitable distribution are mainly due to the crises of governance. Water governance emerged as a comprehensive framework byreplacing all the existing paradigms including integrated water resource management. Though water governance focuses many aspects in ensuring sustainable use of water resources and its equitable distribution, reallocation of water resources may be most appropriate policy option to achieve these objectives. Reallocation systematically addresses the problems of uneven distribution of water resources across the sectors as well asprevents excessive allocation of water to a particular sector. Based on the secondary sources, this paper analyzes the challenges involved in water governance in terms of waterreallocation in the Arab countries where the allocation of water for agriculture is reasonable very high. Addressing water scarcity in the Arab region lies mainly in effectively managing the growing demand. Major water governance challenges with respectreallocation of water resources in the Arab region are tariff, metering and billing, which led to the excessive use in an unprecedented manner.Keywords: Arab Region, Global Water Crisis, Reallocation, Water Governance, WaterManagement, Water Rights

  9. Weighted Bankruptcy Rules and Transboundary Water Resources Allocation

    NARCIS (Netherlands)

    Mianabadi, H.; Mostert, E.; Pande, S.; Van de Giesen, N.C.

    2015-01-01

    One significant problem of transboundary river basins causing various challenges and disputes throughout the world is that because of increasing water resource variability and consumption, the water demand often exceeds water availability. Hence, one of the main challenges in transboundary river bas

  10. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water d

  11. Water resources. [monitoring and management from ERTS-1 data

    Science.gov (United States)

    Salomonson, V. V.

    1974-01-01

    ERTS-1 applications in snow and ice monitoring, surface water monitoring, including monitoring of wetland areas and flood inundated area mapping, and also watershed monitoring for runoff prediction are discussed. Results also indicate that geological features can be noted which relate to ground water. ERTS-1 data can be used successfully in operational situations by water resources management agencies.

  12. The World Bank's Assistance for Water Resources Management in China

    OpenAIRE

    Robert C.G. Varley

    2005-01-01

    China has an ancient tradition of hydraulic engineering but in the past half century the intensity of exploitation of water resources has accelerated as a result of population and economic growth. The three major issues for Chinese water management are water shortages, flood control and pollution. The World Commission on Dams noted that since 1949 the number of large dams in China had incr...

  13. China Country Water Resources Partnership Strategy (2013-2020)

    OpenAIRE

    World Bank

    2013-01-01

    This report presents the outcome of the World Bank's analytical and advisory work to assess the status of water resources development and the key water issues and challenges facing the country. The Bank has also reviewed its history of cooperation with the Government of China in recent decades, and notes the remarkable achievements China has made in developing the water sector. The report ...

  14. Climate proofing water and sanitation services and applying integrated water resource management in slums

    OpenAIRE

    Heath, Thomas

    2011-01-01

    This thesis assesses how climate change impacts water resources and communities and reviews how the resource can be managed in an integrated manner for small water and sanitation providers. This thesis was based upon a 10 month Knowledge Transfer Partnership (KTP) between Cranfield University and Water and Sanitation for the Urban Poor (WSUP). The aim of the project was to assess the opportunities and vulnerabilities presented by climate change and how Integrated Water Resource ...

  15. INFLUENCE OF CLIMATE CHANGES ON WATER RESOURCES IN MOLDOVA

    Directory of Open Access Journals (Sweden)

    Violeta Ivanov

    2012-06-01

    Full Text Available The paper aims to analyze the current state of affairs with water resources in Moldova, the challenges it faces for its national human and economic development, having in mind that the water resources are quite limited in Moldova, which encounters pollution, degradation influenced by climate change and unwise human activity to their biodiversity and ecosystems, availability and accessibility. It also attempts to highlight the relationship between climate change and water resources in Moldova, which has adverse effects on both environment and people’s health, and raise significant hurdles to the international, regional and sectoral development.

  16. Radio resource management using geometric water-filling

    CERN Document Server

    He, Peter; Zhou, Sheng; Niu, Zhisheng

    2014-01-01

    This brief introduces the fundamental theory and development of managing radio resources using a water-filling algorithm that can optimize system performance in wireless communication. Geometric Water-Filling (GWF) is a crucial underlying tool in emerging communication systems such as multiple input multiple output systems, cognitive radio systems, and green communication systems. Early chapters introduce emerging wireless technologies and provide a detailed analysis of water-filling. The brief investigates single user and multi-user issues of radio resource management, allocation of resources

  17. ROLE OF JAMMU AND KASHMIR WATER RESOURCES IN INDIAN ECONOMY

    Directory of Open Access Journals (Sweden)

    HILALAHMAD SHAH

    2013-01-01

    Full Text Available The economic prosperity and social well being of a country largely depends both directly or indirectly on its water resources. From time immemorial the picturesque state of Jammu and Kashmir is known all over the world for its economic prosperity. What makes Jammu and Kashmir so special? Many things, but especially its water resources such as snow capped mountains, crisscrossed by rivers and studded with lakes, springs, canals which originate from this state of India. Like other states of India, the role of water resources of Jammu and Kashmir are very important for the development of many sectors of Indian economy like agriculture, hydroelectricity, food, construction, transport, minerals, industry etc

  18. Assessment of radon levels in some water resources in Egypt

    International Nuclear Information System (INIS)

    Radon is a naturally occurring radioactive gas that is produced by the radioactive decay of radium. Breathing high concentrations of radon can cause lung cancer. When radon gas migrates through the atmosphere, the solid radon progeny are deposited on the soil and water below, entering into the food chain. Radon generated from rocks containing its parents may escape to the underground or surface running water, which ultimately used as drinking water or for irrigation. In this work radon level was determined in different water resources in Egypt. Water from spring, tap water Nile and some commercially available drinking water were subjected to radon measurements using CR-39 detectors. Radon concentration in different water resources was found the range from 8.94 to 10.00 Bq/m3 while in trapped air above water was 9.3 to 10.38 Bq/m3

  19. Subsidiarity in Principle: Decentralization of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Ryan Stoa

    2014-05-01

    Full Text Available The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1 the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2 decentralization promotes community and stakeholder engagement when decision-making is localized; 3 inefficiencies are reduced by eliminating reliance on central government bureaucracies and budgetary constraints; and 4 laws and institutions can be adapted to reflect localized conditions at a scale where integrated natural resources management and climate change adaptation is more focused. Accordingly, the principle of subsidiarity has been welcomed by many states committed to decentralized governance, integrated water resources management, and/or civic participation. However, applications of decentralization have not been uniform, and in some cases have produced frustrating outcomes for states and water resources. Successful decentralization strategies are heavily dependent on dedicated financial resources and human resource capacity. This article explores the nexus between the principle of subsidiarity and the enabling environment, in the hope of articulating factors likely to contribute to, or detract from, the success of decentralized water resources management. Case studies from Haiti, Rwanda, and the United States’ Florida Water Management Districts provide examples of the varied stages of decentralization.

  20. Diagnosing Causes of Water Scarcity in Complex Water Resources Systems and Identifying Risk Management Actions

    OpenAIRE

    Martín Carrasco, Francisco Javier; Garrote de Marcos, Luis; Ana IGLESIAS; Mediero Orduña, Luis

    2013-01-01

    From the water management perspective, water scarcity is an unacceptable risk of facing water shortages to serve water demands in the near future. Water scarcity may be temporary and related to drought conditions or other accidental situation, or may be permanent and due to deeper causes such as excessive demand growth, lack of infrastructure for water storage or transport, or constraints in water management. Diagnosing the causes of water scarcity in complex water resources systems is a prec...

  1. Sustainable development of water resources in Pakistan and environmental issues

    International Nuclear Information System (INIS)

    Irrigation water represents an essential input for sustaining agricultural growth in Pakistan's arid to semi arid climate. While the surface water availability for irrigation has been more or less stagnant for the last three decades, the ground water utilization also appears to have touched the peak in most of the sweet aquifers. In the present state of inaction for the water resources development, the overall water availability is in fact declining due to progressive sedimentation of the existing storages and gradual lowering of water table in fresh ground water areas. The paper discusses major water resources concerns that threaten the sustainability of Pakistan's irrigated agriculture. The paper identifies overall water scarcity, high degree of temporal variability in river flows, lack of balancing storages and declining capacity of existing storages due to natural sedimentation as the serious concerns. Over exploitation of ground water and water quality concerns also seems to be emerging threats for environmentally sustainable irrigated agriculture in this country. The salt-water intrusion and increase in soil and ground water salinity are indicators of over exploitation of ground water for irrigation. The continuous use of poor quality ground water for irrigation is considered as one of the major causes of salinity in the area of irrigated agriculture. Indiscriminate pumping of the marginal and saline ground water can add to the root zone salinity and ultimately reduce the crop yields. The paper presents various management options for development and efficient utilization of water resources for environment friendly sustainable development of irrigated agriculture in Pakistan. These include construction of additional storage, modernization of irrigation system and effective conjunctive use of surface and groundwater resources. The better soil and water management practices, saline agriculture, use of biotechnology and genetic engineering can further increase

  2. Isotope methods in water resources assessment and environmental management

    International Nuclear Information System (INIS)

    Availability of water and protection of water resources have become top environmental issues in many countries. Governments are forced to issue strict guidelines to protect the environment and create agencies to pursue these aspects as well as enforce such regulations. The supply of good-quality water from rivers and lakes is becoming a costly and complex problem for many institutes responsible for water supply. Because of the high pollution levels in surface waters, ground water is the main source of drinking water in many countries. It is estimated that 1.5 billion people world-wide depend on it for drinking water. Since ground water cannot be directly measured, and despite its importance for drinking purposes there is not enough public concern about its protection. In other cases, it is found that the exploited ground water is not a renewable resource. In many countries in arid and semi-arid regions, fossil ground water is being tapped for extensive agricultural development, but such extraction depletes the reserves, in the same way as an oil reservoir. The availability of correct information, before decisions are taken will lead to improved management of water resources, distributing the available resources for different uses according to their quality, and ultimately, to manage the resource. Nuclear science has developed a series of methodologies based on the use of naturally-occurring isotopes and artificial tracers to study the processes involved in the occurrence and circulation of water. The discipline called 'Isotope Hydrology' provides a deep insight into many parts of the water cycle; from the evaporation over the ocean or the continents, to the formation of surface runoff and ground water and in the discharge of aquifer systems into the ocean. Isotope hydrology, as a scientific and applied discipline in earth sciences, was created during the late 1950s and early 1960s, beyond the classical hydrological science. In these early stages, new methodologies

  3. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    Science.gov (United States)

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns. PMID:26718947

  4. WATER QUALITY INDEX – AN INSTRUMENT FOR WATER RESOURCES MANAGEMENT

    OpenAIRE

    PAIU MĂDĂLINA; BREABĂN IULIANA GABRIELA

    2014-01-01

    Water quality status assessment can be defined as the evaluation of physical, chemical, biological state of the water in relation with the natural state, anthropogenic effects and future uses. Water quality index reduces the number of parameters used in monitoring water quality to a simple expression in order to facilitate interpretation of the data, allowing public access to water quality data. This study is a summary of an interdisciplinary research program on surface water quality monit...

  5. Water resources and hydrology of Mars

    Science.gov (United States)

    Baker, V. R.; Gulick, V. C.; Kargel, J. S.; Strom, R. G.

    1991-01-01

    The surface of Mars has been extensively modified by a large variety of water erosional and depositional processes. Although liquid water is presently unstable on the planet's surface, in its cold, hyperarid climate, there is abundant geomorphological evidence of past fluvial valley development multiple episodes of catastrophic flooding, periglacial landforms, ice-related permafrost, lake deposits, eroded impact craters and possible glacial landforms throughout much of Mars' geological history. The amount of water required to form such features is estimated to be equivalent to a planet-wide layer approximately 50 meters deep. Some of this water undoubtedly was removed from the planet by atmospheric escape processes, but much probably remains in the subsurface of Mars. Jakosky summarized the present partitioning of water on Mars, expressed as an average global depth, as follows: in the polar caps, 30 meters; in the megaregolith, 500 to 1000 meters; structurally bound in clays, 10 meters; and in high latitude regolith, a few meters. However, most of this water is probably in the form of ice, except in anomalous areas of possible near surface liquid water, and in regions where hydrothermal systems are still active. The best locations for prospecting are those areas where water or ice is sufficiently concentrated at shallow enough depths to make it feasible to pump out or mine.

  6. ANALYSIS OF WATER RESOURCES OF KHARKOV REGION

    OpenAIRE

    Zabelina, А.; Voronova, E.; N. Vnukova

    2008-01-01

    The negative influence of agriculture and industry on superficial waters of the Kharkiv region is considered. It has been revealed that the Dikanevskie and Bezludovskie treating construction and intensive development of agriculture contribute mostly on the quality of water objects. It has shown that pollution represents a significant danger to the environment.

  7. 18 CFR 701.3 - Purpose of the Water Resources Council.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Purpose of the Water Resources Council. 701.3 Section 701.3 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Introduction § 701.3 Purpose of the Water Resources Council. It is the purpose of...

  8. Study on the water related disaster risks using the future socio-economic scenario in Asia

    Science.gov (United States)

    Kiguchi, M.; Hatono, M.; Ikeuchi, H.; Nakamura, S.; Hirabayashi, Y.; Kanae, S.; Oki, T.

    2014-12-01

    In this study, flood risks in the present and the end of the 21st century in Asia are estimated using a future socio-economic scenario. Using the runoff data of 7 GCMs (RCP 8.5) of CMIP5, the river discharge, inundation area, and inundation depth are calculated for the assessment of flood risk. Finally, the flood risk is estimated using a function of damage. The flood frequency in the end of the 21st century in Asia tends to increase. Inundation area in Japan, Taiwan, and Kyrgyz is almost unchanged. At the same time, that in Sri Lanka, Bangladesh, Laos, and Myanmar reached about 1.4-1.6 times compared to present. Damage cost is largely influenced by economic growth, however, we show that it is important that we distinguish the influence of climate change from economic development and evaluate it when we think about an adaptation.

  9. Santa Lucia River basin. Development of water resources

    International Nuclear Information System (INIS)

    The main objective of this study was to orient the development of water resources of the Santa Lucia River basin to maximum benefit in accordance with the priorities established by Government in relation to the National Development Plans

  10. Hydrogeology and water resources of Ruby Valley northeastern Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This water-resources evaluation of Ruby Valley was divided into two 3-year phases. Phase 1 was designed to quantify annual evapotranspiration (ET) from the Ruby...

  11. Water Resource Inventory and Assessment (WRIA) - Horicon National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Horicon National Wildlife Refuges describes current hydrologic information, provides an...

  12. Water Resource Inventory and Assessment (WRIA) - Shiawassee National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report for Shiawassee National Wildlife Refuge (NWR) describes current hydrologic information, provides...

  13. Cahaba River National Wildlife Refuge Water Resource Inventory and Assessment

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) report for Cahaba River National Wildlife Refuge describes current hydrologic information, provides an...

  14. A model for water resource governance for the Philippines

    OpenAIRE

    Malayang, B.

    2002-01-01

    This is an attempt to apply a model of forest governance on water resource governance based on a previous work on adaptive collaborative management (ACM) and forest governance of the Centre for International Forestry Research (CIFOR)

  15. Climate Change Adaptation and Water Resources in the Caribbean Region

    OpenAIRE

    John Charlery

    2011-01-01

    Presentation on climate change adaptation in the Caribbean for a capacity building workshop. Topics discussed include the A1B Model, temperature and rainfall patterns, their implications for water resource management and climate change mitigation.

  16. Water Resources Inventory and Assessment: Parker River National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment report for Parker River National Wildlife Refuge describes current hydrologic information, provides an assessment of...

  17. Alternative medicines for AIDS in resource-poor settings: Insights from exploratory anthropological studies in Asia and Africa

    NARCIS (Netherlands)

    A. Hardon; A. Desclaux; M. Egrot; E. Simon; E. Micollier; M. Kyakuwa

    2008-01-01

    The emergence of alternative medicines for AIDS in Asia and Africa was discussed at a satellite symposium and the parallel session on alternative and traditional treatments of the AIDSImpact meeting, held in Marseille, in July 2007. These medicines are heterogeneous, both in their presentation and i

  18. Examining Riparian Drinking Water Resources in the Danube Basin

    International Nuclear Information System (INIS)

    The importance of the need for high quality drinking water and for its long term secure supply is growing, even in economically medium developed countries. The drinking water requirements of several million people are covered by bank filtered (riparian) groundwater resources along the Danube River and its tributaries. These are very vulnerable water resources, of which exploited water is a mixture of waters coming from a minimum of two, but often from three or four sources as river water, locally infiltrated precipitation, distantly infiltrated precipitation, or infiltrated still water (from lakes or wetlands). The European Union (EU) Water Framework Directive (WFD) requires the setup of protected areas and management plans for groundwater bodies based on conceptual hydrological models. One of the most reliable methods for proving, calibrating or verifying these models is the application of environmental isotope data

  19. Boundary concepts for interdisciplinary analysis of irrigation water management in South Asia

    OpenAIRE

    Mollinga, Peter P.

    2010-01-01

    This paper reviews the boundary concepts that have emerged in interdisciplinary irrigation studies in South Asia, particularly India. The focus is concepts that capture the hybridity of irrigation systems as complex systems, and cross the boundaries of the natural and social sciences. Concepts capturing the materialisation of rights, design-management relations and the social construction of technology, the notions of landesque capital and (the valuation of) ecosystem goods and services, and ...

  20. A Citizen's Guide to Coastal Water Resource Management.

    Science.gov (United States)

    Kennedy, Jim; Miller, Todd

    More people than ever are using coastal waters for recreation and business activities and living along the shores. This puts more pressure on natural resources and creates more conflicts between the people using the resources. This guidebook is designed to help citizens develop an understanding of how coastal management works. Four chapters in…

  1. Stable Carbon Isotope Evidence for Neolithic and Bronze Age Crop Water Management in the Eastern Mediterranean and Southwest Asia.

    Directory of Open Access Journals (Sweden)

    Michael P Wallace

    Full Text Available In a large study on early crop water management, stable carbon isotope discrimination was determined for 275 charred grain samples from nine archaeological sites, dating primarily to the Neolithic and Bronze Age, from the Eastern Mediterranean and Western Asia. This has revealed that wheat (Triticum spp. was regularly grown in wetter conditions than barley (Hordeum sp., indicating systematic preferential treatment of wheat that may reflect a cultural preference for wheat over barley. Isotopic analysis of pulse crops (Lens culinaris, Pisum sativum and Vicia ervilia indicates cultivation in highly varied water conditions at some sites, possibly as a result of opportunistic watering practices. The results have also provided evidence for local land-use and changing agricultural practices.

  2. Risk Management of Water Resources in a Changing Climate

    OpenAIRE

    Gonen, Amnon; Zeitouni, Naomi

    2010-01-01

    Efficient and flexible management of fresh water resources are critical for the wellbeing of human society. Without it, human society would be unable to prosper or even exist. Conflicting demands coupled with decreasing usable water may lead to inefficient and unsustainable use of resources, which may result in significant economic, social, and environmental ramifications. In the current work, risk management methodology is utilized to increase flexibility and security over the management of ...

  3. Integrated Water Resource Management in Trinidad and Tobago

    OpenAIRE

    Mahabir, S.

    2004-01-01

    Integrated Water Resource Management (IWRM) promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare (in an equitable manner) without compromising the sustainability of vital ecosystems. This case study focuses on Trinidad and Tobago, a country consisting of two main islands north-east of Venezuela, between 10 and 11.5 degrees north latitude and between 60 and 62 degrees west longitude. It is the most southerly o...

  4. World Water Resources and Regional Vulnerability: Impact of Future Changes

    OpenAIRE

    Kulshreshtha, S. N.

    1993-01-01

    This report is the first presentation of results from the Water Resources Project's current focus on climate change, water resources, and socioeconomic impacts. Not only is the global assessment valuable in itself, but the regional analysis has identified areas of acute vulnerability which require further in-depth study. Future efforts should focus on reducing the spatial (river basins) and temporal (crucial periods within the hydrological year) scales of the analyses, as well as on addres...

  5. Drought and climate change impacts on water resources: management alternatives

    OpenAIRE

    Moneo Laín, Marta

    2008-01-01

    During the last decades water resources are facing severe challenges all over the world and the trends of decreasing precipitations and increasing temperatures in the Mediterranean region intensify this situation. The large climate variability of the region‐ makes drought events appear as a recurrent phenomenon in the area, causing important damages in both the economy and the environment. Water resources planning is part of complex, multi‐disciplinary processes overarching a wide range of...

  6. Balancing water resources conservation and food security in China

    OpenAIRE

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2014-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targ...

  7. ROLE OF JAMMU AND KASHMIR WATER RESOURCES IN INDIAN ECONOMY

    OpenAIRE

    HILALAHMAD SHAH

    2013-01-01

    The economic prosperity and social well being of a country largely depends both directly or indirectly on its water resources. From time immemorial the picturesque state of Jammu and Kashmir is known all over the world for its economic prosperity. What makes Jammu and Kashmir so special? Many things, but especially its water resources such as snow capped mountains, crisscrossed by rivers and studded with lakes, springs, canals which originate from this state of India. Like other states of Ind...

  8. State management in transition: Understanding water resources management in Vietnam

    OpenAIRE

    Waibel, Gabi

    2010-01-01

    For many years, water resources management in Vietnam was concentrated on activities ensuring the available freshwater for agricultural production, including flood control. With the increase of water demands and the emergence of new water usages since the late 1980s, this has subsequently changed. During the past two decades, and within the context of a broad economic transition process, the water sector has undergone a series of reforms, including various attempts to integrate environmental ...

  9. Water on Mars - Volatile history and resource availability

    Science.gov (United States)

    Jakosky, Bruce M.

    1990-01-01

    An attempt is made to define the available deposits of water in the near-surface region of Mars which will be available to human exploration missions. The Martian seasonal water cycle is reviewed, and geochemical and geological constraints on the availability of water are examined. It is concluded that the only sure source of water in amounts significant as a resource are in the polar ice deposits.

  10. Isotope hydrology studies of water resources (Tabas area case study)

    International Nuclear Information System (INIS)

    Tabas Town with a surface area of 55,000 km2 is located in north-east of Yazd City in the east of Iran. It is situated in western slopes of eastern heights of the country, on sediments of fourth era, on the edge of Kavir-e-Namak Desert. The study area falls between 56 deg. to 57 deg. 45' eastern longitudes and 32 deg. 15' to 34 deg. 15' northern latitude. The project aims at providing water for washing carbons, cooling systems and potable water purposes in Tabas carbon power plant. Investigating the origin, age and nature of different water resources and relationships between these resources is the main objective of conducting isotope studies in Tabas area. This will help in providing required water in the area. Determining under-investigation water resources, taking samples and isotope and chemical analysis of samples form methodology of present research. 18O and D stable environmental isotopes and T and 14C radioisotopes as well as results of chemical analysis of samples taken from different water resources have been used in studies. First stage of studies consists of sample-taking from 34 springs, 13 wells and 8 Qanats during both wet and dry seasons. Isotope and chemical analyses have been also made on taken samples. Main results achieved could be summarized as: 1) recharge centers of water resources are found in some parts beyond the study area; 2) regarding stable environmental isotopes tests results, recharge centers of water resources within the study area are mainly located in heights over 2,700 m; and 3) isotope and chemical tests results indicate a slight effect of evaporation on increasing salts contents of water resources in the area, whereas the increasing rate mainly depend on the rate of dissolving salts in evaporative and desert rocks on the course of groundwater flows. (author)

  11. Assessment of Food Products and Virtual Water Trade as Related to Available Water Resources in Iran

    OpenAIRE

    N Rouhani; Yang, H.(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; Department of Modern Physics, University of Science and Technology of China, Anhui, China; Department of Physics, Nanjing University, Jiangsu, China; School of Physics, Shandong University, Shandong, China; Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China; Physics Department, Tsinghua University, 100084, Beijing, China); S Amin Sichani; M. Afyuni; S.F Mousavi; A. A. Kamgar Haghighi

    2009-01-01

    Iran, with an average annual precipitation of about 252 mm (413 BCM) and renewable freshwater resources of 130 BCM, has irregular distribution of water resources. With a high population growth rate, agriculture remains the greatest water user in Iran but its production still does not meet the total food demand of the country. Due to unreliable water availability, the competition for water from other sectors and the increasing demand for food and better diets, Iran will experience water stress...

  12. Impact of enterprises of Ural mineral resource complex on water resources

    OpenAIRE

    Zaliya Maratovna Bobrova; Oksana Yur'evna Il'ina; Gennadiy Andreevich Studenok; Evgeniy Mikhaylovich Tseytlin

    2016-01-01

    The article discusses the negative impact of mining and metallurgical enterprises of the Middle and South Urals on water resources. Authors define characteristic pollutants for mineral resources complex, including ferrous, nonferrous metallurgy and mining enterprises of building materials. Authors also show the information about water pollution contaminants, including metals, nitrogen compounds, sulfates, manganese and other substances. The article describes main causes of pollution and measu...

  13. 76 FR 71070 - Draft Programmatic Environmental Impact Statement for the Integrated Water Resource Management...

    Science.gov (United States)

    2011-11-16

    ... Bureau of Reclamation Draft Programmatic Environmental Impact Statement for the Integrated Water Resource... Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The draft Programmatic... Yakima River Basin Water Enhancement Project (YRBWEP) in response to long-standing water...

  14. Study on the holistic model for water resources system

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Jianshi; WANG; Zhongjing; WENG; Wenbin

    2004-01-01

    Based on the Theory of Complex Adaptive System developed recently, a holistic model for water resources system is established at the basin level for analyzing water resources management and allocation of the basin. In this holistic model framework,the subsystems of the water resources system, including hydrologic components,agricultural and industrial production, human living, ecosystem and enviorenment are combined in a dynamic connection with inner variables. According to the characteristics of the holistic model framework, a nesting genetic arithmetic is employed to solve the nonlinear optimal model. The model is applied in the Yellow River basin to analyze the rational amount of diversion water for the West Line of Water Transfer Project form South China to North China and its marginal benifit.

  15. Climate Change and Water Resources Management: A Federal Perspective

    Science.gov (United States)

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  16. Isotope techniques in water resources development and management. Proceedings

    International Nuclear Information System (INIS)

    The 10th International Symposium on Isotope Techniques in Water Resources Development and Management was organized by the International Atomic Energy Agency in co-operation with UNESCO, WMO and International Association of Hydrological Sciences and was held at IAEA Headquarters, Vienna, during 10-14 May 1999. The symposium provided an international forum for assessing the status and recent advances in isotope applications to water resources and an exchange of information on the following main themes: processes at the interface between the atmosphere and hydrosphere; investigations in surface waters and groundwaters: their origin, dynamics, interrelations; problems and techniques for investigating sedimentation; water resources issues: pollution, source and transport of contaminants, salinization, water-rock interaction and processes in geothermal systems; isotope data interpretation and evaluation methodologies: modelling approaches. The proceedings contain the 46 papers presented and extended synopses of poster presentations; each of them was indexed individually

  17. Integrated Water Resources Management Improving Langat Basin Ecosystem Health

    Directory of Open Access Journals (Sweden)

    Mazlin B. Mokhtar

    2008-01-01

    Full Text Available The ecosystem provides us with all the goods and services that form the base of our economic, social cultural and spiritual life. Good scientific information will be required for managing the environment by using the Ecosystem approach. The groundwater is considered as a possible supplementary of alternative water source, and some factories already started shifting their water source from surface water to groundwater. Uncontrolled use of groundwater, however, may induce serious environmental problems, e.g., land subsidence, saltwater intrusion to the aquifer. The establishment of a balanced multi-sector and integrated groundwater resources and environmental management plan is deemed urgent to attain a sustainable groundwater resources use and to maintain a favorable groundwater quality in the Langat Basin. To achieve sustainable lifestyle in large scale ecosystem requires integrated and holistic approaches from all stakeholders. Through Aquifer Storage Recovery (ASR it was determined a revolutionized water resources management, providing a sustainable supply while minimizing the environmental impact of surface storage. By using underground geologic formations to store water, by integrated water resources management advisory system (IWRMAS aquifer recharge can now easily applied to obviate water resource and environmental problems, including seasonal shortages, emergency storage, ground subsidence and saline intrusion.

  18. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  19. Applications of remote sensing to water resources

    Science.gov (United States)

    1977-01-01

    Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.

  20. Treatment Technology and Alternative Water Resources

    Science.gov (United States)

    Chapman, M. J.

    2014-12-01

    At this point in our settlement of the planet Earth, with over seven billion human inhabitants, there are very few unallocated sources of fresh water. We are turning slowly toward "alternatives" such as municipal and industrial wastewater, saline groundwater, the sea, irrigation return flow, and produced water that comes up with oil and gas deposits from deep beneath the surface of the earth. Slowly turning, not because of a lack in technological ability, but because it takes a large capital investment to acquire and treat these sources to a level at which they can be used. The regulatory system is not geared up for alternative sources and treatment processes. Permitting can be circular, contradictory, time consuming, and very expensive. The purpose for the water, or the value of the product obtained using the water, must be such that the capital and ongoing expense seem reasonable. There are so many technological solutions for recovering water quality that choosing the most reliable, economical, and environmentally sound technology involves unraveling the "best" weave of treatment processes from a tangled knot of alternatives. Aside from permitting issues, which are beyond the topic for this presentation, the "best" weave of processes will be composed of four strands specifically fitted to the local situation: energy, pretreatment, driving force for separation processes, and waste management. A range of treatment technologies will be examined in this presentation with a focus on how the quality of the feed water, available power sources, materials, and waste management opportunities aid in choosing the best weave of treatment technologies, and how innovative use of a wide variety of driving forces are increasing the efficiency of treatment processes.

  1. Water resources data, Ohio: Water year 1991. Volume 2, St. Lawrence River Basin: Statewide project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    The Water Resources Division of the US Geological Survey (USGS), in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Ohio each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for 131 streamflow-gaging stations, 95 miscellaneous sites; (2) stage and content records for 5 streams, lakes, and reservoirs; (3) water-quality for 40 streamflow-gaging stations, 378 wells, and 74 partial-record sites; and (4) water levels for 431 observation wells.

  2. Hale Crater — Ancient Water Science, Contemporary Water Resource

    Science.gov (United States)

    Stillman, D. E.; Grimm, R. E.; Robbins, S. J.; Michaels, T. I.; Enke, B. L.

    2015-10-01

    Hale has easy access to liquid water via RSL. Scientifically the site has a rich history of water via outflow channel, fluidized ejecta, hydrothermal activity, gullies, and RSL. Lastly, the site would allow age dating of Aryge and Hale crater.

  3. 78 FR 69404 - Massachusetts Water Resources Authority; Notice of Preliminary Determination of a Qualifying...

    Science.gov (United States)

    2013-11-19

    ... Energy Regulatory Commission Massachusetts Water Resources Authority; Notice of Preliminary Determination... November 5, 2013, the Massachusetts Water Resources Authority filed a notice of intent to construct a... Massachusetts Water Resources Authority's Ware Disinfection Facility in Hampshire County,...

  4. 76 FR 27344 - Water Resources Management Plan/Environmental Impact Statement, Mojave National Preserve, San...

    Science.gov (United States)

    2011-05-11

    ... National Park Service Water Resources Management Plan/Environmental Impact Statement, Mojave National... Prepare a Water Resources Management Plan/ Environmental Impact Statement for Mojave National Preserve... to inform preparation of a Water Resources Management Plan/Environmental Impact Statement...

  5. Impact of remote sensing upon the planning, management and development of water resources, appendix

    Science.gov (United States)

    Castruccio, P. A.; Loats, H. L.; Fowler, T. R.; Frech, S. L.

    1975-01-01

    Lists are presented of water resource agencies from the federal, state, Water Resources Research Institute, university, local, and private sectors. Information is provided on their water resource activities, computers, and models used. For Basic doc., see N75-25263.

  6. Carbon and Water Resource Management for Water Distribution Systems

    OpenAIRE

    Hendrickson, Thomas Peter

    2013-01-01

    Water distribution systems (WDS) worldwide face increasing challenges as population growth strains a limited water supply in many areas. In the United States, existing water infrastructure systems require significant investments to refurbish an aging stock of assets. Much of this investment is required in drinking water transmission and distribution, where a substantial amount of material and economic inputs are lost as a result of pipeline leaks. With growing worldwide concern for reducing e...

  7. Environmental geophysics mapping salinity and water resources

    NARCIS (Netherlands)

    Dent, D.

    2007-01-01

    Salinity and fresh water are two sides of the same coin, most conveniently measured by electrical conductivity; they can now be mapped rapidly in three dimensions using airborne electromagnetics (AEM). Recent developments in the calibration of airborne data against in-field measurements and addition

  8. Adaptation to climate change and variability in Canadian water resources

    International Nuclear Information System (INIS)

    A survey is presented of topics and issues related to the adaptation to climate change in Canadian water resources. These resources are seen as especially sensitive to changes in variability in climate and hydrology. Based on current knowledge of global warming, significant changes in climate and hydrology are plausible within a time period that is significant for water resource management. Global warming will tend to exacerbate existing water resources problems in the southern Prairies and the Great Lakes. The Prairies can expect increased drought during summer, and the Great Lakes can expect a decline in mean lake levels to historic lows. Measures for adapting to climate change include traditional practices (supply management), which stress system reliability. They provide some adaptation to climate change but are limited in their ability to respond to rapid change. Nontraditional and non-management measures stress flexibility and resilience. These measures also address other concerns and can be implemented immediately, before the effects of climate change are evident. Water resources managers require methods of assessing the vulnerability of water resources systems to climate change to help identify when and where adaptive measures should be applied. Adaptation to climate change requires ongoing observation and interpretation of climate, hydrology, and related environmental processes. 29 refs., 1 fig., 3 tabs

  9. GRACE Data-based Estimation of Spatial Variations in Water Storage over the Central Asia during 2003-2013

    Science.gov (United States)

    Sun, Q.; Tashpolat, T.; Ding, J. L.; Zhang, F.; Mamat, S.

    2014-11-01

    We used the GRACE (Gravity Recovery And Climate Experiment) satellite gravity data obtained from January 2003 to January 2013, with supports of other data, including the TRMM (Tropical Rainfall Measuring Mission) and CMAP (Climate Prediction Center's Merged Analysis of Precipitation) precipitation data, the NDVI (Normalized Difference Vegetation Index) data, and the DEM (Digital Elevation Model) data, to analyze the annual variations in water storage over central Asia. Following conclusions can be drawn from this study. (1) The amplitudes of the annual variations in the water storage exhibit a general E-W increasing trend. (2) The water storage has an increasing trend in the following areas: the Balkhash Basin, the Ob River Basin, and the middle and lower reaches of the Yenisei River Basin. This is caused by the global warming, the melting of permafrost, and the vegetation coverage continued to increase, as well as the improved industrial technologies to reduce water usage, and the other natural and human factors. (3) The water storage has a decreasing trend in the following areas: the Syr Darya River Basin, the Amu Darya River Basin, and the conjunction area between the Euphrates-Tigris Basin and the southwestern shore of the Caspian Sea. (4) The water storage is primarily influenced by the precipitation, the evaporation, the vegetation coverage, and the topography. (5) The water storage maximum normally responds to the precipitation maximum with certain time lags.

  10. Water Resource Uses and Recreational Activities in Rural Nigeria.

    Science.gov (United States)

    Adekoya, Adebola

    1991-01-01

    This study surveys rural Nigerian residents concerning local water resource uses and tourists' recreational activities with respect to scales of awareness, understanding, and incentive. Results indicate a public willingness to encourage and finance the rural development of water bodies for agricultural purposes exclusive of investment for tourism…

  11. Modeling and analysis of collective management of water resources

    Directory of Open Access Journals (Sweden)

    A. Tilmant

    2006-09-01

    Full Text Available Integrated Water Resources Management (IWRM recommends, among other things, that the management of water resources systems be carried out at the lowest appropriate level in order to increase the transparency, acceptability and efficiency of the decision-making process. Empowering water users and stakeholders transforms the decision-making process by enlarging the number of point of views that must be considered as well as the set of rules through which decisions are taken. This paper investigates the impact of different group decision-making approaches on the operating policies of a water resource. To achieve this, the water resource allocation problem is formulated as an optimization problem which seeks to maximize the aggregated satisfaction of various water users corresponding to different approaches to collective choice, namely the utilitarian and the egalitarian ones. The optimal operating policies are then used in simulation and compared. The concepts are illustrated with a multipurpose reservoir in Chile. The analysis of simulation results reveals that if this reservoir were to be managed by its water users, both approaches to collective choice would yield significantly different operating policies. The paper concludes that the transfer of management to water users must be carefully implemented if a reasonable trade-off between equity and efficiency is to be achieved.

  12. Modeling and analysis of collective management of water resources

    Science.gov (United States)

    Tilmant, A.; van der Zaag, P.; Fortemps, P.

    2007-01-01

    Integrated Water Resources Management (IWRM) recommends, among other things, that the management of water resources systems be carried out at the lowest appropriate level in order to increase the transparency, acceptability and efficiency of the decision-making process. Empowering water users and stakeholders transforms the decision-making process by enlarging the number of point of views that must be considered as well as the set of rules through which decisions are taken. This paper investigates the impact of different group decision-making approaches on the operating policies of a water resource. To achieve this, the water resource allocation problem is formulated as an optimization problem which seeks to maximize the aggregated satisfaction of various water users corresponding to different approaches to collective choice, namely the utilitarian and the egalitarian ones. The optimal operating policies are then used in simulation and compared. The concepts are illustrated with a multipurpose reservoir in Chile. The analysis of simulation results reveals that if this reservoir were to be managed by its water users, both approaches to collective choice would yield significantly different operating policies. The paper concludes that the transfer of management to water users must be carefully implemented if a reasonable trade-off between equity and efficiency is to be achieved.

  13. Applications of space technology to water resources management

    Science.gov (United States)

    Salomonson, V. V.

    1977-01-01

    Space technology transfer is discussed in terms of applying visible and infrared remote sensing measurement to water resources management. Mapping and monitoring of snowcovered areas, hydrologic land use, and surface water areas are discussed, using information acquired from LANDSAT and NOAA satellite systems.

  14. Balancing water resource conservation and food security in China.

    Science.gov (United States)

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  15. A Public Education Program in Water Resources Management.

    Science.gov (United States)

    Amend, John R.; Armold, Anita A.

    1983-01-01

    Describes a program designed to improve public awareness/understanding of major factors in managing water resources. Use is made of an interactive computer simulator to place lay people and teachers in decision-making situations involving real variables and alternatives and to project for them the probable consequences of their water management…

  16. Design, construction and operation of a new filter approach for treatment of surface waters in Southeast Asia

    Science.gov (United States)

    Frankel, R. J.

    1981-05-01

    A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.

  17. Assessing climate change impacts on water resources in remote mountain regions

    Science.gov (United States)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  18. Southwest: a region under stress. [Analysis of environmental, resource-revenues, and water-resources issues

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.; Kneese, A.V.

    1978-05-01

    The southwestern states of New Mexico, Colorado, Utah, and Arizona share some of the nation's richest natural resources and the poorest people. One goal in the development of the area's resources will be to provide a means of raising the economic level of these people. Three major regional issues (environmental preservation, resource revenues, and water resources) must be faced in terms of the conflicting claims of the states involved. A summary of these issues illustrates the emotional and political strains that have developed. Justification for optimism is seen in the adaptability of new water users, the institutional evolution toward more flexibility in the water rights market, and the growing sophistication and assertiveness of interested parties determined to see that all positions are heard. 14 references.

  19. Cost Allocation in Water Resources Development

    Science.gov (United States)

    Young, H. P.; Okada, N.; Hashimoto, T.

    1982-06-01

    Different methods for allocating the joint costs of water supply projects among users are compared on the basis of certain commonsense principles of equity. We contrast the separable costs-remaining benefits (SCRB) method with simple proportional allocation schemes and more sophisticated methods from cooperative game theory, including the Shapley value and variants of the core. Advantages and disadvantages of the methods in practice are examined using a regional water supply system in Sweden. It is argued that these principles provide a useful framework for choosing intelligently among methods. The appropriateness of a method depends on the context, especially on the reliability of information about costs and demands. The conclusion is that there is no one best method, although from a normative standpoint the SCRB method may be one of the worst.

  20. NASA Data for Water Resources Applications

    Science.gov (United States)

    Toll, David; Houser, Paul; Arsenault, Kristi; Entin, Jared

    2004-01-01

    Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1

  1. Remote sensing applications in water resources

    OpenAIRE

    Kumar, Nagesh D; Reshmidevi, TV

    2013-01-01

    With the introduction of the earth observing satellites, remote sensing has become an important tool in analyzing the Earth's surface characteristics, and hence in supplying valuable information necessary for the hydrologic analysis. Due to their capability to capture the spatial variations in the hydro-meteorological variables and frequent temporal resolution sufficient to represent the dynamics of the hydrologic processes, remote sensing techniques have significantly changed the water resou...

  2. On the Law Right of the Gas Water of Water Resources

    Institute of Scientific and Technical Information of China (English)

    Liu Shujun

    2007-01-01

    With the development of science and technology,there searches and application of water resources including the gas water have been constantly developed.Through an analysis on the flaws of the water right theory,and by executing reconstruction and renewal of the theory and system of water fight in modern society,the water right position of the gas water will be established,leading to the maturity of the whole law effectiveness and substantial results of water right.

  3. Water resources of Paraiba: a juridical and institutional approach

    Directory of Open Access Journals (Sweden)

    Erivaldo Moreira Barbosa

    2009-03-01

    Full Text Available This article presents information on water resources management of Paraiba through a juridical and institutional approach. Therefore, legal and managerial aspects for instance, the concession on the right to use and tax the water resources, besides the procedures and position of the “Paraiba State Water Agency” – AESA , have been analyzed by the hermeneutic and systemic method. From the hermeneutics contained in the juridical documents as well as an applied questionnaire, it came to the conclusion that the concession has being partially implemented since the files have not been concluded yet. In relation to the taxing, the government proposal has not been made yet; in relation to AESA management procedures, there is a process of deconcentration causing consequently, a relative power centralization in the hands of the Executive power as well as the negligent attention by the government in relation to the effective society participation in state water resources issues.

  4. Drinking Water Quality and Child Health in South Asia: The Role of Secondary Contamination

    OpenAIRE

    Ercumen, Ayse

    2013-01-01

    Ensuring access to safe drinking water is a key strategy for reducing waterborne illness. The WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation (JMP) differentiates between unimproved and improved sources to universally classify water access. This classification, however, is based on the type and location of the water source and does not take into account water quality; even sources classified as improved can have compromised water quality and pose a health risk from water...

  5. Essentials and Targets of Water Resources Management in Kenya

    International Nuclear Information System (INIS)

    Fresh water comprises of 3% of the global waters and the rest is saline and not suitable for consumption without subjecting it to expensive treatment. Water is associated with development since civilization started in areas where water was easily accessible. However, much of the 3% is locked up in the ice caps. Water scarcity in any community is associated with abject poverty. The ecosystem functions of water and it's interactions with other environmental resources are least appreciated which has contributed to over exploitation, misuse, contamination, impairment and degradation of water bodies and their catchments. Over-exploitation of ground water in some coastal areas has in turn led to of seawater into freshwater aquifers and therefore making the water from aquifers unaccessible due to salinity

  6. Irrigated agriculture: Water resources management for a sustainable environment

    OpenAIRE

    Provenzano, Giuseppe; Rodríguez Sinobas, Leonor; Roldán Cañas, José

    2014-01-01

    In the last decade, research on irrigation has mainly been aimed at reducing crop water consumption. In arid and semi-arid environments, in relation to the limited water resources, the use of low quality water in agriculture has also been investigated in order to detect their effects on soil physical properties and on crop production. More recently, even the reduction of energy consumption in agriculture, as well as the effects of external factors, climate change and agricultural policies, ha...

  7. Mediterranean water resources in a global change scenario

    OpenAIRE

    García-Ruiz, José M.; López-Moreno, J. Ignacio; Vicente-Serrano, Sergio M.; Lasanta–Martínez, Teodoro; Beguería, Santiago

    2011-01-01

    Mediterranean areas of both southern Europe and North Africa are subject to dramatic changes that will affect the sustainability, quantity, quality, and management of water resources. Most climate models forecast an increase in temperature and a decrease in precipitation at the end of the 21st century. This will enhance stress on natural forests and shrubs, and will result in more water consumption, evapotranspiration, and probably interception, which will affect the surface water balance and...

  8. Sustainability in Water Resources Management: Changes in Meaning and Perception

    OpenAIRE

    Hermanowicz, S W

    2005-01-01

    The meaning of sustainability in the context of water resources management has changed through the time. Initially meeting water demand was the dominant concern. While later quality issues became more important followed by wider water reuse, today sustainability must include a whole range of aspects (e.g., energy, pollution, persistent chemicals), spatial and time scales. New approaches to define sustainability metrics are needed. A possible approach is to use fundamentallybased entropy and e...

  9. Improved methods for national water assessment, water resources contract: WR15249270

    Science.gov (United States)

    Thomas, Harold A., Jr.

    1981-01-01

    The purpose of our research is to develop methods to make National Water Assessment more useful in estimating water availability for economic growth and more helpful in determining the effect of water resource development upon the environmental quality of related land resources. There are serious questions pertaining to the 1975 Water Assessment and these amplify the significance of decisions made as to the planning and scheduling of the next assessment.

  10. Urban Water Resources Quota Management: The Core Strategy for Water Demand Management in China

    OpenAIRE

    Jiang, Yanling; Chen, Yuansheng; Younos, Tamim; Huang, Heqing; He, Jianping

    2010-01-01

    Since China has the largest population in the world, the available water resources per capita in China are very limited. With the rapid economic development that is currently occurring, the shortage of water resources at the national level has become extremely critical. How to solve the problems due to water scarcity and water pollution has received increasing attention from the Chinese government and various communities. In order to provide a sustainable development environment for 1.6 billi...

  11. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    OpenAIRE

    B. CZELLECZ; I. GÁBOR; L. RAVASZ; G. ȘCHIOPU; N. SZOPOS

    2016-01-01

    Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the ...

  12. Challenges of Integrated Water Resources Management in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2014-07-01

    Full Text Available The increased demands for water and land in Indonesia as a consequence of the population growth and economic development has reportedly have been accelerated from the year to year. The spatial and temporal variability of human induced hydrological changes in a river basin could affect quality and quantity of water. The challenge is that integrated water resources management (IWRM should cope with complex issues of water in order to maximize the resultant economic and social welfare in an equitable manner, without compromising the sustainability of vital ecosystems. Even though the government of Indonesia has adopted new paradigm for water resources management by the enactment of Law No. 7/2004 on water resources, the implementation of IWRM may face the technical and managerial challenges. This paper briefly reviews the implementation of IWRM and related principles and provides an overview of potential water-related issues and progress towards implementation of IWRM in Indonesia. The availability of water and a broader range of water-related issues are identified. The recommended actions for improving the future IWRM are suggested. Challenges to improve the capacity buildings of IWRM related to enabling environment, institutional frameworks and management instruments are verified to contribute to the future directions for efficient problem-solving ability.

  13. Adapting an evidence-based intervention for autism spectrum disorder for scaling up in resource-constrained settings: the development of the PASS intervention in South Asia

    Directory of Open Access Journals (Sweden)

    Gauri Divan

    2015-08-01

    Full Text Available Background: Evidence-based interventions for autism spectrum disorders evaluated in high-income countries typically require highly specialised manpower, which is a scarce resource in most low- and middle-income settings. This resource limitation results in most children not having access to evidence-based interventions. Objective: This paper reports on the systematic adaptation of an evidence-based intervention, the Preschool Autism Communication Therapy (PACT evaluated in a large trial in the United Kingdom for delivery in a low-resource setting through the process of task-shifting. Design: The adaptation process used the Medical Research Council framework for the development and adaptation of complex interventions, focusing on qualitative methods and case series and was conducted simultaneously in India and Pakistan. Results: The original intervention delivered by speech and language therapists in a high-resource setting required adaptation in some aspects of its content and delivery to enhance contextual acceptability and to enable the intervention to be delivered by non-specialists. Conclusions: The resulting intervention, the Parent-mediated intervention for Autism Spectrum Disorder in South Asia (PASS, shares the core theoretical foundations of the original PACT but is adapted in several respects to enhance its acceptability, feasibility, and scalability in low-resource settings.

  14. Resources

    Science.gov (United States)

    ... palate - resources Colon cancer - resources Cystic fibrosis - resources Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - ...

  15. Resources

    Science.gov (United States)

    ... Depression - resources Diabetes - resources Digestive disease - resources Drug abuse - resources Eating disorders - resources Elder care - resources Epilepsy - resources Family troubles - resources Gastrointestinal disorders - resources Hearing impairment - resources ...

  16. Are sustainable water resources possible in northwestern India?

    Science.gov (United States)

    Troy, T. J.; Devineni, N.; Perveen, S.; Robertson, A. W.; Lall, U.

    2012-12-01

    Sustainable water resources can have many definitions with the simplest as a supply-demand problem, with climate dictating the supply of water and human water use the demand. One sign of a system that is not sustainable would be falling groundwater tables, as is the case in northwest India. This region serves as the country's breadbasket, and irrigated agriculture is ubiquitous. The state of Punjab alone produces 22% of the country's wheat and 13% of all the country's grains while only accounting for 1.5% of the country's area. Although the region receives an average precipitation of 600mm per year, it is dominated by monsoonal rainfall with streamflow augmented by upstream snowmelt and glacial melt in spring and summer that is released from a large dam into canals. Large agricultural water demands occur both during the rainy season as well as during the drier winter season. Water and food security are inextricably linked here, and when considering how to manage water sustainably, the consequences on agriculture must also be considered. In this study, we evaluate what a sustainable water resources system would look like in this region, accounting for current climate, crop water demands, and available reservoir storage. The effects of multiple water-saving scenarios are considered, such as crop choice, cropped area, and the use of forecasts in irrigation scheduling. We find that the current system is untenable and hard decisions will have to be made by policymakers in order to halt the depletion of groundwater and manage the region's water resources in a sustainable, effective manner. This work serves as a prototype for evaluating water resources in other regions with high seasonal variability in rainfall and streamflow and large irrigation demands.

  17. Methodological Aspects Of Conservation And Protection Of Water Resources In The Water Treatment

    OpenAIRE

    Julia Cherednichenko

    2011-01-01

    The article examines the methodological aspects of management of conservation and reproduction of water resources in water treatment systems. In view of the proposed resource and normative theoretical approaches to solving the problem of optimizing the basic scheme is designed drainage.

  18. Differences in International Human Resource Development among Indigenous Firms and Multinational Affiliates in East and Southeast Asia.

    Science.gov (United States)

    Bartlett, Kenneth R.; Lawler, John J.; Bae, Johngseok; Chen, Shyh-jer; Wan, David

    2002-01-01

    Responses from 380 South Korean, Taiwanese, Thai, and Singaporean human resource managers in multinational and indigenous companies revealed significant differences between the two types in degree but not form or type of human resource development activity. U.S.-owned firms had higher activity levels. Strategic human resource orientation was…

  19. Water Foundations Teachers Guide. The Science of Florida's Water Resources: Lesson Plans for Teachers and Students.

    Science.gov (United States)

    2001

    This document features lesson plans for teachers and students on Florida's water resources. The guide is divided into four grade levels: K-2, 3-5, 6-8, and 9-12. Each grade level includes objectives, guides, and five lesson plans. K-2 lesson plans include: (1) "We Are Water"; (2) "Why Water is Extra Special"; (3) "Water's Changing Shapes"; (4)…

  20. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup...... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability...... criteria. Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....

  1. ANALYSIS AND CALCULATION OF REGULATED WATER RESOURCES OF GROUNDWATER RESERVOIR

    Institute of Scientific and Technical Information of China (English)

    DAI Chang-lei; CHI Bao-ming; GAO Shu-qin

    2005-01-01

    Groundwater reservoir is a kind of important engineering, which can optimize water resources arran-gement by means of artificial regulation. Regulated water is the blood and value performance of groundwater reser-voir. To resolve the problem of real-time quantification of regulated water, the paper analyzed sources and composi-tions of regulated water in detail. Then, under the conditions of satisfying water demand inside research area, the pa-per analyzed quantity available and regulation coefficient of different regulated water and established a formula tocalculate regulated water. At last, based on a pore groundwater reservoir in the middle reaches of the Yinma River,Jilin Province, the paper calculated regulated water with the formula and the result shows that the method is feasible.With some constraint conditions, the formula can be adopted in other similar areas.

  2. Sustainable water services and interaction with water resources in Europe and in Brazil

    Directory of Open Access Journals (Sweden)

    B. Barraqué

    2007-09-01

    Full Text Available The increasing interaction between large cities and nature makes "urban water" an issue: water resources and water services – including public water supply, sewage collection and treatment, and in large cities, storm water control –, which had become separate issues thanks to the process of water transport and treatment technologies, are now increasingly interfering with each other. We cannot take nature for granted anymore, and we need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water industry technologies in European and Brazilian metropolitan areas, in their socio-economic and political context, tracing it through three "ages" of water technology and services which developed under civil engineering, sanitary engineering, and environmental engineering perspectives: the "quantity of water" and civil engineering paradigm was developed on the assumption that water should be drawn from natural environments far from the cities; in the "water quality" and chemical/sanitation engineering paradigm, water treatment was invented and allowed cities to take water from rivers closer to them and treat it, but also to reduce sewer discharge impacts; finally, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  3. Near real time water resources data for river basin management

    Science.gov (United States)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  4. Issues of governance in water resource management and spatial planning

    OpenAIRE

    Rocco de Campos Pereira, R.C.; Schweitzer, R

    2013-01-01

    This paper describes governance arrangements in regional spatial planning and water resources management at the regional level from a normative point of view. It discusses the need to integrate spatial planning and resources management in order to deliver socially sustainable integral territorial management. To accomplish this, the Metropolitan Area of São Paulo (MASP) was analysed as a case study, in order to demonstrate the challenges met by public administrators and planners regarding the ...

  5. Local Technical Resources for Development of Seismic Monitoring in Caucasus and Central Asia - GMSys2009 Data Acquisition System

    Science.gov (United States)

    Chkhaidze, D.; Basilaia, G.; Elashvili, M.; Shishlov, D.; Bidzinashvili, G.

    2012-12-01

    Caucasus and Central Asia represents regions of high seismic activity, composing a significant part of Alpine-Himalayan continental collision zone. Natural catastrophic events cause significant damage to the infrastructure worldwide, among these approximately ninety percent of the annual loss is due to earthquakes. Monitoring of Seismic Activity in these regions and adequate assessment of Seismic Hazards represents indispensible condition for safe and stable development. Existence of critical engineering constructions in the Caucasus and Central Asia such as oil and gas pipelines, high dams and nuclear power plants dramatically raises risks associated with natural hazards and eliminates necessity of proper monitoring systems. Our initial efforts were focused on areas that we are most familiar; the geophysical community in the greater Caucuses and Central Asia experiencing many of the same problems with the monitoring equipment. As a result, during the past years GMSys2009 was develop at the Institute of Earth Sciences of Ilia State University. Equipment represents a cost-effective, multifunctional Geophysical Data Acquisition System (DAS) to monitor seismic waves propagating in the earth and related geophysical parameters. Equipment best fits local requirements concerning power management, environmental protection and functionality, the same time competing commercial units available on the market. During past several years more than 30 units were assembled and what is most important installed in Georgia, Armenia, Azerbaijan and Tajikistan. GMSys2009 utilizes standard MiniSEED data format and data transmission protocols, making it possible online waveform data sharing between the neighboring Countries in the region and international community. All the mentioned installations were technically supported by the group of engineers from the Institute of Earth Sciences, on site trainings for local personnel in Armenia, Azerbaijan and Tajikistan was provided creating a

  6. Managing Water Resource Challenges in the Congo River Basin

    Science.gov (United States)

    Aloysius, N. R.

    2015-12-01

    Water resources in the tropical regions are under pressure from human appropriation and climate change. Current understanding of interactions between hydrology and climate in the tropical regions is inadequate. This is particularly true for the Congo River Basin (CRB), which also lacks hydroclimate data. Global climate models (GCM) show limited skills in simulating CRB's climate, and their future projections vary widely. Yet, GCMs provide the most credible scenarios of future climate, based upon which changes in water resources can be predicted with coupled hydrological models. The objectives of my work are to i) elucidate the spatial and temporal variability of water resources by developing a spatially explicit hydrological model suitable for describing key processes and fluxes, ii) evaluate the performance of GCMs in simulating precipitation and temperature and iii) develop a set of climate change scenarios for the basin. In addition, I also quantify the risks and reliabilities in smallholder rain-fed agriculture and demonstrates how available water resources can be utilized to increase crop yields. Key processes and fluxes of CRB's hydrological cycle are amply characterized by the hydrology model. Climate change projections are evaluated using a multi-model ensemble approach under different greenhouse gas emission scenarios. The near-term projections of climate and hydrological fluxes are not affected by emission scenarios. However, towards the mid-21st century, projections are emission scenario dependent. Available freshwater resources are projected to increase in the CRB, except in the semiarid southeast. These increases present new opportunities and challenges for augmenting human appropriation of water resources. By evaluating agricultural water requirements, and timing and availability of precipitation, I challenge the conventional wisdom that low agriculture productivities in the CRB are primarily attributable to nutrient limitation. Results show that

  7. Gender and property rights in the commons : Examples of water rights in South Asia

    NARCIS (Netherlands)

    Zwarteveen, M.Z.; Meinzen-Dick, R.

    2001-01-01

    In many countries and resource sectors, the state is devolving responsibility for natural resource management responsibility to ``communities'' or local user groups. However, both policymakers and researchers in this area have tended to ignore the implications of gender and other forms of intra-comm

  8. Marginal and Virtual Water for Sustainable Water Resources Management in Syria

    OpenAIRE

    Mourad, Khaldoon

    2012-01-01

    Arid and semiarid Middle Eastern countries generally, and Syria in particular, face serious water shortage problems and challenges with water sustainability. Climate change, population growth, and economic development play a major role in decreasing available water resources per capita. This, in turn, has great impact on domestic, agricultural, and industrial water use. In this study, marginal and virtual water are analysed in light of increasing water demands in Syria, and ways to increase a...

  9. Water governance in the Kyrgyz agricultural sector: on its way to integrated water resource management?

    OpenAIRE

    Herrfahrdt, Elke; Kipping, Martin; Pickardt, Tanja; Polak, Mathias; Rohrer, Caroline; Wolff, Carl Felix

    2006-01-01

    "As a reaction to growing water scarcity worldwide, sustainable water allocation and use, and in particular the role of agriculture as a major water user, have become important topics in the development discourse. In recent years Integrated Water Resources Management (IWRM) emerged as an answer to many water management problems. IWRM approaches water management from a holistic perspective and encompasses, among others, the integration of economic, ecological and social aspects. Is implementat...

  10. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  11. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2011-01-01

    The NASA Earth Systems Division has the primary responsibility for the Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the NASA Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses major problems facing water resources managers, including having timely and accurate data to drive their decision support tools. It then describes how NASA's science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA's Water Resources Applications Program are described.

  12. Colloquium on Central Asia

    International Nuclear Information System (INIS)

    This colloquium on Azerbaijan was organized by the direction of international relations of the French Senate and the French center of foreign trade (CFCE). This document gathers the interventions of the participants and the debates with the audience following these interventions. The topics treated concern: - the present day political-economical situation of Central Asia countries (problem of borders, relations with Russia and China); - the economies of Central Asia countries: short term problems and medium-term perspectives; - the relations with the European Union (political, economical, trade and investments, perspectives); - the European energy stakes of Caspian sea (oil and gas reserves, development of hydrocarbon resources, exploitation and transport constraints, stakes for Europe and France); - TotalFinaElf company in Central Asia (Kazakhstan, Azerbaijan, enclavement problem); - the economical impacts of the TRACECA pathway (Transport Corridor Europe Caucasus Asia). (J.S.)

  13. The current state of water resources of Transcarpathia

    Directory of Open Access Journals (Sweden)

    V. І. Nikolaichuk

    2015-07-01

    Full Text Available Throughout their existence, humans use the water of rivers, lakes and underground sources not only for water supply but also for dumping of polluted waters and wastes into it. Significant development of urbanization, concentration of urban industrial enterprises, transport, increase in mining, expansion of drainage and irrigation reclamation, plowing of the river channels, creating a large number of landfills resulted in significant, and in some regions critical, depletion and contamination of the surface and ground waters. Because of this disastrous situation, the society is getting more and more concerned about the state of the environment. The public became increasingly interested in the state of the soil cover, air, water resources, and biotic diversity. Transcarpathian region (Zakarpattya is situated in the heart of Europe, bordered by four Central European countries (Poland, Slovakia, Hungary and Romania and two regions of Ukraine (Lviv and Ivano-Frankivsk regions. Transcarpathian region (Zakarpattya is one of the richest regions of Ukraine in terms of water resources. The territory is permeated by the dense network of rivers. There are in total 9,429 rivers of 19,866 kmlength flowing in the region. Among them, the rivers Tysa, Borzhava, Latoryca, Uzh have the length of over 100 kmeach. 25 cities and urban settlements of the area are substantially provided with the centralized water intake of underground drinking water. The rural areas have virtually no centralized water supply; mainly, it is carried out due to domestic wells or water boreholes. Predicted resources of underground drinking waters in the region are equal to 1,109,300 m3/day. The use of fresh water in 2014 per capita amounted to 23,769 m3, 15% less than in 2009. The main pollutants of surface water bodies are the facilities of utility companies in the region. Analysis of studies of surface water quality in Transcarpathian region in 2014 shows that water quality meets the

  14. The development of water services and their interaction with water resources in European and Brazilian cities

    Directory of Open Access Journals (Sweden)

    B. Barraqué

    2008-08-01

    Full Text Available The extension and complexity of large cities creates "urban water" and a related issue: public water services, including public water supply, sewage collection and treatment, and storm water control, had previously become a policy sector separate from water resource allocation issues thanks to water transport and treatment technologies. Large metropolitan areas today cannot take nature for granted anymore, and they need to protect water resources, if only to reduce the long term cost of transporting and treating water. In this paper, we compare the historical development of water services in European and Brazilian metropolitan areas, placing the technological developments in their geographic, socio-economic and political contexts. Our frame is to follow the successive contributions of civil engineering, sanitary engineering, and environmental engineering: the "quantity of water" and civil engineering paradigm allowed to mobilise water in and out of the city, and up the hills or the floors; in the "water quality" and chemical/sanitary engineering paradigm, water treatment gave more freedom to cities to take water from rivers closer to them, but also to reduce sewer discharge impacts; lastly, the environmental engineering paradigm proposes to overcome the supply side perspective, by introducing demand side management, water conservation, water allocation flexibilisation, and an integrated approach to water services, water resources management, and land use policies.

  15. Roadmap for sustainable water resources in southwestern North America.

    Science.gov (United States)

    Gleick, Peter H

    2010-12-14

    The management of water resources in arid and semiarid areas has long been a challenge, from ancient Mesopotamia to the modern southwestern United States. As our understanding of the hydrological and climatological cycles has improved, and our ability to manipulate the hydrologic cycle has increased, so too have the challenges associated with managing a limited natural resource for a growing population. Modern civilization has made remarkable progress in water management in the past few centuries. Burgeoning cities now survive in desert regions, relying on a mix of simple and complex technologies and management systems to bring adequate water and remove wastewater. These systems have permitted agricultural production and urban concentrations to expand in regions previously thought to have inadequate moisture. However, evidence is also mounting that our current management and use of water is unsustainable. Physical, economic, and ecological limits constrain the development of new supplies and additional water withdrawals, even in regions not previously thought vulnerable to water constraints. New kinds of limits are forcing water managers and policy makers to rethink previous assumptions about population, technology, regional planning, and forms of development. In addition, new threats, especially the challenges posed by climatic changes, are now apparent. Sustainably managing and using water in arid and semiarid regions such as the southwestern United States will require new thinking about water in an interdisciplinary and integrated way. The good news is that a wide range of options suggest a roadmap for sustainable water management and use in the coming decades. PMID:21149725

  16. Governance of water resources in Colombia: Between progress and challenges

    International Nuclear Information System (INIS)

    This work is an overview of water management in Colombia, emphasizing governance as a key element in this type of process. Therefore, from the collection and analysis of secondary data, identifies the evolution of water management in the country and, to that extent, aspects that reveal a crisis of governance in this area. In this sense, initially some relevant issues are raised in order to analyze the integrated water resource management and water governance. Later, it addresses factors that show that, despite significant progress in water management in the country, it is still to emerge a comprehensive approach that considers multiple criteria to provide governance on water resources. Thus, we propose that there is a crisis of governance on water expressed in terms of lack of experience and international context, lack of coordination and dispersion of water policy, ignorance of the various forms of local government, a wrong perception on the water abundance and richness of the country, and dissimulation or disinterest ignoring the many pressures that threaten water.

  17. Operating Water Resources Systems Under Climate Change Scenarios

    Science.gov (United States)

    Ahmad, S.

    2002-12-01

    Population and industrial growth has resulted in intense demands on the quantity and quality of water resources worldwide. Moreover, climate change/variability is making a growing percentage of the earth's population vulnerable to extreme weather events (drought and flood). The 1996 Saguenay flood, 1997 Red River flood, the 1998 ice storm, and recent droughts in prairies are few examples of extreme weather events in Canada. Rising economic prosperity, growth in urban population, aging infrastructure, and a changing climate are increasing the vulnerability of Canadians to even more serious impacts. This growing threat can seriously undermine the social and economic viability of the country. Our ability to understand the impacts of climate change/variability on water quantity, quality, and its distribution in time and space can prepare us for sustainable management of this precious resource. The sustainability of water resources, over the medium to long-term, is critically dependent on the ability to manage (plan and operate) water resource systems under a more variable and perhaps warmer future climate. Studying the impacts of climate change/variability on water resources is complex and challenging. It is further complicated by the fact that impacts vary with time and are different at different locations. This study deals with the impacts of climate change/variability on water resources in a portion of the Red River Basin in Canada, both in terms of change in quantity and spatial-temporal distribution. A System Dynamics model is developed to describe the operation of the Shellmouth Reservoir located on the Red River in Canada. The climate data from Canadian Global Coupled Model, CGCM1 is used. The spatial system dynamics approach, based on distributed parameter control theory, is used to model the impacts of climate change/variability on water resources in time and space. A decision support system is developed to help reservoir operators and decision makers in

  18. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  19. CONSTRAINING FACTORS TO SUSTAINABLE UTILIZATION OF WATER RESOURCES AND THEIR COUNTERMEASURES IN CHINA

    Institute of Scientific and Technical Information of China (English)

    ZHAI Jin-liang; FENG Ren-guo; XIA Jun

    2003-01-01

    This paper discusses the constraining factors to sustainable utilization of water resources in China, and the countermeasures to realize sustainable water utilization. The result of comprehensive analysis shows that constraining factors to sustainable utilization of water resources in China are complicated, including physical geographical factors and socio-economic factors, such as uneven distribution of water resources at temporal and spatial scales,inappropriate institutional arrangement and non-water-saving and non-water-conservation production and life mode.The countermeasures against constraining factors to water resources sustainable development are put forward as follows: 1) using wetlands and forests, and through spatial conversion to realize temporally sustainable supply of water resources; 2) transferring water between basins and areas and developing various water resources in water shortage area; 3) establishing water-saving society; 4) strengthening water pollution control and water resources protection;and 5) establishing unified water resources management mechanism.

  20. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of...

  1. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  2. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  3. Water resource as a factor of production - water use and economic growth

    OpenAIRE

    Gatto, Elisa; Lanzafame, Matteo

    2005-01-01

    Water is one of the most important natural resources that is necessary for the rise and development of any biological and human activity. Being water resource a necessary good for multiple uses, it generates a series of competitive demands whose degree of competitiveness becomes greater in the presence of relevant and increasing pressure factors. The paper sets out a logical scheme for the analysis of productive uses of water, with the purpose of understanding both the functioning of an econo...

  4. A Water Resources Planning Tool for the Jordan River Basin

    Directory of Open Access Journals (Sweden)

    Christopher Bonzi

    2011-06-01

    Full Text Available The Jordan River basin is subject to extreme and increasing water scarcity. Management of transboundary water resources in the basin is closely intertwined with political conflicts in the region. We have jointly developed with stakeholders and experts from the riparian countries, a new dynamic consensus database and—supported by hydro-climatological model simulations and participatory scenario exercises in the GLOWA (Global Change and the Hydrological Cycle Jordan River project—a basin-wide Water Evaluation and Planning (WEAP tool, which will allow testing of various unilateral and multilateral adaptation options under climate and socio-economic change. We present its validation and initial (climate and socio-economic scenario analyses with this budget and allocation tool, and invite further adaptation and application of the tool for specific Integrated Water Resources Management (IWRM problems.

  5. Water reservoir as resource of raw material for ceramic industry

    Science.gov (United States)

    Irie, M.; Tarhouni, J.

    2015-04-01

    The industries related to the ceramics such as construction bricks, pottery and tile are the important sectors that cover the large part of the working population in Tunisia. The raw materials, clay or silt are excavated from opencast site of limestone clay stratum. The opencast site give the negative impact on landscape and environment, risks of landslide, soil erosion etc. On the other hand, a most serious problem in water resource management, especially in arid land such as Tunisia, is sedimentation in reservoirs. Sediment accumulation in the reservoirs reduces the water storage capacity. The authors proposed the exploitation of the sediment as raw material for the ceramics industries in the previous studies because the sediment in Tunisia is fine silt. In this study, the potential of the water reservoirs in Tunisia as the resource of the raw material for the ceramics industries is estimated from the sedimentation ratio in the water reservoirs.

  6. Development of a Water Recovery System Resource Tracking Model

    Science.gov (United States)

    Chambliss, Joe; Stambaugh, Imelda; Sargusingh, Miriam; Shull, Sarah; Moore, Michael

    2015-01-01

    A simulation model has been developed to track water resources in an exploration vehicle using Regenerative Life Support (RLS) systems. The Resource Tracking Model (RTM) integrates the functions of all the vehicle components that affect the processing and recovery of water during simulated missions. The approach used in developing the RTM enables its use as part of a complete vehicle simulation for real time mission studies. Performance data for the components in the RTM is focused on water processing. The data provided to the model has been based on the most recent information available regarding the technology of the component. This paper will describe the process of defining the RLS system to be modeled, the way the modeling environment was selected, and how the model has been implemented. Results showing how the RLS components exchange water are provided in a set of test cases.

  7. Irrigation scheduling strategies for cotton to cope with water scarcity in the Fergana Valley, Central Asia

    OpenAIRE

    L. S. Pereira; Paredes, P.; Cholpankulov, E.D.; Inchenkova, O.P.; Teodoro, P.R.

    2009-01-01

    The Central Asian countries face high water scarcity due to aridity and desertification but excess water is often applied to the main irrigated crops. This over-irrigation contributes to aggravate water scarcity problems. Improved water saving irrigation is therefore required, mainly through appropriate irrigation scheduling. To provide for it, after being previously calibrated and validated for cotton in the Fergana region, the irrigation scheduling simulation model ISAREG was...

  8. Integrated Water-Less Management of Night Soil for Depollution of Water Resources and Water Conservation

    Directory of Open Access Journals (Sweden)

    Pramod R. Chaudhari

    2016-05-01

    Full Text Available Use of water for flushing night soil and enormous sewage disposal are responsible for pollution and depletion of fresh water resources in India and other countries. The review of traditional methods in the world provides idea of zero-waste discharge residential units. Experiences and research in India, China, Japan, America and Sweden has indicated feasibility of waterless management of night soil, composting and use of biofertilizer product in agriculture. A novel idea of ecological management of night soil and urine is presented in which night soil may be conditioned for transportation and treatment by adding suitable waste product(s from industry and other sources. Different night soil treatment methods are reviewed and emphasized the need for further research on whole cycle of ecological management or sustainable sanitation depending on local conditions. The benefits of this system are zero sewage discharge, reuse of waste as resource, recovery of nutrients in waste as fertilizer, production of fuel gas and reduction of pathogens in biofertilizer. This will help in water conservation and regenerating the quality and quantity of river flow for use as water ways and irrigation and to improve the public health. Potential technical intervention and research needs are discussed in this article

  9. Exploring climatic impacts on water resources in West Niger, Africa

    OpenAIRE

    Vieux, R.E.; Looper, J.P.; Cappelaere, Bernard; Peugeot, Christophe; Maia, A.

    1998-01-01

    Drought persisting in the Sahel for more than 25 years, impacting both surface and subsurface water resources, raises the question whether the hydrological impacts are proportional, dampened, or amplified in response to the climatic change manifested by the drought experienced since 1970. A physically-based distributed model, r.water.fea, applied to a 2.48 km2 endoreic drainage basin, typical of the Niamey area of West Niger, is used to evaluate the sensitivity of the hydrological system to s...

  10. Climate change and water resources in the Himalayas

    OpenAIRE

    Smadja, Joëlle; Aubriot, Olivia; Puschiasis, Ornella; Duplan, Thierry; Grimaldi, Juliette; Hugonnet, Mickaël; Buchheit, Pauline

    2015-01-01

    In the Himalayas, where the increase in temperatures is higher than the world average, climate change is expected to impact water resources in a particularly significant manner. Whereas climate specialists using measurements and simulations play down this statement by underlining uncertainties and differences between the west and east of the range, the media and development agencies tend to paint a uniform picture of a water shortage now and in the future. As part of an interdisciplinary prog...

  11. Subsidiarity in Principle: Decentralization of Water Resources Management

    OpenAIRE

    Ryan Stoa

    2014-01-01

    The subsidiarity principle of water resources management suggests that water management and service delivery should take place at the lowest appropriate governance level. The principle is attractive for several reasons, primarily because: 1) the governance level can be reduced to reflect environmental characteristics, such as the hydrological borders of a watershed that would otherwise cross administrative boundaries; 2) decentralization promotes community and stakeholder engagement when deci...

  12. GLOBAL WARMING AND ITS IMPACT ON WATER RESOURCES

    OpenAIRE

    Debu Mukherjee*

    2016-01-01

    Global warming is the gradual heating of earth's surface, oceans and atmosphere. Global warming is primarily a problem of too much carbon dioxide in the atmosphere which acts as a blanket, trapping heat and warming the planet. The relationship between water, energy, agriculture and climate is a significant one. As the earth’s temperature continues to rise, we can expect a significant impact on our fresh water supplies with the potential for devastating effects on these resources.&nb...

  13. Freshwater Ecosystem Conservation: Towards a Comprehensive Water Resources Management Strategy

    OpenAIRE

    Enrique Bucher; Gonzalo Castro; Vinio Floris

    1997-01-01

    Conservation of freshwater biodiversity has been seriously neglected throughout the world, and entire ecosystems are threatened with extinction. Unfortunately, freshwater sustainability issues do not appear to be a primary consideration in the planning and implementation of water use projects, nor in the allocation of use permits. This paper discusses the value and function of Latin American freshwater ecosystems and gives a comprehensive approach to developing a sustainable water resources m...

  14. Relationships demand-supply of water and the rate of water shortage as tools for evaluating water resources in Colombia

    International Nuclear Information System (INIS)

    This paper shows updated results about Colombian water resources and their requirements by the economic sectors. Water demand water availability relationship is used as a pressure index on water resources. This relationship is expressed through the water scarcity index, which applies constraints over water availability; due to the runoff temporal variability and to the low levels of water during the dry season each year and for each geographic region to characterize average and low runoff years. Different water availability scenarios were building. One for modal runoff values and another for 95 percents for 2025 also were prepared. To the results call our attention to problems caused by the concentration of high density settlements and the presence of economics sectors in regions with low water availability. The infrastructure lag for management of a scarce high variable and over pressured resources emerges as a key factor to avoid a looming crisis in the process of water management

  15. Exploration of Water Resource and Multiple Model for Water Resource Development in Karst Areas with the Preferred Plane Theory

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    According to the theory of preferred plane, preferred planes (faults) always control the distribution of bedrock fissure water and hold abundant groundwater. Thus, the exploration of fissure or karst water can be converted into searching for the watery preferred plane (WPP). In the paper, the characteristic of watery preferred planes is analyzed and a series of superior indices has been set up. It is introduced that WPPs are determined by the methods of geological analysis, superior index and complex geophysical analysis. Meanwhile, new multiple model for water resource development in the water-scarce areas of karst mountainous regions are advanced.

  16. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  17. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C. E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, C. B. [Argonne National Lab. (ANL), Argonne, IL (United States); Troppe, W. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  18. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    Science.gov (United States)

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  19. University of Idaho Water of the West Initiative: Development of a sustainable, interdisciplinary water resources program

    Science.gov (United States)

    Boll, J.; Cosens, B.; Fiedler, F.; Link, T.; Wilson, P.; Harris, C.; Tuller, M.; Johnson, G.; Kennedy, B.

    2006-12-01

    Recently, an interdisciplinary group of faculty from the University of Idaho was awarded a major internal grant for their project "Water of the West (WoW)" to launch an interdisciplinary Water Resources Graduate Education Program. This Water Resources program will facilitate research and education to influence both the scientific understanding of the resource and how it is managed, and advance the decision-making processes that are the means to address competing societal values. By educating students to integrate environmental sciences, socio-economic, and political issues, the WoW project advances the University's land grant mission to promote economic and social development in the state of Idaho. This will be accomplished through novel experiential interdisciplinary education activities; creation of interdisciplinary research efforts among water resources faculty; and focusing on urgent regional problems with an approach that will involve and provide information to local communities. The Water Resources Program will integrate physical and biological sciences, social science, law, policy and engineering to address problems associated with stewardship of our scarce water resources. As part of the WoW project, faculty will: (1) develop an integrative problem-solving framework; (2) develop activities to broaden WR education; (3) collaborate with the College of Law to offer a concurrent J.D. degree, (4) develop a virtual system of watersheds for teaching and research, and (5) attract graduate students for team-based education. The new program involves 50 faculty from six colleges and thirteen departments across the university. This university-wide initiative is strengthened by collaboration with the Idaho Water Resources Research Institute, and participation from off-campus Centers in Idaho Falls, Boise, Twin Falls, and Coeur d'Alene. We hope this presentation will attract university faculty, water resources professionals, and others for stimulating discussions on

  20. Water resources prospects from a hydrological sciences perspective

    International Nuclear Information System (INIS)

    Full text: The 21st Century has started with a rapidly rising demand for water, an increasing toll of death and destruction from floods and droughts and a mounting burden of water pollution. These and a host of other problems provide overwhelming evidence that the world's water resources are subject to intensifying pressures and growing constraints. They highlight the vital need for water resources to be carefully husbanded and protected in order to ensure the future of modern civilisation and the integrity of the natural environment. Distributed unevenly in both space and time across the globe by the hydrological cycle, the world's water resources are stored and moved as a gas, a liquid and as a solid, above, on and below the ground surface. The quantity of these resources is usually the attribute of prime concern, however in many situations their quality, both chemical and biological, is even more important or as equally important. The river basin and the aquifer define the spatial limits of water resources, while their dimensions in time can range from seconds to the century and far longer. Hydrology is the science which deals with the water resources of planet earth and, most recently with those of other bodies in the solar system. In particular it provides the scientific basis for their assessment, development and management. Indeed over the last 300 years or so, the application of the principles of hydrology has been essential to socio-economic development. These same principles must be used now to promote sustainable development and to avoid the world water crisis which a number of authorities consider will arise later this Century. While attempts to assess water resources may have started in ancient Egypt and in early China, little progress seems to have been made until Perrault carried out a hydrological study in the basin of the Seine in the 17th Century. His results and those of Marriote showed conclusively from observations that the rainfall over the

  1. Formation and utilization of water resources of Tarim River

    Institute of Scientific and Technical Information of China (English)

    雷志栋; 甄宝龙; 尚松浩; 杨诗秀; 丛振涛; 张发旺; 毛晓辉; 周海鹰

    2001-01-01

    The Tarim River is a typical inland river in arid area without runoff yield of itself, and water resources are all supplied by its headstreams. The method of time series analysis is applied to annual runoff series of three headstreams, namely the Aksu River, Yarkant River and Hotan River to analyze their dynamic variations. A model is established to estimate water consumption in the headstream areas. Quantitative results indicate that both total annual runoff of headstreams and water consumption in the headstream areas have an increasing trend. The dynamic trends of annual runoff of hydrologic stations along the mainstream of the Tarim River are also presented to estimate the intermittence drying-up time at each station. Water consumption model of the mainstream area is used to analyze the characteristics of water consumption in the upper and middle reaches. It is shown that water consumption in each river reach of the mainstream decreases with the decrement of inflow and increases with human activities.

  2. Remote Sensing of Water Resources During the California Drought

    Science.gov (United States)

    David, Cedric; Reager, John; Das, Narendra; Famiglietti, James; Farr, Thomas; Painter, Thomas

    2016-07-01

    The combination of human population growth and changes in water availability increasingly raises global awareness on the importance of sustainable water usage and management. While the traditional in situ measurements provide a detailed description of local water availability, space science and technology can depict a broader perspective that has great potential for securing our global water future. We use the severe drought that the State of California has been experiencing since the beginning of 2011 as an example of a comprehensive water resources characterization and monitoring allowed by satellites. We focus here on observations of water availability on and underneath the land surface, and provide a summary of the findings from the following remote sensing assets: the Soil Moisture Active Passive (SMAP) mission, the Gravity Recovery And Climate Experiment (GRACE) mission, the Airborne Snow Observatory (ASO), and Synthetic Aperture Radars (SAR) missions such as PALSAR, Radarsat-2, and UAVSAR.

  3. Optimization approach for water resources long term planning and management

    Science.gov (United States)

    Haguma, D.; Leconte, R.; Krau, S.; Côté, P.

    2012-04-01

    Integration of short-term operation and long-term planning is one of the challenges of development and management of water resources systems. This research is interested in an optimization algorithm consisting of a short-term time step dynamic programming (DP) formulation, coupled with a long-term time step expectation of the future benefit function of flows scenarios. The method takes into account the short-term variability or seasonality of the flow regime as well as long-term uncertainty of flows, which is actuated by either climate change or global climate variability associated with phases of oceanic and atmospheric phenomena. The DP is used to determine an optimum operating policy of flows scenarios for the short-term time step. The use of flows scenarios in optimization problem represents the stochastic aspect of flows, and transition between scenarios is done at long-term time step. This method could be used for water resources planning in the context of future hydrologic regime uncertainties or to evaluate climate change impacts on existing water resources systems. The algorithm was tested for optimum hydropower production of Manicouagan water resources system, Québec, Canada, with two hydropower plants with reservoir and three run-of-river plants, for a period of 90 years, from 2010 to 2099. Future climate weekly time step operating policy was produced with two time steps: annual time step for management of water resources in non-stational climate and a weekly time step for flow seasonality. Annual flows have been used to compute transition probabilities between flow scenarios. Results show that there will be an increase of hydropower production in the future climate thanks to the increase of seasonal and annual flows. However, climate change will reduce the efficiency of the existing hydropower system, with more unproductive spills. The algorithm permitted to evaluate the impact of climate change on water resources without taking any assumptions other

  4. PROBLEMS AND COUNTERMEASURES OF WATER RESOURCES FOR SUSTAINABLE UTILIZATION IN CHINA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    According to the theory of sustainable development, the current situation and existent problems of the exploita-tion of water resources were analyzed in this paper. The results show that the contradiction between supply and demandof water resources is continually aggravating, water pollution is increasingly serious, water environment is worse, theover-extraction area of the underground water is expanding and water crisis stands out. gradually, so it is imperative underthe situation to actualize the sustainable exploitation strategies of water resources. It is necessary for sustainableutilizingwater resources to introduce the model of sustainable utilization of water resources -the model of wealth transferring be-tween the generations of water resources, establish water-saving society system and water market, form technology sys-tems, management systems and evaluation systems for many sorts of water resoturces, improve the utilization ratio of waterresources, transform waste water into resources and maintain and restore the water space of water environment.

  5. Estimation of crop water requirements using remote sensing for operational water resources management

    Science.gov (United States)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  6. Mainstreaming the Participatory Approach in Water Resource Governance: The 2002 water law in Kenya

    OpenAIRE

    O A K'akumu

    2008-01-01

    O.A. K'Akumu examines reforms that have been put in place by the Water Act of 2002 in Kenya. He shows that the government remains an active and powerful player in the management of water while local institutions need to be strengthened for effective water resource governance. Development (2008) 51, 56–62. doi:10.1057/palgrave.development.1100457

  7. World water resources and water use: Modern assessment and outlook for the 21st century

    International Nuclear Information System (INIS)

    A quantitative assessment of the world water resources, water use, and water availability has been made during 1991-1996. The assessment has been made in retrospective for the period 1921-1985, for 1995, and for the future (2000, 2010 and 2025)

  8. Forecasting of Water Resource of China based on Grey Prediction Model

    OpenAIRE

    Shuqing Hou

    2015-01-01

    Water resource planning is very important for water resources management. A desirable water resource planning is typically made in order to satisfy multiple objectives as much as possible. Thus the water resource planning problem is actually a Multiple Attribute Decision Making (MADM) problem. The aim of this study is to put forward a new decision method to solve the problem of water resource planning in which attribute values expressed with triangular fuzzy numbers. The new method is an exte...

  9. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia

    NARCIS (Netherlands)

    Belder, P.; Bouman, B.A.M.; Cabangon, R.; Lu, G.; Quilang, E.J.P.; Li, Y.H.; Spiertz, J.H.J.; Tuong, T.P.

    2004-01-01

    With decreasing water availability for agriculture and increasing demand for rice, water use in rice production systems has to be reduced and water productivity increased. Alternately submerged-nonsubmerged (ASNS) systems save water compared with continuous submergence (CS). However, the reported ef

  10. RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization

    Science.gov (United States)

    2008-01-01

    To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).

  11. Managing Water Resources for Drought: Insights from California

    Science.gov (United States)

    Medellin-Azuara, Josue; Lund, Jay

    2016-04-01

    Droughts bring great opportunities to better understand and improve water systems. California's economic powerhouse relies on highly engineered water systems to fulfill large and growing urban and agricultural water demands. Current and past droughts show these systems are highly robust and resilient to droughts, as they recover promptly. However, environmental systems remain highly vulnerable and have shown less resilience to drought, with each drought bringing additional native species closer to extinction, often with little recovery following the drought. This paper provides an overview of the economic and ecosystem impacts of the recent multi-year drought in California in the context of a global economy. We explore the potential of water markets, groundwater management and use of remote sensing technology to improve understanding of adaptation to drought. Insights for future management of water resources and scientific work are discussed.

  12. SALINE WATER RESOURCES IN CLUJ-NAPOCA SURROUNDINGS

    Directory of Open Access Journals (Sweden)

    B. CZELLECZ

    2016-03-01

    Full Text Available Saline waters are usually researched in those places where it is used for balneotherapy or other industrial purposes. The aim of this study is to describe the saline water sources from less known areas, as they are an important natural mineral water resource. Twenty nine water samples were analyzed from Cojocna-Pata-Sopor region, thirteen of them can be considered saline waters. The visited locations are 21, 15 and 3 km far from Cluj-Napoca. Highly concentrated springs are to be found in the old mine area from Pata village and in the slough from Cojocna. Beside the well known saline lakes from Cojocna, five other saline lakes were identified; most of them are having artificial origin.

  13. Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

    NARCIS (Netherlands)

    Altenburger, R.; Ait-Aissa, S.; Antczak, P.; Backhaus, T.; Barcelo, D.; Seiler, T.; Brion, F.; Focks, A.

    2015-01-01

    Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a

  14. Searching for Lunar Water: The Lunar Volatile Resources Analysis Package

    Science.gov (United States)

    Morse, A. D.; Barber, S. J.; Dewar, K. R.; Pillinger, J. M.; Sheridan, S.; Wright, I, P.; Gibson, E. K.; Merrifield, J. A.; Howe, C. J.; Waugh, L. J.; Pilinger, C. T.

    2012-01-01

    The ESA Lunar Lander has been conceived to demonstrate an autonomous landing capability. Once safely on the Moon the scientific payload will conduct investigations aimed at preparing the way for human exploration. As part of the provisional payload an instrument known as The Lunar Volatile Resources Analysis Package (L-VRAP) will analyse surface and exospheric volatiles. The presence and abundance of lunar water is an important consideration for ISRU (In Situ Resource Utilisation) since this is likely to be part of a strategy for supporting long-term human exploration of the Moon.

  15. Nature, Wealth and Power (Asia)

    OpenAIRE

    International Resources Group; USAID

    2005-01-01

    Metadata only record Asia, particularly South Asia, has the highest number of poor people in the world today. Many of these people are rural and depend on natural resources for their livelihoods and growth. If the United Nation's Millennium Development Goals are to be achieved in the region urgent action is needed on rural poverty. The critical linkages between natural resources, growth and poverty alleviation, and governance and democracy are becoming more evident every day. And these lin...

  16. NASA Remote Sensing Technologies for Improved Integrated Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lee, C. M.

    2014-12-01

    This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts for improved Integrated Water Resources Management (IWRM). NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and international community to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. Key objectives of this talk will highlight NASA's Water Resources and Capacity Building Programs with their objective to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management in national and international applications. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. The presentation will also demonstrate how NASA is a major contributor to water tasks and activities in GEOSS (Global Earth Observing System of Systems) and GEO (Group on Earth Observations).

  17. Adaptation of water resource systems to an uncertain future

    Science.gov (United States)

    Walsh, Claire L.; Blenkinsop, Stephen; Fowler, Hayley J.; Burton, Aidan; Dawson, Richard J.; Glenis, Vassilis; Manning, Lucy J.; Jahanshahi, Golnaz; Kilsby, Chris G.

    2016-05-01

    Globally, water resources management faces significant challenges from changing climate and growing populations. At local scales, the information provided by climate models is insufficient to support the water sector in making future adaptation decisions. Furthermore, projections of change in local water resources are wrought with uncertainties surrounding natural variability, future greenhouse gas emissions, model structure, population growth, and water consumption habits. To analyse the magnitude of these uncertainties, and their implications for local-scale water resource planning, we present a top-down approach for testing climate change adaptation options using probabilistic climate scenarios and demand projections. An integrated modelling framework is developed which implements a new, gridded spatial weather generator, coupled with a rainfall-runoff model and water resource management simulation model. We use this to provide projections of the number of days and associated uncertainty that will require implementation of demand saving measures such as hose pipe bans and drought orders. Results, which are demonstrated for the Thames Basin, UK, indicate existing water supplies are sensitive to a changing climate and an increasing population, and that the frequency of severe demand saving measures are projected to increase. Considering both climate projections and population growth, the median number of drought order occurrences may increase 5-fold by the 2050s. The effectiveness of a range of demand management and supply options have been tested and shown to provide significant benefits in terms of reducing the number of demand saving days. A decrease in per capita demand of 3.75 % reduces the median frequency of drought order measures by 50 % by the 2020s. We found that increased supply arising from various adaptation options may compensate for increasingly variable flows; however, without reductions in overall demand for water resources such options will be

  18. Water resources data for Texas, water year 1996. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1995-30 September 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1996-11-22

    Water-resources data for the 1996 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 845 observation wells and 187 water-quality data for monitoring wells.

  19. Water resources data for Texas, water year 1997. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1996-30 September 1997

    Energy Technology Data Exchange (ETDEWEB)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1997-12-03

    Water-resources data for the 1997 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 790 observation wells and 245 water-quality data for monitoring wells.

  20. Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: eutrophication modeling

    OpenAIRE

    P. Sundarambal; P. Tkalich; Balasubramanian, R

    2010-01-01

    Atmospheric deposition of nutrients (N and P species) can intensify anthropogenic eutrophication of coastal waters. It was found that the atmospheric wet and dry depositions of nutrients was remarkable in the Southeast Asian region during the course of smoke haze events, as discussed in a companion paper on field observations (Sundarambal et al., 2010b). The importance of atmospheric deposition of nutrients in terms of their biological responses in the coastal waters of the ...

  1. Reallocation of Water Resources in the Arab Region: An Emerging Challenge in Water Governance

    OpenAIRE

    Kannan Ambalam

    2014-01-01

    Water is an integral part of ecosystems. It is essential to earth’s living creatures and central to maintaining the earth’s ecosystems. In most part of the world, both water quantity andquality problems are becoming more acute, since the limited available water resource are being over-utilized and stressed beyond the sustainability point. The contemporary globalwater crises including inefficient use and lack of equitable distribution are mainly due to the crises of governance. Water governanc...

  2. A Possible Jeopardy of Water Resources in Terms of Turkey's Economic and Political Context: Water Conflicts

    OpenAIRE

    M. Levent YILMAZ; H. Sencer PEKER

    2013-01-01

    Water is a resource that is a prominent requirement for human life, however, especially in recent years, availability decreases to dangerous levels due to the climate change. Certainly another factor that makes water vital is that water became an economical input for both industry and energy generation. While the World's rising population, increasing production potential and other factors raise the need for water constantly, climate change, global warming and other kinds of pollution reduce t...

  3. ASSESSMENT OF WATER RESOURCES AT HONGHE NATIONAL NATURE RESERVE

    Institute of Scientific and Technical Information of China (English)

    LIU Zheng-Mao; LU Xian-Guo; ZHAO Chun-Hui; ZHAO Yan-Bo; QI Han-Qiang

    2004-01-01

    A detailed assessment on water resources of HNNR is to find the changing rules in time and space scale of water resources of HNNR and its adjacent areas, and the generating and degrading factors of wetland and provide scientific base on restoring and managing the hydrologic regime for planning and designing at HNNR. Both the assessment area and its adjacent watershed of Bielahong River belong to the same region in the climate and surface features. Total of 46 years of serial data from 1956-2001 in the Bielahong Hydrology Station was employed. Typical analysis of the serial runoff was conducted by adopting the residual mass curve method. The calculation methods of hydrological parameters are valuable for analyzing the water balance of HNNR. The results showed that the inputs of 118.29 × 106 m3 of the surface runoff and 1 478km2 of the areas of natural watershed in HNNR were decreased. At the same time some measurements to control and prevent water resources decreased have been proposed.

  4. Water resources prospects from a hydrological sciences perspective

    International Nuclear Information System (INIS)

    Full text: The 21st Century has started with a rapidly rising demand for water, an increasing toll of death and destruction from floods and droughts and a mounting burden of water pollution. These and a host of other problems provide overwhelming evidence that the world's water resources are subject to intensifying pressures and growing constraints. They highlight the vital need for water resources to be carefully husbanded and protected in order to ensure the future of modern civilisation and the integrity of the natural environment. Distributed unevenly in both space and time across the globe by the hydrological cycle, the world's water resources are stored and moved as a gas, a liquid and as a solid, above, on and below the ground surface. The quantity of these resources is usually the attribute of prime concern, however in many situations their quality, both chemical and biological, is even more important or as equally important. The river basin and the aquifer define the spatial limits of water resources, while their dimensions in time can range from seconds to the century and far longer. Hydrology is the science which deals with the water resources of planet earth and, most recently with those of other bodies in the solar system. In particular it provides the scientific basis for their assessment, development and management. Indeed over the last 300 years or so, the application of the principles of hydrology has been essential to socio-economic development. These same principles must be used now to promote sustainable development and to avoid the world water crisis which a number of authorities consider will arise later this Century. While attempts to assess water resources may have started in ancient Egypt and in early China, little progress seems to have been made until Perrault carried out a hydrological study in the basin of the Seine in the 17th Century. His results and those of Marriote showed conclusively from observations that the rainfall over the

  5. Simulation Games: The Future of Water Resources Education and Management?

    Science.gov (United States)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Scientists rely on models of the water cycle to describe and predict problems of water scarcity in a changing climate, and to suggest adaptation strategies for securing future water needs. Yet these models are too often complicated for managers, the general public and for students to understand. Simpler modelling environments will help with finding solutions by engaging a broader segment of the population. Such environments will enable education at the earliest stages and collective action. I propose that simulation games can be an effective communication platform between scientists and 'non-experts' and that such games will shed light on problems of pollution and overuse of water resources. In the same way as pilots use flight simulators to become proficient at flying aircraft, simulation games—if underpinned by good science—can be used to educate the public, students and managers about how to best manage our water resources. I aim to motivate young scientists to think about using games to advance water education and management.

  6. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    Science.gov (United States)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  7. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  8. Water accounting for stressed river basins based on water resources management models.

    Science.gov (United States)

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions. PMID:27161139

  9. Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia. Report of a FAO/IAEA consultants' meeting

    International Nuclear Information System (INIS)

    A Consultants' Meeting on 'Integrated soil, water and nutrient management for sustainable rice-wheat cropping systems in Asia' was held at FAO, Rome, August 22-25, 2000. Five consultants, together with one staff from IAEA headquarters, one staff from IAEA Laboratories, Seibersdorf, five staff from FAO headquarters, two staff from FAO regional offices, one observer from ACIAR, one observer from Cornell University with expertise in crop, nutrient, soil and water management, attended the meeting. The consultants presented reviews of the situation regarding studies of water and nutrient dynamics in rice-wheat systems in South Asia. These were complemented by a paper on the development of 15N techniques to study the contribution of N from legumes. The consultants also provided recommendations on the formulation and implementation of an FAO/IAEA Co-ordinated Research Project (CRP). Refs, figs, tabs

  10. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    Science.gov (United States)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  11. Assessing the impacts of climatic change on mountain water resources.

    Science.gov (United States)

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades. PMID:24360916

  12. Integrated system dynamics toolbox for water resources planning.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward

  13. Necessity and feasibility for an ET-based modern water resources management strategy: A case study of soil water resources in the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The necessity and feasibility of an ET-based modern water resources management was analyzed to improve assessment of critical water resources scarcity in the region/basin. This analysis was based on the whole water cycle process and its analysis object is evapotranspiration (ET), a main consumption component in the water resources dynamic transformation process. A case study was undertaken by selecting soil water resources in the Yellow River Basin and employing the WEP-L distributed hydrological model with physics mechanisms. This paper discusses the amount and consumption efficiency of soil-water resources according to completely simulated results of water cycle elements throughout the basin. Results indicate that it is important for the ET-based modern water resources management strategy to alleviate water resources scarcity because it may not only avoid unused water wasting but also improve water use efficiency. Therefore, an ET-based modern water resources management scheme is a good complement to the traditional water resources demand management system.

  14. Global Water Resources Under Future Changes: Toward an Improved Estimation

    Science.gov (United States)

    Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.

    2005-05-01

    Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From

  15. Water resources and the development of human civilization

    International Nuclear Information System (INIS)

    This paper presents available water resources in the world and the relation between socio-economic and natural systems throughout history of mankind. Some of the monuments of culture from the Iron Gate (hydro power constructions) region of the Danube river are described which illustrate old bond between man and water. The Danube river waters are of prime importance for Danubian counties and a change in people's treatment and relation to water is necessary at both national and international level. This implies application of long-term environmentally compatible economic strategies in accordance with bio-culture, which, at the bottom line, should lead to the concept of sustainable development. There is an interest in Yugoslavia for international co-operation with Danubian countries and vice versa, as well as the concern for environmental in the Yugoslavian part of the Danube basin, problems and means for management of pollution sources in the area. (author)

  16. Protecting water resources from pollution in the Lake Badovc

    OpenAIRE

    Sabri Avdullahi, Islam Fejza, Ahmet Tmava

    2012-01-01

    In recent years, the international community has witnessed incidence of climate variability and human activities. The objective of this paper is protecting water resources from pollution in the catchments area of Lake Badovc. The catchments area of the Lake Badovc has a size of 109 km² and the active storage volume of the lake is assessed to 26.4 Mill.m3. Around 28% of the total population of Municipality of Prishtina supply with drinking water from Lake Badovc. The hydrologic modelling syste...

  17. Formation and utilization of water resources of Tarim River

    Institute of Scientific and Technical Information of China (English)

    LEI; Zhidong; (

    2001-01-01

    [1]Bedford, D.P., International management in the Aral Sea Basin, Water International, 1996, 21(2): 63—69.[2]Mao, D., Water Resources, Environment and Management of the Tarim Basin (in Chinese), Beijing: China Environmental Science Press, 1998.[3]Sudhaker, S. M., Wu, S. M., Time Series and System Analysis with Applications (in Chinese), Beijing: Mechanical Industry Press, 1988.[4]Yang, W., Gu, L., Time Series Analysis and Dynamic Data Modeling (in Chinese), Beijing: Beijing Institute of Technology Press, 1986.

  18. Isotope techniques in water resources development. Proceedings of a symposium

    International Nuclear Information System (INIS)

    These proceedings contain the papers of 41 oral and the extended synopses of 40 poster presentations at the seventh symposium on the use of isotope techniques in water resources development. The topics of the sessions were as follows: Thermal water studies, groundwater dating, hydrology of arid and semi-arid areas, field studies with environmental isotopes, precipitation-surface-groundwater relationships, pollution, artificial tracers and sediment transport. Thirty-three poster presentations in English have been indexed here separately. All other articles from this Proceedings Series are available under ISBN 92-0-040087-6

  19. Water resources planning for rivers draining into Mobile Bay

    Science.gov (United States)

    April, G. C.

    1976-01-01

    The application of remote sensing, automatic data processing, modeling and other aerospace related technologies to hydrological engineering and water resource management are discussed for the entire river drainage system which feeds the Mobile Bay estuary. The adaptation and implementation of existing mathematical modeling methods are investigated for the purpose of describing the behavior of Mobile Bay. Of particular importance are the interactions that system variables such as river flow rate, wind direction and speed, and tidal state have on the water movement and quality within the bay system.

  20. Water Productivity Mapping (WPM Using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia

    Directory of Open Access Journals (Sweden)

    Sabirjan Isaev

    2008-12-01

    Full Text Available The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing “more crop per drop” (increasing water productivity becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1 crop productivity (ton/ha maps (CPMs involvingcrop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2 crop water use (m3/ha maps (WUMs (or actual seasonal evapotranspiration or actual ET developed through Simplified Surface Energy Balance (SSEB model; and (3 water productivity (kg/m3 maps (WPMs produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET by multiplying the ET fractionby reference ET. The ETfraction was determined using Landsat thermal imagery by selecting the “hot” pixels (zero ET and “cold” pixels (maximum ET. The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m3 in water productivity of cotton fields with overwhelming proportion (87% of the area having WP less than 0.30 kg/m3, 11% of the area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 0.36 kg/m3. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements

  1. Application of Satellite Gravimetry for Water Resource Vulnerability Assessment

    Science.gov (United States)

    Rodell, Matthew

    2012-01-01

    The force of Earth's gravity field varies in proportion to the amount of mass near the surface. Spatial and temporal variations in the gravity field can be measured via their effects on the orbits of satellites. The Gravity Recovery and Climate Experiment (GRACE) is the first satellite mission dedicated to monitoring temporal variations in the gravity field. The monthly gravity anomaly maps that have been delivered by GRACE since 2002 are being used to infer changes in terrestrial water storage (the sum of groundwater, soil moisture, surface waters, and snow and ice), which are the primary source of gravity variability on monthly to decadal timescales after atmospheric and oceanic circulation effects have been removed. Other remote sensing techniques are unable to detect water below the first few centimeters of the land surface. Conventional ground based techniques can be used to monitor terrestrial water storage, but groundwater, soil moisture, and snow observation networks are sparse in most of the world, and the countries that do collect such data rarely are willing to share them. Thus GRACE is unique in its ability to provide global data on variations in the availability of fresh water, which is both vital to life on land and vulnerable to climate variability and mismanagement. This chapter describes the unique and challenging aspects of GRACE terrestrial water storage data, examples of how the data have been used for research and applications related to fresh water vulnerability and change, and prospects for continued contributions of satellite gravimetry to water resources science and policy.

  2. Climatic Change Impact on Water Resources - A Systems Review

    OpenAIRE

    Z. W. Kundzewicz; Somlyody, L.

    1993-01-01

    Global climate change related to natural and anthropogenic processes has been the topic of many research projects and high-level debates. Despite the ongoing research efforts, the climate predictions cannot be rated any better than speculative or possible scenarios whose probability of occurrence is, at the present stage, impossible to assess. One of the most significant impacts of the "greenhouse effect" is anticipated to be on water resources management, including different elements of the ...

  3. 1993 Fiscal Year Water Resources Division Information Guide

    Science.gov (United States)

    U.S. Geological Survey

    1992-01-01

    This Guide briefly describes the Water Resources Division's mission, program, and organizational structure, and where and how to obtain specific types of hydrologic information. The Guide also contains a listing of addresses, telephone numbers, and office hours for Headquarters, Regional, District, and State offices. For some offices, two addresses are given: the mailing address of the office to which correspondence should be sent and the street address of the office. The map shows the location of the offices.

  4. Studies launched on integrated water resources management in Heihe

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ As a component of the CAS Action Plan for the Development of China's West, a research project on integrated management of water resources was initiated on 10 June at the Research and Experiment Station for Desert Ecological Hydrology in Alxa, Inner Mongolia, an outpost of the Cold and Arid Regions Environmental and Engineering Research Institute of CAS. CAS Vice President Li Jiayang attended the launching ceremony.

  5. Using Earth observation for Integrated Water Resources Management

    International Nuclear Information System (INIS)

    , deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS-WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and interagency coordination in Asia and Africa, GEOSS/WCI is now leading to effective actions and public awareness in support of water security and sustainable development. (author)

  6. The evolution and enlightenment of water resources accounting from accounts to balance sheet

    Institute of Scientific and Technical Information of China (English)

    FuHui Jian; XiaoYu Song; LiLi Li; WenQi Gao

    2016-01-01

    The Third Plenary Session of the 18th Central Committee of the Communist Party of China has proposed an important national strategic decision: to explore and establish the balance sheet of natural resources, to implement leaders' of-office auditing system about natural resources assets. Water is one of the most essential nature resources of human beings; water resources accounting, as an important water resources management tool, is an essential part of compiling the natural re-sources balance sheet. In this paper, we provide a summary of the historic evolution of water resources accounting and analyze its application in some typical countries. Although water resources accounting and water resources balance sheet reflect different implications and focus, both require water resources accounts as the basis in system establishment.

  7. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  8. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    Energy Technology Data Exchange (ETDEWEB)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  9. Climatic data trend analysis and modeling for water resource management in Peloponnese, Greece.

    OpenAIRE

    Duwal, Sunil

    2011-01-01

    The fresh water resources of the world are stressed due to the increasing population. Theclimate change has also affected the water resource availability due to the occurrence offrequent and uneven extreme events such as drought and flash floods. In the context ofPeloponnese, Greece water resource management is an important issue for tourism developmentas well as the water supply for the people in the peninsula. To assess the potential climatechange and to quantify the water resource availabi...

  10. Integrated water resource management under water supply and irrigation development uncertainty

    Science.gov (United States)

    Hassanzadeh, E.; Elshorbagy, A. A.; Nazemi, A.; Wheater, H. S.; Gober, P.

    2014-12-01

    The Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada, supports various water demands including municipal, industrial, irrigated agriculture, hydropower and environmental sectors. Proposals for future development include significantly increased irrigation. However, proposing an appropriate level of irrigation development requires incorporation of water supply uncertainties in the water resources management analysis, including effects of climate variability and change. To evaluate potential climate change effects, a feasible range of shifts in annual volume and peak timing of headwater flows are considered to stochastically generate flows at the Alberta/Saskatchewan border. This envelope of flows, 30,800 realizations, is further combined with various irrigation expansion areas to form various future scenarios. Using an integrated water resources model developed for Saskatchewan, the impact of irrigation development on the system is assessed under the changing water supply conditions. The results of this study show that level of irrigation development as well as variation in volume and peak timing of flows can all contribute to change the water availability, vulnerability and economic productivity of the water resources system in Saskatchewan. In particular, the combined effect of large irrigation expansion, reduction in the volume of flows and earlier timing of the annual peak can exacerbate water resources system vulnerability, produce unstable net revenues, and decrease flood frequency in the Saskatchewan River Delta.

  11. Water resources transfers through southern African food trade: water efficiency and climate signals

    Science.gov (United States)

    Dalin, Carole; Conway, Declan

    2016-01-01

    Temporal and spatial variability of precipitation in southern Africa is particularly high. The associated drought and flood risks, combined with a largely rain-fed agriculture, pose a challenge for water and food security in the region. As regional collaboration strengthens through the Southern Africa Development Community and trade with other regions increases, it is thus important to understand both how climate variability affects agricultural productivity and how food trade (regional and extra-regional) can contribute to the region's capacity to deal with climate-related shocks. We combine global hydrological model simulations with international food trade data to quantify the water resources embedded in international food trade in southern Africa and with the rest of the world, from 1986-2011. We analyze the impacts of socio-economic changes and climatic variability on agricultural trade and embedded water resources during this period. We find that regional food trade is efficient in terms of water use but may be unsustainable because water-productive exporters, like South Africa, rely on increasingly stressed water resources. The role of imports from the rest of the world in the region's food supply is important, in particular during severe droughts. This reflects how trade can efficiently redistribute water resources across continents in response to a sudden gap in food production. In a context of regional and global integration, our results highlight opportunities for improved water-efficiency and sustainability of the region's food supply via trade.

  12. Managing Water for Sustainable Growth and Poverty Reduction : A Country Water Resources Assistance Strategy for Zambia

    OpenAIRE

    World Bank

    2009-01-01

    The country water resources assistance strategy for Zambia provides an analysis of the role of water in the economy and identifies the specific challenges, development opportunities and policies which inform an agreed framework for priority areas of assistance. Zambia lies entirely within the catchments of the Zambezi and Congo rivers and all internal runoff is shared by downstream and par...

  13. Estimating the Cost of Mining Pollution on Water Resources: Parametric and Nonparametric Resources

    OpenAIRE

    Pedro Herrera Catalán; Oscar Millones

    2012-01-01

    This study estimates the economic costs of mining pollution on water resources for the years 2008 and 2009 based on the conceptual framework of Environmental Efficiency. This framework identifies such costs as the mining companies’ trade-off between increasing production that is saleable at market prices (desirable output) and reducing the environmental pollution that emerges from the production process (undesirable output). These economic costs were calculated from parametric and non paramet...

  14. Sea-Level Rise. Implications for Water Resources Management

    Energy Technology Data Exchange (ETDEWEB)

    Hay, J.E. [International Global Change Institute, University of Waikato, Hamilton (New Zealand); Mimura, N. [Center for Water Environment Studies, Ibaraki University, Hitachi, Ibaraki (Japan)

    2005-10-15

    Globally, sea level has been rising for more than the last one hundred years, and is expected to do so into the foreseeable future, and at an accelerating rate. The direct influences of sea-level rise on water resources come principally from the following: new or accelerated coastal erosion; more extensive coastal inundation and higher levels of sea flooding; increases in the landward reach of sea waves and storm surges; seawater intrusion into surface waters and coastal aquifers; and further encroachment of tidal waters into estuaries and coastal river systems. The impacts of sea-level rise are likely to be felt disproportionately in certain areas, reflecting both natural and socio-economic factors that enhance the levels of risks. The opportunity to learn about the likely nature of, and most appropriate adaptation to, the anticipated impacts of sea-level rise on water resources is arguably best developed in rapidly subsiding coastal areas, and especially in low-lying deltas where subsidence rates are typically much larger than the historic rise in global mean sea level. Significantly, such areas are often major centres of population and of economic activity, thereby highlighting the human dimensions of sea-level rise. Sound management of the risks to water resources associated with sea-level rise requires enhancing adaptive capacity, mainstreaming adaptation, harmonizing responses to extreme events, variability and long-term change and strengthening regional and international cooperation and coordination. In this regard, the policies and initiatives of international organisations are not always entirely consistent with the needs of developing countries.

  15. Water resources management, water pollution, and water protection in Japan; Wasserwirtschaft, Wasserverschmutzung und Gewaesserschutz in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, T. [Hokkaido Univ., Graduate School of Agriculture, Div. of Forestry, Institute of Forest Policy, Sapporo (Japan)

    1996-06-01

    Japan`s balance in environmental-oriented water resources management is contradictory. Some improvements have been achieved, for instance in the treatment of industrial discharges and, in particular, in reducing emissions of toxic heavy metals. Conversely, with other forms of pollution, such as the organic load, no progress has been made so far; in some instances the situation has even deteriorated. However, measures for an advanced protection of waters are planned. New construction, extension, and modernization of wastewater treatment plants are a priority objective in environmental policy. A positive impact on water quality can be expected when the implementation of an emission-charges system for industries and the development of sewerage systems for households, based on the polluter-pays-principle, will be completed. (orig.) [Deutsch] Japans umweltorientierte, wasserwirtschaftliche Bilanz ist zwiespaeltig. Es wurden partiell einige Verbesserungen erzielt, wie z.B. bei der Reinigung industrieller Abwaesser und besonders der Minderung von Eintraegen toxischer Schwermetalle. Bei anderen Belastungsformen, so etwa bei den organischen, liegen dagegen kaum Fortschritte, teilweise sogar Verschlechterungen vor. Ein weitergehender Gewaesserschutz ist jedoch geplant. Neu- und Ausbau sowie Verbesserung von Klaeranlagen sind erklaertes Hauptziel der Umweltpolitik. Mit einer Verbesserung der Gewaesserqualitaet ist zu rechnen, wenn die Installation des Emissionsabgabensystems fuer Industriebetriebe und der Ausbau der Entsorgungseinrichtungen fuer Haushalte, die sich nach dem Verursacherprinzip orientieren, erfolgreich abgeschlossen sind. (orig.)

  16. Collaborative Research for Water Resource Management under Climate Change Conditions

    Science.gov (United States)

    Brundiers, K.; Garfin, G. M.; Gober, P.; Basile, G.; Bark, R. H.

    2010-12-01

    We present an ongoing project to co-produce science and policy called Collaborative Planning for Climate Change: An Integrated Approach to Water-Planning, Climate Downscaling, and Robust Decision-Making. The project responds to motivations related to dealing with sustainability challenges in research and practice: (a) state and municipal water managers seek research that addresses their planning needs; (b) the scientific literature and funding agencies call for more meaningful engagement between science and policy communities, in ways that address user needs, while advancing basic research; and (c) empirical research contributes to methods for the design and implementation of collaborative projects. To understand how climate change might impact water resources and management in the Southwest US, our project convenes local, state, and federal water management practitioners with climate-, hydrology-, policy-, and decision scientists. Three areas of research inform this collaboration: (a) the role of paleo-hydrology in water resources scenario construction; (b) the types of uncertainties that impact decision-making beyond climate and modeling uncertainty; and (c) basin-scale statistical and dynamical downscaling of climate models to generate hydrologic projections for regional water resources planning. The project engages all participants in the research process, from research design to workshops that build capacity for understanding data generation and sources of uncertainty to the discussion of water management decision contexts. A team of “science-practice translators” facilitates the collaboration between academic and professional communities. In this presentation we contextualize the challenges and opportunities of use-inspired science-policy research collaborations by contrasting the initial project design with the process of implementation. We draw from two sources to derive lessons learned: literature on collaborative research, and evaluations provided by

  17. Estimating the Cost of Mining Pollution on Water Resources: Parametric and Nonparametric Resources

    Directory of Open Access Journals (Sweden)

    Pedro Herrera Catalán

    2012-12-01

    Full Text Available This study estimates the economic costs of mining pollution on water resources for the years 2008 and 2009 based on the conceptual framework of Environmental Efficiency. This framework identifies such costs as the mining companies’ trade-off between increasing production that is saleable at market prices (desirable output and reducing the environmental pollution that emerges from the production process (undesirable output. These economic costs were calculated from parametric and non parametric production possibility frontiers for 28 and 37 mining units in 2008 and 2009, respectively, which were under the purview of the National Campaign for Environmental Monitoring of Effluent and Water Resources, conducted by the Energy and Mining Investment Supervisory Agency (Osinergmin in those years. The results show that the economic cost of mining pollution on water resources rose to U.S. $ 814.7 million and U.S. $ 448.8 million for 2008 and 2009, respectively. These economic costs were highly concentrated in a few mining units, within a few pollution parameters, and were also higher in mining units with average/low mineral production. Taking into consideration that at present the fine and penalty system in the mining sector is based on administrative criteria, this study proposes a System of Environmentally Efficient Sanctions based on economic criteria so as to establish a preventive mechanism for pollution. It is hoped that this mechanism will generate the necessary incentives for mining companies to address the negative externalities that emerge from their production process.

  18. Geochemistry's vital contribution to solving water resource problems

    International Nuclear Information System (INIS)

    As part of the events celebrating 40 a of IAGC, it is fitting to trace the modern evolution and development of hydrogeochemistry. However, fascination with water quality can be traced back more than 2 ka. In the post-war years, hydrogeochemistry was influenced heavily by the advances in other disciplines including physical chemistry, metallurgy and oceanography. Hydrological applications of isotope science also developed rapidly at this time, and important advances in analytical chemistry allowed multi-element and trace element applications to be made. Experimental studies on equilibrium processes and reaction kinetics allowed bench-scale insight into water-rock interaction. Consolidation of knowledge on processes in groundwaters and the current awareness of hydrogeochemistry by water professionals owe much to the work of Robert Garrels, John Hem, and co-workers in the early 1960s. Studies of down-gradient evolution enabled a field-scale understanding of groundwater quality and geochemical processes as a function of residence time (dissolution and precipitation processes in carbonate and non-carbonate aquifers; redox processes; cation exchange and salinity origins). Emerging water resource and water quality issues in the 1960s and 70s permitted the application of hydrogeochemistry to contaminant and related problems and this trend continues. The impacts of diffuse pollution from intensive agriculture, waste disposal and point source pollution from urban and industrial sources relied on geochemistry to solve questions of origin and attenuation. In semi-arid regions facing water scarcity, geochemical approaches have been vital in the assessment of renewability and characterising palaeowaters. The protection and new incoming regulation of water resources will rely increasingly on a sound geochemical basis for management.

  19. Water resource monitoring systems and the role of satellite observations

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2010-08-01

    Full Text Available Spatial water resource monitoring systems (SWRMS can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands, and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as

  20. Water resource monitoring systems and the role of satellite observations

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2011-01-01

    Full Text Available Spatial water resource monitoring systems (SWRMS can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands, and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as

  1. Water Resources Vulnerability Assessment Accounting for Human Influence

    Science.gov (United States)

    Mehran, A.; AghaKouchak, A.

    2014-12-01

    Reservoirs are one of the main infrastructures that provide resilience against extremes (e.g., floods and droughts) and they play a key role in water resources management. Based on International Commission of Large Dams (ICOLD 2003) records, the total volume of reservoirs is over 6200 km3, which is twice larger than the global annual water use estimated as 3000 km3. Just a simple comparison of the two numbers indicates the importance of reservoirs and their role in providing resilience for water security. On the other hand, man-made reservoirs change the water distribution throughout the year. Most climate change impact studies ignore the role of reservoirs in water availability studies. However, water availability cannot be properly assessed without a thorough assessment of reservoir conditions. By combining classical methods for climate variability assessment (top-down approach) and influence assessment (bottom-up approach), this study offers a hybrid framework that integrates different drivers of water storage vulnerability. Final index is termed as the Multivariate Standardized Reliability and Resilience Index (MSRRI). This index investigates the adaptive capacity of the reservoir and exposure of the system to variable conditions. MSRRI has been investigated over several major reservoirs in Australia and California, United States. This presentation reviews recent findings and discusses reservoir conditions in Australia and California using MSRRI under different climatic change scenarios.

  2. Advanced Water Purification System for In Situ Resource Utilization

    Science.gov (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.

    2013-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extraterrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtration material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removal technique. Our studies have shown a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  3. Advanced Water Purification System for In Situ Resource Utilization Project

    Science.gov (United States)

    Anthony, Stephen M.

    2014-01-01

    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  4. Evaluation of Water Resource Potential in Anhui Province Based on Allocation Model

    Institute of Scientific and Technical Information of China (English)

    Zhenyu; XU; Yanlin; ZHOU

    2013-01-01

    The nature of water resources can be divided into four categories:water for life,water for agriculture,water for industry,and water for ecology.On this basis,the regional right allocation model for water resources is built,and to make the model more operable,we calculate the weight of the key factors of model(four different types of water use:life,agriculture,industry,ecology),using analytic hierarchy process(AHP).Finally,based on the amount of available water resources in Anhui Province,we evaluate the water resource potential in Anhui Province according to the principle of rational allocation.

  5. Local water rights and local water user entities: the unsung heroines of water resource management in Tanzania

    Science.gov (United States)

    Sokile, Charles S.; Koppen, Barbara van

    When considering water management, formal institutions tend to overshadow the local informal ones although the latter guide day-to-day interactions on water use. Conversely, Integrated Water Resources Management (IWRM) has demonstrated a bias toward the formal state-based institutions for water management. A study was carried out to examine how local water rights and local informal institutional arrangements influence water management in the Great Ruaha River catchment in the Rufiji basin in Tanzania. Participatory appraisals were carried out, supplemented by focus group discussions, interviews, and a stakeholders’ workshop. It was found that local water rights, local water rotations and local water user groups are widely in use and are more influential than the formal water rights, water fees and water user associations (WUAs). Water allocation at the driest period depends on local informal relations among irrigators. More than 70% of water users surveyed choose to settle disputes over water via informal channels and the latter are more effective in resolving water conflicts and reconciling the antagonists compared to the formal routes. It was also found that although much emphasis and many resources have been expended in transforming local water rights and water related organisations to formal registered ones, the former have remained popular and water users feel more affiliated to local arrangements. The paper concludes that local informal water management can offer the best lessons for the formal management arrangements and should not be simply overlooked. Finally, the paper recommends that the formal and informal institutions should be amalgamated to bring forth a real Integrated Water Resource Management framework.

  6. Forest Management Challenges for Sustaining Water Resources in the Anthropocene

    Directory of Open Access Journals (Sweden)

    Ge Sun

    2016-03-01

    Full Text Available The Earth has entered the Anthropocene epoch that is dominated by humans who demand unprecedented quantities of goods and services from forests. The science of forest hydrology and watershed management generated during the past century provides a basic understanding of relationships among forests and water and offers management principles that maximize the benefits of forests for people while sustaining watershed ecosystems. However, the rapid pace of changes in climate, disturbance regimes, invasive species, human population growth, and land use expected in the 21st century is likely to create substantial challenges for watershed management that may require new approaches, models, and best management practices. These challenges are likely to be complex and large scale, involving a combination of direct and indirect biophysical watershed responses, as well as socioeconomic impacts and feedbacks. We discuss the complex relationships between forests and water in a rapidly changing environment, examine the trade-offs and conflicts between water and other resources, and propose new management approaches for sustaining water resources in the Anthropocene.

  7. Scenario-based Water Resources Management Using the Water Value Concept

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  8. The impact of climate change on water resources: Assessment at the scale of the Indian subcontinent

    Science.gov (United States)

    Pechlivanidis, Ilias; Olsson, Jonas; Bosshard, Thomas; Sharma, Devesh; Sharma, Kc; Arheimer, Berit

    2015-04-01

    The large increase in the atmospheric concentrations of greenhouse gases has led to the global climate change phenomenon which is expected to have a strong impact on water resources on local, regional and global scales. The Indian subcontinent is vulnerable to climate change since the region is characterized by a strong hydro-climatic gradient due to monsoon and the geographic features, and hence poses extraordinary challenges to understand, quantify and predict future availability in water resources. In here, the impact of climate change on the hydro-climatology of the subcontinent is investigated by comparing statistics of current and projected future fluxes resulting from three emission scenarios (RCP2.6, RCP4.5, and RCP8.5). The use of different emission scenarios allows for the definition of uncertainty of future impacts. Climate projections from the CORDEX-South Asia framework have been bias-corrected using the DBS (Distribution Based Scaling) method and used to force the HYPE (HYdrological Predictions for the Environment) hydrological model to generate projections of evapotranspiration, runoff, soil moisture deficit, snow depth, and applied irrigation water to soil. In addition, we assess the changes on high and low flows from all river systems as well as the changes in the annual cycles. Overall, the high uncertainty in the climate projections is propagated in the hydrological impact model, and as a result the spatiotemporal distribution of change is subject to the climate projection. In general, results from all scenarios indicate a -20 to +50% change in long-term average precipitation and evapotranspiration, yet a higher change (-100 to +100%) in runoff. Analysis of annual cycles showed that climate change impacts vary between seasons whereas the effect is dependent on the region's hydro-climatic gradient. Future scenarios project a graduate increase in temperature from 1 up to 76°C on average, which further affects the need for irrigation and snow

  9. Water resources and ecological conditions in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    宋郁东; 王让会; 彭永生

    2002-01-01

    Temporal sequential analyses of the hydrological observational data in the Tarim Ba-sin over the last forty years revealed an annual increase of 2 × 107m3 in the water quantities at thethree headstreams of the upper courses and an annual decrease of 3 × 107m3 in the water flowfrom Alaer, which is on the upper main stream. A prediction of the trends indicates that there canbe severe situations under which intermittent water interceptions occur. By means of approximateestimations on vegetative water consumption through phreatic evaporation combined with a quotaassessment, the ecological water demands required to maintain the ecological environment in themainstream area over the three different targeted years of 2005, 2010 and 2030 are defined asstanding at 31.86× 108m3, 36.27× 108m3 and 41.04× 108m3 respectively. Ecological fragility in-dexes are established on the basis of the selection of environmental sensitivity factors. Rationalevaluations give proof that the lower reaches of the mainstream have already turned into zoneswhere their ecological environments are gravely damaged. Multi-objective optimization should beconducted and protective schemes be framed within the threshold limits of the bearing capacitiesof water resources and the environment.

  10. Development of an Integrated Water Resources Management System

    Science.gov (United States)

    Koike, T.; Rasmy, M.; Wang, L.; Saavedra, O. C.

    2010-12-01

    Water-related hazards usually occur as causes and consequences of large water cycle fluctuations on global and regional scales, while disasters and damages due to the hazards happen through strong linkage with human activities on a local scale. The observations and predictions of the water-related hazards and their damages can be enhanced by combining global Earth observation and prediction systems and local information. Global warming is changing the water-related hazards. IPCC reported the increase of the frequency of heavy precipitation events, the area affected by droughts and intense tropical cyclone activity, from observations and projections in its 4th assessment report. Vulnerability due to water-related hazards will increase associated with the global warming. By making maximum use of the opportunities of global observations and predictions, this paper develops a downscaling system that converts global Earth observation data and prediction outputs to usable information for sound decision making for reducing damages by water related-hazards and adapting climate change impacts. The University of Tokyo (UT) is now developing a core system for data integration and analysis (DIAS) that includes the supporting functions of life cycle data management, data search, information exploration, scientific analysis, and partial data downloading. The system integrates data from Earth observation satellites and in-situ networks with other types of data, including numerical weather prediction model outputs, geographical information, and socio-economic data. On the DIAS, UT has developed an integrated water resources management system, consisting of three components: a Coupled Atmosphere-Land Data Assimilation System (CALDAS), a Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM), and decision making support tools for flood control including dam operation and evacuation instructions. The results of the application of the system show that not only were the

  11. Remote sensing applications in water resources management by the California Department of Water Resources

    Science.gov (United States)

    Brown, B.

    1975-01-01

    The possibility of applying imagery from high altitude aircraft and satellites sensors to water management in California was evaluated. Results from seven applications studies comparing the costs of using high altitude imagery for various purposes to the costs of using conventional data sources, reveal the high altitude imagery to be more cost effective in six cases and equal to conventional data sources in one case. These results also reveal that the imagery provides a level of quality not generally achievable with uncorrected conventional imagery. Although satellite application studies are not yet complete, preliminary results indicate that some definite possibilities exist for employing satellite imagery on an operational basis within the next few years.

  12. Water Resource Inventory and Assessment (WRIA): Erwin National Fish Hatchery, Unicoi County, Tennessee

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Resource Inventory and Assessment (WRIA) for Erwin National Fish Hatchery (NFH) summarizes available and relevant information for hatchery water resources...

  13. Water Resource Inventory and Assessment (WRIA) - Great River NWR and Clarence Cannon NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Water Resource Inventory and Assessment (WRIA) Summary Report describes current hydrologic information, provides an assessment of water resource needs and...

  14. Integrating science, policy and stakeholder perspectives for water resource management

    Science.gov (United States)

    Barbour, Emily; Allan, Andrew; Whitehead, Paul; Salehin, Mashfiqus; Lazzar, Attila; Lim, Michelle; Munsur Rahman, Md.

    2015-04-01

    Successful management of water resources requires an integrated approach considering the complex relationships between different biophysical processes, governance frameworks and socio-economic factors. The Ecosystem Services for Poverty Alleviation (ESPA) Deltas project has developed a range of socio-economic scenarios using a participatory approach, and applied these across different biophysical models as well as an integrated environmental, socio-economic model of the Ganges-Brahmaputra-Meghna (GBM) Delta. This work demonstrates a novel approach through the consideration of multiple ecosystem services and related socio-economic factors in the development of scenarios; the application of these to multiple models at multiple scales; and the participatory approach to improve project outcomes and engage national level stakeholders and policy makers. Scenarios can assist in planning for an uncertain future through exploring plausible alternatives. To adequately assess the potential impacts of future changes and management strategies on water resources, the wider biophysical, socio-economic and governance context needs to be considered. A series of stakeholder workshops have been held in Bangladesh to identify issues of main concern relating to the GBM Delta; to iteratively develop scenario narratives for business as usual, less sustainable, and more sustainable development pathways; and to translate these qualitative scenarios into a quantitative form suitable for analysis. The combined impact of these scenarios and climate change on water quantity and quality within the GBM Basin are demonstrated. Results suggest that climate change is likely to impact on both peak and low flows to a greater extent than most socio-economic changes. However, the diversion of water from the Ganges and Brahmaputra has the potential to significantly impact on water availability in Bangladesh depending on the timing and quantity of diversions. Both climate change and socio

  15. Model Hosting for continuous updating and transparent Water Resources Management

    Science.gov (United States)

    Jódar, Jorge; Almolda, Xavier; Batlle, Francisco; Carrera, Jesús

    2013-04-01

    Numerical models have become a standard tool for water resources management. They are required for water volume bookkeeping and help in decision making. Nevertheless, numerical models are complex and they can be used only by highly qualified technicians, which are often far from the decision makers. Moreover, they need to be maintained. That is, they require updating of their state, by assimilation of measurements, natural and anthropic actions (e.g., pumping and weather data), and model parameters. Worst, their very complexity implies that are they viewed as obscure and far, which hinders transparency and governance. We propose internet model hosting as an alternative to overcome these limitations. The basic idea is to keep the model hosted in the cloud. The model is updated as new data (measurements and external forcing) becomes available, which ensures continuous maintenance, with a minimal human cost (only required to address modelling problems). Internet access facilitates model use not only by modellers, but also by people responsible for data gathering and by water managers. As a result, the model becomes an institutional tool shared by water agencies to help them not only in decision making for sustainable management of water resources, but also in generating a common discussion platform. By promoting intra-agency sharing, the model becomes the common official position of the agency, which facilitates commitment in their adopted decisions regarding water management. Moreover, by facilitating access to stakeholders and the general public, the state of the aquifer and the impacts of alternative decisions become transparent. We have developed a tool (GAC, Global Aquifer Control) to address the above requirements. The application has been developed using Cloud Computing technologies, which facilitates the above operations. That is, GAC automatically updates the numerical models with the new available measurements, and then simulates numerous management options

  16. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  17. Water resource taxation with full-cost water pricing: lessons from Europe

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Pizzol, Massimo

    Green fiscal reform involves removal of environmentally harmful subsidies, introduction of taxes on pollution and resource depletion as well as full-cost pricing for environmental services. One sector which traditionally has been shielded against Green Fiscal Reform is the water sector, where...... social and distributional concerns have had priority over charging policies. This may seem a paradox, as the water sector is of major financial significance and traditionally accounts for 1-2 per cent of GDP in developed nations. Moreover, in the European Union the Water Framework Directive prescribes...... under Art. 9 that EU Member States are to introduce full-cost water pricing including pricing of the environmental and resource costs related to water service provision. With relevance for the perspective of green fiscal reform, the European Union funded research project EPIWATER has surveyed the use...

  18. Water resources evolution and social development in Hai River basin, China

    Science.gov (United States)

    Peng, Dingzhi; You, Jinjun

    2010-05-01

    The Hai River basin is one of the three important bread baskets in China. As the rapid economy development in the basin, surface water reduction, groundwater overexploitation and water pollution had caused serious deterioration of the ecological environment. The rainfall, evaporation, surface water, groundwater, water quality, pollution sources, supply and demand of water resources were analyzed and the characteristic of water resources evolution was summarized in Hai River basin. Furthermore, the social and economic development and the relationship between water resources evolution and social development were discussed in the basin. It was found that the human activity is the first impact factor of water cycle in Hai River basin, and the climate change is the second. Finally, the attenuation of water resources in the basin was induced by the two factors together. For sustainable utilization of water resources in the Hai River basin, the unified management and optimal allocation of water resources should be strengthened and promoted.

  19. Future water quality monitoring - Adapting tools to deal with mixtures of pollutants in water resource management

    OpenAIRE

    Altenburger, R; Ait-Aissa, S; Antczak, P; Backhaus, T.; Barceló, D; Seiler, T-B; Brion, F.; W. Busch; Chipman, K; de Alda, ML; de Aragão Umbuzeiro, G; Escher, BI; Falciani, F; Faust, M; Focks, A

    2015-01-01

    Environmental quality monitoring of water resources is challenged with providing the basis for safeguarding the environment against adverse biological effects of anthropogenic chemical contamination from diffuse and point sources. While current regulatory efforts focus on monitoring and assessing a few legacy chemicals, many more anthropogenic chemicals can be detected simultaneously in our aquatic resources. However, exposure to chemical mixtures does not necessarily translate into adverse b...

  20. Pakistan's water resources development and the global perspective

    International Nuclear Information System (INIS)

    Pakistan's economy is dependent on irrigated agriculture. About 80% of agriculture is irrigated. It contributes 30% of GDP. Agriculture provides 55% job opportunities. This sector provides 60% of country's exports. The development of agriculture will prosper and up-lift 70% of the total population that is annually growing by 3%. The total area of Pakistan is 197.7 MA (79.6 Mha). Out of which about 103.2 MA (41.77 Mha) comprises of rugged mountains, narrow valleys and foot hills, the remaining area of 93.5 MA (37.83 Mha) consists about 54.6 MA (22.1 Mha) is currently cultivated. Remaining 22.5 MA (9.1 Mha) is lying barren lacking water for irrigation. The total surface water availability is 154.5 MAF. Population density is the highest in the canal irrigated areas in the north east of Indus Plains. The increasing population and the associated social, technical and economic activities all depend, directly or indirectly, on the exploitation of water-as a resource. The total surface water availability is 154.5 MAF. Presently water diverted at canal heads is 106 MAF. In Vision 2025 Programme WAPDA has identified to build water sector and hydropower projects such as: i) Water Sector Projects (Gomal Zam, Mirani, Raised Mangla, Satpara. Kurram Tangi Dams and Greater Thai, Kachhi and Rainee Canals) and ii) Hydropower Projects (Jinnah Barrage, Allai Khwar, Khan Khwar, Duber Khwar, Golen Gole, Neelum Jhelum and Low Head Hydropower Project). Besides the above some more projects are under various stages of planning i.e.; (i) Basha Diamer Dam Project - Feasibility Detailed Design and Tenders, (ii) Akhori Dam Project - Feasibility, (iii) Sehwan Barrage - Feasibility. (iv) Chashma Right Bank Canal Lift Scheme Feasibility and Design, (v) Bunji Hydropower Project Pre-feasibility, (vi) Dasu Hydropower Project - Pre-feasibility and Skardu Dam - Prefeasibility. While, keeping in view the planning and development activities regarding water sector and hydropower projects, the country will

  1. Economic incentives for water resource management in the Pak Phanang river basin of southern Thailand

    OpenAIRE

    Janekarnkij, P.

    1995-01-01

    The study examines the existing water allocation methods and other policies that provide constraints or incentives for the most efficient use of water resources. Given the production condition of the local people, and the technical and physical attributes of water resources, the principal hypothesis of this study is that the benefits obtained from fresh water resources in the study area can be improved through better resource management.

  2. North Slope Decision Support for Water Resource Planning and Management

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  3. Case Studies on Coastal Wetlands and Water Resources in Nigeria

    Directory of Open Access Journals (Sweden)

    H.O Nwankwoala

    2012-06-01

    Full Text Available Wetlands play a very important role in the sustenance of both the surface andgroundwater resources of the country. It is sad to observe that the country is fast losingher wetlands, as the rich wetlands are being seriously threatened by a number ofanthropogenic and biophysical factors. Some of the notable human actions includepopulation pressure, rapid urbanization, mining, oil and industrial waste pollution,overgrazing, logging, dam construction, transportation routes and other physicalinfrastructure. Others factors are uncontrolled tilling for crop production andunprecedented/unregulated land reclamation. Subsidence, saltwater intrusion, sandstorm, desertification and droughts, invasion by alien floral and faunal species as well asmarine and coastal erosion are natural threats to wetlands in Nigeria. Wetlandsdestruction affects negatively water supply and water resources management. This studyexamines in great detail the fate of wetlands in the face of climate change andrecommends that efforts should be made to accurately document the country’s wetland.The paper therefore suggested sustainable options for wetlands and water resourcesmanagement in Nigeria. This, the paper opined, can be done through the strengtheningof wetlands preservation and conservation regulation, mitigating the effects of climatechange as well as the development of deliberate restoration programmes and policiesaimed at sustaining degraded wetlands in Nigeria.

  4. Water footprint concept for a sustainable water resources management in Urmia Lake basin, Iran

    Science.gov (United States)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein; Aligholiniya, Tohid; Rasouli, Negar

    2015-04-01

    The fast shrinkage of Urmia Lake in West Azerbaijan, Iran is one of the most important environmental change hotspots. The dramatic water level reduction (up to 6 meters) has influential environmental, socio-economic and health impacts on Urmia plain and its habitants. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. The Urmia Lake sub basins are the agricultural cores of the region and the agricultural activities are the major water consuming sections of the basin. Land use changes and mismanagement in the land use decisions and policies is one of the most important factors in lake shrinkage in recent decades. Fresh water is the main source of water for agricultural usages in the basin. So defining a more low water consuming land use pattern will put less pressure on limited water resources. The above mentioned fact in this study has been assessed through water footprint concept. The water footprint concept (as a quantitative measure showing the appropriation of natural resources) is a comprehensive indicator that can have a crucial role in efficient land use management. In order to evaluate the water use patterns, the water footprint of wheat (as a traditional crop) and apple (recently most popular) have been compared and the results have been discussed in the aspect of the impacts on Lake Urmia demands and its dramatic drying process. Results showed that, higher blue water consumption in such a regions that have severe blue water scarcity, is a major issue and the water consuming pattern must be modified to meet the lake demands. Lower blue water consumption through regionalizing crops for each area is an efficient solution to meet lake demands and consume lower amounts of blue water. So the proper land use practices can be an appropriate method to rescue the lake in a long time period.

  5. AHP Comprehensive Evaluation on Sustainable Utilization of Water Resources in Hengshui City, China

    Institute of Scientific and Technical Information of China (English)

    潘峰; 赵林

    2015-01-01

    In order to investigate the sustainable utilization of water resources in Hengshui City, quantitative analysis and comprehensive evaluation on 15 indexes of Hengshui City, such as the perspectives of social and economic devel-opment condition, water resource condition, environment condition, development and utilization of water resources, were conducted by using the analytic hierarchy process(AHP) method from 2004 to 2008. Although the sustainable utilization has been growing from 2004 to 2008, the situation and environment of water resources were not optimistic because of the severe water shortage in Hengshui. In the future, improving the supply capacity is the key target for promoting sustainable utilization of water resources.

  6. Performance assessment of Saskatchewan's water resource system under uncertain inter-provincial water supply

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Nazemi, Ali; Wheater, Howard

    2014-05-01

    The trans-boundary Saskatchewan River Basin supports livelihoods and the economy of the province of Saskatchewan, Canada. Water users include irrigated agriculture, hydropower, potash mining, urban centers, and ecosystem services. Water availability in Saskatchewan is highly dependent on the flows from the upstream province of Alberta. These flows mostly originate from the Rocky Mountains headwaters and are highly regulated, due to intensive water use and redistribution before they get to the Alberta/Saskatchewan border. Warming climate and increasing water demands in Alberta have changed the incoming flow characteristics from Alberta to Saskatchewan. It is critical to assess the performance and the viability of Saskatchewan's water resources system under uncertain future inter-provincial inflows. For this purpose, a possible range of future changes in the inflows from Alberta to Saskatchewan is considered in this study. The considered changes include various combinations of shifts in the timing of the annual peak and volumetric change in the annual flow volumes. These shifts are implemented using a copula-based stochastic simulation method to generate multiple realizations of weekly flow series at two key locations of inflow to Saskatchewan's water resources system, in a way that the spatial dependencies between weekly inflows are maintained. Each flow series is of 31-years length and constitutes a possible long term water availability scenario. The stochastically generated flows are introduced as an alternative to the historical inflows for water resources planning and management purposes in Saskatchewan. Both historical and reconstructed inflows are fed into a Sustainability-oriented Water Allocation, Management, and Planning (SWAMP) model to analyze the effects of inflow changes on Saskatchewan's water resources system. The SWAMP model was developed using the System Dynamics approach and entails irrigation/soil moisture, non-irrigation uses and economic

  7. Water Budgets: Foundations for Effective Water-Resources and Environmental Management

    Science.gov (United States)

    Healy, Richard W.; Winter, Thomas C.; LaBaugh, James W.; Franke, O. Lehn

    2007-01-01

    INTRODUCTION Water budgets provide a means for evaluating availability and sustainability of a water supply. A water budget simply states that the rate of change in water stored in an area, such as a watershed, is balanced by the rate at which water flows into and out of the area. An understanding of water budgets and underlying hydrologic processes provides a foundation for effective water-resource and environmental planning and management. Observed changes in water budgets of an area over time can be used to assess the effects of climate variability and human activities on water resources. Comparison of water budgets from different areas allows the effects of factors such as geology, soils, vegetation, and land use on the hydrologic cycle to be quantified. Human activities affect the natural hydrologic cycle in many ways. Modifications of the land to accommodate agriculture, such as installation of drainage and irrigation systems, alter infiltration, runoff, evaporation, and plant transpiration rates. Buildings, roads, and parking lots in urban areas tend to increase runoff and decrease infiltration. Dams reduce flooding in many areas. Water budgets provide a basis for assessing how a natural or human-induced change in one part of the hydrologic cycle may affect other aspects of the cycle. This report provides an overview and qualitative description of water budgets as foundations for effective water-resources and environmental management of freshwater hydrologic systems. Perhaps of most interest to the hydrologic community, the concepts presented are also relevant to the fields of agriculture, atmospheric studies, meteorology, climatology, ecology, limnology, mining, water supply, flood control, reservoir management, wetland studies, pollution control, and other areas of science, society, and industry. The first part of the report describes water storage and movement in the atmosphere, on land surface, and in the subsurface, as well as water exchange among these

  8. Ethiopia's national strategy for improving water resources management

    International Nuclear Information System (INIS)

    Full text: Ethiopia's current approach to assessing and managing water resources, including geothermal, assigns very high priority to the use of isotope hydrology. Incorporation of this technology into government planning began with a few activities, in local groundwater assessment and in geothermal studies, kicked off by a 1993 National Isotope Hydrology Training Workshop that the IAEA helped arrange. The first results of isotope studies were useful in characterizing the Aluto Geothermal Field, where a 7.2 MW(e) power plant was later built with support from the UNDP and the EEC. And the Government is now hoping to introduce isotope techniques to improve utilization of the field. Isotope hydrology has successfully aided attempts to better understand ground water occurrence, flow and quality problems in arid regions of Ethiopia. These efforts are continuing through studies in the Dire Dawa, Mekelle and Afar regions. Rising water levels in Lake Beseka are threatening to submerge vital rail and highway links. Isotope hydrology made a unique contribution to understanding the surface and subsurface factors responsible, leading to an engineering plan for mitigating the problem. The Government has allocated substantial funding and construction work has begun. A similar success story is emerging at Awassa Lake, where isotope hydrology is proving a very useful complement to conventional techniques. Another promising application of isotope hydrology is taking place as part of the Akaki Groundwater Study near Addis Ababa. Preliminary isotopic results indicate that earlier conclusions based on conventional techniques may have to be revised. If so, there will be significant implications for the exploitation and management strategy of the resource. Based on these encouraging results, the Government is proceeding with the preparation of a project document for the Ethiopian Groundwater Resource Assessment Programme. With the assistance of the IAEA, the U.S. Geological Survey

  9. Multiunit water resource systems management by decomposition, optimization and emulated evolution.

    NARCIS (Netherlands)

    Milutin, D.

    1998-01-01

    Being one of the essential elements of almost any water resource system, reservoirs are indispensable in our struggle to harness, utilize and manage natural water resources. Consequently, the derivation of appropriate reservoir operating strategies draws significant attention in water resources plan

  10. 76 FR 8722 - California Department of Water Resources; Notice of Application Accepted for Filing, Soliciting...

    Science.gov (United States)

    2011-02-15

    ... Energy Regulatory Commission California Department of Water Resources; Notice of Application Accepted for.... Applicant: California Department of Water Resources (DWR). e. Name of Project: Feather River Hydroelectric... of Water Resources, licensee for the Feather River Hydroelectric Project, has filed a request...

  11. 76 FR 50494 - Water Resources Management Plan/Environmental Impact Statement, Mojave National Preserve, San...

    Science.gov (United States)

    2011-08-15

    ... National Park Service Water Resources Management Plan/Environmental Impact Statement, Mojave National... Scoping Period for Water Resources Management Plan/Environmental Impact Statement for Mojave National... National Park Service is preparing a Water Resources Management Plan/Environmental Impact Statement...

  12. 78 FR 67393 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-11-12

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal...

  13. 76 FR 73674 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2011-11-29

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal...

  14. 78 FR 23288 - Proposed Information Collection: State Water Resources Research Institute Program; Annual...

    Science.gov (United States)

    2013-04-18

    ... Geological Survey Proposed Information Collection: State Water Resources Research Institute Program; Annual... collection (IC) to renew approval of the paperwork requirements for ``National Institutes for Water Resources...: eagreene@usgs.gov . SUPPLEMENTARY INFORMATION: I. Abstract The Water Resources Research Act of 1984,...

  15. 78 FR 16706 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2013-03-18

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal...

  16. 75 FR 8106 - Change in Discount Rate for Water Resources Planning

    Science.gov (United States)

    2010-02-23

    ... Bureau of Reclamation Change in Discount Rate for Water Resources Planning AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of change. SUMMARY: The Water Resources Planning Act of 1965 and the Water Resources Development Act of 1974 require an annual determination of a discount rate for Federal...

  17. Using FRAMES to Manage Environmental and Water Resources

    International Nuclear Information System (INIS)

    The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) is decision-support middleware that provides users the ability to design software solutions for complex problems. It is a software platform that provides seamless and transparent communication between modeling components by using a multi-thematic approach to provide a flexible and holistic understanding of how environmental factors potentially affect humans and the environment. It incorporates disparate components (e.g., models, databases, and other frameworks) that integrate across scientific disciplines, allowing for tailored solutions to specific activities. This paper discusses one example application of FRAMES, where several commercial off-the-shelf (COTS) software products are seamlessly linked into a planning and decision-support tool that helps manage water-based emergency situations and sustainable response. Multiple COTS models, including three surface water models, and a number of databases are linked through FRAMES to assess the impact of three asymmetric and simultaneous events, two of which impact water resources. The asymmetric events include (1) an unconventional radioactive release into a large potable water body, (2) a conventional contaminant (oil) release into navigable waters, and (3) an instantaneous atmospheric radioactive release

  18. Neuroemulation: definition and key benefits for water resources research

    OpenAIRE

    Abrahart, R. J.; Mount, Nick J.; Shamseldin, A. Y.

    2012-01-01

    Neuroemulation is the art and science of using a neural network model to replicate the external behaviour of some other model and it is an activity that is distinct from neural-network-based simulation. Whilst is has become a recognised and established sub-discipline in many fields of study, it remains poorly defined in the field of water resources and its many potential benefits have not been adequately recognised to date. One reason for the lack of recognition of the field is the difficulty...

  19. Water resources transfers through southern African food trade: resource efficiency and climate adaptation

    Science.gov (United States)

    Dalin, Carole; Conway, Declan

    2015-04-01

    The connections between climate and the water-food nexus are strong and economically significant in southern Africa, yet the role of observed climate variability as a driver of production fluctuations is poorly understood. In addition, as regional collaboration strengthens through the SADC (Southern Africa Development Community) and trade with other regions increases, it is important to understand both how climate variability affects productivity and how intra- and extra-regional trade can contribute to the region's capacity to deal with climate-related productivity shocks. We use international food trade data (FAOSTAT) and a global hydrological model (H08) to quantify the water resources embedded in international food trade across southern Africa and with the rest of the world, from 1986-2011. We analyze the impacts of socio-economic, political and climatic changes on agricultural trade and embedded water resources during that period. In particular, the effects of climate variability on trade flows and crop yields are estimated, to provide insights on the potential of trade as a collaborative adaptation mechanism.

  20. Spending of HIV resources in Asia and Eastern Europe: systematic review reveals the need to shift funding allocations towards priority populations

    Directory of Open Access Journals (Sweden)

    Andrew P Craig

    2014-02-01

    Full Text Available Introduction: It is increasingly important to prioritize the most cost-effective HIV interventions. We sought to summarize the evidence on which types of interventions provide the best value for money in regions with concentrated HIV epidemics. Methods: We conducted a systematic review of peer-reviewed and grey literature reporting measurements of cost-effectiveness or cost-benefit for HIV/AIDS interventions in Asia and Eastern Europe. We also collated HIV/AIDS spending assessment data from case-study countries in the region. Results: We identified 91 studies for inclusion, 47 of which were from peer-reviewed journals. Generally, in concentrated settings, prevention of mother-to-child transmission programmes and prevention programmes targeting people who inject drugs and sex workers had lower incremental cost-effectiveness ratios than programmes aimed at the general population. The few studies evaluating programmes targeting men who have sex with men indicate moderate cost-effectiveness. Collation of prevention programme spending data from 12 countries in the region (none of which had generalized epidemics indicated that resources for the general population/non-targeted was greater than 30% for eight countries and greater than 50% for five countries. Conclusions: There is a misalignment between national spending on HIV/AIDS responses and the most affected populations across the region. In concentrated epidemics, scarce funding should be directed more towards most-at-risk populations. Reaching consensus on general principles of cost-effectiveness of programmes by epidemic settings is difficult due to inconsistent evaluation approaches. Adopting a standard costing, impact evaluation, benefits calculation, analysis and reporting framework would enable cross comparisons and improve HIV resource prioritization and allocation.