WorldWideScience

Sample records for ash substituted cements

  1. The influence of fly ash as substitute of cement in the durability of concrete

    OpenAIRE

    Molina Bas, Omar I.; Moragues Terrades, Amparo; Gálvez Ruíz, Jaime; Guerrero Bustos, Ana

    2008-01-01

    Limitation of transport capacity through the concrete is one of the key points in the improvement of the material’s durability. The use of fly ash as an admixture to concrete is widely extended; a general consensus has been established due to the pore size reduction produced by the ashes. Nevertheless, the importance of the micro-structural and composition changes in mechanical and durable properties is not well defined. In the present study the use of fly ash has been considered as substitut...

  2. Use of Incineration Solid Waste Bottom Ash as Cement Mixture in Cement Production

    Science.gov (United States)

    Jun, N. H.; Abdullah, M. M. A. B.; Jin, T. S.; Kadir, A. A.; Tugui, C. A.; Sandu, A. V.

    2017-06-01

    Incineration solid waste bottom ash was use to examine the suitability as a substitution in cement production. This study enveloped an innovative technology option for designing new equivalent cement that contains incineration solid waste bottom ash. The compressive strength of the samples was determined at 7, 14, 28 and 90 days. The result was compared to control cement with cement mixture containing incineration waste bottom ash where the result proved that bottom ash cement mixture able achieve its equivalent performance compared to control cement which meeting the requirement of the standards according to EN 196-1. The pozzolanic activity index of bottom ash cement mixture reached 0.92 at 28 days and 0.95 at 90 and this values can be concluded as a pozzolanic material with positive pozzolanic activity. Calcium hydroxide in Portland cement decreasing with the increasing replacement of bottom ash where the reaction occur between Ca(OH)2 and active SiO2.

  3. Thermal properties of fly ash substituted slag cement waste forms for disposal of Savannah River Plant salt waste

    International Nuclear Information System (INIS)

    Roy, D.M.; Kaushal, S.; Licastro, P.H.; Langton, C.A.

    1985-01-01

    Waste processing at the Savannah River Plant will involve reconstitution of the salts (NaNO 3 , NaNO 2 , NaOH, etc.) into a concentrated solution (32 weight percent salts) followed by solidification in a cement-based waste form for burial. The stability and mechanical durability of such a 'saltstone monolith' will depend largely on the temperature reached due to heat of hydration and the thermal properties of the waste form. Fly ash has been used as an inexpensive constituent and to moderate the hydration and setting processes so as to avoid reaching prohibitively high temperatures which could cause thermal stresses. Both high-calcium and low-calcium fly ashes have been studied for this purpose. Other constituents of these mixes include granulated blast furnace slag and finely crushed limestone. Adiabatic temperature increase and thermal conductivity of these mixes have been studied and related x-ray diffraction and scanning electron microscopy studies carried out to understand the hydration process

  4. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  5. Hydration of fly ash cement and microstructure of fly ash cement pastes

    Energy Technology Data Exchange (ETDEWEB)

    Shiyuan, H.

    1981-01-01

    The strength development and hydration of fly ash cement and the influence of addition of gypsum on those were studied at normal and elevated temperatures. It was found that an addition of a proper amount of gypsum to fly ash cement could accelerate the pozzolanic reaction between CH and fly ash, and as a result, increase the strength of fly ash cement pastes after 28 days.

  6. Compressive Strength Of Rice Husk Ash-Cement Sandcrete Blocks ...

    African Journals Online (AJOL)

    There is growing demand for alternative, low-cost building material in developing countries. The effect of partial substitution of ordinary Portland cement with Rice Husk Ash (RHA) on the compressive strength of hollow sandcrete block was investigated through laboratory experimental procedures. The specific gravity, initial ...

  7. Hospital waste ashes in Portland cement mortars

    International Nuclear Information System (INIS)

    Genazzini, C.; Zerbino, R.; Ronco, A.; Batic, O.; Giaccio, G.

    2003-01-01

    Nowadays, most concretes incorporate mineral additions such as pozzolans, fly ash, silica fume, blast furnace slag, and calcareous filler among others. Although the technological and economical benefits were the main reasons for the use of mineral additions, the prevention of environmental contamination by means of proper waste disposal becomes a priority. The chance of incorporating hospital waste ashes in Portland cement-based materials is presented here. Ash characterization was performed by chemical analysis, X-ray diffraction, radioactive material detection, and fineness and density tests. Conduction calorimetry and setting time tests were developed on pastes including ash contents from 0% to 100%. Mortars were prepared including ash contents up to 50% of cement. The results of setting time, temperature development, flexural and compressive strengths, water absorption, density, and leachability are analyzed. Results indicate that Portland cement systems could become an alternative for the disposal of this type of ashes

  8. Incinerated sewage sludge ash as alternative binder in cement-based materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    Sewage sludge ash is characterized by its pozzolanic properties, as cement is. This predetermines its use in a substitution of cement and cementitious materials. Utilization of sewage sludge ash does not only decrease the consumption of cement, one of the largest cause of CO2 emissions, but also...... it can minimize the need of ash landfill disposal. The objective of this study is to show potential use of incinerated sewage sludge ash (ISSA), an industrial byproduct, as possible binder in cement-based materials. Chemical and mechanical characteristics are presented and compared with results obtained...

  9. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    Nakayama, T.; Suzuki, S.; Hanada, K.; Tomioka, O.; Sato, J.; Irisawa, K.; Kato, J.; Kawato, Y.; Meguro, Y.

    2015-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H 2 . Because the H 2 generation began immediately just after the mixing, H 2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H 2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  10. Recycling Jorf Lasfar fly ash as an additive to cement

    Directory of Open Access Journals (Sweden)

    Hamadi A

    2012-09-01

    Full Text Available Recycling fly ash is a good example of valorization of waste. It gives a solution the environmental problem by avoiding land filling, and reducing CO2 emission in the atmosphere. In this work we studied the physical-chemical characteristics of Jorf Lasfar fly ash. The parameters investigated were particle size, density, specific surface Blaine, chemical and mineralogical compositions. The techniques used are scanning electronic microscope (SEM, transmission electronic microscope (TEM, X-rays fluorescence (XRF, X-rays diffraction (XRD and atomic spectrometry emission coupled with inductive plasma ICP. We also conducted a study on the mechanical behavior of type CPJ45 cements produced from a combined grinding of clinker, limestone and gypsum. The substitution of a portion of the clinker by different percentages of fly ash was conducted. We noticed that the compression and bending resistances for these mixtures went through a maximum at 28 days with the addition of 7% (by mass of ash. This result showed that the mineral and chemical compositions of this ash conferred a Pozzoulanic power to the cement studied.

  11. Radiobiological waste treatment-ashing treatment and immobilization with cement

    Energy Technology Data Exchange (ETDEWEB)

    Shengtao, Feng; Li, Gong; Li, Cheng; Benli, Wang; Lihong, Wang [China Inst. for Radiation Protection, Taiyuan, Shanxi (China)

    1997-02-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 {+-} 5 wt% cement, 29 {+-} 2 wt% water, and 36 {+-} 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH{sub 4A} flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH{sub 4A} flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH{sub 4A} and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and {<=} 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs.

  12. Radiobiological waste treatment-ashing treatment and immobilization with cement

    International Nuclear Information System (INIS)

    Feng Shengtao; Gong Li; Cheng Li; Wang Benli; Wang Lihong

    1997-01-01

    This report describes the results of the study on the treatment of radioactive biological waste in the China Institute for Radiation Protection (CIRP). The possibility of radiobiological waste treatment was investigated by using a RAF-3 type rapid ashing apparatus together with the immobilization of the resulted ash. This rapid ashing apparatus, developed by CIRP, is usually used for pretreatment of samples prior to chemical analysis and physical measurements. The results show that it can ash 3 kg of animal carcasses a batch, the ashing time is 5-7 h and the ash content is less than 4 wt%. The ashing temperature not exceeding 450 deg. C was used without any risk of high losses of radionuclides. The ash from the rapid ashing apparatus was demonstrated to be immobilized with ordinary silicate cement. The optimum cement/ash/water formulation of the cemented waste form was 35 ± 5 wt% cement, 29 ± 2 wt% water, and 36 ± 6 wt% ash. The performance of the waste form was in compliance with the technical requirements except for impact resistance. Mixing additives in immobilization formulations can improve the performance of the cemented ash waste form. The additives chosen were DH 4A flow promoter as a cement additive and vermiculite or zeolite as a supplement. The recommended formulation, i.e. an improved formulation of the cemented ash waste form is that additives DH 4A flow promoter and vermiculite (or zeolite) are added on the ground of optimum cement/ash/water formulation of the cemented waste form, the dosage of water, DH 4A and vermiculite (or zeolite) is 70 wt%, 0.5 wt% and ≤ 5 wt% of the cement dosage, respectively. The cemented ash waste forms obtained meet all the requirements for disposal. (author). 12 refs, 7 figs, 13 tabs

  13. Norm in coal, fly ash and cement

    International Nuclear Information System (INIS)

    Kant, K.; Upadhyay, S.B.; Sharma, G.S.

    2006-01-01

    Coal is technologically important materials being used for power generation and its cinder (fly ash) is used in manufacturing of bricks, sheets, cement, land filling etc. 222 Rn (radon) and its daughters are the most important radioactive and potentially hazardous elements, which are released in the environment from the naturally occurring radioactive material (NORM) present in coal, fly ash and cement. Thus it is very important to carry out radioactivity measurements in coal, fly ash and cement from the health and hygiene point of view. Samples of coal and fly ash from different thermal power stations in northern India and various fly ash using establishments and commercially available cement samples (O.P.C. and P.P.C.) were collected and analyzed for radon concentration and exhalation rates. For the measurements, alpha sensitive LR-115 type II plastic track detectors were used. The radon concentration varied from 147 Bq/m 3 to 443 Bq/m 3 , the radium concentration varied from 1.5 to 4.5 Bq/kg and radon exhalation rate varied from 11.8 mBq.kg -1 .h -1 to 35.7 mBq.kg -1 .h -1 for mass exhalation rate and from 104.5 mBq.m -2 .h -1 to 314.8 mBq.m -2 .h -1 for surface exhalation rate in coal samples. The radon concentration varied from 214 Bq/m 3 to 590 Bq/m 3 , the radium concentration varied from 1.0 to 2.7 Bq/kg and radon exhalation rate varied from 7.8 mBq.kg -1 .h -1 to 21.6 mBq.kg -1 .h -1 for mass exhalation rate and from 138 mBq m -2 h -1 to 380.6 mBq.m -2 .h -1 for surface exhalation rate in fly ash samples. The radon concentration varied from 157.62 Bq/m 3 to 1810.48 Bq/m 3 , the radium concentration varied from 0.76 Bq/kg to 8.73 Bq/kg and radon exhalation rate varied from 6.07 mBq.kg -1 .hr -1 to 69.81 mBq.kg -1 .hr -1 for mass exhalation rate and from 107.10 mBq.m -2 .hr -1 to 1230.21 mBq.m -2 .hr -1 for surface exhalation rate in different cement samples. The values were found higher in P.P.C. samples than in O.P.C. samples. (authors)

  14. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    Science.gov (United States)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  15. Influence of Cements Containing Calcareous Fly Ash as a Main Component Properties of Fresh Cement Mixtures

    Science.gov (United States)

    Gołaszewski, Jacek; Kostrzanowska-Siedlarz, Aleksandra; Ponikiewski, Tomasz; Miera, Patrycja

    2017-10-01

    The main goal of presented research was to examine usability of cements containing calcareous fly ash (W) from technological point of view. In the paper the results of tests concerning the influence of CEM II and CEM IV cements containing fly ash (W) on rheological properties, air content, setting times and plastic shrinkage of mortars are presented and discussed. Moreover, compatibility of plasticizers with cements containing fly ash (W) was also studied. Additionally, setting time and hydration heat of cements containing calcareous fly ash (W) were determined. In a broader aspect, the research contributes to promulgation of the possibility of using calcareous fly ash (W) in cement and concrete technology, what greatly benefits the environment protection (utilization of waste fly ash). Calcareous fly ash can be used successfully as the main component of cement. Cements produced by blending with processed fly ash or cements produced by interginding are characterized by acceptable technological properties. In respect to CEM I cements, cements containing calcareous fly ash worsen workability, decrease air content, delay setting time of mixtures. Cements with calcareous fly ash show good compatibility with plasticizers.

  16. Comparison of creep of the cement pastes included fly ash

    Directory of Open Access Journals (Sweden)

    Padevět Pavel

    2017-01-01

    Full Text Available The paper is devoted to comparison of creep of cement pastes containing fly ash admixture. The size of creep in time depends on the amount of components of the cement paste. Attention is paid to the content of classical fly ash in cement paste and its impact on the size of creep. The moisture of cement pastes is distinguished because it significantly affects the rheological properties of the material.

  17. Application of sugarcane bagasse ash as a partial cement ...

    African Journals Online (AJOL)

    Sugarcane bagasse ash is a byproduct of sugar factories found after burning sugarcane ... making materials especially cement, resulting in an increase in price. ... advantages can also be exploited by using bagasse ash as a partial cement ... Normal consistency, Setting time, Compressive strength, Water penetration depth.

  18. Radioactive wastes dispersed in stabilized ash cements

    International Nuclear Information System (INIS)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-01-01

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO 2 ) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO 2 to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO 2 to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms

  19. Cementation and solidification of Rocky Flats Plant incinerator ash

    International Nuclear Information System (INIS)

    Phillips, J.A.; Semones, G.B.

    1994-01-01

    Cementation studies on various aqueous waste streams at Rocky Flats have shown this technology to be effective for immobilizing the RCRA constituents in the waste. Cementation is also being evaluated for encapsulation of incinerator ash. Experiments will initially evaluate a surrogate ash waste using a Taguchi experimental design to optimize the cement formulation and waste loading levels for this application. Variables of waste loading, fly ash additions, water/cement ratio, and cement type will be tested at three levels each during the course of this work. Tests will finally be conducted on actual waste using the optimized cement formulation developed from this testing. This progression of tests will evaluate the effectiveness of cement encapsulation for this waste stream without generating any additional wastes

  20. Impact of coal and rice husk ash on the quality and chemistry of cement clinker

    International Nuclear Information System (INIS)

    Nawaz, S.; Kanwal, S.; Rahim, U.; Sheikh, N.; Shahzad, K.

    2012-01-01

    Utilization of rice husk as an alternative fuel for coal is of interest due to its availability in huge quantities in Pakistan and also because its combustion is environmental pollution friendly as it generates much less SOX due to its much lower sulphur content (0.1-0.3%) compared to sulphur content in coals, particularly indeginous coals ranging from 0.6-14.8%. The purpose of present study was to examine the impact of co-firing of rice husk and coal on the quality of cement clinker so as to substitute expensive imported coal with the abundantly available cheaper rice husk to reduce the cost of production of the cement. For this investigation raw feed mix (mixture of limestone, clay, bauxite and laterite in predetermined proportions) used for cement manufacture was mixed with predetermined varying proportions of coal ash and rice husk ash and placed inside a muffle furnace at 1200 degree C - 1500 degree C i-e the temperatures prevailing in the industrial cement kilns, for various periods of time to obtain cement clinker. The quality and chemistry of cement clinker thus produced in the laboratory was experimentally studied to ensure the quality of cement clinker that would be obtained by co-firing of rice husk and coal in different proportions in industrial cement kilns as the coal ash and rice husk ash produced during combustion will get mixed with cement clinker in industrial kilns. The results indicated that there was decrease in the Lime Saturation Factor, Free Lime and Tricalcium Silicate (C3S) content and increase in the Dicalcium Silicate (C2S) content by increasing the rice husk ash and decreasing the coal ash proportion in the clinker. (author)

  1. Viability of Eggshells Ash Affecting the Setting Time of Cement

    OpenAIRE

    Fazeera Ujin; Kamran Shavarebi Ali; Zarina Yasmin Hanur Harith

    2016-01-01

    This research paper reports on the feasibility and viability of eggshells ash and its effects on the water content and setting time of cement. An experiment was carried out to determine the quantity of water required in order to follow standard cement paste of normal consistency in accordance with MS EN 196-3:2007. The eggshells ash passing the 90µm sieve was used in the investigation. Eggshells ash with percentage of 0%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% were constituted to replace the cement....

  2. Study on cement mortar and concrete made with sewage sludge ash.

    Science.gov (United States)

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  3. A review on seashells ash as partial cement replacement

    Science.gov (United States)

    Mohammad, Wan Ahmad Soffian Bin Wan; Hazurina Othman, Nor; Ibrahim, Mohd Haziman Wan; Rahim, Masazurah A.; Shahidan, Shahiron; Rahman, Raha Abd

    2017-11-01

    This review paper emphasis on various sea shells ash such as cockle, clam, oyster, mollusc, periwinkle, snail, and green mussel shell ash as partial cement replacement and its objective is to create sustainable environment and reduce problems of global warming. Cement production give huge impact to environment in every stage of its production. These include air pollution in form of dust and, gases, sound and vibration during quarry crushing and milling. One of the solutions to solve this problem is by using modified cement. The modified cement is a cementitious material that meets or exceeds the Portland cement performance by combining and optimizes the recycle and wasted materials. This will indirectly reduce the use of raw materials and then, become a sustain construction materials. Therefore, the replacement of cement in concrete by various sea shell ash may create tremendous saving of energy and also leads to important environmental benefits. This study includes previous investigation done on the properties of chemical and mechanical such as specific gravity, chemical composition, compressive strength, tensile strength and flexural strength of concrete produced using partial replacement of cement by seashells ash. Results show that the optimum percentage of seashells as cement replacement is between 4 - 5%.

  4. Hydration studies of calcium sulfoaluminate cements blended with fly ash

    Energy Technology Data Exchange (ETDEWEB)

    García-Maté, M.; De la Torre, A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); León-Reina, L. [Servicios Centrales de Apoyo a la Investigación, Universidad de Málaga, 29071 Málaga (Spain); Aranda, M.A.G. [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain); CELLS-Alba synchrotron, Carretera BP 1413, Km. 3.3, E-08290 Cerdanyola, Barcelona (Spain); Santacruz, I., E-mail: isantacruz@uma.es [Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, 29071 Málaga (Spain)

    2013-12-15

    The main objective of this work is to study the hydration and properties of calcium sulfoaluminate cement pastes blended with fly ash (FA) and the corresponding mortars at different hydration ages. Laboratory X-ray powder diffraction, rheological studies, thermal analysis, porosimetry and compressive strength measurements were performed. The analysis of the diffraction data by Rietveld method allowed quantifying crystalline phases and overall amorphous contents. The studied parameters were: i) FA content, 0, 15 and 30 wt.%; and ii) water addition, water-to-CSA mass ratio (w/CSA = 0.50 and 0.65), and water-to-binder mass ratio (w/b = 0.50). Finally, compressive strengths after 6 months of 0 and 15 wt.% FA [w/CSA = 0.50] mortars were similar: 73 ± 2 and 72 ± 3 MPa, respectively. This is justified by the filler effect of the FA as no strong evidences of reactivity of FA with CSA were observed. These results support the partial substitution of CSA cements with FA with the economic and environmental benefits.

  5. The analysis of mechanical properties of non autoclaved aerated concrete with the substitution of fly ash and bottom ash

    Science.gov (United States)

    Karolina, R.; Muhammad, F.

    2018-02-01

    Based on PP. No.85 of 1999 on the management of hazardous and toxic (B3), fly ash and bottom ash wastes are categorized into B3 waste because there are heavy metal oxide contents that can pollute the environment. One form of environmental rescue that can be applied is to utilize waste fly ash and bottom ash in the manufacture of concrete. In this research, fly ash and bottom ash waste are used as substitution of cement and fine aggregate to make lightweight concrete. The purpose of this research is to know the mechanical properties of non-autoclaved aerated lightweight concrete (NAAC) with FA and BA substitution to cement and fine aggregate which is expected to improve the quality of concrete. The NAAC lightweight concrete in this study is divided into 4 categories: normal NAAC lightweight concrete, NAAC lightweight NAAC substituted concrete with FA, NAAC lightweight concrete substituted with BA, and NAAC combined light weight from FA and BA with variations of 10%, 20% And 30%. The test specimen used in cylindrical shape, which was tested at the age of 28 days, amounted to 90 pieces and consisted of 10 variations. Each variation amounted to 9 samples. Based on the test results with FA and BA substitutions of 10%, 20%, and 30%, the highest compressive strength was achieved in samples with FA 30% of 12.687 MPa, maximum tensile strength achieved in samples with FA 30% of 1,540 MPa, The highest absorption was achieved in normal NAAC of 5.66%. Based on the weight of the contents of all samples, samples can be categorized in lightweight concrete, since the weight of the contents is less than 1900 kg / m3.

  6. Effect of mechanical activation of fly ash added to Moroccan Portland cement

    Directory of Open Access Journals (Sweden)

    Ez-zaki H.

    2018-01-01

    This study aims to investigate the influence of grinding fly ash on the physico-chemical and mechanical properties of fly ash blended CPJ45 cement. The addition of the fly ash particles to the grinder leads respectively to the breakage of the particles and to reduce the agglomeration effect in the balls of cement grinder. Fly ash milling was found to improve particles fineness, and increase the silica and alumina content in the cement. Furthermore, milled fly ash blended cements show higher compressive strength compared to unmilled fly ash blended cements, due to improved fly ash reactivity through their mechanical activation.

  7. Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

    OpenAIRE

    T. D. Gunneswara Rao; Mudimby Andal

    2014-01-01

    Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conven...

  8. Mercury release from fly ashes and hydrated fly ash cement pastes

    Science.gov (United States)

    Du, Wen; Zhang, Chao-yang; Kong, Xiang-ming; Zhuo, Yu-qun; Zhu, Zhen-wu

    2018-04-01

    The large-scale usage of fly ash in cement and concrete introduces mercury (Hg) into concrete structures and a risk of secondary emission of Hg from the structures during long-term service was evaluated. Three fly ashes were collected from coal-fired power plants and three blend cements were prepared by mixing Ordinary Portland cement (OPC) with the same amount of fly ash. The releasing behaviors of Hg0 from the fly ash and the powdered hydrated cement pastes (HCP) were measured by a self-developed Hg measurement system, where an air-blowing part and Hg collection part were involved. The Hg release of fly ashes at room temperature varied from 25.84 to 39.69 ng/g fly ash during 90-days period of air-blowing experiment. In contrast, the Hg release of the HCPs were in a range of 8.51-18.48 ng/g HCP. It is found that the Hg release ratios of HCPs were almost the same as those of the pure fly ashes, suggesting that the hydration products of the HCP have little immobilization effect on Hg0. Increasing temperature and moisture content markedly promote the Hg release.

  9. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    Substitution of strontium for calcium in glass ionomer cements (Part 1): Glass synthesis and characterisation, and the effects on the cement handling variables and ... acid to form glass ionomer cements, whose properties were investigated at different time points: working and setting times were determined by rheometry; and, ...

  10. Radon exhalation study from cement, cement slabs and concrete slabs with variation in fly ash

    International Nuclear Information System (INIS)

    Sharma, Nisha; Singh, Jaspal

    2012-01-01

    Fly ash is a waste product from coal-fired power plants. Fly ash has become a subject of world-wide interest in recent years because of its diverse uses, e.g. in the manufacture of concrete for building purposes, for the filling of underground cavities, or as a component of building material. The fly ash may contain enhanced levels of the natural radionuclides in the uranium and thorium series and by using the fly ash in building materials, the radiation levels in houses may thus be technologically enhanced. Because of its relatively high radionuclide contents (including 226 Ra), fly ash may, however, present a potential hazard to the population through its radon emanation, which would be highly undesirable. Since fly ash is frequently used as a building material, the idea of the experiment was to mix fly ash in different proportions in the cement in the powder form, cemented slabs and concrete slabs to study the combined behaviors. Alpha sensitive LR-115 type II plastic track detector, commonly known as Solid State Nuclear Track Detectors (SSNTDs), were used to measure the radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The chemical etching in NaOH at 60°C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon concentrations were determined. In case of cement in the powder form and in cemented slab, starting from the pure cement, fly ash was added up to 70% by weight. In this case the radon exhalation rate has increased by addition of fly ash in the cement and in case of concrete slabs by the addition of fly ash in the cement the radon exhalation increases up to 60% and then decreases. Therefore, on the basis of our investigations we concluded that in general radon exhalation rate increases with the addition of fly ash. (author)

  11. Durability of incinerator ash waste encapsulated in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Pietrzak, R.; Colombo, P.

    1991-01-01

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs

  12. The effects of cement-based and cement-ash-based mortar slabs on indoor air quality

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Wargocki, Pawel

    2018-01-01

    The effects of emissions from cement-based and cement-ash-based mortar slabs were studied. In the latter, 30% of the cement content had been replaced by sewage sludge ash. They were tested singly and together with either carpet or linoleum. The air exhausted from the chambers was assessed by means...... of odour intensity and chemical characterization of emissions. Odour intensity increased with the increased exposed area of the slabs. It did not differ significantly between cement-based or cement-ash-based mortar and neither did the chemical composition of the exhaust air. A significant sink effect...

  13. Effect of Rice Husk Ash on Cement Stabilized Laterite

    Directory of Open Access Journals (Sweden)

    Musa ALHASSAN

    2007-09-01

    Full Text Available Laterite soil collected from Maikunkele area of Minna, classified as an A-7-6 on AASHTO classification, was stabilized with 2-8% cement by weight of the dry soil. Using British Standard Light (BSL compaction energy, the effect of Rice Husk Ash (RHA on the soil was investigated with respect to compaction characteristics, California Bearing Ratio (CBR and Unconfined Compressive Strength (UCS tests. Results obtained, indicate a general decrease in Maximum Dry Density (MDD and increase in Optimum Moisture Content (OMC, all with increase in RHA Content (2-8% at specified cement contents. There was also a tremendous improvement in the CBR and UCS with increase in the RHA content at specified cement contents to their peak values at between 4-6% RHA. The UCS values also improved with curing age. This indicates the potentials of using 4-6% RHA admixed with less cement contents for laterite soil stabilization.

  14. Effects of the addition of oil shale ash and coal ash on physic-chemical properties of CPJ45 cement

    Directory of Open Access Journals (Sweden)

    Nabih K.

    2014-04-01

    Full Text Available We focused our research on recycling industrial wastes, fly ash (F.A, bottom ash (B.A and oil shale ash (S.A in cement production. The study concerns physico-chemical characterization of these products and the influence of their addition on the mechanical proprieties of the CPJ45 cement. XRF allowed us to rank the three additives used according to their contents on major oxides. Coal ashes belong to the class F, and thus possess poozzolanic properties and oil shale ash belongs to the class C and possesses hydraulic and poozolanic properties. The crystalline phases constituting each ash were analysed by XRD. We observe in bottom ash the presence of quartz and mullite. The same crystals are found in fly ash with hematite and magnetite. Oil shale ash is composed of quartz, anhydrite, gehlenite, wollastonite and periclase. The microstructures of fly ash and bottom ash were studied using SEM. The bottom ash was composed respectively of fine particles that are generally irregularly shaped, their dimensions are between 5 and 28μm and of big particles(300 μm. The EDX analysis coupled with an electronic microscope provided some information about the major elements that constitute our samples. The dehydrations of anhydrous and three days hydrated cement were examined by DSC. For hydrated cements we noticed endothermic peaks related to the dehydration of CSH, CH and decomposition of carbonates. The study of the mechanical properties of CPJ45 cement by adding different proportions of fly ash, bottom ash and oil shale ash helped clarifying the percentage of ash that leaded to improve the 28 days mechanical strength. The results show that the cements studied have their maximum mechanical resistance with the addition at 7% of fly ash or 10% of oil shale ash.

  15. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    Science.gov (United States)

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  16. TECHNOLOGY AND EFFICIENCY OF PEAT ASH USAGE IN CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    G. D. Liakhevich

    2015-01-01

    Full Text Available One of the main ways to improve physical and mechanical properties of cement concrete is an introduction of ash obtained due to burning of fossil fuels into concrete mix. The concrete mixes with ash are characterized by high cohesion, less water gain and disintegration. At the same time the concrete has high strength, density, water resistance, resistance to sulfate corrosion. The aim of this paper is to explore the possibility to use peat ash and slag of peat enterprises of the Republic of Belarus in the concrete for improvement of its physical and mechanical properties and characteristics of peat ash, slag, micro-silica, cement, superplasticizing agent. Compositions and technology for preparation of concrete mixes have been developed and concrete samples have been have been fabricated and tested in the paper. It has been shown that the concrete containing ash, slag obtained due to burning of peat in the industrial installations of the Usiazhsky and Lidsky Peat Briquette Plants and also MK-85-grade micro-silica NSPKSAUsF-1-grade superplasticizing agent have concrete tensile strength within 78–134 MPa under axial compression and 53 MPa – for the control composition. This index is 1.5–2.5 times more than for the sample containing no additives.The usage of peat ash, slag together with MK-85-grade micro-silica and NSPKSAUsF-1-grade superplasticizing agent for fabrication of concrete and reinforced bridge and tunnel structures will provide the following advantages: reduction of cross-sectional area of structures while maintaining their bearing capacity due to higher value of tensile strength in case of axial compression; higher density, waterand gas tightness due to low water cement ratio; high resistance to aggressive environment due to lower content of capillary pores that ensures bridge structure longevity; achievement of environmental and social impacts.

  17. Literature survey on phase composition of hardened cement paste containing fly ash

    International Nuclear Information System (INIS)

    Otsuka, Taku; Yamamoto, Takeshi

    2015-01-01

    The purpose of this literature survey is to collect the knowledge on the effect of fly ash in hardened cement paste and the information about evaluation of physicochemical performance based on phase composition of hardened cement paste. The performance of hardened cement paste containing fly ash is affected by the property of fly ash, hydration of cement and pozzolanic reaction of fly ash. Some properties of fly ash such as density and chemical composition are reflected in phase composition, showing the progress of cement hydration and pozzolanic reaction. Therefore clarification of the relationship of phase composition and performance will lead to appropriate evaluation of the property of fly ash. The amount of pore, chemical shrinkage, pore solution, compressive strength, Young modulus and alkali silica reaction have relations to the phase composition of hardened cement paste. It is considered as future subject to clarify the relationship of phase composition and performance for various properties of fly ash. (author)

  18. Effect of Rice Husk Ash on Cement Stabilized Laterite

    OpenAIRE

    Musa ALHASSAN; Alhaji Mohammed MUSTAPHA

    2007-01-01

    Laterite soil collected from Maikunkele area of Minna, classified as an A-7-6 on AASHTO classification, was stabilized with 2-8% cement by weight of the dry soil. Using British Standard Light (BSL) compaction energy, the effect of Rice Husk Ash (RHA) on the soil was investigated with respect to compaction characteristics, California Bearing Ratio (CBR) and Unconfined Compressive Strength (UCS) tests. Results obtained, indicate a general decrease in Maximum Dry Density (MDD) and increase in Op...

  19. Assessment of aggregates- cement paste border in concretes containing silica fume and fly ash

    Directory of Open Access Journals (Sweden)

    Ali Sademomtazi

    2017-12-01

    Full Text Available The bond between aggregate and cement paste, called the interfacial transition zone (ITZ is an important parameter that effect on the mechanical properties and durability of concrete. Transition zone microstructure and porosity (pores of cement paste or concrete are affected by the type and properties of materials used which evaluated in this research. On the other hand, the use of efficient, low-cost and reliable method is particularly important for evaluating of concrete performance against the chloride ion penetration and its relationships with transition zone as a suitable index to assess the durability. So far, various methods to approach the electrical Indices are presented. In this research, the effect of pozzolanic materials fly ash (10%, 20% and 30% and silica fume (5% and 10% as substitute of cement by weight in binary and ternary mixtures on the fresh and hardened concrete properties were investigated. To determine mechanical properties, the compressive strength, splitting tensile strength and modulus of elasticity tests were performed. Also, water penetration depth, porosity, water sorptivity, specific electrical resistivity, rapid chloride penetration test (RCPT and rapid chloride migration test (RCMT tests were applied to evaluate concrete durability. To examine the border of aggregate and cement paste morphology of concrete specimens, scanning electron microscope images (SEM was used. The fresh concrete results showed that the presence of silica fume in binary and ternary mixtures reduced workability and air content but fly ash increased them. Adding silica fume to mixtures of containing flay ash while increasing mechanical strength reduced the porosity and pores to 18%. The presence of pozzolanic materials in addition to increasing bond quality and uniformity of aggregate-cement matrix border a considerably positive effect on the transport properties of concrete.

  20. Feasibility of backfilling mines using cement kiln dust, fly ash, and cement blends

    OpenAIRE

    Beltagui, Hoda; Sonebi, Mohammed; Maguire, K.; Taylor, Susan

    2018-01-01

    Cement kiln dust (CKD) is an industrial by-product of the cement manufacturing process, the composition of which can vary widely. Recent years of using alternative fuels have resulted in higher chloride and alkali contents within CKDs; as such, this limits the applications in which CKDs can be utilised. Using a CKD containing a high free lime content of 29.5%, it is shown that this CKD is capable of activating pulverized fuel ash (PFA) due to its high alkalinity, which can be utilised in low ...

  1. Vitrified medical wastes bottom ash in cement clinkerization. Microstructural, hydration and leaching characteristics.

    Science.gov (United States)

    Papamarkou, S; Christopoulos, D; Tsakiridis, P E; Bartzas, G; Tsakalakis, K

    2018-04-19

    The present investigation focuses on the utilization of medical wastes incineration bottom ash (MBA), vitrified with soda lime recycled glass (SLRG), as an alternative raw material in cement clinkerization. Bottom ash is recovered from the bottom of the medical wastes incineration chamber, after being cooled down through quenching. It corresponds to 10-15 wt% of the initial medical wastes weight and since it has been classified in the category of hazardous wastes, its safe management has become a major environmental concern worldwide. MBA glasses of various syntheses were initially obtained during the MBA vitrification simultaneously with various amounts of silica scrap (20, 25 and 30 wt% correspondingly). The produced MBA glasses were in turn used for the production of Portland cement clinker, after sintering at 1400 °C, thus substituting traditional raw materials. Both evaluation of vitrification and sintering products was carried out by chemical and mineralogical analyses along with microstructure examination. The final cements were prepared by clinkers co-grinding in a laboratory ball mill with appropriate amounts of gypsum (≈5.0 wt%) and the evaluation of their quality was carried out by determining setting times, standard consistency, expansibility and compressive strength at 2, 7, 28 and 90 days. Finally, the leaching behaviour of the vitrified MBA and hydrated cements, together with the corresponding of the "as received" MBA, was further examined using the standard leaching tests of the Toxicity Characteristic Leaching Procedure (TCLP) and the EN 12457-2. According to the obtained results, the quality of the produced cement clinkers was not affected by the addition of the vitrified MBA in the raw meal, with the trace elements detected in all leachates measured well below the corresponding regulatory limits. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Valorization of used tyres as fuel substitute in cement industry; Valorisation des pneus usages comme combustible de substitution en cimenterie

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    According to the French syndicate of cement industry, more than 350000 t of worn tyres are produced each year in France, among which only 143000 t are reused in retreading, exported as used tyres or valorized in cement industry. The rest is generally tipped or burnt in the open-air. In cement kilns, the organic matters of tyres are completely burnt while the metal belts supply the necessary amount of iron to the cement composition. The combustion of tyres produces no black smoke, no smell and no ash and has no significant influence on the effluents of cement factories: gases are directly filtered in the kiln by the important mass of raw materials which acts as quicklime. In 1997, 31500 t of used tyres were burnt in the seven French cement factories over 34 that use this kind of fuel and represents 1.5% of the total energy needs. This substitution ratio could easily reach 10 to 15% without leading to any additional environmental or technical problem. A project of collection and valorization of used tyres has been developed by the French ministry of environment and aims at completely eliminating tyres tipping since July 1, 2002. In order to illustrate the French policy of tyres valorization, two examples of actions are presented in this paper: the first one is carried out by the Michelin manufacturer in order to facilitate the recycling of civil engineering tyres, and the second is carried out by Ciments d`Origny company at the Rochefort factory where tyres are used as fuel substitutes. (J.S.)

  3. Absorption Characteristics of Cement Combination Concrete Containing Portland Cement, fly ash, and Metakaolin

    Directory of Open Access Journals (Sweden)

    Folagbade S.O.

    2016-03-01

    Full Text Available The resistance to water penetration of cement combination concretes containing Portland cement (PC, fly ash (FA, and metakaolin (MK have been investigated at different water/cement (w/c ratios, 28-day strengths, and depths of water penetration using their material costs and embodied carbon-dioxide (eCO2 contents. Results revealed that, at equal w/c ratio, eCO2 content reduced with increasing content of FA and MK. MK contributed to the 28-day strengths more than FA. Compared with PC, FA reduced cost and increased the depth of water penetration, MK increased cost and reduced the depth of water penetration, and their ternary combinations become beneficial. At equal strengths and levels of resistance to water penetration, most of the cement combination concretes are more environmentally compatible and costlier than PC concrete. Only MK binary cement concretes with 10%MK content or more and ternary cement concretes at a total replacement level of 55% with 10%MK content or more have higher resistance to water penetration than PC concrete.

  4. Wood ash used as partly sand and/or cement replacement in mortar

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Esben Østergaard; Jensen, Pernille Erland

    2016-01-01

    , and the present work reports a characterization of three different WAs. Properties of mortar samples with the WAs used as partly cement and/or sand replacement are reported. Compressive strength development and porosity are the mortar properties in focus. The overall aim of the work is to evaluate the influence...... of the ashes were dry and sampled just after the incineration, whereas one ash had a water content of 15%, because the ash was sprayed with water to avoid dust during ash handling at the incineration plant. Regardless of replacing cement or sand with WAs, the compressive strength decreased compared...... to a reference without ash, however, the decrease was small for two of the ashes. Using the ash with the high LoI resulted in significantly lower compressive strength compared to the other two ashes. The mortar samples with two of the ashes (with low LoI) had qualities, which were very encouraging in order...

  5. Substitution of strontium for calcium in glass ionomer cements (Part ...

    African Journals Online (AJOL)

    Objectives: To investigate the effects of substituting strontium for calcium in fluoroaluminosilicate glass on the mechanical and ion-releasing properties of high-viscosity glass ionomer cements. Design: An exploratory, laboratory-based study. Setting: Dental biomaterials research laboratory, Dental Physical Sciences Unit, ...

  6. Feasibility of backfilling mines using cement kiln dust, fly ash, and cement blends

    Directory of Open Access Journals (Sweden)

    Beltagui H.

    2018-01-01

    Full Text Available Cement kiln dust (CKD is an industrial by-product of the cement manufacturing process, the composition of which can vary widely. Recent years of using alternative fuels have resulted in higher chloride and alkali contents within CKDs; as such, this limits the applications in which CKDs can be utilised. Using a CKD containing a high free lime content of 29.5%, it is shown that this CKD is capable of activating pulverized fuel ash (PFA due to its high alkalinity, which can be utilised in low strength un-reinforced applications. One potential application involves the backfill of mines, reducing the need for continuous maintenance of the mine. This study focuses on the compressive strength achieved by various blends of CKD, PFA, and cement. Samples were hand mixed and compacted in 100 mm x 50 mm diameter cylinders, and unconfined compressive strength measurements taken at 28 and 56 days. The hydration products were assessed through the use of x-ray diffraction and thermogravimetric analysis. Aiming to maximise the use of CKD at a water to binder (w/b ratio of 0.2, it was found that the maximum CKD content possible to achieve the required strength was 90% CKD blended with 10% cement.

  7. Radon exhalation of cementitious materials made with coal fly ash: Part 2 - testing hardened cement-fly ash pastes

    International Nuclear Information System (INIS)

    Kovler, K.; Perevalov, A.; Levit, A.; Steiner, V.; Metzger, L.A.

    2005-01-01

    Increased interest in measuring radionuclides and radon concentrations in fly ash (FA), cement and other components of building products is due to the concern about health hazards of naturally occurring radioactive materials (NORM). The paper focuses on studying the influence of FA on radon exhalation rate (radon flux) from cementitious materials. In the previous part of the paper the state of the art was presented, and the experiments for testing raw materials, Portland cement and coal fly ash, were described. Since the cement and FA have the most critical role in the radon release process relative to other concrete constituents (sand and gravel), and their contribution is dominant in the overall radium content of concrete, tests were carried out on cement paste specimens with different FA contents, 0-60% by weight of the binder (cement+FA). It is found that the dosage of FA in cement paste has a limited influence on radon exhalation rate, if the hardened material is relatively dense. The radon flux of cement-FA pastes is lower than that of pure cement paste: it is about ∼3 mBq m -2 s -1 for cement-FA pastes with FA content as high as 960 kg m -3

  8. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-09-15

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  9. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.; Maslehuddin, M.; Nagadi, M.M.; Al-Amoudi, O.S.B.; Khateeb-ur-Rehman,; Raashid, M.

    2009-01-01

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  10. Stabilisation of clayey soils with high calcium fly ash and cement

    Energy Technology Data Exchange (ETDEWEB)

    S. Kolias; V. Kasselouri-Rigopoulou; A. Karahalios [National Technical University of Athens, Athens (Greece)

    2005-02-01

    The effectiveness of using high calcium fly ash and cement in stabilising fine-grained clayey soils (CL,CH) was investigated in the laboratory. Strength tests in uniaxial compression, in indirect (splitting) tension and flexure were carried out on samples to which various percentages of fly ash and cement had been added. Modulus of elasticity was determined at 90 days with different types of load application and 90-day soaked CBR values are also reported. Pavement structures incorporating subgrades improved by in situ stabilisation with fly ash and cement were analyzed for construction traffic and for operating traffic. These pavements are compared with conventional flexible pavements without improved subgrades and the results clearly show the technical benefits of stabilising clayey soils with fly ash and cement. In addition TG-SDTA and XRD tests were carried out on certain samples in order to study the hydraulic compounds, which were formed.

  11. Geo-environmental application of municipal solid waste incinerator ash stabilized with cement

    Directory of Open Access Journals (Sweden)

    Davinder Singh

    2017-04-01

    Full Text Available The behavior of soluble salts contained in the municipal solid waste incinerator (MSWI ash significantly affects the strength development and hardening reaction when stabilized with cement. The present study focuses on the compaction and strength behavior of mixed specimens of cement and MSWI ash. A series of indices such as unconfined compressive strength, split tensile strength, California bearing ratio (CBR and pH value was examined. Prior to this, the specimens were cured for 7 d, 14 d, and 28 d. The test results depict that the maximum dry density (MDD decreases and the optimum moisture content (OMC increases with the addition of cement. The test results also reveal that the cement increases the strength of the mixed specimens. Thus, the combination of MSWI ash and cement can be used as a lightweight filling material in different structures like embankment and road construction.

  12. Hydraulic activity of belite cement from class C coal fly ash. Effect of curing and admixtures

    OpenAIRE

    Goñi, S., Guerrero, A.

    2006-01-01

    [EN] The effect of curing method and a water-reducing additive on the hydraulic activity of high lime content (ASTM type C) fly ash belite cement (FABC-2-W) is reported. A class C fly ash was subjected to hydrothermal treatment and subsequent calcination to synthesize FABC. Hydraulic activity was evaluated in the cement paste over 180 days from the physically bound water content as determined by thermogravimetric analysis and the degree of hydration, in turn found with...

  13. Permeability Characteristics of Compacted and Stabilized Clay with Cement, Peat Ash and Silica Sand

    OpenAIRE

    Seyed Esmaeil Mousavi; Leong Sing Wong

    2016-01-01

    The present paper investigates the influence of stabilization with cement, peat ash, and silica sand on permeability coefficient (kv) of compacted clay, using a novel approach to stabilize the clay with peat ash as a supplementary material of cement in the compacted and stabilized soil. In order to assess the mentioned influence, test specimens of both untreated and stabilized soil have been tested in the laboratory so that their permeability could be evaluated. Falling head and one dimension...

  14. STUDY ON POZZOLANA ACTIVITY OF WHEAT STRAW ASH AS POTENTIAL ADMIXTURE FOR BLENDED CEMENTS

    Directory of Open Access Journals (Sweden)

    Ondrej Jankovsky

    2017-09-01

    Full Text Available Wheat straw ash coming from combustion of packed wheat straw was studied as a potential pozzolana active admixture for blended cements. X-Ray fluorescence, X-Ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy were used to examine chemical and mineralogical composition, morphology and elemental distribution of a raw untreated ash. Due to high carbon content, the wheat straw ash was thermally treated for 2 hours at 700 °C and analyzed again using the same analytic techniques. Thermal treatment process was monitored using simultaneous thermal analysis and Fourier Transform infrared spectroscopy. The pozzolana activity was assessed using Chapelle and Frattini tests. In the next step, wheat straw ash was used for preparation of blended cement pastes. The content of ash in the blends was 10, 15, and 20% by mass. For the hardened pastes, basic physical properties, mechanical parameters, and pore size distribution were measured. For fresh past mixes, workability was tested. Moreover, leachability of chlorides, nitrates, sulfates and alkalis from paste samples was studied. The experimentally obtained data pointed to the high pozzolana activity of wheat straw ash and sufficient mechanical properties of cement pastes with the ash content up to 20 mass% of cement. In summary, the analyzed waste product from biomass combustion was found to be applicable as a part of cement-based blended binder providing economic and environmental benefits for concrete industry.

  15. Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars

    Directory of Open Access Journals (Sweden)

    Vanissorn Vimonsatit

    2015-12-01

    Full Text Available In this paper, the influence of fly ash fineness on water requirement and shrinkage of blended cement mortar was studied. The results indicate that the water requirement and shrinkage characteristic of the blended cement mortar are dependent on fly ash fineness and replacement level. The use of coarse fly ash slightly reduces the water requirement but greatly reduced the drying and the autogenous shrinkage of the blended cement mortars and the reduction is more with an increase in the fly ash replacement level. The finer fly ashes further reduce the water requirement, but increase the drying and the autogenous shrinkages as compared with coarser fly ash. The incorporation of superplasticizer drastically reduces the water requirement, but the effect on the drying and autogenous shrinkages of the normal Portland cement mortar is small. However, for the fly ash mortar, the use of superplasticizer results in a decrease in drying shrinkage and in a substantial increase in the autogenous shrinkage particularly for the fine fly ash at a high replacement level.

  16. Permeability Characteristics of Compacted and Stabilized Clay with Cement, Peat Ash and Silica Sand

    Directory of Open Access Journals (Sweden)

    Seyed Esmaeil Mousavi

    2016-06-01

    Full Text Available The present paper investigates the influence of stabilization with cement, peat ash, and silica sand on permeability coefficient (kv of compacted clay, using a novel approach to stabilize the clay with peat ash as a supplementary material of cement in the compacted and stabilized soil. In order to assess the mentioned influence, test specimens of both untreated and stabilized soil have been tested in the laboratory so that their permeability could be evaluated. Falling head and one dimensional consolidation tests of laboratory permeability were performed on the clay specimens and the chemical compositions of the materials as well as microstructure of the stabilized soil with 18% cement, 2% peat ash, and 5% silica sand were investigated, using X-ray fluorescence and scanning electron microscopy respectively. Results show that for soil stabilization with up to 8% cement content (of the dry weight of the soil, the average value of coefficient of permeability (kv is very close to that of untreated soil, whereas the kv value decreases drastically for 18% cement under identical void ratio conditions. It is further revealed that addition of 18% cement, 2% peat ash, and 5% silica sand had decreased the coefficient of permeability by almost 2.2 folds after 24 h, while about 1.7 folds increase was observed in coefficient of permeability once 13.5% of cement, 1.5% of peat ash, and 20% of silica sand were added. The partial replacement of cement with the 2% peat ash can reduce the consumption of cement for soil stabilization.

  17. Cement Stabilized Soil Blocks Admixed with Sugarcane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    Jijo James

    2016-01-01

    Full Text Available The study involved investigating the performance of ordinary Portland cement (OPC stabilized soil blocks amended with sugarcane bagasse ash (SBA. Locally available soil was tested for its properties and characterized as clay of medium plasticity. This soil was stabilized using 4% and 10% OPC for manufacture of blocks of size 19 cm × 9 cm × 9 cm. The blocks were admixed with 4%, 6%, and 8% SBA by weight of dry soil during casting, with plain OPC stabilized blocks acting as control. All blocks were cast to one target density and water content followed by moist curing for a period of 28 days. They were then subjected to compressive strength, water absorption, and efflorescence tests in accordance with Bureau of Indian standards (BIS specifications. The results of the tests indicated that OPC stabilization resulted in blocks that met the specifications of BIS. Addition of SBA increased the compressive strength of the blocks and slightly increased the water absorption but still met the standard requirement of BIS code. It is concluded that addition of SBA to OPC in stabilized block manufacture was capable of producing stabilized blocks at reduced OPC content that met the minimum required standards.

  18. Influence of Rice Husk Ash and Clay in Stabilization of Silty Soils Using Cement

    Directory of Open Access Journals (Sweden)

    Widjajakusuma Jack

    2017-01-01

    Full Text Available Soil stabilization is needed to enhance the strength of the soil. One popular method of soil stabilization is using cement. Due to the environmental issue, it is a need to reduce the application of cement and/or to replace partially the cement with other environmental-friendly compounds. One of these compounds is rice husk ash (RSA, which is agricultural wastes. The objective of this paper is to study the influence of RSA and clay as partial replacement to cement in soil stabilization of silt soil with high plasticity (MH using cement. The cement used was ordinary Portland cement, while the RHA was obtained by burning rice husk at temperature of 250°C. The MH soil is stabilized with 4% cement, 4% cement and 3% rice husk ash and 4% cement, 3 % RHA and 3 % clay. The various tests were conducted on the pure and stabilized soils. Results have indicated that application of 4% cement, 3 % RHA and 3 % clay as silt soil stabilization is more favorable in increasing soil strength and reducing brittle behaviour of soil.

  19. Recycling of bagasse ash in cement manufacturing and its impact on clinker potential and environmental pollution

    International Nuclear Information System (INIS)

    Amin, N.U.; Ali, K.

    2009-01-01

    In this investigation bagasse ash from sugar mills of North West Frontier Province (NWFP) has been used in the raw mix designing for high strength Portland cement as a raw material and subjected to clinkerization and cement formation. Different parameters of the resulting clinker and cement were studied and compared with the British and Pakistan standard specification. 5% bagasse ash was found as the optimal limit to be blended and pulverized with other raw material prior to clinkerization which decreased the emission of carbon dioxide to the environment up to 1.73%. Moreover it replaced 5% clay from the raw meal. (author)

  20. Leaching behavior of harmful components from cement solidities of fluidized-bed coal ash

    Energy Technology Data Exchange (ETDEWEB)

    Baba, T.; Fukuoka, H.; Shigemoto, N. [Fuji Clean Co., Kagawa (Japan)

    2008-07-15

    Solidifies of fluidized-bed fly ash with slag cement were prepared by hydrothermal treatment after adding gypsum, Na3PO{sub 4}, or Al2(SO{sub 4}){sub 3}. XRD analysis of the solidifies was performed and leaching behavior of Pb and F from the solidities was investigated. The fly ash-cement and fly ash-cement-gypsum solidifies showed rather high leaching concentration of F and Pb. The F leaching was explained by solubility products of a Ca(OH){sub 2} CaF2 system. The Pb leaching concentrations roughly agreed with the theoretical curve for hydroxo complexes of Pb, showing a strong dependence on pH. Addition of Na3PO{sub 4} and Al2(SO{sub 4}){sub 3}, to cement solidities gave katoite and aluminium phosphate, and ettringite, respectively, and these solidities showed lower leaching concentrations of F and Pb than the fly ash-cement and fly ash-cement-gypsum solidifies. Capture of F and Pb in crystalline components such as ettringite probably accounts for such leaching suppression.

  1. Properies of binder systems containing cement, fly ash, and limestone powder

    Directory of Open Access Journals (Sweden)

    Krittiya Kaewmanee

    2014-10-01

    Full Text Available Fly ash and limestone powder are two major widely available cement replacing materials in Thailand. However, the current utilization of these materials is still not optimized due to limited information on properties of multi-binder systems. This paper reports on the mechanical and durability properties of mixtures containing cement, fly ash, and limestone powder as single, binary, and ternary binder systems. The results showed that a single binder system consisting of only cement gave the best carbonation resistance. A binary binder system with fly ash exhibited superior performances in long-term compressive strength and many durability properties except carbonation and magnesium sulfate resistances, while early compressive strength of a binary binder system with limestone powder was excellent. The ternary binder system, taking the most benefit of selective cement replacing materials, yielded, though not the best, satisfactory performances in almost all properties. Thus, the optimization of binders can be achieved through a multi-binder system.

  2. Microstructure Development and Transport Properties of Portland Cement-fly Ash Binary Systems : In view of service life predictions

    NARCIS (Netherlands)

    Yu, Z.

    2015-01-01

    Fly ash is a by-product of burning coal in electric power generating plants. It is commonly known that owing to its pozzolanic properties fly ash is widely used as a partial replacement for Portland cement in concrete. The use of fly ash in concrete not only reduces the landfill costs of fly ash,

  3. Effect of amorphous silica ash used as a partial replacement for cement on the compressive and flexural strengths cement mortar.

    Science.gov (United States)

    Usman, Aliyu; Ibrahim, Muhammad B.; Bala, Nura

    2018-04-01

    This research is aimed at investigating the effect of using amorphous silica ash (ASA) obtained from rice husk as a partial replacement of ordinary Portland cement (OPC) on the compressive and flexural strength of mortar. ASA was used in partial replacement of ordinary Portland cement in the following percentages 2.5 percent, 5 percent, 7.5 percent and 10 percent. These partial replacements were used to produce Cement-ASA mortar. ASA was found to contain all major chemical compounds found in cement with the exception of alumina, which are SiO2 (91.5%), CaO (2.84%), Fe2O3 (1.96%), and loss on ignition (LOI) was found to be 9.18%. It also contains other minor oxides found in cement. The test on hardened mortar were destructive in nature which include flexural strength test on prismatic beam (40mm x 40mm x 160mm) and compressive strength test on the cube size (40mm x 40mm, by using the auxiliary steel plates) at 2,7,14 and 28 days curing. The Cement-ASA mortar flexural and compressive strengths were found to be increasing with curing time and decreases with cement replacement by ASA. It was observed that 5 percent replacement of cement with ASA attained the highest strength for all the curing ages and all the percentage replacements attained the targeted compressive strength of 6N/mm2 for 28 days for the cement mortar

  4. Improvement of Shear Strength of Sandy Soil by Cement Grout with Fly Ash

    Directory of Open Access Journals (Sweden)

    Haifaa Abdulrasool Ali

    2018-12-01

    Full Text Available The effects of the permeation cement grout with fly ash on the sandy soil skeleton were studied in the present work in two phase; first phase the shear strength parameters, and the second phase effect of these grouted materials on volume grouted zone by injection (51 cm³ of slurry in sandy soil placed in steel cylinder model with dimension 15 cm in diameter and 30 cm in height. The soil sample was obtained from Karbala city and it is classified as poorly graded sand (SP according to USCS. The soil samples were improved by cement grout with three percentages weight of water cement ratio (w:c; (0.1w:0.9c, 0.8w:0.2c, and 0.7w:0.3c, while the soil samples were dehydrated for one day curing time. Fly ash class (F was used with cement grout as filler material; it was added to the mixture as a replacement material for cement in weight percentages; 10%, 25% and 40%. According to the results of tests, both shear strength and approximate volume of the effective grouted zone for treated samples soil with cement grout was increased when the water cement ratio decreased. Fly ash with cement grout needs to increase the water demand for the grout mixing to give best results in both shear strength and filling the soil voids.

  5. Influence of Rice Husk Ash and Clay in Stabilization of Silty Soils Using Cement

    OpenAIRE

    Widjajakusuma Jack; Winata Hendo

    2017-01-01

    Soil stabilization is needed to enhance the strength of the soil. One popular method of soil stabilization is using cement. Due to the environmental issue, it is a need to reduce the application of cement and/or to replace partially the cement with other environmental-friendly compounds. One of these compounds is rice husk ash (RSA), which is agricultural wastes. The objective of this paper is to study the influence of RSA and clay as partial replacement to cement in soil stabilization of sil...

  6. Encapsulation of mixed radioactive and hazardous waste contaminated incinerator ash in modified sulfur cement

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    Some of the process waste streams incinerated at various Department of Energy (DOE) facilities contain traces of both low-level radioactive (LLW) and hazardous constituents, thus yielding ash residues that are classified as mixed waste. Work is currently being performed at Brookhaven National Laboratory (BNL) to develop new and innovative materials for encapsulation of DOE mixed wastes including incinerator ash. One such material under investigation is modified sulfur cement, a thermoplastic developed by the US Bureau of Mines. Monolithic waste forms containing as much as 55 wt % incinerator fly ash from Idaho national Engineering Laboratory (INEL) have been formulated with modified sulfur cement, whereas maximum waste loading for this waste in hydraulic cement is 16 wt %. Compressive strength of these waste forms exceeded 27.6 MPa. Wet chemical and solid phase waste characterization analyses performed on this fly ash revealed high concentrations of soluble metal salts including Pb and Cd, identified by the Environmental Protection Agency (EPA) as toxic metals. Leach testing of the ash according to the EPA Toxicity Characteristic Leaching Procedure (TCLP) resulted in concentrations of Pb and Cd above allowable limits. Encapsulation of INEL fly ash in modified sulfur cement with a small quantity of sodium sulfide added to enhance retention of soluble metal salts reduced TCLP leachate concentrations of Pb and Cd well below EPA concentration criteria for delisting as a toxic hazardous waste. 12 refs., 4 figs., 2 tabs

  7. INFLUENCE OF SILICEOUS AND CALCAREOUS FLY-ASHES ON PROPERTIES OF CEMENT MORTARS

    Directory of Open Access Journals (Sweden)

    Gabriela Monika Rutkowska

    2016-09-01

    Full Text Available Care of the environment in accordance with the principles of sustainable development introduces the possibility and need for waste recycling. Construction and building industries have the greatest potential for reuse of waste. The article presents the results of investigations of cement mortars – tests of compressive and tensile strength after 28 and 56 days of curing – for normative mortars and mortars containing fly ashes – calcareous and siliceous ash – in their composition. To make the samples, the Portland cement CEM I 32,5 R, 42,5R and natural aggregate with graining of 0–2 mm were used. Concrete with siliceous and calcareous admixtures was made in six lots where the ash was added in the quantity of 2%, 5%, 10% of the cement mass or the 2%, 5%, 10% of cement was replaced by ashes. After the tests, it was stated that the siliceous fly-ash admixture increases the compressive and bending strength in comparison to the mortars with the calcareous ash admixtures.

  8. Magnesium substitution in brushite cements for enhanced bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cabrejos-Azama, Jatsue, E-mail: jacaza@farm.ucm.es [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); Alkhraisat, Mohammad Hamdan; Rueda, Carmen [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain); Torres, Jesús [Facultad de Ciencias de la salud URJC, Alcorcón, Madrid (Spain); Blanco, Luis [Departamento de Estomatología III, Facultad de Odontología UCM, Madrid (Spain); López-Cabarcos, Enrique [Departamento de Química-Física II, Facultad de Farmacia, UCM, Madrid (Spain)

    2014-10-01

    We have synthesized calcium phosphate cements doped with different amounts of magnesium (Mg-CPC) with a twofold purpose: i) to evaluate in vitro the osteoblast cell response to this material, and ii) to compare the bone regeneration capacity of the doped material with a calcium cement prepared without magnesium (CPC). Cell proliferation and in vivo response increased in the Mg-CPCs in comparison with CPC. The Mg-CPCs have promoted higher new bone formation than the CPC (p < 0.05). The cytocompatibility and histomorfometric analysis performed in the rabbit calvaria showed that the incorporation of magnesium ions in CPC improves osteoblasts proliferation and provides higher new bone formation. The development of a bone substitute with controllable biodegradable properties and improved bone regeneration can be considered a step toward personalized therapy that can adapt to patient needs and clinical situations. - Highlights: • The Mg-CPCs promote higher new bone formation than the CPC. • The incorporation of magnesium ions in CPC improves osteoblasts proliferation. • Mg-CPC is a bone substitute with controllable biodegradable properties. • We suggest that the use of Mg ions could improve the clinical efficiency of CPCs.

  9. Using cement, lignite fly ash and baghouse filter waste for solidification of chromium electroplating treatment sludge

    Directory of Open Access Journals (Sweden)

    Wantawin, C.

    2004-02-01

    Full Text Available The objective of the study is to use baghouse filter waste as a binder mixed with cement and lignite fly ash to solidify sludge from chromium electroplating wastewater treatment. To save cost of solidification, reducing cement in binder and increasing sludge in the cube were focused on. Minimum percent cement in binder of 20 for solidification of chromium sludge was found when controlling lignite fly ash to baghouse filter waste at the ratio of 30:70, sludge to binder ratio of 0.5, water to mixer ratio of 0.3 and curing time of 7 days. Increase of sludge to binder ratio from 0.5 to 0.75 and 1 resulted in increase in the minimum percent cement in binder up to 30 percent in both ratios. With the minimum percent cement in binder, the calculated cement to sludge ratios for samples with sludge to binder ratios of 0.5, 0.75 and 1 were 0.4, 0.4 and 0.3 respectively. Leaching chromium and compressive strength of the samples with these ratios could achieve the solidified waste standard by the Ministry of Industry. For solidification of chromium sludge at sludge to binder ratio of 1, the lowest cost binder ratio of cement to lignite fly ash and baghouse filter waste in this study was 30:21:49. The cost of binder in this ratio was 718 baht per ton dry sludge.

  10. Influence of silica fume and fly ash on hydration, microstructure and strength of cement based mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Kaimao

    1992-10-01

    The influence of fly ash and silica fume on the hydration, microstructure and strength of cement-based mixtures was investigated. A literature review of the hydration processes, compressive strength development, and microstructure of Portland cement is presented, followed by description of materials and specimens preparation and experimental methodology. It was found that silica fume retards cement hydration at low water/concrete ratios. It reduces calcium hydroxide significantly and increases the amount of hydrates at early ages. Fly ash retards hydration more significantly at high water/concrete ratios than at low ratios. The combination of silica fume and fly ash further retards hydration at one day. Silica fume dominates the reaction with calcium hydroxide. Silica fume significantly increases early strength of mortars and concrete, while fly ash reduces early strength. Silica fume can substantially increase strength of fly ash mortar and concrete after 7 days. Silica fume refines pores in the range 100-500 A, while fly ash mortars exhibit gradual pore refinement as hydration proceeds. Silica fume dominates the pore refinement if used with fly ash. 89 refs., 74 figs., 16 tabs.

  11. Properties of cement-fly ash grout admixed with bentonite, silica fume, or organic fiber

    International Nuclear Information System (INIS)

    Huang, W.H.

    1997-01-01

    A detailed laboratory study was conducted to investigate the properties of cement-fly ash grout mixtures as barriers for isolation of hazardous and low-level radioactive wastes. In the grout studied, fly ash was used to replace 30 percent by mass of cement. Three additives including bentonite, silica fume, and polypropylene fiber were used individually in the grout mixes to improve the properties of the grouts in different aspects. The flowability, bleeding, and setting time of freshly mixed grouts were determined; and the unconfined compressive strength, pore size distribution, and water permeability were determined for hardened grouts at various curing durations up to 120 days. Finally, the durability of cement-fly ash grouts was carefully examined in terms of the changes in their physical properties after different levels of exposure to sulfate attack and wet-dry cycles

  12. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash

    International Nuclear Information System (INIS)

    De Weerdt, K.; Haha, M. Ben; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B.

    2011-01-01

    The effect of minor additions of limestone powder on the properties of fly ash blended cements was investigated in this study using isothermal calorimetry, thermogravimetry (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques, and pore solution analysis. The presence of limestone powder led to the formation of hemi- and monocarbonate and to a stabilisation of ettringite compared to the limestone-free cements, where a part of the ettringite converted to monosulphate. Thus, the presence of 5% of limestone led to an increase of the volume of the hydrates, as visible in the increase in chemical shrinkage, and an increase in compressive strength. This effect was amplified for the fly ash/limestone blended cements due to the additional alumina provided by the fly ash reaction.

  13. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    Science.gov (United States)

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22

  14. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    Science.gov (United States)

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  15. Mössbauer, XRD, and Complex Thermal Analysis of the Hydration of Cement with Fly Ash

    Directory of Open Access Journals (Sweden)

    Vili Lilkov

    2013-01-01

    Full Text Available Hydration of cement with and without fly ash is studied with Mössbauer spectroscopy, XRD, and thermal analysis. Iron in cement is present as Fe3+-ions and occupies two octahedral positions, with close isomer shifts and quadrupole splittings. Iron in fly ash is present as Fe2+ and Fe3+, and the Mössbauer spectra display three doublets—two for Fe3+ in octahedral coordination and one for Fe2+. A third doublet was registered in the hydrating plain cement pastes after the 5th day, due to Fe3+ in tetrahedral coordination in the structure of the newly formed monosulphate aluminate. In cement pastes with fly ash, the doublet of tetrahedral iron is formed earlier because the quantity of ettringite and portlandite is low and more monosulphate crystallizes. No Fe(OH3 phase forms during hydration of C4AF. The fly ash displays pozzolanic properties, which lead to lowering of the portlandite quantity in the cement mixtures and increasing of the high temperature products.

  16. Radon induced radiological impact of coal, fly ash and cement samples

    International Nuclear Information System (INIS)

    Kant, K.; Chauhan, R.P.; Sharma, G.S.; Chakravarti, S.K.

    2001-01-01

    Coal and its by-product fly ash are technologically important materials being used for power generation and in the manufacture of bricks, sheets, cement, land-filling, etc., respectively. Increased interest in measuring radon concentration in coal, fly ash and cement is due to its health hazards and environmental pollution. As the presence of radon in the environment (indoor and outdoor), soil, ground water, oil and gas deposits contributes the largest fraction of the natural radiation dose to populations, tracking its concentration is thus of paramount importance for radiological protection. Samples of coal and fly ash were collected from different thermal power stations in northern India and cement samples from National Council for Cement and Building Materials, Ballabgarh (Haryana), India and were analysed for radon concentration. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Based upon the available data, the annual effective dose and the lifetime fatality risk factors have been calculated. The radon concentration from coal samples varied from 433 ± 28 Bqm -3 to 2086 ± 28 Bqm -3 . The radon concentration from fly ash samples varied from 748 ± 28 Bqm -3 to 1417 ± 111 Bqm -3 and from 158 Bqm -3 to 1810 Bqm -3 in cement samples, with an average of 624 ± 169 Bqm -3 . (author)

  17. Analysis of cement solidified product and ash samples and preparation of a reference material

    International Nuclear Information System (INIS)

    Ishimori, Ken-ichiro; Haraga, Tomoko; Shimada, Asako; Kameo, Yutaka; Takahashi, Kuniaki

    2010-08-01

    Simple and rapid analytical methods for radionuclides in low-level radioactive waste have been developed by the present authors. The methods were applied to simulated solidified products and actual metal wastes to confirm their usefulness. The results were summarized as analytical guide lines. In the present work, cement solidified product and ash waste were analyzed followed by the analytical guide lines and subjects were picked up and solved for the application of the analytical guide lines to these wastes. Pulverization and homogenization method for ash waste was improved to prevent a contamination since the radioactivity concentrations of the ash samples were relatively high. Pre-treatment method was altered for the cement solidified product and ash samples taking account for their high concentration of Ca. Newly, an analytical method was also developed to measure 129 I with a dynamic reaction cell inductively coupled plasma mass spectrometer. In the analytical test based on the improved guide lines, gamma-ray emitting nuclides, 60 Co and 137 Cs, were measured to estimate the radioactivity of the other alpha and beta-ray emitting nuclides. The radionuclides assumed detectable, 3 H, 14 C, 36 Cl, 63 Ni, 90 Sr, and alpha-ray emitting nuclides, were analyzed with the improved analytical guide lines and their applicability for cement solidified product and ash samples were confirmed. Additionally a cement solidified product sample was evaluated in terms of the homogeneity and the radioactivity concentrations in order to prepare a reference material for radiochemical analysis. (author)

  18. Elution behavior of heavy metals from cement solidified products of incinerated ash waste - 59102

    International Nuclear Information System (INIS)

    Meguro, Yoshihiro; Kawato, Yoshimi; Nakayama, Takuya; Tomioka, Osamu; Mitsuda, Motoyuki

    2012-01-01

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose radioactive incinerated ash waste. In order to bury the solidified product, it is required that elution of hazardous heavy metals included in the ash from the solidified products is inhibited. In this study, the elution behavior of the heavy metals from the synthetic solidified products, which included Pb(II), Cd(II), and Cr(VI) and were prepared using ordinary portland cement (OPC), blast furnace slag cement (BFS), or a cement material that showed low alkalinity (LA-Cement), was investigated. Several chemicals and materials were added as additive agents to prevent the elution of the heavy metals. When OPC was used, Cd elution was inhibited, but Pb and Cr were not enough even using the additive agent examined. FeSO 4 and Na 2 S additive agents worked effective to inhibit elution of Cr. When BFS was used, the elution of Pb, Cd and Cr was inhibited for the all products prepared. In the case of LA-Cement, the elution of Pb and Cd was inhibited for the all products, but only the product that was added FeSO 4 showed good result of the elution of Cr. (authors)

  19. Application of washed MSWI fly ash in cement composites: long-term environmental impacts.

    Science.gov (United States)

    Yang, Zhenzhou; Tian, Sicong; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2018-04-01

    In the present study, long-term environmental impacts of compact and ground cement composites, in which 30 wt.% of cement was replaced by washed municipal solid wastes incineration (MSWI) fly ash, were investigated for use in building industry. Consecutive leaching tests over a time span of 180 days were performed in acid water, deionized water, and saline water, respectively, with the accumulative concentration of different elements determined in the leachate. Different leaching behaviors are observed among different potential toxic elements (PTEs). For instance, higher concentrations of V in the leachate were observed from the compact cement composites than those from the ground ones. The concentration of Ba in the leachate increased with the decrease of particle size of the cement composites, and an initial increase in the leaching efficiency of Sn was followed by a clear decline with the leaching time. In addition, kinetic study revealed that the leaching behaviors of potential toxic elements follow a second-order model. The results demonstrated that the addition of washed MSWI fly ash into cement can contribute to the attrition resistance, indicating that the washed MSWI fly ash could be a promising alternative for cement as supplementary building materials.

  20. Optimization and characterization of cement products incorporating ashes from radwaste incineration

    International Nuclear Information System (INIS)

    Donato, A.; Pace, A.; Ricci, G.

    1989-01-01

    The incineration is presently condidered a very good way to obtain strong volume reduction of intermediate and low activity solid radwastes obtaining at the same time a product apparently easy to be conditioned. In some cases nevertheless the ash solidification by cementation can give in the practice some problems. In this work the optimization of the cementation of two ash types named Nust 1 and Nust 2 has been studied. The Nust 1 ash come from the incineration of the exhausted ion exchange resins already conditioned in urea-formaldehyde. The Nust 2 ash comes from the incineration of the same materials as the Nust 1 mixed with ordinary nuclear power plant solid radwastes. Both ashes have been produced from wastes stored at the Caorso (Italy) Nuclear Power Plant. The two ash types have been characterized by a series of physico-chemical analysis whose results are reported as well as the results of the preliminary tests performed on the products obtained from their cementation

  1. Development of a Zero-Cement Binder Using Slag, Fly Ash, and Rice Husk Ash with Chemical Activator

    Directory of Open Access Journals (Sweden)

    M. R. Karim

    2015-01-01

    Full Text Available The increasing demand and consumption of cement have necessitated the use of slag, fly ash, rice husk ash (RHA, and so forth as a supplement of cement in concrete construction. The aim of the study is to develop a zero-cement binder (Z-Cem using slag, fly ash, and RHA combined with chemical activator. NaOH, Ca(OH2, and KOH were used in varying weights and molar concentrations. Z-Cem was tested for its consistency, setting time, flow, compressive strength, XRD, SEM, and FTIR. The consistency and setting time of the Z-Cem paste increase with increasing RHA content. The Z-Cem mortar requires more superplasticizer to maintain a constant flow of 110±5% compared with OPC. The compressive strength of the Z-Cem mortar is significantly influenced by the amounts, types, and molar concentration of the activators. The Z-Cem mortar achieves a compressive strength of 42–44 MPa at 28 days with 5% NaOH or at 2.5 molar concentrations. The FTIR results reveal that molecules in the Z-Cem mortar have a silica-hydrate (Si-H bond with sodium or other inorganic metals (i.e., sodium/calcium-silica-hydrate-alumina gel. Therefore, Z-Cem could be developed using the aforementioned materials with the chemical activator.

  2. Immobilization of Radioactive Waste in Different Fly Ash Zeolite Cement Blends

    International Nuclear Information System (INIS)

    Sami, N.M.

    2013-01-01

    The problem of radioactive waste management has been raised from the beginning use of nuclear energy for different purposes. The rad waste streams produced were sufficient to cause dangerous effects to man and its environment. The ordinary portland cement is the material more extensively used in the technologies of solidification and immobilization of the toxic wastes, low and medium level radioactive wastes. The production of portland cement is one of the most energy-intensive and polluting. The use of high energy in the production causes high emission due to the nature and processes of raw materials. The cement industry is responsible for 7% of the total CO 2 emission. Thus, the cement industry has a crucial role in the global warming. The formation of alite (Ca 3 SiO 5 ), which is the main component of the Portland cement clinker, produces a greater amount of CO 2 emission than the formation of belite (Ca 2 SiO 4 ). The proportion of alite to belite is about 3 in ordinary Portland clinker. Therefore, by decreasing this proportion less CO 2 would be emitted. Furthermore, if industrial byproducts such as fly ash from thermal power station or from incineration of municipal solid wastes have the potential to reduce CO 2 used as raw materials and alternative hydrothermal calcination routes are employed for belite clinker production, CO 2 emission can be strongly reduced or even totally avoided. The availability of fly ash will help in reducing the CO 2 emissions and will also help in resolving, to a great extent, the fly ash disposal problem. This thesis is based on focusing on the possibility of using fly ash as raw materials to prepare low cost innovation matrices for immobilization of radioactive wastes by synthesizing new kind of cement of low consuming energy. The synthesis process is based on the hydrothermal-calcination route of the fly ash without extra additions.

  3. The Optimization of Calcareous Fly Ash-Added Cement Containing Grinding Aids and Strength-Improving Additives

    Directory of Open Access Journals (Sweden)

    Gökhan Kaplan

    2018-01-01

    Full Text Available This is an experimental study which explores the physical, mechanical, and economic factors involved in the production of type CEM II A-B/W cement. In this context, 4 cement additives were used in two different dosages (200 and 800 g/t. Class C fly ash was used for composite cement production at ratios of 5%, 20%, and 35%. It was shown that Blaine fineness increases with the increasing fly ash content. The use of fly ash at ratios of 5% and 20% was not found to have any unfavorable effects on the compressive strength at the early days. It is found that the use of additive for improving the early-age strength is preferable when fly ash is used. It is possible to produce Class 52.5 N cement using additives to improve early strength and 20% fly ash. Loss in strength was observed in cement mortars produced using glycol-based grinding aid. Increasing the dosage of chemical additive also led to loss in strength due to nonhomogeneous distribution of hydration products. As a result, grinding fly ash with clinker and the use of cement chemicals contribute to the cement sector in terms of sustainability. It is possible to produce cements with improved mechanical properties especially with the use of 20% fly ash.

  4. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    Directory of Open Access Journals (Sweden)

    Michał A. Glinicki

    2016-01-01

    Full Text Available The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  5. Enhancing the compressive strength of landfill soil using cement and bagasse ash

    Science.gov (United States)

    Azim, M. A. M.; Azhar, A. T. S.; Tarmizi, A. K. A.; Shahidan, S.; Nabila, A. T. A.

    2017-11-01

    The stabilisation of contaminated soil with cement and agricultural waste is a widely applied method which contributes to the sustainability of the environment. Soil may be stabilised to increase strength and durability or to prevent erosion and other geotechnical failure. This study was carried out to evaluate the compressive strength of ex-landfill soil when cement and bagasse ash (BA) are added to it. Different proportions of cement (5%, 10%, 15% and 20%) was added to sample weights without BA. On the other hand, the cement in a different batch of sample weights was replaced by 2.5%, 5%, 7.5% and 10% of BA. All samples were allowed to harden and were cured at room temperature for 7, 14 and 28 days respectively. The strength of the contaminated soil was assessed using an unconfined compressive strength test (UCS). The laboratory tests also included the index properties of soil, cement and bagasse ash in raw form. The results indicated that the samples with cement achieved the highest compressive strength measuring 4.39 MPa. However, this study revealed that the use of bagasse ash produced low quality products with a reduction in strength. For example, when 5% of cement was replaced with 5% ash, the compressive strength decreased by about 54% from 0.72 MPa to 0.33 MPa. Similarly, the compressive strength of each sample after a curing period of 28 days was higher compared to samples cured for 7 and 14 days respectively. This is proved that a longer curing period is needed to increase the compressive strength of the samples.

  6. Laboratory investigation of the performances of cement and fly ash modified asphalt concrete mixtures

    Directory of Open Access Journals (Sweden)

    Suched Likitlersuang

    2016-09-01

    Full Text Available The influence of filler materials on volumetric and mechanical performances of asphalt concrete was investigated in this study. The AC60/70 asphalt binder incorporating with cement and fly ash as filler materials was mixed with limestone following the Marshall mix design method. The filler contents of cement and/or fly ash were varied. The non-filler asphalt concrete mixtures of the AC60/70 and the polymer modified asphalt were prepared for the purpose of comparison. The investigation programme includes the indirect tensile test, the resilient modulus test and the dynamic creep test. The tests are conducted under the humid temperate environments. All tests were then carried out under standard temperature (25 °C and high temperature (55 °C by using a controlled temperature chamber via the universal testing machine. The wet-conditioned samples were prepared to investigate the moisture susceptibility. Results show that cement and/or fly ash were beneficial in terms of improved strength, stiffness and stripping resistance of asphalt mixture. In addition, the combined use of cement and fly ash can enhance rutting resistance at wet and high temperature conditions. The results indicate that the strength, stiffness and moisture susceptibility performances of the asphalt concrete mixtures improved by filler are comparable to the performance of the polymer modified asphalt mixture. Keywords: Asphalt concrete, Filler, Resilient modulus, Dynamic creep test, Moisture susceptibility

  7. the suitability of lime rice husk ash cement as construction material

    African Journals Online (AJOL)

    NIJOTECH

    Enugu State University of Science and Technology, Enugu, Nigeria. ... It was therefore concluded that high percentage contents of silica, ... the Lime Rice Husk Ash cement when used as a construction material would depend ... thermal treatment of the silica in the husk .... test specimen in their moulds were stored in a.

  8. Characterization of cement and bitumen waste forms containing simulated low-level waste incinerator ash

    International Nuclear Information System (INIS)

    Westsik, J.H. Jr.

    1984-08-01

    Incinerator ash from the combustion of general trash and ion exchange resins was immobilized in cement and bitumen. Tests were conducted on the resulting waste forms to provide a data base for the acceptability of actual low-level waste forms. The testing was done in accordance with the US Nuclear Regulatory Commission Technical Position on Waste Form. Bitumen had a measured compressive strength of 130 psi and a leachability index of 13 as measured with the ANS 16.1 leach test procedure. Cement demonstrated a compressive strength of 1400 psi and a leachability index of 7. Both waste forms easily exceed the minimum compressive strength of 50 psi and leachability index of 6 specified in the Technical Position. Irradiation to 10 8 Rad and exposure to 31 thermal cycles ranging from +60 0 ) to -30 0 C did not significantly impact these properties. Neither waste form supported bacterial or fungal growth as measured with ASTM G21 and G22 procedures. However, there is some indication of biodegradation due to co-metabolic processes. Concentration of organic complexants in leachates of the ash, cement and bitumen were too low to significantly affect the release of radionuclides from the waste forms. Neither bitumen nor cement containing incinerator ash caused any corrosion or degradation of potential container materials including steel, polyethylene and fiberglass. However, moist ash did cause corrosion of the steel

  9. Studies on the Effect of Rice Husk Ash as Cement Admixture * M.U ...

    African Journals Online (AJOL)

    acer

    Studies on the Effect of Rice Husk Ash as Cement Admixture. *. 1. M.U Dabai,. 1 ... production of durable concrete and at the same time it is a ... indigenous and waste, materials in concrete. One .... (4.08%). The Iron oxide may be from laterite.

  10. Incorporation of cement bypass flue dust in fly ash and blast furnace slag-based geopolymer

    Directory of Open Access Journals (Sweden)

    Mohamed E. Sultan

    2018-06-01

    Full Text Available This work utilizes cement kiln dust in fly ash and blast furnace slag-based geopolymer. Geopolymer cement was produced using different compositions of ground, granulated blast furnace slag with fly ash and cement bypass flue dust. Crystalline sodium metasilicate pentahydrate was used as an activator at 10, 15 and 20% (by weight of the geopolymer source materials. The geopolymer is formed in the solid state like ordinary Portland cement. The mechanical and chemical properties of the geopolymeric materials were examined. Measuring of mechanical properties by compressive strength of the hardened geopolymer pastes at different curing ages; microstructure was evaluated by X-ray diffraction (XRD and scanning electron microscope (SEM; thermal properties were estimated by thermogravimetry analysis (TGA and derivative thermogravimetric analysis (DTG. The results indicate that the compressive strength of the geopolymer pastes is increased with higher Na2SiO3.5H2O content. The geopolymeric properties were enhanced by higher pH, which helps in the dissolution of geopolymer source materials during geopolymerization. SEM showed that mixes containing 15 and 20% sodium metasilicate had more compact and dense structures. On the other hand, GGBFS mix (G-20 exhibits more hydration and geopolymeric products during TGA/DTG compared with other mixes which contain FA with/without GGBFS. Keywords: Cement bypass flue dust, Geopolymer, Ground granulated blast furnace, Fly ash

  11. The Stabilization of Weathered Dolerite Aggregates with Cement, Lime, and Lime Fly Ash for Pavement Construction

    Directory of Open Access Journals (Sweden)

    Felix N. Okonta

    2014-01-01

    Full Text Available An experimental program was performed on weathered dolerite specimens stabilized by adding varying percentages of cement (4, 8, 12, and 16 % and lime (6 and 12 % and a combination of lime and fly ash (6% lime + 12% Fly ash and 12% lime + 12% Fly ash % by dry weight of soil. The strength was examined under three different curing methods, namely, membrane curing (MBC, alternate moist-air curing (MAC, and water curing (WAC, by conducting unconfined compressive strength (UCS tests. Simple polynomial and linear functions (regression models were used to define the relationships between the variables investigated. Membrane curing (MBC gave results close enough to the water curing (WAC to indicate that it can be confidently used on the field during pavement construction. From the results obtained, for class B (interurban collector and major rural roads pavement construction, addition of 8% cement was recommended for road base construction with stabilized WDA. Also the addition of 12 + 12% Lime and Fly Ash was recommended for road subbase construction with stabilized WDA. Stabilized WDA against the prejudiced myths would perform satisfactorily for base and subbase construction in both heavily trafficked and low volume roads with economic quantities of cement, lime, and fly ash in South Africa.

  12. Natural radioactivity of raw materials and products of cement manufacturing and of power plant fly ashes

    International Nuclear Information System (INIS)

    Gallyas, Miklos

    1984-01-01

    The natural radioactivity was investigated for several building materials used in Hungary, including cement, concrete, glasses, fine ceramic products, insulation materials, and also for some industrial wastes utilized as building material aggregates like slags, fly ashes etc., from their radiation health aspect. The dose commitments of the population from building materials standardized in several countries are presented. The 232 Th, 226 Ra, and 40 K contents of building materials were measured by gamma spectrometry, using NaI/Tl/scintillation detectors. The results were used to qualify cement materials and fly ash aggregates according to their origin in Hungary, from the point of view of their natural radioactivity. It was concluded that the radioactivity level of the majority of Hungarian cements are below the adopted international standards. (R.P.)

  13. Study of Experiment on Rock-like Material Consist of fly-ash, Cement and Mortar

    Science.gov (United States)

    Nan, Qin; Hongwei, Wang; Yongyan, Wang

    2018-03-01

    Study the uniaxial compression test of rock-like material consist of coal ash, cement and mortar by changing the sand cement ratio, replace of fine coal, grain diameter, water-binder ratio and height-diameter ratio. We get the law of four factors above to rock-like material’s uniaxial compression characteristics and the quantitative relation. The effect law can be sum up as below: sample’s uniaxial compressive strength and elasticity modulus tend to decrease with the increase of sand cement ratio, replace of fine coal and water-binder ratio, and it satisfies with power function relation. With high ratio increases gradually, the uniaxial compressive strength and elastic modulus is lower, and presents the inverse function curve; Specimen tensile strength decreases gradually with the increase of fly ash. By contrast, uniaxial compression failure phenomenon is consistent with the real rock common failure pattern.

  14. Effect of mixes made of coal bottom ash and fly ash on the mechanical strength and porosity of Portland cement

    Directory of Open Access Journals (Sweden)

    Argiz, C.

    2013-03-01

    Full Text Available New additions to the cement are needed to achieve a more sustainable and durable construction material. Within this context, bottom ashes can be used as a main constituent of Portland cements when it is mixed in an optimized proportion with fly ashes. The mechanical characteristics of standarized mortars made of mixes of pulverized coal combustion bottom and fly ashes are studied. The mortars were made of ordinary Portland cement (CEM I 42.5 N and mixes of bottom ashes with fly ashes in similar proportions to those of CEM II/A-V, CEM II/B-V and CEM IV/A (V. Summing up, it can be said that the utilization of bottom ashes mixed with fly ashes in replacement levels from 0% to 100% do not affect significantively on the mechanical caracteristics of the mortars considered in the present study which had an addition maximum content of 35%.

    La utilización de nuevas adiciones en el cemento es necesaria con el fin de obtener un material más sostenible y durable. En este sentido, las cenizas de fondo o cenicero de las centrales termoeléctricas de carbón se podrían reciclar siendo empleadas como un componente principal de los cementos Portland. Se han estudiado las propiedades mecánicas de unos morteros normalizados elaborados con mezclas de cenizas volantes con cenizas de fondo fabricados con unos porcentajes similares a los correspondientes de los CEM II/A-V, CEM II/B-V y CEM IV/A (V. En conclusión, la utilización de mezclas de cenizas de fondo o cenicero con cenizas volantes sustituyendo a éstas últimas entre el 0% y el 100%, no influye significativamente en el comportamiento mecánico de los morteros estudiados en los que el contenido máximo de adición ha sido del 35%, si bien afecta a determinados aspectos microestructurales, como la cantidad y distribución de poros capilares.

  15. The influence of calcium lignosulphonate - sodium bicarbonate on the status of ettringite crystallization in fly ash cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Yang, K.; Zhang, C.; Liu, Z. [Hebei Institute of Technology, Tang Shan (China)

    2002-01-01

    Calcium lignosulphonate (CL) - sodium bicarbonate (SB) (a total of 0.7% by weight of cement and CL to SB ratio of 1:1.8) will cause the fluidity of fly ash cement paste to decrease rapidly. It is the variation of the status of ettringite crystallization that causes this phenomenon. Experimental results show that CL-SB affects the liquid-phase composition of fly ash cement paste remarkably. As a result, ettringite crystallizes out in the shape of needles from the solution. These needle-like crystal particles are distributed in the solution at a certain distance from the surface of clinker particles. At the initial hydration stage, the crystallization of ettringite is stronger in fly ash cement with calcined gypsum than in fly ash cement with gypsum. 5 refs., 10 figs., 2 tabs.

  16. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  17. Effect of Fly Ash and Silica Fume on the Mechanical Properties of Cement Paste at Different Stages of Hydration

    Science.gov (United States)

    2015-08-10

    All materials were placed in a clean, labeled stainless steel mixing bowl and weighed to the nearest ten thousandth of a pound. The cement and fly...on the Mechanical Properties of Cement Paste at Different Stages of Hydration This thesis investigates the effect of fly ash and silica fume on... cement paste hydration. Percentages of each additive will replace the cement by volume to be studied at five ages. These percentages will be compared

  18. Evaluation Some Properties of NanoMetakaolin or Rice Husk Ash Cement Mortar and its Resistance to Elevated Temperature

    Directory of Open Access Journals (Sweden)

    Jassim Atiya Alwan

    2016-12-01

    Full Text Available The objective of this research is to find the optimum value of some properties like compressive, flexural strength of blended cement mortar by nanometakaolin ( NMK or rice husk ash (RHA and to evaluate the effect of high temperature on these properties. The ordinary Portland cement(OPC of mortar was partially substituted by NMK or RHA of 5,10,15 and 20% by weight of cement. (108 control and blended specimens were casted and tested at ambient temperature (33 ºC for compressive and flexural strength for 28 and 90 days. Another (270 of the control and blended specimens were casted and cured for 90 days and exposed to elevated temperature of a gradual increase in temperature up to 200 ºC,300 ºC, 400 ºC,600 ºC and 800 ºC for two hours in an electrical furnace and they were under the same previous tests. The test results at ambient temperature indicate that the optimum compressive and flexural strength was with ratio of 15% NMK cement replacement in mortar for 28 and 90 days but for RHA was ratio of 10% for 28 days and 15% of cement weight in mortar for 90 days compared to control specimens. The results of exposing control and blended specimens of (90 days to elevated temperature showed that the optimum strength for control and the best MK replacement ratio were found at 200 ºC, and the best RHA replacement ratio specimens was found at 300 ºC. It is also found that exposing the mortar to more than these temperatures destroyed its strength and it was detrimental to its properties.

  19. Performance of Periwinkle Shell Ash Blended Cement Concrete Exposed to Magnesium Sulphate

    Directory of Open Access Journals (Sweden)

    Umoh A.A.

    2013-01-01

    Full Text Available The study examined the compressive strength of periwinkle shell ash (PSA blended cement concrete in magnesium sulphate medium. Specimens were prepared from designed characteristics strength of 25 MPa. The cement replacement with PSA ranged between 0 and 40% by volume. A total of 180 cube specimens were cast and cured in water. At 28 days curing, 45 specimens each were transferred into magnesium sulphate of 1%, 3%, and 5% solution, while others were continuously cured in water and tested at 62, 92, and 152 days. The results revealed a higher loss in compressive strength with the control mix, and that it increases with increased in MgSO4 concentration and exposure period, whereas, the attack on the PSA blended cement concrete was less and the least value recorded by 10% PSA content. Therefore, the study concluded that the optimum percentage replacement of cement with 10% PSA could mitigate magnesium sulphate attack.

  20. PREPARATION AND PROPERTIES OF ALKALI-ACTIVATED CEMENT CONTAINING PHOSPHOROUS SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    Duo You

    2016-03-01

    Full Text Available Phosphorous slag is an industrial waste which potentially pollutes environments. The aim of the present work is to use phosphorous slag as a raw material to produce alkali-activated cement. The influence of mix proportion of phosphorous slag and fly ash, alkali content and modulus of water glass on the properties of alkali-activated phosphorous slag and fly ash cement (AA-PS-FA-C was studied. The results show that AA-PS-FA-C with normal setting performance and desirable mechanical properties can be prepared using water glass as the activator. Changing the fly ash content in the range of 0-40 wt% has only a small influence on the setting time of AA-PS-FA-C. The strengths significantly decrease when the fly ash content exceeds 30 wt%. The carbonation resistance of AA-PS-FA-C is similar to that of ordinary Portland cement (OPC, while the frost resistance is much better. The hardened paste of AA-PS-FA-C is much more compact than OPC paste.

  1. Investigation on the Rheological Behavior of Fly Ash Cement Composites at Paste and Concrete Level

    Science.gov (United States)

    Thiyagarajan, Hemalatha; Mapa, Maitri; Kushwaha, Rakhi

    2018-06-01

    Towards developing sustainable concrete, nowadays, high volume replacement of cement with fly ash (FA) is more common. Though the replacement of fly ash at 20-30% is widely accepted due to its advantages at both fresh and hardened states, applicability and acceptability of high volume fly ash (HVFA) is not so popular due to some adverse effects on concrete properties. Nowadays to suit various applications, flowing concretes such as self compacting concrete is often used. In such cases, implications of usage of HVFA on fresh properties are required to be investigated. Further, when FA replacement is beyond 40% in cement, it results in the reduction of strength and in order to overcome this drawback, additions such as nano calcium carbonate (CC), lime sludge (LS), carbon nano tubes (CNT) etc. are often incorporated to HVFA concrete. Hence, in this study, firstly, the influence of replacement level of 20-80% FA on rheological property is studied for both cement and concrete. Secondly, the influence of additions such as LS, CC and CNT on rheological parameters are discussed. It is found that the increased FA content improved the flowability in paste as well as in concrete. In paste, the physical properties such as size and shape of fly ash is the reason for increased flowability whereas in concrete, the paste volume contributes dominantly for the flowability rather than the effect due to individual FA particle. Reduced density of FA increases the paste volume in FA concrete thus reducing the interparticle friction by completely coating the coarse aggregate.

  2. Possibility of using waste tire rubber and fly ash with Portland cement as construction materials.

    Science.gov (United States)

    Yilmaz, Arin; Degirmenci, Nurhayat

    2009-05-01

    The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications.

  3. Elaboration and characterization of an iodate-substituted hydroxyapatite cement

    International Nuclear Information System (INIS)

    Coulon, A.; Campayo, L.; Laurencin, D.; Grandjean, A.; Cau Dit Coumes, C.; Rossignol, S.

    2015-01-01

    In the last decades, robust host matrices have been developed to guarantee a durable confinement of some of the most mobile radionuclides. In this work, we describe a novel method for iodine incorporation into an iodate-substituted hydroxyapatite by means of a cementation route. Such a material is obtained from a stoichiometric mixture of tetra-calcium-phosphate (TTCP)/tricalcium-phosphate (αTCP)/sodium iodate with a molar ratio 1/2/0.5. This material corresponds to an iodine incorporation content ∼6.5 wt.%. The evolution of this system during the early age (followed by calorimetric and conductimetric measurements) was compared to the same cementitious system without iodate. Results show that sodium iodate acts as a retarder that can be appropriate to control setting for an industrial application. The delay is due to the precipitation of non-cohesive intermediate phases like calcium iodate that are then totally consumed when the crystallization of hydroxyapatite occurs. At later age, a porous bulk material consisting of traces of TTCP and αTCP particles covered by needles is obtained. The composition of these needles is in agreement with that of the desired iodate-containing apatite. (authors)

  4. Physical and chemical characterization of 50 pulverized coal ashes with respect to partial cement replacement in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Van der Sloot, H A; Weijers, E G

    1986-04-01

    Physical and chemical characterization of 50 pulverized coal ashes from Dutch, Belgian and German installations has been carried out to identify the parameters that have to be kept under control, when pulverized coal ashes are to be used as partial cement replacement in concrete. For a good workability of fly ash/cement mortars the particle size and the carbon content are important. By performing a mortar flow test (Heagermann) upon delivery exterme ashes can be easily eliminated. The compressive strength is largely determined by the fineness of the ash (weight fraction below 20 micron). A direct effect of carbon content on strength development is not observed, but a reduction in mortar slow due to carbon leads to loss in strength, while the workability has to be adjusted. Size distribution measurement by optical methods is recommended as the relevant part of the ash size distribution cannot be properly assessed by sieve methods. The net contribution of fly ash to the compressive strength of a fly ash/cement (20/80) mortar exhibits a minimum at 14 days curing, which is common to all 50 ashes studied. Improvements in ash quality as obtained from pulverized-coal fired installations can be achieved by improvements in coal milling and optimizing ash collection. 6 figs., 4 tabs., 19 refs.

  5. Burning Poseidonian shale ash for production of cement

    Energy Technology Data Exchange (ETDEWEB)

    1919-10-28

    A process is described for the burning of shale coke obtained by the deoiling of Poseidonian or the usual kind of shale for the preparation of brick, mortar, or cement, characterized in that the shale coke is thrown on a pile and completely covered with burnt material, so that the gases drawn through this cover will be sufficiently choked to hold the feed at a high temperature as long as possible.

  6. The Effects of Eggshell Ash on Strength Properties of Cement-stabilized Lateritic

    OpenAIRE

    Okonkwo U. N; Odiong I. C; Akpabio E. E

    2012-01-01

    Eggshell ash obtained by incinerating Fowls’ eggshells to ash has been established to be a good accelerator for cement-bound materials and this would be useful for road construction work at the peak of rainy seasons for reducing setting time of stabilized road pavements. However this should be achieved not at the expense of other vital properties of the stabilized matrix. This is part of the effort in adding value to agricultural materials which probably cause disposal problems. Thus this stu...

  7. High Strength Lightweight Concrete Made with Ternary Mixtures of Cement-Fly Ash-Silica Fume and Scoria as Aggregate

    OpenAIRE

    YAŞAR, Ergül; ATIŞ, Cengiz Duran; KILIÇ, Alaettin

    2014-01-01

    This paper presents part of the results of an ongoing laboratory study carried out to design a structural lightweight high strength concrete (SLWHSC) made with and without ternary mixtures of cement-fly ash-silica fume. In the mixtures, lightweight basaltic-pumice (scoria) aggregate was used. A concrete mixture made with lightweight scoria, and another lightweight scoria concrete mixture incorporating 20% fly ash and 10% silica fume as a cement replacement, were prepared. Two normal...

  8. Radon exhalation of cementitious materials made with coal fly ash: Part 1 - scientific background and testing of the cement and fly ash emanation

    International Nuclear Information System (INIS)

    Kovler, K.; Perevalov, A.; Steiner, V.; Metzger, L.A.

    2005-01-01

    Increased interest in measuring radionuclides and radon concentrations in fly ash, cement and other components of building products is due to the concern of health hazards of naturally occurring radioactive materials (NORM). The current work focuses on studying the influence of fly ash (FA) on radon-exhalation rate (radon flux) from cementitious materials. The tests were carried out on cement paste specimens with different FA contents. The first part of the paper presents the scientific background and describes the experiments, which we designed for testing the radon emanation of the raw materials used in the preparation of the cement-FA pastes. It is found that despite the higher 226 Ra content in FA (more than 3 times, compared with Portland cement) the radon emanation is significantly lower in FA (7.65% for cement vs. 0.52% only for FA)

  9. Performance evaluation of cement-stabilized pond ash-rice husk ash-clay mixture as a highway construction material

    Directory of Open Access Journals (Sweden)

    Deepak Gupta

    2017-02-01

    Full Text Available This paper reports the results of an investigation carried out on clay soil stabilized with pond ash (PA, rice husk ash (RHA and cement. Modified Proctor compaction tests were performed in order to investigate the compaction behavior of clay, and California bearing ratio (CBR tests were performed to determine the strength characteristics of clay. For evaluation purpose, the specimens containing different amounts of admixtures were prepared. Clay was replaced with PA and RHA at a dosage of 30%–45% and 5%–20%, respectively. The influence of stabilizer types and dosages on mechanical properties of clay was evaluated. In order to study the surface morphology and crystallization characteristics of the soil samples, scanning electron microscopy (SEM and X-ray diffraction (XRD analyses were carried out, respectively. The results obtained indicated a decrease in the maximum dry density (MDD and a simultaneous increase in the optimum moisture content (OMC with the addition of PA and RHA. Multiple linear regression analysis (MLRA showed that the predicted values of CBR tests are in good agreement with the experimental values. Developed stabilized soil mixtures showed satisfactory strength and can be used for construction of embankments and stabilization of sub-grade soil. The use of locally available soils, PA, RHA, and cement in the production of stabilized soils for such applications can provide sustainability for the local construction industry.

  10. Microstructural analysis of the potential of sugarcane bagasse ash as a pozzolan material in cement composites

    International Nuclear Information System (INIS)

    Pereira, A.M.; Assuncao, C.C.; Guimaraes, L. de M.; Malmonge, J.A.; Tashima, M.M; Akasaki, J.L.

    2016-01-01

    For civil construction, the ash obtained by burning sugarcane bagasse (SCBA) in sugar-cane industry is being treated as a pozzolan material because, in addition to containing high amounts of silicon and aluminium oxides, can promote reduction of the environmental impact caused by cement production, since this alternative material may partially replace the Portland cement.The present study evaluated the pozzolanic potential of the SCBA, from different states of Brazil (Sao Paulo (SP), Goias (GO) and Mato Grosso (MT)). The reactivity of the material was analyzed by microstructural characterization, besides the pastes production (lime / SCBA and cement / SCBA) for the analysis of the hydration products formed, which are evaluated by TG and SEM. There was a decrease in the formation of ettringite in the matrixes, inversely proportional to the amount of ash, which favored the reduction of the cracking in cementitious matrices. It has also observed that the pastes produced with the ashes from State of SP showed greater fixation of lime and, consequently, a high reactivity. (author)

  11. Effect of Palmyra Palm Leaf Ash on Cement Stabilization of Makurdi Shale

    Directory of Open Access Journals (Sweden)

    Amos Yala IORLIAM

    2012-08-01

    Full Text Available Makurdi Shale was treated with palmyra palm leaf ash (PPLA and cement to assess its suitability as a material in construction of flexible pavement. Classification, Compaction, Consistency, California bearing ratio (CBR and Unconfined compressive strength (UCS tests, were conducted on the shale specimen treated with, cement and PPLA in a combined incremental order of 2% up to 10% of cement and 2% up to 14% of PPLA of dry weight of soil sample respectively. Results of tests showed that Makurdi shale is an A-7-6, high plasticity (CH and high swell potential soil by the American Association of State Highway and Transportation Officials (AASHTO, Unified Soil Classification System (USCS and Nigerian Building and Road Research Institute (NBRRI classification systems respectively. The plasticity index (PI reduced from 30.5% for untreated Makurdi shale to 4% at 10% cement +14% PPLA contents. The maximum soaked CBR and 7 day UCS values of 92% and 1041 kN/m2 were obtained at 10% cement+14 % PPLA contents respectively. From the results, Makurdi shale treated with a combination of 10%cement+14% PPFA with a soaked CBR value of 92 %, 7 day UCS value of 1041 kN/m2 and 82 % value of resistance to loss in strength, satisfied the requirement for sub-base specification. It is therefore recommended for use as sub-base materials in flexible pavement.

  12. Cohesive Soil Stabilized Using Sewage Sludge Ash/Cement and Nano Aluminum Oxide

    Directory of Open Access Journals (Sweden)

    Huan-Lin Luo

    2012-03-01

    Full Text Available In order to improve soft soil strength, a mixture of incinerated sewage sludge ash (SSA and cement was applied as a soil stabilizer. The intended mix ratio for SSA and cement was 3:1. A-6 clay was selected as the untreated soil. In this study, 15% of clay soil was replaced by SSA/cement to produce the treated soil specimens. Then, four different volumes, namely 0, 1, 2, and 3%, of nano-Al2O3 were mixed with the treated soil as an additive. Tests such as compaction, pH values, Atterberg limits, unconfined compressive strength (UCS, swell potential, California bearing ratio (CBR, and permeability were performed. The results indicate that both UCSs and CBR values of untreated soil were greatly improved by the use of 15% SSA/cement. Moreover, a 1% addition of nano-Al2O3 enhanced the treated soil in terms of both UCS and CBR values. Furthermore, the swell potential was effectively reduced by the use of 15% SSA/cement as compared with untreated soil and the 1% nano-Al2O3 additive fraction offered the best performance. From this study, we conclude that 15% of SSA/cement replacement could effectively stabilize A-6 clay soil, and 1% of nano-Al2O3 additive may be the optimum amount to add to the soil.

  13. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  14. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    International Nuclear Information System (INIS)

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-01-01

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H

  15. INFLUENCE OF SUBSTITUTION OF ORDINARY PORTLAND CEMENT BY SILICA FUME ON THE HYDRATION OF SLAG-PORTLAND CEMENT PASTES

    Directory of Open Access Journals (Sweden)

    E.A. El-Alfi

    2011-06-01

    Full Text Available Effect of gradual substitution of ordinary Portland cement by a few percent of silica fume (0.0, 2.5, 5.0 and 7.5 wt.% on the hydration properties of slag-Portland cement pastes up to 12 months was investigated. The results show that the composite cement pastes containing silica fume give the higher physico-mechanical properties than that of the slag-Portland cement. Also, the XRD results reveal that the peak of Ca(OH2 shows higher intensity in the sample without silica fume and completely disappears in the sample containing 7.5 wt.% silica fume content. Also, the intensity peaks of C4AH13 sharply increase with silica fume content.

  16. Effects of Admixtures on the Properties of Corn Cob Ash Cement Concrete

    Directory of Open Access Journals (Sweden)

    Akeem Ayinde RAHEEM

    2010-12-01

    Full Text Available The study investigated the effects of admixtures on the properties of corn cob ash (CCA cement concrete. The workability and compressive strength of CCA cement concrete incorporated with accelerator, plasticizer and water reducing and retarding were carried out. The dosage of admixture incorporated was: 0.124litre per 15.55kg of cementitious material based on the recommendation by BS EN 934-2.The results revealed that admixtures generally improve the workability of corn cob ash cement concrete. The compressive strength obtained at 28th day for concrete without admixture (The Control was 29.82N/mm2, while for concrete with accelerator, plasticizer, and water reducing and retarding it was 32.80 N/mm2, 38.51 N/mm2 and 34.09 N/mm2 respectively. These results showed that CCA cement concrete incorporated with accelerator achieved greater strength at early ages. With plasticizer, it achieved very high strength at both young and old ages; while with water reducing and retarding it achieved greater strength at old ages alone.

  17. The Use of Fly Ash and Lime Sludge as Partial Replacement of Cement in Mortar

    Directory of Open Access Journals (Sweden)

    Vaishali Sahu

    2014-01-01

    Full Text Available The increased demand of drinking water and power has led huge generation of water treatment plant residue i.e. sludge and the thermal power plant by-product such as fly ash. Large quantities of sludge and fly ash are produced in India and disposed off by landfilling or dumping in and around sites. In this study fly ash and water softening sludge (lime sludge has been utilized in mortar. Two types of mortar (type I and II with four binder combinations have been tried. Binder I consists of 70% fly ash (FA and 30% lime sludge (LS , 0 % gypsum (G, binder II is 70% FA, 30% LS and 1% G, binder III is 50% FA, 30% LS and 20% cement and the binder IV is 40% FA, 40% LS with 20% cement. The effect of various combinations on strength has been discussed here. This paper outlines the composition of the composite material, method of preparation of mortar specimen, testing procedure and salient results thereof.

  18. Study on concrete with partial replacement of cement by rice husk ash

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2016-09-01

    Increase in the demand of conventional construction materials and the need for providing a sustainable growth in the construction field has prompted the designers and developers to opt for ‘alternative materials’ feasible for use in construction. For this objective, the use of industrial waste products and agricultural byproducts are very constructive. These industrial wastes and agricultural by products such as Fly Ash, Rice Husk Ash, Silica Fume, and Slag can be replaced instead of cement because of their pozzolanic behavior, which otherwise requires large tract of lands for dumping. In the present investigation, Rice Husk Ash has been used as an admixture to cement in concrete and its properties has been studied. An attempt was also done to examine the strength and workability parameters of concrete. For normal concrete, mix design is done based on Indian Standard (IS) method and taking this as reference, mix design has been made for replacement of Rice Husk Ash. Four different replacement levels namely 5%, 10%, 15% and 20% are selected and studied with respect to the replacement method.

  19. Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits.

    Science.gov (United States)

    Fairbairn, Eduardo M R; Americano, Branca B; Cordeiro, Guilherme C; Paula, Thiago P; Toledo Filho, Romildo D; Silvoso, Marcos M

    2010-09-01

    This paper presents a study of cement replacement by sugar cane bagasse ash (SCBA) in industrial scale aiming to reduce the CO(2) emissions into the atmosphere. SCBA is a by-product of the sugar/ethanol agro-industry abundantly available in some regions of the world and has cementitious properties indicating that it can be used together with cement. Recent comprehensive research developed at the Federal University of Rio de Janeiro/Brazil has demonstrated that SCBA maintains, or even improves, the mechanical and durability properties of cement-based materials such as mortars and concretes. Brazil is the world's largest sugar cane producer and being a developing country can claim carbon credits. A simulation was carried out to estimate the potential of CO(2) emission reductions and the viability to issue certified emission reduction (CER) credits. The simulation was developed within the framework of the methodology established by the United Nations Framework Convention on Climate Change (UNFCCC) for the Clean Development Mechanism (CDM). The State of São Paulo (Brazil) was chosen for this case study because it concentrates about 60% of the national sugar cane and ash production together with an important concentration of cement factories. Since one of the key variables to estimate the CO(2) emissions is the average distance between sugar cane/ethanol factories and the cement plants, a genetic algorithm was developed to solve this optimization problem. The results indicated that SCBA blended cement reduces CO(2) emissions, which qualifies this product for CDM projects. 2010 Elsevier Ltd. All rights reserved.

  20. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement

    International Nuclear Information System (INIS)

    Aubert, J.E.; Husson, B.; Sarramone, N.

    2006-01-01

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called 'A', based on the washing, phosphation and calcination of the ash, and a modified process, called 'B', intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at landfills for non

  1. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J.E. [Laboratoire Materiaux et Durabilite des Constructions (L.M.D.C.), INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France)]. E-mail: aubert@insa-toulouse.fr; Husson, B. [Laboratoire Materiaux et Durabilite des Constructions (L.M.D.C.), INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France); Sarramone, N. [Laboratoire Materiaux et Durabilite des Constructions (L.M.D.C.), INSA-UPS, 135 avenue de Rangueil, 31077 Toulouse cedex 4 (France)

    2006-08-25

    This paper is the first of a series of two articles dealing with the processes applied to MSWI fly ash with a view to reusing it safely in cement-based materials. Part 1 presents two stabilization processes and Part 2 deals with the use of the two treated fly ashes (TFA) in mortars. Two types of binder were used: an Ordinary Portland Cement (OPC) containing more than 95% clinker (CEM I 52.5R) and a binary blend cement composed of 70% ground granulated blast furnace slag and 30% clinker (CEM III-B 42.5N). In this first part, two stabilization processes are presented: the conventional process, called 'A', based on the washing, phosphation and calcination of the ash, and a modified process, called 'B', intended to eliminate metallic aluminum and sulfate contained in the ash. The physical, chemical and mineralogical characteristics of the two TFA were comparable. The main differences observed were those expected, i.e. TFA-B was free of metallic aluminum and sulfate. The mineralogical characterization of the two TFAs highlighted the presence of large amounts of a calcium aluminosilicate phase taking two forms, a crystalline form (gehlenite) and an amorphous form. Hydration studies on pastes containing mixed TFA and calcium hydroxide showed that this phase reacted with calcium hydroxide to form calcium aluminate hydrates. This formation of hydrates was accompanied by a hardening of the pastes. These results are very encouraging for the reuse of such TFA in cement-based materials because they can be considered as pozzolanic additions and could advantageously replace a part of the cement in cement-based materials. Finally, leaching tests were carried out to evaluate the environmental impact of the two TFAs. The elements which were less efficiently stabilized by process A were zinc, cadmium and antimony but, when the results of the leaching tests were compared with the thresholds of the European landfill directive, TFA-A could nevertheless be accepted at

  2. The maximum percentage of fly ash to replace part of original Portland cement (OPC) in producing high strength concrete

    Science.gov (United States)

    Mallisa, Harun; Turuallo, Gidion

    2017-11-01

    This research investigates the maximum percent of fly ash to replace part of Orginal Portland Cement (OPC) in producing high strength concrete. Many researchers have found that the incorporation of industrial by-products such as fly ash as in producing concrete can improve properties in both fresh and hardened state of concrete. The water-binder ratio was used 0.30. The used sand was medium sand with the maximum size of coarse aggregate was 20 mm. The cement was Type I, which was Bosowa Cement produced by PT Bosowa. The percentages of fly ash to the total of a binder, which were used in this research, were 0, 10, 15, 20, 25 and 30%; while the super platicizer used was typed Naptha 511P. The results showed that the replacement cement up to 25 % of the total weight of binder resulted compressive strength higher than the minimum strength at one day of high-strength concrete.

  3. Field and lab evaluation of the use of lime fly ash to replace soil cement as a base course : final report.

    Science.gov (United States)

    1997-09-01

    This study evaluates the performance of lime/fly ash stabilized base as an alternative to soil cement stabilized base for flexible pavement systems on reconstructed highways in Louisiana. Louisiana has historically used soil cement for most flexible ...

  4. COMPARATIVE ASSESSMENT OF RICE HUSK ASH, POWDERED GLASS AND CEMENT AS LATERITIC SOIL STABILIZERS

    Directory of Open Access Journals (Sweden)

    Adebisi Ridwan

    2016-10-01

    Full Text Available This paper compares the stabilizing effects of three different materials, namely: rice husk ash, powdered glass, and cement on the properties of lateritic soil. The basic properties of the lateritic soil were first obtained through colour, moisture content determination, specific gravity, particle size distribution and Atterberg limits tests. Each of the stabilizing materials was then mixed with the lateritic soil in varying percentages of 2.5%, 5%, 7.5%, 10%, 12.5% and 15% by weight of the soil. Thereafter, compaction and California bearing ratio (CBR tests were carried out on the sample mixes to determine the effects of the materials on the lateritic soil. Chemical tests were also carried out on the samples to determine their percentage oxides composition. The compaction test showed that the highest maximum dry densities (MDD obtained for the mixed samples were 2.32 g/cm3 (at 2.5% cement addition, 2.28g/cm3 (at 5% powdered glass (PG addition and 2.18 g/cm3 (at 5% rice husk ash (RHA addition with corresponding optimum moisture contents (OMC of 10.06%, 14.3% and 12.31% respectively. The CBR tests showed that the CBR values increased in all cases as the materials were added with those of the cement and powdered glass giving the highest values and showing close semblance under unsoaked conditions. The chemical test showed that the significant oxides present in the cement, powdered glass and rice husk ash were CaO (53.60%, SiO2 (68.45% and SiO2 (89.84% respectively.

  5. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement.

    Science.gov (United States)

    Chen, Li; Lin, Deng-Fong

    2009-02-15

    In this study, incinerated sewage sludge ash (ISSA) is mixed with cement in a fixed ratio of 4:1 for use as a stabilizer to improve the strength of soft, cohesive, subgrade soil. Five different ratios (in wt%: 0%, 2%, 4%, 8%, and 16%) of ISSA/cement admixture are mixed with cohesive soil to make soil samples. In order to understand the influences of admixtures on the soil properties, tests of the pH value, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compressive strength, and triaxial compression were performed on those samples. The study shows that the unconfined compressive strength of specimens with the ISSA/cement addition was improved to approximately 3-7 times better than that of the untreated soil; furthermore, the swelling behavior was also effectively reduced as much as 10-60% for those samples. In some samples, the ISSA/cement additive improved the CBR values by up to 30 times that of untreated soil. This suggests that ISSA/cement has many potential applications in the field of geotechnical engineering.

  6. Manganese substitutions into the portland cement clinker phases

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    1989-06-01

    Full Text Available The effect of manganese substitution into the crystal structures of the main Portland cement clinker phases (3CaO.SiO2, 2CaO.SiO2, 3CaO.Al2O3, 2CaO.Fe2O3 y 4CaO.Al2O3.Fe2O3 has been studied by X-ray and analytical electron microscopy. In oxidizing conditions, the limit of solid solution in 3CaO.SiO2 is about 0.72 ±0.11% (wt, while in 2CaO.SiO2 is 1.53±0,12%(wt. Mn solid solubility on 3CaO.Al2O3structure, in oxidizing conditions is close to 0.78 ± 0,12% (wt. In identical atmosphere, the proportion of Mn in the ferrite phases (2CaO.Fe2O3 and 4CaO.Al2O3.Fe2O3 is 6.80 ± 0.87% (wt and 6.7% (wt, respectively. To each mentioned clinker phases a solid solution formula has been proposed. In these formula, the manganese substitutions and also the different oxidation states which this element can be introduced in those crystalline structure are defined.

    Se ha estudiado, por difracción de rayos X y microanálisis por espectroscopia de energías dispersivas, el efecto de la sustitución del manganeso en las estructuras cristalinas de las fases más importantes del clinker del cemento portland (3CaO.SiO2, 2CaO.SiO2, 3CaO.Al2O3, 2CaO.Fe2O3 y 4CaO.Al2O3.Fe2O3. En condiciones oxidantes, el límite de solubilidad sólida en 3CaO.SiO2 es del orden de 0,72 ± 0,11% en peso; mientras que en 2CaO.SiO2 es de 1,53 ±0,12% en peso. La solución sólida del Mn en la estructura del 3CaO.Al2O3, en condiciones oxidantes, es próxima al 0,78 ±0,12% en peso. En idéntica atmósfera, la proporción del Mn en las fases terríficas (2CaO.Fe2O3 y 4CaO.Al2

  7. Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2018-04-01

    Full Text Available The open burning of biomass residue constitutes a major portion of biomass burning and leads to air pollution, smog, and health hazards. Various alternatives have been suggested for open burning of crop residue; however, each of them has few inherent drawbacks. This research suggests an alternative method to dispose wheat straw, i.e., to calcine it in a controlled environment and use the resulting ash as a replacement of cement by some percentage in cement-based composites. When wheat straw, an agricultural product, is burned, it is very rich in SiO2, which has a pozzolanic character. However, the pozzolanic character is sensitive to calcination temperature and grinding conditions. According to the authors’ best knowledge, until now, no systematic study has been devised to assess the most favorable conditions of burning and grinding for pozzolanic activity of wheat straw ash (WSA. Hence, a systematic experimental program was designed. In Phase I, calcination of WS was carried out at 500 °C, 600 °C, 700 °C, and 800 °C for 2 h. The resulting ashes were tested for color change, weight loss, XRD, XRF, Chapelle activity, Fratini, and pozzolanic activity index (PAI tests. From test results, it was found that beyond 600 °C, the amorphous silica transformed into crystalline silica. The WSA calcined at 600 °C was found to satisfy Chapelle and Fratini tests requirements, as well as the PAI requirement of ASTM at 28 days. Therefore, WSA produced at 600 °C (WSA600 showed the best pozzolanic performance. In Phase II, WSA600 was ground for various intervals (15–240 min. These ground ashes were tested for SEM, Blaine fineness, Chapelle activity, Fratini, and PAI tests. From test results, it was observed that after 120 min of grinding, there was an increase of 48% in Blaine surface area, with a consequence that WSA-replaced cement cubes achieved a compressive strength almost similar to that of the control mix. Conclusively, wheat straw calcined at

  8. Sulfate resistance evaluation of the cement with fly ash (using the Koch & Steinegger method

    Directory of Open Access Journals (Sweden)

    Irassar, Edgardo F.

    1988-12-01

    Full Text Available The increase of active mineral admixtures consumption in contemporaneous cementiceous materials has stablished revision of some test methods. In the evaluation of blended cement durability, many accelerated tests of large application in portland cements become unvalid, because they don't allow to value the improvements produced by pozzolan materials. Koch-Steinegger Method appears as the most appropiate to evaluate sulfate resistance of cement with active mineral admixtures. In this paper are presented the results obtained with this test in the evaluation of an ordinary portland cement (CPN and one resisting sulfates (CPARS, with low calcium fly ash addition. Fly ash is incorporated with three fineness (280, 420 and 480 m2/Kg Blaine. The results show that this addition improves sulfate resistance of CPN and in minor way of ARS cement. Fly ash influences evolution of mechanical strength in water and chemical resistance at first ages.

    El aumento del consumo de las adiciones minerales activas en los materiales cementíceos contemporáneos ha determinado la revisión de algunos métodos de ensayo utilizados para determinar sus propiedades. En la evaluación de la durabilidad de los cementos compuestos, muchos ensayos de corta duración (de gran aplicación en cementos portland dejan de tener validez, pues no permiten evaluar las mejoras que producen los materiales puzolánicos. El método propuesto por KOCH & STEINEGGER (1960 aparece como uno de los más apropiados para determinar el comportamiento de cementos con adiciones minerales activas frente al ataque de sulfatos. En este trabajo se presentan los resultados alcanzados con ente ensayo en la determinación del comportamiento de un cemento portland normal (CRN y uno resistente a los sulfatos (CPARS, adicionados con ceniza volante de bajo contenido en óxido de calcio. La ceniza se incorpora con tres finuras (280, 420 y 480 m2/kg —Blaine—. Estos

  9. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements.

    Science.gov (United States)

    Wu, Yann-Hwang; Huang, Ran; Tsai, Chia-Jung; Lin, Wei-Ting

    2015-02-16

    This study investigates the feasibility of co-firing fly ashes from different boilers, circulating fluidized beds (CFB) or stokers as a sustainable material in alkali activators for ground granulated blast-furnace slag (GGBS). The mixture ratio of GGBS and co-firing fly ashes is 1:1 by weight. The results indicate that only CF fly ash of CFB boilers can effectively stimulate the potential characteristics of GGBS and provide strength as an alkali activator. CF fly ash consists of CaO₃ (48.5%), SiO₂ (21.1%), Al₂O₃ (13.8%), SO₃ (10.06%), Fe₂O₃ (2.25%) and others (4.29%). SA fly ash consists of Al₂O₃ (19.7%), SiO₂ (36.3%), Fe2O3 (28.4%) and others (15.6%). SB fly ash consists of Al₂O₃ (15%), SiO₂ (25.4%), Zn (20.6%), SO₃ (10.9%), Fe₂O₃ (8.78%) and others (19.32%). The mixtures of SA fly ash and SB fly ash with GGBS, respectively, were damaged in the compressive strength test during seven days of curing. However, the built up strength of the CF fly ash and GGBS mixture can only be maintained for 7-14 days, and the compressive strength achieves 70% of that of a controlled group (cement in hardening cement paste). The strength of blended CF fly ash and GGBS started to decrease after 28 days, and the phenomenon of ettrigite was investigated due to the high levels of sulfur content. The CaO content in sustainable co-firing fly ashes must be higher than a certain percentage in reacting GGBS to ensure the strength of blended cements.

  10. APC fly ashes stabilized with Portland cement for further development of road sub-base aggregates

    Science.gov (United States)

    Formosa, J.; Giro-Paloma, J.; Maldonado-Alameda, A.; Huete-Hernández, S.; Chimenos, J. M.

    2017-10-01

    Although waste-to-energy plants allow reducing the mass and volume of municipal solid waste (MSW) incinerated, an average around 30 % of the total content remains as bottom ash (BA) and air pollution control (APC) ashes at the end of combustion process. While weathered bottom ash (WBA) is considered a non-hazardous residue that can be revalorized as a secondary aggregate, APC fly ashes generated during the flue gas treatment are classified as hazardous waste and are handled in landfill disposal after stabilization, usually with Portland cement (OPC). However, taking into account the amount of APC residues produced and the disposing cost in landfill, their revalorization is an important issue that could be effectively addressed. As MSW can be incinerated producing bottom ashes (BA) or air pollutant control (APC) residues, the development of a mortar formulated with APC fly ash as secondary building material is a significant risk to the environment for their content of heavy metals. In this way, Design of Experiment (DoE) was used for the improvement of granular material (GM) formulation composed by APC and OPC for further uses as road sub-base aggregate. DoE analysis was successful in the modelling and optimization the formulation as function of the mechanical properties and APC amount. Consequently, an optimal mortar formulation (OMF) of around 50 wt.% APC and 50 wt.% OPC was considered. The OMF leachates and abrasion resistance have been analyzed. These results have demonstrated the viability of OMF as non-hazardous material feasible to be used as secondary aggregate. Moreover, it would be possible to consider the environmental assessment of a GM composed by ≈20 wt.% of OMF and ≈80 wt.% of WBA in order to improve mechanical properties and heavy metals stabilization.

  11. Evaluation of Strength Characteristics of Laterized Concrete with Corn Cob Ash (CCA) Blended Cement

    Science.gov (United States)

    Ikponmwosa, E. E.; Salau, M. A.; Kaigama, W. B.

    2015-11-01

    Agricultural wastes are dumped in landfills or left on land in which they constitute nuisance. This study presents the results of investigation of strength characteristics of reinforced laterized concrete beams with cement partially replaced with corn cob (agricultural wastes) ash (CCA). Laterized concrete specimen of 25% laterite and 75% sharp sand were made by blending cement with corn cob ash at 0 to 40% in steps of 10%. A concrete mix ratio of 1:2:4 was used to cast 54 cubes of 150×150×150mm size and 54 beams of dimension 750×150×150mm. The results show that the consistency and setting time of cement increased as the percentage replacement of cement with CCA increased while the workability and density of concrete decreased as the percentage of CCA increased. There was a decrease in compressive strength when laterite was introduced to the concrete from 25.04 to 22.96N/mm2 after 28 days and a continual reduction in strength when CCA was further added from 10% to 40% at steps of 10%. Generally, the beam specimens exhibited majorly shear failure with visible diagonal cracks extending from support points to the load points. The corresponding central deflection in beams, due to two points loading, increased as the laterite was added to the concrete mix but reduced and almost approaching that of the control as 10% CCA was added. The deflection then increased as the CCA content further increased to 20%, 30% and 40% in the mix. It was also noted that the deflection of all percentage replacement including 40% CCA is less than the standard recommended maximum deflection of the beam. The optimal flexural strength occurred with 10% CCA content.

  12. Use of rice straw ash as substitute of feldspar in triaxial porcelain

    OpenAIRE

    Guzmán, Álvaro; Delvasto, Silvio; Sánchez, Enrique; Amigó Borrás, Vicente

    2013-01-01

    [EN] The substitution of raw materials for processing high energy consumption materials by agricultural and agro-industrial wastes causes a positive impacts on the environment preservation. One of these residues is rice straw, which according to FAO estimation, its annual production is about 600 million tons. In this research was studied the use of rice straw ash (RSA) as substitute of the use of feldspar in the whiteware production. Clay-feldspar-quartz porcelains are referred to...

  13. Injectable biphasic calcium phosphate cements as a potential bone substitute

    NARCIS (Netherlands)

    Sariibrahimoglu, K.; Wolke, J.G.C.; Leeuwenburgh, S.C.G.; Yubao, L.; Jansen, J.A.

    2014-01-01

    Apatitic calcium phosphate cements (CPCs) have been widely used as bone grafts due to their excellent osteoconductive properties, but the degradation properties are insufficient to stimulate bone healing in large bone defects. A novel approach to overcome the lack of degradability of apatitic CPC

  14. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    Science.gov (United States)

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  15. Use of hyghly reactive rice husk ash in the production of cement matrix reinforced with Green coconut fiber

    OpenAIRE

    Pereira, C.L.; Savastano, H. Jr; Paya Bernabeu, Jorge Juan; Santos, S. F.; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Soriano Martinez, Lourdes

    2013-01-01

    This study evaluated the influence of partial replacement of Portland cement by rice husk ash (RHA) to enable the use of green coconut husk fiber as reinforcement for cementitious matrix. The use of highly reactive pozzolanic ash contributes for decreasing the alkaline attack on the vegetable fiber, originated from waste materials. The slurry dewatering technique was used for dispersion of the raw materials in aqueous solution, followed by vacuum drainage of water and pressing for the product...

  16. Compressive Strength of Volcanic Ash/Ordinary Portland Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Olusola K. O.

    2010-01-01

    Full Text Available This study investigates the effect of partial replacement of cement with volcanic ash (VA on the compressive strength of laterized concrete. A total of 192 cubes of 150mm dimensions were cast and cured in water for 7, 14, 21, and 28 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively, while a control mix of 28-day target strength of 25 N/mm2 was adopted. The results show that the density and compressive strength of concrete decreased with increase in volcanic ash content. The 28-day, density dropped from 2390 kg/m3 to 2285 kg/m3 (i.e. 4.4% loss and the compressive strength from 25.08 N/mm2 to 17.98 N/mm2 (i.e. 28% loss for 0-30% variation of VA content with no laterite introduced. The compressive strength also decreased with increase in laterite content; the strength of the laterized concrete however increases as the curing age progresses.

  17. Experimental studies on effect of Date Seed Ash (DSA) on strength properties of cement sand mortar

    Science.gov (United States)

    Gunarani, G. I.; Chakkravarthy, S. P.

    2017-07-01

    The need for alternative material for the cement is arising and being compromised by many engineering researchers. However, the growing demand and surging prices of raw materials challenges the constructional field. India, being one of the largest agricultural economy, produces a quantitative volume of agro-waste that is being dumped. In the conventional concrete production, coarse aggregate (CA) plays an important filler material. The initial study on date seed as a replacement for CA was not successful. This study primarily focuses on Date seed ash as a replacement material for ordinary Portland cement. OPC was replaced by Date Palm Seed Ash (DPSA) in the ratio up to 10% in terms of 2% interval. The main objective of this paper was to study the variation of strength properties of mortar by DPSA in specified ratio along with curing period of 3,7,14 and 28 days. The stress strain behavior has indicated a significant improvement. The overall results indicated the increase in replacing ratio, decreases the strength properties. However the physical, chemical and mechanical properties increased gradually in strength in minimal ratio.

  18. Study on properties of rice husk ash and its use as cement replacement material

    Directory of Open Access Journals (Sweden)

    Ghassan Abood Habeeb

    2010-06-01

    Full Text Available This paper investigates the properties of rice husk ash (RHA produced by using a ferro-cement furnace. The effect of grinding on the particle size and the surface area was first investigated, then the XRD analysis was conducted to verify the presence of amorphous silica in the ash. Furthermore, the effect of RHA average particle size and percentage on concrete workability, fresh density, superplasticizer (SP content and the compressive strength were also investigated. Although grinding RHA would reduce its average particle size (APS, it was not the main factor controlling the surface area and it is thus resulted from RHA's multilayered, angular and microporous surface. Incorporation of RHA in concrete increased water demand. RHA concrete gave excellent improvement in strength for 10% replacement (30.8% increment compared to the control mix, and up to 20% of cement could be valuably replaced with RHA without adversely affecting the strength. Increasing RHA fineness enhanced the strength of blended concrete compared to coarser RHA and control OPC mixtures.

  19. Mechanical properties and leaching modeling of activated incinerator bottom ash in Portland cement blends.

    Science.gov (United States)

    Onori, Roberta; Polettini, Alessandra; Pomi, Raffaella

    2011-02-01

    In the present study the evolution of mechanical strength and the leaching behavior of major and trace elements from activated incinerator bottom ash/Portland cement mixtures were investigated. Chemical and mechanical activation were applied with the purpose of improving the reactivity of bottom ash in cement blends. Chemical activation made use of NaOH, KOH, CaCl(2) or CaSO(4), which were selected for the experimental campaign on the basis of the results from previous studies. The results indicated that CaCl(2) exhibited by far the best effects on the evolution of the hydration process in the mixtures; a positive effect on mechanical strength was also observed when CaSO(4) was used as the activator, while the gain in strength produced by KOH and NaOH was irrelevant. Geochemical modeling of the leaching solutions provided information on the mineral phases responsible for the release of major elements from the hardened materials and also indicated the important role played by surface sorption onto amorphous Fe and Al minerals in dictating the leaching of Pb. The leaching of the other trace metal cations investigated (Cu, Ni and Zn) could not be explained by any pure mineral included in the thermodynamic database used, suggesting they were present in the materials in the form of complex minerals or phase assemblages for which no consistent thermodynamic data are presently available in the literature. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium

    International Nuclear Information System (INIS)

    Goni, S.; Guerrero, A.; Lorenzo, M.P.

    2006-01-01

    The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 deg. C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D e ) (2.8e-09 cm 2 /s versus 2.2e-07 cm 2 /s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively)

  1. The Effect of Sodium Hydroxide Molarity on Strength Development of Non-Cement Class C Fly Ash Geopolymer Mortar

    Science.gov (United States)

    Wardhono, A.

    2018-01-01

    The use of fly ash as cement replacement material can overcome the environmental issues, especially the global warming problem caused by the greenhouse effect. This is attributed to the CO2 gas produced during the cement manufacturing process, which 1 ton of cement is equivalent to 1 ton CO2. However, the major problem of fly ash is the requirement of activators to activate the polymer reactions. The most common activator used in non-cement or geopolymer material is the combination of sodium hydroxide (NaOH) and sodium silicate. This study aims to identify the effect of NaOH molarity as activator on strength development of non-cement class C fly ash geopolymer mortar. The molarity variations of NaOH were 6 Molar (M), 8M, 10M, 12M, 14M and 15M. The compressive strength test was performed at the age of 3, 7 and 28 days in accordance with ASTM standard, and the specimens were cured at room temperature. The results show that the highest compressive strength was achieved by geopolymer mortar with a molarity of 12M. It exhibits a higher strength to that normal mortar at 28 days. However, the use of NaOH molarity more than 12M tends to decrease the strength of non-cement geopolymer mortar specimens.

  2. Sr-substituted bone cements direct mesenchymal stem cells, osteoblasts and osteoclasts fate.

    Directory of Open Access Journals (Sweden)

    Monica Montesi

    Full Text Available Strontium-substituted apatitic bone cements enriched with sodium alginate were developed as a potential modulator of bone cells fate. The biological impact of the bone cement were investigated in vitro through the study of the effect of the nanostructured apatitic composition and the doping of strontium on mesenchymal stem cells, pre-osteoblasts and osteoclasts behaviours. Up to 14 days of culture the bone cells viability, proliferation, morphology and gene expression profiles were evaluated. The results showed that different concentrations of strontium were able to evoke a cell-specific response, in fact an inductive effect on mesenchymal stem cells differentiation and pre-osteoblasts proliferation and an inhibitory effect on osteoclasts activity were observed. Moreover, the apatitic structure of the cements provided a biomimetic environment suitable for bone cells growth. Therefore, the combination of biological features of this bone cement makes it as promising biomaterials for tissue regeneration.

  3. Characterization of sugar cane bagasse ash as supplementary material for Portland cement

    Directory of Open Access Journals (Sweden)

    Janneth Torres Agredo

    2014-01-01

    Full Text Available Sugar Cane Bagasse is a by-product of the sugar agroindustry; it is partly used as fuel. However, bagasse ash (SCBA is considered waste, which creates a disposal problem. Furthermore, if sugar cane bagasse is burned under controlled conditions, the SCBA can be potentially reused. This paper considers the technical viability of using SCBA as a partial replacement for cement. Two samples of SCBA from a Colombian sugar industry were characterized. The chemical composition of the samples shows high percentages of silica, 76.3% and 63.2%. The mineralogical and morphological characteristics of the waste were determined by X-ray diffraction patterns (XRD, thermal analysis (TG/DTA and scanning electron microscopy (SEM. The pozzolanic activity of SCBA was evaluated using the Frattini test and the strength activity index test (SAI. The ASTM C618 defines an SAI of at least 75% as a requirement for classifying material as a pozzolan. This condition was achieved in the experiments performed. The results indicate that SCBA produced in the manufacture of commercial cements can be recycled for use as pozzolanic material. This supplementary material can partially replace cement and therefore reduce CO2 emissions.

  4. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials

    International Nuclear Information System (INIS)

    Wongkeo, Watcharapong; Thongsanitgarn, Pailyn; Pimraksa, Kedsarin; Chaipanich, Arnon

    2012-01-01

    Highlights: ► Autoclaved aerated concrete were produced using coal bottom ash as a cement replacement material. ► Coal bottom ash was found to enhance concrete strengths. ► Thermal conductivity of concrete was not significantly affected. ► X-ray diffraction and thermal analysis show tobermorite formation. -- Abstract: The bottom ash (BA) from Mae Moh power plant, Lampang, Thailand was used as Portland cement replacement to produce lightweight concrete (LWC) by autoclave aerated concrete method. Portland cement type 1, river sand, bottom ash, aluminium powder and calcium hydroxide (Ca(OH) 2 ) were used in this study. BA was used to replace Portland cement at 0%, 10%, 20% and 30% by weight and aluminium powder was added at 0.2% by weight in order to produce the aerated concrete. Compressive strength, flexural and thermal conductivity tests were then carried out after the concrete were autoclaved for 6 h and left in air for 7 days. The results show that the compressive strength, flexural strength and thermal conductivity increased with increased BA content due to tobermorite formation. However, approximately, 20% increase in both compressive (up to 11.61 MPa) and flexural strengths (up to 3.16 MPa) was found for mixes with 30% BA content in comparison to just around 6% increase in the thermal conductivity. Thermogravimetry analysis shows C–S–H formation and X-ray diffraction confirm tobermorite formation in bottom ash lightweight concrete. The use of BA as a cement replacement, therefore, can be seen to have the benefit in enhancing strength of the aerated concrete while achieving comparatively low thermal conductivity when compared to the results of the control Portland cement concrete.

  5. Evaluation of sulfate resistance of cement mortars containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2009-03-01

    In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.

  6. Leachability of Arsenic (As) Contaminated Landfill Soil Stabilised by Cement and Bagasse Ash

    Science.gov (United States)

    Azhar, A. T. S.; Azim, M. A. M.; Aziman, M.; Nabila, A. T. A.

    2016-11-01

    Contaminated soil with heavy metals, especially Arsenic (As) has become a major issue worldwide. As is reported to be a metal that affects human health and is related to have caused serious diseases that interrupts the nervous system, blood vessels and kidneys. However, proper treatment techniques such as Stabilization/Solidification (S/S) method can be employed and is capable of controlling these heavy metals from contaminating the soil strata and groundwater resources. This study is to investigate the leachability of Arsenic (As) in S/S method when bagasse ash (BA) is added to remedy contaminated Landfill soil. Cement is added at a proportion of 5%, 10%, 15% and 20% in sample weights without BA while in another sample; the cement replaces BA at a proportion of 2.5%, 5%, 7.5%. and 10%. All samples were allowed to harden and cured at room temperature for 7, 14 and 28 days. The effectiveness of the treatment was assessed by conducting Synthetic Precipitation Leaching Procedure (SPLP). Results indicate that pH and leachability are found to have major influence on metal release. The final pH after leaching tests showed improvements especially samples containing BA. In addition, the concentration of As in the SPLP test after the curing period of 28 days were detected to be below the leachability limit as regulated by WHO's Guidelines for Drinking-water Quality. As a whole, the results obtained from testing showed that sample containing 10% cement with 10% BA is the most effective and is the optimum mix since this proportion succeeded in minimising the leachability of As at total reduction by 100%, In conclusion, partial replacement of cement with BA in the binder system has been successful in reducing the leachability.

  7. Non-destructive analysis of chlorine in fly ash cement concrete

    International Nuclear Information System (INIS)

    Naqvi, A.A.; Garwan, M.A.; Nagadi, M.M.; Maslehuddin, M.; Al-Amoudi, O.S.B.; Khateeb-ur-Rehman

    2009-01-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  8. Non-destructive analysis of chlorine in fly ash cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-08-11

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022{+-}0.007 and 0.038{+-}0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  9. The durability of concrete containing a high-level of fly ash or a ternary blend of supplementary cementing materials

    Science.gov (United States)

    Gilbert, Christine M.

    The research for this study was conducted in two distinct phases as follows: Phase 1: The objective was to determine the effect of fly ash on the carbonation of concrete. The specimens made for this phase of the study were larger in size than those normally used in carbonation studies and were are meant to more accurately reflect real field conditions. The results from early age carbonation testing indicate that the larger size specimens do not have a measured depth of carbonation as great as that of the smaller specimens typically used in carbonation studies at the same age and under the same conditions. Phase 2: The objective was to evaluate the performance of ternary concrete mixes containing a ternary cement blend consisting of Portland cement, slag and Type C fly ash. It was found that concrete mixtures containing the fly ash with the lower calcium (CaO) content (in binary or ternary blends) provided superior durability performance and resistance to ASR compared to that of the fly ash with the higher CaO content. Ternary blends (regardless of the CaO content of the fly ash) provided better overall durability performance than binary blends of cementing materials or the control.

  10. Design of ceramic-based cements and putties for bone graft substitution

    Directory of Open Access Journals (Sweden)

    M Bohner

    2010-07-01

    Full Text Available In the last 15 years, a large number of commercial ceramic-based cements and putties have been introduced as bone graft substitutes. As a result, large efforts have been made to improve our understanding of the specific properties of these materials, such as injectability, cohesion, setting time (for cements, and in vivo properties. The aim of this manuscript is to summarize our present knowledge in the field. Instead of just looking at scientific aspects, industrial needs are also considered, including mixing and delivery, sterilization, and shelf-life.

  11. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash.

    Science.gov (United States)

    Yin, Chun-Yang; Mahmud, Hilmi Bin; Shaaban, Md Ghazaly

    2006-10-11

    This paper presents the findings of a study on solidification/stabilization (S/S) of lead-contaminated soil using ordinary Portland cement (OPC) and rice husk ash (RHA). The effects of varying lead concentrations (in the form of nitrates) in soil samples on the physical properties of their stabilized forms, namely unconfined compressive strength (UCS), setting times of early mixtures and changes in crystalline phases as well as chemical properties such as leachability of lead, pH and alkalinity of leachates are studied. Results have indicated that usage of OPC with RHA as an overall binder system for S/S of lead-contaminated soils is more favorable in reducing the leachability of lead from the treated samples than a binder system with standalone OPC. On the other hand, partial replacement of OPC with RHA in the binder system has reduced the UCS of solidified samples.

  12. Hydraulic activity of belite cement from class C coal fly ash. Effect of curing and admixtures

    Directory of Open Access Journals (Sweden)

    Guerrero, A.

    2006-09-01

    Full Text Available The effect of curing method and a water-reducing additive on the hydraulic activity of high lime content (ASTM type C fly ash belite cement (FABC-2-W is reported. A class C fly ash was subjected to hydrothermal treatment and subsequent calcination to synthesize FABC. Hydraulic activity was evaluated in the cement paste over 180 days from the physically bound water content as determined by thermogravimetric analysis and the degree of hydration, in turn found with X-ray diffraction (XRD analysis. Mechanical strength, porosity and pore size distribution were also studied in equivalent mortar samples.En este trabajo se discute la influencia del tipo de curado y de un aditivo reductor de la demanda de agua en la actividad hidráulica de un cemento belítico de cenizas volantes de alto contenido en cal denominado (CBCV-2-A. Este cemento ha sido sintetizado por una ruta húmeda hidrotermal con posterior calcinación, empleando ceniza volante de alto contenido en cal (ASTM tipo C como materia prima. La actividad hidráulica se ha estudiado en la pasta de cemento, durante un periodo de 180 días, por medio del contenido de agua combinada, determinada por análisis termogravimétrico, y el grado de hidratación por difracción de rayos X (DRX. La resistencia mecánica y la porosidad total y distribución de tamaño de poro se han estudiado en probetas equivalentes de mortero

  13. Palm Oil Fuel Ash (POFA and Eggshell Powder (ESP as Partial Replacement for Cement in Concrete

    Directory of Open Access Journals (Sweden)

    Mohamad Mazizah Ezdiani

    2018-01-01

    Full Text Available This study is an attempt to partially replace Ordinary Portland cement (OPC in concrete with palm oil fuel ash (POFA and eggshell powder (ESP. The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  14. Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete

    Science.gov (United States)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.

    2018-03-01

    This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  15. Solidification of Simulated Radioactive Incineration Ash by Alkali-activated Slag Composite Cement

    International Nuclear Information System (INIS)

    Li changcheng; Cui Qi; Zhao Yanhong; Pan Sheqi

    2010-01-01

    Simulated radioactive incineration ash (SRIA) was solidified by alkali-activated slag composite cement (AASCC) modified by metakaolin, zeolite, and polymer emulsion powder. The results show that the performance of solidified waste form containing 40% SRIA meets the requirements of GB 14569.1-93. The lowest leaching rate of Cs + on 42nd days reaches 1.32 x 10 -4 cm/d (GB 7023-86,25 degree C), cumulative leach percentage is only 0.041 cm. Also, the lowest 28 days compressive strength of solidified waste form is 45.6 MPa, and later strength growth is still high. The fast setting characteristic of AASCC overcomes effectively the disadvantageous influence caused by some components in SRIA on hydration of cement. The compressive strength of solidified waste is enhanced remarkably, and the ability of immobilizing radionuclide ions is also improved. This is mainly due to synergistic effect between metakaolin and zeolite. Polymer modification also improves the performance of solidified waste form significantly. The three-dimensional polymer network structure formed by emulsion powder in solidified waste form enhances its toughness and impact resistance, and the durability is improved by reducing interconnected pores and optimizing pore structure. However,it also results in reduction in compressive strength. Thus, it is concluded that the suitable dosage percentage is 5%. (authors)

  16. Rice husk ash (RHA) as a partial cement replacement in modifying peat soil properties

    Science.gov (United States)

    Daud, Nik Norsyahariati Nik; Daud, Mohd Nazrin Mohd; Muhammed, Abubakar Sadiq

    2018-02-01

    This paper describes the effect of rice husk ash (RHA) and ordinary Portland cement (OPC) as a potential binder for modifying the properties of peat soil. The amounts RHA and OPC added to the peat soil sample, as percentage of the dry soil mass were in the range of 10-15% and 15%, respectively. Observations were made for the changes in the properties of the soil such as maximum dry density (MDD), optimum moisture content (OMC) and shear strength. Scanning Electron Micrograph-Energy Dispersive X-Ray (SEM-EDX) test were also conducted to observe the microstructure of treated and untreated peat soil. The results show that the modified soil of MDD and OMC values are increased due to the increment amount of binder material. Shear strength values of modified peat showing a good result by assuming that it is relative to the formation of major reaction products such as calcium silicate hydrate (C-S-H). The presence of C-S-H formation is indicated by the results produced from microstructural analysis of peat before and after modification process. This depicts the potential usage of RHA as a partial cement replacement in peat soil which is also improving its engineering properties.

  17. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    Science.gov (United States)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  18. Physicochemical study of bagasse and bagasse ash from the sugar industries of NWFP, pakistan and its recycling in cement manufacturing

    International Nuclear Information System (INIS)

    Ali, K.; Amin, N.U.; Shah, M.T.

    2009-01-01

    Bagasse and bagasse ash, obtained from the local sugar mills of North West Frontier Province (NWFP), Pakistan, were analyzed for both physical and chemical parameters. Among the physical parameters, the moisture, ash contents, volatile matter, loss on ignition, and calorific value have been determined while the chemical constituents such as SiO/sub 2/, AI/sub 2/O/sub 3/ Fe/sub 2/O/sub 3/ CaO, MgO, Na/sub 2/O, K/sub 2/O, carbon and sulfur were also determined in both baggase and baggase ash. The physicochemical characterization of baggase ash suggests that it can be used as a part of the cement admixture, which could be cost effective and environmentally sustainable. (author)

  19. Impedance Spectroscopy Study of the Effect of Environmental Conditions on the Microstructure Development of Sustainable Fly Ash Cement Mortars.

    Science.gov (United States)

    Ortega, José Marcos; Sánchez, Isidro; Climent, Miguel Ángel

    2017-09-25

    Today, the characterisation of the microstructure of cement-based materials using non-destructive techniques has become an important topic of study, and among them, the impedance spectroscopy has recently experienced great progress. In this research, mortars with two different contents of fly ash were exposed to four different constant temperature and relative humidity environments during a 180-day period. The evolution of their microstructure was studied using impedance spectroscopy, whose results were contrasted with mercury intrusion porosimetry. The hardening environment has an influence on the microstructure of fly ash cement mortars. On one hand, the impedance resistances R₁ and R₂ are more influenced by the drying of the materials than by microstructure development, so they are not suitable for following the evolution of the porous network under non-optimum conditions. On the other hand, the impedance spectroscopy capacitances C₁ and C₂ allow studying the microstructure development of fly ash cement mortars exposed to those conditions, and their results are in accordance with mercury intrusion porosimetry ones. Finally, it has been observed that the combined analysis of the abovementioned capacitances could be very useful for studying shrinkage processes in cement-based materials kept in low relative humidity environments.

  20. Engineering properties of cement mortar with pond ash in South Korea as construction materials: from waste to concrete

    Science.gov (United States)

    Jung, Sang Hwa; Kwon, Seung-Jun

    2013-09-01

    Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.

  1. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    International Nuclear Information System (INIS)

    Wei Jie; Wang Jiecheng; Liu Xiaochen; Ma Jian; Liu Changsheng; Fang Jing; Wei Shicheng

    2011-01-01

    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H 3 PO 4 ) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  2. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    Energy Technology Data Exchange (ETDEWEB)

    Wei Jie [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang Jiecheng; Liu Xiaochen [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China); Ma Jian [Hospital of Stomatology, Tongji University, Shanghai 200072 (China); Liu Changsheng [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Fang Jing, E-mail: biomater2006@yahoo.com.cn [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China); Wei Shicheng, E-mail: nic7505@263.net [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China) and School and Hospital of Stomatology, Peking University, Beijing 100081 (China)

    2011-06-15

    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H{sub 3}PO{sub 4}) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  3. Re-use of stabilised flue gas ashes from solid waste incineration in cement-treated base layers for pavements

    DEFF Research Database (Denmark)

    Cai, Zuansi; Jensen, Dorthe Lærke; Christensen, Thomas Højlund

    2003-01-01

    Fly ash from coal-burning power plants has been used extensively as a pozzolan and fine filter in concrete for many years. Laboratory experiments were performed investigating the effect of substituting the coal-based fly ash with chemically stabilised flue gas ashes (FGA) from waste incineration...... more than 5 MPa after 7 days. The tank leaching tests revealed that leaching of heavy metals was not significantly affected by the use of chemically stabilised flue gas ashes from waste incineration. Assuming that diffusion controls the leaching process it was calculated that less than 1% of the metals...... would teach during a 100-year period from a 0.5 m thick concrete stab exposed to water on one side. Leaching of the common ions Ca, Cl, Na and SO4 was increased 3-20 times from the specimens with chemically stabilised flue gas ashes from waste incineration. However, the quantities leached were still...

  4. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters.

    Science.gov (United States)

    Chowdhury, S; Maniar, A; Suganya, O M

    2015-11-01

    In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  5. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters

    Directory of Open Access Journals (Sweden)

    S. Chowdhury

    2015-11-01

    Full Text Available In this study, Wood Ash (WA prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45 and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20% including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM, strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.

  6. Exploratory characterization of volcanic ash sourced from Uganda as a pozzolanic material in portland cement concrete

    NARCIS (Netherlands)

    Buregyeya, A.; Quercia Bianchi, G.; Spiesz, P.R.; Florea, M.V.A.; Nassingwa, R.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    The need for alternative cementing materials to ordinary Portland cement (OPC) has promoted characterization research on pozzolana as an important ingredient in cement production. In Uganda, natural pozzolana application in cement production is done by only two producers of Portland cement and at a

  7. Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash

    Directory of Open Access Journals (Sweden)

    Zornoza, E.

    2010-12-01

    Full Text Available The study described in this article explored the effect of adding different types of carbon materials (graphite powder and three types of carbon fibre, fly ash (with 5.6%, 15.9% and 24.3% Fe2O3, and a mix of both on electromagnetic interference (EMI shielding in Portland cement pastes. The parameters studied included the type and aspect ratio of the carbonic material, composite material thickness, the frequency of the incident electromagnetic radiation and the percentage of the magnetic fraction in the fly ash. The findings showed that the polyacrylonitrile-based carbon fibres, which had the highest aspect ratio, provided more effective shielding than any of the other carbon materials studied. Shielding was more effective in thicker specimens and at higher radiation frequencies. Raising the magnetic fraction of the fly ash, in turn, also enhanced paste shielding performance. Finally, adding both carbon fibre and fly ash to the paste resulted in the most effective EMI shielding as a result of the synergies generated.

    En el presente trabajo se investiga la influencia de la adición de diferentes tipos de materiales carbonosos (polvo de grafito y 3 tipos de fibra de carbono, de una ceniza volante con diferentes contenidos de fase magnética (5,6%, 15,9% y 24,3% de Fe2O3 y de una mezcla de ambos, sobre la capacidad de apantallar interferencias electromagnéticas de pastas de cemento Pórtland. Entre los parámetros estudiados se encuentra: el tipo de material carbonoso, la relación de aspecto del material carbonoso, el espesor del material compuesto, la frecuencia de la radiación electromagnética incidente y el porcentaje de fracción magnética en la ceniza volante. Los resultados obtenidos indican que entre los materiales carbonosos estudiados son las fibras de carbono basadas en poliacrilonitrilo con una mayor relación de aspecto las que dan mejores resultados de apantallamiento. Al aumentar

  8. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement

    International Nuclear Information System (INIS)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-01-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  9. Ternary Blends of High Aluminate Cement, Fly ash and Blast-furnace slag for Sewerage Lining Mortar

    Science.gov (United States)

    Chao, L. C.; Kuo, C. P.

    2018-01-01

    High aluminate cement (HAC), fly ash (FA) and blast-furnace slag (BFS) have been treated sustainable materials for the use of cement products for wastewater infrastructure due to their capabilities of corrosion resistance. The purpose of this study is to optimize a ternary blend of above mentioned materials for a special type of mortar for sewerage lining. By the using of Taguchi method, four control parameters including water/cementitious material ratio, mix water content, fly ash content and blast-furnace slag content were considered in nine trial mix designs in this study. By evaluating target properties including (1) maximization of compressive strength, (2) maximization of electricity resistance and (3) minimization of water absorption rate, the best possible levels for each control parameter were determined and the optimal mix proportions were verified. Through the implementation of the study, a practical and completed idea for designing corrosion resistive mortar comprising HAC, FA and BSF is provided.

  10. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    Directory of Open Access Journals (Sweden)

    López-Zaldívar, O.

    2015-09-01

    Full Text Available This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.Este artículo presenta los resultados del desarrollo de morteros mejorados con la incorporación de cenizas volantes de residuos sólidos urbanos inertizadas en forma de carbonatos. Además se consigue la encapsulación de un residuo peligroso. Las cenizas presentan una alta concentración de cloruros, Zn y Pb. Se ha desarrollado un proceso de estabilización con NaHCO3 reduciendo en un 99% el contenido de cloruros. Los morteros reemplazan un 10% en peso del árido por cenizas tratadas. Se han analizado sus propiedades físico/mecánicas y la presencia de Zn, Pb, Cu y Cd. Se demuestra un mejor comportamiento de los morteros de CAC y CSA que los de CEM-I y CEM-II y se mitiga el lixiviado de metales pesados. Los resultados son significativos en los morteros CAC al mejorar las resistencias de los de referencia en un 25%. Los morteros desarrollados son de curado rápido adecuados para la reparación de estructuras o soleras industriales.

  11. Effects of substituting D2O for H2O on SANS measurements of hydrating cement

    International Nuclear Information System (INIS)

    Sabine, T.M.; Prior, M.J.

    2002-01-01

    Full text: Small angle neutron scattering (SANS) measurements of cement have been found useful in the investigation of the shape and growth of particles formed during hydration. Calorimetric measurements of hydrating cement samples have shown that the substitution of D 2 O for H 2 O has the effect of slowing the hydration process. In order to throw some light on this phenomenon, we have measured SANS profiles from cement samples hydrating in H 2 O and D 2 O. This involved obtaining SANS profiles at half-hourly intervals during the initial stage of hydration. The only instruments capable of this at present are located at the Hahn-Meitner Institute in Berlin and at the Nuclear Physics Institute at Rez near Prague. Initial experiments carried out on the V12a UltraSANS diffractometer at The Hahn-Meitner Institute were only partially successful owing to excessive multiple scattering in the D 2 O samples. Subsequent measurements were therefore carried out on the similar instrument at Rez near Prague which operates at a shorter neutron wavelength. Results from these measurements show profound differences in the evolution of cements hydrating in D 2 O and those hydrating in H 2 O

  12. Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, P.; Silsbee, M.R.; Roy, D.M.

    1999-08-01

    The study describes the preparation and characterization of an environmentally friendly cement with performance characteristics similar to those of Portland cement, from a lime kiln bag house dust, a low-calcium fly ash, and a scrubber sludge. Promising preliminary results show the formation of relatively low-temperature phases calcium sulfoaluminate (4CaO{center{underscore}dot}3Al{sub 2}O{sub 3}{center{underscore}dot}SO{sub 3}) and dicalcium silicate (2CaO{center{underscore}dot}SiO{sub 2}) at {approximately} 1,250 C if nodulized raw means used for clinker preparation and at 1,175 C if powdered raw meal is used as compared to the {approximately} 1,500 C sintering temperature required for Portland cement. Phases of the developed cements were predicted using modified Bogue calculations. Isothermal calorimetric measurements indicate the hydration properties of the cements are comparable to ordinary Portland cement. Mechanical properties and microstructural evaluations also were carried out.

  13. Use of rice straw ash as substitute of feldspar in triaxial porcelain

    International Nuclear Information System (INIS)

    Alvaro Guzman, A.; Silverio Delvasto, A.; Enrique Sanchez, V.; Vicente Amigo, B.

    2013-01-01

    The substitution of raw materials for processing high energy consumption materials by agricultural and agro-industrial wastes causes a positive impacts on the environment preservation. One of these residues is rice straw, which according to FAO estimation, its annual production is about 600 million tons. In this research was studied the use of rice straw ash as substitute of the use of feldspar in the white ware production. Clay-feldspar-quartz porcelains are referred to as triaxial white ware. Specimens of semidry triaxial mixtures, where feldspar was substituted for different percentages of CTA, were prepared by uniaxial pressing, followed by drying and sintering. Physical and mechanical properties of sintered bodies were evaluated. The porosity and the compressive strength of the fired pieces do increase with additions of up to 75% of CTA in substitution of feldspar. Their mineralogical phases were determined by DRX and SEM; grains of quartz, and needles of primary and secondary mullite were identified in a vitreous phase. It was concluded that feldspar can be substituted positively by CTA in white ware pastes. (Author) 22 refs.

  14. Microbial Activity in Peat Soil Treated With Ordinary Portland Cement (OPC) and Coal Ashes

    Science.gov (United States)

    Rahman, J. A.; Mohamed, R. M. S. R.; Al-Gheethi, A. A.

    2018-04-01

    Peat soil is a cumulative of decayed plant fragment which developed as a result of microbial activity. The microbes degrade the organic matter in the peat soils by the production of hydrolysis enzyme. The least decomposed peat, known as fibric peat has big particles and retain lots of water. This made peat having high moisture content, up to 1500 %. The most decomposed peat known as sapric peat having fines particles and less void ratio. The present study aimed to understand the effects of solidification process on the bacterial growth and cellulase (CMCase) enzyme activity. Two types of mixing were designed for fibric, hemic and sapric peats; (i) Ordinary Portland cement (OPC) at an equal amount of dry peat, with 25 % of fly ash (FA) and total of coarse particle, a combination of bottom ash and fibre of 22 – 34 %, (ii) fibric peat was using water-to-binder ratio (w/b) = 1, 50% OPC, 25 % bottom ash (BA) and 25 % FA. For hemic and sapric peat, w/b=3 with 50 % OPC and 50 % BA were used. All samples were prepared triplicates, and were cured for 7, 14, 28 and 56 days in a closed container at room temperature. The results revealed that the first mix design giving a continuous strength development. However, the second mix design shows a decreased in strength pattern after day 28. The influence of the environment factors such as alkaline pH, reduction of the water content and peat temperature has no significant on the reduction amount of native microbes in the peat. The microbes survived in the solidified peat but the amount of microbes were found reduced for all types of mixing Fibric Mixed 1 (FM1), Hemic Mixed 1(HM1) and Sapric Mixed 1 (SM1) were having good strength increment for about 330 – 1427 % with enzymatic activity recorded even after D56. Nevertheless, with increase in the strength development through curing days, the enzymatic activities were reduced. For the time being, it can be concluded that the microbes have the ability to adapt with new environment

  15. The incorporation of wood waste ash as a partial cement replacement material for making structural grade concrete: An overview

    Directory of Open Access Journals (Sweden)

    Swaptik Chowdhury

    2015-06-01

    Full Text Available With increasing industrialization, the industrial byproducts (wastes are being accumulated to a large extent, leading to environmental and economic concerns related to their disposal (land filling. Wood ash is the residue produced from the incineration of wood and its products (chips, saw dust, bark for power generation or other uses. Cement is an energy extensive industrial commodity and leads to the emission of a vast amount of greenhouse gases, forcing researchers to look for an alternative, such as a sustainable building practice. This paper presents an overview of the work and studies done on the incorporation of wood ash as partial replacement of cement in concrete from the year 1991 to 2012. The aspects of wood ash such as its physical, chemical, mineralogical and elemental characteristics as well as the influence of wood ash on properties such as workability, water absorption, compressive strength, flexural rigidity test, split tensile test, bulk density, chloride permeability, freeze thaw and acid resistance of concrete have been discussed in detail.

  16. Mechanism of alkalinity lowering and chemical equilibrium model of high fly ash silica fume cement

    International Nuclear Information System (INIS)

    Hoshino, Seiichi; Honda, Akira; Negishi, Kumi

    2014-01-01

    The mechanism of alkalinity lowering of a High Fly ash Silica fume Cement (HFSC) under liquid/solid ratio conditions where the pH is largely controlled by the soluble alkali components (Region I) has been studied. This mechanism was incorporated in the chemical equilibrium model of HFSC. As a result, it is suggested that the dissolution and precipitation behavior of SO 4 2- partially contributes to alkalinity lowering of HFSC in Region I. A chemical equilibrium model of HFSC incorporating alkali (Na, K) adsorption, which was presumed as another contributing factor of the alkalinity lowering effect, was also developed, and an HFSC immersion experiment was analyzed using the model. The results of the developed model showed good agreement with the experiment results. From the above results, it was concluded that the alkalinity lowering of HFSC in Region I was attributed to both the dissolution and precipitation behavior of SO 4 2- and alkali adsorption, in addition to the absence of Ca(OH) 2 . A chemical equilibrium model of HFSC incorporating alkali and SO 4 2- adsorption was also proposed. (author)

  17. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk

    2015-08-15

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on {sup 25}Mg, {sup 27}Al, {sup 29}Si, {sup 31}P and {sup 39}K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC.

  18. THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-09-21

    The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, heat of hydration and total porosity were developed to predict the values of these properties. These linear models used only statistically significant compositional and operational factors and provided insight into those factors that control these properties.

  19. Ultrasonic characterization of GRC with high percentage of fly ash substitution.

    Science.gov (United States)

    Genovés, V; Gosálbez, J; Miralles, R; Bonilla, M; Payá, J

    2015-07-01

    New applications of non-destructive techniques (NDT) with ultrasonic tests (attenuation and velocity by means of ultrasonic frequency sweeps) have been developed for the characterization of fibre-reinforced cementitious composites. According to new lines of research on glass-fibre reinforced cement (GRC) matrix modification, two similar GRC composites with high percentages of fly ash and different water/binder ratios will be studied. Conventional techniques have been used to confirm their low Ca(OH)(2) content (thermogravimetry), fibre integrity (Scanning Electron Microscopy), low porosity (Mercury Intrusion Porosimetry) and good mechanical properties (compression and four points bending test). Ultrasound frequency sweeps allowed the estimation of the attenuation and pulse velocity as functions of frequency. This ultrasonic characterization was correlated successfully with conventional techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Inorganic contaminants attenuation in acid mine drainage by fly ash and fly ash-ordinary Portland cement (OPC) blends : column experiments

    International Nuclear Information System (INIS)

    Gitari, W.M.; Petrik, L.F.; Etchebers, O.; Key, D.L.; Okujeni, C.

    2010-01-01

    The infiltration of acid mine drainage (AMD) material into mine voids is one of the environmental impacts of underground coal mining. In this study, the mitigation of AMD in a mine void was simulated in laboratory conditions. Various mixtures of fly ash, solid residues, and Portland cement were added to packed columns over a 6-month period. The fly ash additions generated near-neutral to alkaline pH levels, which in turn induced precipitation, co-precipitation, and adsorption contaminant attenuation mechanisms. A modelling study demonstrated that the precipitation of ferrihydrite, Al-hydroxides, Al-oxyhydroxysulphates, gypsum, ettringite, manganite, and rhodochrosite lowered contaminant levels. Results of the study indicated that the pH regime and acidity level of the AMD strongly influenced both the leaching of the toxic trace elements as well as the attenuation of the AMD. 3 refs., 2 figs.

  1. Application of the electrical characterization to the study of the hydrated phases of the cement with coal bottom ash; Aplicacion de la caracterizacion electrica al estudio de las fases hidratadas de cemento con adicion de escorias de centrales termicas

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, E.; Frutos, J. de; Alvaro, A. M.

    2014-02-01

    The present paper investigates the influence of using Bottom and Fly Ash as partial replacement of cement in the hydration process. Through measurements of electrical impedance spectroscopy (EIS) and X -ray diffraction (XRD), we analyze from the early stages to the hydration process to the end. Values of EIS, XRD and its relation, are used to determine transformation of hydrated phases, and for each of the substitutions, is indicated as modified the hydrated phase as a function of time and compared it with the reference material. It also proves the relevance of using EIS measures in real time, and as non destructive testing to characterize the hydration process of these materials. (Author)

  2. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained by...... on assumptions of degree of reaction and product densities gave for plain cement pastes results comparable to MIP data.......Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...

  3. UTILIZATION OF TORAY FLY ASH AS FILLER SUBSTITUTION IN THE HOT ROLLED SHEET-WEARING COURSE (HRS-WC MIXTURE

    Directory of Open Access Journals (Sweden)

    F. Candra

    2012-02-01

    Full Text Available In road construction materials, the utilization of fly ash as additive materials is limited and also small in quantity, while the disposal of fly ash is quite high. An abundance of fly ash can be found at PT Toray Company in Jakarta and Surabaya. Toray fly ash is disposed coal ash resulting from coal-fired electricity generating power plants. Toray fly ash in this research is used as substitute mineral filler in asphalt paving mixtures. Research on utilization of Toray fly ash as filler is conducted in the Hot Rolled Sheet – Wearing Course Mixture.  Filler content in the HRS –WC mixture is 9%. Variations of Toray fly ash in the mixture tested are 0%, 25%, 50%, 75%, 100% and the variations of asphalt content are 6%, 6.5%, 7%, 7.5%, 8%. Marshall test is  performed to determine the Optimum Asphalt Content  and Marshall Stability, Indirect Tensile Strength (ITS test and Tensile Strength Ratio (TSR to select the optimum Toray fly ash utilization in the mixture based on the moisture susceptibility of specimens. The research results show that in variations of 0%, 25%, 50%, 75% and 100% Toray fly ash in the HRS-WC Mixture, the Optimum Asphalt Contents are at 6.8%, 7.0%, 7.0%, 7.1% and 7.6%  and Marshall Stability values of the variations are 1649 kg, 1541 kg, 1568 kg, 1678 kg, 1718 kg respectively. TSR values in variations of Toray fly ash are 98.32%, 90.28%, 89.38%, 87.62%, 64.71% respectively, with Minimum TSR value required is 80%. Based on the overall parameters, the optimum Toray fly ash utilization in the HRS-WC Mixture recommended is 75% of Toray fly ash at 7.1% Optimum Asphalt Content.

  4. Properties of fresh and hardened sustainable concrete due to the use of palm oil fuel ash as cement replacement

    Science.gov (United States)

    Hamada, Hussein M.; Jokhio, Gul Ahmed; Mat Yahaya, Fadzil; Humada, Ali M.

    2018-04-01

    Palm oil fuel ash (POFA) is a by-product resulting from the combustion of palm oil waste such as palm oil shell and empty fruit bunches to generate electricity in the palm oil mills. Considerable quantities of POFA thus generated, accumulate in the open fields and landfills, which causes atmospheric pollution in the form of generating toxic gases. Firstly, to protect the environment; and secondly, having excellent properties for this purpose; POFA can be and has been used as partial cement replacement in concrete preparation. Therefore, this paper compiles the results obtained from previous studies that address the properties of concrete containing POFA as cement replacement in fresh and hardened states. The results indicate that there is a great potential to using POFA as cement replacement because of its ability to improve compressive strength, reduce hydration heat of cement mortar and positively affect other fresh and hardened concrete properties. The paper recommends that conducting further studies to exploit high volume of POFA along with other additives as cement replacement while maintaining high quality of concrete can help minimize CO2 emissions due to concrete.

  5. Using Cementitious Materials Such as Fly Ash to Replace a Part of Cement in Producing High Strength Concrete in Hot Weather

    Science.gov (United States)

    Turuallo, Gidion; Mallisa, Harun

    2018-03-01

    The use of waste materials in concrete gave many advantages to prove the properties of concrete such as its workability, strength and durability; as well to support sustaianable development programs. Fly ash was a waste material produced from coal combustion. This research was conducted to find out the effect of fly ash as a part replacement of cement to produce high strength concrete. The fly ash, which was used in this research, was taken from PLTU Mpanau Palu, Central Sulawesi. The water-binder ratio used in this research was 0.3 selected from trial mixes done before. The results of this research showed that the strength of fly ash concretes were higher than concrete with PCC only. The replacement of cement with fly ash concrete could be up to 20% to produce high strength concrete.

  6. Potential use of sewage sludge ash (SSA as a cement replacement in precast concrete blocks

    Directory of Open Access Journals (Sweden)

    Pérez-Carrión, M.

    2014-03-01

    Full Text Available The present study explored the technological feasibility of re-using sewage sludge ash (SSA as a Portland cement replacement in commercially manufactured pre cast concrete blocks. The blocks analysed were made to the guidelines laid down in Spain’s National Plan for Waste Water Treatment Plant Sludge, 2001–2006, and European Union specifications (CE marking for such products. Performance was compared in three families of blocks, with 0, 10 and 20% SSA. The findings proved that SSA is apt for pre cast concrete block manufacture and that, in addition to the economic and environmental benefits afforded, its use would improve certain of the properties of conventional block.El objetivo de esta investigación es estudiar el uso potencial de las cenizas de lodos de depuradora (CLD, como sustitución del cemento Portland en bloques de hormigón prefabricados, de forma que se pueda lograr una revalorización de este material de desecho mediante este procedimiento. La metodología utilizada en este trabajo se rige por las directrices del Plan Nacional Español de Lodos de Aguas Residuales de 2001–2006, y por las exigencias del Consejo Europeo (marcado CE, que es obligatorio para este tipo de productos. Se han utilizado dos niveles de sustitución de cemento (10% y 20%, y todos los resultados han sido referidos a las muestras control. Los resultados obtenidos muestran que es posible utilizar una sustitución parcial del cemento por CLD, en la fabricación de bloques de hormigón prefabricados, y por lo tanto, se pueden conseguir beneficios económicos y ambientales, así como la mejora de una serie de propiedades.

  7. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    Science.gov (United States)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  8. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash.

    Science.gov (United States)

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-11

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the "gel/space ratio" descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  9. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash

    Directory of Open Access Journals (Sweden)

    Mengxue Wu

    2017-01-01

    Full Text Available In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the “gel/space ratio” descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD. The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  10. Properties of palm oil fuel ash cement sand brick containing pulverized cockle shell as partial sand replacement

    Science.gov (United States)

    Mat Aris, S.; Muthusamy, K.; Uzer, A.; Ahmad, S. Wan

    2018-04-01

    Environmental pollution caused by the disposal of solid wastes generated from both palm oil industry and cockle shell trade has motivated researches to explore the potential of these wastes. Integrating these wastes in production of construction material is one of the ways to reduce amount of waste thrown at dumping area. Thus, the present investigation investigates the performance of palm oil fuel ash (POFA) cement sand brick containing pulverized cockle shell as partial fine aggregate replacement. All mixes used contain 20% of POFA as partial cement replacement. Total of six mixes were prepared by adding a range of pulverized cockle shell that is 0%, 10%, 20%, 30%, 40% and 50% as partial sand replacement. The mixes were prepared in form of brick. All the water cured samples were tested for compressive strength and flexural strength until 28 days. Findings show that brick produced using 20% pulverized cockle shell exhibit the highest compressive strength and flexural strength also the lowest water absorption value.

  11. Valorisation of sugarcane bagasse ash (SCBA with high quartz content as pozzolanic material in Portland cement mixtures

    Directory of Open Access Journals (Sweden)

    A. M. Pereira

    2018-04-01

    Full Text Available Portland cement (OPC production is one of the most contaminating greenhouse gas producing activities. In order to reduce OPC consumption, several alternatives are being assessed, and the use of pozzolanic material is one of them. This paper presents study on the reactivity of sugarcane bagasse ash (SCBA, a residue from sugarcane industry, as a pozzolanic material. In order to evaluate SCBA reactivity, it was mixed in pastes with hydrated lime and OPC, which were microstructurally characterised. These studies showed that SCBA presents some pozzolanic characteristics. Studies on mortars in which OPC was replaced by SCBA in the range 10–30% were also carried out. Replacement in the range 15–20% yielded the best behaviour in terms of compressive strength. Finally, it can be concluded this ash could be valorised despite its relative low pozzolanic reactivity.

  12. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes.

    Science.gov (United States)

    Clark, Malcolm W; Despland, Laure M; Lake, Neal J; Yee, Lachlan H; Anstoetz, Manuela; Arif, Elisabeth; Parr, Jeffery F; Doumit, Philip

    2017-04-01

    Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia) where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α -quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product.

  13. High-efficiency cogeneration boiler bagasse-ash geochemistry and mineralogical change effects on the potential reuse in synthetic zeolites, geopolymers, cements, mortars, and concretes

    Directory of Open Access Journals (Sweden)

    Malcolm W. Clark

    2017-04-01

    Full Text Available Sugarcane bagasse ash re-utilisation has been advocated as a silica-rich feed for zeolites, pozzolans in cements and concretes, and geopolymers. However, many papers report variable success with the incorporation of such materials in these products as the ash can be inconsistent in nature. Therefore, understanding what variables affect the ash quality in real mills and understanding the processes to characterise ashes is critical in predicting successful ash waste utilisation. This paper investigated sugarcane bagasse ash from three sugar mills (Northern NSW, Australia where two are used for the co-generation of electricity. Data shows that the burn temperatures of the bagasse in the high-efficiency co-generation boilers are much higher than those reported at the temperature measuring points. Silica polymorph transitions indicate the high burn temperatures of ≈1550 °C, produces ash dominated α −quartz rather than expected α-cristobilite and amorphous silica; although α-cristobilite, and amorphous silica are present. Furthermore, burn temperatures must be ≤1700 °C, because of the absence of lechatelierite where silica fusing and globulisation dominates. Consequently, silica-mineralogy changes deactivate the bagasse ash by reducing silica solubility, thus making bagasse ash utilisation in synthetic zeolites, geopolymers, or a pozzolanic material in mortars and concretes more difficult. For the ashes investigated, use as a filler material in cements and concrete has the greatest potential. Reported mill boiler temperatures discrepancies and the physical characteristics of the ash, highlight the importance of accurate temperature monitoring at the combustion seat if bagasse ash quality is to be prioritised to ensure a usable final ash product. Keywords: Materials Science, Civil Engineering

  14. Influence of Curing Age and Mix Composition on Compressive Strength of Volcanic Ash Blended Cement Laterized Concrete

    Directory of Open Access Journals (Sweden)

    Babafemi A.J.

    2012-01-01

    Full Text Available This study investigates the influence of curing age and mix proportions on the compressive strength of volcanic ash (VA blended cement laterized concrete. A total of 288 cubes of 100mm dimensions were cast and cured in water for 3, 7, 28, 56, 90 and 120 days of hydration with cement replacement by VA and sand replacement by laterite both ranging from 0 to 30% respectively while a control mix of 28-day target strength of 25N/mm2 (using British Method was adopted. The results show that the compressive strength of the VA-blended cement laterized concrete increased with the increase in curing age but decreased as the VA and laterite (LAT contents increased. The optimum replacement level was 20%LAT/20%VA. At this level the compressive strength increased with curing age at a decreasing rate beyond 28 days. The target compressive strength of 25N/mm2 was achieved for this mixture at 90 days of curing. VA content and curing age was noted to have significant effect (α ≤ 0.5 on the compressive strength of the VA-blended cement laterized concrete.

  15. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements

    Directory of Open Access Journals (Sweden)

    S Pina

    2010-09-01

    Full Text Available The core aim of this study was to investigate zinc (Zn- and zinc and strontium (ZnSr-containing brushite-forming beta-tricalcium phosphate (TCP cements for their effects on proliferation and differentiation of osteoblastic-like cells (MC3T3-E1 cell line as well as for their in vivo behaviour in trabecular bone cylindrical defects in a pilot study. In vitro proliferation and maturation responses of MC3T3-E1 osteoblastic-like cells to bone cements were studied at the cellular and molecular levels. The Zn- and Sr-containing brushite cements were found to stimulate pre-osteoblastic proliferation and osteoblastic maturation. Indeed, MC3T3-E1 cells exposed to the powdered cements had increased proliferative rates and higher adhesiveness capacity, in comparison to control cells. Furthermore, they exhibited higher alkaline phosphatase (ALP activity and increased Type-I collagen secretion and fibre deposition into the extracellular matrix. Proliferative and collagen deposition properties were more evident for cells grown in cements doped with Sr. The in vivo osteoconductive propertiesof the ZnCPC and ZnSrCPC cements were also pursued. Histological and histomorphometric analyses were performed at 1 and 2 months after implantation, using carbonated apatite cement (Norian SRS® as control. There was no evidence of cement-induced adverse foreign body reactions, and furthermore ZnCPC and ZnSrCPC cements revealed better in vivo performance in comparison to the control apatite cement. Additionally, the presence of both zinc and strontium resulted in the highest rate of new bone formation. These novel results indicate that the investigated ZnCPC and ZnSrCPC cements are both biocompatible and osteoconductive, being good candidate materials to use as bone substitutes.

  16. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications

    NARCIS (Netherlands)

    Lopez-Heredia, M.A.; Pattipeilohy, J.; Hsu, S.; Grykien, M.; Weijden, B. van der; Leeuwenburgh, S.C.G.; Salmon, P.; Wolke, J.G.C.; Jansen, J.A.

    2013-01-01

    Calcium phosphate cements (CPCs) and fibrin glue (FG) are used for surgical applications. Their combination is promising to create bone substitutes able to promote cell attachment and bone remodeling. This study proposes a novel approach to create CPC-FG composites by simultaneous CPC setting and FG

  17. Deflection hardening of sustainable fiber–cement composites

    OpenAIRE

    Lima, P. R. L.; Santos, D. O. J.; Fontes, C. M. A.; Barros, Joaquim A. O.; Toledo Filho, R. D.

    2016-01-01

    In the present study sisal fiber–cement composites reinforced with 4% and 6% of short fibers were developed and their physical–mechanical behavior was characterized. To ensure the composite sustainability and durability, the ordinary Portland cement matrix was modified by adding fly ash and metakaolin, and the natural aggregate was substituted by 10% and 20% of recycled concrete aggregate. Flat sheets were cast in a self-compacted cement matrix and bending tests were performed ...

  18. The Effect of Using Sewage Sludge Ash with and without Nano Silica Particles on Properties of Self-compacting Cement Based Materials

    Directory of Open Access Journals (Sweden)

    Amin Khoshravesh

    2014-10-01

    Full Text Available Nowadays using pozzolanic materials is crucial as a replacement of needed cement, improving properties of cement based materials and saving costs. On the other hand sewage sludge is harmful to the environment and human health. So in this research the sewage sludge ash has been used as an artificial pozzolan to produce self compacting cement based materials which could be evaluated as a revolution in the concrete industry. The objective of this research was to accelerate the performance of sewage sludge ash by utilizing nano silica particles. This research includes 10 mix designs for self compacting mortar and concrete made up of binary and ternary cementitious blends of sewage sludge ash (0%,5%,10%,15%,20% and nano silica (0%,1%. The results showed that by adding the sewage sludge ash, rheological and mechanical properties of the samples were reduced and for small percentages of sewage sludge ash, the durability characteristics were improved. The results also showed that adding nano silica improved the mechanical and durability properties of self compacting mortar and concrete. Finally in presence of nano silica, the reactivity of the sewage sludge ash was increased and its performance was improved.

  19. Swine deep bedding ashes as a mineral additive for cement based mortar Cinzas de cama sobreposta de suínos como adição mineral em argamassas de cimento

    Directory of Open Access Journals (Sweden)

    Melissa Selaysim Di Campos

    2008-04-01

    Full Text Available The sustainability of intensive swine production demands alternative destinations for the generated residues. Ashes from swine rice husk-based deep bedding were tested as a mineral addition for cement mortars. The ashes were obtained at 400 to 600ºC, ground and sieved through a 325 mesh sieve (# 0.045 mm. The characterization of the ashes included the determination of the index of pozzolanic activity with lime. The ashes were also tested as partial substitutes of Portland cement. The mortars were prepared using a cement:sand proportion of 1:1.5, and with water/cement ratio of 0.4. Three percentages of mass substitution of the cement were tested: 10, 20 and 30%. Mortar performances were assessed at 7 and 28 days determining their compressive strength. The chosen condition for calcinations at the laboratory scale was related to the maximum temperature of 600ºC since the resulting ashes contained vitreous materials and presented satisfactory values for the pozzolanic index under analysis. The pozzolanic activity indicated promising results for ashes produced at 600ºC as a replacement of up to 30% in cement masses.A sustentabilidade das regiões de produção intensiva de suínos requer destinos alternativos para os resíduos gerados. Cinzas de cama sobreposta de suínos à base casca de arroz, foram testadas como adição mineral em substituição ao cimento. As cinzas foram obtidas nas temperaturas de 400 a 600ºC, moídas e passadas por peneira ABNT 325 (# 0,045 mm. A caracterização de cinzas incluiu a determinação do índice de atividade pozolânica com a cal. As cinzas também foram testadas como substitutos parciais de cimento Portland. As argamassas foram preparadas na proporção cimento:areia de 1:1,5 e com fator água-cimento de 0,4. Três porcentagens de substituição do cimento comercial foram usadas: 10, 20 e 30% em massa. O desempenho das argamassas foi avaliado aos 7 e aos 28 dias com a determinação da resistência

  20. The application of waste fly ash and construction-waste in cement filling material in goaf

    Science.gov (United States)

    Chen, W. X.; Xiao, F. K.; Guan, X. H.; Cheng, Y.; Shi, X. P.; Liu, S. M.; Wang, W. W.

    2018-01-01

    As the process of urbanization accelerated, resulting in a large number of abandoned fly ash and construction waste, which have occupied the farmland and polluted the environment. In this paper, a large number of construction waste and abandoned fly ash are mixed into the filling material in goaf, the best formula of the filling material which containing a large amount of abandoned fly ash and construction waste is obtained, and the performance of the filling material is analyzed. The experimental results show that the cost of filling material is very low while the performance is very good, which have a good prospect in goaf.

  1. Evaluation of cement and fly ash treated recycled asphalt pavement and aggregates for base construction.

    Science.gov (United States)

    2011-12-01

    Many entities currently use recycled asphalt pavement (RAP) and other aggregates as base material, temporary haul roads, : and, in the case of RAP, hot mix asphalt construction. Several states currently allow the use of RAP combined with cement : for...

  2. Assessment of the influence of fly ash additive on the tightness of concrete with furnace cement CEM IIIA 32,5N

    Directory of Open Access Journals (Sweden)

    Anna Szcześniak

    2017-12-01

    Full Text Available The analysis of influence of fly ash additive to concrete on the basis of cement CEM IIIA 32,5 N on the tightness and strength was presented in the paper. Researches were carried out for three types of concrete made with the use of CEM IIIA 32,5N LH HSR NA cement. The basic recipe of concrete does not contain the additive of fly ash, while two other concretes contain the fly ash additive in an amount of 25% and 33% of the cement mass. Laboratory investigations of the concrete samples were carried out under conditions of long-term maturation in the range of the water tightness and the depth of water penetration in concrete, compressive strength and tensile strength of concrete at splitting. Keywords: concrete testing, furnace cement, fly ash additive, water tightness of concrete, strength of concrete

  3. Field and lab evaluation of the use of lime fly ash to replace soil cement as a base course : technical summary.

    Science.gov (United States)

    1997-09-01

    The purpose of this project was to design and construct lime/fly ash stabilized base course test sections which would be economical compared to a soil cement stabilized base, utilize a recyclable material, and possibly reduce shrinkage cracking on ba...

  4. A study on the practicability of highly containing fly ash and silica fume cement

    International Nuclear Information System (INIS)

    Owada, Hitoshi; Mihara, Morihiro; Iriya, Keishiro; Matsui, Jun

    2000-01-01

    Cementitious materials have been planed to be used for the geological disposal of high-level radioactive waste and TRU waste. Degrading of host rock and buffer material induced by high pH leachate, however, is pointed out as one of technical issues. The authors have been developing a low alkalinity cement (the pH of the leachate of this cement is about 11) as an enhanced material to reduce the effect of the high pH problem. In this study, the applicability of low alkalinity cement developed to solve this problem was evaluated. The fluidity of the mortar was sufficient to fill the aperture in a structure filled with coarse aggregate. The concrete using the low alkalinity cement was also enough to fill a structure with the reinforcing steel. The compressive strength of a test-piece produced by the JIS method and of a core collected from the trial structure were over 60 MPa. These evaluation results show that developed low alkalinity cement had higher performances in mechanical properties and execution characteristics than JIS ordinary Portland cement. (author)

  5. Evaluation of fly ash concrete durability containing class II durability aggregates.

    Science.gov (United States)

    1986-07-01

    Fly ash was used in this evaluation study to replace 15% of the cement in : Class C-3 concrete paving mixes. One Class "c" ash from Iowa approved : sources was examined in each mix. Substitution rate was based on 1 to 1 : basis, for each pound of cem...

  6. Self-compacting concrete with sugarcane bagasse ash – ground blast furnace slag blended cement: fresh properties

    Science.gov (United States)

    Le, Duc-Hien; Sheen, Yeong-Nain; Ngoc-Tra Lam, My

    2018-04-01

    In this investigation, major properties in fresh state of self-compacting concrete (SCC) developed from sugarcane bagasse ash and granulated blast furnace slag as supplementary cementitious materials were examined through an experimental work. There were four mix groups (S0, BA10, BA20, and BA30) containing different cement replacing levels; and totally, 12 SCC mixtures and one control mixture were provided for the test. Fresh properties of the proposed SCC were evaluated through measurement of the density, slump, slump-flow, V-funnel test, T500 slump, Box-test, and setting time. The testing results indicated that replacing either SBA and/or BFS to OPC in SCC mixtures led to lower density, lesser flowability, and longer hardening times.

  7. Improving the Bond Strength of Rice Husk Ash Concrete by Incorporating Polymer: A New Approach

    OpenAIRE

    Bangwar, Daddan Khan; Ali Soomro, Mohsin; Ali Laghari, Nasir; Ali Soomro, Mukhtiar; Ali Buriro, Ahsan

    2018-01-01

    This paper gives an insight of how to improve the bond strength of cement in which concrete is replaced with rice husk ash. A concrete mix was prepared and was used in different types of mixes i.e. Control Mix, 10% cement substituted concrete with rice husk ash and polymer modified concrete by incorporation different dosages of polymer in the 10% cement substituted concrete. A bar of 12mm diameter, 300mm in length was placed in the center of the cylindrical specimens for pull out test. It was...

  8. Quality characteristics of Greek fly ashes and potential uses

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Grammelis, P.; Kakaras, E. [Institute for Solid Fuels Technology and Applications, Ptolemais (Greece); Karangelos, D.; Anagnostakis, M.; Hinis, E. [Nuclear Engineering Section, Mechanical Engineering Department, National Technical University of Athens, Athens (Greece)

    2007-01-15

    The main characteristics of fly ash from Greek coal-fired boilers are presented in this paper in relation to its exploitation potential. Both fuel and fly ash samples were collected and analyzed according to the ASTM Standards. Apart from the typical analyses (proximate, ultimate, ash analysis and calorific value), an ICP-AES spectrometer was used for the analysis of heavy metals in the ash. Experimental measurements in order to determine the radioactivity content of raw fuel and the fly ash were carried out as well. A representative fly ash sample from Ptolemais power plant was evaluated and tested as filler in Self-Compacting Concrete (SCC). Ashes from the Greek brown coal are classified in type C, most of the fly ash being produced in Ptolemais of Northern Greece, while the rest in Megalopolis. Ptolemais fly ash is rich in calcium compounds, while Megalopolis fly ash contains more pyrite. Increased heavy metal concentrations are observed in the fly ash samples of Greek coal. Greek fly ash appears to have not only pozzolanic but also hydraulic behaviour. Furthermore, Greek fly ash, depending on its origin, may have relatively high natural radioactivity content, reaching in the case of Megalopolis fly ash 1 kBq kg{sup -1} of {sup 226}Ra. The laboratory results showed that fly ashes can be a competitive substitute to conventional limestone filler material in SCC. Fly ash is mostly used in Greece in cement industry replacing cement clinker and aiming to the production of special types of Portland cements. However, a more aggressive utilisation strategy should be developed, since low quantities of the total produced fly ash are currently further utilised. (author)

  9. Experimental Analysis of Fly Ash & Coir Fiber Mix Cement Concrete for Rigid Pavement

    OpenAIRE

    Er. Amit Kumar Ahirwar; Prof. Rajesh Joshi

    2015-01-01

    In India Thermal power plants which use pounded coal as a fuel, generates million tones of fly ash every year as a waste. Conservative clearance of this material which gets easily air-borne and constitutes a serious health hazards to the community, is an expensive operation. A part from this compacted fly ash can be used in embankments, road sub-bases and also for structural fills. The major drawbacks of such materials are their limited load carrying capacity and poor settlement c...

  10. Influence of various amount of diatomaceous earth used as cement substitute on mechanical properties of cement paste

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert

    2016-06-01

    Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.

  11. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2014-01-01

    Full Text Available This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA as partial replacement of cement in presence of copolymer latexes. Portland cement (PC was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA and 2-hydroxymethylacrylate (2-HEMA. Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM. The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  12. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    Science.gov (United States)

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  13. Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2014-01-15

    This paper presents the performance of cement mortar containing black rice husk ash (BRHA) under nitric and acetic acid attacks. The BRHA, collected from an electrical generating power plant that uses rice husk as fuel, was ground using a grinding machine. The compressive strength loss, weight loss, and expansion of mortars under nitric and acetic acid attack were investigated. The test results of BRHA properties in accordance with the ASTM C 618 standard found that the optimal grinding time was 4 h as this achieved a Blaine fineness of 5370 cm(2)/g. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 20%, 30%, 40%, and 50% by weight of binder. The water-to-binder ratios were 0.55, 0.60, and 0.65. From test results, when the percentage replacements of BRHA in cement increased, it was observed that the strength loss and weight loss of mortars containing BRHA under acetic acid attack were higher than those of the mortars against nitric acid attack. It was found that, of the various BHRA mortars, the strength loss and weight loss due to nitric and acetic acid attacks were the lowest in the mortar with 10% BRHA replacement. For 10%, 20% and 30% BRHA replacements, the rate of expansion of the BRHA mortar decreased when compared with the control mortar. For the mortars with other percentage replacements of BRHA, the rate of expansion increased. Furthermore, the effective water-to-binder ratios of control and BRHA mortars were the primary factor for determining the durability of mortar mixed with BRHA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Leaching of saltstones containing fly ash

    International Nuclear Information System (INIS)

    Barnes, M.W.; Roy, D.M.; Langton, C.A.

    1985-01-01

    Two types of fly ash were incorporated in saltstones designed for potential encapsulation of Savannah River Plant low level defense waste. These fly ashes have some cementitious properties while at the same time their presence in substitution for cement slows early hydration. Class C fly ash has a high calcium content and is considered cementitious; Class F fly ash has a low calcium content and is not classified as cementitious. Leach tests were performed and physical properties were measured for saltstones containing each class, to see the differences in the effect of the fly ashes. The four waste ions nitrate, nitrite, sodium and sulfate were shown to leach by diffusion. Effective diffusivities were determined for these ions. Data for nitrate, the most important species from the environmental point of view, are shown in Table A. Saltstones made with Class C fly ash have substantially lower leach rates than those made with Class F fly ash. The leach rates, and therefore the square roots of the effective diffusivities, have been found to be proportional to the pore surface area per unit volume (or the ratio of pore volume to pore radius), to the fraction of waste containing solution, and to the inverse of the fraction of calcium in the saltstone. Rates and diffusivities are not proportional to the water to cement ratio, because this number depends on whether the fly ash is counted as cementitious, as in Class C cement, or not cementitious, as in Class F cement. In fact the relatively small amount of calcium in Class F cement contributes to the cementitious properties overall, though not so much as Class C cement. 4 refs., 2 figs., 6 tabs

  15. Partial Replacement of Cement with Bagasse Ash in Hot Mix Asphalt ...

    African Journals Online (AJOL)

    It is in this light that a laboratory based investigation for the replacement of cement with BA in Hot Mix Asphalt (HMA) was conducted. Tests on the suitability of materials used and their performance in terms of known engineering properties was carried out. Bitumen content of 4.5%, 5.5%, 6.5% and 7.5% was adopted.

  16. ground nut husk ash (gha) as a partial replacement of cement in ...

    African Journals Online (AJOL)

    NIJOTECH

    The vicat apparatus was used to determine the consistency and setting time of the pozzolanic paste in accordance with BS. 12. The water cement ratio that gives a plunger penetration of 5 to 7mm above the bottom of the mould is the standard consistency. The Initial Setting Time (1ST) is the time taken from mixing with water ...

  17. THE INFLUENCE OF CaO AND P2O5 OF BONE ASH UPON THE REACTIVITY AND THE BURNABILITY OF CEMENT RAW MIXTURES

    Directory of Open Access Journals (Sweden)

    TOMÁŠ IFKA

    2012-03-01

    Full Text Available The influence of CaO and P2O5 upon the reactivity of cement raw meal was investigated in this paper. Ash of bone meal containing Ca3(PO42 - 3CaO·P2O5 was used as the source of P2O5. Two series of samples with different content of the ash of bone meal were prepared. In the first series, the ash of bone was added into cement raw meal. The second series of samples were prepared by considering ash as one of CaO sources. Therefore, the total content of CaO in cement raw meal was kept constant, while the amount of P2O5 increased. These different series of samples were investigated by analyzing free lime content in the clinkers. The XRD analysis and Electron Micro Probe Analyzer analysis of the clinkers were also carried out. Two parameters were used to characterize the reactivity of cement raw meal: content of free lime and Burnability Index (BI calculated from free lime content in both series of samples burnt at 1350 ºC, 1400 ºC, 1450 ºC and 1500 ºC. According to the first parameter, P2O5 content that drastically makes worse the reactivity of cement raw meal was found at 1.11 wt.% in the first series, while this limit has reached 1.52 wt.% in the second one. According to the BI, the limit of P2O5 was found at 1.42 wt. % in the first series and 1, 61 wt.% in the second one. Furthermore, EPMA has demonstrated the presence of P2O5 in both calcium silicate phases forming thus solid solutions.

  18. Application of thermally activated municipal solid waste incineration (MSWI) bottom ash fines as binder substitute

    NARCIS (Netherlands)

    Tang, P.; Florea, M.V.A.; Spiesz, P.R.; Brouwers, H.J.H.

    Untreated municipal solid waste incineration (MSWI) bottom ash fines (0–2 mm) have poor pozzolanic properties, and contain substances which can pose an environmental risk (e.g. heavy metals and salts). This study investigates combined treatments applied on bottom ash fines (BAF) to increase their

  19. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F.

    Science.gov (United States)

    Pyatina, Tatiana; Sugama, Toshifumi; Moon, Juhyuk; James, Simon

    2016-05-27

    An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm) and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  20. Effect of Tartaric Acid on Hydration of a Sodium-Metasilicate-Activated Blend of Calcium Aluminate Cement and Fly Ash F

    Directory of Open Access Journals (Sweden)

    Tatiana Pyatina

    2016-05-01

    Full Text Available An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C. The hardened materials were characterized with X-ray diffraction, thermogravimetric analysis, X-ray computed tomography, and combined scanning electron microscopy/energy-dispersive X-ray spectroscopy and tested for mechanical strength. With increasing temperature, a higher number of phase transitions in non-retarded specimens was found as a result of fast cement hydration. The differences in the phase compositions were also attributed to tartaric acid interactions with metal ions released by the blend in retarded samples. The retarded samples showed higher total porosity but reduced percentage of large pores (above 500 µm and greater compressive strength after 300 °C curing. Mechanical properties of the set cements were not compromised by the retarder.

  1. Diffusion of He in OPC paste and low-heat Portland cement paste containing fly-ash in contact with aqueous phase

    International Nuclear Information System (INIS)

    Sato, Fuminori; Miwata, Chikanori; Noda, Natsuko; Sato, Seichi; Kozaki, Tamotsu; Higashihara, Tomohiro; Hironaga, Michihiko; Kawanishi, Motoi

    2008-01-01

    As a part of gas migration studies in concrete package for nuclear waste surrounded by water-saturated rock, the helium diffusion in ordinary Portland cement paste (OPC) was studied using disk form specimen at various water-to-cement (w/c) ratios. The helium diffusion in low-heat Portland cement paste containing fly-ash (LPF) was also studied. Apparent diffusion coefficients of helium in OPC paste were ∼1 x 10 -10 m 2 s -1 at 0.4 w/c ratio, independent of increase of w/c ratio. It is likely that the materials formation such as C-S-H and CH in capillary pores in OPC plays an important role on the helium diffusion rather than porosity increase. Apparent diffusion coefficient of helium in LPF was two orders of magnitude smaller than that in OPC. It is quite possible that the addition of fly-ash contributes to the formation of hydration products which markedly enhance discontinuity of capillary pore. The results of the present study on the two kinds of cement pastes give us valuable information about alternatives to release gas from cement package. (author)

  2. Cement technology for borehole plugging: interim report on the effects of fly ash and salt on the physical properties of cementitious solids

    International Nuclear Information System (INIS)

    Moore, J.G.; Morgan, M.T.; McDaniel, E.W.; Greene, H.B.; West, W.A.

    1980-03-01

    Results of initial studies of a systematic investigation to determine the effects of fly ash and salt on the physical properties of pozzolanic concretes and saltcretes are reported. Addition of fly ash to mortars decreased the set time and bleed characteristics and increased the compressive strength and permeability, but it had very little effect on the density or the thermal conductivity of the solid. The magnitude of these effects was only slightly related to the lime content of the fly ash. In the case of saltcretes, low-lime fly ash slightly decreased the set time and the bleed characteristics of the wet mix. However, a high-lime fly ash doubled the set time and decreased the bleed characteristics to essentially zero. The compressive strength of saltcretes was increased by the addition of fly ash and was independent of the lime content. Such additions had little effect on the thermal conductivity or density. The thermal conductivities of cement pastes containing fly ash showed a near-linear relationship with the density of the resulting solids. In the case of mortars, the thermal conductivity decreased with increasing temperature and showed some hysteresis in the initial heating cycle. After the first cycle, the thermal conductivity decreased from about 1.32 W/m.K at 350 0 K to 1.27 W/m.K at 475 0 K

  3. Environmental and technical assessments of the potential utilization of sewage sludge ashes (SSAs) as secondary raw materials in construction.

    Science.gov (United States)

    Chen, Maozhe; Blanc, Denise; Gautier, Mathieu; Mehu, Jacques; Gourdon, Rémy

    2013-05-01

    Ashes produced by thermal treatments of sewage sludge exhibit common properties with cement. For example, major elements present in SSA are the same of major elements of cement. Hydraulic properties of SSA are quite the same of cement ones. They may therefore be used to substitute part of cement in concrete or other cementitious materials, provided that technical prescriptions are satisfied and that environmental risks are not significantly increased. The objective of the present study was to determine the appropriate substitution ratios to satisfy both technical and environmental criteria. In a first step, the elemental composition and particle size distribution of the ashes were measured. Then the ashes were used along with Portland cement and sand at different ratios of substitution to produce mortar and concrete which were cured for up to 90 days into parallelepipedic or cylindrical monoliths. The mechanical properties of the monoliths were measured using standard procedures for flexural and compressive strengths, and compared to blanks containing no ashes. The environmental criteria were assessed using leaching tests conducted according to standard protocols both on the ashes and the monoliths, and compared to the blanks. Results showed that the characteristics of the ashes ranged between those of cement and sand because of their larger particle size and higher content in SiO2 as compared to cement. The monoliths made with the highest substitution ratios exhibited a significant decrease in flexural and compressive strengths. However, when the ashes were used in partial substitution of cement at appropriate ratios, the concrete monoliths exhibited similar compressive strengths as the blank samples. The most appropriate ratios were found to be 10% substitution of cement and 2% substitution of sand. The leaching tests conducted on the ashes in their powdery form revealed that amongst the potential contaminants analyzed only Mo and Se were leached at

  4. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.

    Science.gov (United States)

    Hamzeh, Yahya; Ziabari, Kamran Pourhooshyar; Torkaman, Javad; Ashori, Alireza; Jafari, Mohammad

    2013-03-15

    This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Diffusion behavior of anion in hardened low-heat portland cement paste containing fly ash. Dependence of effective diffusion coefficient on pore structure

    International Nuclear Information System (INIS)

    Chida, Taiji; Yoshida, Takahiro

    2012-01-01

    In the sub-surface disposal system, the closely packed concrete layer is expected the low diffusivity to retard the migration of radionuclides. Low-heat portland cement containing 30 wt% fly ash (FAC) is a candidate cement material for the construction of sub-surface repository because of its high dense structure and its resistance to cracking. Previously, we reported that FAC has lower diffusivity than Ordinary Portland Cement (OPC) for acetic acid and iodine. However, the mechanism for low diffusivity of FAC was not clear. In this study, the diffusion of multiple trace ions (chlorine, bromine and iodine) in hardened cement pastes was examined by through-diffusion experiments. The effective diffusion coefficients, D e , of the trace ions for hardened OPC cement pastes were on the order of 10 -12 m 2 s -1 for trace ions, and D e for hardened FAC cement pastes were on the order of 10 -13 m 2 s -1 for chlorine, 10 -14 m 2 s -1 for bromine and 10 -15 m 2 s -1 for iodine. Additionally, the pore size distribution and porosity of FAC changed to more closely packed structure for 13 months by the pozzolanic reaction, and the pore size distribution of FAC (mainly 3-10 nm) were an order of magnitude smaller than that of OPC. These results suggest that the low diffusivity of FAC is based on the continuous change in the pore structure and the nano-scale pore size retarding the migration of trace ions. (author)

  6. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    Energy Technology Data Exchange (ETDEWEB)

    Durdziński, Paweł T., E-mail: pawel.durdzinski@gmail.com [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Dunant, Cyrille F. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland); Haha, Mohsen Ben [HeidelbergCement Technology Center GmbH (HeidelbergCement AG), Rohrbacher Str. 95, 69181 Leimen (Germany); Scrivener, Karen L. [Laboratory of Construction Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne (Switzerland)

    2015-07-15

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react.

  7. A new quantification method based on SEM-EDS to assess fly ash composition and study the reaction of its individual components in hydrating cement paste

    International Nuclear Information System (INIS)

    Durdziński, Paweł T.; Dunant, Cyrille F.; Haha, Mohsen Ben; Scrivener, Karen L.

    2015-01-01

    Calcareous fly ashes are high-potential reactive residues for blended cements, but their qualification and use in concrete are hindered by heterogeneity and variability. Current characterization often fails to identify the dominant, most reactive, amorphous fraction of the ashes. We developed an approach to characterize ashes using electron microscopy. EDS element composition of millions of points is plotted in a ternary frequency plot. A visual analysis reveals number and ranges of chemical composition of populations: silicate, calcium-silicate, aluminosilicate, and calcium-rich aluminosilicate. We quantified these populations in four ashes and followed their hydration in two Portland-ash systems. One ash reacted at a moderate rate: it was composed of 70 vol.% of aluminosilicates and calcium-silicates and reached 60% reaction at 90 days. The other reacted faster, reaching 60% at 28 days due to 55 vol.% of calcium-rich aluminosilicates, but further reaction was slower and 15 vol.% of phases, the silica-rich ones, did not react

  8. Improving the Bond Strength of Rice Husk Ash Concrete by Incorporating Polymer: A New Approach

    Directory of Open Access Journals (Sweden)

    D. K. Bangwar

    2018-02-01

    Full Text Available This paper gives an insight of how to improve the bond strength of cement in which concrete is replaced with rice husk ash. A concrete mix was prepared and was used in different types of mixes i.e. Control Mix, 10% cement substituted concrete with rice husk ash and polymer modified concrete by incorporation different dosages of polymer in the 10% cement substituted concrete. A bar of 12mm diameter, 300mm in length was placed in the center of the cylindrical specimens for pull out test. It was observed that the bond strength between concrete and steel decreases with the replacement of cement with ash, conversely the bond strength improves with the addition of polymer dosages.

  9. Use of cement-fly ash-based stabilization techniques for the treatment of waste containing aromatic contaminants

    Science.gov (United States)

    Banaszkiewicz, Kamil; Marcinkowski, Tadeusz

    2017-11-01

    Research on evaluation of evaporation rate of volatile organic compounds from soil beds during processing is presented. For the experiment, soil samples were prepared with the same amounts of benzene and stabilized using a mixture of CEMI 42.5R cement and fly ash from pit-coal combustion. Solidification of soils contaminated with BTEX hydrocarbons using hydraulic binders involves a risk of releasing vapours of these compounds during homogenization of waste with stabilizing mixture introduced and its dilution with water. The primary purposes of the research were: analysis of benzene volume emitted from soil during stabilization/solidification process and characterization of factors that may negatively affect the quality of measurements/the course of stabilization process. Analysis of benzene emission intensity during the process was based on concentration (C6H6) values, recorded with flame-ionization detector above the surface of reacting mixture. At the same time, gaseous contaminants emitted during waste stabilization were passed through pipes filled with activated carbon (SCK, Anasorb CSC). Benzene vapours adsorbed on activated carbon were subjected to analysis using gas chromatograph Varian 450-GC. Evaporation characteristics of benzene during processing contaminated soils revealed the stages creating the highest danger to workers' health, as well as a need for actions connected with modification of technological line.

  10. Oil-Sludge Extended Asphalt Mastic Filled with Heavy Oil Fly Ash and Cement Waste for Waterproofing

    Directory of Open Access Journals (Sweden)

    H.I. Al-Abdul Wahhab

    2014-12-01

    Full Text Available Recycling as an economic disposal process for many hazardous waste materials has become a popular means of conserving our planet’s scarce and diminishing natural resources. This paper is a study of the influence of oil sludge (OS on the physical behavior and performance of asphalt filled with heavy oil fly ash (HOFA, cement kiln dust (CKD and limestone dust (LMD. Conventional asphalt consistency tests in addition to a new bond strength (BS test were conducted on the modified asphalt mastics. The results were statistically analyzed and assessed in accordance with American Society for Testing and Materials (ASTM D 332 and ASTM D 449 specifications. Too much OS resulted in strength deterioration of the asphalt mastic, which can be compensated for by filling the mastic with HOFA. OS interacts constructively with the fillers to improve their effectiveness in raising the softening point (SP and viscosity of the asphalt, and also in reducing its penetration and ductility. Even though sludge mastics hold promise as suitable composites for damp proofing and waterproofing, the resulting low flash point (FP and SP of some of these mastics make their suitability for roofing applications questionable.

  11. Quantitative measurements of fly ash, slag, and cement in limestone-based blends by Fourier transform infrared-attenuated total reflectance method

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.; Claghorn, R.D.; Voogd, J.A.

    1991-02-01

    The disposal of the low-level radioactive liquids involves mixing the liquid waste with pozzolanic blend to form grout. Since the long-term performance of the grout depends on the composition of the blend, a rapid and reliable quantitative method to monitor blend compositions is needed. Earlier studies by Westinghouse Hanford Company demonstrated the utility of a Fourier transform infrared-attenuated total reflectance method for the analysis of cement blends. A sequential spectral subtraction technique was used to analyze the blend; however, its reproducibility depends on the operator's skill to perform spectral subtractions. A partial-least-squares (PLS) algorithm has replaced spectral subtraction. The PLS method is a statistical quantitative method suitable for analysis of multicomponent systems. Calibration blends are prepared by mixing the blend components in various proportions following a carefully designed calibration model. For the model, limestone content ranges from 30-50 wt%; blast furnace slag from 18-38 wt%; fly ash from 18-38 wt%; and cement from 0-16 wt%. Use of the large concentration range will enhance the chance that the calibration will be useful when target concentration change. The ability of the PLS method to predict limestone, slag, fly ash, and cement values in test blends was assessed. The prediction step of the PLS algorithm required only a few seconds to analyze the test spectra. The best and worst results for each component of the blends calculated by this method are shown in tables. The standard error of prediction of the true value is <2 wt% for limestone, <4 wt% for both fly ash and blast furnace slag, and <10 wt% for cement. 2 refs., 8 figs., 7 tabs

  12. Solidification of fly ash from municipal solid waste incinerator by the use of sorel cement

    Directory of Open Access Journals (Sweden)

    Hepworth Malcolm T.

    1996-03-01

    Full Text Available Spaľovanie tuhého komunálneho odpadu významne redukuje objem a hmotnosť tuhého komunálneho odpadu, avšak zvyšky po spaľovaní sú klasifikované ako nebezpečné odpady. Použitím stabilizačnej technológie solidifikácie popolčeka z elektrostatických odlučovačov spaľovne na komunálny odpad využitím Sorelovho cementu vznikne popolčekový cement, ktorého environmentálne a inžinierske vlastnosti ponúkajú možnosť jeho užitočného využitia pre účely stavebníctva.

  13. Effect of addition of sugar cane biomass ash in properties of fresh state in cement slurries for oil wells; Efeito da adicao de cinza de biomassa de cana-de-acucar nas propriedades no estado fresco de pastas de cimento para pocos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Lornna L.A.; Santos, Herculana T.; Souza, Pablo Diego Pinheiro; Freitas, Julio Cezar Oliveira [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Nascimento, Julio Cesar S. [Universidade Federal da Bahia (UFBA), BA (Brazil); Amorim, Natalia M.M. [Universidade Potiguar (UNP), RN (Brazil); Martinell, Antonio E. [Mcgill University (MCGILL) (Canada); Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    Recent studies have shown that ashes from biomass, in particular those generated by the alcohol industry have pozzolanic activity and can replace cement in many applications, reducing the consumption of cement and, consequently, the environmental impact caused by the production of this material. The present work evaluated the behavior of ash sugarcane biomass partially replacing Portland cement in concentrations of 10, 20 and 40% BWOC in oil well slurries. The results of rheology, thickening time and stability showed that the addition of 40% of biomass ash in oil well slurries significantly improves their properties, enabling the replacement of cement by ash. (author)

  14. The mechanical and physical properties of concrete containing polystyrene beads as aggregate and palm oil fuel ash as cement replacement material

    Science.gov (United States)

    Adnan, Suraya Hani; Abadalla, Musab Alfatih Salim; Jamellodin, Zalipah

    2017-10-01

    One of the disadvantages of normal concrete is the high self-weight of the concrete. Density of the normal concrete is in the range of 2200 kg/m3 to 2600 kg/ m3. This heavy self-weight make it as an uneconomical structural material. Advantages of expended polystyrene beads in lightweight concrete is its low in density which can reduce the dead load (self-weight) Improper disposal of the large quantity of palm oil fuel ash which has been produced may contribute to environmental problem in future. In this study, an alternative of using palm oil fuel ash as a cement replacement material is to improve the properties of lightweight concrete. The tests conducted in this study were slump test, compression strength, splitting tensile and water absorption test. These samples were cured under water curing condition for 7, 28 and 56 days before testing. Eight types of mixtures were cast based on percentage (25%, 50%) of polystyrene beads replacement for control samples and (25%, 50%) of polystyrene beads by different ratio 10%, 15%, and 20% replacement of palm oil fuel ash, respectively. Samples with 25% polystyrene beads and 10% palm oil fuel ash obtained the highest compressive strength which is 16.8 MPa, and the splitting tensile strength is 1.57 MPa. The water absorption for samples 25%, 50% polystyrene and 20% palm oil fuel ash is 3.89% and 4.67%, respectively which is lower compared to control samples.

  15. Reuse of ash coal in the formulation of mortars

    International Nuclear Information System (INIS)

    Siqueira, J.S.; Souza, C.A.G.; Souza, J.A.S.

    2012-01-01

    This paper aims to study the ash incorporation from the combustion of coal in fluidized bed boilers, in production of mortar, replacing part of cement. Specimens were prepared using Portland cement to the specifications CPII-E-32 of normal characteristics and classification of sand below 100 mesh. Blends in the 4:1 ratio, that is, 4 parts of aggregate to 1 part of cement, with insertion of ashes in the proportions 0, 10, 20, 30, 40 and 50%. The mortar was developed in mixing and casting was made in a mold of 5 cm x 10 cm. The behavior of compressive strength was evaluated after 28 days; the strength decreases with increasing percentage of ash. Additional analysis was carried out by X-ray diffraction, and it was found that the substitution of this waste can be successfully used in mortars with blends of up to 30%. (author)

  16. Barley Straw Ash: Pozzolanic Activity and Comparison with other Natural and Artificial Pozzolans from México

    Directory of Open Access Journals (Sweden)

    Carlos Cobreros

    2015-05-01

    Full Text Available The construction industry is one of the largest and most active growth sectors worldwide. It presents an important environmental impact, and one way to reduce the impact of the construction activity is to substitute pozzolanic materials for ordinary Portland cement. In this work, barley straw, barley straw ash, and other natural and artificial pozzolans from Mexico were characterized and compared. Also, the pozzolanic activity of barley straw ash was compared with the pozzolanic properties of some natural and artificial pozzolans from Mexico. Materials considered included recycled dust of fired clay brick, fly ash, volcanic ash, and wheat straw ash.

  17. Electrodialytically treated MSWI APC residue as substitute for cement in mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Geiker, Mette Rica; Jensen, Pernille Erland

    2014-01-01

    Air pollution control (APC) residues from municipal solid waste incineration (MSWI) are considered hazardous waste and need pretreatment prior to possible reuse. Here, two MSWI APC residues, from which the most mobile fraction of heavy metals and salts has been removed by carbonation and/or elect......Air pollution control (APC) residues from municipal solid waste incineration (MSWI) are considered hazardous waste and need pretreatment prior to possible reuse. Here, two MSWI APC residues, from which the most mobile fraction of heavy metals and salts has been removed by carbonation and....../or electrodialytic remediation, were used in Portland cement mortar. Mortar bars with 15 % weight replacement of cement by APC residues showed compressive strengths up to 40 MPa after 28/32 days. Heavy metal and salt leaching from both crushed and monolithic mortars with APC residues was generally similar...

  18. Geotechnical Properties of Clayey Soil Stabilized with Cement ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2017-12-31

    Dec 31, 2017 ... ... to investigate the different effects of cement-sawdust ash and cement on a ... Keywords: Cement, Saw dust, strength test subgrade material, highway construction ... characteristics of lateritic soil stabilized with sawdust ash.

  19. Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Zareei

    2017-12-01

    Full Text Available The preliminary and inevitable interest in the use of partial replacements or by – products as complementary pozzolanic materials was mostly induced by enforcement of air pollution control resulted from cement production industry. Rise husk is by- product taken from rice mill process, with approximately the ratio of 200 kg per one ton of rice, even in high temperature it reduces to 40 kg. This paper presents benefits resulted from various ratios of rice husk ash(RHA on concrete indicators through 5 mixture plans with proportions of 5, 10, 15, 20 and 25% RHA by weight of cement in addition to 10% micro- silica (MS to be compared with a reference mixture with 100% Portland cement. Tests results indicated the positive relationship between 15% replacement of RHA with increase in compressive strengths by about 20%. The optimum level of strength and durability properties generally gain with addition up to 20%, beyond that is associated with slight decrease in strength parameters by about 4.5%. The same results obtained for water absorption ratios likely to be unfavourable. Chloride ions penetration increased with increase in cement replacement by about 25% relative to the initial values (about less than one fifth.

  20. Laboratory Investigation on Compressive Strength and Micro-structural Features of Foamed Concrete with Addition of Wood Ash and Silica Fume as a Cement Replacement

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available Wood Ash (WA and Silica Fume (SF exhibit good cementation properties and have great potential as supplementary binder materials for the concrete production industry. This study will focus on enhancing the micro-structural formation and compressive strength of foamed concrete with the addition of WA and SF. A total of 3 mixes were prepared with the addition of WA and SF at various cement replacement levels by total binder weight. For this particular study, the combination of WA (5%, 10%, and 15% by binder weight and SF (5%, 10%, and 15% by binder weight were utilized as supplementary binder materials to produce foamed concrete mixes. As was made evident from micrographs obtained in the study, the improvement observed in the compressive strength of the foamed concrete was due to a significant densification in the microstructure of the cement paste matrix in the presence of WA and SF hybrid supplementary binders. Experimental results indicated that the combination of 15% SF and 5% WA by binder weight had a more substantial influence on the compressive strength of foamed concrete compared to the control mix. Furthermore, the addition of WA and SF significantly prolonged the setting times of the blended cement paste of the foamed concrete.

  1. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  2. Microstructure and Engineering Properties of Alkali Activated Fly Ash -as an environment friendly alternative to Portland cement

    NARCIS (Netherlands)

    Ma, Y.

    2013-01-01

    Alkali activated fly ash (AAFA), also named “geopolymer”, has emerged as a novel engineering material in the construction industry. This material is normally formed by the reaction between fly ash and aqueous hydroxide or alkali silicate solution. With proper mix design, AAFA can present comparable

  3. Use of wood ash for road stabilisation

    International Nuclear Information System (INIS)

    Lagerkvist, A.; Lind, B.

    2009-01-01

    Due to warmer winters in Sweden, the bearing capacity of forestry roads has become increasingly problematic in recent years. Road stabilization is needed in order to get timber out from the forests. This usually involves the addition of cement to the road body. However, wood ash is a possible substitute for cement because it has similar properties. Using wood ash has the added advantage of saving landfill space. This paper presented an ongoing laboratory study on leaching and mechanical stability, as well as frost-sensitivity using a 30 per cent ash addition to natural soils for reinforcing a forestry road near Timra in central Sweden. The road was being monitored with regard to environmental impact and mechanical properties. The paper discussed the potential of biofuel ashes and the increasing need to reinforce infrastructure due to climate change. The environmental impact from ash use in road constructions was then addressed. It was concluded that the application of ash in road construction would help to strengthen forest roads, make them more resistant to climatic change and render them accessible year-round. 32 refs., 3 tabs., 2 figs.

  4. Identifying improvement potentials in cement production with life cycle assessment.

    Science.gov (United States)

    Boesch, Michael Elias; Hellweg, Stefanie

    2010-12-01

    Cement production is an environmentally relevant process responsible for 5% of total anthropogenic carbon dioxide emissions and 7% of industrial fuel use. In this study, life cycle assessment is used to evaluate improvement potentials in the cement production process in Europe and the USA. With a current fuel substitution rate of 18% in Europe and 11% in the USA, both regions have a substantial potential to reduce greenhouse gas emissions and save virgin resources by further increasing the coprocessing of waste fuels. Upgrading production technology would be particularly effective in the USA where many kiln systems with very low energy efficiency are still in operation. Using best available technology and a thermal substitution rate of 50% for fuels, greenhouse gas emissions could be reduced by 9% for Europe and 18% for the USA per tonne of cement. Since clinker production is the dominant pollution producing step in cement production, the substitution of clinker with mineral components such as ground granulated blast furnace slag or fly ash is an efficient measure to reduce the environmental impact. Blended cements exhibit substantially lower environmental footprints than Portland cement, even if the substitutes feature lower grindability and require additional drying and large transport distances. The highest savings in CO(2) emissions and resource consumption are achieved with a combination of measures in clinker production and cement blending.

  5. Assessing fly ash treatment: remediation and stabilization of heavy metals.

    Science.gov (United States)

    Lima, A T; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2012-03-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.

    2010-12-17

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  7. Assessing fly ash treatment: Remediation and stabilization of heavy metals

    KAUST Repository

    Lima, A.T.; Ottosen, Lisbeth M.; Ribeiro, Alexandra B.

    2010-01-01

    Fly ashes from Municipal Solid Waste (MSW), straw (ST) and co-combustion of wood (CW) are here analyzed with the intent of reusing them. Two techniques are assessed, a remediation technique and a solidification/stabilization one. The removal of heavy metals from fly ashes through the electrodialytic process (EDR) has been tried out before. The goal of removing heavy metals has always been the reuse of fly ash, for instance in agricultural fields (BEK). The best removal rates are here summarized and some new results have been added. MSW fly ashes are still too hazardous after treatment to even consider application to the soil. ST ash is the only residue that gets concentrations low enough to be reused, but its fertilizing value might be questioned. An alternative reuse for the three ashes is here preliminary tested, the combination of fly ash with mortar. Fly ashes have been substituted by cement fraction or aggregate fraction. Surprisingly, better compressive strengths were obtained by replacing the aggregate fraction. CW ashes presented promising results for the substitution of aggregate in mortar and possibly in concrete. © 2010 Elsevier Ltd.

  8. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    Science.gov (United States)

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe. © The Author(s) 2014.

  9. Effect of sewage sludge ash (SSA on the mechanical performance and corrosion levels of reinforced Portland cement mortars

    Directory of Open Access Journals (Sweden)

    Andión, L. G.ª

    2006-06-01

    Full Text Available The article describes a study conducted to determinecorrosion in reinforcement embedded in Portland cement(PC mortars with different percentages of sewage sludgeash (SSA admixtures. The polarization resistancetechnique was used to determine the steel corrosion rate(Icorr in the test specimens. The samples were subjectedto different environmental conditions and aggressiveagents: 100% relative humidity (RH, accelerated carbonationat 70% RH and seawater immersion. Portlandcement was partially substituted for SSA in the mixes atrates of 0, 10, 20, 30 and 60% (by mass to make thedifferent mortars. The results show that where cementwas replaced by SSA at rates of up to 10% by mass,mortar corrosion performance was comparable to thebehaviour observed in SSA-free mortars (control mortar:0% SSA. Data for higher rates are also shown. From themechanical standpoint, SSA exhibited moderate pozzolanicactivity and the best performance when SSA wasadded at a rate of 10% to mixes with a water/(binder:PC + SSA (w/b ratio of 0.5.Se ha estudiado el nivel de corrosion que presentan lasarmaduras embebidas en morteros fabricados con cementoPortland (CP con diferentes porcentajes de sustitucion deceniza de lodo de depuradora (CLD. Se ha utilizado la tecnicade la Resistencia a la Polarizacion para determinar lavelocidad de corrosion del acero embebido en las muestrasestudiadas. Las muestras se han sometido a diferentes condicionesambientales y agentes agresivos: 100% de humedadrelativa (HR, carbonatacion acelerada al 70% HR einmersion en agua de mar. Para la fabricacion de los distintosmorteros, el cemento Portland ha sido parcialmente sustituidopor CLD en los siguientes porcentajes en masa: 0,10, 20, 30 y 60%. Los resultados muestran que sustitucionesde cemento por CLD de hasta el 10% en masa no alteranel comportamiento frente a la corrosion de los morterosal compararlos con los morteros libres de CLD (morteroscontrol: 0% de sustitucion de cemento por CLD. Se

  10. THE USE OF NATURAL TRASS FROM SAYUTAN MAGETAN AND LIME FROM NGAMPEL BLORA AS THE MATERIAL OF CEMENT SUBSTITUTION FOR MORTAR MIXTURE

    Directory of Open Access Journals (Sweden)

    Muhammad Nurzain

    2015-05-01

    Full Text Available Construction works in the Regency of Magetan, as well as in the mountain area far from capital cities and remote from transportation facilities, require large amount of material. In order to cope with the need of sand, people uses natural trass which are plenty to be found in the area. Test and research on its characteristic and strength with its potentials to be used as cement substitution have never been carried out. Lime was taken from Ngampel village, Blora as it is commonly sold in the area. The planned mixture of lime-trass paste was in the effort to obtain the best composition. The weight ratios used were 100%:0%, 80%:20%, 60%:40%, 40%:60%, 20%:80 and 0%:100%. The mortar mixture with cement substitution was 100%, 80%, 60%, 40%, 20% and 0%.The compressive strength of the lime-trash mixture was between 0.000 MPa and 2.545 MPa. The mortar compressive strength achieved was 0.373 MPa - 26.585 MPa. The test results of mortar compressive strength showed that the more cement substitution amount used, the less the compressive strength would be. The mortar compressive strength increased in line to the age of the mortar. The mortar tensile strength obtained was 0.000 MPa - 2.169 MPa. The block compressive strength obtained was 3.336 MPa - 3.403 MPa. Water absorbency of the block was 15.831% -16.056%.

  11. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  12. Synthesis of geopolymer from biomass-coal ash blends

    Science.gov (United States)

    Samadhi, Tjokorde Walmiki; Wulandari, Winny; Prasetyo, Muhammad Iqbal; Fernando, Muhammad Rizki; Purbasari, Aprilina

    2017-09-01

    Geopolymer is an environmentally attractive Portland cement substitute, owing to its lower carbon footprint and its ability to consume various aluminosilicate waste materials as its precursors. This work describes the development of geopolymer formulation based on biomass-coal ash blends, which is predicted to be the prevalent type of waste when biomass-based thermal energy production becomes mainstream in Indonesia. The ash blends contain an ASTM Class F coal fly ash (FA), rice husk ash (RHA), and coconut shell ash (CSA). A mixture of Na2SiO3 and concentrated KOH is used as the activator solution. A preliminary experiment identified the appropriate activator/ash mass ratio to be 2.0, while the activator Na2SiO3/KOH ratio varies from 0.8 to 2.0 with increasing ash blend Si/Al ratio. Both non-blended FA and CSA are able to produce geopolymer mortars with 7-day compressive strength exceeding the Indonesian national SNI 15-2049-2004 standard minimum value of 2.0 MPa stipulated for Portland cement mortars. Ash blends have to be formulated with a maximum RHA content of approximately 50 %-mass to yield satisfactory 7-day strength. No optimum ash blend composition is identified within the simplex ternary ash blend compositional region. The strength decreases with Si/Al ratio of the ash blends due to increasing amount of unreacted silicate raw materials at the end of the geopolymer hardening period. Overall, it is confirmed that CSA and blended RHA are feasible raw materials for geopolymer production..

  13. The ovens of the industry of the cement and their contribution to the handling of solid residuals and dangerous

    International Nuclear Information System (INIS)

    Riveros Rojas, Marcelo

    1995-01-01

    The substitution of certain row matters in the process of elaboration of the cement, as flying ashes, polluted soils with petroleum, muds of the industry of the petroleum, oxides of the industry of the steel, foundry sand and tires, they can replace until 40% of the necessities of energy of a cement oven contributing to improve the conservation of the environment. This new technology is using with success in United States and some countries of Europe

  14. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  15. Utilization of rice husk ash to enhance radon resistant potential of concrete

    International Nuclear Information System (INIS)

    Jain, Ravinder; Kant, Krishan; Yadav, Mani Kant; Chauhan, R.P.

    2013-01-01

    The radiological and health implication posed by radon and their decay products are well known. The soil containing varying amount of radionuclides is the primary source of indoor radon. The indoor radon level depends upon its entrance through the pores of the ground and floor. Thus it is necessary to restrict the radon from soil to enter indoors by application of materials with low radon diffusion coefficient. The method used for radon shielding purpose in present study utilizes the rice husk ash for substitution with cement to achieve low diffusion coefficient. The study describes the method to optimize the condition of preparation of rice husk ash using X-ray diffraction and fluorescence spectroscopy techniques. The rice husk substitution with cement was optimized by compressive and porosity test of concrete cubes. The diffusion coefficient through concrete modified by rice husk ash was carried out by scintillation radon monitor and specially design radon diffusion chamber. The radon exhalation rates from concrete carried out using active technique decreasing radon emanation from concrete with increase of rice husk ash. The result of present study suggest substitution of 20-30% rice husk ash with cement to achieve lower radon diffusion and exhalation rates with higher compressive strength as compared to control concrete. (author)

  16. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, S.

    1980-01-01

    Fly ash and fine dispersion releases from coal combustion in Greek coal power plants were studied. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). Risk from the fly ash derives from its escape in particulate form or fine dispersion and from its use as a substitute for cement in concrete. The new data indicate that coal power plants discharge relatively larger quantities of radioactive material into the atmosphere than nuclear power plants of comparable size, during normal operation. (H.K.)

  17. Use of rice straw ash as substitute of feldspar in triaxial porcelain; Cenizas del tamo de arroz como substituto del feldespato en la fabricacion de ceramica blanca

    Energy Technology Data Exchange (ETDEWEB)

    Alvaro Guzman, A.; Silverio Delvasto, A.; Enrique Sanchez, V.; Vicente Amigo, B.

    2013-02-01

    The substitution of raw materials for processing high energy consumption materials by agricultural and agro-industrial wastes causes a positive impacts on the environment preservation. One of these residues is rice straw, which according to FAO estimation, its annual production is about 600 million tons. In this research was studied the use of rice straw ash as substitute of the use of feldspar in the white ware production. Clay-feldspar-quartz porcelains are referred to as triaxial white ware. Specimens of semidry triaxial mixtures, where feldspar was substituted for different percentages of CTA, were prepared by uniaxial pressing, followed by drying and sintering. Physical and mechanical properties of sintered bodies were evaluated. The porosity and the compressive strength of the fired pieces do increase with additions of up to 75% of CTA in substitution of feldspar. Their mineralogical phases were determined by DRX and SEM; grains of quartz, and needles of primary and secondary mullite were identified in a vitreous phase. It was concluded that feldspar can be substituted positively by CTA in white ware pastes. (Author) 22 refs.

  18. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement; Efecto de la incorporacion de ceniza volante y escoria de horno alto en el comportamiento electroquimico de concretos de cemento comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-07-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  19. Strength Assessment of Controlled Low Strength Materials (CLSM) Utilizing Recycled Concrete Aggregate and Waste Paper Sludge Ash

    OpenAIRE

    Ridzuan, Ahmad Ruslan Mohd; Fauzi, Mohd Azrizal; Ghazali, Ezliana; Arshad, Mohd Fadzil; Fauzi, Mohd Afiq; Mohd Fauzi, Mohd Afiq

    2013-01-01

    This paper studies the strength development of low-strength material (CLSM) is controlled by using waste paper sludge ash (WPSA) in CLSM mixtures without adding Portland cement. Series of four (4) compounds which is the CLSM containing 5%, 10%, 20% and 30% of waste paper sludge ash (WPSA) as a substitute for Portland cement. CLSM cubes the sizes of 100mm x 100mm x 100mm compressive strength were tested at age 7, 14 and 28days. It was found that this activity contributes to strength developmen...

  20. Microstructural analysis of the potential of sugarcane bagasse ash as a pozzolan material in cement composites; Analise microestrutural do potencial das cinzas de bagaco de cana-de-acucar como material pozolanico em compositos cimenticios

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.M.; Assuncao, C.C.; Guimaraes, L. de M.; Malmonge, J.A.; Tashima, M.M; Akasaki, J.L., E-mail: jorge.akasaki@gmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Faculdade de Engenharia

    2016-07-01

    For civil construction, the ash obtained by burning sugarcane bagasse (SCBA) in sugar-cane industry is being treated as a pozzolan material because, in addition to containing high amounts of silicon and aluminium oxides, can promote reduction of the environmental impact caused by cement production, since this alternative material may partially replace the Portland cement.The present study evaluated the pozzolanic potential of the SCBA, from different states of Brazil (Sao Paulo (SP), Goias (GO) and Mato Grosso (MT)). The reactivity of the material was analyzed by microstructural characterization, besides the pastes production (lime / SCBA and cement / SCBA) for the analysis of the hydration products formed, which are evaluated by TG and SEM. There was a decrease in the formation of ettringite in the matrixes, inversely proportional to the amount of ash, which favored the reduction of the cracking in cementitious matrices. It has also observed that the pastes produced with the ashes from State of SP showed greater fixation of lime and, consequently, a high reactivity. (author)

  1. Eco-friendly porous concrete using bottom ash aggregate for marine ranch application.

    Science.gov (United States)

    Lee, Byung Jae; Prabhu, G Ganesh; Lee, Bong Chun; Kim, Yun Yong

    2016-03-01

    This article presents the test results of an investigation carried out on the reuse of coal bottom ash aggregate as a substitute material for coarse aggregate in porous concrete production for marine ranch applications. The experimental parameters were the rate of bottom ash aggregate substitution (30%, 50% and 100%) and the target void ratio (15%, 20% and 25%). The cement-coated granular fertiliser was substituted into a bottom ash aggregate concrete mixture to improve marine ranch applications. The results of leaching tests revealed that the bottom ash aggregate has only a negligible amount of the ten deleterious substances specified in the Ministry of Environment - Enforcement Regulation of the Waste Management Act of Republic Korea. The large amount of bubbles/air gaps in the bottom ash aggregate increased the voids of the concrete mixtures in all target void ratios, and decreased the compressive strength of the porous concrete mixture; however, the mixture substituted with 30% and 10% of bottom ash aggregate and granular fertiliser, respectively, showed an equal strength to the control mixture. The sea water resistibility of the bottom ash aggregate substituted mixture was relatively equal to that of the control mixture, and also showed a great deal of improvement in the degree of marine organism adhesion compared with the control mixture. No fatality of fish was observed in the fish toxicity test, which suggested that bottom ash aggregate was a harmless material and that the combination of bottom ash aggregate and granular fertiliser with substitution rates of 30% and 10%, respectively, can be effectively used in porous concrete production for marine ranch application. © The Author(s) 2015.

  2. Reuse of ash coal in the formulation of mortars; Reaproveitamento de cinzas de carvao mineral na formulacao de argamassas

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, J.S.; Souza, C.A.G.; Souza, J.A.S., E-mail: jacilene_s@yahoo.com.br, E-mail: celioag@ufpa.br, E-mail: jass@ufpa.br [Programa de Pos Graduacao em Engenharia Quimica, Universidade Federal do Para, UFPA/PPEQ, Belem, PA (Brazil)

    2012-04-15

    This paper aims to study the ash incorporation from the combustion of coal in fluidized bed boilers, in production of mortar, replacing part of cement. Specimens were prepared using Portland cement to the specifications CPII-E-32 of normal characteristics and classification of sand below 100 mesh. Blends in the 4:1 ratio, that is, 4 parts of aggregate to 1 part of cement, with insertion of ashes in the proportions 0, 10, 20, 30, 40 and 50%. The mortar was developed in mixing and casting was made in a mold of 5 cm x 10 cm. The behavior of compressive strength was evaluated after 28 days; the strength decreases with increasing percentage of ash. Additional analysis was carried out by X-ray diffraction, and it was found that the substitution of this waste can be successfully used in mortars with blends of up to 30%. (author)

  3. Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker

    Directory of Open Access Journals (Sweden)

    Kae-Long Lin

    2017-09-01

    Full Text Available This study investigated the feasibility of using waste limestone sludge, waste stone sludge, iron oxide sludge, and spent catalyst as raw materials in the production of eco-cement. The compressive strength development of the Eco Cement-A (ECO-A paste was similar to that of ordinary Portland cement (OPC pastes. The compressive strength development of the ECO-B paste was higher than that of OPC pastes. In addition, the C2S (Ca2SiO4, C2S and C3S (Ca3SiO5 minerals in the eco-cement paste were continuously utilized to hydrate the Ca(OH2 and calcium silicate hydrates gel (Ca6Si3O12·H2O, C–S–H throughout the curing time. When ECO-C clinker contained 8% spent catalyst, the C3S mineral content decreased and C3A (3 CaO·Al2O3 content increased, thereby causing the structure to weaken and compressive strength to decrease. The results showed that the developed eco-cement with 4% spent catalyst possessed compressive strength properties similar to those of OPC pastes.

  4. The long term effect on cement mortar by admixture of spray drying absorption products

    International Nuclear Information System (INIS)

    Jeppesen, K.G.

    1988-01-01

    Preliminary investigations have shown that the substitutions of up to 10% fly ash (FA), with spray drying absorption products (SDA), in cement mortars (cement: 80% rapid portland cement (RPC), 10-20% FA, 0-10% SDA) results in low early strength of the same magnitude as in mortar with 80% RPC + 20% FA. Use of the modified instructions for preparation of mortar prisms containing SDA resulted in satisfactory early strengths. A series of mortar prisms with increasing content of SDA (x% RPC, (100-x)% SDA in cements; 0 80% cannot be stored wet. The effects on mortars of the individual constituents of the SDA-products are studied by XRD, development in strength and density. Fragments of 2 year old SDA containing cement mortars and SDA containing concrete from a parking place have been studied

  5. Potencial da cinza do bagaço da cana-de-açúcar como material de substituição parcial de cimento Portland Potential of sugarcane bagasse ash as a partial replacement material for Portland cement

    Directory of Open Access Journals (Sweden)

    Marcos O. de Paula

    2009-06-01

    Full Text Available Este trabalho, voltado para a avaliação do potencial da cinza do bagaço da cana-de-açúcar (CBC como material de substituição parcial do cimento Portland em argamassa, objetivou apresentar opção viável para a destinação deste resíduo, cuja quantidade gerada aumentará significativamente nos próximos anos, em decorrência da ampliação do setor de produção de álcool combustível; além disso, o emprego da CBC como adição mineral, substituindo parte do cimento em argamassas e concretos, contribui para a redução do impacto ambiental desses materiais, em boa parte decorrente da produção do cimento. O procedimento experimental abordou não só caracterização da CBC mas também a avaliação, através de ensaios físicos e mecânicos, em que os resultados mostraram que o bagaço apresenta rendimento de CBC de 10%, com a cinza sendo composta de 84% de SiO2 e 5% de Carbono. A sílica na CBC apresenta-se na fase amorfa e nas fases cristalinas de cristobalita e quartzo. Os índices de atividade pozolânica comprovam a reatividade da CBC. Do ponto de vista da resistência à compressão, argamassas com teores de CBC entre 0 e 30% indicaram a possibilidade de substituição de até 20% do cimento pela CBC.This study is focused on the evaluation of the effects of the partial replacement of Portland cement by sugarcane bagasse ash (CBC in mortars. The main objective was to find a suitable destination for an agricultural residue generated in an increasing amount in Brazil, as a result of the boom of the use of ethanol as an alternative fuel to gasoline. Also, the use of CBC as a mineral admixture in mortars and concretes contributes to a decrease in the environmental impact of these materials related to cement production. Experimental techniques were applied both for the CBC characterization and for the evaluation of its use as a mineral admixture in mortars, based on mechanical and physical tests. The yield of CBC from sugarcane

  6. Reinforcement of calcium phosphate cement with multi-walled carbon nanotubes and bovine serum albumin for injectable bone substitute applications

    NARCIS (Netherlands)

    Chew, K.K.; Low, K.L.; Zein, S.H.S.; McPhail, D.; Gerhardt, L.C.; Roether, J.A.; Boccaccini, A.R.

    2011-01-01

    This paper presents the development of novel alternative injectable calcium phosphate cement (CPC) composites for orthopaedic applications. The new CPC composites comprise ß-tri-calcium phosphate (ß-TCP) and di-calcium phosphate anhydrous (DCPA) mixed with bovine serum albumin (BSA) and incorporated

  7. Interaction of acid mine drainage with Ordinary Portland Cement blended solid residues generated from active treatment of acid mine drainage with coal fly ash.

    Science.gov (United States)

    Gitari, Wilson M; Petrik, Leslie F; Key, David L; Okujeni, Charles

    2011-01-01

    Fly ash (FA) has been investigated as a possible treatment agent for Acid mine drainage (AMD) and established to be an alternative, cheap and economically viable agent compared to the conventional alkaline agents. However, this treatment option also leads to generation of solid residues (SR) that require disposal and one of the proposed disposal method is a backfill in coal mine voids. In this study, the interaction of the SR with AMD that is likely to be present in such backfill scenario was simulated by draining columns packed with SR and SR + 6% Ordinary Portland Cement (OPC) unsaturated with simulated AMD over a 6 month period. The evolving geochemistry of the liquid/solid (L/S) system was evaluated in-terms of the mineral phases likely or controlling contaminants attenuation at the different pH regimes generated. Stepwise acidification of the percolates was observed as the drainage progressed. Two pH buffer zones were observed (7.5-9 and 3-4) for SR and (11.2-11.3 and 3.5-4) for SR + 6% OPC. The solid residue cores (SR) appeared to have a significant buffering capacity, maintaining a neutral to slightly alkaline pH in the leachates for an extended period of time (97 days: L/S 4.3) while SR + 6% OPC reduced this neutralization capacity to 22 days (L/S 1.9). Interaction of AMD with SR or SR + 6% OPC generated alkaline conditions that favored precipitation of Fe, Al, Mn-(oxy) hydroxides, Fe and Ca-Al hydroxysulphates that greatly contributed to the contaminants removal. However, precipitation of these phases was restricted to the pH of the leachates remaining at neutral to circum-neutral levels. Backfill of mine voids with SR promises to be a feasible technology for the disposal of the SR but its success will greatly depend on the disposal scenario, AMD generated and the alkalinity generating potential of the SR. A disadvantage would be the possible re-dissolution of the precipitated phases at pH water column. However extrapolation of this concept to a field

  8. Use of the “red gypsum” industrial waste as substitute of natural gypsum for commercial cements manufacturing

    Directory of Open Access Journals (Sweden)

    Gázquez, M. J.

    2012-06-01

    Full Text Available The main objective of this research has been the valorisation of a waste from the TiO2 production process (sulphate method, called red gypsum, in the production of cements. This waste is mainly formed by di-hydrate calcium sulphate and iron hydroxides. To cover this objective it has been necessary to perform the physico-chemical characterisation of the red gypsum as well as the main components in the production of cements and of the new cements generated. Moreover, for the red gypsum, has been analyzed its radioactive content because it is generated in a NORM (Naturally Occurring Radioactive Materials industry. Finally, the most important properties of the obtained cements with different proportions of red gypsum in their composition have been studied by comparing them with the standard ones obtained in a Portland cement. Lastly, we have demonstrated that the new cements fulfil all the quality tests imposed by the European legislation.

    El objetivo de esta investigación ha sido analizar la valorización de un residuo generado en el proceso de producción de dióxido de titanio (vía sulfato, denominado yeso rojo, en la producción de cementos. Dicho residuo está compuesto fundamentalmente por sulfato de calcio di-hidratado e hidróxidos de hierro. Para ello, ha sido necesaria la caracterización físico-química del yeso rojo, así como la de los otros componentes fundamentales en la fabricación de cementos y de los cementos generados con el mencionado residuo. Además, en el caso del yeso rojo, se ha analizado su contenido radiactivo al generarse éste en una industria NORM (Natural Occurring Radioactive Materials. Posteriormente, se han estudiado las propiedades más importantes de los cementos producidos con diferentes porcentajes de yeso rojo añadido, comparando estas mezclas con las propiedades de un cemento Portland comercial, comprobándose que se cumplen todas las normas Europeas de calidad exigibles.

  9. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  10. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  11. Durability of Gamma Irradiated Polymer Impregnated Blended Cement Pastes

    International Nuclear Information System (INIS)

    Khattab, M.M.; Abdel-Rahman, H.A.; Younes, M.M.

    2010-01-01

    This study is focusing on durability and performance of the neat blended cement paste as well as those of the polymer-impregnated paste towards seawater and various concentrations of magnesium sulfate solutions up to 6 months of curing. The neat blended cement paste is prepared by a partial substitution of ordinary Portland cement with 5% of active rice husk ash (RHA). These samples were cured under tap water for 7 days. Similar samples were impregnated with unsaturated polyester resin (UPE) and subjected to various doses of gamma rays ranging from 10 to 50 kGy. The results showed that the irradiated impregnated specimens gave higher values of compressive strength than the neat blended cement paste specimens. On immersing the neat blended cement specimens and polymer impregnated specimens especially that irradiated at 30 kGy in seawater and different concentrations of magnesium sulfate solutions up to 6 months of curing, the results showed that the polymer impregnated blended cement (OPC-RHA-UPE) paste have a good resistance towards aggressive media as compared to the neat blended cement (OPC-RHA) paste. The results also indicated that the sea water has a greater corrosive effect than the magnesium sulfate solutions. These results were confirmed by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP)

  12. Compressive strength and initial water absorption rate for cement brick containing high-density polyethylene (HDPE) as a substitutional material for sand

    Science.gov (United States)

    Ali, Noorwirdawati; Din, Norhasmiza; Sheikh Khalid, Faisal; Shahidan, Shahiron; Radziah Abdullah, Siti; Samad, Abdul Aziz Abdul; Mohamad, Noridah

    2017-11-01

    The rapid growth of today’s construction sector requires high amount of building materials. Bricks, known to have solid properties and easy to handle, which leads to the variety of materials added or replaced in its mixture. In this study, high density polyethylene (HDPE) was selected as the substitute materials in the making of bricks. The reason behind the use of HDPE is because of its recyclable properties and the recycling process that do not emit hazardous gases to the atmosphere. Other than that, the use of HDPE will help reducing the source of pollution by avoiding the millions of accumulated plastic waste in the disposal sites. Furthermore, the material has high endurance level and is weatherproof. This study was carried out on experimenting the substitute materials in the mixture of cement bricks, a component of building materials which is normally manufactured using the mixture of cement, sand and water, following a certain ratios, and left dried to produce blocks of bricks. A series of three different percentages of HDPE were used, which were 2.5%, 3.0% and 3.5%. Tests were done on the bricks, to study its compressive strength and the initial water absorption rate. Both tests were conducted on the seventh and 28th day. Based on the results acquired, for compressive strength tests on the 28th day, the use of 2.5% of HDPE shown values of 12.6 N/mm2 while the use of 3.0% of HDPE shown values of 12.5 N/mm2. Onto the next percentage, 3.5% of HDPE shown values of 12.5 N/mm2.

  13. Conditioning processes for incinerator ashes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Three conditioning processes for alpha-bearing solid waste incineration ashes were investigated and compared according to technical and economic criteria: isostatic pressing, cold-crucible direct-induction melting and cement-resin matrix embedding

  14. Producing New Composite Materials by Using Tragacanth and Waste Ash

    OpenAIRE

    Yasar Bicer; Serif Yilmaz

    2013-01-01

    In present study, two kinds of thermal power plant ashes; one the fly ash and the other waste ash are mixed with adhesive tragacanth and cement to produce new composite materials. 48 new samples are produced by varying the percentages of the fly ash, waste ash, cement and tragacanth. The new samples are subjected to some tests to find out their properties such as thermal conductivity, compressive strength, tensile strength and sucking capability of water. It is found that; the thermal conduct...

  15. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  16. Radon exhalation rates of concrete modified with fly ash and silica fumes

    International Nuclear Information System (INIS)

    Amit Kumar; Chauhan, R.P.; Mehta, Vimal; Kant, K.

    2013-01-01

    The radiological impact of the environmental gas radon to the health of general public is of concern since many decades. Cement used for the construction blended with fly ash and silica fumes is recommended by Government in order to avoid the soil and environmental pollution. But these addition step-up the Indoor radon level in the dwelling due to radioactivity contents. The exhalation of radon from concrete blended with silica fumes and fly ash depends upon addition level, porosity, moisture and radioactivity content. In order to optimize the level of substitution of silica fumes and fly ash, measurements of radon exhalation rates from the concrete blended with different proportions of fly ash and silica fumes was carried out using active scintillation radon monitor. The effect of porosity, moisture, back diffusion and radioactivity content of the concrete on exhalation rates is studied. The measured exhalation rates were extrapolated for indoor radon concentration and effective dose equivalent using ICRP, 1987 recommendations. (author)

  17. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  18. Geotechnical properties of clayey soil stabilized with cement ...

    African Journals Online (AJOL)

    The study was conducted to investigate the different effects of cement-sawdust ash and cement on a clayey soil sampled from Mandate Lodge, Landmark University, Omu-Aran, Nigeria. The binder mix of cementsawdust ash (CSDA) was mixed in a ratio of 1:1. The CSDA and cement were added to the soil samples at ...

  19. CFB粉煤灰作水泥混合材时与聚羧酸减水剂的相容性研究%Study on compatibility of CFB fly ash as cement admixture with polycarboxylate superplasticizer

    Institute of Scientific and Technical Information of China (English)

    赵少鹏; 陆加越; 刘建忠; 周明凯

    2017-01-01

    The compatibility between CFB fly ash and polycarboxylic superplasticizer was studied by the flow ability of cement paste and total organic carbon adsorption methods.The influence of compatibility with CFB ash was discussed by changing types of gypsum,reducing the ignition loss of CFB fly ash,compounding mineral admixtures and inorganic salt.The results show that,there has little influence on compatibility with superplasticizer by changing types of gypsum or adding mineral admixtures.Reducing the loss of fly ash can lead to the lower absorption of water reducer,as a result,the initial fluidity of cement paste increases gradually and the fluidity loss of 1 h reduces.Adding phosphate retarder has the best influence on compatibility,the initial fluidity of cement paste rises to 260mm from 200mm,and it still has good flow property after 1 h.%采用净浆流动度、总有机碳吸附法研究了CFB粉煤灰水泥与聚羧酸减水剂的相容性,探讨了改变石膏种类,降低CFB粉煤灰的烧失量,复掺矿物掺合料及外掺无机盐等措施对CFB粉煤灰水泥与减水剂相容性的影响.结果表明:改变石膏种类及复掺混合材对减水剂相容性的改善效果较小;降低CFB粉煤灰的烧失量能有效减小CFB粉煤灰对减水剂分子的吸附量,增大水泥浆体的初始流动度,且减小经时损失;外掺磷酸盐对减水剂相容性的改善效果显著,初始流动度由200 mm提高到了260 mm,1h后仍然具有较好的流动性.

  20. Scientific Council on problems on new processes in the coking industry. [Effect on coke consumption of moisture, sulfur and ash; substitution possibility

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, B.S.

    1981-07-01

    This paper presents a report on the Coking Section of the Scientific Council held on November 20, 1980 in Moscow. The following problems were discussed: indexes characterizing blast furnace coke (for furnaces with a volume of 5580 M/sup 3/); replacing metallurgical coke with other types of fuels; use of brown coal; liners of coke ovens. Papers delivered during the session are summarized. Reducing moisture content in blast furnace coke permits its consumption to be reduced by 2%. Reducing sulfur content in blast furnace coke by 0.1% permits its consumption to be reduced from 10 to 15 kg for 1 t of pig iron. Increase in ash content of coke by 1% causes coke consumption increase ranging from 1.5 to 2.0%. About 10 Mmt of coke class with grains above 25 mm in USSR is used for purposes other than blast furnaces. Possibilities of substituting coke with lean coal are evaluated (particularly from Kuzbass). A method for briquetting a mixture of black and brown coal is proposed. Briquets are a suitable fuel in metallurgy. A new type of liner, which consists of at least 92% silicon dioxide, is described. Physical and mechanical properties of the liners are discussed.

  1. A Review of Partial Replacement of Cement with some Agro Wastes

    African Journals Online (AJOL)

    user

    INTRODUCTION. The high cost of cement, ... Research on alternative to cement, has so far centred on the partial ... MATERIALS AND METHODS .... 2 : Compound Composition of Acha Husk Ash (AHA) Mixed with Cement(C). Using. Bogue's ...

  2. Cement production from coal conversion residues

    International Nuclear Information System (INIS)

    Brown, L.D.; Clavenna, L.R.; Eakman, J.M.; Nahas, N.C.

    1981-01-01

    Cement is produced by feeding residue solids containing carbonaceous material and ash constituents obtained from converting a carbonaceous feed material into liquids and/or gases into a cement-making zone and burning the carbon in the residue solids to supply at least a portion of the energy required to convert the solids into cement

  3. pozzolanicity and some engineering properties of rice husk ash

    African Journals Online (AJOL)

    HON

    , a potential ... relationship between the compressive strength of its concrete and water-cement ratio was also studied. The optimum water-cement ratio was found to .... solution, fly Ash, Silica Fume, Slag and. Natural Pozzolans in concrete, 1,.

  4. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-06-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  5. Properties of Fly Ash Blocks Made from Adobe Mould

    Science.gov (United States)

    Chokhani, Alankrit; Divakar, B. S.; Jawalgi, Archana S.; Renukadevi, M. V.; Jagadish, K. S.

    2018-02-01

    Fly ash being one of the industrial waste products poses a serious disposal problem. This paper presents an experimental study of utilization of fly ash to produce blocks with varying proportions and mix combinations. Composition of fly ash blocks mainly consist of fly ash and sand, with cementitious product as either cement, lime or both, such as fly ash-sand-cement, fly ash-sand-lime and fly ash-sand-cement-lime are used. Four different proportions for each of the mix combinations are experimented. Compressive strength, water absorption, Initial rate of absorption, and dry density of fly ash blocks are studied. The influence of partial and complete replacement of cement by lime is examined.

  6. Histological Analysis of the Effect of Accelerated Portland Cement as a Bone Graft Substitute on Experimentally-Created Three-Walled Intrabony Defects in Dogs

    Directory of Open Access Journals (Sweden)

    Mohamad Javad Ashraf

    2007-12-01

    Full Text Available

    Background and aims. Recent literature shows that accelerated Portland cement (APC is a non-toxic material that may have potential to promote bone healing. The objective of this study was to histologically evaluate periodontal healing focusing on new bone regeneration following implantation of APC into intra-bony defects in dogs.

    Materials and methods. Three-wall intra-bony periodontal defects were surgically created at the mesial aspect of the first molar in both sides of mandible in six dogs. One side was randomly filled with the material and other received a flap operation only. The animals were euthanized eight weeks post-surgery when block sections of the defect sites were collected and prepared for qualitative histological analysis.

    Results. Compared to control group, stimulation of growth of new bone tissue in the cavity containing APC was significantly prominent in three of six cases, showing osteoid formation with osteoblastic rimming and new bone trabeculla. New bone formation was observed just close to cavity containing APC. Connective tissue proliferation and downgrowth of epithelium were significantly less than those of control group.

    Conclusion. Our results are encouraging for the use of APC as a bone substitute, but more comprehensive study are necessary before warranting clinical use.

  7. Environmental Benefit Assessment for the Carbonation Process of Petroleum Coke Fly Ash in a Rotating Packed Bed.

    Science.gov (United States)

    Pei, Si-Lu; Pan, Shu-Yuan; Li, Ye-Mei; Chiang, Pen-Chi

    2017-09-19

    A high-gravity carbonation process was deployed at a petrochemical plant using petroleum coke fly ash and blowdown wastewater to simultaneously mineralized CO 2 and remove nitrogen oxides and particulate matters from the flue gas. With a high-gravity carbonation process, the CO 2 removal efficiency was found to be 95.6%, corresponding to a capture capacity of 600 kg CO 2 per day, at a gas flow rate of 1.47 m 3 /min under ambient temperature and pressure. Moreover, the removal efficiency of nitrogen oxides and particulate matters was 99.1% and 83.2%, respectively. After carbonation, the reacted fly ash was further utilized as supplementary cementitious materials in the blended cement mortar. The results indicated that cement with carbonated fly ash exhibited superior compressive strength (38.1 ± 2.5 MPa at 28 days in 5% substitution ratio) compared to the cement with fresh fly ash. Furthermore, the environmental benefits for the high-gravity carbonation process using fly ash were critically assessed. The energy consumption of the entire high-gravity carbonation ranged from 80 to 169 kWh/t-CO 2 (0.29-0.61 GJ/t-CO 2 ). Compared with the scenarios of business-as-usual and conventional carbon capture and storage plant, the economic benefit from the high-gravity carbonation process was approximately 90 and 74 USD per ton of CO 2 fixation, respectively.

  8. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    Science.gov (United States)

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  9. Synthesis and characterization of grinding aid fly ash blended mortar effect on bond strength of masonry prisms

    Science.gov (United States)

    Krishnaraj, L.; Ravichandran, P. T.; Sagadevan, Suresh

    2018-04-01

    The aim of the present work is to study the effect of particle size reduction by applying top-down nanotechnology such as ball mill grinding process with the addition of amine-based grinding aids. The particle size reduction in synthesis process and its characterization were investigated for fly ash particles. The Rosin-Rammler-Bennet (RRB) distribution model using mathematical formulations were studied for fly ash ground particles. The hardened properties of grinding aid fly ash composite mortar were studied using compressive strength test. The optimum grinding time was 120 min identified through the particle size distribution analysis. The mean particle size decreased from 92.09 μm to 10.5 μm in which there is 89% reduction in particle size due to the grinding of fly ash particle with grinding aids. The compressive strength results show that substitutions of Ordinary Portland Cement (OPC) mortar by Amine-based Grinding aid Fly Ash (AGFA) 15% gives 12, 23% and at 30% gives 6, 8% of higher strength compare to the substitutions of raw fly ash. The addition of grinding aids in grinding process gives more advantages to reduce the particle size without changing chemical composition. The AGFA sample shows better performance in compressive strength and bond strength behavior of masonry prism. It may suggest that amine based grinding aids play a vital role and feasible to use in fly ash grinding process.

  10. Radiological assessment of the utilization of fly ash in concrete for building construction and the parameters affecting radon-222 emanation from fly ash concrete

    International Nuclear Information System (INIS)

    Hwang, J.G.

    1986-01-01

    In this study, the Rn-222 area exhalation rates and the maximum area exhalations for concrete containing fly ash or Ra-226 water were measured. Various concrete samples were fabricated with fly ash of known radium content as a cement substitute. Other samples were prepared with one of three concentrations of Ra-226 water solution added into the concrete mix. A newly designed Indoor/Outdoor Emanation Chamber. The Ra-225 concentrations for the fly ash used ranged from 3.42 pCi/g to 7.55 pCi/g depending upon the source of the ash and the particle size. Doses were calculated for occupants of a hypothetical house built with concrete of the type studied. Doses to the basal cells of the bronchial epithelium and the mean dose to the lung were 2.10 rad/yr and 0.37 rad/yr for standard concrete, up to 4.28 rad/yr and 0.76 rad/yr for fly ash concrete, and 3.26 rad/yr and 0.58 rad/yr for the concrete made with 25 pCI/L radium-226 water. The risk associated with utilization of standard concrete in an unventilated house was estimated to range from 560 to 1316 fatal cancers in million population. Utilization of fly ash as a cement substitute could increase the number of fatal lung cancers up to 2680. Introducing 25 pCi/L Ra-226 water into concrete will increase the fatal cancer rate up to 2042 in a million population

  11. Natural Radionuclides in Slag/Ash Pile from Coal-Fired Power Plant Plomin

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.; Marovic, G.; Sencar, J.

    2001-01-01

    Full text: The coal slag/ash pile contains about one million tons of different (bottom ash, filter ash, gypsum) waste material deposited in vicinity of Plomin coal-fired power plant. Activities of 40 K, 228 Ra, 226 Ra and 238 U in materials deposited on slag/ash pile as well as in used coals were occasionally measured during past more than two and half decades of Plomin coal-fired plant operation. The radionuclides content in deposited bottom and filter ash material are related with radionuclide activities and mineral matter fraction in coals used. Up to the middle of nineties, the majority of coal used was anthracite from Istrian local mines. In that period, deposited waste material was characterised with relatively high 226 Ra and 238 U activities while potassium and thorium content was very low. When Istrian coal has been completely substituted with imported coal, uranium series radionuclide concentrations in deposited waste materials decreased significantly. Meanwhile, potassium and thorium activities in slag/ash pile material increased. It seems that slag/ash pile material generated in the last several years of Plomin coal-fired power plant operation could be generally used in cement industry without any special restriction. (author)

  12. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  13. Pengaruh Kombinasi Fly Ash dan Bottom Ash sebagai Bahan Substitusi pada Campuran Beton terhadap Sifat Mekanis

    OpenAIRE

    Yahya, Tengku Tantoni; Kurniawandy, Alex; Djauhari, Zulfikar

    2017-01-01

    Fly ash and bottom ash were waste that generated from the power plant burning coal process. Fly ash and bottom ash has the potential to be developed as a basic ingredient in concrete composites. This research aimed to obtain the properties of fresh concrete and hard concrete of the combined effect of fly ash and bottom ash as a substitute ingredient in composite concrete. This research has examined the influence of a combination of waste fly ash and bottom ash to the compressive strength of a...

  14. The effect of fly ashes in the corrosion and durability in concretes; Efecto de las Cenizas Volantes en la Durabilidad y en la Corrosion en Armaduras del Hormigon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    From the beginning of this century, fly ashes have been the object of a variety of studies and research-looking for different ways of application. The construction industry reuses the highest volume of the fly ash actually produced. Researches carried out on the behaviour of hydraulic blended materials mixed with fly ash have supported the progressive use of these by-products, and simultaneously have opened new ways of application. Spanish fly ash producers together with research centers, as IETcc, have been involved in investigations since 70`s. The last important research carried out has been the one dealing with the durability of concrete made with fly ash and its interaction with the corrosion of reinforcements. In this work five fly ashes of silicon-aluminous type were mixed with portland cement containing low alkali and aluminates in order to enhance the effect of those components from the fly ash. The main goal was to study the degradation mechanisms of concretes made with fly ashes, substituting partially the cement (15 and 35%) in several aggressive media: containing sulfates, chlorides or sea water. The effect to these aggressive media on the durability has also been considered regarding reinforcements. Different type of tests were carried out in laboratory and under natural exposure. In the case of laboratory studies the objectives were: 1) to stablish the mechanisms of hardening. The effect of fly ashes in pozolanic reaction and in the microstructure of the material. 2) Resistance of the addition of fly ashes against chloride and sulfates. Definition of the deterioration mechanisms. 3) Effect of fly ashes on the corrosion of reinforcements. Influence on the passivation process. Resistance against carbonation and chloride attack. (Author)

  15. Utilization coke dust as fuel in the cement industry

    International Nuclear Information System (INIS)

    Nawaz, S.

    2006-01-01

    Utilization of coke dust available from coal carbonization plants, as a fuel in the cement industry has been undertaken and discussed in this research paper. The parameters studied include physical and chemical evaluation of the coke dust and its economic feasibility/ suitability as fuel for the cement plants. Detailed studies have been carried out on the above referred parameters. In addition a comparative study has been done to access its suitability in comparison to other fuels especially imported coal. It has been found that the coke dust contained about 66% fixed carbon, 29% ash, 4% volatile matter, 1% moisture and 0.48% sulphur. It gross calorific value was found to be 5292 Kcal/kg. The detailed analysis of coke dust ash was also performed to determine as to how its constituents will compare with the cement constituents. Keeping in view the experimental results/ data generated on the coke dust, it has been concluded that it can be quite a good substitute for imported coal. In doing so a substantial financial saving can be achieved which ranges 40-45%. (author)

  16. Effect of blended materials on U(VI) retention characteristics for portland cement solidification product

    International Nuclear Information System (INIS)

    Tan Hongbin; Ma Xiaoling; Li Yuxiang

    2006-01-01

    Using the simulated groundwater as leaching liquid, the retention capability of U(VI) in solidification products with Portland cement, the Portland cement containing silica fume, the Portland cement containing metakaolin and the Portland cement containing fly ash was researched by leaching experiments at 25 degree C for 42 d. The results indicate silica fume and metakaolin as blended materials can improve the U(VI) retention capability of Portland cement solidification product, but fly ash can not. (authors)

  17. Incineration ash conditioning processes

    International Nuclear Information System (INIS)

    Jouan, A.; Ouvrier, N.; Teulon, F.

    1990-01-01

    Incinerable wastes consist of the following standard composition corresponding to projected wastes from a future mixed oxide fuel fabrication plant with an annual throughput of 1700 kg (i.e. 5.7 m 3 ) of ashes produced by the incineration facility: . 50% polyvinyl chloride (glove box sleeves), . 5% polyethylene (bags), . 35% rubber (equal amounts of latex and neoprene), . 10% cellulose (equal amounts of cotton and cleansing tissues). The work focused mainly on compaction by high-temperature isostatic pressing, is described in some detail with the results obtained. An engineering study was also carried out to compare this technology with two other ash containment processes: direct-induction (cold crucible) melting and cement-resin matrix embedding. Induction melting is considerably less costly than isostatic pressing; the operating costs are about 1.5 times higher than for cement-resin embedding, but the volume reduction is nearly 3 times greater

  18. Development of high-performance blended cements

    Science.gov (United States)

    Wu, Zichao

    2000-10-01

    This thesis presents the development of high-performance blended cements from industrial by-products. To overcome the low-early strength of blended cements, several chemicals were studied as the activators for cement hydration. Sodium sulfate was discovered as the best activator. The blending proportions were optimized by Taguchi experimental design. The optimized blended cements containing up to 80% fly ash performed better than Type I cement in strength development and durability. Maintaining a constant cement content, concrete produced from the optimized blended cements had equal or higher strength and higher durability than that produced from Type I cement alone. The key for the activation mechanism was the reaction between added SO4 2- and Ca2+ dissolved from cement hydration products.

  19. Experimental studies on effect of cow dung ash (pozzolanic binder) and coconut fiber on strengthproperties of concrete

    Science.gov (United States)

    Venkatasubramanian, C.; Muthu, D.; Aswini, G.; Nandhini, G.; Muhilini, K.

    2017-07-01

    The studies on durability of concrete have attracted attention in the recent years and its long term strength depends on quality of ingredients used in production of concrete. Now a days, the availability of ingredients is limited and in order to overcome this problem, research studies focuses on some alternate materials in the concrete production process. Also, Incorporation of waste materials consumes less energy leading to reduction of emission of green house gases. The application of fly ash and cow dung ash as a pozzolanic binder instead of cement and coir fibers finds extensive application in the manufacturing process of building materials. In this project an attempt has been made to utilize cow dung ash and coconut fiber as a replacement material of cement in the production of concrete. The cement is partially replaced with cow dung ash by about 2.5, 3 & 3.5 % by weight and with 1% of coconut fiber. The Compressive and Tensile strengths of concrete were found at different curing periods (7,14 & 28 days). From this study, it is inferred that these replacements will have a reasonable improvement in the strength properties of concrete by about 55-70%. The substitution of CDA, CF is economical in terms of cost and this usage eliminates the problem of landfills, reducing the environmental risk, maintaining the ecological balance, which is very much required for our nation.

  20. Concrete = aggregate, cement, water?

    International Nuclear Information System (INIS)

    Jelinek, J.

    1990-01-01

    Concrete for the Temelin nuclear power plant is produced to about 70 different formulae. For quality production, homogeneous properties of aggregates, accurate proportioning devices, technological discipline and systematic inspections and tests should be assured. The results are reported of measuring compression strength after 28 days for different concrete samples. The results of such tests allow reducing the proportion of cement, which brings about considerable savings. Reduction in cement quantities can also be achieved by adding ash to the concrete mixes. Ligoplast, a plasticizer addition is used for improving workability. (M.D). 8 figs

  1. Influence of ferrite phase in alite-calcium sulfoaluminate cements

    Science.gov (United States)

    Duvallet, Tristana Yvonne Francoise

    Since the energy crisis in 1970's, research on low energy cements with low CO2- emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material. Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties. Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminateferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition

  2. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  3. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    Science.gov (United States)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate

  4. Formation and utilization of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Vargyai, J

    1974-01-01

    General problems of slag and fly ash formation and utilization are discussed. The ever-increasing energy demand, and the comeback of coal as an energy carrier in power plants call for efficient solutions to the problem of slag and fly ash. Slag and fly ash are used for concrete in which they partly replace cement. Other possible uses are the amelioration of acid soils, fireclay manufacture, road construction, and tiles. It is possible to recover metals, such as vanadium, iron, aluminum, and radioactive materials from certain types of fly ash and slag. The utilization of fly ash is essential also with respect to the abatement of entrainment from dumps.

  5. Engineering properties of fly ash concrete

    International Nuclear Information System (INIS)

    Hilmi Mahmud

    1999-01-01

    This paper presents some of the engineering properties of Malaysian fly ash concrete. Workability, compressive, flexural, tensile splitting, drying shrinkage, elastic modulus and non destructive tests were performed on fly ash and control OPC concrete specimens. Data show that concrete containing 25% fly ash replacement of cement exhibit superior or similar engineering properties to that normal concrete without fly ash. These encouraging results demonstrated the technical merits of incorporating fly ash in concrete and should pave the way for wide scale use of this versatile material in the Malaysian construction industry. (author)

  6. Cementation of nuclear graphite using geo-polymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H.J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2012-01-01

    Geo-polymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geo-polymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geo-polymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geo-polymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated about how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfill the specifications at best. As result geo-polymers have been identified as a promising matrix for graphite containing nuclear wastes. With geo-polymers both favorable properties in the cementation process and a high long time structural stability of the products can be achieved. (authors)

  7. Formulating a low-alkalinity cement for radioactive waste repositories

    International Nuclear Information System (INIS)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X.

    2004-01-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  8. Formulating a low-alkalinity cement for radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X

    2004-07-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  9. The use of shale ash in dry mix construction materials

    Science.gov (United States)

    Gulbe, L.; Setina, J.; Juhnevica, I.

    2017-10-01

    The research was made to determine the use of shale ash usage in dry mix construction materials by replacing part of cement amount. Cement mortar ZM produced by SIA Sakret and two types of shale ashes from Narva Power plant (cyclone ash and electrostatic precipitator ash) were used. Fresh mortar properties, hardened mortar bulk density, thermal conductivity (λ10, dry) (table value) were tested in mortar ZM samples and mortar samples in which 20% of the amount of cement was replaced by ash. Compressive strenght, frost resistance and resistance to sulphate salt solutions were checked. It was stated that the use of electrostatic precipitator ash had a little change of the material properties, but the cyclone ash significantly reduced the mechanical strength of the material.

  10. Upshot of Elevated Temperature on Performance Facet of Fly Ash ...

    African Journals Online (AJOL)

    This study investigates the effects of elevated temperature variation on the compressive strength of Fly Ash/Ordinary Portland Cement (OPC) Laterized concrete ... and 10% Fly ash content at 2500C. This is an indication that the strength of Fly ash/OPC Laterized concrete is generally sufficient for use at elevated temperature ...

  11. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    Directory of Open Access Journals (Sweden)

    Manu S. Nadesan

    2017-12-01

    Full Text Available Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of fly ash is left unused posing environmental and storage problems. The production of sintered lightweight aggregate with fly ash is an effective method to dispose of fly ash in large quantities. Due to lack of a proper mix design procedure, the production and application of lightweight aggregate in structural concrete are not much entertained. The absorption characteristic of lightweight aggregate is a major concern, while developing the mix proportioning of lightweight concretes. The present study is an attempt to establish a new mix design procedure for the development of sintered fly ash lightweight aggregate concretes, which is simple and more reliable than the existing procedures. Also, the proposed methodology has been validated by developing a spectrum of concretes having water cement ratios varying from 0.25 to 0.75. From the study, it is obvious that the development of 70 MPa concrete is possible by using cement alone without any additives. Also, it is ensured that all the concretes have densities less than 2000 kg/m3.

  12. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.

  13. Utilization of Hospital Waste Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2013-01-01

    Full Text Available Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement.

  14. Utilization of hospital waste ash in concrete

    International Nuclear Information System (INIS)

    Memon, S.; Sheikh, M.

    2013-01-01

    Hospital waste management is a huge problem in Pakistan. The annual production of medical waste produced from health care facilities, in Pakistan, is around 250,000 tons. This research paper is intended to evaluate the feasibility of using of hospital waste ash obtained from Pakistan Institute of Medical Sciences, Rawalpindi, Pakistan, as partial replacement of cement. The main variable in this research is the amount of hospital waste ash (2, 4, 6 and 8% by weight of cement) while the amount of cementitious material, water to cementitious material ratio, fine and coarse aggregate content were kept constant. Test results substantiate that hospital waste ash can be used in concrete. XRD (X-Ray Diffraction) of hospital waste ash showed that it is rich in calcite while scanning electron micrographs indicated that the particles of hospital waste ash have highly irregular shape. The slump value, density of fresh concrete and water absorption decreased with the increase in the quantity of hospital waste ash in the mix. At 3 days of testing, the compressive strength of mixes with hospital waste ash was higher than the control mix while at 7 and 28 days the CM (Control Mix) showed higher strength than the hospital waste ash mixes except the mix containing 2% hospital waste ash by weight of cement. (author)

  15. Pemanfaatan limbah abu terbang (fly ash) , abu dasar (bottom ash) batubara dan limbah padat (sludge) industri karet sebagai bahan campuran pada pembuatan batako

    OpenAIRE

    Faisal, Hendri

    2012-01-01

    Brick-making research has been conducted from a mixture of fly ash as a cement mixed with aggregate materials based bottom ash and sludge, and sand, where fly ash and cement used as an adhesive matrix. The percentage addition of fly ash is 10%, 20%, 30%, 40% and 50% of initial weight of cement. The percentage addition of bottom ash and sludge as an aggregate is 5%, 10%, 15%, 20% and 25% of initial weight of sand with the time of hardening for 28 days. Parameter tests performed include: metals...

  16. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  17. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    OpenAIRE

    Manu S. Nadesan; P. Dinakar

    2017-01-01

    Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of ...

  18. Características físicas e mecânicas de misturas de solo, cimento e cinzas de bagaço de cana-de-açúcar Physical and mechanical characteristics of soil-cement-bagasse ash mixtures

    Directory of Open Access Journals (Sweden)

    Martha Del C. Mesa Valenciano

    2004-12-01

    Full Text Available Este trabalho teve por finalidade analisar algumas características de misturas de solo, cimento e cinzas de bagaço de cana-de-açúcar para sua possível utilização na fabricação de materiais alternativos de construção. Para tal, amostras de cinzas de bagaço de cana-de-açúcar foram submetidas a um tratamento prévio que consistia de peneiramento e moagem, antes de serem incorporadas às misturas de solo e cimento. Diferentes combinações de cimento-cinzas foram estudadas, determinando-se, para cada uma delas, a consistência normal e a resistência à compressão simples, aos 7 e 28 dias. Posteriormente, corpos-de-prova moldados com tais misturas de solo-cimento-cinzas foram submetidos a ensaios de compactação, compressão simples e absorção de água. Os resultados indicaram a possibilidade de substituir até 20% do cimento Portland, na mistura, por cinzas de bagaço de cana-de-açúcar, sem prejuízo da resistência à compressão simples.This work was done with the objective of studying some physical and mechanical characteristics of the sugarcane bagasse ash added to a soil-cement mixture, in order to obtain an alternative construction material. The sugarcane bagasse ash pre-treatment included both sieving and grinding, before mixing with soil and cement. Different proportions of cement-ash were tested by determining its standard consistence and its compressive resistance at 7 and 28 days age. The various treatments were subsequently applied to the specimens molded with different soil-cement-ash mixtures which in turns were submitted to compaction, unconfined compression and water absorption laboratory tests. The results showed that it is possible to replace up to 20% of Portland cement by sugarcane bagasse ash without any damage to the mixture's compressive strength.

  19. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  20. Cermet cements.

    Science.gov (United States)

    McLean, J W

    1990-01-01

    Cermet ionomer cements are sintered metal/glass powders, which can be made to react with poly(acids). These new cements are significantly more resistant to abrasion than regular glass ionomer cements and are widely accepted as core build-up materials and lining cements. They can strengthen teeth and provide the clinician with an opportunity to treat early dental caries.

  1. the potential use of fonio husk ash as a pozzolana in concrete

    African Journals Online (AJOL)

    eobe

    2016-01-01

    Jan 1, 2016 ... up to a temperature of 6000C and converted into ash. The ... weather. Keywords: Keywords: Fonio, Husk Ash, Compressive Strength, Cement, Concrete, Pozzolana. ..... [14] Holmer S. Jnr and Moises F. “Pozzolanic Behavior of.

  2. The behavior of self-compacting concrete (SCC) with bagasse ash

    Science.gov (United States)

    Hanafiah, Saloma, Whardani, Putri Nurul Kusuma

    2017-11-01

    Self-Compacting Concrete (SCC) has the ability to flow and self-compacting. One of the benefit of SCC can reduced the construction time and labor cost. The materials to be used for see slightly different with the conventional concrete. Less coarse aggregate to be used up to 50%. The maximum size of coarse aggregate was also limited e.g. 10 mm. Other material was quartz sand with grain size of 50-650 µm. For reducing the around of cement, bagasse ash was used as partial replacement of cement. In this research, the variations of w/c to be used, e.g. 0.275, 0.300, 0.325 and the percentage of bagasse ash substitution were 10%, 15%, and 20%. EFNARC standard was conducted for slump flow test following the V-funnel test and L-box shape test. The maximum value of slump flow test was 75.75 cm, V-funnel test was 4.95 second, and L-box test was 1.000 yielded by mixture with w/c = 0.325 and 0% of bagasse ash. The minimum value of slump flow test was 61.50 cm, V-funnel test is 21.05 second, and L-box test was 0.743 yielded by mixture with w/c = 0.275 and 20% of bagasse ash. The maximum value of compressive strength was 67.239 MPa yielded by mixture with w/c = 0.275 and 15% of bagasse ash. And the minimum value of compressive strength was 41.813 MPa yielded by mixture with w/c = 0.325 and 20% bagasse ash.

  3. Possibilities of utilizing power plant fly ashes

    Directory of Open Access Journals (Sweden)

    Mezencevová Andrea

    2003-09-01

    Full Text Available The burning of fossil fuels in industrial power stations plays a significant role in the production of thermal and electrical energy. Modern thermal power plants are producing large amounts of solid waste, mainly fly ashes. The disposal of power plant waste is a large environmental problem at the present time. In this paper, possibilities of utilization of power plant fly ashes in industry, especially in civil engineering, are presented. The fly ash is a heterogeneous material with various physical, chemical and mineralogical properties, depending on the mineralogical composition of burned coal and on the used combustion technology. The utilization of fly ashes is determined of their properties. The fineness, specific surface area, particle shape, density, hardness, freeze-thaw resistance, etc. are decisive. The building trade is a branch of industry, which employs fly ash in large quantities for several decades.The best utilization of fluid fly ashes is mainly in the production of cement and concrete, due to the excellent pozzolanic and cementitious properties of this waste. In the concrete processing, the fly ash is utilized as a replacement of the fine aggregate (fine filler or a partial replacement for cement (active admixture. In addition to economic and ecological benefits, the use of fly ash in concrete improves its workability and durability, increases compressive and flexural strength, reduces segregation, bleeding, shrinkage, heat evolution and permeability and enhances sulfate resistance of concrete.The aim of current research is to search for new technologies for the fly ash utilization. The very interesting are biotechnological methods to recovery useful components of fly ashes and unconventional methods of modification of fly ash properties such as hydrothermal zeolitization and mechanochemical modification of its properties. Mechanochemistry deals with physico - chemical transformations and chemical reactions of solids induced by

  4. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    Science.gov (United States)

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  5. Hazards from radioactivity of fly ash of Greek coal power plants (CPP)

    International Nuclear Information System (INIS)

    Papastefanou, C.; Charalambous, C.

    1980-01-01

    Fly ash and fine dispersion releases by coal combustion in Greek coal power plants are radioactive. Concentrations in the fly ash up to 20 pCi/g and 10 pCi/g were measured for 238 U and 226 Ra respectively (not in secular equilibrium). The radioactivity of fly ash deduces risks in two ways: a) from the escaping fly ash in particulate form or fine dispersion and b) from using fly ash as substitute for cement in concrete. In a room of dimensions 10 x 10x4 m 3 the concentration of Radon in the air will be about 10 -9 μCi/cm 3 . For the above estimation a concrete porosity of 5% and a wall thickness of 20 cm was used. The estimated concentration of Radon was about two orders of magnitude lower than that of the MPC of Radon in the air, which is about 10 -9 μCi/cm 3 . It is pointed out that if a 25% porosity were used, the Radon concentration will be an order of magnitude higher. (U.K.)

  6. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    OpenAIRE

    Antoni; Sulistio Aldi Vincent; Wahjudi Samuel; Hardjito Djwantoro; Hardjito Djwantoro

    2017-01-01

    Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment includi...

  7. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  8. Wet-Treated MSWI Fly Ash Used as Supplementary Cementitious Material

    Directory of Open Access Journals (Sweden)

    Martin Keppert

    2015-01-01

    Full Text Available Municipal solid waste incineration (MSWI is a common technique in treatment of domestic waste. This technique annually produces approximately 25 Mt solid residues (i.e., bottom and fly ash worldwide which is also a major issue in current research. In this research we are concerned with reusing the fly ash (FA as supplementary cementitious material (SCM in concrete. Such application solves the problem with heavy metal immobilization as well. To remove the high content of undesired soluble salts, number of washing treatments has been applied. Chemical composition of FA has been examined before and after treatments. The impact of cement substitution by FA in concrete was evaluated by measurement of its compressive strength and durability.

  9. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  10. Ruedersdorf cement works substitutes raw material and fuel by means of a circulating fluidised bed; Roh- und Brennstoffsubstitution mit einer Zirkulierenden Wirbelschicht im Zementwerk Ruedersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Scur, P. [Ruedersdorfer Zement GmbH, Ruedersdorf (Germany)

    1998-09-01

    The purpose of the present paper is to point out the great potential the cement industry holds for the utilisation of waste materials. There are meanwhile sufficient studies and measuring results to demonstrate the environmental acceptability of the processes and products involved. The solution found for Ruedersdorf cement kiln of using a circulating a fluidised bed for waste utilisation is a good example of the potential still available for conserving natural resources and landfill area. Efficient industrial applications of this kind should become a future mainstay of the waste industry. [Deutsch] In dem vorliegenden Beitrag sollte gezeigt werden, dass die Zementindustrie ueber ein hohes Potential zur thermischen und stofflichen Verwertung von Abfallstoffen verfuegt. Es liegen ausreichende Untersuchungen und konkrete Messergebnisse vor, mit denen die Umweltvertraeglichkeit von Prozess und Produkt nachgewiesen werden kann. Die Loesung zur Abfallverwertung an der Ruedersdorfer Zementofenanlage mit Hilfe einer Zirkulierenden Wirbelschicht ist ein Beispiel fuer die Reserven zur Schonung natuerlicher Ressourcen und zur Einsparung von Deponieraeumen. Derartige sinnvolle industrielle Einsatzmoeglichkeiten sollten ein wichtiges Standbein fuer die zukuenftige Abfallwirtschaft sein. (orig.)

  11. Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete

    International Nuclear Information System (INIS)

    Shi, X.S.; Collins, F.G.; Zhao, X.L.; Wang, Q.Y.

    2012-01-01

    Highlights: ► Sodium silicate solution and sodium hydroxide solution were used to activate fly ash, which substitute cement totally in the concrete. ► Utilizing two kinds of waste materials (fly ash and recycled aggregates) at the same time. ► The mechanical properties and microstructures were studied and compared with different recycled aggregates replacement ratios. ► Such concrete has greater compressive strength and better microstructure than ordinary concrete and also geopolymer concrete. - Abstract: Six mixtures with different recycled aggregate (RA) replacement ratios of 0%, 50% and 100% were designed to manufacture recycled aggregate concrete (RAC) and alkali-activated fly ash geopolymeric recycled concrete (GRC). The physical and mechanical properties were investigated indicating different performances from each other. Optical microscopy under transmitted light and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) were carried out in this study in order to identify the mechanism underlying the effects of the geopolymer and RA on concrete properties. The features of aggregates, paste and interfacial transition zone (ITZ) were compared and discussed. Experimental results indicate that using alkali-activated fly ash geopolymer as replacement of ordinary Portland cement (OPC) effectively improved the compressive strength. With increasing of RA contents in both RAC and GRC, the compressive strength decreased gradually. The microstructure analysis shows that, on one hand, the presence of RA weakens the strength of the aggregates and the structure of ITZs; on the other hand, due to the alkali-activated fly ash in geopolymer concrete, the contents of Portlandite (Ca(OH) 2 ) and voids were reduced, as well as improved the matrix homogeneity. The microstructure of GRC was changed by different reaction products, such as aluminosilicate gel.

  12. Composites Based on Fly Ash and Clay

    International Nuclear Information System (INIS)

    Fidancevska, E.; Jovanov, V.; Angusheva, B.; Srebrenkoska, V.

    2014-01-01

    Fly ash is a waste generated from the coal combustion during the production of electricity in the thermal power plants. It presents industrial by-product containing Technologically Enhanced Natural Occurring Radioactive Materials (TENORM) with the great potential for valorisation. Fly ash is successfully utilized in cement and concrete industry, also in ceramics industry as component for manufacturing bricks and tiles, and recently there are many investigations for production of glass-ceramics from fly ash. Although the utilization of fly ash in construction and civil engineering is dominant, the development of new alternative application for its further exploitation into new products is needed. This work presents the possibility for fly ash utilization for fabricating dense composites based on clay and fly ash with the potential to be used in construction industry

  13. Long term evaluation and identification of the proper testing program for ASTM Class C fly ash stabilized soils : technical summary.

    Science.gov (United States)

    1993-07-01

    The objectives of this research were to further evaluate the characteristics of locally produced fly ash and to develop test procedures which would expedite the evaluation of fly ash stabilized soils. Because cement and lime stabilization techniques ...

  14. The Effects of Design Strength, Fly Ash Content and Curing Method on Compressive Strength of High Volume Fly Ash Concrete: A Design of Experimental

    OpenAIRE

    Solikin Mochamad; Setiawan Budi

    2017-01-01

    High volume fly ash concrete becomes one of alternatives to produce green concrete as it uses waste material and significantly reduces the utilization of Portland cement in concrete production. Although using less cement, its compressive strength is comparable to ordinary Portland cement (hereafter OPC) and the its durability increases significantly. This paper reports investigation on the effect of design strength, fly ash content and curing method on compressive strength of High Volume Fly ...

  15. Solidification/stabilization of fly and bottom ash from medical waste incineration facility.

    Science.gov (United States)

    Anastasiadou, Kalliopi; Christopoulos, Konstantinos; Mousios, Epameinontas; Gidarakos, Evangelos

    2012-03-15

    In the present work, the stabilization/solidification of fly and bottom ash generated from incinerated hospital waste was studied. The objectives of the solidification/stabilization treatment were therefore to reduce the leachability of the heavy metals present in these materials so as to permit their disposal in a sanitary landfill requiring only a lower degree of environmental protection. Another objective of the applied treatment was to increase the mechanical characteristics of the bottom ash using different amounts of Ordinary Portland Cement (OPC) as a binder. The solidified matrix showed that the cement is able to immobilize the heavy metals found in fly and bottom ash. The TCLP leachates of the untreated fly ash contain high concentrations of Zn (13.2 mg/l) and Pb (5.21 mg/l), and lesser amounts of Cr, Fe, Ni, Cu, Cd and Ba. Cement-based solidification exhibited a compressive strength of 0.55-16.12 MPa. The strength decreased as the percentage of cement loading was reduced; the compressive strength was 2.52-12.7 MPa for 60% cement mixed with 40% fly ash and 6.62-16.12 MPa for a mixture of 60% cement and 40% bottom ash. The compressive strength reduced to 0.55-1.30 MPa when 30% cement was mixed with 70% fly ash, and to 0.90-7.95 MPa when 30% cement was mixed with 70% bottom ash, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Fly ashes from co-combustion as a filler material in concrete production; Anvaendning av energiaskor som fillermaterial vid betongtillverkning

    Energy Technology Data Exchange (ETDEWEB)

    Sundblom, Hillevi

    2004-01-01

    The Swedish concrete producers have decided to work towards a common goal to limit the production of concrete with naturally rounded aggregate. A consequence is when use of a substitute, crushed aggregate, the demand of filler material increases. During the last years ashes form the CFB boiler in Perstorp has been utilised as a filler material, with success, in concrete production at Sydsten, Malmoe, Sweden. To examine the potential of using Swedish fly ashes as a filler material in concrete production, have different Swedish fly ashes above been studied to see if they fit the requirements for a filler material. The fly ashes studied in the project can be divided into four different groups, considering fuel mix and boiler type; 1. Bio and sludge fired CFB/BFB boiler from the paper industry, 2. Bio and peat fired CFB/BFB boiler, 3. Pulverized peat/coal firing furnace, 4.Bio and peat fired grate-fired boiler. From Sydsten experiences of using Swedish fly ashes two demands have emerged concerning the chemical composition of the ashes. The total amount of chloride in the concrete should not be higher than 0,1% and the LOI, (Loss Of Ignition) must be less than 10 %. The different ash analyses showed that the fluidised bed boilers and pulverized firing furnaces, in this study, passed all the chemical requirements but the grate fire boilers had difficulties to fulfil the requirement of LOI. The ashes chosen to be studied in further rheological investigations in different fresh concrete mixtures were, Category 1 (Hallstavik's and Hyltebruk's papermill), Category 2 (Vaesteraas Vaermeverk och Vaertaverket) and from Category 3 (Vattenfall Vaerme Uppsala). The results presented an increased water consumption of ashes from paper mills comparing with the other ashes, a probable reason could be the shape of the ash grains. The experiments also showed that all ashes contributed to the final strength of the hardened concrete, the paper mill ashes also contributed to the

  17. Comparative study on strength properties of cement mortar by partial replacement of cement with ceramic powder and silica fume

    Science.gov (United States)

    Himabindu, Ch.; Geethasri, Ch.; Hari, N.

    2018-05-01

    Cement mortar is a mixture of cement and sand. Usage of high amount of cement increases the consumption of natural resources and electric power. To overcome this problem we need to replace cement with some other material. Cement is replaced with many other materials like ceramic powder, silica fume, fly ash, granulated blast furnace slag, metakaolin etc.. In this research cement is replaced with ceramic powder and silica fume. Different combinations of ceramic powder and silica fume in cement were replaced. Cement mortar cubes of 1:3 grade were prepared. These cubes were cured under normal water for 7 days, 14days and 28 days. Compressive strength test was conducted for all mixes of cement mortar cubes.

  18. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash.

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-08-21

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability.

  19. Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

    Science.gov (United States)

    Yoshitake, Isamu; Ishida, Takeo; Fukumoto, Sunao

    2015-01-01

    Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass was experimentally investigated, focusing on the strength development at an early age. Limestone powder was added to improve the early strength; flexural strength at two days reached 3.5 MPa, the minimum strength for traffic service in Japan. The matured fly ash concrete made with a cement content of 200 kg/m3 achieved a flexural strength almost equal to that of the control concrete without fly ash. Additionally, Portland cement made from the tested fly ash concrete was tested to confirm recyclability, with the cement quality meeting the Japanese classification of ordinary Portland cement. Limestone-based recyclable fly ash concrete pavement is, thus, a preferred material in terms of sustainability. PMID:28793518

  20. Mechanical Properties of High Volume Fly Ash Concrete Reinforced with Hybrid Fibers

    Directory of Open Access Journals (Sweden)

    Rooban Chakravarthy

    2016-01-01

    Full Text Available Fly ash substitution to cement is a well-recognized approach to reduce CO2 emissions. Although fly ash concrete is prone to brittle behavior, researchers have shown that addition of fibers could reduce brittle behavior. Previous research efforts seem to have utlised a single type of fiber or two types of fibers. In this research, three types of fibers, steel, polypropylene, and basalt as 0%, 0.50%, 0.75%, and 1% by volume of concrete, were mixed in varying proportions with concrete specimens substituted with 50% fly ash (class F. All specimens were tested for compressive strength, indirect tensile strength, and flexural strength over a period of 3 to 56 days of curing. Test results showed that significant improvement in mechanical properties could be obtained by a particular hybrid fiber reinforcement combination (1% steel fiber, 0.75% polypropylene fiber, and 0.75% basalt fiber. The strength values were observed to exceed previous research results. Workability of concrete was affected when the fiber combination exceeded 3%. Thus a limiting value for adding fibers and the combination to achieve maximum strengths have been identified in this research.

  1. Utilization of pulverized fuel ash in Malta

    International Nuclear Information System (INIS)

    Camilleri, Josette; Sammut, Michael; Montesin, Franco E.

    2006-01-01

    In Malta all of the waste produced is mixed and deposited at various sites around the island. None of these sites were purpose built, and all of the waste is above groundwater level. The landfills are not engineered and do not contain any measures to collect leachate and gases emanating from the disposal sites. Another waste, which is disposed of in landfills, is pulverized fuel ash (PFA), which is a by-product of coal combustion by the power station. This has been disposed of in landfill, because its use has been precluded due to the radioactivity of the ashes. The aim of this study was to analyze the chemical composition of the pulverized fuel ash and to attempt to utilize it as a cement replacement in normal concrete mixes in the construction industry. The levels of radiation emitted from the ashes were measured by gamma spectrometry. The results of this study revealed that although at early ages cement replacement by PFA resulted in a reduction in compressive strength (P = 0), when compared to the reference concrete at later ages the strengths measured on concrete cores were comparable to the reference concrete (P > 0.05). The utilization of PFA up to 20% cement replacement in concrete did not raise the radioactivity of the concrete. In conclusion, utilization of PFA in the construction industry would be a better way of disposing of the ashes rather than controlling the leachate and any radioactivity emitted by the landfilled ashes

  2. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst

    Directory of Open Access Journals (Sweden)

    Hebé Gurdián

    2014-04-01

    Full Text Available The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  3. Corrosion Behavior of Steel Reinforcement in Concrete with Recycled Aggregates, Fly Ash and Spent Cracking Catalyst.

    Science.gov (United States)

    Gurdián, Hebé; García-Alcocel, Eva; Baeza-Brotons, Francisco; Garcés, Pedro; Zornoza, Emilio

    2014-04-21

    The main strategy to reduce the environmental impact of the concrete industry is to reuse the waste materials. This research has considered the combination of cement replacement by industrial by-products, and natural coarse aggregate substitution by recycled aggregate. The aim is to evaluate the behavior of concretes with a reduced impact on the environment by replacing a 50% of cement by industrial by-products (15% of spent fluid catalytic cracking catalyst and 35% of fly ash) and a 100% of natural coarse aggregate by recycled aggregate. The concretes prepared according to these considerations have been tested in terms of mechanical strengths and the protection offered against steel reinforcement corrosion under carbonation attack and chloride-contaminated environments. The proposed concrete combinations reduced the mechanical performance of concretes in terms of elastic modulus, compressive strength, and flexural strength. In addition, an increase in open porosity due to the presence of recycled aggregate was observed, which is coherent with the changes observed in mechanical tests. Regarding corrosion tests, no significant differences were observed in the case of the resistance of these types of concretes under a natural chloride attack. In the case of carbonation attack, although all concretes did not stand the highly aggressive conditions, those concretes with cement replacement behaved worse than Portland cement concretes.

  4. Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash

    Directory of Open Access Journals (Sweden)

    Belal Alsubari

    2015-04-01

    Full Text Available Palm oil fuel ash (POFA has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC. POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.

  5. Development of Self-Consolidating High Strength Concrete Incorporating Treated Palm Oil Fuel Ash

    Science.gov (United States)

    Alsubari, Belal; Shafigh, Payam; Jumaat, Mohd Zamin

    2015-01-01

    Palm oil fuel ash (POFA) has previously been used as a partial cement replacement in concrete. However, limited research has been undertaken to utilize POFA in high volume in concrete. This paper presents a study on the treatment and utilization of POFA in high volume of up to 50% by weight of cement in self-consolidating high strength concrete (SCHSC). POFA was treated via heat treatment to reduce the content of unburned carbon. Ordinary Portland cement was substituted with 0%, 10%, 20%, 30%, and 50% treated POFA in SCHSC. Tests have been conducted on the fresh properties, such as filling ability, passing ability and segregation resistance, as well as compressive strength, drying shrinkage and acid attack resistance to check the effect of high volume treated POFA on SCHSC. The results revealed that compared to the control concrete mix, the fresh properties, compressive strength, drying shrinkage, and resistance against acid attack have been significantly improved. Conclusively, treated POFA can be used in high volume as a cement replacement to produce SCHSC with an improvement in its properties.

  6. Coal ash artificial reef demonstration

    International Nuclear Information System (INIS)

    Livingston, R.J.; Brendel, G.F.; Bruzek, D.A.

    1991-01-01

    This experimental project evaluated the use of coal ash to construct artificial reefs. An artificial reef consisting of approximately 33 tons of cement-stabilized coal ash blocks was constructed in approximately 20 feet of water in the Gulf of Mexico approximately 9.3 miles west of Cedar Key, Florida. The project objectives were: (1) demonstrate that a durable coal ash/cement block can be manufactured by commercial block-making machines for use in artificial reefs, and (2) evaluate the possibility that a physically stable and environmentally acceptable coal ash/cement block reef can be constructed as a means of expanding recreational and commercial fisheries. The reef was constructed in February 1988 and biological surveys were made at monthly intervals from May 1988 to April 1989. The project provided information regarding: Development of an optimum design mix, block production and reef construction, chemical composition of block leachate, biological colonization of the reef, potential concentration of metals in the food web associated with the reef, acute bioassays (96-hour LC 50 ). The Cedar Key reef was found to be a habitat that was associated with a relatively rich assemblage of plants and animals. The reef did not appear to be a major source of heavy metals to species at various levels of biological organization. GAI Consultants, Inc (GAI) of Monroeville, Pennsylvania was the prime consultant for the project. The biological monitoring surveys and evaluations were performed by Environmental Planning and Analysis, Inc. of Tallahassee, Florida. The chemical analyses of biological organisms and bioassay elutriates were performed by Savannah Laboratories of Tallahassee, Florida. Florida Power Corporation of St. Petersburg, Florida sponsored the project and supplied ash from their Crystal River Energy Complex

  7. Utilization technology on slurried ash

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Yoshio; Yasuda, Minoru; Furuki, Yasuhiko [The Coal Mining Research Centre, Japan, Tokyo, Japan; Electric Power Development Co., Ltd., Tokyo (Japan))

    1987-08-01

    Three research results of the utilization technology on slurried ash were reported. As for the utilization as the fly ash quick setting (FQS) backfill grout for tail void in shield works of tunneling, grout blending was simplified, the blended solution of cement, clay, additives and water was stabilized, and a favorable workability and long term durability were obtained. As for the utilization as the material of a SMW (soil mixing wall) method for continuous walls in long shaft digging, a fly ash-gypsum-cement (FGC) stabilizer showed an excellent workability and remarkably high water-tightness as compared with conventional cement bentonite. As for the utilization as the material of an injection method of overlay mats in foundation works of light weight structures on the sea bed mud foundation, since a FGC concrete weight in water was remarkably light as 0.7t/m{sup 3}, no both large mold form strength and vibration compacting were required. 10 figs., 8 tabs.

  8. Water permeabilities of pulverized fuel ash; Bifuntan sekitanbai no tosui tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, T [Center for Coal Utilization, Japan, Tokyo (Japan); Nagataki, S [Niigata University, Niigata (Japan); Hosoda, N [Kumagai Gumi Co. Ltd., Tokyo (Japan); Utsuki, T [The Coal Mining Research Center, Japan, Tokyo (Japan); Kubo, H [Obayashi Corp., Tokyo (Japan)

    1996-09-01

    It is intended to establish a technology to utilize coal ash in bulk to deal with its increasing production. In order to expand its use into earth engineering materials, two kinds of combustion ashes produced from dust coal burning power plants were used for studies using different kinds of tests. The tests were carried out on strength properties, water permeability, and characteristics of dissolving trace amounts of chemical constituents, with regard to addition effects of cement into compacted and slurry-state dust coal burned ashes. The derived findings may be summarized as follows: as the strength properties, the strength for both of the compacted and slurry-state ashes increases as the cement addition ratio is increased; growth of the strength due to the cement addition ratio and material age varies depending on the kinds of dust coal burned ash; comparison of strengths of the compacted and the slurry-state ashes indicates the strength of the latter ash is about one-third to quarter of that of the former ash; water permeability of the ashes decreases both in the compacted and slurry- state ashes as the cement addition ratio is increased; and the cement addition ratio gives greater impact to the water permeability than the density of the ashes. 28 figs., 5 tabs.

  9. Topics in cement and concrete research

    OpenAIRE

    Brouwers, Jos; Russel, M.I.; Basheer, P.A.M.

    2007-01-01

    The present paper addresses several topics in regard to the sustainable design and use of concrete. First, major features concerning the sustainable aspects of the material concrete are summarised. Then the major constituent, from an environmental point of view, cement is discussed in detail, particularly the hydration and application of slag cement. The intelligent combining of mineral oxides, which are found in clinker, slag, fly ashes etc., is designated as mineral oxide engineering. It re...

  10. Laboratory Investigations on Mechanical Properties of High Volume Fly Ash Concrete and Composite Sections

    OpenAIRE

    Aravindkumar B. Harwalkar; S. S. Awanti

    2013-01-01

    Use of fly ash as a supplementary cementing material in large volumes can bring both technological and economic benefits for concrete industry. In this investigation mix proportions for high volume fly ash concrete were determined at cement replacement levels of 50%, 55%, 60% and 65% with low calcium fly ash. Flexural and compressive strengths of different mixes were measured at ages of 7, 28 and 90 days. Flexural strength of composite section prepared from pavement quali...

  11. Geopolymer obtained from coal ash

    International Nuclear Information System (INIS)

    Conte, V.; Bissari, E.S.; Uggioni, E.; Bernardin, A.M.

    2011-01-01

    Geopolymers are three-dimensional alumino silicates that can be rapidly formed at low temperature from naturally occurring aluminosilicates with a structure similar to zeolites. In this work coal ash (Tractebel Energy) was used as source of aluminosilicate according a full factorial design in eight formulations with three factors (hydroxide type and concentration and temperature) and two-levels. The ash was dried and hydroxide was added according type and concentration. The geopolymer was poured into cylindrical molds, cured (14 days) and subjected to compression test. The coal ash from power plants belongs to the Si-Al system and thus can easily form geopolymers. The compression tests showed that it is possible to obtain samples with strength comparable to conventional Portland cement. As a result, temperature and molarity are the main factors affecting the compressive strength of the obtained geopolymer. (author)

  12. Solidification of radioactive incinerator ash

    International Nuclear Information System (INIS)

    Schuler, T.F.; Charlesworth, D.L.

    1986-01-01

    The Ashcrete process will solidify ash generated by the Beta Gamma Incinerator (BGI) at the Savannah River Plant (SRP). The system remotely handles, adds material to, and tumbles drums of ash to produce ashcrete, a stabilized wasteform. Full-scale testing of the Ashcrete unit began at Savannah River Laboratory (SRL) in January 1984, using nonradioactive ash. Tests determined product homogeneity, temperature distribution, compressive strength, and final product formulation. Product formulations that yielded good mix homogeneity and final product compressive strength were developed. Drum pressurization and temperature rise (resulting from the cement's heat of hydration) were also studied to verify safe storage and handling characteristics. In addition to these tests, an expert system was developed to assist process troubleshooting

  13. Comparison of compressive strength of paving block with a mixture of Sinabung ash and paving block with a mixture of lime

    Science.gov (United States)

    Hastuty, I. P.; Sembiringand Nursyamsi, I. S.

    2018-02-01

    Paving block is one of the material used as the top layer of road structure besides asphalt and concrete paving block is usually made of mixed material such as Portland cement or other adhesive material, water, and aggregate. People nowadays prefer paving block compared to other pavement such as concrete or asphalt. Their interest toward the use of paving block increase because paving block is an eco-friendly construction which is very useful in helping soil water conservation, can be done faster, has easier installation and maintenance, has a variety of shades that increase the aesthetic value, also costs cheaper than the other. Preparation of the specimens with a mixture of Sinabung ash and a mixture of Sinabung ash and lime are implemented with a mixture ratio of cement : sand : stone ash is 1: 2 : 3. The mixture is used as a substitute material by reducing the percentage amount of the weight of the cement with the composition ratio variation based on the comparative volume category of the paving block aggregate, i.e. 0%, 5%, 10%, 15%, 20%, and 25%. The result of this research shows that the maximum compressive strength value is 42.27 Mpa, it was obtained from a mixture of 10% lime with curing time 28 days. The maximum compressive strength value which is obtained from the mixture of sinabung ash is 41.60 Mpa, it was obtained from a mixture of 15% sinabung ash. From the use of these two materials, paving blocks produced are classified as paving blocks quality A and B (350 - 400 Mpa) in accordance to specification from SNI 03-0691-1996.

  14. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    International Nuclear Information System (INIS)

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke

    2015-01-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH) 2 . Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  15. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  16. Production of brown coal fuel dust as a high value and effective energy carrier for substituting heating oil, natural gas and black coal in the cement and metallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Kubasch, A.

    1985-01-01

    Poduction and industrial use of brown coal dust in the German Democratic Republic are reviewed. Dust production in 14 brown coal briquetting plants increased from 818.4 kt in 1980 to 2064 kt in 1984 and will exceed 4000 kt in 1990. Quality parameters of dusts according to the TGL 15380 industrial standard are listed. The railroad car loading and shipping technology is explained with the example of modern facilities of the Schwarze Pumpe briquetting plant: dust bunkers of 200 t storage capacity, pneumatic feeding and telescope discharge systems with nitrogen gas inertization, fire prevention, and railroad car cleaning equipment, rail track heating for improved winter loading conditions, etc. Since 1979 the Deuna, Karsdorf and Bernburg cement plants have been converted to brown coal dust combustion after installation of new fuel dust shipping, storage and combustion equipment. Substitution of heating oil and gas in metallurgical blast furnaces by brown coal dust is further described. Techogical advantages of the pneumatic KOSTE fuel feeding method are enumerated.

  17. Development of Ecoefficient Engineered Cementitious Composites Using Supplementary Cementitious Materials as a Binder and Bottom Ash Aggregate as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Jin Wook Bang

    2015-01-01

    Full Text Available The purpose of this study is to develop ecoefficient engineered cementitious composites (ECC using supplementary cementitious materials (SCMs, including fly ash (FA and blast furnace slag (SL as a binder material. The cement content of the ECC mixtures was replaced by FA and SL with a replacement rate of 25%. In addition, the fine aggregate of the ECC was replaced by bottom ash aggregate (BA with a substitution rate of 10%, 20%, and 30%. The influences of ecofriendly aggregates on fresh concrete properties and on mechanical properties were experimentally investigated. The test results revealed that the substitution of SCMs has an advantageous effect on fresh concrete’s properties; however, the increased water absorption and the irregular shape of the BA can potentially affect the fresh concrete’s properties. The substitution of FA and SL in ECC led to an increase in frictional bond at the interface between PVA fibers and matrix, improved the fiber dispersion, and showed a tensile strain capacity ranging from 3.3% to 3.5%. It is suggested that the combination of SCMs (12.5% FA and 12.5% SL and the BA aggregate with the substitution rate of 10% can be effectively used in ECC preparation.

  18. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... for the most significant alternative fuel energy contributors in the German cement industry. Solid alternative fuels are typically high in volatile content and they may differ significantly in physical and chemical properties compared to traditional solid fossil fuels. From the process point of view......, considering a modern kiln system for cement production, the use of alternative fuels mainly influences 1) kiln process stability (may accelerate build up of blockages preventing gas and/or solids flow), 2) cement clinker quality, 3) emissions, and 4) decreased production capacity. Kiln process stability...

  19. The utilization of stone ash on cellular lightweight concrete

    Science.gov (United States)

    Karolina, R.; Sianipar, Y. G. C.

    2018-02-01

    Lightweight concrete brick is a brick which made of cement, sand, water, and foam as the basic composition. This brick are divided into 2, based on the foam used such as AAC (Autoclave Aerated Concrete) that use aluminium paste and CLC(Cellular Lightweight Concrete) that use foaming agent from BASF as its foaming material. In this trial, the lightweight brick that are ging to be use are the CLC with foaming agent as its foaming material with the mixture of stone ash that are produced by the Stone Crusher with spesific gravity 2666 kg/m3 as their partly sand substitution . In this research, the stone ash variant that are used are 10%, 15%, and 20% from the amount of sand that planned before. After casting, the result of the 10% will receive a reduction of compressive strength while an increasing in absorption as 25.07% and 39.005% and the 15% variant will recieve a reduction of compressive strength as much as 65.8% and a reduction of absorption as much as 17.441% and the 20% variant will recieve a reduction of compressive strength as much as 67.4% while an increasing of absorption as much as 17.956%.

  20. Compressive strength of concrete and mortar containing fly ash

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  1. Effect of olive waste (Husk on behavior of cement paste

    Directory of Open Access Journals (Sweden)

    Sharaf Alkheder

    2016-12-01

    Full Text Available Jordan is a famous country in terms of olive trees agriculture that resulted in a mass production of olive oil products. The huge amounts of olive waste (husk that resulted from olives processing to produce olive oil represent an environmental challenge in the country. The idea in this paper comes to use olive waste as a partial replacement for Portland cement in cement paste to conserve the environment, reduce cement consumption and increase cost efficiency. The wastes were burned properly in an oven and maintained for 6 h until it was fully transformed into ashes. Then, the oven was turned off and ashes were allowed to cool. After cooling, the material passed sieve #200 were used. The sieved ashes were used in the cement mix as a partial cement replacement for making the mortar and cement paste. Normal consistency and setting time were determined as well as soundness, compressive strength. Results indicated that normal consistency of the cement pastes containing different percentage of olive waste is somehow lower than that of the ordinary cement paste and slightly decreases with increasing the percentage. The results also indicated that the compressive strength of hardened blended cement paste containing different percentages of olive waste slightly decrease with olive waste content at 3, 7, and 28 days.

  2. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  3. Immobilization of cesium in cement containing reactive silica and pozzolans

    International Nuclear Information System (INIS)

    McCulloch, C.E.; Angus, M.J.; Glasser, F.P.; Rahman, A.A.

    1984-01-01

    High surface area silicas, ground blast furnace slag, fly ash, and natural pozzolan markedly enhance the sorption of Cs in cement-based systems. Fly ash low in alkali and silicas are considered to be most suitable for Cs immobilization. Since these materials are chemically reactive with the cement components, the optimal level of addition must be sufficiently high, probably 20-30 wt%, to provide a permanent excess of sorbent. The sorptive mechanism is demonstrated and shown to be enhanced by the alkaline cement environment

  4. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  5. Performance of portland limestone cements: Cements designed to be more sustainable that include up to 15% limestone addition

    Science.gov (United States)

    Barrett, Timothy J.

    In 2009, ASTM and AASHTO permitted the use of up to 5% interground limestone in ordinary portland cement (OPC) as a part of a change to ASTM C150/AASHTO M85. When this work was initiated a new proposal was being discussed that would enable up to 15% interground limestone cement to be considered in ASTM C595/AASHTO M234. This work served to provide rapid feedback to the state department of transportation and concrete industry for use in discussions regarding these specifications. Since the time this work was initiated, ASTM C595/AASHTO M234 was passed (2012c) and PLCs are now able to be specified, however they are still not widely used. The proposal for increasing the volume of limestone that would be permitted to be interground in cement is designed to enable more sustainable construction, which may significantly reduce the CO2 that is embodied in the built infrastructure while also extending the life of cement quarries. Research regarding the performance of cements with interground limestone has been conducted by the cement industry since these cements became widely used in Europe over three decades ago, however this work focuses on North American Portland Limestone Cements (PLCs) which are specifically designed to achieve similar performance as the OPCs they replace.This thesis presents a two-phase study in which the potential for application of cements containing limestone was assessed. The first phase of this study utilized a fundamental approach to determine whether cement with up to 15% of interground or blended limestone can be used as a direct substitute to ordinary portland cement. The second phase of the study assessed the concern of early age shrinkage and cracking potential when using PLCs, as these cements are typically ground finer than their OPC counterparts. For the first phase of the study, three commercially produced PLCs were obtained and compared to three commercially produced OPCs made from the same clinker. An additional cement was tested

  6. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  7. Possibilities of municipal solid waste incinerator fly ash utilisation.

    Science.gov (United States)

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  8. Lightweight Brick by Carbon Ash from The Mixed Plastic Waste Treatment Plant

    OpenAIRE

    Chen Kuo-Wei

    2016-01-01

    This study was designed to investigate the mixed plastic waste from the production of light carbon ash bricks performance. The mixed waste plastic pyrolysis process generated waste - Carbon ash. After extrusion, a Lightweight brick was made by carbon ash, additive and Cement mortar. In general, the set compressive strength and insulation effect of lightweight bricks with carbon ash proportion for significant impact. The set water absorption and thermal conductivity of lightweight bricks with ...

  9. THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    MD NOR ATAN

    2011-12-01

    Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.

  10. The effect of w/c ratio on microstructure of self-compacting concrete (SCC) with sugarcane bagasse ash (SCBA)

    Science.gov (United States)

    Hanafiah, Saloma, Victor, Amalina, Khoirunnisa Nur

    2017-11-01

    Self-Compacting Concrete (SCC) is a concrete that can flow and compact by itself without vibrator. The ability of SCC to flow by itself makes this concrete very suitable for construction that has very small reinforcement gaps. In this study, SCC was designed to get a compressive strength above 60 MPa at the age of 28 days. Sugarcane bagasse ash was used as substitution material for cement replacement. Percentages of sugarcane bagasse ash used were 10%, 15%, and 20%. There were three w/c values that vary from 0.275, 0.300, and 0.325. Testing standards referred to ASTM, EFNARC and ACI. The fresh concrete test was slump flow, L-box and V-funnel. The maximum compressive strength was in the mixture with the sugarcane bagasse ash composition of 15% and w/c=0.275 which was 67.24 MPa. The result of SEM test analysis found that the mixture composition with 15% sugarcane bagasse ash has solid CSH structure, small amount of pores, and smaller pore diameter than other mixtures.

  11. Radioactive Wastes Cementation during Decommissioning Of Salaspils Research Reactor

    International Nuclear Information System (INIS)

    Abramenkova, G.; Klavins, M.; Abramenkovs, A.

    2009-01-01

    This paper deals with information on the radioactive wastes cementation technology for decommissioning of Salaspils Research Reactor (SRR). Dismantled radioactive materials were cemented in concrete containers using tritiated water-cement mortar. The laboratory tests system was developed to meet the waste acceptance criteria for disposal of containers with cemented radioactive wastes in near-surface repository 'Radons'. The viscosity of water-cement mortar, mechanical tests of solidified mortar's samples, change of temperature of the samples during solidification time and leakage of Cs-137 and T-3 radionuclides was studied for different water-cement compositions with different additives. The pH and electro conductivity of the solutions during leakage tests were controlled. It was shown, that water/cement ratio significantly influences on water-cement mortar's viscosity and solidified samples mechanical stability. Increasing of water ratio from 0.45 up to 0.62 decreases water-cement mortar's viscosity from 1100 mPas up to 90 mPas and decreases mechanical stability of water-cement samples from 23 N/mm 2 to the 12 N/mm 2 . The role of additives - fly ash and Penetron admix in reduction of solidification temperature is discussed. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature from 81 deg. C up to 62 deg. C. The optimal interval of water ratio in cement mortar is discussed. Tritium and Cs-137 leakage tests show, that radionuclides release curves has a complicate structure. The possible radionuclides release mechanisms are discussed. Experimental results indicated that addition of fly ash result in facilitation of tritium and cesium leakage in water phase. Further directions of investigations are drafted. (authors)

  12. Inclusion of geopolymers derivate from fly ash and pumice in reinforced concrete

    Science.gov (United States)

    Montaño, A. M.; González, C. P.; Castro, D.; Gualdron, G.; Atencio, R.

    2017-12-01

    This paper presents results of a research project related to the development of alkali-activated geopolymers, synthesized from alumina-silicate minerals (fly ash and pumice) which are added to concrete. Alkali sources used in geopolymer synthesis were sodium hydroxide and sodium silicate solution. New materials were structurally characterized by Infra-Red spectroscopy (IR) and X-Ray Diffraction (XRD). Concretes obtained after geopolymers addition as Portland cement substitutes at 10%, 20% and 30%, were mechanically analysed by compression resistance at 7, 14, 28 and 90 drying days. Results were referred to standard (concrete of Portland cement) allows to know cementitious characteristics of geopolymers are lower than those for standard, but it keeps growing at longer drying time than Portland cement. By Electrochemical Impedance Spectroscopy (EIS) it is found that this new material shows high electrical resistance and have been proved as a protection agent against corrosion in reinforced concrete exhibiting anticorrosive properties higher than those showed by the conventional concrete mixture.

  13. BRICKS WITH TOTAL REPLACEMENT OF CLAY BY FLY ASH MIXED WITH DIFFERENT MATERIALS

    OpenAIRE

    J.N Akhtar; J.Alam; M.N Akhtar

    2011-01-01

    Fly ash is a powdery substance obtained from the dust collectors in the Thermal power plants that use coal as fuel. From the cement point of view the mineralogy of Fly ash is important as it contains 80% - 90% of glass. The impurities in coal-mostly clays, shale’s, limestone & dolomite; they cannot be burned so they turn up as ash. The Fly ash of class C category was used as a raw material to total replacement of clay for making Fly ash bricks. In present study the effect of Fly ash with high...

  14. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  15. Centralized cement solidification technique for low-level radioactive wastes

    International Nuclear Information System (INIS)

    Matsuda, Masami; Nishi, Takashi; Izumida, Tatsuo; Tsuchiya, Hiroyuki.

    1996-01-01

    A centralized cement solidification system has been developed to enable a single facility to solidify such low-level radioactive wastes as liquid waste, spent ion exchange resin, incineration ash, and miscellaneous solid wastes. Since the system uses newly developed high-performance cement, waste loading is raised and deterioration of waste forms after land burial prevented. This paper describes the centralized cement solidification system and the features of the high-performance cement. Results of full-scale pilot plant tests are also shown from the viewpoint of industrial applicability. (author)

  16. Interactions between cement grouts and sulphate bearing ground water

    International Nuclear Information System (INIS)

    Walton, P.L.; Duerden, S.L.; Atkins, K.M.; Majumdar, A.J.

    1989-01-01

    The physical, chemical and mineralogical properties of mixtures of Ordinary Portland cement and blastfurnace slag or pulverized fuel ash, exposed to a sulphate-bearing ground water at different temperatures and pressures, were investigated in order to assess the long term durability of cements for encapsulating radioactive waste and backfilling a repository. The effect of the ground water on the chemical and mineralogical characteristics of the cements is minimal. Calcite and C-S-H are present in all the samples and are durable throughout the test. Dimensional changes in the cements during setting and curing may cause weaknesses in the materials which may increase the effects of a percolating ground water. (author)

  17. Influence of Utilization of High-Volumes of Class F Fly Ash on the Abrasion Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    William PRINCE

    2007-01-01

    Full Text Available Utilization of large volumes of fly ash in various concrete applications is a becoming a more general practice in an efforts towards using large quantities of fly ash. Around the world, Class C or Class F or both as available have been used in high volumes in cement-based materials. In India, majority of fly generated is of Class F type as per ASTM C 618. Yearly fly ash generation in India is approximately 95 million tonnes. Out of which around 15-20% is utilized in cement production and cement/concrete related activities. In order to increase its percentage utilization, an investigation was carried out to use it in concrete.In this paper, abrasion resistance of high volume fly ash (HVFA concretes made with 35, 45, 55, and 65% of cement replacement was evaluated in terms of its relation with compressive strength. Comparison was made between ordinary Portland cement and fly ash concrete. Test results indicated that abrasion resistance of concrete having cement replacement up to 35 percent was comparable to the normal concrete mix with out fly ash. Beyond 35% cement replacement, fly ash concretes exhibited slightly lower resistance to abrasion relative to non-fly ash concretes. Test results further indicated that abrasion resistance of concrete is closely related with compressive strength, and had a very good correlation between abrasion resistance and compressive strength (R2 value between 0.9018 and 0.9859 depending upon age.

  18. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → A recycling/treatment process to remove lead on funnel glass surface is described. → Utilizing recycled funnel glass in mortar can reduce hazardous CRT glass wastes. → Effects of CRT glass content on the properties of cement mortar are studied. → Fly ash can effectively mitigate ASR expansion of mortar even at 100% glass content. → Alkaline medium in cement matrix successfully prevented the leaching of lead. - Abstract: Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  19. Geotechnical properties of ash deposits near Hilo, Hawaii

    Science.gov (United States)

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  20. Corrosion rate of rebars from linear polarization resistance and destructive analysis in blended cement concrete after chloride loading

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.; Bertolini, L.; Guerriere, M.

    2002-01-01

    Concrete specimens with various binders including Portland cement, fly ash, blast furnace slag and composite cement and three water-to-cement ratios were subjected to cyclic wetting with salt solution and drying. Specimens contained six mild steel bars at two cover depths and two activated titanium

  1. Modelling the Interaction of Low pH Cements and Bentonite. Issues Affecting the Geochemical Evolution of Repositories for Radioactive Waste

    International Nuclear Information System (INIS)

    Watson, Claire; Benbow, Steven; Savage, David

    2007-05-01

    It is well known that in the hyperalkaline conditions (pH > 12) of standard cement pore fluids, there is potential for deleterious effects upon the host rock and other EBS materials, notably bentonite, in geological repositories for radioactive waste. Low pH cements are beginning to be considered as a potential alternative material that may address some of these concerns. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non pozzolanic silica flour. NUMO, Posiva and SKB have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio ≤ 0.8. In this report we give the results of a preliminary modelling study to investigate the potential impacts of low pH cement water. We compare the evolution of a bentonite sample under the influence of several invading cement porewaters over a pH range from 10 to 13.2. The porewater compositions are taken from published CSH gel leaching experiments and published cement-bentonite modelling studies. The models suggest that the amount of degradation that is likely to be observed when low pH cement water interacts with bentonite is likely to be much less than when OPC water is the invading fluid. Below pH 11 there was not an observable Na montmorillonite dissolution front which would tend to support the pH ≤ 11 target suggested by NUMO, Posiva and SKB. The models used in this study could be improved upon by including a cement component to the model (rather than representing cement as a fixed boundary condition). Solid-solution models

  2. High performance concrete with blended cement

    International Nuclear Information System (INIS)

    Biswas, P.P.; Saraswati, S.; Basu, P.C.

    2012-01-01

    Principal objectives of the proposed project are two folds. Firstly, to develop the HPC mix suitable to NPP structures with blended cement, and secondly to study its durability necessary for desired long-term performance. Three grades of concrete to b considered in the proposed projects are M35, M50 and M60 with two types of blended cements, i.e. Portland slag cement (PSC) and Portland pozzolana cement (PPC). Three types of mineral admixtures - silica fume, fly ash and ground granulated blast furnace slag will be used. Concrete mixes with OPc and without any mineral admixture will be considered as reference case. Durability study of these mixes will be carried out

  3. Use of lime cement stabilized pavement construction

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, M.A.; Raju, G.V.R.P. [JNTU College of Engineering, Kakinada (India). Dept. of Civil Engineering

    2009-08-15

    Expansive clay is a major source of heave induced structural distress. Swelling of expansive soils causes serious problems and produce damages to many structures. Many research organizations are doing extensive work on waste materials concerning the feasibility and environmental suitability. Fly ash, a waste by product from coal burning in thermal power stations, is abundant in India causing severe health, environmental and disposal problems. Attempts are made to investigate the stabilization process with model test tracks over expansive subgrade in flexible pavements. Cyclic plate load tests are carried out on the tracks with chemicals like lime and cement introduced in fly ash subbase laid on sand and expansive subgrades. Test results show that maximum load carrying capacity is obtained for stabilized fly ash subbase compared to untreated fly ash subbase.

  4. Assessment of hardened characteristics of raw fly ash blended self-compacting concrete

    Directory of Open Access Journals (Sweden)

    B. Mahalingam

    2016-09-01

    Full Text Available Fly ash is widely used as a supplementary cementitious material in concrete. Due to the implementation of new thermal power plants as a consequence of electricity demand, generation of fly ash is noticeably increased. In addition to pozzolana blended cement production, it is very imperative to use raw fly ash in concrete. Earlier research studies investigated the performance of processed fly ash in blended cement production as well as in concrete. In general, ground fly ash is used in blended cement production. A comprehensive study on the performance evaluation of raw fly ash in self-compacting concrete is not available in the existing literature. Moreover, utilization of raw fly ash in special concrete such as self-compacting concrete is essential to comprehend the performance of raw fly ash blended concrete compared to ordinary Portland concrete. Additionally, it will help to achieve maximum utilization of raw fly ash as a supplementary cementitious material rather than disposal as a waste, which eventually leads to several environmental issues. In the study, raw fly ash was collected and is directly used in development of self-compacting concrete. Two mixes were cast and hardened characteristics of blended concrete were investigated. Results from the study showed comparable performance with control concrete. Furthermore, significant reduction in chloride permeability was observed for raw fly ash blended concrete.

  5. Cast-concrete products made with FBC ash and wet-collected coal-ash

    Energy Technology Data Exchange (ETDEWEB)

    Naik, T.R.; Kraus, R.N.; Chun, Y.M.; Botha, F.D. [University of Wisconsin, Milwaukee, WI (United States)

    2005-12-01

    Cast-concrete hollow blocks, solid blocks, and paving stones were produced at a manufacturing plant by replacing up to 45% (by mass) of portland cement with fluidized bed combustion (FBC) coal ash and up to 9% of natural aggregates with wet-collected, low-lime, coarse coal-ash (WA). Cast-concrete product specimens of all three types exceeded the compressive strength requirements of ASTM from early ages, with the exception of one paving-stone mixture, which fell short of the requirement by less than 10%. The cast-concrete products made by replacing up to 40% of cement with FBC ash were equivalent in strength (89-113% of control) to the products without ash. The abrasion resistance of paving stones was equivalent for up to 34% FBC ash content. Partial replacement of aggregates with WA decreased strength of the products. The resistance of hollow blocks and paving stones to freezing and thawing decreased appreciably with increasing ash contents. The cast-concrete products could be used indoors in regions where freezing and thawing is a concern, and outdoors in a moderate climate.

  6. Processed bottom ash for replacing fine aggregate in making high-volume fly ash concrete

    Directory of Open Access Journals (Sweden)

    Antoni

    2017-01-01

    Full Text Available Bottom ash is a coal plant by-product that is abundant and underutilized. There is the potential use of bottom ash as a fine aggregate replacement in concrete mixtures; however, the problems of water absorption and uniformity of quality of the material need to be overcome first. In this study, bottom ash was treated by sieve separation and pounding to smaller particle size for use as a sand substitute. The physical and chemical characteristics of bottom ash were tested after treatment including water absorption, sieve analysis, and fineness modulus. Highvolume fly ash (HVFA mortar specimens were made and the compressive strength and flowability test using bottom ash after treatment are compared with that of the sand specimen. Low water to cementitious ratio was used to ensure higher strength from the cementitious paste and superplasticizer demand was determined for each treatment. The result showed that bottom ash can be used as fine aggregate replacement material. Sieve separation of the bottom ash could produce 75% of the compressive strength compared with the control sand specimen, whereas pounded bottom ash could have up to 96% of the compressive strength of the control specimen. A 28-day compressive strength of 45 MPa was achievable with 100% replacement of fine aggregate with bottom ash.

  7. Assessment of Bagasse Ash Effect on the California Bearing Ratio of ...

    African Journals Online (AJOL)

    Laboratory tests were performed on the natural and bagasse ash treated soil samples ... on the natural lateritic soil shows that it falls under Silt-Clay material of Group A-6 ... by the Nigerian general specification (1997) for cement stabilization.

  8. Effect of rice husk ash on some geotechnical properties of lateritic

    African Journals Online (AJOL)

    hp

    Keywords: Rice Husk Ash (RHA), Lateritic soil, Sub-grade, Maximum Dry ... stabilizing agent (cement or lime) included ... soil and then with distilled water. The clay mineral identification was done using ... California Bearing Ratio (CBR). 22.05.

  9. Characterization of bottom ashes from coal pulverized power plants to determine their potential use feasibility

    International Nuclear Information System (INIS)

    Menendez, E.; Alvaro, A. M.; Argiz, C.; Parra, J. L.; Moragues, A.

    2013-01-01

    The disposal of coal by products represents environmental and economical problems around the world. Therefore, the reuse and valorisation of this waste has become an important issue in the last decades. While high-value construction products containing fly ash were developed and its use is actually totally accepted as an addition to cement, the use of the bottom ash as supplementary cementitious material has not been allow. This paper examines the chemical and physical properties of fly ashes and bottom ashes from two different coal power plants in order to compare them and analyse the potential feasibility of bottom ash as cement replacement. The mechanical properties of cement mortars made with different percentages of both ashes were also study. The results obtained showed similar chemical composition of both kinds of ashes. The compressive strength values of mortars with 10 % and 25 % of cement replacement (at 28 days) were above the limits established in European standards and there were not significant differences between fly ash and bottom ash from both origins. (Author)

  10. The Netherlands, guide to ash-utilization: Novem's contribution

    International Nuclear Information System (INIS)

    Stork, J.

    1991-01-01

    The production of fly ash in coal-fired utility plants in Sweden has more than doubled since 1983 although in future gasification slag and sulphur will be the most prolific waste products as clean coal technologies are introduced. About 50% of fly ash produced is shipped to Belgium and France for use in the cement industry; bottom ash is used for road construction in France and as a concrete filler in Belgium; a large percentage of gypsum is used in Belgium, France and Germany for making wall boards. Novem's programme to investigate the various applications of coal residues in the building industry is described. The three-phase programme involves investigation of the market for products, research into application of fly ash in the cement sector and for artificial gravel and sand-lime bricks. The Kaldin demonstration project on the uses of waste limestone is mentioned

  11. Correlating cement characteristics with rheology of paste

    International Nuclear Information System (INIS)

    Vikan, H.; Justnes, H.; Winnefeld, F.; Figi, R.

    2007-01-01

    The influence of cement characteristics such as cement fineness and clinker composition on the 'flow resistance' measured as the area under the shear stress-shear rate flow curve has been investigated. Three different types of plasticizers namely naphthalene sulphonate-formaldehyde condensate, polyether grafted polyacrylate, and lignosulphonate have been tested in this context on 6 different cements. The flow resistance correlated well with the cement characteristic (Blaine.{d.cC 3 A + [1 - d].C 3 S}) where the factor d represents relative reactivity of cubic C 3 A and C 3 S while cC 3 A and C 3 S represent the content of these minerals. It was found to be either a linear or exponential function of the combined cement characteristic depending on plasticizer type and dosage. The correlation was valid for a mix of pure cement and cement with fly ash, limestone filler (4%), as well as pastes with constant silica fume dosage, when the mineral contents were determined by Rietveld analysis of X-ray diffractograms

  12. Effects of Coal Gangue on Cement Grouting Material Properties

    Science.gov (United States)

    Liu, J. Y.; Chen, H. X.

    2018-05-01

    The coal gangue is one of the most abundant industrial solid wastes and pollute source of air and water. The use of coal gangue in the production of cement grouting material comforms to the basic state policy of environment protection and the circular using of natural resources. Through coal gangue processing experiment, coal gangue cement grouting materials making test, properties detection of properties and theoretical analysis, the paper studied the effects of coal gangue on the properties of cement grouting materials. It is found that at the range of 600 to 700 °C, the fluidity and the compressive and flexural strengths of the cement grouting materials increase with the rising up of the calcination temperatures of coal gangue. The optimum calcination temperature is around 700 °C. The part substitution of cement by the calcined coal gangue in the cement grouting material will improve the mechanical properties of the cement grouting material, even thought it will decrease its fluidity. The best substitution amount of cement by coal gangue is about 30%. The fluidity and the long term strength of the ordinary silicate cement grouting material is obviously higher than that of the sulphoaluminate cement one as well as that of the silicate-sulphoaluminate complex cement one.

  13. The starting up of a pilot plant for radioactive incinerator ash conditioning - results of two embedding campaigns

    International Nuclear Information System (INIS)

    Kertesz, C.J.; Chenavas, P.R.; Naud, G.M.

    1990-01-01

    A new pilot plant called 'PICC' designed for radioactive incinerator ash conditioning, by embedding in several matrices, was launched at the Nuclear Research Centre in Cadarache - France - in the middle of 1988. This polyvalent facility can work with the three following embedding products = cement, thermosetting epoxide resin and an epoxide-cement compound. The capacity per day of the plant is two 100 or 200 I drums of solidified ash form. Two embedding campaigns have been carried out on inactive ashes: the first is a cementation campaign, done on phosphated ash coming from incineration of spent tributylphosphate. The second is a polymer cement campaign done on simulated alpha ash coming from technological wastes. Description of the PICC and data on these two campaigns are given

  14. Settlement Control of Soft Ground using Cement-Ricehusk Stabilization

    Directory of Open Access Journals (Sweden)

    Mokhtar M.

    2012-01-01

    Full Text Available Cement is widely used for improvement of soft soils, but financial and environmental concerns are causing genuine concerns to all parties, leading to the quest for alternative and effective stabilizers. Ricehusk is an agricultural waste in Malaysia, commonly disposed of by open burning or dumping in landfills. Considering that the ashes derived from ricehusk are pozzolanic in nature, there is a possibility that a cement-ricehusk mixture could effectively improve soft soils with reduced cement dosage. This study examines the mixture’s effectiveness by monitoring the settlement reduction in a clay soil. Standard oedometer tests were carried out on a soft marine clay sample admixed with cement-ricehusk. Test specimens contained 0-10% cement and 0-5% of ricehusk respectively, and were left to cure for either seven or 28 days. The stabilized specimens were observed to undergo significant reduction in compressibility, verifying the potential of cement-ricehusk as an alternative soft soil stabilizer.

  15. Portland-pfa cement: a comparison between intergrinding and blending

    Energy Technology Data Exchange (ETDEWEB)

    Monk, M

    1983-09-01

    Portland-pfa cements containing 20-40% (by weight) pfa have been prepared in the laboratory both by intergrinding the ashes with clinker and by blending with cement. Cement properties have been assessed according to BS 4550 and scanning electron microscopy was used to examine the effects of grinding upon the pfa particles. The work has shown that intergrinding leads to an improvement in the water-reducing properties of coarse pfas and also in their pozzolanic activity as indicated by compressive strength development at later ages. Setting times have been found to be essentially the same for blended and interground cements, both being considerably longer than for typical ordinary Portland cements. Thus the results of this investigation indicate that, provided pfa's are chemically acceptable, they can be used for Portland-pfa cement manufacture by intergrinding irrespective of their coarseness.

  16. 0-6717 : investigation of alternative supplementary cementing materials (SCMs) : [project summary].

    Science.gov (United States)

    2014-08-01

    In Texas, Class F fly ash is extensively used as a : supplementary cementing material (SCM) : because of its ability to control thermal cracking : in mass concrete and to mitigate deleterious : expansions in concrete from alkali-silica reaction : (AS...

  17. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. Because hydraulic cement requires a chemical hydration reaction for setting and hardening, it is subject to potential interactions between elements in the waste and binder that can retard or prevent solidification. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above its melting point, combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991

  18. Quick monitoring of pozzolanic reactivity of waste ashes.

    Science.gov (United States)

    Sinthaworn, Suppachai; Nimityongskul, Pichai

    2009-05-01

    This article proposes a quick method of monitoring for pozzolanic reactivity of waste ashes by investigating the electrical conductivity of the suspension at an elevated temperature. This suspension is obtained by mixing tested pozzolan with an ordinary Portland cement (OPC) solution produced by mixing ordinary Portland cement with water. For comparison, silica fume, metakaolin, rice husk ash and river sand - whose pozzolanic reactivities range from reactive to inert - were used in the experimental investigation. The electrical conductivity of the suspension was continually recorded by using an electrical conductivity meter and stored by using a personal computer for a period of slightly over 1day. The indicative parameters that can be related to pozzolanic reactivity were discussed and analyzed in detail. It was found that it is possible to determine the pozzolanic reactivity of fly ash within 28h by using the proposed technique, as compared to 7 or 28 days for the determination of strength activity index according to ASTM. This technique would help concrete technologists to speedily investigate the quality of fly ash for use as a cement replacement in order to alleviate pollution caused by cement production and solve disposal problems of waste ashes.

  19. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  20. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  1. Utilisation of high carbon pulverised fuel ash

    OpenAIRE

    Mahmud, Maythem Naji

    2011-01-01

    Coal combustion by-products generated from coal-fired power plant and cause enormous problems for disposal unless a way can be found to utilize these by-products through resource recovery programs. The implementation of air act regulations to reduce NOx emission have resulted millions of tonnes of pulverised fuel ash (PFA) accumulated with high percentage of unburned carbon made it un-saleable for the cement industry. Moreover, alternative fuels such as biomass and import coals were suggested...

  2. Utilization of mine tailings as partial cement replacement

    DEFF Research Database (Denmark)

    Sigvardsen, Nina Marie; Nielsen, M.R.; Ottosen, Lisbeth M.

    2017-01-01

    Depositing mine tailings entail major economic costs and negative environmental impacts. Thus finding an alternative to depositing is of interest. This study focused on the use of mine tailings as partial cement replacement, thereby preventing depositing the mine tailings. At the same time......, such use would reduce the CO2 emission related to the production of cement. Mine tailings from two different mines Zinkgruvan (Sweden) and Nalunaq (Greenland) were both tested as 5 and 10 % cement replacement. All mortar specimens with mine tailings had lower compressive strength compared to a reference...... compared to a specimen containing a 10 % replacement of cement with coal fly ash, commonly used in Denmark. The compressive strength of specimens containing mine tailings exceeded the compressive strength of the specimen containing coal fly ash, indicating further the amorphous content of volcanic decent...

  3. Development of a fully injectable calcium phosphate cement

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/boms/026/04/0415-0422. Keywords. Calcium phosphate cements; hydroxyapatite; bioceramics; bone substitute; orthopedic; dental. Abstract. A study on the development of a fully injectable calcium phosphate cement for orthopedic and dental applications is presented.

  4. [Study on mercury re-emissions during fly ash utilization].

    Science.gov (United States)

    Meng, Yang; Wang, Shu-Xiao

    2012-09-01

    The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%.

  5. Nanoparticulate fillers improve the mechanical strength of bone cement.

    Science.gov (United States)

    Gomoll, Andreas H; Fitz, Wolfgang; Scott, Richard D; Thornhill, Thomas S; Bellare, Anuj

    2008-06-01

    Polymethylmethacrylate (PMMA-) based bone cement contains micrometer-size barium sulfate or zirconium oxide particles to radiopacify the cement for radiographic monitoring during follow-up. Considerable effort has been expended to improve the mechanical qualities of cements, largely through substitution of PMMA with new chemical structures. The introduction of these materials into clinical practice has been complicated by concerns over the unknown long-term risk profile of these new structures in vivo. We investigated a new composite with the well characterized chemical composition of current cements, but with nanoparticles instead of the conventional, micrometer-size barium sulfate radiopacifier. In this study, we replaced the barium sulfate microparticles that are usually present in commercial PMMA cements with barium sulfate nanoparticles. The resultant "microcomposite" and "nanocomposite" cements were then characterized through morphological investigations such as ultra-small angle X-ray scattering (USAXS) and scanning electron microscopy (SEM). Mechanical characterization included compression, tensile, compact tension, and fatigue testing. SEM and USAXS showed excellent dispersion of nanoparticles. Substitution of nanoparticles for microparticles resulted in a 41% increase in tensile strain-to-failure (p = 0.002) and a 70% increase in tensile work-of-fracture (p = 0.005). The nanocomposite cement also showed a two-fold increase in fatigue life compared to the conventional, microcomposite cement. In summary, nanoparticulate substitution of radiopacifiers substantially improved the in vitro mechanical properties of PMMA bone cement without changing the known chemical composition.

  6. Utilization of coal fired power plant by-products. Utilization of coal ash; Sekitan karyoku ni okeru fukusanbutsu no yuko riyo gijutsu. Sekitanbai no yuko riyo

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, K. [The Federation of Electric Power Companies, Tokyo (Japan); Watanabe, M. [Electric Power Development Co. Ltd., Tokyo (Japan)

    1997-11-05

    The paper introduced the present situation and future task of the tackling with effective use of coal ash discharged from coal thermal power plants. Making the use of the characteristics, coal ash is mostly used in the fields of cement/concrete, civil engineering/construction, and agriculture/forestry/fisheries. In the case of using fly ash to concrete, the effects are the heightening of long-term strength, increase in workability, decrease in hydration heat, control of alkali aggregate reaction, etc. In the civil engineering/construction field, coal ash is allowed to be used for road bed material and mixed civil engineering material as road materials, for revetment back-filling material, soft ground surface layer treatment, soft ground/soil improvement materials, FGC deep layer mixing treatment process, SPC (sand compaction pile) material, etc. as earth work materials. Besides, it is used for light coarse aggregate, light sand, etc., as construction materials, for material substituting ceramics products, etc. as building materials, and for agricultural material, potassium silicate fertilizer and ocean structure in the agriculture/forestry/fisheries field. 4 refs., 2 tabs.

  7. Environmentally friendly use of non-coal ashes in Sweden.

    Science.gov (United States)

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  8. Developing Low-Clinker Ternary Blends for Indian Cement Industry

    Science.gov (United States)

    Pal, Aritra

    2018-05-01

    In today's scenario cement-concrete has become the backbone of infrastructure development. The use of concrete is increasing day by day and so does cement. One of the major concerns is that the cement manufacturing contributes 7% of total man-made CO2 emission in the environment. At the same time India being a developing country secured the second position in cement production. On the other hand solid waste management is one of the growing problems in India. As we are one of the major contributors in this situation so, the time has come to think about the sustainable alternatives. From various researches it has been observed that the low clinker cement can be suitable option. In the present paper we have tried to develop a low clinker ternary blend for Indian cement industry using the concept of synergetic behavior of fly ash-limestone reaction and formation of more stable monocarboaluminate hydrate and hemicarboaluminate hydrate. 30% fly ash and 15% limestone and 5% gypsum have been used as supplementary cementing material for replacing 50% clinker. The mechanical properties like, compressive strength, have been studied for the fly ash limestone ternary blends cements and the results have been compared with the other controlled blends and ternary blends. The effect of intergrinding of constituent materials has shown a comparable properties which can be used for various structural application. The effect of dolomitic limestone has also been studied in fly ash limestone ternary blends and the result shows the relation between compressive strength and dolomite content is inversely proportional.

  9. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases

    International Nuclear Information System (INIS)

    Monteagudo, S.M.; Moragues, A.; Gálvez, J.C.; Casati, M.J.; Reyes, E.

    2014-01-01

    Highlights: • A proposal of hydration degree calculation for blended cement pastes is presented. • The method is based both on the contributions of various authors and on DTA–TG results. • Paste and mortar specimens with BFS, FA and SF mineral admixtures were used. • The evaluation of CH gives information on hydration and pozzolanic reactions. • The assessment of α provides an insight into future strength evolution. - Abstract: The degree of hydration assessment of cement paste from differential thermal and thermogravimetric analysis data has been performed by several authors that have offered a number of proposals for technical application to blended cements. In this paper, two calculation methods are studied in detail. Then, a proposal of the degree of hydration calculation for blended cements, based on the analysis of experimental results of DTA–TG, is presented. The proposed method combines the contributions of the authors and allows straightforward calculation of the degree of hydration from the experimental results. Validation of the methodology was performed by macroscopic and microstructural tests through paste and mortar specimens with blast furnace slag, flying ash and silica fume mineral admixtures bei(g)ng used. Tests of scanning electron microscopy with an energy dispersive analyser on paste specimens, and of mechanical strength on mortar specimens with the same percentages of substitution, were performed. They showed good agreement with the information derived from the differential thermal and thermogravimetric analysis data

  10. Rice husk ash with high carbon content proves favourable for soil stabilization

    NARCIS (Netherlands)

    Pham, P.V.; van der Star, WRL; van Paassen, L.A.; Ye, G.

    2015-01-01

    Rice husk ash is a promising pozzolanic material produced from rice husk burning and has significant potential a sustainable replacement for cement in construction and ground improvement applications. In this study the effect of burning conditions on the ash reactivity and its potential for soil

  11. Influence of palm oil fuel ash on fresh and mechanical properties of ...

    Indian Academy of Sciences (India)

    percentage of cement, with several supplementary cementitious materials (SCM) such as silica fume, ground granulated blast-furnace slag, fly ash and rice husk ash ..... Safiuddin M, West J and Soudki K 2011b Flowing ability of the mortars ...

  12. Influence of bottom ash of palm oil on compressive strength of concrete

    Science.gov (United States)

    Saputra, Andika Ade Indra; Basyaruddin, Laksono, Muhamad Hasby; Muntaha, Mohamad

    2017-11-01

    The technological development of concrete demands innovation regarding the alternative material as a part of the effort in improving quality and minimizing reliance on currently used raw materials such as bottom ash of palm oil. Bottom ash known as domestic waste stemming from palm oil cultivation in East Kalimantan contains silica. Like cement in texture and size, bottom ash can be mixed with concrete in which the silica in concrete could help increase the compressive strength of concrete. This research was conducted by comparing between normal concrete and concrete containing bottom ash as which the materials were apart of cement replacement. The bottom ash used in this research had to pass sieve size (#200). The composition tested in this research involved ratio between cement and bottom ash with the following percentages: 100%: 0%, 90%: 10%, 85%: 15% and 80%: 20%. Planned to be within the same amount of compressive strength (fc 25 MPa), the compressive strength of concrete was tested at the age of 7, 14, and 28 days. Research result shows that the addition of bottom ash to concrete influenced workability in concrete, but it did not significantly influence the compressive strength of concrete. Based on the result of compressive strength test, the optimal compressive strength was obtained from the mixture of 100% cement and 0% bottom ash.

  13. The effectiveness of stone ash and volcanic ash of mount Sinabung as a filler on the initial strength of self-compacting concrete

    Science.gov (United States)

    Karolina, R.; Muhammad, W.; Saragih, M. D. S. M.; Mustaqa, T.

    2018-02-01

    Self Compacting Concrete is a concrete variant that has a high degree of workability and also has great initial strength, but low water cement factor. It is also self-flowable that can be molded on formwork with a very little or no compacted use of compactors. This concrete, using a variety of aggregate sizes, aggregate portions and superplasticizer admixture to achieve a special viscosity that allows it to flow on its own without the aid of a compactor. Lightweight concrete brick is a type of brick made from cement, sand, water, and developers. Lightweight concrete bricks are divided into 2 based on the developed materials used are AAC (Autoclave Aerated Concrete) using aluminum paste and CLC (Cellular Lightweight Concrete) that use Foaming Agent from BASF as a developer material. In this experiment, the lightweight bricks that will be made are CLC type which uses Foaming Agent as the developer material by mixing the Ash Stone produced by Stone Crusher machine which has the density of 2666 kg / m3 as Partial Pair Substitution. In this study the variation of Ash Stone used is 10%, 15%, and 20% of the planned amount of sand. After doing the tasting the result is obtained for 10% variation. Compressive Strength and Absorption Increase will decrease by 25.07% and 39.005% and Variation of 15% compressive strength will decrease by 65,8% and decrease of absorbtion equal to 17,441% and variation of 20% compressive strength will decreased by 67,4 and absorption increase equal to 17,956%.

  14. Rice Husk Ash (RHA): radon remediations and other applications

    International Nuclear Information System (INIS)

    Sethi, Beena; Sharma, Jyoti; Kant, Krishan

    2013-01-01

    Rice Husk Ash has been used to obstruct the diffusion of radon through building materials and it has been reported that the substitution of 20-30% rice husk ash with cement leads to lower radon diffusion and exhalation rates with higher compressive strength as compared to control concrete. It can also be used to treat dyes. The waste water containing dyes is very difficult to treat, since the dyes are recalcitrant organic molecules, resistant to aerobic digestion, and are stable to light, heat and oxidising agents. Light is one of the components which aquatic organisms require for their development and any deficit caused by coloured effluent leads to an imbalance of the ecosystem. Because of increasingly stringent restrictions on the organic content of industrial effluents, it is necessary and important to eliminate dyes from wastewater before it is discharged. In the present work, thermodynamic study of adsorption of Amaranth dye on to steam activated pigmented carbon prepared from rice husk (Oryza sativa) was investigated. The adsorbent was investigated under variable system parameters, such as initial concentration of dye, adsorbent dose and temperature. The adsorption equilibrium studied both by Langmuir and Freundlich isotherms. Linearity of the Langmuir isotherm plots indicate the chemical nature of the interactions while the linear Freundlich isotherms point to non specific and energetically non - uniform nature of the adsorption sites. The values of Langmuir monolayer capacity (q m ) are between 0.9 and 1.0 mg/g. The results obtained indicate a potential use of SAPRHC for removing dyes like Amaranth dye from water. (author)

  15. Influence of Temperature on Workability and Compressive Strength of Ordinary Concrete with High Calcium Fly Ash

    Directory of Open Access Journals (Sweden)

    Gołaszewski Jacek

    2017-06-01

    Full Text Available The rheological properties of fresh ordinary concrete are closely affected by temperature and time. The paper presents the study of consistency of fresh concrete mixtures made with Portland cement and cement with calcareous fly ash. Two types of admixtures were used. It was proven that the temperature has a clear effect on workability and compressive strength concrete. Influence on workability can be reduced by selecting the appropriate superplasticizer and cement.

  16. Silica from Ash

    Indian Academy of Sciences (India)

    management, polymer composites and chemical process design. Figure 1 Difference in color of the ash ... The selection of ash is important as the quality of ash determines the total amount as well as quality of silica recoverable Ash which has undergone maximum extent of combustion is highly desirable as it contains ...

  17. Development of immobilizing matrix for radioactive hearth ash of low activity level

    International Nuclear Information System (INIS)

    Greben'kov, A.J.; Kopets, Z.V.; Rytvinskaya, E.V.; Vecher, V.A.

    2004-01-01

    The incorporation of a certain quantity of the sorbing admixtures, i.e. the clay containing about 80 mas.% of montmorillonite, natural molding flask, into an ash-cement matrix allowed obtaining the hardened compounds with radioactive ash mass fraction of 40-60 mas.%, which physicochemical characteristics are significantly better that those required by regulations. This will facilitate the development of effective low active hearth ash utilization technologies. (authors)

  18. Modified water-cement ratio law for compressive strength of rice ...

    African Journals Online (AJOL)

    This work examines the modification of age long water – cement ratio law of Ordinary Portland Cement (OPC) concrete to cater for concrete with Rice Husk Ash (RHA). Chemical analysis of RHA produced under controlled temperature of 600°C was carried out. A total of one hundred and fifty (150) RHA concrete cubes at ...

  19. Packing issue in cement blending for sustainability developments - Approach by discrete element method

    NARCIS (Netherlands)

    Le, L.B.N.; Stroeven, P.

    2014-01-01

    Common cement blending materials for concrete like fly ashes, blast furnace slag, silica fume, metakaolin and rice husk ash have been investigated experimentally as to their impact on concrete’s mechanical, physical and sustainability capabilities. Such efforts offer but case-related information on

  20. Petroleum Sludge as gypsum replacement in cement plants: Its Impact on Cement Strength

    Science.gov (United States)

    Benlamoudi, Ali; Kadir, Aeslina Abdul; Khodja, Mohamed

    2017-08-01

    Due to high cost of cement manufacturing and the huge amount of resources exhaustion, companies are trying to incorporate alternative raw materials or by-products into cement production so as to produce alternative sustainable cement. Petroleum sludge is a dangerous waste that poses serious imparts on soil and groundwater. Given that this sludge contains a high percentage of anhydrite (CaSO4), which is the main component of gypsum (CaSO4.2H2O), it may play the same gypsum role in strength development. In this research, a total replacement of gypsum (100%) has been substituted by petroleum sludge in cement production and has led to an increase of 28.8% in UCS values after 28 curing days. Nevertheless, the burning of this waste has emitted a considerable amount of carbon monoxide (CO) gas that needs to be carefully considered prior to use petroleum sludge within cement plants.

  1. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge.

    Science.gov (United States)

    Chen, Quanyuan; Zhang, Lina; Ke, Yujuan; Hills, Colin; Kang, Yanming

    2009-02-01

    Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30-50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20-30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

  2. Study of mechanical and physicochemical properties of cementated spent ion-exchange-resins

    International Nuclear Information System (INIS)

    Patek, P.

    1981-09-01

    As first part of a study on the possibilities, to immobilize spent ion exchange resins, for final disposal, the dependence of compressive strength from the composition of cement - resin mixtures was detected. Powdered resins, bead resins and ashes from the incinerator plant and several cement brands were examinated. As result an area was defined in the three-phase diagram of cement, resins and water, in which the following leach tests will be performed. (author)

  3. Production of portland cement using Moroccan oil shale and comparative study between conventional cement plant and cement plant using oil shale

    International Nuclear Information System (INIS)

    Doumbouya, M.; Kacemi, K.E.; Kitane, S.

    2012-01-01

    Like the use of coal ash from power plants as an addition to cement, oil shale are used for cement production on an industrial scale in Estonia, China, USA and Germany. Oil shale can be utilized in manufacturing the cement. In addition to the utilization of these by-products after combustion, it can also reduce the required temperature for the clinkering reactions during the production of Portland clinker. We performed a study on the Moroccan oil shale to maximize the use of oil shale ash in the manufacturing of Portland cement. We found that Moroccan oil shale ash can be used up to 30% with 70% Portland clinker without altering its principle properties. The corresponding temperature required to generate the required liquid for the clinkering reactions as well as the essential ingredients for clinker was found to be around 850 to 1000 deg. C. The operating temperatures for this optimized blend ratio were found to 1000 deg. C. The resulting Portland clinker from this ratio will need further testing in accordance with international standards for Portland cement to examine properties like strength and setting time. (author)

  4. Calculation of crack stress density of cement base materials

    Directory of Open Access Journals (Sweden)

    Chun-e Sui

    2018-01-01

    Full Text Available In this paper, the fracture load of cement paste with different water cement ratio, different mineral admixtures, including fly ash, silica fume and slag, is obtained through experiments. the three-dimensional fracture surface is reconstructed and the three-dimensional effective area of the fracture surface is calculated. the effective fracture stress density of different cement paste is obtained. The results show that the polynomial function can accurately describe the relationship between the three-dimensional total area and the tensile strength

  5. Heat of hydration measurements on cemented radioactive wastes. Part 1: cement-water pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1983-12-01

    This report describes the hydration of cement pastes in terms of chemical and kinetic models. A calorimetric technique was used to measure the heat of hydration to develop these models. The effects of temperature, water/cement ratio and cement replacements, ground granulated blast furnace slag (BFS) and pulverised fuel ash (PFA) on the hydration of ordinary Portland cement (OPC) is reported. The incorporation of BFS or PFA has a marked effect on the hydration reaction. The effect of temperature is also important but changing the water/cement ratio has little effect. Results from cement pastes containing only water and cement yield total heats of reaction of 400, 200 and 100 kJ/kg for OPC, BFS and PFA respectively. Using the results from the models which have been developed, the effect of major salts present in radioactive waste streams can be assessed. Values of the total heat of reaction, the time to complete 50 percent reaction, and the energy of activation, can be compared for different waste systems. (U.K.)

  6. High filler concrete using fly ash. Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  7. High filler concrete using fly ash : Chloride penetration and microstructure

    NARCIS (Netherlands)

    Valcke, S.L.A.; Polder, R.B.; Nijland, T.G.; Leegwater, G.A.; Visser, J.H.M.; Bigaj-van Vliet, A.J.

    2012-01-01

    Most high filler concrete studies are based on relatively high contents of powder (cement + filler) (>400 kg m-3). This paper aims to increase the total fly ash content relative to the clinker content, while simultaneously minimizing the total powder content in the concrete to values lower than 300

  8. Pozzolanic characteristics of municipal solid waste ash | Sanewu ...

    African Journals Online (AJOL)

    Where conventional stabilizing agents like cement and lime have been used, they have considerably increased the cost of construction. It is with this ... Also the ash has to be finely ground prior to use as a pozzolanic material in soil stabilization, so as to increase both its filler and bonding effect. Key words: bonding effect, ...

  9. Effect of Neem Seed Husk Ash on Concrete Strength Properties ...

    African Journals Online (AJOL)

    Neem Seed Husk is a by-product obtained during industrial processing of Neem Seed to extract oil and produce fertilizer. Laboratory tests on Neem seed husk ash (NSHA) mixed with cement were conducted to find its effect on concrete strength and workability. Tests including slump test, compressive strength test, concrete ...

  10. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  11. 3.4. Durability of soil-cement mixtures influenced by hostile environment

    International Nuclear Information System (INIS)

    Saidov, D.Kh.

    2011-01-01

    It is determined that soil-cement mixture is one of most perspective materials, that can substitute concrete. Experiments on revelation of magnesium sulphate influence on soil-cement mixtures were carried out. Data on granulometric composition and physical parameters of loess soils is presented in this article. Portland cement M 400 was used as binder. According to the results it is concluded that stability of soil-cement mixtures from loess soils in solutions of magnesium sulphate depends on concentration of solution.

  12. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    Science.gov (United States)

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  13. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete

    International Nuclear Information System (INIS)

    Shi Huisheng; Kan Lili

    2009-01-01

    The characteristics of municipal solid waste incineration (MSWI) fly ash, surface leaching toxicity and successive leaching concentration of heavy metals from MSWI fly ash-cement hardened pastes were studied. And, the relationships between leaching concentrations of heavy metals and leaching time were also discussed. Experimental results showed that immobilization effect of cement on MSWI fly ash is good. Even if MSWI fly ash-cement hardened pastes were damaged, the leaching toxicity is still in a safety range. In early leaching stage, the surface leaching rate is relatively a little high, up to 10 -5 -10 -4 cm d -1 order of magnitude, in the later time of leaching, its rate rapidly declined, down to 10 -7 . Most of leached heavy metals are produced at early ages. The leaching concentration of heavy metals and leaching time has strong positive relationships. In factual utilizing circumstances, heavy metals' leaching from MSWI fly ash-cement hardened pastes is a very slow and gradually diluting process. The leaching toxicity of heavy metals is far lower than that of the National Standard of China, and minimum harmful matters can be contained and released in the environment. Reusing of MSWI fly ash as partial replacement for cement in concrete mixes is potentially feasible.

  14. Fabrication of Phosphate Cement with High Integrity

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Cheol Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    As the development of industrial society has accelerated, hazardous wastes are generated as well. According to the 1986 statistics of U.S.A, each person made 40 tons of waste in America that year. Treatment of radioactive waste is one of the most important and serious problems related to waste treatments, because its radioactivity and decaying heat have harmful effects to human and environment for a long time. Nuclear developed countries have used conventional method of treatment such as vitrification or cementation in order to stabilize and solidify radioactive waste. Although the former guarantees the formation of high leaching resistant and durable waste form, it requires several hundred (or even more than one thousand) temperature to melt glass frit. This process generates secondary waste volatilized, as well as being non-economical. Cement technology played a role of immobilizing low and middle class wastes. It has advantages of low temperature setting, low cost, easy process, etc. The alkalinity of ordinary cement, however, constrains the utility of cement to the solidification of alkaline waste. In addition, leachability and mechanical strength of cements are not quite appropriate for the stabilization of high level waste. In this regard, chemically bonded phosphate cement(CBPC), which sets by an acid-base reaction, is a potentially expectable material for immobilization of radioactive waste. CBPC not only sets at room temperature, but also encapsulates various isotopes chemically. The performance of CBPC can be enhanced by the addition of fly ash, sand, wollastonite, etc. This study aims at fabricating the CBPC containing fly ash with high integrity. Morphology, microstructure, and compressive strength are evaluated using SEM, and digital compressing machine

  15. Using locally available fly ash for modifying concrete properties

    International Nuclear Information System (INIS)

    Rizwan, S.A.; Toor, S.R.; Ahmad, H.

    2005-01-01

    This paper suggests the possible use of fly ash, a bye-product produced in our thermal power plants operating on coal as fuel for improvement of concrete quality. In the present investigation, locally available finely divided fly ash has been used for modification Presently, it is being used extensively in concrete in modem countries and is considered as waste material in general. Behavior of fly ash modified concrete in comparison to normal concrete having same mix proportions, aggregates, net water-cement ratio and similar curing conditions has been studied in short terms up to the age of 56 days during which the specimens were subjected to normal water curing method. Tests were carried out for compressive strength at 3, 7, 14,28 and 56 days, 24 hours % age water absorption at the age of 56 days and durability (resistance of concrete against N/2 solutions of both nitric acid and hydrochloric acid for one month) of concrete were also carried out at the age of 56 days. It was seen that the compressive strength of concrete modified with the available type of fly ash was less than the normal concrete. But so. far as the durability and % age water absorption are concerned, fly ash plays an important role here. 24 hours % age water absorption decreases with increase in fly ash content an admixture and as a cement replacement in concrete. But so far as durability is concerned, 20% replacement of fly ash with cement appears to be more effective than it is with 40%. The purpose of investigation was to introduce the use of fly ash in concretes to the Engineers and Architects in Pakistan. (author)

  16. The effect of steel slag as a coarse aggregate and Sinabung volcanic ash a filler on high strength concrete

    Science.gov (United States)

    Karolina, R.; Putra, A. L. A.

    2018-02-01

    The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.

  17. Effect of supplementary cementing materials on the concrete corrosion control

    International Nuclear Information System (INIS)

    Mejia de Gutierrez, R.

    2003-01-01

    Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnaces slag (GGBS), silica fume (SF), meta kaolin (MK), fly ash (FA) and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete: (Author) 11 refs

  18. Effect of Fly-Ash on Corrosion Resistance Characteristics of Rebar Embedded in Recycled Aggregate Concrete

    Science.gov (United States)

    Revathi, Purushothaman; Nikesh, P.

    2018-04-01

    In the frame of an extended research programme dealing with the utilization of recycled aggregate in concrete, the corrosion resistance characteristics of rebars embedded in recycled aggregate concrete is studied. Totally five series of concrete mixtures were prepared with fly-ash as replacement for cement in the levels of 10-30% by weight of cement. Corrosion studies by 90 days ponding test, linear polarization test and impressed voltage tests were carried out, in order to investigate whether corrosion behaviour of the rebars has improved due to the replacement of cement with fly-ash. Results showed that the replacement of cement with fly-ash in the range of 20-30% improves the corrosion resistance characteristics of recycled aggregate concrete.

  19. Evaluation of the suitability for concrete using fly ash in N.P.P. structures

    International Nuclear Information System (INIS)

    Cho, M. S.; Song, Y. C.; Kim, S. W.; Ko, K. T.

    2002-01-01

    The nuclear power plant structures constructed in Korea has been generally used type V cement(sulfate-resisting Portland cement), but according to the study results reported recently, it shows that type V cement is superior the resistance of sulfate attack, but the resistance of salt damage is weaker than type I cement. It is increased the demands on the use of mineral admixtures such as fly ash, ground granulated blast-furnace slag instead of type V cement in order to improve the durability of concrete structures. But the study on concrete mixed with fly ash in Korea has been mainly performed on rheology and strength properties of the concrete. Therefore, this study is to improve the durability of concrete structures of N.P.P. as using fly ash cement instead of type V cement. As a results, the concrete containing fly ash is improved the resistance to salt attack, sulfate attack and freezing-thawing and is deteriorated the carbonation. But if it is used the concrete with high strength or low water-powder ratio, the concrete have not problem on the durability

  20. FEATURES OF ASH OF THERMAL POWER PLANTS AS AGGREGATE FOR CONCRETES

    Directory of Open Access Journals (Sweden)

    M. A. Storozhuk

    2017-10-01

    Full Text Available Purpose. The scientific work is dedicated to development of scientific-technical bases of production and application of concrete on the basis of ashes of thermal power plants (TPP. Methodology. The properties of TPP ash, as well as the peculiarities of its behavior in a concrete mix as a fine aggregate, have been studied. It is shown that the hydrolysis and hydration of cement occur in the active environment of ash, which has a huge specific surface area. This significantly affects the course of these processes and the quality of the concrete produced. A new technology of application of ash of TPP for preparation of concrete mixes is offered. Vibrated and vibrovacuumized concretes of optimum composition from slag and ash, as well as from granite crushed stone and ash, are tested. The chara-cteristics of ordinary concrete (from granite crushed stone and quartz sand are given to compare. Findings. The results of the tests showed the possibility of obtaining concretes of class C20/25…C25/30 on the basis of slag and ash of TPP at a limited consumption of cement. It is shown that the concrete with traditional aggregates has a lower strength than the concrete, which has ash as fine aggregate. This research results contribute to the increased use of ash in construction that solves the problem of aggregates as well as thermal power plants waste recycling. Originality. New method and technology of application of TPP ashes in concrete are developed. Ash concrete mix has rational flowability, which produces the greatest strength of ash vacuum concrete. This strength is twice or more as large as the strength of vibrated ash concrete mix with flowability S1. Practical value. The physico-chemical properties of TPP ash as aggregate for concrete are presented. Significant difference of ash from ordinary aggregates is shown. Chemical activity of the ash is justified. The special conditions of cement hardening in the case of using ash as aggregate for concrete

  1. Repair Mortars and New Concretes with Coal Bottom and Biomass Ashes Using Rheological Optimisation

    International Nuclear Information System (INIS)

    Bras, A.; Faustino, P.

    2016-01-01

    The objective of the present work is to analyse the potential of using non-classical additions in concrete and mortar compositions such as coal bottom ash and biomass ash (Bio), as partial replacing binder of ordinary Portland cement. It is intended to deal with production of these type of wastes and its accumulation and contribute to the minimisation of carbon and embodied energy in construction materials. The aim is to identify the concrete and mortars formulation types where it is possible to get more benefit by incorporating bottom ash and Bio. Based on the optimisation of the rheological properties of cement-based materials, mortars with repair function and concrete compositions were developed including 0%, 10%, 15% and 20% of bottom ash and Bio as cement replacement. An assessment of the evolution of relative concrete compressive strength was calculated as a function of the relative solid volume fraction of several concretes. bottom ash compositions present low resistance to high flow rates, increasing the ease of placement and vibration. bottom ash seems to present more filler and pozzolanic effect when compared with Bio. bottom ash mortars fulfil the compressive strength and stiffness requirements to be used as repair mortars, allowing the replacement of 15% or 20% of cement by an industrial waste. This by-product is able to work in the development of the mortar and concrete microstructure strength adopting a much more sustainable solution for the environment.

  2. Solidification of liquid radioactive concentrates by fixation with cement

    International Nuclear Information System (INIS)

    Pekar, A.; Breza, M.; Timulak, J.; Krajc, T.

    1985-01-01

    In testing the technology of liquid radioactive wastes cementation, the effect was mainly studied of the content of boric acid and its salts on cement solidification, the effect of additives on radionuclide leachability and the effect of the salt content on the cementation product. On the basis of experimental work carried out on laboratory scale with model samples and samples of radioactive concentrate from the V-1 nuclear power plant, the following suitable composition of the cementation mixture was determined: 40% Portland cement, 40% zeolite containing material and 20% power plant ash. The most suitable ratio of liquid radioactive wastes and the cementation mixture is 0.5. As long as in such case the salt content of the concentrate ranges between 20 and 25%, the cementation product will have a maximum salt content of 10% and a leachability of the order of 10 -3 to 10 -4 g/cm 2 per day with a mechanical strength allowing safe handling. It was also found that the quality processing of the cement paste with degassing, e.g., by vibration, is more effective for the production of a pore-free cementation product than the application of various additives which are supposed to eliminate pore formation. (Z.M.)

  3. Use of residual wood in the cement manufacturing process

    International Nuclear Information System (INIS)

    Gue, R.

    2005-01-01

    This PowerPoint presentation discussed the use of wood residuals in the cement manufacturing process. An outline of the cement manufacturing process was presented. Raw materials are combined in exact proportions to create a chemically correct mix, which is then pulverized in a mill. The mix is then burned in a kiln. The end product is cooled to form the pellet sized material known as clinker, which is then milled to form cement. The combustion and destruction characteristics of a cement kiln were presented. Modern cement kilns require approximately 3.2 Gj of energy to produce one tonne of cement. It was noted that wood residuals do not contain halogens, sulfur or other materials detrimental to the cement manufacturing process. Possible injection points for kilns were presented. Various studies have shown that wood residuals can be safely used as a fuel in the manufacture of cement. Environmental benefits derived from using wood included the complete destruction of organic portions, and the fact that residual ash becomes an indistinguishable part of the final product. It was concluded that wood residual materials are a satisfactory alternative fuel for the cement industry. tabs., figs

  4. EFFECTS OF MINERAL ADMIXTURE ON THE CARBONIC ACID LEACHING RESISTANCE OF CEMENT-BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Yun Dong

    2017-07-01

    Full Text Available In order to reveal the degradation process and deterioration mechanism of cement-based materials, this paper analyzes the effects of carbonic acid leaching on the mechanical strength of mortars, as well as relative mass loss, microstructure, and composition of various cement pastes. The results indicate that cement pastes containing less than 20 % fly ash have higher carbonic acid leaching resistance than cement pastes without fly ash. However, after carbonic acid leaching, the compressive strength of the samples with fly ash is lower than that of the cement pastes without fly ash. The leaching resistance is good for samples cured at an early age before leaching. Carbonic acid leaching proceeds from the paste surface to the interior. The incorporation of an appropriate amount of slag powder helps to increase the density of the paste. Due to the pozzolanic activity of fly ash at late-stage leaching, a mixture of fly ash (≤ 20 % and slag powder (≤ 20 % effectively improves carbonic acid leaching resistance. The products of early-stage leaching were mainly CaCO₃ and small amounts of SiO₂ and Fe₂O₃. The C-S-H phase at the paste surface suffered serious damage after long periods of leaching, and the main products of leaching were SiO₂ and Fe₂O₃.

  5. Corrosion of metal containers containing cemented radioactive wastes

    International Nuclear Information System (INIS)

    Duffo, G.S.; Farina, S.B.; Schulz, F.M.; Marotta, F

    2010-01-01

    Nuclear activities generate different kinds of radioactive wastes. In the case of Argentina, wastes classified as low and medium level are conditioned in metal drums for final disposal in a repository whose design is based on the use of multiple and independent barriers. Nuclear energy plants generate a large volume of mid-level radioactive wastes, consisting mainly of ion-exchange resins contaminated by fission products. Other contaminated products such as gloves, papers, clothing, rubber and plastic tubing, can be incinerated and the ashes from the combustion also constitute wastes that must be disposed of. These wastes (resins and ashes) must be immobilized in order to avoid the release of radionuclides into the environment. The wastes usually undergo a process of cementing to immobilize them. This work aims to systematically study the process of degradation by corrosion of the steel drums in contact with the cemented resins and with the ashes cemented with the addition of different types and concentrations of aggressive compounds (chloride and sulfate). The specimens are configured so that the parameters of interest for the steel in contact with the cemented materials can be measured. The variables of corrosion potential, electric resistivity of the matrix and polarization resistance (PR) were monitored and show that the presence of chloride increases the susceptibility to corrosion of the drum steel that is in contact with the cement resin matrix

  6. Study on pore structure and diffusion coefficient of chloride ion in hardened low-alkaline cement

    International Nuclear Information System (INIS)

    Mihara, Morihiro; Torii, Kazuyuki

    2009-03-01

    Low-alkaline cement using pozzolans is under consideration as a possible filling and structural material in geological disposal for long-lived radioactive waste. Silica fume and fly ash are used to develop the low-alkaline cement which is named HFSC, High-volume Fly ash Silica fume Cement. In this study, pore structure and diffusivity of chloride ion in HFSC pastes were investigated in order to understand the fundamental transport properties of ions. HFSC which included different contents of fly ash (40%, 50% and 60%) with silica fume (20%) and ordinary Portland (OPC) cement were prepared. Hardened cement pastes were supplied to pore structure analysis and in-diffusion experiment with NaCl and CaCl 2 solution. Mercury intrusion method (MIP) commonly used and image analysis of backscattered electron microscopy (BSE) for pore in hardened cement paste were performed to investigate the pore structure. The porosity of HFSC was larger than that of OPC measured by MIP. However, pore diameter increasing pore volume of HFSC was smaller than that of OPC. It was observed that lager pores were in HFSC than in OPC from BSE. These large pores in HFSC were originated from cenosphere of FA. The apparent diffusivity of chloride in HFSC with fly ash of 40% showed smallest value in the cement pastes. It was concluded that the smallest diffusion coefficient was caused by a pore of HFSC which had a bended structure and ion exclusion/filtration effect. (author)

  7. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    Science.gov (United States)

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  8. Disposal of low-level radioactive waste using high-calcium fly ash. Final report

    International Nuclear Information System (INIS)

    Cogburn, C.O.; Hodgson, L.M.; Ragland, R.C.

    1986-04-01

    The feasibility of using calcium-rich fly ash from coal-fired power plants in the disposal of low-level radioactive waste was examined. The proposed areas of use were: (1) fly-ash cement as a trench lining material; (2) fly ash as a backfill material; and (3) fly ash as a liquid waste solidifier. The physical properties of fly-ash cement were determined to be adequate for trench liner construction, with compressive strengths attaining greater than 3000 psi. Hydraulic conductivities were determined to be less than that for clay mineral deposits, and were on the order of 10 -7 cm/sec, with some observed values as low as 10 -9 cm/sec. Removal of radioisotopes from acidified solutions by fly ash was good for all elements tested except cesium. The removal of cesium by fly ash was similar to that of montmorillonite clay. The corrosive effects on metals in fly ash environments was determined to be slight, if not non-existent. Coatings at the fly-ash/metal interfaces were observed which appeared to inhibit or diminish corrosion. The study has indicated that high-calcium fly ash appears to offer considerable potential for improved retention of low-level radioactive wastes in shallow land disposal sites. Further tests are needed to determine optimum methods of use. 8 refs., 4 figs., 7 tabs

  9. Effect of Selected Alternative Fuels and Raw Materials on the Cement Clinker Quality

    Directory of Open Access Journals (Sweden)

    Strigáč Július

    2015-11-01

    Full Text Available The article deals with the study of the effects of alternative fuels and raw materials on the cement clinker quality. The clinker quality was expressed by the content of two principal minerals alite C3S and belite C2S. The additions of alternative fuels ashes and raw materials, in principle, always increased the belite content and conversely reduced the amount of alite. The alternative fuels with high ash content were used such as the meat-bone meal, sewage sludge from sewage treatment plants and paper sludge and the used alternative raw materials were metallurgical slags - granulated blastfurnace slag, air cooled blastfurnace slag and demetallized steel slag, fluidized bed combustion fly ash and waste glass. Meat-bone meal, sewage sludge from sewage treatment plants and paper sludge were evaluated as moderately suitable alternative fuels which can be added in the amounts of 2.8 wt. % addition of meat-bone meals ash, 3.64 wt. % addition of sewage sludge ash and 3.8 wt. % addition of paper sludge ash to the cement raw mixture. Demetallised steel slag is suitable for production of special sulphate resistant cement clinker for CEM I –SR cement with addition up to 5 wt. %. Granulated blastfurnace slag is a suitable alternative raw material with addition 4 wt. %. Air cooled blastfurnace slag is a suitable alternative raw material with addition 4.2 wt. %. Waste glass is not very appropriate alternative raw material with addition only 1.16 wt. %. Fluidized bed combustion fly ash appears not to be equally appropriate alternative raw material for cement clinker burning with less potential utilization in the cement industry and with addition 3.41 wt. %, which forms undesired anhydrite CaSO4 in the cement clinker.

  10. Lightweight Brick by Carbon Ash from The Mixed Plastic Waste Treatment Plant

    Directory of Open Access Journals (Sweden)

    Chen Kuo-Wei

    2016-01-01

    Full Text Available This study was designed to investigate the mixed plastic waste from the production of light carbon ash bricks performance. The mixed waste plastic pyrolysis process generated waste - Carbon ash. After extrusion, a Lightweight brick was made by carbon ash, additive and Cement mortar. In general, the set compressive strength and insulation effect of lightweight bricks with carbon ash proportion for significant impact. The set water absorption and thermal conductivity of lightweight bricks with carbon ash proportion for significant impact. The set density of lightweight brick ameliorates with M3824 additive and CM3 cement mortar for significant impact. Under conditions of technology and economic, the results of this study as reference for market-oriented marketing and commercialization of production.

  11. The influence of using volcanic ash and lime ash as filler on compressive strength in self compacting concrete

    Science.gov (United States)

    Karolina, Rahmi; Panatap Simanjuntak, Murydrischy

    2018-03-01

    Self Compacting Concrete (SCC) is a technology which is developing today in which concrete solidifies by itself without using vibrator. Casting conventional concrete which has a lot of reinforcement bars sometimes finds difficulty in achieving optimal solidity. The method used to solve this problem is by using SCC technology. SCC was made by using filler, volcanic ash, and lime ash as the filling materials so that the concrete became more solid and hollow space could be filled up. The variation of using these two materials was 10%, 15%, 20%, and 25% of the cementitious mass and using 1% of superplasticizer from cementitious material. The supporting testing was done by using the test when the concrete was still fluid and when it was solid. Malleable concrete was tested by using EFNARC 2002 standard in slump flow test, v-funnel test, l-shaped box test, and j-ring test to obtain filling ability and passing ability. In this malleable lime concrete test, there was the decrease, compared with normal SCC concrete without adding volcanic ash and lime ash. Testing was also done in solid concrete in compressive strength, tensile strength, and concrete absorption. The result of the testing showed that the optimum tensile strength in Variation 1, without volcanic ash and lime ash – with 1% of superplasticizer was 39.556 MPa, the optimum tensile strength in Variation 1, without volcanic ash and lime ash- with 1% of super-plasticizer was 3.563 MPa, while the value of optimum absorption which occurred in Variation 5 (25% of volcanic ash + 25% of lime ash + 50% of cement + 1% of superplasticizer) was 1.313%. This was caused by the addition of volcanic ash and lime ash which had high water absorption.

  12. Corrosion of Modified Concrete with Sugar Cane Bagasse Ash

    Directory of Open Access Journals (Sweden)

    R. E. Núñez-Jaquez

    2012-01-01

    Full Text Available Concrete is a porous material and the ingress of water, oxygen, and aggressive ions, such as chlorides, can cause the passive layer on reinforced steel to break down. Additives, such as fly ash, microsilica, rice husk ash, and cane sugar bagasse ash, have a size breakdown that allows the reduction of concrete pore size and, consequently, may reduce the corrosion process. The objective of this work is to determine the corrosion rate of steel in reinforced concrete by the addition of 20% sugar cane bagasse ash by weight of cement. Six prismatic specimens (7×7×10 cm with an embedded steel rod were prepared. Three contained 20% sugar cane bagasse ash by weight of cement and the other three did not. All specimens were placed in a 3.5% NaCl solution and the corrosion rate was determined using polarization resistance. The results showed that reinforced concrete containing sugar cane bagasse ash has the lowest corrosion rates in comparison to reinforced concrete without the additive.

  13. Influence of fly-ashes on properties of ordinary concretes

    Directory of Open Access Journals (Sweden)

    Rutkowska Gabriela

    2016-03-01

    Full Text Available Influence of fly-ashes on properties of ordinary concretes. Care of the environment in accordance with the principles of sustainable development introduces the possibility and need for waste recycling. The construction and building materials industry has the greatest potential for reuse of waste. The article presents the results of investigations of selected properties (consistency, water absorbability, compressive strength and tensile strength after 28 and 56 days of curing, depth of penetration of ordinary concretes and concretes containing fly-ashes - calcareous and siliceous ash − in their composition. To make the samples, the Portland cement CEM I 42.5 R and natural aggregate with graining of 0-16 mm were used. The concrete with siliceous and calcareous admixtures was made in three lots where the ash was added in the quantity of 15, 20 and 30% of the cement mass. After the tests, it was stated that the fly-ash admixture does not increase the air content in the mix, it increases the compressive strength in time and the siliceous ash improves the splitting tensile strength.

  14. Fundamental study of low-NOx combustion fly ash utilization

    International Nuclear Information System (INIS)

    Suuberg, Eric M.; Hurt, Robert H.

    1998-01-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over fifty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives

  15. Biomass ash utilization

    Energy Technology Data Exchange (ETDEWEB)

    Bristol, D.R.; Noel, D.J.; O`Brien, B. [HYDRA-CO Operations, Inc., Syracuse, NY (United States); Parker, B. [US Energy Corp., Fort Fairfield, ME (United States)

    1993-12-31

    This paper demonstrates that with careful analysis of ash from multiple biomass and waste wood fired power plants that most of the ash can serve a useful purpose. Some applications require higher levels of consistency than others. Examples of ash spreading for agricultural purposes as a lime supplement for soil enhancement in Maine and North Carolina, as well as a roadbase material in Maine are discussed. Use of ash as a horticultural additive is explored, as well as in composting as a filtering media and as cover material for landfills. The ash utilization is evaluated in a framework of environmental responsibility, regulations, handling and cost. Depending on the chemical and physical properties of the biomass derived fly ash and bottom ash, it can be used in one or more applications. Developing a program that utilizes ash produced in biomass facilities is environmentally and socially sound and can be financially attractive.

  16. Cement technology for plugging boreholes in radioactive waste repository sites. Progress report, October 1, 1977--September 30, 1978

    International Nuclear Information System (INIS)

    Moore, J.G.; Morgan, M.T.; McDaniel, E.W.; Greene, H.B.; West, G.A.

    1979-08-01

    Experiments are in progress using 34 batches of cements from 13 different locales, representing 11 types of cement, and 17 batches of fly ash from 14 suppliers. Data are being obtained from physical and chemical test methods and from measurements made in parametric studies involving cement--fly-ash concretes and saltcretes. Addition of 10 wt % salt to a standard mortar will double the initial and final set times. The set time of the saltcrete can be increased or decreased by a lignite fly ash or bituminous fly ash respectively. The compressive strengths of mortars were measured at 7, 28, and 91 days. The compressive strengths of cement--fly-ash concretes were found to vary with curing time and the fly ash composition. The strengths of saltcretes decreased with increasing salt concentration but increased with the addition of fly ash; the effect of the fly ash composition was apparently negligible. The thermal conductivities of cementitious solids, were found to increase with density and with sand and/or salt concentration. Thermal conductivities of saltcretes decreased with increasing temperature but remained almost constant in neat cement pastes. The conductivity values ranged from 0.4 W/m.K for a neat cement paste to 1.8 W/m.K for a salcrete. Results for a number of saltcretes under the same drying conditions showed that the apparent liquid permeability decreased with increasing salt content. Shrinkage of neat pastes and saltcretes varied approximately linearly with time, while cement--fly-ash solids showed a high rate in the first few weeks followed by a lower rate for a longer time period

  17. Asymmetric Ashes

    Science.gov (United States)

    2006-11-01

    , it is. "This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed." "Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang. Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

  18. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  19. Producing cement

    Energy Technology Data Exchange (ETDEWEB)

    Stone, E G

    1923-09-12

    A process and apparatus are described for producing Portland cement in which pulverized shale is successively heated in a series of inclined rotary retorts having internal stirrers and oil gas outlets, which are connected to condensers. The partially treated shale is removed from the lowermost retort by a conveyor, then fed separately or conjointly into pipes and thence into a number of vertically disposed retorts. Each of these retorts may be fitted interiorly with vertical arranged conveyors which elevate the shale and discharge it over a lip, from whence it falls to the bottom of the retorts. The lower end of each casing is furnished with an adjustable discharge door through which the spent shale is fed to a hopper, thence into separate trucks. The oil gases generated in the retorts are exhausted through pipes to condensers. The spent shale is conveyed to a bin and mixed while hot with ground limestone. The admixed materials are then ground and fed to a rotary kiln which is fired by the incondensible gases derived from the oil gases obtained in the previous retorting of the shale. The calcined materials are then delivered from the rotary kiln to rotary coolers. The waste gases from the kiln are utilized for heating the retorts in which the ground shale is heated for the purpose of extracting therefrom the contained hydrocarbon oils and gases.

  20. Producing zeolites from fly ash

    International Nuclear Information System (INIS)

    Rayalu, S.; Labhestwar, N.K.; Biniwale, R.B.; Udhoji, J.S.; Meshram, S.U.; Khanna, P.

    1998-01-01

    Fly ash has virtually become a menace of thermal power generation, leading to its devastating effects on the environment. Development of alternate methods of its disposal - especially those with recourse to recovery of valuable materials-has thus become imperative. This paper deals with the utilisation of fly ash for the production of high value-added products, viz., commercial grade zeolites. The physico-chemical and morphological characteristics of fly ash based Zeolite-A (FAZ-A) compares well with commercial Zeolite-A. High calcium binding capacity, appropriate particle/pore size and other detergency characteristics of FAZ-A brings forth its potential as a substitute for phosphatic detergent builder. The technology is extremely versatile, and other products like Zeolite-X, Zeolite-Y, sodalite and mordenite are also amenable for cost effective production with modifications in certain reaction parameters. Low temperature operations, ready availability of major raw materials, simplicity of process and recycling of unused reactants and process water are special features of the process. (author)

  1. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    Science.gov (United States)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  2. Radioisotope conveyor ash meter

    International Nuclear Information System (INIS)

    Savelov, V.D.

    1994-01-01

    Radioisotope conveyor ash meter realizes persistent measuring of ashiness of coal and products of its enrichment on the belt conveyor without contact. The principle of ash meter acting is based on functional dependence of the gamma radiation flows backscattering intensity of radioisotope sources from the ash volume content in the controlled fuel. Facility consists from the ashiness transducer and the processing and control device

  3. Development of fluorapatite cement for dental enamel defects repair.

    Science.gov (United States)

    Wei, Jie; Wang, Jiecheng; Shan, Wenpeng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng

    2011-06-01

    In order to restore the badly carious lesion of human dental enamel, a crystalline paste of fluoride substituted apatite cement was synthesized by using the mixture of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA) and ammonium fluoride. The apatite cement paste could be directly filled into the enamel defects (cavities) to repair damaged dental enamel. The results indicated that the hardened cement was fluorapatite [Ca(10)(PO(4))(6)F(2), FA] with calcium to phosphorus atom molar ratio (Ca/P) of 1.67 and Ca/F ratio of 5. The solubility of FA cement in Tris-HCl solution (pH = 5) was slightly lower than the natural enamel, indicating the FA cement was much insensitive to the weakly acidic solutions. The FA cement was tightly combined with the enamel surface, and there was no obvious difference of the hardness between the FA cement and natural enamel. The extracts of FA cement caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. In addition, the results showed that the FA cement had good mechanical strength, hydrophilicity, and anti-bacterial adhesion properties. The study suggested that using FA cement was simple and promising approach to effectively and conveniently restore enamel defects.

  4. The influence of blast furnace slag, fly ash and silica fume on corrosion of reinforced concrete in marine environment

    NARCIS (Netherlands)

    Polder, R.B.

    1996-01-01

    Chloride penetration from sea water may cause corrosion of reinforcement in concrete structures. Adding reactive inorganic materials such as blast furnace slag, fly ash or silica fume to the cement matrix improves the resistance against chloride penetration as compared to Portland cement concrete. A

  5. Fly ash. January 1987-November 1991 (Citations from the NTIS Data-Base). Rept. for Jan 87-Nov 91

    International Nuclear Information System (INIS)

    1991-10-01

    The bibliography contains citations concerning the collection, disposal, and utilization of fly ash. Topics include chemical behavior and composition studies, potential environmental effects, toxicity determinations, management strategies, and materials recovery programs. The employment of fly ash as a cement replacement, and highway construction material is discussed. (Contains 170 citations with title list and subject index.)

  6. Radioactivity of wood ash

    International Nuclear Information System (INIS)

    Rantavaara, A.; Moring, M.

    2000-01-01

    STUK (Finnish Radiation and Nuclear Safety Authority) has investigated natural and artificial radioactivity in wood ash and radiation exposure from radionuclides in ash since 1996. The aim was to consider both handling of ash and different ways of using ash. In all 87 ash samples were collected from 22 plants using entirely or partially wood for their energy production in 1996-1997. The sites studied represented mostly chemical forest industry, sawmills or district heat production. Most plants used fluidised bed combustion technique. Samples of both fly ash and bottom ash were studied. The activity concentrations of radionuclides in samples of, e.g., dried fly ash from fuel containing more than 80% wood were determined. The means ranged from 2000 to less than 50 Bq kg -1 , in decreasing order: 137 Cs, 40 K, 90 Sr, 210 Pb, 226 Ra, 232 Th, 134 Cs, 235 U. In bott radionuclide contents decreased in the same order as in fly ash, but were smaller, and 210 Pb was hardly detectable. The NH 4 Ac extractable fractions of activities for isotopes of alkaline elements (K, Cs) in bottom ash were lower than in fly ash, whereas solubility of heavier isotopes was low. Safety requirements defined by STUK in ST-guide 12.2 for handling of peat ash were fulfilled at each of the sites. Use of ash for land-filling and construction of streets was minimal during the sampling period. Increasing this type of ash use had often needed further investigations, as description of the use of additional materials that attenuate radiation. Fertilisation of forests with wood ash adds slightly to the external irradiation in forests, but will mostly decrease doses received through use of timber, berries, mushrooms and game meat. (orig.)

  7. Fourth international conference on fly ash, silica fume, slag, and natural pozzolans in concrete: Supplemental proceedings

    International Nuclear Information System (INIS)

    Berry, E.E.; Hemmings, R.T.; Zhang, M.H.; Malhotra, V.M.

    1992-03-01

    This report consists of four papers presented at a special session on high volume fly ash (HVFA) concrete. These four papers summarize an EPRI research project currently in progress that is investigating HVFA concretes. This objective of this research is to commercialize the HVFA concrete technology through: (1) an extensive measurement of basic engineering and durability properties; (2) an examination of the binder microstructure and cementation hydration reactions; and (3) technology transfer to industry and the construction community. Overall the data from the project that are summarized in these papers, show that commercial quality structural grade concrete (up to 50 MPa compressive strength at 90 days) can be made from a wide range of fly ashes and cements available throughout the USA. It has been shown in this project that fly ash is a reactive participant with the Portland cement in the cementing process, and also serves as a microaggregate in a multiphase composite binder formed during curing. The properties of the binder were found to significantly influence strength development, elastic modulus, and the stress-strain behavior of HVFA concrete. Overall, the data presented show that regardless of the type of fly ash (from the nine US ashes evaluated) and the two cements used, that air-entrained HVFA concrete exhibits excellent durability in all respects except under application of deicing salts where some surface scaling has been observed in the laboratory

  8. Application of tracer technique in cement industry

    International Nuclear Information System (INIS)

    Baran'ai, L.

    1979-01-01

    Application is stated of the radioisotope indication method in the cement industry. The method was applied in three directions. In the first direction, by means of labelling of 300 steel mill balls by cobalt-60, wear of them was examined. The degree of wear of milling balls in the process of milling was determined according to the decrease of their weight. Radioactive label served only for tracing controll balls. In the second direction, according to the natural radioactivity being presented in ashes by radioisotopes radium-226 and thorium-229, amount of ashes in the products of cement milling was determined (in the mill product, cement product, flying dust and back loading groats). In the third direction, by means of labelling of definite fractions of mille by radioisotope gold-198, optimization of technological parameters of silos were raw meal is homogenization. The following technological parameters have been established: amount of homogenized material; time of homogenization and frequency of intensity changing of supplied compressed air jet [ru

  9. physico-chemical studies on polymer impregnated blending cement mortar composite

    International Nuclear Information System (INIS)

    Abdel-Rahman, H.A.

    2001-01-01

    as the increasing of the demand on a specific performance characteristics in concrete such as improved strength, low heat, sulfate resistance, improved impermeability and certain other applications. some of the industrial waste materials such as the blast-furnace slag, silica fume and fly ash were mixed with the cement clinker to produce blended cement . the use of these materials modifies the strength, pore structure and permeability of hardened cement mortar or concrete. the incorporation of blast furnace slag and silica fume in the hardened blended cement mortar or concrete is a common practice recently due to technological, economical and environmental benefits

  10. Performance evaluation of clay fly ash brick masonry

    Energy Technology Data Exchange (ETDEWEB)

    Kute, S.; Deodhar, S.V. [K.K. Wagh College of Engineering, Panchavati (India). Dept. of Civil Engineering

    2003-07-01

    Despite inexorable trends of automation in manufacturing industry throughout the world, the conventional brick manufacturing practices have remained largely unchanged since the dawn of civilization in India. This has imposed restrictions on quality of bricks in general. The paper highlights the results derived from an extensive experimental work on performance evaluation of brick masonry. Four types of bricks, three values of joint thickness and fineness modulus of sand, and two grades of mortar with four different proportions were used as samples. Fly ash was from Nashik Thermal Power Station in Maharashtra, India. The results show that the brick masonry of 40% fly ash bricks and mortar with 20% fly ash as replacement to cement with 1:4 and 1:6 proportion gives optimum strength and advocates use of fly ash for this combination. 8 tabs.

  11. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  12. Radioactivity of bone cement

    International Nuclear Information System (INIS)

    Scherer, M.A.; Winkler, R.; Ascherl, R.; Lenz, E.

    1993-01-01

    A total of 14 samples of different types of bone cement from five different manufacturers were examined for their radioactivity. Each of the investigated bone cements showed a low radioactivity level, i.e. between [de

  13. Ultrafine portland cement performance

    Directory of Open Access Journals (Sweden)

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  14. Leaching of solidified TRU-contaminated incinerator ash

    International Nuclear Information System (INIS)

    Fuhrmann, M.; Colombo, P.

    1984-01-01

    Leach rate and cumulative fractional releases of plutonium were determined for a series of laboratory-scale waste forms containing transuranic (TRU) contaminated incinerator ash. The solidification agents from which these waste forms were produced are commercially available materials for radioactive waste disposal. The leachants simulate groundwaters with chemical compositions that are indiginous to different geological media proposed for repositories. In this study TRU-contaminated ash was incorporated into waste forms fabricated with portland type I cement, urea-formaldehyde, polyester-styrene or Pioneer 221 bitumen. The ash was generated at the dual-chamber incinerator at the Rocky Flats Plant. These waste forms contained between 1.25 x 10 -2 and 4.4 x 10 -2 Ci (depending on the solidification agent) of mixed TRU isotopes comprised primarily of 239 Pu and 240 Pu. Five leachant solutions were prepared consisting of: (1) demineralized water, (2) simulated brine, (3) simplified sodium-dominated groundwater (30 meq NaCl/liter), (4) simplified calcium-dominated groundwater (30 meq CaCl 2 /liter), and (5) simplified bicarbonate-dominated groundwater (30 meq NaHCO 3 /liter). Cumulative fractional releases were found to vary significantly with different leachants and solidification agents. In all cases waste forms leached in brine gave the lowest leach rates. Urea-formaldehyde had the greatest release of radionuclides while polyester-styrene and portland cement had approximately equivalent fractional releases. Cement cured for 210 days retained radionuclides three times more effectively than cement cured only 30 days

  15. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  16. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA Concrete

    Directory of Open Access Journals (Sweden)

    Oseni O. W.

    2016-09-01

    Full Text Available The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0% with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32 mm from fine to coarse aggregates was tested for: (1 compressive strength, and the (2 slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 – 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  17. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA) Concrete

    Science.gov (United States)

    Oseni, O. W.; Audu, M. T.

    2016-09-01

    The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 - 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  18. Elasticity and expansion test performance of geopolymer as oil well cement

    Science.gov (United States)

    Ridha, S.; Hamid, A. I. Abd; Halim, A. H. Abdul; Zamzuri, N. A.

    2018-04-01

    History has shown that geopolymer cement provides high compressive strength as compared to Class G cement. However, the research had been done at ambient temperature, not at elevated condition which is the common oil well situation. In this research, the physical and mechanical properties performance of the oil well cement were investigated by laboratory work for two types of cement that are geopolymer and Class G cement. The cement samples were produced by mixing the cement according to the API standards. Class C fly ash was used in this study. The alkaline solution was prepared by mixing sodium silicate with NaOH solution. The NaOH solution was prepared by diluting NaOH pellets with distilled water to 8M. The cement samples were cured at a pressure of 3000 psi and a temperature of 130 °C to simulate the downhole condition. After curing, the physical properties of the cement samples were investigated using OYO Sonic Viewer to determine their elastic properties. Autoclave expansion test and compressive strength tests were conducted to determine the expansion value and the strength of the cement samples, respectively. The results showed that the geopolymer cement has a better physical and mechanical properties as compared with Class G cement at elevated condition.

  19. High-volume use of self-cementing spray dry absorber material for structural applications

    Science.gov (United States)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  20. Experimental Study on Rise Husk Ash & Fly Ash Based Geo-Polymer Concrete Using M-Sand

    Science.gov (United States)

    Nanda Kishore, G.; Gayathri, B.

    2017-08-01

    Serious environmental problems by means of increasing the production of Ordinary Portland cement (OPC), which is conventionally used as the primary binder to produce cement concrete. An attempt has been made to reduce the use of ordinary Portland cement in cement concrete. There is no standard mix design of geo-polymer concrete, an effort has been made to know the physical, chemical properties and optimum mix of geo-polymer concrete mix design. Concrete cubes of 100 x 100 x 100 mm were prepared and cured under steam curing for about 24 hours at temperature range of 40°C to 60°C. Fly ash is replaced partially with rice husk ash at percentage of 10%, 15% and 25%. Sodium hydroxide and sodium silicate are of used as alkaline activators with 5 Molar and 10 Molar NaOH solutions. Natural sand is replaced with manufacture sand. Test results were compared with controlled concrete mix of grade M30. The results shows that as the percentage of rice husk ash and water content increases, compressive strength will be decreases and as molarity of the alkaline solution increases, strength will be increases.

  1. Pemanfaatan Bottom Ash Sebagai Agregat Buatan

    OpenAIRE

    Nuciferani, Felicia Tria; Antoni, Antoni; Hardjito, Djwantoro

    2014-01-01

    The aim of this study is to explore the possible use of bottom ash as artificial aggregates. It is found that the pelletizer method by using mixer without blade is one possibility to manufacture artificial aggregates. The optimum mixture composition of artificial aggregate is found to be 3 BA : 1FA : 0,5 C , by weight, and immersed once in cement slurry. The water content in ssd condition is 27% with the compressive strength of the aggregate 2.4 MPa on the seventh day. Concrete produced with ...

  2. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  3. Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment

    Science.gov (United States)

    Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.

    2017-06-01

    Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.

  4. HEC influence on cement hydration measured by conductometry

    OpenAIRE

    Pourchez , Jérémie; Grosseau , Philippe; Guyonnet , René; Ruot , Bertrand

    2006-01-01

    International audience; Cellulose ethers are of universal use in factory-made mortars, though their influences on mortar properties at a molecular scale are poorly understood. Recent studies dealt with the influence of hydroxyethylmethyl cellulose (HEMC) and hydroxypropylmethyl cellulose (HPMC) molecular parameters on cement hydration. It was concluded that the degree of substitution is the most relevant factor on cement hydration kinetics, contrary to the molecular weight. Nevertheless, the ...

  5. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter

  6. Combustion of solid alternative fuels in the cement kiln burner

    DEFF Research Database (Denmark)

    Nørskov, Linda Kaare

    In the cement industry there is an increasing environmental and financial motivation for substituting conventional fossil fuels with alternative fuels, being biomass or waste derived fuels. However, the introduction of alternative fuels may influence emissions, cement product quality, process...... stability, and process efficiency. Alternative fuel substitution in the calciner unit has reached close to 100% at many cement plants and to further increase the use of alternative fuels rotary kiln substitution must be enhanced. At present, limited systematic knowledge of the alternative fuel combustion...... properties and the influence on the flame formation is available. In this project a scientific approach to increase the fundamental understanding of alternative fuel conversion in the rotary kiln burner is employed through literature studies, experimental combustion characterisation studies, combustion...

  7. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    Fred Sabins

    2001-01-01

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  8. STABILIZATION OF GRANULAR VOLCANIC ASH IN SANA'A AREA

    Directory of Open Access Journals (Sweden)

    SUBHI A. ALI

    2014-02-01

    Full Text Available This paper presents the findings of compaction and strength characteristics of a Granular Volcanic Ash from Sana'a city center, which was mixed with various percentages of two binders to form a stabilized material namely; fine soil and Portland cement. The study showed a significant improvement of the Volcanic Ash properties. The maximum dry density and California bearing ration (CBR were considerably increased by addition of stabilizers at different rates for different binder contents. Optimum fine soil content for the maximum dry density and CBR is determined. A relationship between the optimum moisture content and the binder combination content for different fine soil percentages was established.

  9. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  10. Alpha radioactivity in Indian cement samples

    International Nuclear Information System (INIS)

    Nain, M.; Chauhan, R. P.; Chakarvarti, S. K.

    2006-01-01

    The essential constituents of radioactive and each of cements like lime, silica and alumina are derived from earth's crust in which radioactive elements like uranium, thorium etc are also present in varying amounts almost everywhere. These two elements are considered as the parent elements of uranium and thorium radioactive decay series in which radon and thoron are produced respectively as decay products. In the present study the samples of ordinary Portland cement , Portland pozzolana cement and some other cementious finishing materials like white cement, Plaster of Paris , cement putty etc were collected and analysed for radium and radon concentrations along with radon exhalation rates. Materials and Methods: Alpha sensitive LR-115 Type II plastic track detectors commonly known as S olid State Nuclear Track Detectors w ere used to measure the radium and radon concentration. The alpha particles emitted from the radon causes the radiation damaged tracks. The Chemical etching in NaOH at 60 C for about 90 minutes was done to reveal these latent tracks, which were then scanned and counted by an optical microscope of suitable magnification. By calculating the track density of registered tracks, the radon and radium concentrations along with exhalation rate of radon, were determined using required formulae. Results: The radon and radium concentration in various brands of cements found to vary from 333±9.9 to 506±13.3 Bq m-3 and from 3.7±0.1 to 5.6±0.2 Bq k g-1 while in various cementious finishing materials used in the construction, these were found to vary from 378±19.7 to 550±9.8 Bq m-3 and from 4.2±0.2 to 6.1±0.1 Bq Kg-1, respectively. Based on the data the mass and surface exhalation rates were also calculated Conclusion: The measurements indicate that there is marginal variation of the concentration of radium and radon in various brands of cements in India with lower levels in the cement samples having red oxide and higher levels in fly ash based cement

  11. Properties of cement based composites modified using diatomaceous earth

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek

    2017-07-01

    Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.

  12. Physical and Chemical Character of Fly Ash of Coal Fired Power Plant in Java

    Science.gov (United States)

    Triwulan; Priadana, K. A.; Ekaputri, J. J.; Bayuaji, R.

    2017-11-01

    Quality of fly ash is varying widely in the field, it depends on the combustion process and the quality of the basic ingredients, namely coal. It will affect the physical and mechanical properties of the concrete mixtures used. This study used 12 samples of fly ash. The physical and chemical properties and finesse modulus were analyzed. The fly ash was mixed with OPC (Ordinary Portland Cement) with the proportion of 20% fly ash and 80% OPC. The specimens were form with mortar dimension of 5cm x 5 cm. The test was affected by the correlation of fly ash fineness modulus to compressive strength, correlation density of fly ash to compressive strength, and correlation of carbon content to the compressive strength.

  13. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    Science.gov (United States)

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  14. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    International Nuclear Information System (INIS)

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-01-01

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured

  15. Ash Utilisation 2012. Ashes in a Sustainable Society. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Conference themes: Risk assessment, Fly ash- Road construction, Recycling and Greenhouse gases, Storage of ashes, Fertilizer, Metal Mining, Support and Barriers, Construction Material, Civil Engineering, and MSWI bottom ash.

  16. Energy optimization and reduction of carbon footprint in cement manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Gallestey, Eduardo; Crosley, Gabriela; Wilson, Andrew; Maier, Urs; Hoppler, Rolf; Boerrnert, Thomas

    2010-09-15

    Cement producers are large consumers of thermal and electrical energy, which are only available at steadily increasing costs. Efforts to reduce demands by using higher efficiency equipment and substituting -fuels and raw materials to lower production costs have been addressed in recent years. Under the Kyoto Protocol industrialised countries agreed to reduce their collective greenhouse gas emissions. Cement producers as some of the largest emitters of CO2 have been especially challenged to find new and innovative ways to reduce greenhouse gas emissions. This paper summarise some ABB technologies developed to assist the cement industry to meet these goals.

  17. High volume fly ash RCC for dams - I : mixture optimization and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, S. [PEAB Construction Co., Oslo (Norway); Lahus, O. [Norwegian Building Research Inst., Oslo (Norway)

    2001-07-01

    Roller compacted concretes (RCC) were developed for the Norwegian Skjerka hydropower project. RCCs were developed to have a high-volume fly ash content to address environmental issues, including the reduction of carbon dioxide emissions associated with dam construction. They also makes good use of waste product and conserve natural resources. This study examined a series of mixtures to determine the appropriateness of using RCC as a competing alternative to the traditional rock fill dam proposed for the Skjerka hydropower project. The main advantage of RCC is speed, allowing a relatively large dam to be constructed in just one summer season, saving financial costs and providing early return on the investment. In addition, fly ash can be used in the structure, using clean and renewable energy. Several procedures to proportion RCC mixtures were proposed, including the optimal paste volume method which is based on the assumption that an optimal RCC should have just enough paste to fill the space between particles when the granular skeleton has reached its maximum density under compaction. With this assumption, RCC tests began in 1998 in the laboratories of the Norwegian Building Research Institute. An ordinary portland cement was used and combined with ordinary low lime fly ash. Both coarse and fine aggregate were used. The tests determined the optimum paste-mortar ratio, the content of coarse aggregates and the production of specimens for test on hardened and fresh concrete. The study showed that the compressive strength of RCC increased with increasing cement/(cement + fly ash) ratio. The permeability coefficient decreased with increasing cement-content and increasing cement/(cement + fly ash) ratio due to the slow pozzolanic reaction of fly ash making a more open pore structure. It was concluded that an optimized mixture can result in a high performance RCC in terms of fresh and hardened concrete properties. 15 refs., 5 tabs., 11 figs.

  18. Substitutional analysis

    CERN Document Server

    Rutherford, Daniel Edwin

    2013-01-01

    Classic monograph, suitable for advanced undergraduates and graduate students. Topics include calculus of permutations and tableaux, semi-normal representation, orthogonal and natural representations, group characters, and substitutional equa