WorldWideScience

Sample records for ash formation deposition

  1. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  2. Probe Measurements of Ash Deposit Formation Rate and Shedding in a Biomass Suspension-Fired boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming;

    The aim of this study was to investigate ash deposit formation rate, heat uptake reduction and deposit removal by using advanced online ash deposition and sootblowing probes in a 350 MWth suspension-fired boiler, utilizing wood and straw pellets as fuel. The influence of fuel type (straw share...

  3. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt;

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome...... ash deposits which contain significant concentrations of alkali, and earth-alkali metals. The specific composition of biomass deposits give different characteristics as compared to coal ash deposits, i.e. different physical significance of the deposition mechanisms, lower melting temperatures, etc....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  4. Fundamental study of ash formation and deposition: Effect of reducing stoichiometry

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J.; Bool, L.E.; Kang, S.G. [and others

    1995-11-01

    This project is designed to examine the effects of combustion stoichiometry on the fundamental aspects of ash formation and ash deposit initiation. Emphasis is being placed on reducing stoichiometries associated with low-NOx combustion, although a range of oxidant/fuel ratios are being considered. Previous work has demonstrated that ash formation depends strongly upon coal mineralogy, including mineral type, size, amount, and the presence of organically associated inorganic species. Combustion temperature and the oxidation state of iron also play a significant role. As these latter items will vary with changes in stoichiometry, research to determine the net effect on deposition is required.

  5. Ash Deposit Formation and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    Utilization of biomass on large suspension-fired boilers is a potentially efficient method to reduce net CO2 emissions and reduce the consumption of fossil fuels. However, ash deposit formation on heat transfer surfaces may cuase operational problems and in severe cases lead to boiler stop...... and manual cleaning. Most studies on ash deposition and removal has been done on biomass grate boilers, while only limited data is available from biomass suspension-firing. The aim of this study was to investigate deposit mass uptake, heat uptake reduction, deposit characteristics, and deposit removal...... scale experimental studies conducted by CHEC indicated that there was not a big difference regarding final deposit mass uptake during straw suspension-firing and combustion on grate. The shedding (deposit removal) events were investigated when the nearby plant sootblower was shutdown. It was identified...

  6. Ash Deposit Formation and Deposit Properties. A Comprehensive Summary of Research Conducted at Sandia's Combustion Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Larry L. Baxter

    2000-08-01

    This report summarizes experimental and theoretical work performed at Sandia's Combustion Research Facility over the past eight years on the fate of inorganic material during coal combustion. This work has been done under four broad categories: coal characterization, fly ash formation, ash deposition, and deposit property development. The objective was to provide sufficient understanding of these four areas to be able to predict coal behavior in current and advanced conversion systems. This work has led to new characterization techniques for fuels that provide, for the first time, systematic and species specific information regarding the inorganic material. The transformations of inorganic material during combustion can be described in terms of the net effects of the transformations of these individual species. Deposit formation mechanisms provide a framework for predicting deposition rates for abroad range of particle sizes. Predictions based on these rates many times are quite accurate although there are important exceptions. A rigorous framework for evaluating deposit has been established. Substantial data have been obtained with which to exercise this framework, but this portion of the work is less mature than is any other. Accurate prediction of deposit properties as functions of fuel properties, boiler design, and boiler operating conditions represents the single most critical area where additional research is needed.

  7. A review: Fly ash and deposit formation in PF fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt; Jappe Frandsen, Flemming; Wu, Hao;

    2016-01-01

    In recent years suspension fired boilers have been increasingly used for biomass based heat and power production in several countries. This has included co-firing of coal and straw, up to 100% firing of wood or straw and the use of additives to remedy problems with biomass firing. In parallel...... in biomass suspension fired boilers is provided. Furthermore the influence of co-firing and use of additives on ash chemistry, deposit properties and boiler operation is discussed....

  8. Ash Deposition Trials at Three Power Stations in Denmark

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming; Larsen, Ole Hede

    1998-01-01

    the probe temperature did influence the composition of deposits for coals with medium ash deposition propensities. These results may indicate that coals with medium to high ash deposition propensities in existing boilers may cause increasing ash deposit formation in future boilers with higher steam...

  9. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    2013-01-01

    temperatures of ~1300oC and ~800oC, respectively. It was found that during pulverized wood combustion, the deposit formation at the hightemperature location was characterized by a slow and continuous growth of deposits followed by the shedding of a large layer of deposits, while the deposit formation...

  10. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  11. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  12. Phenolic acids as bioindicators of fly ash deposit revegetation

    Energy Technology Data Exchange (ETDEWEB)

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic [Institute for Biological Research ' Sinisa Stankovic,' Belgrade (Serbia and Montenegro). Department of Ecology

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  13. Residual Ash Formation during Suspension-Firing of Biomass

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jappe Frandsen, Flemming; Jensen, Peter Arendt

    2014-01-01

    Through 50+ years, high quality research has been conducted in order to characterize ash and deposit formation in utility boilers fired with coal, biomass and waste fractions. The basic mechanism of fly ash formation in suspension fired coal boilers is well described, documented and may even...... be modeled relatively precisely. Concerning fly ash formation from biomass or waste fractions, the situation is not nearly as good. Lots of data are available from campaigns where different ash fractions, including sometimes also in-situ ash, have been collected and analyzed chemically and for particle size...... distribution. Thus, there is a good flair of the chemistry of fly ash formed in plants fired with biomass or waste fractions, either alone, or in conjunction with coal. But data on dedicated studies of the physical size development of fly ash, are almost non-existing for biomasses and waste fractions...

  14. Phenolic acids as bioindicators of fly ash deposit revegetation.

    Science.gov (United States)

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  15. Full-scale ash deposition measurements at Avedøre Power Plant unit 2 during suspension-firing of wood with and without coal ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    along with the fly ash and bottom ash from the plant were characterized extensively by SEM-EDS, ICP-OES/IC and XRD. Based on the results from the present work, the deposit formation and shedding mechanisms under different operational conditions were proposed and discussed. The influence of coal ash...... addition on deposit formation during wood suspension-firing at AVV2 was evaluated. It was revealed that the addition of coal fly ash could significantly influence the ash deposition/shedding behaviors and the deposit properties. The effect was evident at both measurement locations. At the location...

  16. In situ analysis of ash deposits from black liquor combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bernath, P. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility]|[Univ. of Toronto, Ontario (Canada); Sinquefield, S.A. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility]|[Oregon State Univ., Eugene, OR (United States); Baxter, L.L.; Sclippa, G.; Rohlfing, C. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Barfield, M. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility]|[Univ. of Arizona, Tucson, AZ (United States)

    1996-05-01

    Aerosols formed during combustion of black liquor cause a significant fire-side fouling problem in pulp mill recovery boilers. The ash deposits reduce heat transfer effectiveness, plug gas passages, and contribute to corrosion. Both vapors and condensation aerosols lead to the formation of such deposits. The high ash content of the fuel and the low dew point of the condensate salts lead to a high aerosol and vapor concentration in most boilers. In situ measurements of the chemical composition of these deposits is an important step in gaining a fundamental understanding of the deposition process. Infrared emission spectroscopy is used to characterize the composition of thin film deposits resulting from the combustion of black liquor and the deposition of submicron aerosols and vapors. New reference spectra of Na{sub 2}SO{sub 4}, K{sub 2}SO{sub 4}, Na{sub 2}CO{sub 3} and K{sub 2}CO{sub 3} pure component films were recorded and compared with the spectra of the black liquor deposit. All of the black liquor emission bands were identified using a combination of literature data and ab initio calculations. Ab initio calculations also predict the locations and intensities of bands for the alkali vapors of interest. 39 refs., 9 figs.

  17. Suspension-firing of wood with coal ash addition: Probe measurements of ash deposit build-up at Avedøre Power Plant (AVV2)

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Jappe Frandsen, Flemming;

    This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood-firing. Investigat......This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood......-firing. Investigations of deposit formation rate were made by use of an advanced online ash deposition/shedding probe. Quantification of ash deposition and shedding was made via deposit mass uptake signals obtained from the deposit probe. The influence of coal ash, flue gas temperature, probe surface temperature...... and boiler load on ash deposition propensity was investigated. Results of ash deposition propensity showed increasing trend with increasing flue gas temperature. Video monitoring revealed that the deposits formed were not sticky and could be easily removed, and even at very high flue gas temperatures (> 1350...

  18. Mechanistic Model for Ash Deposit Formation in Biomass Suspension-Fired Boilers. Part 2: Model Verification by Use of Full Scale Tests

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    describes particle sticking or rebound by a combination of the description of (visco)elsatic particles impacting a solid surface and particle capture by a viscous surface. The model is used to predict deposit formation rates measured during tests conducted with probes in full-scale suspension-fired biomass...... of some physical parameters related to the description of surface capture are suggested. Based on these examinations of the model ability to describe observed deposit formation rates, the proposed model can be regarded as a promising tool for description of deposit formation in full-scale biomass......A model for deposit formation in suspension firing of biomass has been developed. The model describes deposit build-up by diffusion and subsequent condensation of vapors, thermoforesis of aerosols, convective diffusion of small particles, impaction of large particles and reaction. The model...

  19. Quantification of Ash Deposit Build-up and Removal in a Straw and Wood Suspension-Fired Boiler

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2011-01-01

    The aim of this study was to investigate ash deposit formation rate, heat uptake reduction and deposit removal by using advanced online ash deposition and sootblowing probes in a 350 MWth suspension­fired boiler, utilizing wood and straw pellets as fuel. The influence of fuel type (straw share in...

  20. Ash transformation and deposition behavior during co-firing biomass with sewage sludge

    DEFF Research Database (Denmark)

    Wang, Liang; Wu, Hao; Jensen, Peter Arendt;

    to sewage sludge addition. However, the ash deposition propensity decreased significantly. In addition, the content of water soluble K and Cl in the deposits reduced as a result of sewage sludge addition. The results from present work suggest co-firing of sewage sludge could alleviate deposit formation...

  1. Ash formation under pressurized pulverized coal combustion conditions

    Science.gov (United States)

    Davila Latorre, Aura Cecilia

    Coal combustion is a source of inorganic particulate matter (ash), which can deposit in boilers and also be emitted into the atmosphere becoming part of ambient fine particulate matter (PM 2.5). In order to decrease coal combustion emissions per unit of power produced, higher efficiency systems have been proposed, including systems operating at elevated pressures. These new operating conditions will affect pollutant formation mechanisms, particularly those associated with the conversion of mineral matter to ash. Ash particle formation mechanisms are particularly sensitive to changes in pressure as they are related to the structure of coal char particles at early stages of combustion. To assess the importance of pressure on ash particle formation, pyrolyzed chars and ash particles from pressurized pulverized combustion of two bituminous and one subbituminous U.S. coals at operating pressures up to 30 atm were studied. Pressure changes the distribution of char particle types, changing the spatial distribution of the minerals during the combustion process and therefore affecting particle formation mechanisms. Chars were examined by Scanning Electron Microscopy (SEM) and classified into two different types (cenospheric and solid) depending on porosity and wall thickness. A correlation for estimating the amount of these cenospheric char particles was then proposed for bituminous coals based on the operating conditions and coal maceral analysis. The ash particle size distribution of the coals combusted at different operating pressures was measured using Computer Controlled Scanning Electron Microscopy (CCSEM). The results of the char characterization and ash particle size distribution measurements were then incorporated into an ash particle formation algorithm that was proposed and implemented. The model predicts ash particle size and composition distributions at elevated pressures under conditions of complete char burnout. Ash predictions were calculated by first

  2. Geological behavior of wet outflow deposition fly ash

    Institute of Scientific and Technical Information of China (English)

    周德泉; 赵明华; 刘宏利; 周毅; 严聪

    2008-01-01

    The geological behaviors of wet outflow deposition fly ash were investigated, including the feature of in-situ single and even bridge cone penetration test (CPT) curves, the change of the penetration parameters and vane strength with the increase of depth and the difference of the penetration resistance on and down the water level. Drilling, CPT and vane shear test were carried out in silty clay, fine sand, and fly ash of the ash-dam. The CPT curves of the fly ash do not show a critical depth. The cone resistance (qc) of the fly ash is smaller than that of silty clay or sand; the friction resistance is smaller than that of filling silty clay, similar to that of deposition silty clay or more than that of fine sand; the friction ratio is smaller than that of filling silty clay, or more than that of deposition silty clay or much more than that of fine sand. The specific penetration resistance (ps) is similar to that of filling silty clay, or more than that of deposition silty clay. There is a clear interface effect between the deposition fly ash and the clay. Interface effect of ps-h curve at the groundwater table is clear, and ps of the fly ash reduces significantly under the table. The vane strength of the fly ash increases as the depth increases. The deposition fly ash with wet outflow is similar to silt in the geological behavior.

  3. Early Eocene volcanic ashes on Greifswalder Oie and their depositional environment, with an overview of coeval ash-bearing deposits in northern Germany and Denmark

    Science.gov (United States)

    Obst, Karsten; Ansorge, Jörg; Matting, Sabine; Hüneke, Heiko

    2015-11-01

    Unconsolidated bentonites and carbonate-cemented volcanic ashes occur in northern Germany within the clay sequence of the Lamstedt and Schlieven Formations documented by several wells. Ash-bearing carbonate concretions (so-called cementstones) are also known from glacially transported rafts and erratic boulders on the Baltic Sea island Greifswalder Oie, representing the easternmost exposures of early Eocene sediments in the North Sea Basin. The ashes can be correlated with water-lain ashes of the Danish Fur and Ølst Formations (mo-clay) generated during the opening of the North Atlantic Ocean about 55 Ma ago. Two types of cementstones can be distinguished on the basis of the mineralogical composition, sedimentary features and fossil content. Greifswalder Oie type I contains a black, up to 12-cm-thick ash deposit that follows above two distinct thin grey ash layers. The major ash unit has a rather homogeneous lower part; only a very weak normal grading and faint lamination are discernible. In the upper part, however, intercalations with light mudstone, in part intensively bioturbated, together with parallel and cross-lamination suggest reworking of the ash in a shallow marine environment. Major and trace element compositions are used to correlate type I ashes with those of the Danish-positive series which represent rather uniform ferrobasalts of the Danish stage 4, probably related to the emergence of proto-Iceland. In contrast, type II ash comprises a single, normally graded, about 5-cm-thick layer of water-lain air-fall tuff, which is embedded in fine-grained sandstone to muddy siltstone. Type II ash is characterised by very high TiO2 but low MgO contents. Exceptional REE patterns with a pronounced positive Eu anomaly suggest intense leaching of the glass that hampers exact correlation with pyroclastic deposits within the North Atlantic Igneous Province.

  4. Experimental investigation of ash deposits on convection heating surfaces of a circulating fluidized bed municipal solid waste incinerator.

    Science.gov (United States)

    Tang, Zhi; Chen, Xiaoping; Liu, Daoyin; Zhuang, Yaming; Ye, Minghua; Sheng, Hongchan; Xu, Shaojuan

    2016-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction, as well as a source of renewable energy. During MSW combustion, increased formation of deposits on convection heating exchanger surfaces can pose severe operational problems, such as fouling, slagging and corrosion. These problems can cause lower heat transfer efficiency from the hot flue gas to the working fluid inside the tubes. A study was performed where experiments were carried out to examine the ash deposition characteristics in a full-scale MSW circulating fluidized bed (CFB) incinerator, using a newly designed deposit probe that was fitted with six thermocouples and four removable half rings. The influence of probe exposure time and probe surface temperature (500, 560, and 700°C) on ash deposit formation rate was investigated. The results indicate that the deposition mass and collection efficiency achieve a minimum at the probe surface temperature of 560°C. Ash particles are deposited on both the windward and leeward sides of the probe by impacting and thermophoretic/condensation behavior. The major inorganic elements present in the ash deposits are Ca, Al and Si. Compared to ash deposits formed on the leeward side of the probe, windward-side ash deposits contain relatively higher Ca and S concentrations, but lower levels of Al and Si. Among all cases at different surface temperatures, the differences in elemental composition of the ash deposits from the leeward side are insignificant. However, as the surface temperature increases, the concentrations of Al, Si, K and Na in the windward-side ash deposits increase, but the Ca concentration is reduced. Finally, governing mechanisms are proposed on the basis of the experimental data, such as deposit morphology, elemental composition and thermodynamic calculations.

  5. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    Science.gov (United States)

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  6. Study on the structural change and heat transfer characteristics of ash deposit layers in the coal gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Kazuyoshi Ichikawa; Yuso Oki; Jun Inumaru [Central Research Institute of Electric Power Industry (CREIPI) (Japan)

    2005-07-01

    Ash deposition is often observed in the coal gasifier. As it may interfere the operation of gasifier, in case of excessive deposition, a study is needed to evaluate the ash deposition characteristics on the gasifier wall, its ability to grow after deposition, and influence of the formation of deposition layers on the heat transfer capability in advance. CRIEPI has conducted a study of the basic gasification process and operational technology using a 2T/D air-blown pressurized entrained-flow coal gasifier (2 T/D gasifier) since 1983. In a previous work, the authors calculated the ash liquid phase ratio as an index of the ash melting characteristics in correspondence to continuous temperature change, and established the relationship with the ash deposition characteristics. We also proposed as the technique to predict ash deposition characteristics in the gasifier by construction of a model based upon the correlation and introduction into the numerical analysis code. In this report, the relationship between the sintering structure and the heat transfer characteristics of deposition layer is studied. The heat transfer mechanism in the layer was also pursued. 7 refs., 6 figs., 1 tab.

  7. Ash transformation and deposit build-up during biomass suspension and grate firing: Full-scale experimental studies

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Frandsen, Flemming

    2012-01-01

    of this study was to investigate ash transformation and deposition behavior in two biomass-fired boilers, firing wheat straw and/or wood. The influence of strawfiring technology (grate and suspension) on the ash transformation, deposit formation rate and deposit characteristics has been investigated. Bulk...... on similar levels. This was observed even though the concentration of fly ash in the flue gas was significantly higher during straw suspension firing. The influence of co-combustion of wood with straw on deposit formation rate, probe heat uptake and deposit characteristicswas also investigated during...... suspension firing conditions. Data from 35% straw suspension firing with wood showed a deposit formation rate of 33 g/m2/h for the first 12 h. The deposit formation rate increased to 41 g/m2/h with 100% strawfiring. The probe heat uptake reduction up to 40 h of exposure time was 3.0, 7.3, 8.4 and 16.5 kW/m2...

  8. Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash

    Science.gov (United States)

    Schill, G. P.; Genareau, K.; Tolbert, M. A.

    2015-07-01

    Ice nucleation of volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui eruption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225 to 235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited appreciable heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  9. Hail formation triggers rapid ash aggregation in volcanic plumes.

    Science.gov (United States)

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  10. Formation of Humic Substances in Weathered MSWI Bottom Ash

    Directory of Open Access Journals (Sweden)

    Haixia Zhang

    2013-01-01

    Full Text Available The study aimed at evaluating the humic substances (HSs content from municipal solid waste incinerator (MSWI bottom ash and its variation with time and the effect of temperature on HSs formation. The process suggested by IHSS was applied to extract HSs from two different bottom ash samples, and the extracted efficiency with NaOH and Na4P2O7 was compared. MSWI bottom ash samples were incubated at 37∘C and 50∘C for 1 year. HSs and nonhumic substances were extracted from the bottom ash sample with different incubated period by 0.1 M NaOH/Na4P2O7. Results show that the rate of humic acid formation increased originally with incubation time, reached a maximum at 12th week under 37∘C and at 18th week under 50∘C, and then decreased with time. More humic acid in MSWI bottom ash was formed under 50∘C incubated condition compared with that incubated under 37∘C. Also, the elemental compositions of HSs extracted from bottom ash are reported.

  11. Geology and mineral deposits of the Jabal ash Shumta quadrangle, Kingdom of Saudi Arabia

    Science.gov (United States)

    Hummel, C.L.; Ankary, Abdullah O.

    1972-01-01

    Rocks, structures, and mineral deposits which are the result of both the older Halaban petro-tectonic cycle and the younker Najd Wrench Fault deformation are present in the Ash Shumta area. Northward-trending belts of granitic rocks and folded, layered metavolcanic and metasedimentary rocks of the Halaban Formation which they intrude represent the effects of the Halaban cycle. These older rocks are everywhere transected and deformed by northwestward- and northeastward-striking fractures and strike-slip faults and by eastward-striking fractures and fracture-controlled silicic dikes which belong to the Najd Wrench Fault deformation. Several kinds of epigenetic mineral deposits of hydrothermal origin are present throughout the Ash Shumta area. All occur in or ape closely associated with structures of the Najd Wrench Fault deformation. The mineralization which produced the deposits is thought to have taken place during the period of deformation which produced the Najd Wrench Fault structures. The hydrothermal deposits include many metalliferous quartz veins most of which occur in three mineralized areas: two major areas at Jabal Ash Shumta and Jabal El Khom in the northern half of the quadrangle and a minor area along Wadj al Boharah in the southeastern part of the quadrangle. The metalliferous lodes possess the only economic potential in the area of the Jabal Ash Shumta quadrangle. These lodes consist mainly of gold and base metal-bearing quartz veins, some of which were mined for gold in ancient times. The mineralized area at Jabal Ash Shumta has the best of these veins. Higher temperature veins with wolframite as a major constituent and beryl as a minor one occur in a granite cupola in the eastern part of the El Khom area. These veins have altered, gneissen-like wall rocks. Although the grade of the veins is low at the surface, the made could increase at depth. The tungsten-bearing veins and El Khom area possess the greatest economic promise in the Jabal Ash Shumta

  12. Impact of coal fly ash addition on ash transformation and deposition in a full-scale wood suspension-firing boiler

    DEFF Research Database (Denmark)

    Wu, Hao; Bashir, Muhammad Shafique; Jensen, Peter Arendt;

    2013-01-01

    Ash transformation and deposition during pulverized wood combustion in a full-scale power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was characterized by using an advanced deposit probe system at two boiler locations...... constant after a few hours. The formed deposits, especially those at the location with low flue gas temperatures, contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of a large amount (about 4 times of the mass flow of wood ash) of coal fly ash to the boiler, these alkali...

  13. The heterogeneous nature of mineral matter, fly-ash and deposits

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Pohl, J.H.; Devir, G.P.; Su, S. [R.A. Creelman and Associates, Epping, NSW (Australia)

    2000-07-01

    This paper reports on a series of slagging studies investigating the heterogeneous nature of mineral matter, fly ash and deposits, and how this heterogeneity affects deposition. The data come from low temperature ashing (LTA) of pulverised coal, fly ash from boilers, and deposits from pilot-scale furnaces and boilers. The paper presents optical and scanning electron (SEM) micrographs, electron microprobe analysis (EMPA) and energy dispersive x-ray analysis (EDXRA) of mineral matter, individual fly ash particles, and localised regions of deposits. During combustion, the included mineral matter is transformed into fly ash, melts and partially adheres to the char surface, and may form agglomerated masses. Excluded mineral matter has little chance of encountering another ash particle and agglomerating in the gas phase, but can react with other particles in the wall deposits. Certain fly ash particles adhere to the wall where they can combine with other fly ash particles. Analyses of molten regions of deposits have shown, so far, four mineral phase fields to be responsible for forming difficult deposits with melting points below deposit surface temperatures of 1200 to 1350{sup o}C. These mineral fields include iron cordierite, albite and its silica undersaturated equivalent nepheline, anorthite, and compounds with ratios of Ca to P of 2.3-2.5.

  14. Analog-experiment analysis of ash-deposition monitoring model of boiler economizers in power plants

    Institute of Scientific and Technical Information of China (English)

    CHENG Wei-liang; XIA Guo-dong; XU Shou-chen

    2005-01-01

    Ash deposition is a form of particulate fouling, and appears usually in boiler economizers. The ash deposition increases capital expenditure, energy input and maintenance costs. An analog experiment for monitoring ash deposition was performed from the analogous objective of a 410 t/h boiler economizer to verify the rationality and reliability of the ash-deposition-monitoring model presented in order to increase the security and economy in economizer running. The analog experiment platform is a tube-shell exchanger that conforms well to the conditions of a self-modeling area. The analog flue gas in the shell side is the heated air mixed with ash,and in the tube side the fluid is water heated by the flue gas. The fluid state in the water side and the flue gas side follows the second self-modeling area. A 4-factor-3 level orthogonal table was used to schedule 9 operation conditions of orthogonal experiment, with the 4 factors being heat power, flue gas velocity, ashes grain diameter and adding ashes quantity while the three levels are different values due to different position classes in every factor. The ash deposition thermal resistances is calculated by the model with the measure parameters of temperature and pressure drop. It shows that the values of the ash deposition thermal resistances gradually increase up to a stable state. And the experimental results are reliable by F testing method at α = 0. 001. Therefore, the model can be applied in online monitoring of ash deposition in a boiler economizers in power plants and provides scientific decision on ash deposition prediction and sootblowing.

  15. Hail formation triggers rapid ash aggregation in volcanic plumes

    Science.gov (United States)

    Van Eaton, Alexa; Mastin, Larry G.; Herzog, M.; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi; Clarke, Amanda B

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet’ eruption. The 2009 eruption of Redoubt Volcano in Alaska incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits, and numerical modeling demonstrate that volcanic hail formed rapidly in the eruption plume, leading to mixed-phase aggregation of ~95% of the fine ash and stripping much of the cloud out of the atmosphere within 30 minutes. Based on these findings, we propose a mechanism of hail-like aggregation that contributes to the anomalously rapid fallout of fine ash and the occurrence of concentrically-layered aggregates in volcanic deposits.

  16. Fundamental studies of the mechanisms of slag deposit formation: Studies on initiation, growth and sintering in the formation of utility boiler deposits: Topical technical report

    Energy Technology Data Exchange (ETDEWEB)

    Tangsathitkulchai, M.; Austin, L.G.

    1986-03-01

    Three laboratory-scale devices were utilized to investigate the mechanisms of the initiation, growth and sintering process involved in the formation of boiler deposits. Sticking apparatus investigations were conducted to study deposit initiation by comparing the adhesion behavior of the ash drops on four types of steel-based heat exchanger materials under the conditions found in a utility boiler and an entrained slagging gasifier. In addition, the adhesion behavior of the ash drops on a reduced steel surface were investigated. All the ash drops studied in this investigation were produced from bituminous coals.

  17. The Thermal Behavior of Coal—Ash Deposits on Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    JamesL.S.Chen; EverettR.Ramer

    1994-01-01

    A theoretical model for predicting the thermal behavior of coal-ash deposits on heat exchangers is developed.The heat transfer modes of heat conduction,converction,and thermal radiation are considered for the system.The effective thermal conductivities and emissivities of the ash deposits are temperature dependet,Heat fluxeds and dimensionless temperatures in the three layers(loose,sintered,and fused) of the ash deposit are determined.Results are presented for the first two rows of tubes in aligned and staggered tube banks.

  18. Effect of fly ash deposition on photosynthesis, growth and yield of rice.

    Science.gov (United States)

    Raja, R; Nayak, A K; Rao, K S; Puree, Chandrika; Shahid, Mohammad; Panda, B B; Kumar, Anjani; Tripathi, R; Bhattacharyya, P; Baig, M J; Lal, B; Mohanty, Sangita; Gautam, Priyanka

    2014-07-01

    An experiment was conducted to assess the effect of fly ash deposition without and with (0.25, 0.50, 1.0 and 1.5 g m(-2 )day(-1)) foliar dusting on the photosynthesis, stomatal conductance, transpiration, leaf temperature, albedo and productivity of rice. Dusting of 0.5 g m(-2 )day(-1) fly ash and above significantly reduced the photosynthesis, stomatal conductance, transpiration and albedo. Panicle initiation and flowering stages were more influenced by the fly ash deposition as compared to active tillering stage. At higher rates of fly ash deposition, all growth and yield parameters were significantly influenced due to increased heat load and reduced intercellular CO2 concentration. A significant reduction of 12.3, 15.7 and 20.2 % in grain yield was recorded over control when fly ash was dusted at 0.5, 1.0 and 1.5 g m(-2 )day(-1), respectively.

  19. 3-D numerical simulations of volcanic ash transport and deposition

    Science.gov (United States)

    Suzuki, Y. J.; Koyaguchi, T.

    2012-12-01

    During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker

  20. Experimental measurements of the thermal conductivity of ash deposits: Part 2. Effects of sintering and deposit microstructure

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    The authors report results from an experimental study that examines the influence of sintering and microstructure on ash deposit thermal conductivity. The measurements are made using a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. The technique is designed to minimize the disturbance of the natural deposit microstructure. The initial stages of sintering and densification are accompanied by an increase in deposit thermal conductivity. Subsequent sintering continues to densify the deposit, but has little effect on deposit thermal conductivity. SEM analyses indicates that sintering creates a layered deposit structure with a relatively unsintered innermost layer. They hypothesize that this unsintered layer largely determines the overall deposit thermal conductivity. A theoretical model that treats a deposit as a two-layered material predicts the observed trends in thermal conductivity.

  1. Geotechnical approaches to coal ash content control in mining of complex structure deposits

    Science.gov (United States)

    Batugin, SA; Gavrilov, VL; Khoyutanov, EA

    2017-02-01

    Coal deposits having complex structure and nonuniform quality coal reserves require improved processes of production quality control. The paper proposes a method to present coal ash content as components of natural and technological dilution. It is chosen to carry out studies on the western site of Elginsk coal deposit, composed of four coal beds of complex structure. The reported estimates of coal ash content in the beds with respect to five components point at the need to account for such data in confirmation exploration, mine planning and actual mining. Basic means of analysis and control of overall ash content and its components are discussed.

  2. Numerical investigation of ash deposition in straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    accumulation rates encountered during straw combustion in grate-fired boilers. The sub-models have been based on information about the combustion and deposition properties of straw gathered from the literature and combined into a single Computational Fluid Dynamics (CFD) based analysis tool which can aid...... in the design phase of straw-fired boilers. Some of the primary model outputs include improved heat transfer rate predictions and detailed information about local deposit formation rates. This information is essential when boiler availability and efficiency is to be estimated. A stand-alone program has been...... developed to predict the combustion processes on the grate and the release rate of KCl vapor. These outputs form the boundary conditions for the CFD analysis. The bed model has been validated through comparison with experimental data obtained during batch combustion of straw. It was found that the heat...

  3. Oil shale fueled FBC power plant - ash deposits and fouling problems

    Energy Technology Data Exchange (ETDEWEB)

    O. Yoffe; A. Wohlfarth; Y. Nathan; S. Cohen; T. Minster [Geological Survey of Israel, Jerusalem (Israel)

    2007-12-15

    41 MWth oil shale fired demonstration power plant was built in 1989 by PAMA in Mishor Rotem, Negev, Israel. The raw material for the plant is the local 'oil shale', which is in fact organic-rich marl. Since then, and until today, the unit is operated at high reliability and availability. At first, heavy soft fouling occurred due to the Circulating Fluidized Bed Combustion (CFBC) mode of operation, which caused a considerable reduction in the heat transfer coefficient of the heat exchangers. By going over to the Fluidized Bed Combustion (FBC) mode of operation the soft fouling phenomenon stopped at once, the heat transfer coefficient improved, and the power plant could be operated at its designed values. After five months of operation at the FBC mode the boiler had to be shut down because Hard Deposits (HD) blocked physically the passes in the boiler. These deposits could be removed only with the help of mechanical devices. During the first two years the boiler had to be stopped, at least, three times a year for deposit cleaning purposes. Research conducted at the plant and in the laboratories of the Geological Survey of Israel enabled us to understand the mechanism of formation of these deposits. The results showed that the HD are formed in two stages: (1) Deposition of very fine ash particles on the pipes of the boiler, as a result of the impact of larger particles on the pipes. The fine particles adhere to the pipes and to each other, and step by step build the deposit. The growth of the deposit on the pipe surface is always perpendicular to the particles flow direction. (2) The deposits harden due to chemical reactions. 17 refs., 14 figs., 5 tabs.

  4. Experimental measurements of the thermal conductivity of ash deposits: Part 1. Measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    A. L. Robinson; S. G. Buckley; N. Yang; L. L. Baxter

    2000-04-01

    This paper describes a technique developed to make in situ, time-resolved measurements of the effective thermal conductivity of ash deposits formed under conditions that closely replicate those found in the convective pass of a commercial boiler. Since ash deposit thermal conductivity is thought to be strongly dependent on deposit microstructure, the technique is designed to minimize the disturbance of the natural deposit microstructure. Traditional techniques for measuring deposit thermal conductivity generally do not preserve the sample microstructure. Experiments are described that demonstrate the technique, quantify experimental uncertainty, and determine the thermal conductivity of highly porous, unsintered deposits. The average measured conductivity of loose, unsintered deposits is 0.14 {+-} 0.03 W/(m K), approximately midway between rational theoretical limits for deposit thermal conductivity.

  5. Effect of interfacial properties on mechanical stability of ash deposit

    Directory of Open Access Journals (Sweden)

    A. Ontiveros-Ortega

    2016-04-01

    Full Text Available The paper presents a study on the cohesion of volcanic ash particles using surface free energy determination and zeta potential analyses. This is a subject of great interest in physical volcanology, as many researches on volcanic particle aggregation are frequently reported. In this case, special attention is paid to the role of structural or hydration forces between hydrophilic surfaces, which are a consequence of the electron-donor/electron-acceptor character of the interface. From this point of view, the results are potentially interesting as they could give valuable insights into this process. The results are presented in terms of the total energy of interaction between dispersed particles, computed from the extended DLVO theory. Contributions to the total free energy of interaction were determined from the zeta potential and surface free energy of ash, measured under different experimental conditions. Two samples of basaltic volcanic ash (black and white with silica contents of 44% and 63% respectively are studied. The surface free energy and zeta potential were analysed for ashes immersed in different electrolytes (NaCl, CaCl2, FeCl3. The presence of electrolytes changes the surface properties of the solid materials. The analysis of total interaction energy between the ash particles in aqueous medium shows that soil cohesion strongly depends on ash surface properties, chemical nature, the adsorbed cation on the surface, and pH value.

  6. TECHNOLOGY AND EFFICIENCY IN USAGE OF BROWN COAL ASH FOR CEMENT AND CONCRETE MIXTURES AT THE LELCHITSKY DEPOSIT

    Directory of Open Access Journals (Sweden)

    G. D. Lyahevich

    2017-01-01

    Full Text Available Modern visions on the role of high-dispersity additives in concrete mixtures reflect a positive effect of optimal amount of ash left after combustion of solid fuel on structure and physico-mechanical characteristics of cement compositions: hardening of contact zone between cement stone and aggregates with formation of “binder – aggregate” clusters due to high surface energy of aggregate particles; reduction of total cement stone porosity in concrete while increasing volumetric concentration and aggregate dispersion; binding of calcium hydroxide by amorphized silicon of pozzolanic aggregates; increase in pozzolanic aggregate activity with its fine grinding, etc. Experimental investigations have ascertained that usage of portland cement clinker ash samples left after brown coal burning at the Lelchitsky deposit contributed to an increase of cement working life and activity. Concrete samples have been obtained that have improved physico-mechanical properties owing to introduction the following components in their composition: 2–14 % (of cement mass of ash left after brown coal burning and 1.6–2.1 % of sodium salt that is a condensation product of sulfur oxidate in aromatic hydrocarbons with formaldehyde. Efficiency of the executed work has been proved by solution of the problems pertaining to an increase of neat cement working life, cement activity, concrete strength. The paper also considers no less important problem concerning protection of the environment from contamination with ash left after burning of high-ash brown coal. 

  7. Development of a modeling approach to predict ash formation during co-firing of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Doshi, V. [School of Engineering, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor (Malaysia); Vuthaluru, H.B. [Curtin University of Technology, Kent Street, Bentley 6104, Perth, Western Australia (Australia); Korbee, R. [HRL Technology, Ipswich, Queensland (Australia); Kiel, J.H.A. [ECN Biomass, Coal and Environmental Research, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2009-09-15

    The scope of this paper includes the development of a modelling approach to predict the ash release behaviour and chemical composition of inorganics during co-firing of coal and biomass. In the present work, an advanced analytical method was developed and introduced to determine the speciation of biomass using pH extraction analysis. Biomass samples considered for the study include wood chips, wood bark and straw. The speciation data was used as an input to the chemical speciation model to predict the behaviour and release of ash. It was found that the main gaseous species formed during the combustion of biomass are KCl, NaCl, K{sub 2}SO{sub 4} and Na{sub 2}SO{sub 4}. Calculations of gas-to-particle formation were also carried out to determine the chemical composition of coal and biomass during cooling which takes place in the boiler. It was found that the heterogeneous condensation occurring on heat exchange surfaces of boilers is much more than homogeneous condensation. Preliminary studies of interaction between coal and biomass during ash formation process showed that Al, Si and S elements in coal may have a 'buffering' effect on biomass alkali metals, thus reducing the release of alkali-gases which act as precursors to ash deposition and corrosion during co-firing. The results obtained in this work are considered to be valuable and form the basis for accurately determining the ash deposition during co-firing. (author)

  8. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite

    Energy Technology Data Exchange (ETDEWEB)

    Gogebakan, Z.; Gogebakan, Y.; Selcuk, N.; Seliuk, E. [Middle East Technical University, Ankara (Turkey). Dept. of Chemical Engineering

    2009-01-15

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MWt Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on all air-cooled probe at a temperature of 500{degree}C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  9. Investigation of ash deposition in a pilot-scale fluidized bed combustor co-firing biomass with lignite.

    Science.gov (United States)

    Gogebakan, Zuhal; Gogebakan, Yusuf; Selçuk, Nevin; Selçuk, Ekrem

    2009-01-01

    This study presents the results from investigation of ash deposition characteristics of a high ash and sulfur content lignite co-fired with three types of biomass (olive residue, 49 wt%; hazelnut shell, 42 wt%; and cotton residue, 41 wt%) in 0.3 MW(t) Middle East Technical University (METU) Atmospheric Bubbling Fluidized Bed Combustion (ABFBC) Test Rig. Deposit samples were collected on an air-cooled probe at a temperature of 500 degrees C. Samples were analyzed by SEM/EDX and XRD methods. The results reveal that co-firing lignite with olive residue, hazelnut shell and cotton residue show low deposition rates. High concentrations of silicon, calcium, sulfur, iron, and aluminum were found in deposit samples. No chlorine was detected in deposits. Calcium sulfate and potassium sulfate were detected as major and minor components of the deposits, respectively. High sulfur and alumina-silicate content of lignite resulted in formation of alkali sulfates instead of alkali chlorides. Therefore, fuel blends under consideration can be denoted to have low-fouling propensity.

  10. Deposition and immersion mode nucleation of ice by three distinct samples of volcanic ash using Raman spectroscopy

    Science.gov (United States)

    Schill, G. P.; Genareau, K.; Tolbert, M. A.

    2015-01-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui euption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225-235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  11. Thermochemical Formation of Polybrominated Dibenzo-p-Dioxins and Dibenzofurans Mediated by Secondary Copper Smelter Fly Ash, and Implications for Emission Reduction.

    Science.gov (United States)

    Wang, Mei; Liu, Guorui; Jiang, Xiaoxu; Zheng, Minghui; Yang, Lili; Zhao, Yuyang; Jin, Rong

    2016-07-19

    Heterogeneous reactions mediated by fly ash are important to polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) formation. However, the formation of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) through heterogeneous reactions is not yet well understood. Experiments were performed to investigate the thermochemical formation of PBDD/Fs at 150-450 °C through heterogeneous reactions on fly ash from a secondary copper smelter. The maximum PBDD/F concentration was 325 times higher than the initial PBDD/F concentration in the fly ash. The PBDD/F concentration after the experiment at 150 °C was five times higher than the initial concentration. PBDD/Fs have not previously been found to form at such a low temperature. Secondary-copper-smelter fly ash clearly promoted PBDD/F formation, and this conclusion was supported by the low activation energies that were found in Arrhenius's law calculations. Thermochemical formation of PBDD/Fs mediated by fly ash deposited in industrial facilities could explain "memory effects" that have been found for PCDD/Fs and similar compounds released from industrial facilities. Abundant polybrominated diphenyl ethers (PBDEs) that were formed through fly ash-mediated reactions could be important precursors for PBDD/Fs also formed through fly ash-mediated reactions. The amounts of PBDEs that formed through fly ash-mediated reactions suggested that secondary copper smelters could be important sources of reformed PBDEs.

  12. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    full-scale experiment of co-combustion of coal and straw, the straw-derived silica were preferentially incorporated in the fly ash relative to the bottom ash. The analyzed deposits from straw-fired CHP's have shown that in the furnace condensation of KCl is important for formation of the initial layer, whereas building of the outer loose part of the deposit is dominated by particle impaction. Additionally, particle impaction is a more prominent process in the furnace compared to what is the case in the superheater region. Potassium was observed to react with sulphur preferentially to chlorine and silicate-compounds during low-temperature (550 deg C) laboratory ashing of a mixture of wheat straw and bituminous coal from MKS3. A similar effect was, however, not observed in full scale fly ashes from MKS3 in which potassium to a high extent have reacted with alumino-silicates to form K-Al silicates. However, potassium sulphates are present in deposits formed during co-combustion at MKS1, especially in the convective pass. (au)

  13. Usability value and heavy metals accumulation in forage grasses grown on power station ash deposit

    Directory of Open Access Journals (Sweden)

    Simić Aleksandar S.

    2015-01-01

    Full Text Available The study of five forage grasses (Lolium multiflorum, Festuca rubra, Festuca arundinacea, Arrhenatherum elatius and Dactylis glomerata was conducted on an uncontaminated cultivated land, of leached chernozem type, and on “Nikola Tesla A” (TENT A thermal power station ash deposit. The concentrations of: As, Pb, Cd, Zn, Ni, Fe i Cu in grasses grown on two media were compared. Grass samples have been collected in tillering stage, when they were in full development. During the vegetative period three replications cut was conducted at about 3-5 cm height, imitating mowing and grazing. The concentrations of As and Ni were elevated in media samples collected from TENT A ash deposit, while the level of all studied elements in soil samples collected from cultivated land were within allowed limits. The variance of certain elements amounts in plant material collected from TENT A ash deposit was less homogeneous; the concentrations of As, Fe and Ni were higher in grasses collected from ash deposit, but Pb and Cu concentrations were higher in grasses grown on cultivated land. The concentrations of Zn were approximately the same in plants collected from the sites, whereas Cd concentrations were slightly increased in grasses grown on ash deposit. In general, it can be concluded from the results of this study that the concentrations of heavy metals in plants collected from both sites do not exceed maximal tolerant levels for fodder. The use of grasses grown on ash deposit for forage production should be taken with reserve. [Projekat Ministarstva nauke Republike Srbije, br. TR 31016: Unapređenje tehnologije gajenja krmnih biljaka na oranicama i travnjacima

  14. Influence of Deposit Formation on Corrosion at a Straw Fired boiler

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug; Michelsen, Hanne Philbert; Frandsen, Flemming;

    2000-01-01

    Straw-fired boilers generally experience severe problems with deposit formation and are expected to suffer from severe superheater corrosion at high steam temperatures due to the large alkali and chlorine content in straw. In this study, deposits collected (1) on air-cooled probes and (2) directly...... at the existing heat transfer surfaces of a straw-fired boiler have been examined. Deposits collected on air-cooled probes were found to consist of an inner layer of KCl and an outer layer of sintered fly ash. Ash deposits formed on the heat transfer surfaces all had a characteristic layered structure......, with a dense layer of K2SO4 present adjacent to the metal surface. It is argued that the K2SO4 layer present adjacent to the metal surface may lead to reduced corrosion rates at this boiler. A discussion of the deposit structure, the K2SO4 layer formation mechanism, and the influence of the inner layer...

  15. Evaluation of ash deposits during experimental investigation of co-firing of Bosnian coal with wooden biomass

    Energy Technology Data Exchange (ETDEWEB)

    Smajevic, Izet; Kazagic, Anes [JP Elektroprivreda BiH d.d., Sarajevo (Bosnia and Herzegovina); Sarajevo Univ. (Bosnia and Herzegovina). Faculty of Mechanical Engineering

    2008-07-01

    The paper is addressed to the development and use different criteria for evaluation of ash deposits collected during experimental co-firing of Bosnian coals with wooden biomass. Spruce saw dust was used for the co-firing tests with the Kakanj brown coal and with a lignite blend consisted of the Dubrave lignite and the Sikulje lignite. The coal/biomass mixtures at 93:7 %w and at 80:20 %w were tested. Experimental lab-scale facility PF entrained flow reactor is used for the co-firing tests. The reactor allows examination of fouling/slagging behaviors and emissions at various and infinitely variable process temperature which can be set at will in the range from ambient to 1560 C. Ash deposits are collected on two non-cooled ceramic probes and one water-cooled metal surface. Six different criteria are developed and used to evaluate behavior of the ash deposits on the probes: ash deposit shape, state and structure, which are analyzed visually - photographically and optically by a microscope, rate of adhesion and ash deposit strength, analyzed by physic acting to the ash deposits, and finally deposition rate, determined as a mass of the deposit divided by the collecting area and the time of collecting. Furthermore, chemical composition analysis and AFT of the ash deposits were also done to provide additional information on the deposits. (orig.)

  16. Soil Properties in Coniferous Forest Stands Along a Fly Ash Deposition Gradient in Eastern Germany

    Institute of Scientific and Technical Information of China (English)

    S. KLOSE; F. MAKESCHIN

    2005-01-01

    Physical, chemical, and microbial properties of forest soils subjected to long-term fly ash depositions were analyzed in spruce (Picea abies (L.) Karst.) stands of eastern Germany on three forest sites along an emission gradient of 3 (high input), 6, and 15 km (low input) downwind of a coal-fired power plant. Past emissions resulted in an atypical high mass of mineral fly ash constituents in the organic horizons at the high input site of 128 t ha-1 compared to 58 t ha-1 at the low input site. Magnetic susceptibility measurements proved that the high mineral content of the forest floor was a result of fly ash accumulation in these forest stands. Fly ash deposition in the organic horizons at Site Ⅰ versus Ⅲsignificantly increased the pH values, effective cation exchange capacity, base saturation and, with exception of the L horizon, concentrations of mobile heavy metals Cd, Cr, and Ni, while stocks of organic C generally decreased. A principal component analysis showed that organic C content and base status mainly controlled soil microbial biomass and microbial respiration rates at these sites, while pH and mobile fractions of Cd, Cr, and Ni governed enzyme activities. Additionally,it was hypothesized that long-term fly ash emissions would eventually destabilize forest ecosystems. Therefore, the results of this study could become a useful tool for risk assessment in forest ecosystems that were subjected to past emissions from coal-fired power plants.

  17. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash.

    Science.gov (United States)

    Inkaew, Kanawut; Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki

    2016-06-01

    This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size ash-water reactions and formation of the quench product in the bottom ash was proposed.

  18. Modelling wet deposition in simulations of volcanic ash dispersion from hypothetical eruptions of Merapi, Indonesia

    Science.gov (United States)

    Dare, Richard A.; Potts, Rodney J.; Wain, Alan G.

    2016-10-01

    The statistical impact of including the process of wet deposition in dispersion model predictions of the movement of volcanic ash is assessed. Based on hypothetical eruptions of Merapi, Indonesia, sets of dispersion model simulations were generated, each containing four simulations per day over a period of three years, to provide results based on a wide range of atmospheric conditions. While on average dry sedimentation removes approximately 10% of the volcanic ash from the atmosphere during the first 24 h, wet deposition removes an additional 30% during seasons with highest rainfall (December and January) but only an additional 1% during August and September. The majority of the wet removal is due to in-cloud rather than below-cloud collection of volcanic ash particles. The largest uncertainties in the amount of volcanic ash removed by the process of wet deposition result from the choice of user-defined parameters used to compute the scavenging coefficient, and from the definition of the cloud top height. Errors in the precipitation field provided by the numerical weather prediction model utilised here have relatively less impact.

  19. Degradation of thermal barrier coatings on an Integrated Gasification Combined Cycle (IGCC) simulated film-cooled turbine vane pressure surface due to particulate fly ash deposition

    Science.gov (United States)

    Luo, Kevin

    Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to

  20. Ash deposition and high temperature corrosion at combustion of aggressive fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Henriksen, N. [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    In order to reduce CO{sub 2} emission, ELSAM is investigating the possibilities of using biomass - mainly straw - for combustion in high efficiency power plants. As straw has very high contents of chlorine and potassium, a fuel with high corrosion and ash deposition propensities has been introduced. ELSAM has investigated 3 ultra supercritical boiler concepts for combustion of straw alone or together with coal: (1) PF boilers with a relatively low share of straw, (2) CFB boilers with low to high share of straw and (3) vibrating grate boilers with 100% straw. These investigations has mainly been full-scale tests with straw fed into existing boilers. Corrosion tests have been performed in these boilers using temperature regulated probes and in-plant test tubes in existing superheaters. The corrosion has been determined by detailed measurements of wall thickness reduction and light optical microscopic measurements of the material degradation due to high temperature corrosion. Corrosion mechanisms have been evaluated using SEM/EDX together with thermodynamical considerations based on measurements of the chemical environment in the flue gas. Ash deposition is problematic in CFB boilers and in straw fired boilers, especially in years with high potassium and chlorine content of the straw. This ash deposition also is related to condensation of KCl and can probably only be handled by improved cleaning devices. (EG)

  1. Deposit formation in hydrocarbon rocket fuels

    Science.gov (United States)

    Roback, R.; Szetela, E. J.; Spadaccini, L. J.

    1981-01-01

    An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811 K. Results indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800 K, with peak deposit formation occurring near 700 K. No improvements were obtained when deoxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. Results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, lating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

  2. Formation of reactive oxygen species in rat epithelial cells upon stimulation with fly ash

    Indian Academy of Sciences (India)

    K Voelkel; H F Krug; S Diabaté

    2003-02-01

    Fly ash was used as a model for ambient particulate matter which is under suspicion to cause adverse pulmonary health effects. The fly ash was pre-sized and contained only particles < 20 m including an ultrafine fraction (< 100 nm) that contributed 31% to the particle number. In our study, we investigated the influence of fly ash on the promotion of early inflammatory reactions like the formation of reactive oxygen species (ROS) in rat lung epithelial cells (RLE-6TN). Furthermore, we determined the formation of nitric oxide (NO). The cells show a clear dose-response relationship concerning the formation of ROS with regard to the mass of particles applied. Lipopolysaccharide (LPS) added as a co-stimulus did not increase the formation of ROS induced by fly ash. Furthermore, in LPS (0.1 g/ml) and tumour necrosis factor-alpha (TNF-alpha; 1 ng/ml) pre-treated cells no increase in reactive oxygen species comparable to fly ash alone is observable. In presence of the metal chelator, desferrioxamine (DFO), ROS formation can be significantly reduced. Neither fly ash nor LPS induced a significant NO release in RLE-6TN cells.

  3. Theory of Cast Formation in Electrophoretic Deposition

    NARCIS (Netherlands)

    Biesheuvel, P. Maarten; Verweij, Henk

    1999-01-01

    The rate of cast formation in electrophoretic deposition is described by a combination of the equation of continuity for the suspension phase with expressions for the particle velocity and the movement of the cast-suspension boundary. The assumptions necessary to arrive at the well-known equations o

  4. On Biochemical Formation of Salt Deposits

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A water/salt system in an evaporative environment is both a physicochemical region and a biological one. All the parameters of the system, such as the salinity, temperature and CO2 partial pressure, are affected by halophilic bacteria. The system controls salt deposition but is modified by an accompanying ecological system; therefore it should be called a water/salt/biological system. Salt minerals result from accumulation of the remains of bacteria/algae, namely, bacteria/algae formation; whereas biological, biophysical and biochemical processes provide full evidence for organic involvement. Consequently, salt deposits should not be called purely chemical but biological/chemical ones. This new argument supplements and develops the traditional idea and helps perfect the mineralization theory of salts and even general deposits, thus giving guidance to prospecting for salt deposits.

  5. Comparisons of Fly Ash and Deposition Between Air and Oxy-Fuel Combustion in Bench-Scale Fluidized Bed with Limestone Addition

    Institute of Scientific and Technical Information of China (English)

    Zhimin Zheng; Hui Wang∗; Yongjun Guo; Li Yang; Shuai Guo; Shaohua Wu

    2015-01-01

    In Oxy⁃fuel circulating fluidized bed, the residual CaO particles may react with high concentration of CO2 in flue gas to form bonded deposit on heat transfer surfaces in backpass when limestone is used as a sorbent to capture SO2 .In this paper, experiments were designed on ash deposition in a bench⁃scale fluidized bed under oxy⁃fuel and air atmosphere. A novel ash deposit sampling probe was used to simulate the tubes of tail surfaces. The chemical composition of fly ash and ash deposit from both air⁃firing and oxy⁃fuel firing cases were analyzed by Inductively Coupled Plasma⁃Atomic Emission Spectrometry ( ICP⁃AES ) and Scanning Electron Microscopy ( SEM) , respectively. The degrees of carbonation reaction of ash deposits were measured by Thermo Gravimetric Analysis. The results showed that there are distinct differences in fly ash deposition rate between oxy⁃fuel and air firing cases, and oxy⁃fuel combustion with limestone addition can affect chemical composition of fly ash and ash deposit, especially for elements of Ca, Na, K, and S. However, the carbonation reaction degree of ash deposits is found weak, which is due to the relatively low CaO content in ash deposit or not long enough of the sampling time.

  6. Deposit formation during coal-straw co-combustion in a utility PF-boiler

    Energy Technology Data Exchange (ETDEWEB)

    Hedebo Andersen, K.

    1998-08-01

    deposits could be taken as a smaller, but visually valid, representation of the boiler deposits in the superheating and reheating part. At 20% straw share, the probe deposits seem to represent an initial deposit necessary for build-up of the large mature deposits observed, but can not represent the mature deposits satisfactorily. CI was observed to primarily leave the boiler with the flue gas as gaseous HCI, and the CI-content in the probe and mature deposits was generally low (< 0,5 wt%). The corrosivity of the deposits due to CI is thus expected to be minor. The majority of K introduced with the straw was bonded as K-AI-silicate durring combustion, and the remaining available K formed K{sub 2}SO{sub 4}, which could participate in deposit formation and consolidation. No significant participation of K was seen in the coal ash deposits, whereas K was a large contributor to the up- and downstream probe deposits formed during co-combustion with 20% straw share, primarily as relatively small K-AI-silicate particles and as K{sub 2}SO{sub 4}. The deposition of sulphate could be related to the observed increase in deposit amount and tenacity with straw addition. The behaviour of K and CI from the straw is primarily controlled by the ash behaviour of the coal species. An evaluation of the shift from ash formation dominated by the coal ash species to ash formation dominated by the straw ash species (K-silicate and KCI) as a function of the straw share reveals, that the first major change is observed at 60% straw share, where KCI(cr,l) is observed at low temperatures. Based on these results, coal-straw co-combustion could thus be manageable also up to straw shares as high as 50% with regard to the deposits formed. The effect of coal-straw co-combustion on deposit formation in other utillity boilers was evaluated based upon the results from the experimental investigation at MKS1. Two major aspects were evaluated: The effect of flue gas temperatures and the effect of mixing. However

  7. Deposit Formation during Coal-Straw Co-Combustion in a Utility PF-Boiler

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo

    1998-01-01

    This Ph.D. thesis reports the research on ash deposit formation in the convective pass of a utility PF-boiler during co-combustion of coal and straw. The work was based on experimental results from a two-year full scale demonstration programme at the Studstrup Power Station, Unit 1 (MKS1), owned...... by Midtkraft Energy Company. Primarily the results from the deposition trials, but also related experimental data were used in the evaluation. In connection with the evaluation of the probe deposits collected, a visual analyses system was developed, where the physical appearence of the deposit is evaluated...... to full load) during experiments with COCERR coal. The downstream deposits were in all cases powdery deposits, which were not well attached to the probes and could easily be removed. When utilising USILI2 coal with higher content of Fe and S than COCERR, the main effect was observed for coal combustion...

  8. Effect of size of fly ash particle on enhancement of mullite content and glass formation

    Indian Academy of Sciences (India)

    Parveen Sultana; Sukhen Das; Biswajoy Bagchi; Alakananda Bhattacharya; Ruma Basu; Papiya Nandy

    2011-12-01

    Quartz is widely replaced by fly ash in traditional porcelain composite. Increased strength and stability of the fly ash-mixed composite depends on the quantity and crystallinity of the mullite phase in the fly ash. Our aim in this investigation is to increase the formation of mullite in nanocrystalline form and study the effect of temperature. Quantitative estimation of mullite and residual quartz content were done by Xray diffraction (XRD) and nanostructure and crystallization were studied using differential thermal analysis (DTA), field effect scanning electron microscopy (FESEM), XRD and Fourier transform infrared (FTIR) spectroscopy. The results show that fly ash sieved through 250 holes/cm2 mesh contain more mullite initially and growth of mullite as well as glass formation was faster in this sample compared to coarse fly ash. The maximum mullite in these samples was formed at 1600°C. Transformation of quartz and cristobalite phases into glassy phase was also faster for smaller particle sizes of fly ash.

  9. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...

  10. Ash Aggregates in Proximal Settings

    Science.gov (United States)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (sustained plume attended by concomitant production of pyroclastic density currents. The size and internal structure of the armoured lapilli provide constraints on the nature of the initial explosive phase of eruption at Kima'Kho. Their proximity to the vent also indicates rapid aggregation within the eruption plume. Within both sequences rapid aggregation of ash particles occurred in proximity to the vent. However, the conditions were substantially different leading to the production of armoured

  11. The characteristics of coignimbrite deposits and inferences for their formation

    Science.gov (United States)

    Engwell, S. L.; Eychenne, J.; Wulf, S.; De'Michieli Vitturi, M.

    2014-12-01

    Coignimbrite deposits form as fine-grained ash (traffic. To date, few coignimbrite deposits have been studied in detail, mainly due to their poor preservation potential, and difficulty distinguishing these deposits from Plinian deposits. As such, there is little in the published record regarding the physical characteristics of coignimbrite deposits. Deposits from Lago Grande di Monticchio, a maar lake 120 km east of the Campanian Volcanic Zone, Italy were analysed for this study. These lake sediments contain more than 340 distinct tephra layers, of which more than 300 are thought to have originated from the Campanian region. The physical characteristics of deposits from eruptions from within the past 50 kyrs are studied with particular emphasis placed on those with a known pyroclastic density current phase. Results show that in most cases, stratigraphy is comparable to proximal stratigraphy, and in the case of the Campanian Ignimbrite (Phlegrean Fields, 39.3 ka) and Monte Epomeo Green Tuff (Ischia, 55 ka) particularly, the coignimbrite contribution is easily identified. These coignimbrite deposits are composed of glass shards, with very small lithic and expanded pumice contents. Grainsize data from these coignimbrite events show remarkably similar characteristics, typically described by a very fine-grained mode (~50 microns), and poor sorting. This fine grain size implicates aggregation as the dominant process by which this ash is deposited. Similar trends are identified in the literature, for different types and scales of eruptions indicating the grainsize of these deposits is controlled by current dynamics rather than primary eruptive conditions at the vent. The results highlight the importance of lacustrine environments for deciphering eruption dynamics, specifically those from coignimbrite forming events. In addition, the distinct difference in grainsize trends between Plinian and coignimbrite events highlights the need to model coignimbrite events and ash

  12. Zeolite formation from coal fly ash and its adsorption potential.

    Science.gov (United States)

    Ruen-ngam, Duangkamol; Rungsuk, Doungmanee; Apiratikul, Ronbanchob; Pavasant, Prasert

    2009-10-01

    The possibility in converting coal fly ash (CFA) to zeolite was evaluated. CFA samples from the local power plant in Prachinburi province, Thailand, were collected during a 3-month time span to account for the inconsistency of the CFA quality, and it was evident that the deviation of the quality of the raw material did not have significant effects on the synthesis. The zeolite product was found to be type X. The most suitable weight ratio of sodium hydroxide (NaOH) to CFA was approximately 2.25, because this gave reasonably high zeolite yield with good cation exchange capacity (CEC). The silica (Si)-to-aluminum (Al) molar ratio of 4.06 yielded the highest crystallinity level for zeolite X at 79% with a CEC of 240 meq/100 g and a surface area of 325 m2/g. Optimal crystallization temperature and time were 90 degrees C and 4 hr, respectively, which gave the highest CEC of approximately 305 meq/100 g. Yields obtained from all experiments were in the range of 50-72%.

  13. Occurrence of volcanic ash in the Quaternary alluvial deposits, lower Narmada basin, western India

    Indian Academy of Sciences (India)

    Rachna Raj

    2008-02-01

    This communication reports the occurrence of an ash layer intercalated within the late Quaternary alluvial succession of the Madhumati River, a tributary of the lower Narmada River. Petrographic, morphological and chemical details of glass shards and pumice fragments have formed the basis of this study. The ash has been correlated with the Youngest Toba Tuff. The finding of ash layer interbedded in Quaternary alluvial sequences of western Indian continental margin is significant, as ash being datable material, a near precise time-controlled stratigraphy can be interpreted for the Quaternary sediments of western India. The distant volcanic source of this ash requires a fresh re-assessment of ash volume and palaeoclimatic interpretations.

  14. Ash transformation during co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn;

    2007-01-01

    Co-firing straw with coal in pulverized fuel boilers can cause problems related to fly ash utilization, deposit formation, corrosion and SCR catalyst deactivation due to the high contents of Cl and K in the ash. To investigate the interaction between coal and straw ash and the effect of coal...... quality on fly ash and deposit properties, straw was co-fired with three kinds of coal in an entrained flow reactor. The compositions of the produced ashes were compared to the available literature data to find suitable scaling parameters that can be used to predict the composition of ash from straw...... importantly, by reaction with Al and Si in the fly ash. About 70-80% K in the fly ash appears as alumina silicates while the remainder K is mainly present as sulphate. Lignite/straw co-firing produces fly ash with relatively high Cl content. This is probably because of the high content of calcium...

  15. Particle morphologies and formation mechanisms of fine volcanic ash aerosol collected from the 2006 eruption of Augustine Volcano, Alaska

    Science.gov (United States)

    Rinkleff, P. G.; Cahill, C. F.

    2010-12-01

    Fine volcanic ash aerosol (35-0.09um) erupted in 2006 by Augustine Volcano, southwest of Anchorage, Alaska was collected by a DRUM cascade impactor and analyzed by scanning electron microscopy for individual particle chemistry and morphology. Results of these analyses show ash particles occur as either individual glass shard and mineral phase (plagioclase, magnetite, ilmenite, hornblende, etc.) particles or aggregates thereof. Individual glass shard ash particles are angular, uniformly-sized, consist of calc-alkaline whole-rock elements (Si, Al, Fe, Na, and Ca) and are not collocated on the sample media with non-silicate, Cl and S bearing sea salt particles. Aggregate particles occur as two types: pure ash aggregates and sea salt-cored aggregates. Pure ash aggregates are made up of only ash particles and contain no other constituents. Sea salt-cored aggregates are ash particles commingled with sea salts. Determining the formation processes of the different ash particle types need further investigation but some possibilities are proposed here. Individual ash particles may exist when the ambient air is generally dry, little electrical charge exists on ash particles, the eruptive cloud is generally dry, or the number of individual particles exceeds the scavenging capacity of the water droplets present. Another possibility is that ash aggregates may break apart as relative humidity drops over time and causes ash-laden water droplets to evaporate and subsequently break apart. Pure ash aggregates may form when the ambient air and plume is relatively dry but the ash has a significant charge to cause ash to aggregate. Or they could form during long-range transport when turbulent or Brownian motion can cause ash particles to collide and coagulate. Pure ash aggregates could also form as a result of water droplet scavenging and subsequent evaporation of water droplets, leaving behind only ash. In this case, droplets would not have interacted with a sea salt

  16. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation.

    Science.gov (United States)

    Rees, Catherine A; Provis, John L; Lukey, Grant C; van Deventer, Jannie S J

    2007-08-14

    The kinetics of geopolymer formation are monitored using a novel in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic technique. Reaction rates are determined from the intensity variation of the bands related to the geopolymer gel network and the unreacted fly ash particles. Comparison with deuterated geopolymer samples provides critical information regarding peak assignments. An initial induction (lag) period is observed to occur for hydroxide-activated geopolymers, followed by gel evolution according to an approximately linear reaction profile. The length of the lag period is reduced by increasing the concentration of NaOH. An increase in the rate of network formation also occurs with increasing NaOH concentration up to a maximum point, beyond which an increased NaOH concentration leads to a reduced rate of network formation. This trend is attributed to the competing effects of increased alkalinity and stronger ion pairing with an increase in NaOH concentration. In situ analysis also shows that the rate of fly ash dissolution is similar for all moderate- to high-alkali geopolymer slurries, which is attributed to the very highly water-deficient nature of these systems and is contrary to predictions from classical glass dissolution chemistry. This provides for the first time detailed kinetic information describing fly ash geopolymer formation kinetics.

  17. Formation of iron deposits during combustion of coals with varying iron-containing minerals

    Energy Technology Data Exchange (ETDEWEB)

    Alekhnovich, A.N.; Gladkov, V.E. (Vsesoyuznyii Teplotekhnicheskii Institut (USSR). Ural' skii Filial)

    1989-08-01

    Describes an investigation into microstructure and chemical composition of particles in the heavy fraction of ash and iron deposits produced during combustion of coals containing pyrite and siderite. Results show that the structural state of iron deposits varies considerably with different types of coal and in different temperature zones in the boiler duct, and that their formation is the result of adherence of particles with different aggregate states and chemical composition. Interaction between iron deposits and silica results in the formation of firelight (FeSiO{sub 4}) with a melting point of 1200 C. Depending on the ratio, the interaction of a sulfide melt with a firelight melt results in the formation of immiscible liquids, the release of SiO{sub 2} and the formation of silicate and metallic liquid surfaces with unique properties of wettability, and the formation of eutectic compositions (no more than 65% FeS, 35% FeO, 3% SiO{sub 2}) which set at 910-1000 C depending on the FeO and FeS content. Addition of silica increased sticking properties of products of pyrite conversion. In the absence of pyrite, the formation of immiscible liquids with different melting points may result from the reduction of the products of the dissociation of siderite to metallic iron and the formation of a metallic melt with carbon with a melting point of at least 1140 C. 10 refs.

  18. Hard Coal Fly Ash and Silica-Effect of Fine Particulate Matter Deposits on Brassica chinensis

    Directory of Open Access Journals (Sweden)

    Christian Ulrichs

    2009-01-01

    Full Text Available Problem statement: One focus in recent atmospheric pollution research is on fine Particle Matter (PM, especially as result of increasing traffic and anthropogenic activity in urban areas. Here, the impact on animal and human health has been in the center of many studies. Despite the fact that PM depositions can affect plants on the long term, there are only few studies about the impact on plants conducted. Approach: Therefore we studied the impact of PM on plants, using naturally occurring silica dusts (diatomaceous earth and hard Coal Fly Ash (CFA from burning processes. Dusts were applied onto Brassica chinensis L. using a simple duster (covering upper leaf surfaces or electrostatically (covering leaf upper and -underside. Results: Main components of the tested CFA are SO42-, K, Ca and NH4+. The pH value of eluates was found to be around 9.5 in CFA and 5.7 in silica. B. chinensis was insensitive towards the high pH and showed no growth reduction when grown in silica or CFA substrate. PM deposition on leaf surfaces results through shading in a reduced photosynthetic activity. The reduction is relatively higher at higher light intensities. Photosynthesis stays reduced after removal of silica PM from leaf surfaces. We assume that stomata get cloaked by small particles and that silica absorbs lipids from the epicuticle resulting in a general stress reaction. Smaller sized silica particles resulted in a higher reduction of CO2-absorption. Next to particle size is the photosynthesis negatively correlated with exposure time for silica PM. The chlorophyll fluorescence data indicate that dust-covered leaves exhibited significantly lower quantum yield of PS II and a reduced quantum efficiency of PS II and therefore supported the gas exchange data. Conclusion: Reduced photosynthetic performance would be expected to reduce growth and productivity of B. chinensis. In contrast to silica hard coal fly ash

  19. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    Science.gov (United States)

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  20. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    Science.gov (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  1. Prevention of the ash deposits by means of process conditions in biomass gasification; Biomassapolttoaineiden tuhkan kuonaantumiskaeyttaeytymisen estaeminen prosessiolosuhteiden avulla

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.; Laatikainen-Luntama, J.; Nieminen, M.; Kurkela, E.; Korhonen, J. [VTT Energy, Espoo (Finland)

    1997-10-01

    In fluidised-bed gasification, various types of deposits and agglomerates may be formed by biomass ash in the bed, in upper zones of the reactor, for instance in cyclones. These may decisively hamper the operation of the process. The aim of the project was to obtain data on the detrimental fouling behaviour of the ash of different types of biomass in fluidised-bed gasification, and on the basis of these data to determine the process conditions and ways of preventing this kind of behaviour. Different types of biomass fuel relevant to energy production such as straw, wood residue were be used as samples. The project consisted of laboratory studies and fluidised-bed reactor tests including ash behaviour studied both in the bed and freeboard. In laboratory tests, the sample material was characterised as a function of different process parameters. In fluid-bed reactors, the most harmful biomasses were tested using process variables such as temperature, bed material and the gasification agents. Bubbling fluidised-bed gasification tests with wheat straw showed that agglomerates with different sizes and structures formed in the bed depending on the temperature, the feed gas composition and bed material. Agglomerates consisted of molten ash which sintered with bed material and other solids. In all BFB tests, freeboard walls were slicked by ash agglomerates (different amounts) which, however, were easily removable. The results of this project and the earlier pilot-scale gasification experience obtained with the same feedstocks showed that useful characteristic data about ash behaviour can be obtained using laboratory tests and small scale reactors. (orig.)

  2. Characterization of high-calcium fly ash and its influence on ettringite formation in portland cement pastes

    Science.gov (United States)

    Tishmack, Jody Kathleen

    High-calcium Class C fly ashes derived from Powder River Basin coal are currently used as supplementary cementing materials in portland cement concrete. These fly ashes tend to contain significant amounts of sulfur, calcium, and aluminum, thus they are potential sources of ettringite. Characterization of six high-calcium fly ashes originating from Powder River Basin coal have been carried out. The hydration products formed in pastes made from fly ash and water were investigated. The principal phases produced at room temperature were ettringite, monosulfate, and stratlingite. The relative amounts formed varied with the specific fly ash. Removal of the soluble crystalline sulfur bearing minerals indicated that approximately a third of the sulfur is located in the fly ash glass. Pore solution analyses indicated that sulfur concentrations increased at later ages. Three fly ashes were selected for further study based on their ability to form ettringite. Portland cement-fly ash pastes made with the selected fly ashes were investigated to evaluate ettringite and monosulfate formation. Each of the fly ashes were mixed with four different types of portland cements (Type I, I/II, II, and III) as well as three different Type I cements exhibiting a range of C3A and sulfate contents. The pastes had 25% or 35% fly ash by total weight of solids and a water:cement-fly ash ratio of 0.45. The samples were placed in a curing room (R.H. = 100, 23°C) and were then analyzed at various ages by x-ray diffraction (XRD) and differential scanning calorimetry (DSC) to determine the principal hydration products. The hydration products identified by XRD were portlandite, ettringite (an AFt phase), monosulfate, and generally smaller amounts of hemicarboaluminate and monocarboaluminate (all AFm phases). Although the amount of ettringite formed varied with the individual cement, only a modest correlation with cement sulfate content and no correlation with cement C3A content was observed. DSC

  3. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    technology a long range of research studies have been conducted, to improve our understanding of the influence and behavior of biomass ash species in suspension fired boilers. The fuel ash plays a key role with respect tooptimal boiler operation and influences phenomena’s as boiler chamber deposit formation......, corrosion of steam coils, deactivation of SCR catalysts and utilization of residual products. Abroad range of research tools as probe measurements on power plants, entrain flow reactorstudies and deposit modelling have been used to gain an improved understanding of ash transformation and ash deposit...... to generate ash particles typically in the size range of 50 to 200 μm on biomass suspension fired power plant boilers. A fragmentation rate of fuel particles of 3 have been used to describe both the residual ash formation process in laboratory entrained flow reactors and in full scale boilers.A range...

  4. Altered volcanic ash layers of the Late Cretaceous San Felipe Formation, Sierra Madre Oriental (Northeastern Mexico): Usbnd Pb geochronology, provenance and tectonic setting

    Science.gov (United States)

    Velasco-Tapia, Fernando; Martínez-Paco, Margarita; Iriondo, Alexander; Ocampo-Díaz, Yam Zul Ernesto; Cruz-Gámez, Esther María; Ramos-Ledezma, Andrés; Andaverde, Jorge Alberto; Ostrooumov, Mikhail; Masuch, Dirk

    2016-10-01

    A detailed petrographic, geochemical, and Usbnd Pb geochronological study of altered volcanic ash layers, collected in eight outcrops of the Late Cretaceous San Felipe Formation (Sierra Madre Oriental, Northeastern Mexico), has been carried out. The main objectives have been: (1) to establish a deposit period, and (2) to propose a reliable provenance-transport-deposit-diagenetic model. These volcano-sedimentary strata represent the altered remains of vitreous-crystalline ash (main grains: quartz + K-feldspar (sanidine) + Na-plagioclase + zircon + biotite; groundmass: glass + calcite + clinochlore + illite) deposited and preserved in a shallow, relatively large in area, open platform environment. Major and trace element geochemistry indicate that parent volcanism was mainly rhyodacitic to rhyolitic in composition. Discrimination diagrams suggest a link to continental arc transitional to extension tectonic setting. Usbnd Pb geochronology in zircon has revealed that the volcanic ash was released from their sources approximately during the range 84.6 ± 0.8 to 73.7 ± 0.3 Ma, being transported to the depocenters. Burial diagenesis process was marked by: (a) a limited recycling, (b) the partial loss of original components (mainly K-feldspar, plagioclase, biotite and glass), and (c) the addition of quartz, calcite, illite and clinochlore. The location of the source area remains uncertain, although the lack of enrichment in Zr/Sc ratio suggests that ashes were subjected to relatively fast and short-distance transport process. El Peñuelo intrusive complex, at 130-170 km west of the depocenters, is the nearest known zone of active magmatism during the Upper Cretaceous. This intermediate to felsic pluton, characterized by a geochemical affinity to post-orogenic tectonic setting, could be linked to the volcanic sources.

  5. The potential of four woody species for the revegetation of fly ash deposits from the ‘Nikola Tesla-a’ thermoelectric plant (Obrenovac, Serbia

    Directory of Open Access Journals (Sweden)

    Kostić Olga

    2012-01-01

    Full Text Available Four woody species, Tamarix tentandra Pallas, Populus alba L. and Robinia pseudoacacia L. (planted and Amorpha fruticosa L. (naturally colonized were studied at two fly ash deposit lagoons, weathered 3 (L1 and 11 years (L2. All species were assessed in terms of their invasive ability, photosynthetic efficiency, photosynthetic pigments and damage symptoms, while the characteristics of the habitat were assessed in terms of trace element content and the pH and EC of the ash. A reduced vitality of all populations growing on the ash was observed, except for the naturally colonized A. fruticosa. High vitality on all sites, except at L2, increased chlorophyll content and absence of damage symptoms indicates a tolerance in relation to the uptake of toxic elements from the ash. Therefore, the characteristics of naturally colonized species can be used for modeling future actions of biological restoration of fly ash deposits.

  6. Chemical signature of two Permian volcanic ash deposits within a bentonite bed from Melo, Uruguay

    Directory of Open Access Journals (Sweden)

    Liane M. Calarge

    2006-09-01

    Full Text Available A Permian bentonite deposit at Melo, Uruguay is composed of a calcite-cemented sandstone containing clay pseudomorphs of glass shards (0-0.50 m overlying a pink massive clay deposit (0.50-2.10m. The massive bed is composed of two layers containing quartz and smectite or pure smectite respectively. The smectite is remarkably homogeneous throughout the profile: it is a complex mixed layer composed of three layer types whose expandability with ethylene glycol (2EG 1EG or 0EG sheets in the interlayer zone which correspond to low-, medium- and high-charge layers respectively varies with the cation saturating the interlayer zone. The smectite homogeneity through the profile is the signature of an early alteration process in a lagoonal water which was over saturated with respect to calcite. Compaction during burial has made the bentonite bed a K-depleted closed system in which diagenetic illitization was inhibited. Variations in major, REE and minor element abundances throughout the massive clay deposit suggest that it originated from two successive ash falls. The incompatible element abundances are consistent with that of a volcanic glass fractionated from a rhyolite magma formed in a subduction/collision geological context.Um depósito Permiano de bentonita em Melo, Uruguai,é composto por um arenito com cimento calcítico contendo pseudomorfos de argila sobre detritos vítreos(0-0.50 m superpostos a um deposito maciço de argila rosado (0.50-2.10 m. A camada maciça é composta por dois níveis contendo quartzo e esmectita ou esmectita pura, respectivamente. A homogeneidade de esmectita ao longo do perfil é notável: trata-se de um interestratificado composto de três tipos de camadas, cuja expansibilidade com etileno-glicol (folhas 2EG, 1EG ou 0EG na zona interfoliar correspondentes a camadas com baixa, média e alta carga, respectivamente variam com o tipo de cátion que satura a zona interfoliar. A homogeneidade da esmectita ao longo do perfil

  7. Deposit formation in hydrocarbon rocket fuels: Executive summary

    Science.gov (United States)

    Roback, R.; Szetela, E. J.; Spadaccini, L. J.

    1981-01-01

    An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811K. In addition, the effect of the inside wall material on deposit formation was evaluated in selected tests which were conducted using nickel-plated tubes. The results of the tests indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800K, with peak deposit formation occurring near 700K. No improvements were obtained when de-oxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. The results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, plating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

  8. Dynamic formation of zeolite synthesized from fly ash by alkaline hydrothermal conversion.

    Science.gov (United States)

    Zhang, ZhiJian; Li, Jiangli; Li, Hongyi; Wang, Hang; Zhu, Jun; He, Qiang

    2013-11-01

    This study was designed to characterize the dynamic formation of zeolite synthesized from fly ash (ZFA) and to identify the zeolitization mechanisms during a 160-h-long hydrothermal alkaline conversion at 95°C by using fly ash (FA) samples collected from four typical thermoelectric power plants in China, with the purpose of improving ZFA quality. The process of synthesizing ZFA can be fundamentally divided into five stages: induction stage (0-0.5 h), accelerating dissolution stage (0.5-12 h), nucleation and/or crystallization stage (12-24 h), crystal growth stage (24-72 h) and crystal transformation stage (72-160 h). The crystal growth stage determined the quality of zeolite crystallization, coupled with functions of re-assembling the silicon-aluminium tetrahedral network and developing submicro- and/or nanometer microstructure. A 48-h-long hydrothermal conversion generated ZFAs that had a greater specific surface area (26.0-89.4 times) and cation exchange capacity (29.6-71.0 times) than FA, which successfully sequestrated 41-95% of ammonium and 75-98% of phosphate from swine manure. However, over-reaction resulted in more stable hydroxysodalite and/or sodalite, surface agglomeration and cracking, and energy wasting. This work suggests that the reuse of recycled synthesis materials should occur during the fourth step (24-72 h).

  9. Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna

    Science.gov (United States)

    Ficken, Cari D.; Wright, Justin P.

    2017-01-01

    Many ecosystems experience drastic changes to soil nutrient availability associated with fire, but the magnitude and duration of these changes are highly variable among vegetation and fire types. In pyrogenic pine savannas across the southeastern United States, pulses of soil inorganic nitrogen (N) occur in tandem with ecosystem-scale nutrient losses from prescribed burns. Despite the importance of this management tool for restoring and maintaining fire-dependent plant communities, the contributions of different mechanisms underlying fire-associated changes to soil N availability remain unclear. Pulses of N availability following fire have been hypothesized to occur through (1) changes to microbial cycling rates and (2) direct ash deposition. Here, we document fire-associated changes to N availability across the growing season in a longleaf pine savanna in North Carolina. To differentiate between possible mechanisms driving soil N pulses, we measured net microbial cycling rates and changes to soil δ15N before and after a burn. Our findings refute both proposed mechanisms: we found no evidence for changes in microbial activity, and limited evidence that ash deposition could account for the increase in ammonium availability to more than 5-25 times background levels. Consequently, we propose a third mechanism to explain post-fire patterns of soil N availability, namely that (3) changes to plant sink strength may contribute to ephemeral increases in soil N availability, and encourage future studies to explicitly test this mechanism.

  10. Linking sulfate and phyllosilicate formation at Mawrth Vallis: Weathering in ancient low-latitude ice deposits

    Science.gov (United States)

    Niles, P. B.; Michalski, J.

    2009-12-01

    A currently outstanding question in martian geology is the mechanism by which large and numerous deposits of sulfate-rich and phyllosilicate-rich sedimentary rocks were generated. Hypotheses proposed to explain the origin of layered, sulfate-rich sediments at Meridiani Planum include: a) alteration by acidic fluids in a shallow and intermittently wet groundwater/playa/sebkha system, b) alteration of volcanic ash-flows by acidic sulfur-rich gases, c) reworking of sulfate-rich material by impact base surge, and d) acidic weathering within massive low-latitude ice deposits. We favor the ice-weathering model because this scenario can best explain the geologic and geochemical observations made from orbit and the surface. In addition, this model is in accord with an emerging picture of Mars in which ice-related processes have driven many aspects of sedimentation through time. The ice weathering model may also be relevant for understanding the origin of phyllosilicate deposits located beneath the sulfate-rich deposits at Meridiani Planum as well as at Mawrth Vallis. The Mawrth Vallis phyllosilicate deposits have several special characteristics: they are laterally extensive - occurring within stratigraphic windows over >~2*106 km2, and the mineralogical stratigraphy is the same everywhere that they are observed (Al-phyllosilicates overlying Fe/Mg-phyllosilicates). These observations can only be explained by a process that operated on a large spatial scale, just as with the sulfate deposits at Meridiani. However, if there were in fact massive ice deposits at low latitudes as called for in the Meridiani ice-weathering model, basal melting of these deposits may have driven a large regional groundwater system. Groundwater derived from extensive basal melting would likely have been alkaline due to increased water-rock interaction and increased dilution of the acid present in the ice deposit. Thus, the mineralogical stratigraphy could be explained by this alkaline groundwater

  11. The ash deposits of the 4200 BP Cerro Blanco eruption: the largest Holocene eruption of the Central Andes

    Science.gov (United States)

    Fernandez-Turiel, Jose-Luis; Saavedra, Julio; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Carracedo, Juan-Carlos; Lobo, Agustin; Rejas, Marta; Gallardo, Juan-Fernando; Osterrieth, Margarita; Carrizo, Julieta; Esteban, Graciela; Martinez, Luis-Dante; Gil, Raul-Andres; Ratto, Norma; Baez, Walter

    2015-04-01

    We present new data about a major eruption -spreading approx. 110 km3 ashes over 440.000 km2- long thought to have occurred around 4200 years ago in the Cerro Blanco Volcanic Complex (CBVC) in the Central Andes of NW Argentina (Southern Puna, 26°45' S, 67°45' W). This eruption may be the biggest during the past five millennia in the Central Volcanic Zone of the Andes, and possibly one of the largest Holocene eruptions in the world. Discrimination and correlation of pyroclastic deposits of this eruption of Cerro Blanco was conducted comparing samples of proximal (domes, pyroclastic flow and fall deposits) with distal ash fall deposits (up to 400 km from de vent). They have been characterized using optical and electron microscopy (SEM), X-ray diffraction, particle-size distribution by laser diffraction and electron microprobe and HR-ICP-MS with laser ablation for major and trace element composition of glass, feldspars and biotite. New and published 14C ages were calibrated using Bayesian statistics. An one-at-a-time inversion method was used to reconstruct the eruption conditions using the Tephra2 code (Bonadonna et al. 2010, https://vhub.org/resources/tephra2). This method allowed setting the main features of the eruption that explains the field observations in terms of thickness and grain size distributions of the ash fall deposit. The main arguments that justify the correlation are four: 1) Compositional coincidence for glass, feldspars, and biotite in proximal and distal materials; 2) Stratigraphic and geomorphological relationships, including structure and thickness variation of the distal deposits; 3) Geochronological consistency, matching proximal and distal ages; and 4) Geographical distribution of correlated outcrops in relation to the eruption centre at the coordinates of Cerro Blanco. With a magnitude of 7.0 and a volcanic explosivity index or VEI 7, this eruption of ~4200 BP at Cerro Blanco is the largest in the last five millennia known in the Central

  12. Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash.

    Science.gov (United States)

    Liu, Guorui; Zhan, Jiayu; Zhao, Yuyang; Li, Li; Jiang, Xiaoxu; Fu, Jianjie; Li, Chunping; Zheng, Minghui

    2016-07-01

    Co-processing municipal solid waste incinerator (MSWI) fly ash in cement kilns is challenging because the unintentional production of persistent organic pollutants (POPs) during the process is not well understood. The distributions, profiles and formation mechanisms of polychlorinated naphthalenes (PCNs) as new POPs covered under Stockholm Convention in two cement kilns co-processing MSWI fly ash were studied. The average concentrations of PCNs in stack gas samples were 710 ng m(-3). The PCN concentration in particle samples collected from different process stages in the cement kilns ranged from 1.1 to 84.7 ng g(-1). Three process sites including suspension pre-heater boiler, humidifier tower, and the kiln back-end bag filter were identified to be the major formation sites of PCNs in cement kilns co-processing MSWI fly ash. The PCN distribution patterns were similar to that of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs), which indicates the possibility for simultaneous control of PCNs and PCDD/Fs in cement kilns co-processing fly ash. Chlorination was suggested to be an important formation mechanism of PCNs, and chlorination pathways of PCN congeners are proposed based on the congener profiles. Thermodynamic calculations, including relative thermal energies (ΔE) and standard free energy of formation (ΔG), and the charge densities of the carbon atoms in PCN supported the proposed chlorination mechanisms for PCN formation. The results presented in this study might provide helpful information for developing techniques and strategies to control PCN emissions during cement kilns co-processing MSWI fly ash.

  13. A depositional model for organic-rich Duvernay Formation mudstones

    Science.gov (United States)

    Knapp, Levi J.; McMillan, Julia M.; Harris, Nicholas B.

    2017-01-01

    The Upper Devonian Duvernay Formation of western Canada is an organic-rich shale formation now targeted as a hydrocarbon reservoir. We present a detailed sedimentological analysis of the Duvernay Formation in order to better understand organic-rich mudstone depositional processes and conditions and to characterize the vertical and lateral heterogeneity of mudstone lithofacies that affect petrophysical and geomechanical rock properties. Organic-rich mudstone facies of the Duvernay Formation were deposited in a dynamic depositional environment by a variety of sediment transport mechanisms, including suspension settling, turbidity currents, and bottom water currents in variably oxygenated bottom waters. Suspension settling dominated in distal relatively deep areas of the basin, but evidence for weak turbidity currents and bottom water currents was observed in the form of graded beds and thin grain-supported siltstone laminae. Organic enrichment primarily occurred in distal areas as a result of bottom water anoxia and low depositional rates of inorganic sediment. In deep water locations near platform margins, alternating silty-sandy contourite beds and organic-rich mudstone beds are present, the former interpreted to have been deposited and reworked by bottom water currents flowing parallel to slope. In shallower, more oxygenated settings, mudstone lithologies vary from calcareous to argillaceous. These sediments were deposited from suspension settling, turbidity currents, and bottom water currents, although primary sedimentary structures are often obscured by extensive bioturbation. Locally, organic enrichment in dysoxic rather than anoxic bottom waters was driven by a slightly increased sedimentation rate and possibly also by aggregation of sedimentary particles in the water column due to interaction between organic matter and clay minerals. Large variations observed in sediment composition, from siliceous to calcareous to argillaceous, reflect multiple biogenic

  14. Deposit Formation in a 150 MWe Utility PF-Boiler during Co-combustion of Coal and Straw

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo; Frandsen, Flemming; Hansen, P. F. B.;

    2000-01-01

    (SEM) combined with energy dispersive X-ray analyses (SEM-EDX) and bulk chemical analyses. In the visual analysis, a significant increase in the amount and tenacity of the upstream deposits was observed as a function of increased straw share, exposure time, and boiler load. The chemical analyses...... arise when burning other coals, particularly coals with a high S or alkali metal content or a low content of ash. The behavior of K, Ca, S, and Cl was evaluated by use of thermodynamic calculations. The thermodynamically stable species agree with the observed behavior in the experiments, i.e. formation...

  15. The Effect of Applied Organic Fertilizers on the Bioavailability of Heavy Metals in Lolium Perenne, Cultivated on Fly Ash Deposits

    Directory of Open Access Journals (Sweden)

    Smaranda Mâşu

    2011-10-01

    Full Text Available The study aims to monitor the capacity of certain organic fertilizers (volcanic tuff and municipal sludge, applied as such and mixed with volcanic rocks with a high content in clinoptilolite, to determine the covering with vegetation of fly ash deposits resulted from the combustion of lignite in thermal plants. Both biosolids (20 t/ha and volcanic rock with high clinoptilolite content (5 t/ha determined the installation of a vegetative layer and diminished the soil metal bioavailability to the Lolium prerenne plant biomass. When using the organic-zeolite mixture, a synergistic effect is recorded of the two components of the treatment agent and an increase of the biomass with 448%. Moreover, the resulted biomass shows the highest reductions of metal bioaccumulations, of 38-46% for Zn and Fe, of 62% for Cu and between 82-89% for Cr, Ni and Pb.

  16. On the origin and post-depositional history of widespread massive ash deposits: The case of Intermediate Brown Tuffs (IBT) of Lipari (Aeolian Islands, Italy)

    Science.gov (United States)

    De Rosa, Rosanna; Donato, Paola; Scarciglia, Fabio

    2016-11-01

    We analysed a widespread, massive ash unit outcropping on the island of Lipari, which belongs to the Intermediate Brown Tuffs (IBT) succession of the Aeolian Islands, Italy. The use of a multidisciplinary approach that integrates textural, petrological and pedological methods, allows us to discriminate between syn-eruptive and post-depositional features. The deposits are dominated by uncrystallised blocky glass fragments of homogeneous shoshonitic composition, confirming a provenance from hydromagmatic eruptions on the island of Vulcano. Many glass fragments are surrounded by a coating separated by a thin void of syn-eruptive origin due to alteration by aggressive acid gases in the eruptive cloud. The lack of this coating in the northern part of Lipari can be explained as a progressive dispersion of the gases far from the vent and/or to post-depositional processes. The degree of soil development significantly increases from south (soil profiles P1 and P2 at Valle Muria) to north (P3 and P4, at Madoro and Chiesa Vecchia sites, respectively) as a response to a decrease in slope steepness, which has brought about a progressive deepening of the pedogenetic front on gentler landforms and conversely its rejuvenation on steep slopes. The relatively poor to moderate degree of pedogenic evolution of the studied IBT unit is consistent with its emplacement during part of the last glacial period.

  17. Exposure to toxicants in soil and bottom ash deposits in Agbogbloshie, Ghana: human health risk assessment.

    Science.gov (United States)

    Obiri, S; Ansa-Asare, O D; Mohammed, S; Darko, H F; Dartey, A G

    2016-10-01

    Recycling of e-waste using informal or crude techniques poses serious health risk not only to the workers but also to the environment as whole. It is against this background that this paper sought to measure health risk faced by informal e-waste workers from exposure to toxicants such as lead, cadmium, chromium, copper, arsenic, tin, zinc and cobalt via oral and dermal contact with bottom ash and soil. Using random sampling techniques, 3 separate sites each (where burning and manual dismantling of e-wastes are usually carried) were identified, and a total of 402 samples were collected. The samples were analysed using standard methods for chemical analysis prescribed by the American Water Works Association (AWWA). Concentrations of Pb, Cd, Cr, Cu, As, Sn, Zn and Co in bottom ash samples from location ASH1 are 5388 ± 0.02 mg/kg (Pb), 2.39 ± 0.01 mg/kg (Cd), 42 ± 0.05 mg/kg (Cr), 7940 ± 0.01 mg/kg (Cu), 20 ± 0.07 mg/kg (As), 225 ± 0.04 mg/kg (Sn), 276 ± 0.04 mg/kg (Zn) and 123 ± 0.04 mg/kg (Co), while concentrations of the aforementioned toxicants in soil samples at location ASG1 are as follows: 1685 ± 0.14 mg/kg (Pb), 26.89 ± 0.30 mg/kg (Cd), 36.86 ± 0.02 mg/kg (Cr), 1427 ± 0.08 mg/kg (Cu), 1622 ± 0.12 mg/kg (As), 234 ± 0.25 mg/kg (Sn), 783 ± 0.31 mg/kg (Zn) and 135 ± 0.01 mg/kg (Co); used as input parameters in assessing health risk faced by workers. The results of cancer health risk faced by e-waste workers due to accidental ingestion of As in bottom ash at ASH1 is 4.3 × 10(-3) (CTE) and 6.5 × 10(-2) (RME), i.e. approximately 4 out of 1000 e-waste workers are likely to suffer from cancer-related diseases via central tendency exposure (CTE parameters), and 7 out of every 100 e-waste worker is also likely to suffer from cancer cases by reasonable maximum exposure (RME) parameters, respectively. The cancer health risk results for the other sampling sites were found to have exceeded the acceptable

  18. CFD modeling of ash deposition for co-combustion of MBM with coal in a tangentially fired utility boiler

    NARCIS (Netherlands)

    Taha, T.J.; Stam, A.F.; Stam, K.; Brem, G.

    2013-01-01

    Ash deposition is one of the main challenges that needs to be tackled in response to increased percentage of biomass co-firing in pulverized fuel boilers. In this study, a model has been developed to investigate the slagging behavior of meat and bone meal (MBM) at higher co-firing rates in the Maasv

  19. Formation of metal oxides by cathodic arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  20. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M.; Saito, A. [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S. [Toyota Motor Corp., Aichi (Japan); Shibata, H. [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y. [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  1. Appropriate deposition parameters for formation of fcc Co-Ni alloy nanowires during electrochemical deposition process

    Science.gov (United States)

    Mukhtar, Aiman; Shahzad Khan, Babar; Mehmood, Tahir

    2016-12-01

    The effect of deposition potential on the crystal structure and composition of Co-Ni alloy nanowires is studied by XRD, FE-SEM and EDX. The alloy nanowires deposited at -3.2 V are metastable fcc phase Co-Ni. The alloy nanowires deposited at -1.8 V are hcp phase Co-Ni. The formation of the metastable fcc alloy nanowires can be attributed to smaller critical clusters formed at the high potential as the smaller critical clusters favor fcc structure because of the significant surface energy effect. The content of Co inside nanowires increases with increasing potential. This can be understood by the polarization curves of depositing Co and Ni nanowires, which show that the current density ratio of Ni to Co at low potential has larger value than that at high potential.

  2. Deposits of the Peruvian Pisco Formation compared to layered deposits on Mars

    Science.gov (United States)

    Sowe, M.; Bishop, J. L.; Gross, C.; Walter, S.

    2013-09-01

    Deposits of the Peruvian Pisco Formation are morphologically similar to the mounds of Juventae Chasma at the equatorial region on Mars (Fig. 1). By analyzing these deposits, we hope to gain information about the environmental conditions that prevailed during sediment deposition and erosion, hence conditions that might be applicable to the Martian layered and hydrated deposits. Mariner 9 data of the Martian mid-latitudes have already shown evidence of the wind-sculptured landforms that display the powerful prevailing eolian regime [1]. In addition, [2] reported on similarities between Martian erosional landforms and those of the rainless coastal desert of central Peru from the Paracas peninsula to the Rio Ica. As indicated by similar erosional patterns, hyper-arid conditions and unidirectional winds must have dominated at least after deposition of the sediments, which are intermixed volcaniclastic materials and evaporate minerals at both locations. Likewise, variations in composition are displayed by alternating layers of different competence. The Pisco formation bears yardangs on siltstones, sandstones and clays with volcaniclastic admixtures [3] whereas the presence of sulphate minerals and the omnipresent mafic mineralogy has been reported for the layered mounds of Juventae Chasma equally [4]. Likewise, a volcanic airfall deposition and lacustrine formation have been proposed for the sulphate-rich deposits of Juventae Chasma [5,6]. In order to find out about potential spectral similarities, we performed a detailed spectral analysis of the surface by using LANDSAT and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) VNIR/ SWIR data (visible to near-infrared and shortwave infrared region).

  3. Deposit formation and heat transfer in hydrocarbon rocket fuels

    Science.gov (United States)

    Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J.

    1983-01-01

    An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation.

  4. Fibroblast-like synoviocytes induce calcium mineral formation and deposition.

    Science.gov (United States)

    Sun, Yubo; Mauerhan, David R; Franklin, Atiya M; Zinchenko, Natalia; Norton, Harry James; Hanley, Edward N; Gruber, Helen E

    2014-01-01

    Calcium crystals are present in the synovial fluid of 65%-100% patients with osteoarthritis (OA) and 20%-39% patients with rheumatoid arthritis (RA). This study sought to investigate the role of fibroblast-like synoviocytes (FLSs) in calcium mineral formation. We found that numerous genes classified in the biomineral formation process, including bone gamma-carboxyglutamate (gla) protein/osteocalcin, runt-related transcription factor 2, ankylosis progressive homolog, and parathyroid hormone-like hormone, were differentially expressed in the OA and RA FLSs. Calcium deposits were detected in FLSs cultured in regular medium in the presence of ATP and FLSs cultured in chondrogenesis medium in the absence of ATP. More calcium minerals were deposited in the cultures of OA FLSs than in the cultures of RA FLSs. Examination of the micromass stained with nonaqueous alcoholic eosin indicated the presence of birefringent crystals. Phosphocitrate inhibited the OA FLSs-mediated calcium mineral deposition. These findings together suggest that OA FLSs are not passive bystanders but are active players in the pathological calcification process occurring in OA and that potential calcification stimuli for OA FLSs-mediated calcium deposition include ATP and certain unidentified differentiation-inducing factor(s). The OA FLSs-mediated pathological calcification process is a valid target for the development of disease-modifying drug for OA therapy.

  5. Fibroblast-Like Synoviocytes Induce Calcium Mineral Formation and Deposition

    Directory of Open Access Journals (Sweden)

    Yubo Sun

    2014-01-01

    Full Text Available Calcium crystals are present in the synovial fluid of 65%–100% patients with osteoarthritis (OA and 20%–39% patients with rheumatoid arthritis (RA. This study sought to investigate the role of fibroblast-like synoviocytes (FLSs in calcium mineral formation. We found that numerous genes classified in the biomineral formation process, including bone gamma-carboxyglutamate (gla protein/osteocalcin, runt-related transcription factor 2, ankylosis progressive homolog, and parathyroid hormone-like hormone, were differentially expressed in the OA and RA FLSs. Calcium deposits were detected in FLSs cultured in regular medium in the presence of ATP and FLSs cultured in chondrogenesis medium in the absence of ATP. More calcium minerals were deposited in the cultures of OA FLSs than in the cultures of RA FLSs. Examination of the micromass stained with nonaqueous alcoholic eosin indicated the presence of birefringent crystals. Phosphocitrate inhibited the OA FLSs-mediated calcium mineral deposition. These findings together suggest that OA FLSs are not passive bystanders but are active players in the pathological calcification process occurring in OA and that potential calcification stimuli for OA FLSs-mediated calcium deposition include ATP and certain unidentified differentiation-inducing factor(s. The OA FLSs-mediated pathological calcification process is a valid target for the development of disease-modifying drug for OA therapy.

  6. Formation of carbon deposits from coal in an arc plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.; Tian, Y.; Zhang, Y.; Zhu, S.; Lu, Y.; Zhang, Y.; Xie, K. [Taiyuan University of Technology, Taiyuan (China)

    2007-07-01

    The issue of deposited carbon (DC) on a reactor wall during the production of acetylene by the coal/arc plasma process is a potential obstacle for the industrialization process. The formation mechanism of DC is very difficult to reveal because the high complexity of coal and the volatile matter. Combining with quenching technique, the methane, liquid petroleum gas and benzene were employed as the model materials to roughly act as the light gas, chain and aromatic subcomponents of volatile matter, and then the reasonable formation mechanism of DC was subtly speculated accordingly.

  7. Multilayer Coating Formation at the Deposition from Plasma

    OpenAIRE

    Shanin, Sergei Aleksandrovich; Knyazeva, Anna Georgievna

    2016-01-01

    The numerical experiment was carried out for the process of the coating composition formation during deposition from plasma. The chemical reactions between elements are taken into account. The nonuniform composition of the coating is determined by various transfer processes, including diffusion under stress action. To find the stress field the equilibrium problem was solved numerically because all physical and mechanical properties depend on composition. Stress field has been also obtained no...

  8. Quantifying fat, oil, and grease deposit formation kinetics.

    Science.gov (United States)

    Iasmin, Mahbuba; Dean, Lisa O; Ducoste, Joel J

    2016-01-01

    Fat, oil, and grease (FOG) deposits formed in sanitary sewers are calcium-based saponified solids that are responsible for a significant number of nationwide sanitary sewer overflows (SSOs) across United States. In the current study, the kinetics of lab-based saponified solids were determined to understand the kinetics of FOG deposit formation in sewers for two types of fat (Canola and Beef Tallow) and two types of calcium sources (calcium chloride and calcium sulfate) under three pH (7 ± 0.5, 10 ± 0.5, and ≈14) and two temperature conditions (22 ± 0.5 and 45 ± 0.5 °C). The results of this study displayed quick reactions of a fraction of fats with calcium ions to form calcium based saponified solids. Results further showed that increased palmitic fatty acid content in source fats, the magnitude of the pH, and temperature significantly affect the FOG deposit formation and saponification rates. The experimental data of the kinetics were compared with two empirical models: a) Cotte saponification model and b) Foubert crystallization model and a mass-action based mechanistic model that included alkali driven hydrolysis of triglycerides. Results showed that the mass action based mechanistic model was able to predict changes in the rate of formation of saponified solids under the different experimental conditions compared to both empirical models. The mass-action based saponification model also revealed that the hydrolysis of Beef Tallow was slower compared to liquid Canola fat resulting in smaller quantities of saponified solids. This mechanistic saponification model, with its ability to track the saponified solids chemical precursors, may provide an initial framework to predict the spatial formation of FOG deposits in municipal sewers using system wide sewer collection modeling software.

  9. Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla; Beranek, Josef; Madaan, Nitesh; Devaraj, Arun; Shutthanandan, V.; Thevuthasan, Suntharampillai; Varga, Tamas

    2015-04-28

    Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples were different.

  10. Effects of crystallographic properties on the ice nucleation properties of volcanic ash particles

    Science.gov (United States)

    Kulkarni, Gourihar; Nandasiri, Manjula; Zelenyuk, Alla; Beranek, Josef; Madaan, Nitesh; Devaraj, Arun; Shutthanandan, Vaithiyalingam; Thevuthasan, Suntharampillai; Varga, Tamas

    2015-04-01

    Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from -30 to -38°C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples were different.

  11. Inkjet printing of aqueous rivulets: Formation, deposition, and applications

    Science.gov (United States)

    Bromberg, Vadim

    early-time dynamics during rivulet formation in determining the nature of subsequent particle convection and deposition. New flow and deposition phenomena have also been identified and leveraged to develop novel processes for deposition of micron-scale electrically conducting lines of silver nanoparticles. Low-temperature processing of printed silver nitrate lines with environmentally benign Ar plasma to improve electrical properties has also been investigated and will be discussed.

  12. Physical, chemical, and mineralogical data from surficial deposits, groundwater levels, and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada

    Science.gov (United States)

    Goldstein, Harland L.; Breit, George N.; Yount, James C.; Reynolds, Richard L.; Reheis, Marith C.; Skipp, Gary L.; Fisher, Eric M.; Lamothe, Paul J.

    2011-01-01

    This report presents data and describes the methods used to determine the physical attributes, as well as the chemical and mineralogical composition of surficial deposits; groundwater levels; and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada. The results support studies that examine (1) the interaction between groundwater and the ground surface, and the transport of solutes through the unsaturated zone; (2) the potential for the accumulation of metals and metalloids in surface crusts; (3) emission of dust from metal-rich salt crust; and (4) the effects of metal-rich dusts on human and ecosystem health. The evaporation of shallow (salt in the subsurface and (or) the formation of salt crusts at the ground surface. Ground-surface characteristics such as hardness, electrical conductivity, and mineralogy depend on the types and forms of these salt crusts. In the study area, salt crusts range from hard and bedded to soft and loose (Reynolds and others, 2009). Depending on various factors such as the depth and composition of groundwater and sediment characteristics of the unsaturated zone, salt crusts may accumulate relatively high contents of trace elements. Soft, loose salt crusts are highly vulnerable to wind erosion and transport. These vulnerable crusts, which may contain high contents of potentially toxic trace elements, can travel as atmospheric dust and affect human and ecosystem health at local to regional scales.

  13. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  14. Fat, oil and grease deposits in sewers: characterisation of deposits and formation mechanisms.

    Science.gov (United States)

    Williams, J B; Clarkson, C; Mant, C; Drinkwater, A; May, E

    2012-12-01

    Fat, oil and grease deposits (FOG) in sewers are a major problem and can cause sewer overflows, resulting in environmental damage and health risks. Often simplistically portrayed as cooling of fats, recent research has suggested that saponification may be involved in FOG formation. However there are still questions about the mechanisms effecting transformations in sewers and the role and source of metal cations involved in saponification. This study characterises FOG deposits from pumping stations, sewers and sewage works from different water hardness zones across the UK. The sites all had previous problems with FOG and most catchments contained catering and food preparation establishments. The FOG deposits were highly variable with moisture content ranging from 15 to 95% and oil content from 0 to 548 mg/g. Generally the pumping stations had lower moisture content and higher fat content, followed by the sewers then the sewage works. The water in contact with the FOG had high levels of oil (mean of about 800 mg/L) and this may indicate poor kitchen FOG management practices. FOG fatty acid profiles showed a transformation from unsaturated to saturated forms compared to typical cooking oils. This seems to relate to ageing in the sewer network or the mechanism of formation, as samples from pumping stations had higher proportions of C18:1 compared to C16. This may be due to microbial transformations by bacteria such as Clostridium sp. in a similar process to adipocere formation. There was an association between water hardness and increased Ca levels in FOG along with harder deposits and higher melting points. A link between FOG properties and water hardness has not been previously reported for field samples. This may also be due to microbial processes, such as biocalcification. By developing the understanding of these mechanisms it may be possible to more effectively control FOG deposits, especially when combined with promotion of behavioural change.

  15. Impact of super-distal ash fallout on tropical hydrology and landscape: a case study from the YTT deposits of the Perak river, Malaysia

    Science.gov (United States)

    Gatti, E.; Saidin, M.; Gibbard, P.; Oppenheimer, C.

    2011-12-01

    The Younger Toba Tuff eruption, approximately 73 ka ago, is the largest known for the Quaternary and its climate, environmental and human consequences are keenly debated (Oppenheimer, 2011).While the distribution (Rose and Chesner, 1987; Rose and Chesner, 1990; Chesner et al., 1991; Schulz et al., 2002; Von Rad et al., 2002) , geochemical properties (Shane et al., 1995; Westgate et al., 1998) and volcanic significance (Rampino and Self, 1982; Rampino and Self, 1993; Rampino and Ambrose, 2000; Oppenheimer, 2002; Mason et al., 2004)of the YTT have been widely studied, few attention has been given to the significance of the distal volcanic ash deposits within their receiving basin context. Although several studies exist on the impact of pyroclastic flows on proximal rivers and lakes (Collins and Dunne, 1986; Thompson et al., 1986; Hayes et al., 2002; Németh and Cronin, 2007), only few address the issues of the dynamic of preservation of super-distal fine ash deposits in rivers (also due to the lack of direct data on super-eruptions). It has also been demonstrated that models of the styles and timing of distal volcanoclastic re-sedimentation are more complicated than those developed for proximal settings of stratovolcanoes (Kataoka et al., 2009). We present an analysis of the taphonomy (intended as accumulation and preservation) of distal volcanic ash in fluvial and lacustrian contexts in newly discovered Toungest Toba Tuff sites in the Lenggong valley, western Peninsular Malaysia. The paper aims to characterise the nature of distal tephras in fluvial environments towards a stratigraphic distinction between primary ash and secondary ash, characterisation of the pre-ash fall receiving environment in term of fluvial dynamic and landscape morphology, and assessment of the time of recovery.

  16. 沉积粉煤灰工程特性试验研究%Experimental study on behavior of deposition fly ash stratum

    Institute of Scientific and Technical Information of China (English)

    周德泉; 赵明华; 肖宏宇

    2011-01-01

    粉煤灰作为地层时的工程特性研究较少,直接影响粉煤灰场地的勘察与设计.采用钻探、静力触探和十字板剪切试验相结合的方法研究湿排沉积粉煤灰层的工程特性.结果表明:沉积粉煤灰的静力触探曲线呈锯齿状,没有临界深度;锥尖阻力比粉质粘土和细砂小;侧壁摩阻力小于填筑粉质粘土、接近沉积粉质粘土、大于细砂;摩阻比小于填筑粉质黏土、大于沉积粉质粘土和细砂;比贯入阻力接近填筑粉质粘土、大于沉积粉质粘土;粉煤灰遇水软化,触探曲线在水位上下有明显的界面效应;十字板强度随深度加大而增大,具有明显的结构性;粉煤灰地层宜用双桥静力触探进行勘察.该粉煤灰的工程特性接近于粉土.%The engineering behavior of fly ash as stratum is studied seldom,which affects directly the exploration and design of the deposition fly ash site. The behavior of deposition fly ash was studied by drilling, cone penetration test and vane shear test. The results of study show that the fly ash cone penetration is the sawtooth form, and there is no critical depth for fly ash. The cone resistance of the fly ash is smaller than silty clay and sand, the friction resistance is smaller than filling silty clay, similar to deposition silty clay and more than fine sand, the friction ratio is smaller than filling silty clay, more than deposition silty clay and much more than fine sand, the specific penetration resistance is similar to filling silty clay, more than deposition silty clay. Fly ash with water will be soften,and there is a clear interface effect of fly ash penetration curve on the groundwater level . With obvious behavior of structure, vane strength of the fly ash increases with the depth increased. Even bridge cone penetration test should be used during geological exploration . The deposition fly ash is much similar to silt in character.

  17. Self-organization and nanostructure formation in chemical vapor deposition

    Science.gov (United States)

    Walgraef, Daniel

    2013-10-01

    When thin films are grown on a substrate by chemical vapor deposition, the evolution of the first deposited layers may be described, on mesoscopic scales, by dynamical models of the reaction-diffusion type. For monatomic layers, such models describe the evolution of atomic coverage due to the combined effect of reaction terms representing adsorption-desorption and chemical processes and nonlinear diffusion terms that are of the Cahn-Hilliard type. This combination may lead, below a critical temperature, to the instability of uniform deposited layers. This instability triggers the formation of nanostructures corresponding to regular spatial variations of substrate coverage. Patterns wavelengths and symmetries are selected by dynamical variables and not by variational arguments. According to the balance between reaction- and diffusion-induced nonlinearities, a succession of nanostructures including hexagonal arrays of dots, stripes, and localized structures of various types may be obtained. These structures may initiate different growth mechanisms, including Volmer-Weber and Frank-Van der Merwe types of growth. The relevance of this approach to the study of deposited layers of different species is discussed.

  18. Influence of deposit architecture on intrastratal deformation, slope deposits of the Tres Pasos Formation, Chile

    Science.gov (United States)

    Auchter, Neal C.; Romans, Brian W.; Hubbard, Stephen M.

    2016-07-01

    Slope sediments on passive and active margins deform and fail across a broad range of scales ranging from loading and sediment remobilization near the sediment-water interface to submarine landslides and mass movements that incorporate significant volumes of slope deposits. Deformational styles are characterized by updip extension and downdip compressional features that occur above a detachment surface. Conditions for failure and deformation include the presence of weak layer(s) that serve as a detachment surface, competency contrasts that allow for detachment and downslope movement, deformation above a detachment surface, and a triggering mechanism(s) that initiates failure. Slope failure processes and products are well documented at scales resolvable by seismic-reflection surveys and in instances of extensive downslope failure, but the processes and products associated with intermediate-scale slope deformation are poorly understood. Intrastratal deformation is defined as stratigraphically isolated zones of deformation bounded above and below by concordant and undeformed strata. In this study, outcrop examples of intrastratal deformation from the Upper Cretaceous Tres Pasos Formation are used to elucidate the influence of depositional architecture on slope deformation. The facies distribution associated with compensational stacking of lobe deposits is shown to have a first-order control on the location and style of deformation. Detachment planes that form in mudstone deposits associated with lobe fringe and interlobe deposits are spatially limited and deformation is restricted to interbedded sandstone and mudstone associated with off-axial lobe positions. Downslope translation was arrested by stratigraphic buttresses associated with more sandstone-prone axial deposits. Emplacement of a regionally extensive mass transport deposit is interpreted as the triggering mechanism for contemporaneous intrastratal deformation of > 60 m of underlying stratigraphy. A vertical

  19. Nanoparticle formation and thin film deposition in aniline containing plasmas

    Science.gov (United States)

    Pattyn, Cedric; Dias, Ana; Hussain, Shahzad; Strunskus, Thomas; Stefanovic, Ilija; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with plasma based polymerization processes in mixtures of argon and aniline. The investigations are performed in a capacitively coupled RF discharge (in pulsed and continuous mode) and concern both the observed formation of nanoparticles in the plasma volume and the deposition of films. The latter process was used for the deposition of ultra-thin layers on different kind of nanocarbon materials (nanotubes and free standing graphene). The analysis of the plasma and the plasma chemistry (by means of mass spectroscopy and in-situ FTIR spectroscopy) is accompanied by several ex-situ diagnostics of the obtained materials which include NEXAFS and XPS measurements as well as Raman spectroscopy and electron microscopy. The decisive point of the investigations concern the preservation of the original monomer structure during the plasma polymerization processes and the stability of the thin films on the different substrates.

  20. Study of nickel silicide formation by physical vapor deposition techniques

    Science.gov (United States)

    Pancharatnam, Shanti

    Metal silicides are used as contacts to the highly n-doped emitter in photovoltaic devices. Thin films of nickel silicide (NiSi) are of particular interest for Si-based solar cells, as they form at lower temperature and consume less silicon. However, interfacial oxide limits the reduction in sheet resistance. Hence, different diffusion barriers were investigated with regard to optimizing the conductivity and thermal stability. The formation of NiSi, and if it can be doped to have good contact with the n-side of a p-n junction were studied. Reduction of the interfacial oxide by the interfacial Ti layer to allow the formation of NiSi was observed. Silicon was treated in dilute hydrofluoric acid for removing the surface oxide layer. Ni and a Ti diffusion barrier were deposited on Si by physical vapor deposition (PVD) methods - electron beam evaporation and sputtering. The annealing temperature and time were varied to observe the stability of the deposited film. The films were then etched to observe the retention of the silicide. Characterization was done using scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and Rutherford back scattering (RBS). Sheet resistance was measured using the four-point probe technique. Annealing temperatures from 300°C showed films began to agglomerate indicating some diffusion between Ni and Si in the Ti layer, also supported by the compositional analysis in the Auger spectra. Films obtained by evaporation and sputtering were of high quality in terms of coverage over substrate area and uniformity. Thicknesses of Ni and Ti were optimized to 20 nm and 10 nm respectively. Resistivity was low at these thicknesses, and reduced by about half post annealing at 300°C for 8 hours. Thus a low resistivity contact was obtained at optimized thicknesses of the metal layers. It was also shown that some silicide formation occurs at temperatures starting from 300°C and can thus be used to make good silicide contacts.

  1. Holocene dune formation at Ash Meadows National Wildlife Area, Nevada, USA

    Science.gov (United States)

    Lancaster, Nicholas; Mahan, Shannon

    2012-01-01

    Small isolated dune fields in the northern Mojave Desert are important centers of biodiversity and archaeological occupation sites. Currently dunes at Ash Meadows, Nevada, are stabilized by vegetation and are experiencing erosion of their upwind margins, indicating a negative sediment budget. New OSL ages from dunes at Ash Meadows indicate continuous eolian accumulation from 1.5 to 0.8 ka, with further accumulation around 0.2 ka. Prior studies (e.g., Mehringer and Warren, 1976) indicate periods of dune accumulation prior to 3.3 ka; 1.9–1 ka; and after 0.9 ka. These periods of eolian accumulation are largely synchronous with those identified elsewhere in the Mojave Desert. The composition of the Ash Meadows dunes indicates their derivation from regional fluvial sources, most likely during periods when axial washes were active as a result of enhanced winter precipitation.

  2. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard

    2009-01-01

    The ash behavior during suspension firing of 12 alternative solid biofuels, such as pectin waste, mash from a beer brewery, or waste from cigarette production have been studied and compared to wood and straw ash behavior. Laboratory suspension firing tests were performed on an entrained flow...... analysis into three main groups depending upon their ash content of silica, alkali metal, and calcium and magnesium. To further detail the biomass classification, the relative molar ratio of Cl, S, and P to alkali were included. The study has led to knowledge on biomass fuel ash composition influence...... on ash transformation, ash deposit flux, and deposit chlorine content when biomass fuels are applied for suspension combustion....

  3. Formation of Cu/Pd bimetallic crystals by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.E. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahia Blanca (Argentina); Salinas, D.R., E-mail: dsalinas@uns.edu.a [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Departamento de Ingenieria Quimica, Universidad Nacional del Sur, Avda. Alem 1253, 8000 Bahia Blanca (Argentina)

    2010-04-15

    The early stages of the palladium electrodeposition process onto a vitreous carbon (VC) substrate as well as the deposition of Cu on such Pd/VC modified surface were investigated using classical electrochemical techniques, atomic force microscopy (AFM) and scanning electron microscopy (SEM). Within the potential range considered the kinetics of the Pd electrodeposition from a PdCl{sub 2} acid solution can be described by a model involving progressive nucleation on active sites and diffusion-controlled 3D growth. The nucleation rate constant, A{sub 0}, and the number of active sites of the substrate, N{sub 0}, were determined from the analysis of potentiostatic current transients on the basis of an existing theoretical model. The AFM images corroborated the progressive nucleation mechanism showing irregular palladium crystals randomly distributed over the VC surface, with different sizes and 3D morphological characteristics. The electrodeposition of Cu was carried out onto the characterized Pd/VC modified surface from a Cu{sup 2+} containing solution using a well defined polarization routine. The SEM/EDX images confirmed the formation of Cu/Pd bimetallic crystals uniformly distributed on the VC surface and the in situ AFM images obtained during this process corroborated that Cu formed a core-shell structure with the Pd crystals. Nevertheless, the subsequent anodic stripping produced only a partial dissolution of the Cu deposits, and therefore, the formation of a Cu/Pd alloy could be inferred.

  4. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen; Rosendahl, Lasse Aistrup; Baxter, L.L.

    2006-01-01

    in the reminder of the paper. The growth of deposits on furnace walls and super heater tubes is treated including the impact on heat transfer rates determined by the CFD code. Based on the commercial CFD code FLUENTe, the overall model is fully implemented through the User Defined Functions. The model...... is configured entirely through a graphical user interface integrated in the standard FLUENTe interface. The model considers fine and coarse mode ash deposition and sticking mechanisms for the complete deposit growth, as well as an influence on the local boundary conditions for heat transfer due to thermal...

  5. Formation of Silicon Carbide Using Volcanic Ash as Starting Material and Concentrated Sunlight as Energy Resource

    Directory of Open Access Journals (Sweden)

    Kensuke Nishioka

    2015-01-01

    Full Text Available SiC was formed using volcanic ash as starting material and concentrated sunlight as energy resource. The solar furnace was composed of two parts: Fresnel lens and reacting furnace. The reacting furnace was composed of a cylindrical vacuum chamber and quartz glass plate functioning to guide the concentrated sunlight into the furnace and was placed at the focal point of the Fresnel lens. The sample was made from the mixture of silica formed from volcanic ash and graphite and placed in the carbon crucible inside the reacting furnace. The temperature in the carbon crucible reached more than 1500°C. After the reaction using concentrated light, β-SiC was formed. The weight % of formed SiC was 90.5%.

  6. The Phase-Formation Behavior of Composite Ceramic Powders Synthesized by Utilizing Rice Husk Ash from the Biomass Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Wenjie Yuan

    2015-01-01

    Full Text Available The development and utilization of biomass as a vital source of renewable energy were stimulated in order to reduce the global dependency on fossil fuels. A lot of rice husk ashes (RHA were generated as the waste after the rice husk as the main fuel was burnt in the biomass cogeneration plant. The phase-formation behavior of composite ceramic powders synthesized by using rice husk ash from the biomass cogeneration plant at the different carbon ratios and temperatures was investigated. The sequence of phase formation with the calcining temperatures ranging from 1773 K to 1853 K was followed by O′-Sialon→SiC + Si3N4→SiC in samples with C/SiO2  =  1 : 1–4 : 1. Ca-α-Sialon formed in samples with C/SiO2  =  5 : 1 and 6 : 1. The results highlighted that series of reactions happening sensitively depended on C/SiO2 and the temperature and demonstrated that the carbothermal nitridation provided an alternative for converting RHA waste into composite ceramic powders.

  7. Ash transformation in suspension fired boilers co-firing coal and straw

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn

    of flue gas cleaning equipment. This survey includes discussions on the inorganic constituents transformation during straw and coal combustion, alkali-ash and alkali sulfur reactions, a survey of power plant and test rig co-firing experiments, a discussion of equilibrium calculations, a discussion......In this literature report is provided a status for the present knowledge level on ash properties when co-firing coal and biomass. The fly ash formed in boilers using co-firing of coal and straw do have a large influence on ash deposit formation, boiler corrosion, fly ash utilization and operation...... of alkali getter experiments and a discussion of modeling of alkali reaction with kaolin. Presently there is still a need for a better understanding of especially the reaction of potassium with coal ash, thereby making better predictions of co-firing ash properties....

  8. Landslide susceptibility assessment in ash-fall pyroclastic deposits surrounding Mount Somma-Vesuvius: Application of geophysical surveys for soil thickness mapping

    Science.gov (United States)

    De Vita, P.; Agrello, D.; Ambrosino, F.

    2006-06-01

    Along the steep slopes of the carbonate mountains that surround the Campanian Plain and Mount Somma-Vesuvius, rainfall-triggered debris slides occur in unconsolidated ash-fall pyroclastic deposits. The initial debris slides evolve into debris flows that often cause significant property damage and loss of human life in the towns located at the foot of the slopes. In this particular geological situation, the pyroclastic soil thickness, the slope angle, and the morphological variations of the slope profile are the most important factors that contribute to landslide susceptibility. In this paper, the results of an experimental application of shallow resistivity and refraction seismic soundings in mapping the thickness of pyroclastic soils are presented. These geophysical methods are proposed as low-cost and versatile methods to be used in the difficult morphological conditions of the steep slopes in which debris-slides initiate. The methods have been used experimentally in a sample area located on the upper slope of Mount Pizzo d'Alvano, from which debris flows initiated that dramatically hit the town of Sarno on 5-6 May 1998. The inversion of geoelectrical soundings has been calibrated with resistivity values measured directly on pyroclastic outcrops and with soil thickness estimations derived from refraction seismic soundings and from the application of a mobile dynamic penetrometer. The results of the field experimentation can be summarised as follows: (i) unconsolidated ash-fall pyroclastic deposits, ranging in particle size from fine ash to lapilli, can be differentiated from fractured carbonate bedrock by means of electrical resistivity and velocity values of longitudinal seismic waves; (ii) thickness of ash-fall pyroclastic soils can be empirically related to the slope angle using an inverse relationship; and (iii) the empirical model has been applied to Digital Elevation Model data, allowing pyroclastic soil thickness mapping in the sample area.

  9. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    Science.gov (United States)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to

  10. Experiments on effects of coal particle ash content on ash formation during fluidized bed combustion%流化床燃烧中煤含灰量对灰渣形成特性的影响

    Institute of Scientific and Technical Information of China (English)

    王勤辉; 徐志; 刘彦鹏; 骆仲泱; 倪明江

    2012-01-01

    为了研究煤颗粒灰质量分数对煤在流化床燃烧过程中灰渣形成特性的影响,在一台小型流化床反应炉上进行煤的灰质量分数对灰渣形成特性的实验.按煤颗粒的灰质量分数,把义马烟煤分为6个颗粒组,并选用各颗粒组的3个粒径范围的煤颗粒进行燃烧实验,研究煤颗粒的灰质量分数对底渣质量分数、底渣与飞灰中的碳量质量分数和粒径分布的影响.结果表明,随着煤颗粒灰质量分数的增加,燃烧形成的底渣质量分数增加,而煤颗粒的燃尽率和飞灰中的碳质量分数都降低.在粒径和燃烧时间相同的条件下,随着颗粒灰质量分数的增加,底渣中留在本粒径档的颗粒质量分数明显增加,而细颗粒的质量分数明显减少.而颗粒灰质量分数对飞灰的粒径分布没有明显的影响.%To investigate the influences of coal particle ash content on the ash formation behaviors during fluidized bed combustion, experiments were conducted on a bench-scale fluidized bed combustor. Yima bituminous coal samples were divided into 6 ranks with different ash content. For every rank of coal sample, 3 size ranges were used in the experiments. The results show that the mass fraction of the bottom residue increases with the ash content of the coal particles, while the burnout of coal particles and the carbon content of the fly ash decrease with the ash content of coal particles. The mass fraction of the bottom residues which have the same size range as the initial size range of the coal particles increases with the ash content. While the ash content of coal particles has no obvious influence on the size distribution of the fly ash.

  11. Depositional conditions of the coal-bearing Hirka Formation beneath late Miocene explosive volcanic products in NW central Anatolia, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Sener, M. [Nigde University, Nigde (Turkey). Dept. of Geology

    2007-04-15

    This work focuses on the relationship between the coal deposition and explosive volcanism of the Miocene basin, NW central Anatolia, Turkey. The coal-bearing Hirka Formation was deposited over the Galatian Andesitic Complex and/or massive lagoonal environments during the Miocene. The investigated lignite is a high ash (from 32 to 58%) and sulphur (from 1.43 to 3.03%) lignite which is petrographically characterised by a high humunite content. The mineral matter of the studied lignite samples is made up of mainly clay minerals (illite-smectite and kaolinite), plagioclase and quartz in Bolu coal field, clay minerals (illite-smectite, smectite and illite), quartz, calcite, plagioclase and gypsum in Seben coal field, quartz, K-feldspar, plagioclase and clay minerals (kaolinite and illite) in Kibriscik, and dolomite, quartz, clinoptilolite, opal CT and gypsum in Camhdere coal field. The differences in these four types of lignite with specific mineralogical patterns may be due to the explosive volcanic events and depositional conditions which changed from one coal field to the others. There is a zonation from SW to SE in the studied area for zeolites. Carbonate minerals are commonly calcite in Seben and Kibriscik coal fields. In Bolu, coal samples are devoid of calcite and dolomite. These analyses show that there is an increase in the amount of Mg and a decrease in the amount of Na from the northwestern part to the southern part in the study area.

  12. Fly Ash Formation during Suspension-Firing of Biomass. Effects of Residence Time and Fuel-Type

    DEFF Research Database (Denmark)

    Damø, Anne Juul; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    The objective of this work was to generate comprehensive data on the formation of residual fly ash during the initial stages of suspension-firing of biomass. Combustion experiments were carried out with pulverized biomass fuels (two straw fuels and two wood fuels), in an entrained flow reactor...... at 1200-1400 °C, simulating full-scale suspension-firing of biomass. By the use of a movable, cooled and quenched gas/particle sampling probe, samples were collected at different positions along the vertical axis in the reactor, corresponding to gas residence times ranging from 0.25 – 2.0s. The collected...... particles were subjected to various analyses, including char burnout level, particle size distribution, elemental composition, and particle morphology and composition. Furthermore, the transient release, i.e. the vaporization of the flame-volatile inorganic elements K, Cl and S, from the burning fuel...

  13. Deposit model for volcanogenic uranium deposits

    Science.gov (United States)

    Breit, George N.; Hall, Susan M.

    2011-01-01

    Volcanism is a major contributor to the formation of important uranium deposits both close to centers of eruption and more distal as a result of deposition of ash with leachable uranium. Hydrothermal fluids that are driven by magmatic heat proximal to some volcanic centers directly form some deposits. These fluids leach uranium from U-bearing silicic volcanic rocks and concentrate it at sites of deposition within veins, stockworks, breccias, volcaniclastic rocks, and lacustrine caldera sediments. The volcanogenic uranium deposit model presented here summarizes attributes of those deposits and follows the focus of the International Atomic Energy Agency caldera-hosted uranium deposit model. Although inferred by some to have a volcanic component to their origin, iron oxide-copper-gold deposits with economically recoverable uranium contents are not considered in this model.

  14. Mechanisms of fat, oil and grease (FOG) deposit formation in sewer lines.

    Science.gov (United States)

    He, Xia; de los Reyes, Francis L; Leming, Michael L; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J

    2013-09-01

    FOG deposits in sewer systems have recently been shown to be metallic salts of fatty acids. However, the fate and transport of FOG deposit reactant constituents and the complex interactions during the FOG deposit formation process are still largely unknown. In this study, batch tests were performed to elucidate the mechanisms of FOG deposit formation that lead to sanitary sewer overflows (SSOs). We report the first formation of FOG deposits on a concrete surface under laboratory conditions that mimic the formation of deposits in sewer systems. Results showed that calcium, the dominant metal in FOG deposits, can be released from concrete surfaces under low pH conditions and contribute to the formation process. Small amounts of additional oil to grease interceptor effluent substantially facilitated the air/water or pipe surface/water interfacial reaction between free fatty acids and calcium to produce surface FOG deposits. Tests of different fatty acids revealed that more viscous FOG deposit solids were formed on concrete surfaces, and concrete corrosion was accelerated, in the presence of unsaturated FFAs versus saturated FFAs. Based on all the data, a comprehensive model was proposed for the mechanisms of FOG deposit formation in sewer systems.

  15. An ecophysiological study of plants growing on the fly ash deposits from the "Nikola Tesla-A" thermal power station in Serbia.

    Science.gov (United States)

    Pavlović, Pavle; Mitrović, Miroslava; Djurdjević, Lola

    2004-05-01

    This ecophysiological research on the ash deposits from the "Nikola Tesla-A" thermal power station in Serbia covered 10 plant species (Tamarix gallica, Populus alba, Spiraea van-hauttei, Ambrosia artemisifolia, Amorpha fruticosa, Eupatorium cannabinum, Crepis setosa, Epilobium collinum, Verbascum phlomoides, and Cirsium arvense). This paper presents the results of a water regime analysis, photosynthetic efficiency and trace elements (B, Cu, Mn, Zn, Pb, and Cd) content in vegetative plant parts. Water regime parameters indicate an overall stability in plant-water relations. During the period of summer drought, photosynthetic efficiency (Fv/Fm) was low, ranging from 0.429 to 0.620 for all the species that were analyzed. An analysis of the tissue trace elements content showed a lower trace metal concentration in the plants than in the ash, indicating that heavy metals undergo major concentration during the combustion process and some are not readily taken up by plants. The Zn and Pb concentrations in all of the examined species were normal whereas Cu and Mn concentrations were in the deficiency range. Boron concentrations in plant tissues were high, with some species even showing levels of more than 100 microg/g (Populus sp., Ambrosia sp., Amorpha sp., and Cirsium sp.). The presence of Cd was not detected. In general, it can be concluded from the results of this research that biological recultivation should take into account the existing ecological, vegetation, and floristic potential of an immediate environment that is abundant in life forms and ecological types of plant species that can overgrow the ash deposit relatively quickly. Selected species should be adapted to toxic B concentrations with moderate demands in terms of mineral elements (Cu and Mn).

  16. Stratigraphy, correlation, depositional setting, and geophysical characteristics of the Oligocene Snowshoe Mountain Tuff and Creede Formation in two cored boreholes

    Science.gov (United States)

    Larsen, Daniel; Nelson, Philip H.

    2000-01-01

    Core descriptions and geophysical logs from two boreholes (CCM-1 and CCM-2) in the Oligocene Snowshoe Mountain Tuff and Creede Formation, south-central Colorado, are used to interpret sedimentary and volcanic facies associations and their physical properties. The seven facies association include a mixed sequence of intracaldera ash-flow tuffs and breccias, alluvial and lake margin deposits, and tuffaceous lake beds. These deposits represent volcanic units related to caldera collapse and emplacement of the Snowshoe Mountain Tuff, and sediments and pyroclastic material deposited in the newly formed caldera basin, Early sedimentation is interpreted to have been rapid, and to have occurred in volcaniclastic fan environments at CCM-1 and in a variery of volcaniclastic fan, braided stream shallow lacustrine, and mudflat environments at CCM-2. After an initial period of lake-level rise, suspension settling, turbidite, and debris-flow sedimentation occurred in lacustrine slope and basin environments below wave base. Carbonate sedimentation was initially sporadic, but more continuous in the latter part of the recorded lake history (after the H fallout tuff). Sublacustrine-fan deposition occurred at CCM-1 after a pronounced lake-level fall and subsequent rise that preceded the H tuff. Variations in density, neutron, gamma-ray, sonic, and electrical properties of deposits penetrated oin the two holes reflect variations in lithology, porosity, and alteration. Trends in the geophysical properties of the lacustrine strata are linked to downhole changes in authigenic mineralology and a decrease in porosity interpreted to have resulted primarily from diagenesis. Lithological and geophysical characteristics provide a basis for correlation of the cores; however, mineralogical methods of correlation are hampered by the degree of diagenesis and alteration.

  17. The use of Numerical Weather Prediction and a Lagrangian transport (NAME-III) and dispersion (ASHFALL) models to explain patterns of observed ash deposition and dispersion following the August 2012 Te Maari, New Zealand eruption

    Science.gov (United States)

    Turner, Richard; Moore, Stuart; Pardo, Natalia; Kereszturi, Gabor; Uddstrom, Michael; Hurst, Tony; Cronin, Shane

    2014-10-01

    The August 6, 2012 Te Maari, New Zealand eruption produced a very small ash-dominated plume (~ 230,000 m3, 8-10 km high) that was rapidly and widely dispersed, covering 1600 km2 within an hour. This paper documents for the August 6, 2012 Te Maari eruption the upper level (troposphere) plume movement based on ash-detection algorithms applied to IR satellite imagery. It also presents the distribution of airborne ash and wind-influenced ashfall as determined by NAME-III aerial dispersion modelling using observed particle characteristics and grain size distribution measurements (that are also presented) and compares the ashfall with observations. The upper level (troposphere) ash movement was also evaluated from ash-detection algorithms, applied to infra-red satellite imagery and the resulting distributions were compared to those forecast by the numerical dispersion models. Forecasts of upper level ash-dispersion patterns explained the satellite imagery observations well, predicting the correct altitudes when using plausible ash size distributions and release levels. Patterns in proximal ashfall could only be partly explained by aerial dispersal of large particles released at low altitudes in the eruption column. The extreme distal (100-150 km away) observed ashfall distributions also cannot be fully explained by NAME-III when using: reasonably prescribed initial particle size distributions, eruption column height, eruption timing, well forecast winds, and dry sedimentation processes. Aggregation and ice nucleation effects (observed in deposits) were not included in the ash dispersion model, but appear as a plausible mechanism to account for the observed fraction of wind dispersed ash particles < 30 μm deposited but not captured by the models.

  18. Experimental and modeling study of de novo formation of PCDD/PCDF on MSW fly ash

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-dong; ZHANG Ji; YAN Jian-hua; CEN Ke-fa; RYAN Shawn P; GULLETT Brian K; LEE Chunwai

    2007-01-01

    The effect of sulfur dioxide (SO2) on formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) has been studied in an entrained-flow reactor (EFR) under simulated waste combustion conditions. A chlorination model based on conditional probability was employed to evaluate the homologue patterns of PCDDs and PCDFs. Results revealed that the presence of SO2 did not change the formation pathway although SO2 suppressed PCDD/F formation. The model prediction of PCDF showed good agreement with the experimental data (R=0.95) while the prediction for PCDDs was not as good. This may be explained because potential chlorination pathways play a significant role in PCDF formation, while PCDDs are mainly formed through condensation reactions. Furthermore, the result indicated that the steric hindrance during formation has more effects on PCDD than on PCDF due to the symmetric molecule structures of PCDDs.

  19. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    Ash formation during the fluidized bed combustion (FBC) of pulp and paper mill sludges has been experimentally studied on an industrial and bench scale. The methods included aerosol measurements, chemical and crystalline composition analyses, thermogravimetry and electron microscopy. Fly ash mass and number size distributions and elemental enrichment in submicron particles and bottom ash were measured. Fly ash, bottom ash and ash deposits were characterized and their formation mechanisms are discussed. During combustion the fine paper-making additives in sludge, clay minerals and calcite, sintered fanning porous agglomerates. The fly ash mass mean size was 7.5 - 15 lam and the supermicron particles included 93.6 - 97.3 % of the fly ash. Condensation of the volatilized inorganic species formed spherical submicron particles in the fly ash. Their mass concentration was almost negligible when co-firing paper mill sludges and wood. This suggests that the fraction of the volatilized inorganic species in the paper mill sludges was low. Results from pulp mill sludge and bark co-firing were different. A clear mass mode below 0.3 pm, presenting 2.2 - 5.0 weight-% of the fly ash was detected. The condensed species included K, Na, S and Cl. Their mass fraction was higher in the pulp mill sludge than in the paper mill sludge. Evidently this resulted in increased volatilization and formation of condensed particles. The following trace elements were enriched in the submicron ash during pulp mill sludge and wood co-firing: As, Cd, Rb and Pb. The main part of the volatile species was, however, captured in the bulk ash. Presumably, this was due to the high surface area concentration in the bulk ash. Sludge moisture was observed to reduce the inorganic species volatilization. Probably steam vaporization from the wet sludge through the burning layer decreased combustion temperatures on char surface and less char was produced. Hence, the volatilization of ash forming species was

  20. Modeling transport and aggregation of volcanic ash particles

    Science.gov (United States)

    Costa, Antonio; Folch, Arnau; Macedonio, Giovanni; Durant, Adam

    2010-05-01

    A complete description of ash aggregation processes in volcanic clouds is an very arduous task and the full coupling of ash transport and ash aggregation models is still computationally prohibitive. A large fraction of fine ash injected in the atmosphere during explosive eruptions aggregate because of complex interactions of surface liquid layers, electrostatic forces, and differences in settling velocities. The formation of aggregates of size and density different from those of the primary particles dramatically changes the sedimentation dynamics and results in lower atmospheric residence times of ash particles and in the formation of secondary maxima of tephra deposit. Volcanic ash transport models should include a full aggregation model accounting for all particle class interaction. However this approach would require prohibitive computational times. Here we present a simplified model for wet aggregation that accounts for both atmospheric and volcanic water transport. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average efficiencies factors, and collision frequency functions accounting for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, such as the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. Moreover, understanding aggregation processes in volcanic clouds will contribute to mitigate the risks related with volcanic ash transport and sedimentation.

  1. Suppression of fine ash formation in pulverized coal flames. Final technical report, September 30, 1992--January 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kramlich, J.C.; Chenevert, B.; Park, Jungsung; Hoffman, D.A.; Butcher, E.K.

    1996-07-19

    Coal ash, and particularly fine fly ash, remain one of the principal practical and environmental problems in coal-based power generation. In particular, submicron aerosols are identified with direct inhalation risk. Submicron ash is thought to arise from mineral vaporization during char combustion, followed by nucleation, condensation and coagulation to yield an aerosol. While aerosols are predominantly made out of volatile alkali minerals, they also can include refractory oxides that are chemically reduced to more volatile forms within the char particle and vaporized. Most of the ash of size greater than 1 {mu}m is generated by agglomeration of mineral as the char particle bums out. These two principal mechanisms are thought to account for most of the ash generated in coal combustion. Previous research has shown that various forms of coal treatment can influence the yields of fine ash from combustion. The research reported here investigates various forms of treatment, including physical coal cleaning, aerodynamic sizing, degree of grinding, and combinations of these on both aerosol yields and on yields of fine residual ash (1-4 {mu}m). The work also includes results from the combustion of artificial chars that include individual mineral elements. This research shows that these various forms of coal treatment can significantly change ash characteristics. While none of the treatments affected the bulk of the residual ash size distribution significantly, the yield of the ash aerosol mode (d<0.5 {mu}m) and fine residual ash mode (1-4 {mu}m) are changed by the treatments.

  2. Investigation of the deposit formation in pipelines connecting liquefaction reactors; 1t/d PSU ni okeru ekika hanno tokan fuchakubutsu no seisei yoin ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Y.; Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Mochizuki, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan)

    1996-10-28

    The liquefaction reaction system of an NEDOL process coal liquefaction 1t/d PSU was opened and checked to investigate the cause of the rise of differential pressure between liquefaction reactors of the PSU. The liquefaction test at a coal concentration of 50 wt% using Tanito Harum coal was conducted, and it was found that the differential pressure between reactors was on the increase. By the two-phase flow pressure loss method, deposition thickness of deposit in pipelines was estimated at 4.4mm at the time of end operation, which agreed with a measuring value obtained from a {gamma} ray. The rise of differential pressure was caused by deposit formation in pipelines connecting reactors. The main component of the deposit is calcite (CaCO3 60-70%) and is the same as the usual one. It is also the same type as the deposit on the reactor wall. Ca in coal ash is concerned with this. To withdraw solid matters deposited in the reactor, there are installed pipelines for the withdrawal at the reactor bottom. The solid matters are regularly purged by reverse gas for prevention of clogging. As the frequency of purge increases, the deposit at the reactor bottom decreases, but the deposit attaches strongly to pipelines connecting reactors. It is presumed that this deposit is what Ca to be discharged out of the system as a form of deposition solid matter naturally in the Ca balance precipitated as calcite in the pipeline connecting the reactor. 3 refs., 5 figs., 4 tabs.

  3. In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: effect of anti-dust treatments on five groups of arthropods.

    Science.gov (United States)

    Tropek, Robert; Cerna, Ilona; Straka, Jakub; Kocarek, Petr; Malenovsky, Igor; Tichanek, Filip; Sebek, Pavel

    2016-07-01

    Recently, fly ash deposits have been revealed as a secondary refuge of critically endangered arthropods specialised on aeolian sands in Central Europe. Simultaneously, these anthropogenic habitats are well known for their negative impact on human health and the surrounding environment. The overwhelming majority of these risks are caused by wind erosion, the substantial decreasing of which is thus necessary. But, any effects of anti-dust treatments on endangered arthropods have never been studied. We surveyed communities of five arthropod groups (wild bees and wasps, leafhoppers, spiders, hoverflies and orthopteroid insects) colonising three fly ash deposits in the western Czech Republic. We focused on two different anti-dust treatments (~70 and 100 % cover of fly ash by barren soil) and their comparison with a control of bare fly ash. Altogether, we recorded 495 species, including 132 nationally threatened species (eight of them were considered to be extinct in the country) and/or 30 species strictly specialised to drift sands. Bees and wasps and leafhoppers contained the overwhelming majority of species of the highest conservation interest; a few other important records were also in spiders and orthopteroids. Total soil cover depleted the unique environment of fly ash and thus destroyed the high conservation potential of the deposits. On the other hand, partial coverage (with ~30 % of bare fly ash) still offered habitats for many of the most threatened species, as we showed by both regression and multivariate analyses, with a decrease of wind erosion. This topic still needs much more research interest, but we consider mosaic-like preservation of smaller spots of fly ash as one of the possible compromises between biodiversity and human health.

  4. Refined depositional history and dating of the Tongaporutuan reference section, north Taranaki, New Zealand: new volcanic ash U-Pb zircon ages, biostratigraphy and sedimentation rates

    Science.gov (United States)

    Maier, K.L.; Crundwell, Martin P.; Coble, Matthew A.; Kingsley-Smith, Peter R.; Graham, Stephan A.

    2016-01-01

    This study presents new radiometric ages from volcanic ash beds within a c. 1900 m thick, progradational, deep-water clastic slope succession of late Miocene age exposed along the north Taranaki coast of the North Island, New Zealand. The ash beds yield U–Pb zircon ages ranging from 10.63 ± 0.65 Ma to 8.97 ± 0.22 Ma. The new ages are compatible with and provide corroboration of New Zealand Tongaporutuan Stage planktic foraminiferal and bolboformid biostratigraphic events identified in the same section. The close accord between these two age datasets provides a stratigraphically consistent and coherent basis for examining margin evolution. The arrival of a prograding clastic wedge and ensuing upward shoaling is recorded by sedimentation rates c. 2000 m/Ma–1 that are an order of magnitude higher than sedimentation rates on the precursor deep basin floor. This outcrop study provides new constraints for interpreting analogous subsurface deposits in Taranaki Basin and complements the regional late Miocene biostratigraphic dating framework.

  5. Quantifying fat, oil, and grease deposit formation kinetics

    Science.gov (United States)

    Fat, oil, and grease (FOG) deposits formed in sanitary sewers are calcium-based saponified solids that are responsible for a significant number of nationwide sanitary sewer overflows (SSOs) across United States. In the current study, the kinetics of lab-based saponified solids were determined to un...

  6. Supercritical fluid molecular spray film deposition and powder formation

    Science.gov (United States)

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  7. Formation of obsidian pyroclasts by sintering of ash particles in the volcanic conduit

    Science.gov (United States)

    Gardner, James E.; Llewellin, Edward W.; Watkins, James M.; Befus, Kenneth S.

    2017-02-01

    The ranges in intensity and style of volcanic eruptions, from highly explosive Plinian eruptions to quiescent lava extrusions, depend on the style and efficiency of gas loss from ascending magma. Obsidian pyroclasts - small, glassy pieces of quenched magma found in some volcanic tephra beds - may preserve valuable information about magma degassing in their vesicle textures and volatile contents. Accurate interpretation of their textures and volatiles, however, requires understanding the mechanism of formation of the pyroclasts. Obsidian pyroclasts from the ca. 1325-1350 C.E. North Mono eruption of Mono Craters (CA, USA) were analyzed and found to have H2O and CO2 contents indicating that they were formed at pressures in the approximate range of 3-40 MPa. Many also contain domains with differing vesicle textures, separated by boundaries containing xenocrystic material, indicating that they are composed of smaller fragments that have sutured together. More than half of the pyroclasts analyzed contained small (∼10 μm), highly distorted vesicles, with multi-cuspate morphology, interpreted as the remnants of interstitial gas trapped amongst sintered fragments of melt/glass. Rounded vesicles are also common and are interpreted to result from surface tension-driven relaxation of the distorted vesicles. Calculated timescales of sintering and relaxation are consistent with timescales for pyroclast formation indicated by H2O re-equilibration within the heterogeneous pyroclasts. This sintering model for the origin of obsidian pyroclasts is further supported by the observation that spherical vesicles are found mainly in H2O-rich pyroclasts, and distorted vesicles mainly in H2O-poor pyroclasts. We conclude that obsidian pyroclasts generated during the North Mono eruption were formed by cycles of fragmentation, sintering/suturing, and relaxation, over a very wide range of depths within the conduit; we find no evidence to support pumice (foam) collapse as the formation

  8. Depositional conditions of the coal-bearing Hirka Formation beneath Late Miocene explosive volcanic products in NW central Anatolia, Turkey

    Indian Academy of Sciences (India)

    Mehmet Şener

    2007-04-01

    This work focuses on the relationship between the coal deposition and explosive volcanism of the Miocene basin, NW central Anatolia, Turkey. The coal-bearing Hirka Formation was deposited over the Galatian Andesitic Complex and/or massive lagoonal environments during the Miocene. The investigated lignite is a high ash (from 32 to 58%) and sulphur (from 1.43 to 3.03%) lignite which is petrographically characterised by a high humunite content. The mineral matter of the studied lignite samples is made up of mainly clay minerals (illite–smectite and kaolinite), plagioclase and quartz in Bolu coal field, clay minerals (illite–smectite, smectite and illite), quartz, calcite, plagioclase and gypsum in Seben coal field, quartz, K-feldspar, plagioclase and clay minerals (kaolinite and illite) in Kıbrıscık, and dolomite, quartz, clinoptilolite, opal CT and gypsum in C¸ amlıdere coal field. The differences in these four types of lignite with specific mineralogical patterns may be due to the explosive volcanic events and depositional conditions which changed from one coal field to the others. There is a zonation from SW to SE in the studied area for zeolites such as Opal CT+smectite-clinoptilolite-analcime-K-feldspar. Carbonate minerals are commonly calcite in Seben and Kıbrıscık coal fields. In Bolu, coal samples are devoid of calcite and dolomite. These analyses show that there is an increase in the amount of Mg and a decrease in the amount of Na from the northwestern part to the southern part in the study area.

  9. High ash fuels for diesel engines II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Norrmen, E.; Vestergren, R.; Svahn, P. [Wartsila Diesel International Ltd, Vaasa (Finland)

    1996-12-01

    Heavy fuel oils containing a large amount of ash, that is used in some geographically restricted areas, can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The Liekki 2 programs Use of high ash fuel in diesel power plants I and II have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuel with a very high ash content. The chemistry, sintering, melting, and corrosiveness of deposits from different part of the diesel engine and on different exhaust valve materials, as well as the chemistry in different depths of the deposit have been investigated. Theories for the mechanisms mentioned above have been developed. Additives changing the sintering/melting point and physical properties of the formed deposits have been screened. Exhaust gas particle measurements have been performed when running on high ash fuel, both without deposit modifying fuel additive and with. The results have been used to verify the ABC (Aerosol Behaviour in Combustion) model, and the particle chemistry and morphology has been examined. Several tests, also high load endurance tests have been run in diesel engines with high ash fuels. (author)

  10. Formation of calcium aluminates in the lime sinter process. [Extraction of alumina from fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Chou, K.S.

    1980-03-01

    A study of the formation of several calcium aluminates from pure components in the lime sinter process was undertaken to determine the kinetics of formation and subsequent leaching using a dilute sodium carbonate solution. The composition CaO 61.98%, SiO/sub 2/ 26.67%, and Al/sub 2/O/sub 3/ 11.53% was used. Isothermal sintering runs of 0.2 to 10.0 h were carried out at 1200, 1250, 1300, and 1350/sup 0/C. When the sintering temperature was below the eutectic temperature (1335/sup 0/C), the ternary mixture behaved like two binary systems, i.e. CaO-Al/sub 2/O/sub 3/ and CaO-SiO/sub 2/. Only one compound, 3CaO.SiO/sub 2/, was formed between CaO and SiO/sub 2/. With lower sintering temperature and shorter sintering time, the ..beta..-phase was dominant. However, when both temperature and time increased, more and more of the ..beta..-C/sub 2/S was transformed into the ..gamma..-phase. Several different aluminates were formed during the sintering of CaO and Al/sub 2/O/sub 3/. The compounds CaO.Al/sub 2/O/sub 3/ and 3CaO.Al/sub 2/O/sub 3/ were observed at all tested sintering temperatures, while the 5CaO.3Al/sub 2/O/sub 3/ phase was found only at 1200/sup 0/C and 12CaO.7Al/sub 2/O/sub 3/ at 1250/sup 0/C or higher. The first compound formed between CaO and Al/sub 2/O/sub 3/ was probably 12CaO.7Al/sub 2/O/sub 3/, but the amount did not increase immediately with time. The first dominant compound between CaO and Al/sub 2/O/sub 3/ was CaO.3Al/sub 2/O/sub 3/. When the calcium ion diffused through the product layer of CaO.Al/sub 2/O/sub 3/, 3CaO.Al/sub 2/O/sub 3/ was formed. If unreacted Al/sub 2/O/sub 3/ were present after the formation of CaO.Al/sub 2/O/sub 3/, CaO.2Al/sub 2/O/sub 3/ would form. Subsequent leaching of the sinters showed that the extractable alumina in the products increased with both sintering temperature and time, reaching a max of about 90%. These extraction data corresponded very well to the quantities of aluminates in the sinters. 59 figures, 13 tables.

  11. Mineralogical composition of boiler fouling and slagging deposits and their relation to fly ashes: the case of Kardia power plant.

    Science.gov (United States)

    Kostakis, George

    2011-01-30

    Slagging and fouling deposits from a pulverized lignite fired steam generating unit of the Kardia power plant (West Macedonia, Greece) were mineralogically investigated. The structure and cohesion of these deposits varied, usually depending on the level height of the boiler unit where they were formed. Some of the deposits had complex phase composition. The dominant components of the deposits of the burner zone and of the lower and intermediate boiler zones were the amorphous, anhydrite and hematite, while those of the highest levels contained amorphous, and anhydrite. Furthermore, in deposits formed in various other boiler areas gehlenite, anorthite, diopside, quartz, Ca(2)SiO(4), brownmillerite and other crystalline phases were also identified, usually in low amounts or in traces. The major part of the phases constituting the deposits were formed in the boiler, since only a minor part derived from the unreacted minerals present in lignite. Anhydrite was generated from the reaction of SO(2) with CaO formed mainly by the calcination of calcite as well as from dehydration of gypsum contained in lignite, while hematite was produced mainly from the oxidation of pyrite. The calcium-containing silicates formed in the boiler were mainly the products of reactions between CaO and minerals contained in the lignite.

  12. Role of CO2 in the formation of gold deposits.

    Science.gov (United States)

    Phillips, G N; Evans, K A

    2004-06-24

    Much of global gold production has come from deposits with uneconomic concentrations of base metals, such as copper, lead and zinc. These 'gold-only' deposits are thought to have formed from hot, aqueous fluids rich in carbon dioxide, but only minor significance has been attached to the role of the CO2 in the process of gold transport. This is because chemical bonding between gold ions and CO2 species is not strong, and so it is unlikely that CO2 has a direct role in gold transport. An alternative indirect role for CO2 as a weak acid that buffers pH has also appeared unlikely, because previously inferred pH values for such gold-bearing fluids are variable. Here we show that such calculated pH values are unlikely to record conditions of gold transport, and propose that CO2 may play a critical role during gold transport by buffering the fluid in a pH range where elevated gold concentration can be maintained by complexation with reduced sulphur. Our conclusions, which are supported by geochemical modelling, may provide a platform for new gold exploration methods.

  13. Diagenesis, provenance and depositional environments of the Bunter Sandstone Formation

    DEFF Research Database (Denmark)

    Olivarius, Mette; Weibel, Rikke; Friis, Henrik

    The Bunter Sandstone Formation in the northern North German Basin has large geothermal potential with high porosity and permeability (generally >15% and >100 mD, respectively) and with pore fluid temperatures that are adequate for geothermal energy production (c. 55–60˚C). A combined investigatio...

  14. Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell.

    Science.gov (United States)

    Saarikangas, Juha; Caudron, Fabrice; Prasad, Rupali; Moreno, David F; Bolognesi, Alessio; Aldea, Martí; Barral, Yves

    2017-03-20

    In order to produce rejuvenated daughters, dividing budding yeast cells confine aging factors, including protein aggregates, to the aging mother cell. The asymmetric inheritance of these protein deposits is mediated by organelle and cytoskeletal attachment and by cell geometry. Yet it remains unclear how deposit formation is restricted to the aging lineage. Here, we show that selective membrane anchoring and the compartmentalization of the endoplasmic reticulum (ER) membrane confine protein deposit formation to aging cells during division. Supporting the idea that the age-dependent deposit forms through coalescence of smaller aggregates, two deposits rapidly merged when placed in the same cell by cell-cell fusion. The deposits localized to the ER membrane, primarily to the nuclear envelope (NE). Strikingly, weakening the diffusion barriers that separate the ER membrane into mother and bud compartments caused premature formation of deposits in the daughter cells. Detachment of the Hsp40 protein Ydj1 from the ER membrane elicited a similar phenotype, suggesting that the diffusion barriers and farnesylated Ydj1 functioned together to confine protein deposit formation to mother cells during division. Accordingly, fluorescence correlation spectroscopy measurements in dividing cells indicated that a slow-diffusing, possibly client-bound Ydj1 fraction was asymmetrically enriched in the mother compartment. This asymmetric distribution depended on Ydj1 farnesylation and intact diffusion barriers. Taking these findings together, we propose that ER-anchored Ydj1 binds deposit precursors and prevents them from spreading into daughter cells during division by subjecting them to the ER diffusion barriers. This ensures that the coalescence of precursors into a single deposit is restricted to the aging lineage.

  15. Combustion Chamber Deposits and PAH Formation in SI Engines Fueled by Producer Gas from Biomass Gasification

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Schramm, Jesper

    2003-01-01

    Investigations were made concerning the formation of combustion chamber deposits (CCD) in SI gas engines fueled by producer gas. The main objective was to determine and characterise CCD and PAH formation caused by the presence of the light tar compounds phenol and guaiacol in producer gas from an...

  16. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  17. Mineralogy of the hardpan formation processes in the interface between sulfide-rich sludge and fly ash: Applications for acid mine drainage mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Nieto, J.M.; Alvarez-Valero, A.M.; De Almodovar, G.R. [University of Huelva, Huelva (Spain). Dept. of Geology

    2007-11-15

    In the present study, experiments in non-saturated leaching columns were conducted to characterize the neoformed phases that precipitate at the interface between two waste residues having different chemical characteristics: an acid mine drainage producer residue (i.e., pyritic sludge) and an acidity neutralizer residue (i.e., coal combustion fly ash). A heating source was placed on top of one of the columns to accelerate oxidation and precipitation of newly formed phases, and thus, to observe longer-scale processes. When both residues are deposited together, the resulting leachates are characterized by alkaline pH, and low sulfate and metal concentrations. Two mechanisms help to improve the quality of the leachates. Over short-time scales, the leaching of pyrite at high pH (as a consequence of fly ash addition) favors the precipitation of ferrihydrite, encapsulating the pyrite grains and attenuating the oxidation process. Over longer time scales, a hardpan is promoted at the interface between both residues due to the precipitation of ferrihydrite, jarosite, and a Ca phase-gypsum or aragonite, depending on carbonate ion activity. Geochemical modeling of leachates using PHREEQC software predicted supersaturation in the observed minerals. The development of a relatively rigid crust at the interface favors the isolation of the mining waste from weathering processes, helped by the cementation of fly ash owing to aragonite precipitation, which ensures total isolation and neutralization of the mine residues.

  18. Dolomitization of Carbonate Periplatform Deposit,Machari Formation (Middle to Late Cambrian),Korea

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The petrography, the geochemistry and the burial history all constrain the origin and modification history of dolomites in an ancient periplatform carbonate slope deposit,the Machari Formation (late Miclclle to early Late Cambrian),Korea. The formation is mainly composed of rhythmic bedding. laminated to bedded lime mudstone alternating with argillaceous lime mudstone. The rhythmic bedding is a product of the deposition of offshore periplatform ooze and hemipelagic clay on a periplatform slope. This formation also shows minor and intermittent influx of other lithofacies including the bioclastic-peloidal packstone, peloidal wackestone, and intraclasts deposited as turbidites. Five types of dolomite occur in the Machari Formation, whose occurrence.texture and geochemistry provide an insight into origin and modification history.

  19. Volcanic ash melting under conditions relevant to ash turbine interactions.

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  20. Study of the various factors influencing deposit formation and operation of gasoline engine injection systems

    Science.gov (United States)

    Stepien, Z.

    2016-09-01

    Generally, ethanol fuel emits less pollutants than gasoline, it is completely renewable product and has the potential to reduce greenhouse gases emission but, at the same time can present a multitude of technical challenges to engine operation conditions including creation of very adverse engine deposits. These deposits increasing fuel consumption and cause higher exhaust emissions as well as poor performance in drivability. This paper describes results of research and determination the various factors influencing injector deposits build-up of ethanol-gasoline blends operated engine. The relationship between ethanol-gasoline fuel blends composition, their treatment, engine construction as well as its operation conditions and fuel injectors deposit formation has been investigated. Simulation studies of the deposit formation endanger proper functioning of fuel injection system were carried out at dynamometer engine testing. As a result various, important factors influencing the deposit creation process and speed formation were determined. The ability to control of injector deposits by multifunctional detergent-dispersant additives package fit for ethanol-gasoline blends requirements was also investigated.

  1. Use of high ash fuel in diesel power plants II; Korkean tuhkapitoisuuden omaavan polttoaineen kaeyttoe dieselvoimaloissa II

    Energy Technology Data Exchange (ETDEWEB)

    Vestergren, R.; Normen, E.; Hellen, G. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)] [and others

    1997-10-01

    Heavy fuel oils containing a large amount of ash are used in some geographically restricted areas. The ash components can cause problems with deposit formation and hot corrosion, leading to burned exhaust gas valves in some diesel engines. The LIEKKI 2 programs Use of high ash fuel in diesel power plants, Part I and II, have been initiated to clarify the mechanisms of deposit formation, and start and propagation of hot corrosion. The aim is to get enough knowledge to enable the development of the Waertsilae diesel engines to be able to handle heavy fuels with a very high ash content. The chemistry during combustion has been studied. The chemical and physical properties of the particles in the exhaust gas, of the deposits, and of exhaust valves have been investigated. Exhaust gas particle measurements have been performed when running on high ash fuel, both with and without deposit modifying fuel additive. Theories for the mechanisms mentioned above have been developed. On the practical side two long time field tests are going on, one with an ash/deposit modifying fuel additive (vanadium chemistry alteration), one with fuel water washing (sodium removal). Seven different reports have been written. (orig.)

  2. Site formation processes at Pinnacle Point Cave 13B (Mossel Bay, Western Cape Province, South Africa): resolving stratigraphic and depositional complexities with micromorphology.

    Science.gov (United States)

    Karkanas, Panagiotis; Goldberg, Paul

    2010-01-01

    Site PP13B is a cave located on the steep cliffs of Pinnacle Point near Mossel Bay in Western Cape Province, South Africa. The depositional sequence of the cave, predating Marine Isotopic Stage 11 (MIS 11) and continuing to present, is in the form of isolated sediment exposures with different depositional facies and vertical and lateral variations. Micromorphological analysis demonstrated that a suite of natural sedimentation processes operated during the development of the sequence ranging from water action to aeolian activity, and from speleothem formations to plant colonization and root encrustation. At the same time, anthropogenic sediments that are mainly in the form of burnt remains from combustion features (e.g., wood ash, charcoal, and burnt bone) were accumulating. Several erosional episodes have resulted in a complicated stratigraphy, as discerned from different depositional and post-depositional features. The cave is associated with a fluctuating coastal environment, frequent changes in sea level and climate controlled patterns of sedimentation, and the presence or absence of humans.

  3. Application of advanced technologies to ash-related problems in boilers

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States); Richards, G.; Harb, J. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.

    1995-01-01

    Prediction of ash behavior in boilers has, for many years, been based on relatively simple relationships involving the composition of inorganic material in fuels. In recent years, advanced analyses for both fuels and deposits have seen increasing use in the solid fuel combustion community. The combination of the standard and advanced analyses, together with a knowledge of boiler design and operating conditions, allow better interpretation of ash behavior in boilers than has previously been possible. This paper discusses several case histories where advanced technologies have been applied to interpret ash behavior in boilers where standard techniques were insufficient. Included in the discussion are: (1) the behavior of blends of fuels; (2) explanations for markedly different behavior between fuels with similar ASTM characteristics; and (3) effects of boiler operating conditions on ash deposit formation.

  4. Laboratory Studies of Ice Nucleation on Volcanic Ash

    Science.gov (United States)

    Tolbert, M. A.; Schill, G. P.; Genareau, K. D.

    2014-12-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect human respiratory health, atmospheric transport, and global climate. We have performed laboratory studies of the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (Basaltic Ash, Guatemala), Soufriere Hills (Andesetic Ash, Montserrat), and Taupo (Rhyolitic Ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. We find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice at ice saturation ratios of 1.05 ± 0.1. For immersion freezing, however, only the Taupo ash exhibited efficient heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  5. Tsunami characteristics and formation potential of sandy tsunami deposit in Sanriku Coast: implications from numerical modeling

    Science.gov (United States)

    Sugawara, D.; Haraguchi, T.; Takahashi, T.

    2013-12-01

    Geological investigation of paleotsunami deposit is crucial for knowing the history and magnitude of tsunami events in the past. Among various kinds of grain sizes, sandy tsunami deposit has been best investigated by previous studies, because of its potential for identification in the sedimentary column. Many sandy tsunami deposits have been found from coastal plains, which have sandy beach and low-lying wetlands. However, sandy tsunami deposits in narrow valleys at rocky ria coast have rarely been found. It may be presumed that formation potential of sandy tsunami layer in the rocky coasts is generally lower than coastal plains, because of the absence of sandy beach, tsunami run-up on steeper slope and stronger return flow. In this presentation, characteristics of the 2011 Tohoku-oki earthquake tsunami in Sanriku Coast, a continuous rocky ria coast located in the northeast Japan, is investigated based on numerical modeling. In addition, the formation potential of sandy tsunami deposit is also investigated based on numerical modeling of sediment transport. Preliminary result of tsunami hydrodynamics showed that the waveform and amplification of the tsunami are clearly affected by the local bathymetry, which is associated with submerged topography formed during the last glacial stage. Although the tsunami height in the offshore of each bay is around 8.0 m, the tsunami height at the bay head was increased in different way. The amplification factor at the bay head was typically 2.0 among most of V-shaped narrow embayments; meanwhile the amplification factor is much lower than 1.0 at some cases. The preliminary result of the modeling of sediment transport predicted huge amount of sediments may be suspended into the water column, given that sandy deposit is available there. Massive erosion and deposition of sea bottom sediments may commonly take place in the bays. However, formation of onshore tsunami deposit differs from each other. Whether the suspended sediments

  6. Hydroxyapatite formation on biomedical Ti–Ta–Zr alloys by magnetron sputtering and electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, and Research Center for Oral Disease Regulation of the Aged, School of Dentistry, Chosun University, Gwangju (Korea, Republic of); Brantley, William A. [Division of Prosthodontics and Restorative Science, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    The purpose of this study was to investigate hydroxyapatite formation on Ti-25Ta-xZr titanium alloys resulting from radio-frequency magnetron sputtering and electrochemical deposition. Electrochemical deposition of hydroxyapatite (HA) was first carried out using a cyclic voltammetry (CV) method at 80 °C in 5 mM Ca (NO{sub 3}){sub 2} + 3 mM NH{sub 4}H{sub 2}PO{sub 4}. Then a physical vapor deposition (PVD) coating was obtained by a radio-frequency (RF) magnetron sputtering technique. The microstructures, phase transformations, and morphologies of the hydroxyapatite films deposited on the titanium alloys were analyzed by optical microscopy (OM), X-ray diffractometer (XRD), energy dispersive X-ray spectroscopy (EDS) and field-emission scanning electron microscopy (FE-SEM). The morphologies of electrochemically deposited HA showed plate-like shapes on the titanium alloys, and the morphologies of the RF-sputtered HA coating had the appearance droplet particles on the plate-like precipitates that had formed by electrochemical deposition. For the RF-sputtered HA coatings, the Ca/P ratio was increased, compared to that for the electrochemically deposited HA surface. Moreover, the RF-sputtered HA coating, consisting of agglomerated droplet particles on the electrochemically deposited HA surface, had better wettability compared to the bulk titanium alloy surface. - Highlights: • Hydroxyapatite (HA) was deposited on Ti–Ta–Zr alloys by radio-frequency (RF) magnetron sputtering and a cyclic voltammetry. • The morphologies of the RF-sputtered HA coating on electrochemical deposits presented plate-like shapes with a droplet particle. • The Ca/P ratio for RF-sputtered HA coatings was greater than that for electrochemical deposited HA coatings. • The RF-sputtered and electrochemical HA coatings had superior wettability compared to the electrochemically deposited coatings.

  7. Sedimentary evolution of Neogene continental deposits (Ñirihuau Formation) along the Ñirihuau River, North Patagonian Andes of Argentina

    Science.gov (United States)

    Paredes, J. M.; Giacosa, R. E.; Heredia, N.

    2009-07-01

    The sedimentary evolution of the Ñirihuau Formation (late Oligocene-middle Miocene) was studied along the southern margin of the Ñirihuau River, in the North Patagonian Andes. The 1300-m-thick section includes 15 epiclastic and volcaniclastic lithofacies which are grouped into five lithofacies associations: deep lacustrine, shallow lacustrine, fluvial channels, subaerial floodplains and volcaniclastic flows (lahar). Syn-eruptive and inter-eruptive stages are recorded along the Ñirihuau River section. The former consist of highly aggradational packages several tens of meters thick of ash-fall beds and lahar deposits. During inter-eruptive periods sedimentation took place mostly in shallow and deep lacustrine environments, with four cycles of lake expansion and contraction, and a minor proportion of fluvial deposits. Sedimentary supply originated from the northeast and northwest in the lower part of the unit through low to moderate sinuosity fluvial systems, flowing into a lake with high-gradient margins, and forming Gilbert-type deltas. The younger sections were sourced from the northeast, east and southeast, indicating changes in the basin morphology. Basic and intermediate volcanic rocks similar to those of the Ventana Formation (Oligocene) are interstratified at the beginning of the sedimentation. The syn-orogenic nature of the Ñirihuau Formation is evidenced by the changes in the basin shape, but mainly by the differences in styles and intensities of deformation between the Ñirihuau River section and the overlying outcrops of La Buitrera Hill, both separated by a folded unconformity.

  8. Mineral-organic formations in Berezitovy deposit (the Amur region, Russia)

    Science.gov (United States)

    Vakh, E. A.; Vakh, A. S.; Petukhov, V. I.; Nikulina, T. V.; Tarasenko, I. A.

    2016-03-01

    The article examines the structure and composition of mineral-organic formations within the hypergenesis zone of Berezitovy deposit (the Amur region). The detailed study has shown that these recent formations are represented by algae identified as Trentepohlia jolithus (Linnaeus) Wallroth. The process of macro and micro element accumulation in these formations is likely to have a complex sediment-chemogenic-organogenic nature and results from the flow of the suspended and dissolved substances formed within the hypergenesis zone of sulphide ores. It is also assumed that some elements accumulated in the formations were previously absorbed by algae from the mineralized water environment.

  9. Geochemical Features and Formation of the Auriferous Cherts in the Mojiang Gold Deposit, Yunnan

    Institute of Scientific and Technical Information of China (English)

    应汉龙; 蔡新平; 刘秉光

    2001-01-01

    Auriferous cherts in the Middle Carboniferous Jinchang Formation are the dominant host rocks of auriferous quartz veins and mixed orebodies comprised of gold-bearing quartz veins and cherts in the Mojiang gold deposit. The rocks exhibit sedimentary texture and structure and are composed of hot-water deposited minerals.The FeO, Fe2O3, Au and Ag contents of the auriferous cherts are high; the Cr, Ni and Cotonrents are also high but significantly vari able; MnO/TiO2 and TFe/TiO2 ratios are relatively high. As viewed from a few diagrams that distinguish different chert formations, the auriferous cherts are in or near the range of hot-wa ter deposited cherts. Because the correlation coefficients between Au contents and those of CrNi of the rocks are negative, a great Au amount in the cherts might not be brought about by later hydrothermal alterations. The rare-earth elements, O and Si isotopic compositions of the auriferous cherts demonstrate that the cherts belong to hot-water deposited rocks. The later hydrothermal alterations made the petrochemical compositions of the cherts deviate from the characteristics of hot-water deposition. In general, the geological and geochemical features of the auriferous cherts demonstrate that the rocks were formed by hot water deposition.

  10. Factors controlling deposits in recovery boilers -particle formation and deposition; Soodakattilan likaantuminen ja siihen vaikuttavien tekijoeiden hallinta. Hiukkasten muodostuminen ja depositio

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.I.; Mikkanen, P.; Tapper, U.; Ylaetalo, S.; Jaervinen, R. [VTT Chemical Technology, Espoo (Finland); Jokiniemi, J.K.; Pyykoenen, J.; Eskola, A. [VTT Energy, Espoo (Finland)

    1997-10-01

    In this project the aim is to find critical factors controlling the deposit formation in the recovery boilers. Focus is on particle formation, growth and deposition. During year 1995 the aerosol particle formation was studied by an experimental study within the recovery boiler furnace and by a sensitivity study with the ABC (Aerosol Behaviour in Combustion) computer code. During year 1996 the experimental studies on the aerosol particle formation continued within the furnace and the deposition mechanisms for carry over particles were included in the ABC code and sensitivity studies of the deposition were carried out. The experimental study confirmed the fact that the particles are already formed in the recovery boiler furnace. The particle formation is initiated in the boundary layer of the burning droplet or char bed, where metals are vaporised and oxidised to form tiny seed particles

  11. Ash chemistry aspects of straw and coal-straw co-firing in utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.; Nielsen, H.P.; Hansen, L.A.; Hansen, P.F.B.; Andersen, K.H.; Soerensen, H.S.

    1998-12-01

    Deposits formed in straw-fired grate-boilers showed significant amounts of KCl ( 40 - 80 % (w/w)) and KCl-coated Ca-Si-rich particles. CFB co-firing of straw and coal caused deposits in the convective pass containing predominantly K{sub 2}SO{sub 4} (50 - 60 % (w/w)) with small amounts of KCl close to the metal surface. In pulverized coal-straw co-fired boilers, deposits almost free of KCl were found. Most of the potassium in these deposits is derived from K-Al-Si-rich fly ash particles and the rest occurs as K{sub 2}SO{sub 4}. The presence of K-Al-Si-rich fly ash particles indicates that solid residue quality and reuse of fly ash in cement and concrete production rather than deposit formation may be of concern when utilizing straw in pulverized fuel boilers. This paper provides a review of Danish experiences with high-temperature ash deposit formation in the following full-scale utility boilers: Slagelse CHP (31 MW{sub th}), Haslev CHP (23 MW{sub th}) and Rudkoebing CHP (10.7 MW{sub th}), all straw-fired grate-boilers; Grenaa CHP (80 MW{sub th}), a coal-straw co-fired Circulating Fluidized Bed (CFB) boiler; and the Midtkraft-Studstrup Power Station, Unit l (380 MW{sub th}), a coal-straw co-fired pf-boiler. (au)

  12. Thin Film Formation of Gallium Nitride Using Plasma-Sputter Deposition Technique

    Directory of Open Access Journals (Sweden)

    R. Flauta

    2003-06-01

    Full Text Available The formation of gallium nitride (GaN thin film using plasma-sputter deposition technique has beenconfirmed. The GaN film deposited on a glass substrate at an optimum plasma condition has shown x-raydiffraction (XRD peaks at angles corresponding to that of (002 and (101 reflections of GaN. The remainingmaterial on the sputtering target exhibited XRD reflections corresponding to that of bulk GaN powder. Toimprove the system’s base pressure, a new UHV compatible system is being developed to minimize theimpurities in residual gases during deposition. The sputtering target configuration was altered to allow themonitoring of target temperature using a molybdenum (Mo holder, which is more stable against Gaamalgam formation than stainless steel.

  13. Mechanism of the formation of metal nanoclusters during pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pushkin, M.A. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Lebid' ko, V.V. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Borman, V.D. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Tronin, V.N. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Troyan, V.I. [Moscow Engineering Physics Institute, 31 Kashirskoe chausse, 115409 Moscow (Russian Federation); Smurov, I. [Ecole Nationale d' Ingenieurs de Saint Etienne, 58 rue Jean Parot, 42023 St-Etienne (France)]. E-mail: smurov@enise.fr

    2006-04-30

    The geometrical structure of Au, Ni, Co and Cr nanoclusters self-assembled on NaCl and HOPG surfaces under pulsed laser deposition (PLD) has been experimentally investigated. The PLD technique is characterized by an extremely high instantaneous deposition rate. Unlike for the thermal evaporation (TE) process, formation of fractal nanoclusters under PLD conditions has been observed with scanning tunneling microscopy (STM). The driving mechanism for this phenomenon occurring at high deposition rate is thought to be the evolution of the initial interacting-adatom states in a system far from thermodynamic equilibrium. The obtained results can be explained by proposing a new mechanism of condensed phase formation under the conditions of strong deviation from thermodynamic equilibrium.

  14. Adsorption of Thiourea and Formation of Nickel-thiourea Complexes at Initial Stage of Nickel Deposition

    Institute of Scientific and Technical Information of China (English)

    HU Guang-hui; WU Hui-huang; YANG Fang-zu; LIU Xin-yu

    2004-01-01

    The effect of thiourea(TU) on the nickel deposition process was analyzed by means of linear-sweep voltammetry. Raman spectroscopy and infrared reflectance spectroscopy were used to investigate the adsorption of TU and the formation of nickel-TU complexes on copper surface. The experimental results indicate that the nucleation and the preceding conversion step are involved in the deposition of nickel on copper electrodes. TU makes the onset nucleation potential negative due to the formation of nickel-TU complexes, which can accelerate the nickel deposition. Moreover, the S atom in the TU molecule adsorbed on copper surface facilitates the coordination of TU to Ni2+. Meanwhile, TU might be adsorbed at a flatter orientation if no Ni2+ is on the surface, while at a perpendicular orientation when Ni2+ is coadsorbed.

  15. Impact of Macro-economic Factors on Deposit Formation by Ukrainian Population

    Directory of Open Access Journals (Sweden)

    Shevaldina Valentyna H.

    2014-01-01

    Full Text Available The goal of the article is detection of interconnections between the common economic processes and formation of bank deposits by population. The article builds a correlation and regression model of complex assessment of interconnection between macro-economic factors, savings behaviour of population and level of deposits of population in banks for two hour horizons: short-term, which is characterised with deployment of crisis phenomena both in global economy and in Ukrainian economy and the medium-term one. The article characterises the most significant common macro-economic factors. In the result of the study the article establishes that Ukrainian population is oriented at short-term horizon when forming savings due to the uncertainty in future. In the medium-term prospective, savings of the population are formed basically under influence of macro-economic factors, while formation of deposits by Ukrainian population is mostly influenced by socio-psychological factors.

  16. The roles of organic matter in the formation of uranium deposits in sedimentary rocks

    Science.gov (United States)

    Spirakis, C.S.

    1996-01-01

    Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related

  17. Minerogenic System of Magnesian Nonmetallic Deposits in Early Proterozoic Mg-rich Carbonate Formations in Eastern Liaoning Province

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In the early Proterozoic the Liryu Formation and Dashiqiao Formation of eastern Liaoning province, China, there are distributed Mg-rich carbonate rock formations, in which large to superlarge deposits of boron, magnesite, talc, Xiuyan jade etc. occur. The formation of these magnesian nonmetallic deposits was related to early Proterozoic evaporates; then these deposits underwent reworking of regional metamorphism and hydrothermal metasomatism during the Lüliang orogeny and tectono-magmatism during the Indosinian-Yanshanian. Among other things, the Mg-rich carbonates formations, minerogenetic structures and ore-forming fluids played a controlling role in the formation of the mineral deposits. The refore, it can be concluded that the mineral deposits are products of combined processes of the coupling of ore source field, fluid field, thermal field (energy field) and stress field under certain time-space conditions in the early Proterozoic and the late-stage superimposed reworking of tectono-magmatism.

  18. Ice nucleating properties of volcanic ash particles from the Eyjafjallajökull volcanic eruption

    Science.gov (United States)

    Kulkarni, G.; Zelenyuk, A.; Beranek, J.

    2011-12-01

    The volcanic ash from the volcanic emissions can significantly contribute to the natural source of aerosols in the atmosphere. In the vicinity and downwind of eruption site, the transported ash might have a stronger impact on the aviation industry, regional air quality, and climate. Despite the environmental significance of ash, our understanding of ash particles reacting with other volcanic plume constituents is rudimentary. In particular, the complex interactions between the water vapor and ash particles under different meteorological conditions that lead to cloud hydrometeors are poorly understood. To improve our understanding, we focus on investigating the ice formation properties of ash particles collected from the recent volcanic eruption. It was observed that the ash particles are less efficient ice nuclei compared to the natural dust particles in the deposition nucleation regime, but have similar efficiencies in the condensation freezing mode. The ice nucleated ash particles are separated from the interstitial particles, and further evaporated to understand the elemental composition, size, shape and morphology of the ice residue using the single particle mass spectrometer. The elemental composition reveals that majority of the elements are also present in the natural dust particles, but subtle differences are observed. This suggests that particle properties play an important role in the ice nucleation process.

  19. Formation conditions of high-grade gold-silver ore of epithermal Tikhoe deposit, Russian Northeast

    Science.gov (United States)

    Volkov, A. V.; Kolova, E. E.; Savva, N. E.; Sidorov, A. A.; Prokof'ev, V. Yu.; Ali, A. A.

    2016-09-01

    The Tikhoe epithermal deposit is located in the Okhotsk-Chukotka volcanic belt (OChVB) 250 km northeast of Magadan. Like other deposits belonging to the Ivan'insky volcanic-plutonic depression (VTD), the Tikhoe deposit is characterized by high-grade Au-Ag ore with an average Au grade of 23.13 gpt Au and Au/Ag ratio varying from 1: 1 to 1: 10. The detailed explored Tikhoe-1 orebody is accompanied by a thick (20 m) aureole of argillic alteration. Pyrite is predominant among ore minerals; galena, arsenopyrite, sphalerite, Ag sulfosalts, fahlore, electrum, and küstelite are less abundant. The ore is characterized by abundant Sebearing minerals. Cu-As geochemical specialization is noted for silver minerals. Elevated Se and Fe molar fractions of the main ore minerals are caused by their formation in the near-surface argillic alteration zone. The veins and veinlets of the Tikhoe-1 ore zone formed stepwise at a temperature of 230 to 105°C from Nachloride solution enriched in Mg and Ca cations with increasing salinity. The parameters of the ore-forming fluid correspond to those of epithermal low-sulfidation deposits and assume the formation of high-grade ore under a screening unit of volcanic rocks. In general, the composition of the ore-forming fluid fits the mineralogy and geochemistry of ore at this deposit. The similarity of the ore composition and parameters of the ore-forming fluid between the Tikhoe and Julietta deposits is noteworthy. Meanwhile, differences are mainly related to the lower temperature and fluid salinity at the Julietta deposit with respect to the Tikhoe deposit. The fluid at the Julietta deposit is depleted in most components compared with that at the Tikhoe deposit except for Sb, Cd, and Ag. The results testify to a different erosion level at the deposits as derivatives of the same ore-forming system. The large scale of the latter allows us to predict the discovery of new high-grade objects, including hidden mineralization, which is not exposed at

  20. Formation of a Hydrothermal Kaolinite Deposit from Rhyolitic Tuff in Jiangxi, China

    Institute of Scientific and Technical Information of China (English)

    Ye Yuan; Guanghai Shi; Mengchu Yang; Yinuo Wu; Zhaochong Zhang; Anjie Huang; Jiajing Zhang

    2014-01-01

    The Longmen kaolinite deposit is one of the largest hydrothermal clay deposits of Ganxi volcanic basin (northern Wuyi Mountain area, China). The pristine host rocks are rhyolitic crystal-vitric tuff and minor lapilli tuff from the Late Jurassic Ehuling Formation. The ore consists of kaolin-group minerals (kaolinite, dickite), pyrophyllite with minor quartz, sericite, pyrite, etc.. From the host rocks to the transition zones (altered rocks) then to the vein ores, contents of SiO2 and TFe2O3 decrease, whereas Al2O3 and LOI increase, consistent with the contents increase of kaolin minerals and pyrophyllite in the samples. The total REE abundances of the ores are much lower than that of the host and altered rocks, Rb, Nb, Nd, Zr, Ti and Y are significantly depleted. Apparent zoning features of bulk geochemistry and mineral component reflect that the kaolinite deposit occurred at the expense of the host rock by ascending hydrothermal fluids with distinct removal of SiO2, TFe2O3, Na2O, K2O. According to the mineral assemblage, the formation temperature of this deposit falls within the range of 270-350 ℃. With regard to the industrial applications, the kaolinized ores are suitable for use in ceramics and gemologic materials crafted for seal stones. Moreover, in mineralogical terms, this deposit is also proved to be an excellent example for studying channeled hydrothermal alterations of rhyolitic tuff.

  1. Coarse grain deposit feature of Guantao formation in western depression Shuyi area of Liaohe basin

    Institute of Scientific and Technical Information of China (English)

    GUO Jian-hua; LIU Chen-sheng; ZHU Mei-heng

    2005-01-01

    The extensive distribution of coarse-grained clastic rock of Guantao formation in Shuyi area of Liaohe basin was considered as a result of fluvial deposit. According to the comprehensive analysis of seism data, well log, core observation and experimental data, this kind of clastic rock is composed of pebblestone-cobblestone, microconglomerate, sand conglomerate, medium-coarse grained sandstone and fine-sandstone. According to the clast composition, sedimentary texture, structure and rock type, 3 kinds of sediment facies can be recognized ie the mixed accumulation-conglomerate dominated debris flow, pebblestone-cobblestone dominated gradient flow and sandstone dominated braided stream. Vertically, the bottom gradient current deposit and top braided stream deposit form fining-upward sediment sequence, and the debris flow deposit distributes in them at random. The sedimentary feature of coarse grain clastic of Guantao formation in Shuyi area is accordant with proximal wet alluvial fan deposited in wet climate at foreland and this kind of alluvial fan is different from the traditional one.

  2. Formation of fine sediment deposit from a flash flood river in the Mediterranean Sea

    Science.gov (United States)

    Grifoll, Manel; Gracia, Vicenç; Aretxabaleta, Alfredo L.; Guillén, Jorge; Espino, Manuel; Warner, John C.

    2014-01-01

    We identify the mechanisms controlling fine deposits on the inner-shelf in front of the Besòs River, in the northwestern Mediterranean Sea. This river is characterized by a flash flood regime discharging large amounts of water (more than 20 times the mean water discharge) and sediment in very short periods lasting from hours to few days. Numerical model output was compared with bottom sediment observations and used to characterize the multiple spatial and temporal scales involved in offshore sediment deposit formation. A high-resolution (50 m grid size) coupled hydrodynamic-wave-sediment transport model was applied to the initial stages of the sediment dispersal after a storm-related flood event. After the flood, sediment accumulation was predominantly confined to an area near the coastline as a result of preferential deposition during the final stage of the storm. Subsequent reworking occurred due to wave-induced bottom shear stress that resuspended fine materials, with seaward flow exporting them toward the midshelf. Wave characteristics, sediment availability, and shelf circulation determined the transport after the reworking and the final sediment deposition location. One year simulations of the regional area revealed a prevalent southwestward average flow with increased intensity downstream. The circulation pattern was consistent with the observed fine deposit depocenter being shifted southward from the river mouth. At the southern edge, bathymetry controlled the fine deposition by inducing near-bottom flow convergence enhancing bottom shear stress. According to the short-term and long-term analyses, a seasonal pattern in the fine deposit formation is expected.

  3. Singular deposit formation in PWR due to electrokinetic phenomena - application to SG clogging

    Energy Technology Data Exchange (ETDEWEB)

    Guillodo, M.; Muller, T.; Barale, M.; Foucault, M. [AREVA NP SAS, Technical Centre (France); Clinard, M.-H.; Brun, C.; Chahma, F. [AREVA NP SAS, Chemistry and Radiochemistry Group (France); Corredera, G.; De Bouvier, O. [Electricite de France, Centre d' Expertise de I' inspection dans les domaines de la Realisation et de l' Exploitation (France)

    2009-07-01

    The deposits which cause clogging of the 'foils' of the tube support plates (TSP) in Steam Generators (SG) of PWR present two characteristics which put forward that the mechanism at the origin of their formation is different from the mechanism that drives the formation of homogeneous deposits leading to the fouling of the free spans of SG tubes. Clogging occurs near the leading edge of the TSP and the deposits appear as diaphragms localized between both TSP and SG tubing materials, while the major part of the tube/TSP interstice presents little or no significant clogging. This type of deposit seems rather comparable to the ones which were reproduced in Lab tests to explain the flow rate instabilities observed on a French unit during hot shutdown in the 90's. The deposits which cause TSP clogging are owed to a discontinuity of the streaming currents in the vicinity of a surface singularity (orifices, scratches ...) which, in very low conductivity environment, produce local potential variations and/or current loop in the metallic pipe material due to electrokinetic effects. Deposits can be built by two mechanisms which may or not coexist: (i) accumulation of particles stabilized by an electrostatic attraction due to the local variation of electrokinetic potential, and (ii) crystalline growth of magnetite produced by the oxidation of ferrous ions on the anodic branch of a current loop. Lab investigations carried out by AREVA NP Technical Centre since the end of the 90's showed that this type of deposit occurs when the redox potential is higher than a critical value, and can be gradually dissolved when the potential becomes lower than this value which depends on the 'Material - Chemistry' couple. Special emphasis will be given in this paper to the TSP clogging of SG in PWR secondary coolant dealing particularly with the potential strong effect of electrokinetic phenomena in low conductive environment and in high temperature conditions

  4. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  5. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    Science.gov (United States)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  6. Formation of Ultrafine Metal Particles and Metal Oxide Precursor on Anodized Al by Electrolysis Deposition

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nickel was deposited by ac electrolysis deposition in the pores of the porous oxide film of Al produced by anodizing in phosphoric acid. Ultrafine rod-shaped Ni particles were formed in the pores. At the same time a film of Ni oxide precursor was developed on the surface of the porous oxide film. The Ni particles and the Ni oxide precursor were examined by SEM, TEM and X-ray diffraction. The thickness of the barrier layer of the porous oxide film was thin and it attributed to the formation of the metal particles, while the formation of the oxide precursor was associated with the surface pits which were developed in the pretreatment of Al.

  7. GRAVITY-FLOW DEPOSITS IN THE TOARCIAN PERBLA FORMATION (SLOVENIAN BASIN, NW SLOVENIA

    Directory of Open Access Journals (Sweden)

    BOSTJAN ROZIC

    2011-07-01

    Full Text Available The Perbla Formation represents typical Toarcian clay-rich pelagic sediment of the southern Tethyan passive continental margin. It was deposited in the Slovenian Basin, located in present-day western Slovenia. During the Early Jurassic the basin was surrounded by the Dinaric (Friuli Carbonate Platform to the south and by the Julian Carbonate Platform to the north. Today, the transitional areas between the platforms and basin are not preserved due to intense Cainozoic thrusting and erosion, with the only record of the evolution of these areas stored in gravity-flow deposits of the Perbla Formation. Coarser turbidites were deposited on the margins of the basin, with other types of gravity-flow deposits, observed mainly in the central part of the basin. These intercalations reflect regionally recognized events that characterized the sedimentary evolution of western Slovenia at the end of the Early Jurassic. Slumps that occasionally developed into debris-flows reflect uneven sea-bottom palaeotopography that originated during a pre- to early-Toarcian phase of accelerated subsidence. The early Toarcian transgression caused drowning of the adjacent carbonate platforms, an event reflected in the composition of coarser turbidites which consist almost exclusively of echinoderm fragments and thin-shelled bivalves. These turbidites originated from drowned platform margins and/or slopes and were subsequently redeposited in proximal parts of the basin. 

  8. Formation Mechanism and Stability Assessment of the Colluvial Deposit Slope in Zuoyituo

    Institute of Scientific and Technical Information of China (English)

    Jian Wenxing; Zhang Yihu; Yin Hongmei

    2004-01-01

    The basic features of the colluvial deposit slope in Zuoyituo such as geological conditions, dimensions, slip surfaces and groundwater conditions are described concisely in this paper. The formation mechanism of the slope is discussed. It is considered that the formation of the colluvial deposit slope in Zuoyituo has undergone accumulation, slip, load, deformation and failure. The effects of rainfall on slope stability are categorized systematically based on existing methodology, and ways to determine the effects quantitatively are presented. The remained slip force method is improved by the addition of quantitative relations to the existing formulae and programs. The parameters of the colluvial deposit slope are determined through experimentation and the method of back-analysis. The safety factors of the slope are calculated with the improved remained slip force method and the Sarma method. The results show that rainfall and water level in the Yangtze River have a significant effect on the stability of the colluvial deposit slope in Zuoyituo. The hazards caused by the instability of the slope are assessed, and prevention methods are put forward.

  9. Kinetics of Hydrocarbon formation in a-C:H film deposition plasmas

    Energy Technology Data Exchange (ETDEWEB)

    De la Cal, E.; Tabares, F.L.

    1993-07-01

    The formation of C{sub 2} and C{sub 3} hydrocarbons during the PACVD of a-C-H films from admixtures of methane with H{sub 2} and He has been investigated by mass espectrometry under several deposition condition. The time evolution of the observed species indicates that the formation mechanism of ethylene and acetylene are sensitive to the conditions of the wall during the growing of the film. Acetylene are sensitive to the conditions of the wall during the growing of the carburized metal. (Author)

  10. Small scale analogs of the Cayley Formation and Descarts Mountains in impact associated deposits, part C

    Science.gov (United States)

    Head, J. W.

    1972-01-01

    The exploration of the Cayley Formation and material of the Descartes Mountains and an understanding of the origin and evolution of these units were primary objectives of the Apollo 16 lunar mission. This section examines several areas associated with impact crater deposits that show small-scale features similar in morphology to the regional characteristics of the Cayley and Descartes units shown in the Apollo 16 photography.

  11. Depositional, diagenetic and stratigraphic aspects of microfacies from Riachuelo Formation, Albian, Sergipe Basin, Brazil

    Directory of Open Access Journals (Sweden)

    Caio Vinícius Gabrig Turbay

    2013-12-01

    Full Text Available The rocks of the Riachuelo Formation, Sergipe Basin, Brazil, represent an example of carbonate sedimentation related to the drift phase during the opening of the South Atlantic Ocean. The Carapeba and Brejo quarries exhibit the best onshore outcrops of the drift carbonate section along the Brazilian continental edge. Field studies and microfacies analysis of the outcropped sedimentary section showed six sedimentary deposits related to the physiography of a carbonate shelf. Proximal mixed deposits are represented by the rich-terrigenous dolostone. Levels with alternate layers of fine grained sandstones and siltstones are here related to distal facies of submarine fans deposits. Mudstones with miliolids and textularids represent a lagoonal environment in a semi-restricted middle shelf. Packstones, grainstones and occasionally wackestones with oncoids, intraclasts and peloids represent sedimentary deposits related to the back of shallow sandy bars and environments at the interface with the lagoon. Grainstones whit ooliths, oncoids, intraclasts and bioclasts, with trough cross-bedding, represent a shallower shoreface environment over the shallow carbonate back on outer shelf. Cements and other post- depositional features suggest four different diagenetic environments: a marine phreatic diagenetic environment with active water circulation; b marine phreatic diagenetic environment with stagnant water; c freshwater phreatic diagenetic environment; d burial diagenetic environment. The sedimentary succession is formed by shallowing upward cycles overlain by a possible transgressive surface, which may indicate the passage of a lowstand to a transgressive system tract.

  12. Effect of impurity deposition layer formation on D retention in LHD plasma exposed W

    Directory of Open Access Journals (Sweden)

    Y. Oya

    2016-12-01

    Full Text Available Effect of carbon based mixed-material deposition layer formation on hydrogen isotope retention was studied. The tungsten (W samples were placed at four different positions, namely PI (sputtering erosion dominated area, DP (deposition dominated area, HL (higher heat load area, and ER (erosion dominated area during 2013 plasma experimental campaign in Large Helical Device (LHD at National Institute for Fusion Science (NIFS, Japan and were exposed to ∼ 4000 shots of hydrogen plasma in a 2013 plasma experimental campaign. Most of the sample surface except for ER was covered by a mixed-material deposition layer formed by plasma experimental campaign, which consisted of carbon, but some metal impurities were contained. For ER sample, He bubbles were formed due to long term He discharge cleaning and He plasma experiments during the plasma experimental campaign. The additional 1keV D2+ implantation was performed to evaluated the D retention enhancement by plasma exposure. It was found that both of H and D retentions were clearly increased. In particular, the H retention was controlled by the thickness of the carbon-dominated mixed-material deposition layer, indicating most of the H was trapped by this mixed-material deposition layer. It is concluded that the accumulation of low-Z mixed-material layer on the surface of the first wall is one of key issues for the determination of hydrogen isotope retention in first wall.

  13. Formation of polygonal fault systems as a result of hydrodynamical instabilities in clay-rich deposits.

    Science.gov (United States)

    Lopez, Teodolina; Antoine, Raphael; Rabinowicz, Michel; Baratoux, David; Darrozes, José; Kurita, Kei; D'Uston, Lionel

    2015-04-01

    Fine grained deposits as chalks and clays are characterised by the development of polygonal fault systems [1]. For the clay-rich deposits, two different environments are associated with their formation. First, on continents, dewatering leads to the development of polygonal desiccation cracks which have a centimetric to metric size [2]. Polygonal faults are also observed in sub-marine sedimentary deposits and here, can reach hectometric to kilometric size [3]. Since the giant polygons develop on basins with no clear evidences of tectonic stresses, the fracturing is attributed to stresses due to horizontal density variations generated during the basin subsidence. Several models have been proposed to explain the formation of the giant polygons and the two main hypotheses are the syneresis (spontaneous horizontal contraction) proposed by [4] and the low coefficient of friction of clay proposed by [5]. However, new understandings in the clay rheology and in the hydrodynamical instabilities, controlling the development of compaction in unconsolidated and consolidated clay deposits, permit us to propose an alternative hypothesis. We consider that the development of giant polygons results from the superposition of hydrodynamical instabilities leading to the formation of (i) mm-size agglomerates of clay particles while the deposit is unconsolidated [6], followed after by the consolidation of this layer, then (ii) hectometric to kilometric compaction spheres develop [7] and (iii) finally ends with the occurrence of hydrothermal and plastic convections. We show that the crucial conditions for the development of hectometric to kilometric size polygonal fault systems are: 1) the high permeability of the clay-rich deposit composed of mm-size agglomerates and 2) the dramatic increase of the strength of the clay as the deposit consolidates. [1] Dewhurst et al., (1999), Mar. Petr. Geol., 16 (8), 793-810. [2] Weinberger (1999), J. Struct. Geol., 21, 379-386. [3] Andresen and Huuse

  14. Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz

    Science.gov (United States)

    Mercer, Celestine N.; Reed, Mark H.; Mercer, Cameron M.

    2015-01-01

    Porphyry dikes and hydrothermal veins from the porphyry Cu-Mo deposit at Butte, Montana, contain multiple generations of quartz that are distinct in scanning electron microscope-cathodoluminescence (SEM-CL) images and in Ti concentrations. A comparison of microprobe trace element profiles and maps to SEM-CL images shows that the concentration of Ti in quartz correlates positively with CL brightness but Al, K, and Fe do not. After calibrating CL brightness in relation to Ti concentration, we use the brightness gradient between different quartz generations as a proxy for Ti gradients that we model to determine time scales of quartz formation and cooling. Model results indicate that time scales of porphyry magma residence are ~1,000s of years and time scales from porphyry quartz phenocryst rim formation to porphyry dike injection and cooling are ~10s of years. Time scales for the formation and cooling of various generations of hydrothermal vein quartz range from 10s to 10,000s of years. These time scales are considerably shorter than the ~0.6 m.y. overall time frame for each porphyry-style mineralization pulse determined from isotopic studies at Butte, Montana. Simple heat conduction models provide a temporal reference point to compare chemical diffusion time scales, and we find that they support short dike and vein formation time scales. We interpret these relatively short time scales to indicate that the Butte porphyry deposit formed by short-lived episodes of hydrofracturing, dike injection, and vein formation, each with discrete thermal pulses, which repeated over the ~3 m.y. generation of the deposit.

  15. New evidence of deposition under cold climate for the Xieshuihe Formation of the Nanhua System in northwestern Hunan, China

    Institute of Scientific and Technical Information of China (English)

    FENG Lianjun; CHU Xuelei; ZHANG Qirui; ZHANG Tonggang; LI He; JIANG Neng

    2004-01-01

    Yangjiaping section is located in Hupingshan Town, Shimen County, Hunan Province. The section has been intensively studied since 1980. However, The paleoclimate during the deposition of the Xieshuihe Formation remains controversial. Based on chemical analysis of sedimentary clastic rocks of the unit, the resulting CIA (the chemical index of alteration) values of the Xieshuihe Formation are similar to those of the overlying Gucheng Formation (also called the Dongshanfeng Formation). It indicates that the sedimentary rocks of the Xieshuihe Formation and Gucheng Formation underwent the similar degrees of chemical weathering before deposition. Therefore, the Xieshuihe Formation was also likely to be deposited under a cold climatic condition, which probably belongs to a part of the record of glaciations.

  16. Depositional environment and organic geochemistry of the Upper Permian Ravenfjeld Formation source rock in East Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, F.G.; Piasecki, S.; Stemmerik, L. (Geologoical Survey of Greenland, Copenhagen (Denmark)); Telnaes, N. (Norsk Hydro Research Center, Bergen (Norway))

    1993-09-01

    The Upper Permian Ravnefjeld Formation in East Greenland is composed of shales that laterally pass into carbonate buildups and platforms of the Wegener Halvo Formation. The Ravnefjeld Formation is subdivided into five units that can be traced throughout the Upper Permian depositional basin. Two of the units are laminated and organic rich and were deposited under anoxic conditions. They are considered good to excellent source rocks for liquid hydrocarbons with initial average TOC (total organic carbon) values between 4 and 5% and HI (hydrogen index) between 300 and 400. The cumulative source rocks are separated and enclosed by three units of bioturbated siltstone with a TOC of less than 0.5% and an HI of less than 100. These siltstones were deposited under relatively oxic conditions. The organic geochemistry of the source rocks is typical for marine source rocks with some features normally associated with carbonate/evaporite environments [low Pr/Ph (pristane/phytane), low CPI (carbon preference index), distribution of tricyclic and pentacyclic terpanes]. The establishment of anoxic conditions and subsequent source rock deposition was controlled by eustatic sea level changes. The subenvironment (paleogeographic setting, influx of carbonate material, water depth, salinity) has some influence on a number of bulk parameters [TOC-HI relations, TOC-TS (total sulfur) relations] and, in particular, biomarker parameters such as Pr/Ph and terpane ratios. All the basal shales or shales in the vicinity of carbonate buildups of platforms are characterized by low Pr/Ph, high C[sub 23] tricyclic terpanes, and high C[sub 35] and C[sub 33] hopanes. 52 refs., 20 figs., 3 tabs.

  17. Comparison of conversion and deposit formation of ethanol and butane under SOFC conditions

    Science.gov (United States)

    Gupta, Gaurav K.; Dean, Anthony M.; Ahn, Kipyung; Gorte, Raymond J.

    This paper explores the gas-phase kinetics of butane and ethanol conversion as well as the propensity for molecular-weight growth and deposit formation in the non-catalytic regions of a solid oxide fuel cell (SOFC). Experiments are done where the fuel flows through a quartz reactor heated by a furnace. The primary observables are the extent of fuel conversion and the amount of deposit formed on a YSZ disk placed at the end of the furnace. Experiments are performed at 700, 750 and 800 ° C. The residence times in the hot zone varied from 2 to 4 s. Ethanol is more reactive than butane, and almost all the ethanol is reacted at 750 ° C whereas butane is completely reacted at 800 ° C. Deposit formation is much larger for butane. These results are compared to predictions of a detailed kinetic model. Model predictions for the extent of fuel conversion and molecular-weight growth are in good agreement with the data for both fuels. Butane is predicted to be converted to the lighter hydrocarbons methane, ethylene, propylene and ethane. Hydrogen is also a significant product, especially at higher temperatures. For ethanol, the product distribution is different with lower amounts of hydrocarbons while substantial quantities of water, ethylene, CO and H 2 are predicted. In ethanol pyrolysis there is no significant production of species with more than two carbon atoms, whereas propylene production is significant in butane pyrolysis. Modeling results suggest this is a major reason for increased deposit formation with butane. Equilibrium calculations demonstrate that both the butane and ethanol systems are far removed from equilibrium.

  18. New Re-Os Isotopic Constrains on the Formation of the Metalliferous Deposits of the Lower Cambrian Niutitang Formation

    Institute of Scientific and Technical Information of China (English)

    Yong Fu; Lin Dong; Chao Li; Wenjun Qu; Haoxiang Pei; Wenlang Qiao; Bing Shen

    2016-01-01

    ABSTRACT:The Terreneuvian Epoch (541–521 Ma)is also an important period for metallogenesis in South China, as was represented by the widespread occurrences of Ni-Mo polymetallic layers on the antecedent shallow platform margin and the V-enriched black shales in deeper slope-basin settings. In this study, we have measured Re-Os isochron ages of Ni-Mo polymetallic layers (Songlin, Niuchang, Sancha, Chuanpengwan), V-rich black shales (Bahuang), and non-metalliferous black shales (Shuidong) in the basal Niutitang Formation in Guizhou and Hunan province, South China. The Ni-Mo polymetal-lic layers and V-enriched black shales have similar Re-Os isochron ages, suggesting concurrent deposi-tion of these two types of metalliferous ores. This suggestion is consistent with the traditional strati-graphic correlation by using the nodular phosphorite bed directly underlying these metalliferous layers as a stratigraphic marker. Furthermore, the metalliferous ores and non-metalliferous black shales have similar initial 187Os/188Os ratios of 0.8–0.9, arguing for a dominant seawater origin with minor contri-bution of hydrothermal activity. Furthermore, Re-Os isotopic data also imply that Ni-Mo and V ore might have derived from the same source. We suggest that the spatial distribution of metalliferous ores can be explained by the development of non-sulfidic anoxic-suboxic wedge (NSASW) in the slope-basin and sulfidic wedge in the previous platform margin. Upwelling of deep water first transects the mildly reduced, organic rich NSASW, in which V (V) is reduced to V (IV), and is preferentially removed from seawater by organometallic complex formation. As a result, V-rich black shale deposits in the slope-basin of Yangtze Platform. Further movement of deep water into the sulfidic platform margin results in Ni-Mo polymetallic layer formation.

  19. Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: formation, characterization and biofunctional evaluation.

    Directory of Open Access Journals (Sweden)

    Ping Zhou

    Full Text Available Polydopamine (PDA coating provides a promising approach for immobilization of biomolecules onto almost all kinds of solid substrates. However, the deposition kinetics of PDA coating as a function of temperature and reaction method is not well elucidated. Since dopamine self-polymerization usually takes a long time, therefore, rapid-formation of PDA film becomes imperative for surface modification of biomaterials and medical devices. In the present study, a practical method for preparation of rapidly-deposited PDA coating was developed using a uniquely designed device, and the kinetics of dopamine self-polymerization was investigated by QCM sensor system. It was found that high temperature and vigorous stirring could dramatically speed up the formation of PDA film on QCM chip surface. Surface characterization, BSA binding study, cell viability assay and antibacterial test demonstrates that the polydopamine coating after polymerization for 30 min by our approach exhibits similar properties to those of 24 h counterpart. The method has a great potential for rapid-deposition of polydopamine films to modify biomaterial surfaces.

  20. Mineral deposit formation in Phanerozoic sedimentary basins of north-east Africa: the contribution of weathering

    Science.gov (United States)

    Germann, Klaus; Schwarz, Torsten; Wipki, Mario

    1994-12-01

    The intra- and epicontinental basins in north-east Africa (Egypt, Sudan) bear ample evidence of weathering processes repeatedly having contributed to the formation of mineral deposits throughout the Phanerozoic. The relict primary weathering mantle of Pan-African basement rocks consists of kaolinitic saprolite, laterite (in places bauxitic) and iron oxide crust. On the continent, the reaccumulation of eroded weathering-derived clay minerals (mainly kaolinite) occurred predominantly in fluvio-lacustrine environments, and floodplain and coastal plain deposits. Iron oxides, delivered from ferricretes, accumulated as oolitic ironstones in continental and marine sediments. Elements leached from weathering profiles accumulated in continental basins forming silcrete and alunite or in the marine environment contributing to the formation of attapulgite/saprolite and phosphorites. The Early Paleozoic Tawiga bauxitic laterite of northern Sudan gives a unique testimony of high latitude lateritic weathering under global greenhouse conditions. It formed in close spatial and temporal vicinity to the Late Ordovician glaciation in north Africa. The record of weathering products is essentially complete for the Late Cretaceous/Early Tertiary. From the continental sources in the south to the marine sinks in the north, an almost complete line of lateritic and laterite-derived deposits of bauxitic kaolin, kaolin, iron oxides and phosphates is well documented.

  1. Formation of Strata—bound Ore Deposits in China:Studies on Fluid Inclusions

    Institute of Scientific and Technical Information of China (English)

    卢焕章; 刘从强

    1990-01-01

    Fluid inclusion studies were made on the basis of the geological data on the strata-bound ore de-posits of China including those of Pb,Zn,Au,Ag,Sb,U,Hg,W,quartz-crystal and sparry-calcite.An attempt was made to approach the model of formation for each type of ore depos-its by considering the material sources,the migration of fluids and the conditions of mineralization.It is found that ore-forming fluids (especially H2O)originate as heated underground water reacts with the wallrocks and dissolves Na+,Ca2+,K+,Cl+,HCl- and Mg2+ .The ore fluids are mainly of NaCl-Ca-HCO3-H2O system with salinities ranging from 4to 14wt.%.NaCl equivalent and densities ranging from 0.9 to 1.0g/cm3.It may be concluded that the deposits were formed at temperatures ranging from 150 to 250℃ under pressures from 300 to 1000 bars.Ore deposition may have been controlled by temperature and pressure or by the mixing among different fluids.

  2. Magnesium–Gold Alloy Formation by Underpotential Deposition of Magnesium onto Gold from Nitrate Melts

    Directory of Open Access Journals (Sweden)

    Vesna S. Cvetković

    2017-03-01

    Full Text Available Magnesium underpotential deposition on gold electrodes from magnesium nitrate –ammonium nitrate melts has been investigated. Linear sweep voltammetry and potential step were used as electrochemical techniques. Scanning electron microscopy (SEM, energy dispersive spectrometry (EDS and X-ray diffraction (XRD were used for characterization of obtained electrode surfaces. It was observed that reduction processes of nitrate, nitrite and traces of water (when present, in the Mg underpotential range studied, proceeded simultaneously with magnesium underpotential deposition. There was no clear evidence of Mg/Au alloy formation induced by Mg UPD from the melt made from eutectic mixture [Mg(NO32·6H2O + NH4NO3·XH2O]. However, EDS and XRD analysis showed magnesium present in the gold substrate and four different Mg/Au alloys being formed as a result of magnesium underpotential deposition and interdiffusion between Mg deposit and Au substrate from the melt made of a nonaqueous [Mg(NO32 + NH4NO3] eutectic mixture at 460 K.

  3. PECULIAR FEATURES PERTAINING TO SOIL DEPOSIT FORMATION IN THE MESOPOTAMIA ZONE OF IRAQ

    Directory of Open Access Journals (Sweden)

    A. Al-Robai Ali

    2013-01-01

    Full Text Available The paper considers geological conditions for sedimentary mantle formation. In the geological past limestone deposits and sedimentation rock mass from fragmentary materials brought by water flows were formed in the southern part of the stretched geosyncline which had been submerged by shallow sea. By lapse of time deposits were transferred into sandstone, siltstone and mudstone that represented the bottom part of rock mass. Continental conditions were established as a result of orogenic process which took place nearly 30–50 million years ago. Erosional activity of wind and flowing waters was observed on the surface for a long period of time.The top part of soil rock mass is represented by alluvial deposits of the rivers Tigris and Euphrates. During the process of sediment deposition more full-flowing Tigris caused more complicated dynamics of water channels  including meandering and changeability of inter-bedding.Engineering and geological investigations have been carried out with the purpose to study structure of soil rock mass in various regions of the country (Al-Diwaniya, Khidr, Al-Nasiriya and Khila. Specific drill columns have been selected on the basis of analysis of soil rock masses.  Theses drill columns may serve for further selection of rational types of foundations (shallow foundation, piles foundation or creation of artificial foundations (cementing, armoring etc.. 

  4. 2.8-Ma ash-flow caldera at Chegem River in the northern Caucasus Mountains (Russia), contemporaneous granites, and associated ore deposits

    Science.gov (United States)

    Lipman, P.W.; Bogatikov, O.A.; Tsvetkov, A.A.; Gazis, C.; Gurbanov, A.G.; Hon, K.; Koronovsky, N.V.; Kovalenko, V.I.; Marchev, P.

    1993-01-01

    Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ?? 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 ?? 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ?? 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite

  5. Chemical models for martian weathering profiles: Insights into formation of layered phyllosilicate and sulfate deposits

    Science.gov (United States)

    Zolotov, Mikhail Yu.; Mironenko, Mikhail V.

    2016-09-01

    Numerical chemical models for water-basalt interaction have been used to constrain the formation of stratified mineralogical sequences of Noachian clay-bearing rocks exposed in the Mawrth Vallis region and in other places on cratered martian highlands. The numerical approaches are based on calculations of water-rock type chemical equilibria and models which include rates of mineral dissolution. Results show that the observed clay-bearing sequences could have formed through downward percolation and neutralization of acidic H2SO4-HCl solutions. A formation of weathering profiles by slightly acidic fluids equilibrated with current atmospheric CO2 requires large volumes of water and is inconsistent with observations. Weathering by solutions equilibrated with putative dense CO2 atmospheres leads to consumption of CO2 to abundant carbonates which are not observed in clay stratigraphies. Weathering by H2SO4-HCl solutions leads to formation of amorphous silica, Al-rich clays, ferric oxides/oxyhydroxides, and minor titanium oxide and alunite at the top of weathering profiles. Mg-Fe phyllosilicates, Ca sulfates, zeolites, and minor carbonates precipitate from neutral and alkaline solutions at depth. Acidic weathering causes leaching of Na, Mg, and Ca from upper layers and accumulation of Mg-Na-Ca sulfate-chloride solutions at depth. Neutral MgSO4 type solutions dominate in middle parts of weathering profiles and could occur in deeper layers owing to incomplete alteration of Ca minerals and a limited trapping of Ca to sulfates. Although salts are not abundant in the Noachian geological formations, the results suggest the formation of Noachian salty solutions and their accumulation at depth. A partial freezing and migration of alteration solutions could have separated sulfate-rich compositions from low-temperature chloride brines and contributed to the observed diversity of salt deposits. A Hesperian remobilization and release of subsurface MgSO4 type solutions into newly

  6. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hydrocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.

  7. Investigation of droplet formation in pulsed Nd:YAG laser deposition of metals and silicon

    Energy Technology Data Exchange (ETDEWEB)

    Siew, Wee-Ong; Lee, Wai-Keat; Wong, Hin-Yong; Tou, Teck-Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yong, Thian-Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Yap, Seong-Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Institute of Physics, Trondheim (Norway)

    2010-12-15

    In the process of pulsed laser deposition of nickel (Ni) and ruthenium (Ru) thin films, the occurrence of phase explosion in ablation was found to affect the deposition rate and enhance the optical emissions from the plasma plume. Faster thin-film growth rates coincide with the onset of phase explosion as a result of superheating and/or sub-surface boiling which also increased the particulates found on the thin-film surface. These particulates were predominantly droplets which may not be round but flattened and also debris for the case of silicon (Si) ablation. The droplets from Ni and Ru thin films were compared in terms of size distribution and number density for different laser fluences. The origins of these particulates were correlated to the bubble and ripple formations on the targets while the transfer to the thin film surface was attributed to the laser-induced ejection from the targets. (orig.)

  8. Using modern ferruginous habitats to interpret Precambrian banded iron formation deposition

    Science.gov (United States)

    Koeksoy, Elif; Halama, Maximilian; Konhauser, Kurt O.; Kappler, Andreas

    2016-07-01

    Early Earth processes are typically identified through the study of mineralogical, elemental and isotopic features in the rock record, including Precambrian banded iron formations (BIF). However, post-depositional processes often obscure the primary geochemical signals, making the use of BIF as proxies for paleo-seawater and the paleo-biosphere potentially imprecise. Thus, alternative approaches are required to complement the information gained from the rock record in order to fully understand the distinctive biogeochemical processes on ancient Earth. Simulating these conditions in the laboratory is one approach, but this approach can never fully replicate the complexity of a natural environment. Therefore, finding modern environments with a unique set of geochemical and microbiological characteristics to use as analogues for BIF depositional environments can provide invaluable information. In this review, we provide an overview of the chemical, physical and biological parameters of modern, ferruginous lakes that have been used as analogue BIF environments.

  9. Stratigraphy and depositional environments of the upper Pleistocene Chemehuevi Formation along the lower Colorado River

    Science.gov (United States)

    Malmon, Daniel V.; Howard, Keith A.; House, P. Kyle; Lundstrom, Scott C.; Pearthree, Philip A.; Sarna-Wojcicki, Andrei M.; Wan, Elmira; Wahl, David B.

    2011-01-01

    The Chemehuevi Formation forms a conspicuous, widespread, and correlative set of nonmarine sediments lining the valleys of the Colorado River and several of its larger tributaries in the Basin and Range geologic province. These sediments have been examined by geologists since J. S. Newberry visited the region in 1857 and are widely cited in the geologic literature; however their origin remains unresolved and their stratigraphic context has been confused by inconsistent nomenclature and by conflicting interpretations of their origin. This is one of the most prominent stratigraphic units along the river below the Grand Canyon, and the formation records an important event or set of events in the history of the Colorado River. Here we summarize what is known about these deposits throughout their range, present new stratigraphic, sedimentologic, topographic, and tephrochronologic data, and formally define them as a lithostratigraphic unit. The Chemehuevi Formation consists primarily of a bluff-forming mud facies, consisting of gypsum-bearing, horizontally bedded sand, silt, and clay, and a slope-forming sand facies containing poorly bedded, well sorted, quartz rich sand and scattered gravel. The sedimentary characteristics and fossil assemblages of the two facies types suggest that they were deposited in flood plain and channel environments, respectively. In addition to these two primary facies, we identify three other mappable facies in the formation: a thick-bedded rhythmite facies, now drowned by Lake Mead; a valley-margin facies containing abundant locally derived sediment; and several tributary facies consisting of mixed fluvial and lacustrine deposits in the lower parts of major tributary valleys. Observations from the subsurface and at outcrops near the elevation of the modern flood plain suggest that the formation also contains a regional basal gravel member. Surveys of numerous outcrops using high-precision GPS demonstrate that although the sand facies commonly

  10. Influence of Coal nature and Structure on Ash Size Formation Characteristic and Related pollutant Emissions During CFB Combustion

    Institute of Scientific and Technical Information of China (English)

    MinQIAN; YongjieNA; 等

    2000-01-01

    The size distribution of coal particles in a Circulating Fluidized Bed(CFB) boiler plays a crucial role in the complicated combustion,heat exchange and pollutant emissions in such a plant.Therefore,it is fundamental to study the different factors having influence on the size distribution of coal particles.Above all,the coal itself and in particular,the coal comminution phenomenon is a very influent factor.In the frame of this work,the coal nature (eleentary compostion) and coal internal structure (mineral componeents) are studied in detail.At this intermediary stage,experients on three typical Chinese coals on a 1.5 MWt CFBC pilot plant have been made.Some primary fragmentation test hae also been made in a small lab scale fluidized bed reactor.The resutls from the hot pilot test show i)the variation of coal ash distributions and other CFB performance data due to the cyclone and the coal characteristics and ii) the variation of desulfurization efficiency with limestone.Whereas the bench scale primary fragmentation test,likely linked to the caking propriety of a coal,does not seem to change considerable the char size distribution.

  11. Formation of a deposit on workpiece surface in polishing nonmetallic materials

    Science.gov (United States)

    Filatov, Yu. D.; Monteil, G.; Sidorko, V. I.; Filatov, O. Y.

    2013-05-01

    During the last decades in the theory of machining nonmetallic materials some serious advances have been achieved in the field of applying fundamental scientific approaches to the grinding and polishing technologies for high-quality precision surfaces of electronic components, optical systems, and decorative articles made of natural and synthetic stone [1-9]. These achievements include a cluster model of material removal in polishing dielectric workpieces [1-3, 6-7] and a physical-statistical model of formation of debris (wear) particles and removal thereof from a workpiece surface [8-10]. The aforesaid models made it possible to calculate, without recourse to Preston's linear law, the removal rate in polishing nonmetallic materials and the wear intensity for bound-abrasive tools. Equally important for the investigation of the workpiece surface generation mechanism and formation of debris particles are the kinetic functions of surface roughness and reflectance of glass and quartz workpiece surfaces, which have been established directly in the course of polishing. During the in situ inspection of a workpiece surface by laser ellipsometry [11] and reflectometry [12] it was found out that the periodic change of the light reflection coefficient of a workpiece surface being polished is attributed to the formation of fragments of a deposit consisting of work material particles (debris particles) and tool wear particles [13, 14]. The subsequent studies of the mechanism of interaction between the debris particles and wear particles in the tool-workpiece contact zone, which were carried out based on classical concepts [15, 16], yielded some unexpected results. It was demonstrated that electrically charged debris and wear particles, which are located in the coolant-filled gap between a tool and a workpiece, move by closed circular trajectories enclosed in spheres measuring less than one fifth of the gap thickness. This implies that the probability of the debris and wear

  12. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  13. Geochemistry and Depositional Setting of Fort Munro Formation, Middle and Lower Indus Basins, Pakistan

    Institute of Scientific and Technical Information of China (English)

    Shahid Naseem; Shamim Ahmed Sheikh; Erum Bashir; Khaula Shirin

    2005-01-01

    Fort Munro Formation represents the products of the Upper Cretaceous (Maastrichtian) in the middle and lower Indus basins. The formation is exposed in the Rakhi Nala (Sulaiman Range), Bara Nala (Lakhi Range) and Naka Pabni (Southern Pab Range) areas. Major and trace elemental geochemistry and petrographic studies of the formation have been carried out to understand the facies trends in the middle and lower Indus basins. A high amount of acid-insoluble fraction, Ca/Mg and Mg vs. Ca/Sr ratio reveal that the formation was deposited in a shallow marine regressive environment. High amounts of clastic reflect abundant influx of terrigenous materials from the east (Indian craton) and west (Bibai volcanic). High Sr content indicates that aragonite was the precursor mineral, which was transformed into stable low-Mg calcite during diagenesis. Enrichment of Cu and Zn contents in the samples of the formation implies the influence of volcanic activity and that they were incorporated into the calcite lattice in the late phase.

  14. Exploration and development of the fluvial deposits in the Potrerillos Formation, Cuyana Basin, Mendoza, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, C.; Agraz, P. [YPF, S.A., Av. San Martin, Mendoza (Argentina)

    1996-08-01

    In the Barrancas area are located the oil fields related to structures developed in the Oriental axis of the Cuyana Basin. The anticlinal axis of the Barraticas oil field has a NNW-SSE strike and dips toward North. The Oriental flank is abruptly bounded by faulting whilst the Occidental one is gently dipping. The Barrancas oil field was developed between the 1940s and 1960s, having both Early Jurassic conglomerates of the Barrancas Formation and Triassic fluvial braided deposits from Las Cabras Formation as the main targets. The review of new plays within the Triassic fluvial cycles belonging to the Potrerillos Formation was encouraged by the success obtained in the recovery of important volumes of oil from the overlying Formations. The application of a sequence stratigraphy approach to the fluvial settings combined with petrophysics data from outcrop studies and a 3D seismic interpretation allowed a new play concept to be conceived. This new play concept will have application in zones far away from the study area, where Potrerillos Formation has exploration interest. A team integrate by geologists, geophysicists, and engineers has produced new opportunities on mature oil fields with up to 300 drilled wells.

  15. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  16. Dimer and String Formation during Low Temperature Silicon Deposition on Si(100)

    DEFF Research Database (Denmark)

    Smith, A. P.; Jonsson, Hannes

    1996-01-01

    We present theoretical results based on density functional theory and kinetic Monte Carlo simulations of silicon deposition and address observations made in recently reported low temperature scanning tunneling microscopy studies. A mechanism is presented which explains dimer formation on top...... of the substrate's dimer rows at 160 K and up to room temperature, while between-row dimers and longer strings of adatoms (''diluted dimer rows'') form at higher temperature. A crossover occurs at around room temperature between two different mechanisms for adatom diffusion in our model....

  17. The Shublik Formation and adjacent strata in northeastern Alaska description, minor elements, depositional environments and diagenesis

    Science.gov (United States)

    Tourtelot, Harry Allison; Tailleur, Irvin L.

    1971-01-01

    occurrence of silver and 300 ppm lead in gouge along a shear plane may be the result of metals introduced from an extraneous source. The deposits reflect a marine environment that deepened somewhat following deposition of the Sadlerochit Formation and then shoaled during deposition of the upper limestone-siltstone unit. This apparently resulted from a moderate transgression and regression of the sea with respect to a northwest-trending line between Barrow and the Brooks Range at the International Boundary. Nearer shore facies appear eastward. The phosphate in nodules, fossil molds and oolites, appears to have formed diagenetically within the uncompacted sediment.

  18. Using thermal remanent magnetisation (TRM) to distinguish block and ash flow and debris flow deposits, and to estimate their emplacement temperature: 1991-1995 lava dome eruption at Mt. Unzen Volcano, Japan

    Science.gov (United States)

    Uehara, D.; Cas, R. A. F.; Folkes, C.; Takarada, S.; Oda, H.; Porreca, M.

    2015-09-01

    The 1991-1995 Mt. Unzen eruption (Kyushu, Japan) produced 13 lava domes, approximately 9400 block and ash pyroclastic flows (BAF) resulting from lava dome collapse events and syn- and post-dome collapse debris flow (DF) events. In the field, it can be very difficult to distinguish from field facies characteristics which deposits are primary hot BAF, cold BAF or rock avalanche, or secondary DF deposits. In this study we use a combination of field observations and thermal remanent magnetisation (TRM) analysis of juvenile, lava dome derived clasts from seven deposits of the 1991-1995 Mt. Unzen eruption in order to distinguish between primary BAF deposits and secondary DF deposits and to determine their emplacement temperature. Four major TRM patterns were identified: (1) Type I: clasts with a single magnetic component oriented parallel to the Earth's magnetic field at time and site of emplacement. This indicates that these deposits were deposited at very high temperature, between the Curie temperature of magnetite (~ 540 °C) and the glass transition temperature of the lava dome (~ 745 °C). These clasts are found in high temperature BAF deposits. (2) Type II: clasts with two magnetic components of magnetisation. The lower temperature magnetic components are parallel to the Earth's magnetic field at time of the Unzen eruption. Temperature estimations for these deposits can range from 80 to 540 °C. We found this paleomagnetic behaviour in moderate temperature BAF or warm DF deposits. (3) Type III: clasts with three magnetic components, with a lower temperature component oriented parallel to the Earth's magnetic field at Unzen. The individual clast temperatures estimated for this kind of deposit are usually less than 300 °C. We interpret this paleomagnetic behaviour as the effect of different thermal events during their emplacement history. There are several interpretations for this paleomagnetic behaviour including remobilisation of moderate temperature BAF, warm DF

  19. Depositional environments of Laborcita Formation (Wolfcampian), northern Sacramento Mountains, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Fly, S.H. III

    1986-03-01

    Depositional environments that change dramatically over short lateral distances are represented by exposures of the Laborcita Formation. A siliclastic source area lay to the east and southeast, in the Pedernal Mountains. To the west, a shallow marine sea filled the orogrande basin. Alternating cycles of marine and nonmarine sedimentation resulted from fan-delta lobe shifting and eustatic sea level movements. In clear-water areas not affected by fan-deltaic sedimentation, deposits become increasingly calcareous. Various carbonate facies resulted from organisms adapting to changing environmental conditions. Mud-cracked algal mats, digitate algal stromatolites, and small phylloid red algal mounds and rhodoliths indicate deposition in shallow-water subtidal to supratidal settings. Large buildups (20 m thick) of phylloid green algae associated with abundant submarine cement occurred in a position near the edge of the narrow shelf. Widespread skeletal detritus beds overlie and extend hundreds of meters away from the massive buildups. Influx of terrigenous mud and silt in advance of a prograding fan-delta system terminated growth of the buildups. The next transgression is represented by a carbonate grainstone exhibiting characteristics of shallow-water marine, storm-dominated shelf bars. The shelf bars migrated in a northwest-southeast direction.

  20. False deformation temperatures for ash fusibility associated with the conditions for ash preparation

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, S.K.; Gupta, R.P.; Sanders, R.H.; Creelman, R.A.; Bryant, G.W. [University of Newcastle, Callaghan, NSW (Australia). Cooperative Research Centre for Black Coal Utilization, Dept. of Chemical Engineering

    1999-07-01

    A study was made to investigate the fusibility behaviour of coal ashes of high ash fusion temperatures. Coals and ashes formed in the boiler were sampled in several Australian power stations, with laboratory ashes being prepared from the coals. The laboratory ashes gave lower values for the deformation temperature (DT) than the combustion ashes when the ash had low levels of basic oxide components. Thermo-mechanical analysis, quantitative X-ray diffraction and scanning electron microscopy were used to establish the mechanisms responsible for the difference. Laboratory ash is finer than combustion ash and it includes unreacted minerals (such as quartz, kaolinite and illite) and anhydrite (CaSO{sub 4}). Fusion events which appear to be characteristic of reacting illite, at temperatures from 900 to 1200{degree}C, were observed for the laboratory ashes, these being associated with the formation of melt phase and substantial shrinkage. The combustion ashes did not contain this mineral and their fusion events were observed at temperatures exceeding 1300{degree}C. The low DTs of coal ashes with low levels of basic oxides are therefore a characteristic of laboratory ash rather than that found in practical combustion systems. These low temperatures are not expected to be associated with slagging in pulverised coal fired systems. 10 refs., 3 figs., 2 tabs.

  1. Paleoceanographic and tectonic controls on deposition of the Monterey formation and related siliceous rocks in California

    Science.gov (United States)

    Barron, J.A.

    1986-01-01

    The timing of paleoceanographic and tectonic events that shaped the deposition of the Monterey Formation of California and related siliceous rocks has been determined by application of a refined biochronology. The base of the Monterey at 17.5 Ma coincides with rising global sea level and a switch in biogenous silica deposition from the Caribbean and low-latitude North Atlantic to the North Pacific. Major polar cooling, which began at 15 Ma, postdates the base of the Monterey by more than 2 Ma and cannot be invoked to cause the deposition of diatomaceous sediments occurring in the lowermost Monterey. Later polar cooling in the early late Miocene, however, apparently caused increased upwelling and deposition of purer diatomites in the upper Monterey. The top of the Monterey at about 6 Ma coincides with a major sea level drop and is commonly marked by an unconformity. Equivalent unconformities are widespread around the rim of the North Pacific and typically separate more pelagic sediments from overlying sediments with a greater terrigenous component. Above the Monterey, diatoms persist in California sediments to 4.5-4.0 m.y., where their decline coincides with increased deposition of diatoms in the Antarctic. Carbon isotope records in the Pacific and Indian Oceans record storage of 12C in the Monterey Formation and equivalent organic-rich sediments around the rim of the North Pacific. A +1.0??? excursion in ?? 13C beginning at 17.5 Ma coincides with rising sea level and probably reflects storage of organic material in Monterey-like marginal reservoirs. A reverse -1.0??? shift at 6.2 Ma closely approximates the top of the Monterey and may represent erosion of these marginal reservoirs and reintroduction of stored organic carbon into the ocean-atmosphere system. Initiation of transform faulting and extension in the California margin in the latest Oligocene and early Miocene caused the subsidence of basins which later received Monterey sediments. A major tectonic event

  2. Growth of Larval Agrilus planipennis (Coleoptera: Buprestidae) and Fitness of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in Blue Ash (Fraxinus quadrangulata) and Green Ash (F. pennsylvanica).

    Science.gov (United States)

    Peterson, Donnie L; Duan, Jian J; Yaninek, J S; Ginzel, Matthew D; Sadof, Clifford S

    2015-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire) is an invasive primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is less susceptible to emerald ash borer infestations in the forest than other species of North American ash. Whereas other studies have examined adult host preferences, we compared the capacity of emerald ash borer larvae reared from emerald ash borer eggs in the field and in the laboratory to survive and grow in blue ash and the more susceptible green ash (F. pennsylvanica). Emerald ash borer larval survivorship was the same on both ash species. Mortality due to wound periderm formation was only observed in living field grown trees, but was low (<4%) in both green and blue ash. No difference in larval mortality in the absence of natural enemies suggests that both green and blue ash can support the development of emerald ash borer. Larvae reared from eggs on blue ash were smaller than on green ash growing in the field and also in bolts that were infested under laboratory conditions. In a laboratory study, parasitism rates of confined Tetrastichus planipennisi were similar on emerald ash borer larvae reared in blue and green ash bolts, as were fitness measures of the parasitoid including brood size, sex ratio, and adult female size. Thus, we postulate that emerald ash borer larvae infesting blue ash could support populations of T. planipennisi and serve as a potential reservoir for this introduced natural enemy after most of the other native ash trees have been killed.

  3. Early Cambrian wave-formed shoreline deposits: the Hardeberga Formation, Bornholm, Denmark

    Science.gov (United States)

    Clemmensen, Lars B.; Glad, Aslaug C.; Pedersen, Gunver K.

    2016-09-01

    During the early Cambrian, the Danish island Bornholm was situated on the northern edge of the continent Baltica with palaeolatitudes of about 35°S. An early Cambrian (Terreneuvian) transgression inundated large areas of Baltica including Bornholm creating shallow marine and coastline environments. During this period, wave-formed shoreline sediments (the Vik Member, Hardeberga Formation) were deposited on Bornholm and are presently exposed at Strøby quarry. The sediments consist of fine- and medium-grained quartz-cemented arenites in association with a few silt-rich mudstones. The presence of well-preserved subaqueous dunes and wave ripples indicates deposition in a wave-dominated upper shoreface (littoral zone) environment, and the presence of interference ripples indicates that the littoral zone environment experienced water level fluctuations due to tides and/or changing meteorological conditions. Discoidal structures (medusoids) are present in the quarry, but due to the relative poor preservation of their fine-scale structures it is difficult to determine if the discoids represent true medusae imprints or inorganic structures. The preservation of the shallow-water bedforms as well as the possible medusae imprints is related to either the formation of thin mud layers, formed during a period of calm water when winds blew offshore for a longer period, or to the growth of bacterial mats. The orientation of the wave-formed bedforms indicates a local palaeoshoreline trending NE-SW and facing a large ocean to the north.

  4. Electrochemical Investigation on the Formation of Cu Nanowires by Electroless Deposition

    Directory of Open Access Journals (Sweden)

    Felizco Jenichi Clairvaux E.

    2015-01-01

    Full Text Available The growth of copper (Cu nanowires by electroless deposition in aqueous solution at 60-80 °C was studied from an electrochemical perspective using in situ mixed potential measurements and potential-pH diagrams. Scanning Electron Microscopy (SEM showed that thick and short nanowires were obtained at high temperatures, while long and thin nanowires result from low reaction temperatures. In situ mixed potential measurements reveal that Cu(II reduction is more favored at higher reaction temperatures, hastening the reduction reaction. The fast reaction leads to a high concentration of Cu atoms in the solution. As a result, Cu deposition occurs rapidly, such that they attached on both sides and ends of the primary Cu nanowires. This results to the formation of thick and short structures. On the other hand, thin and long nanowires are obtained due to the slow reduction reaction, which gives the Cu atoms more time to orderly attach in a wire-like formation.

  5. Simulation of geochemical processes responsible for the formation of the Zhezqazghan deposit

    Science.gov (United States)

    Ryzhenko, B. N.; Cherkasova, E. V.

    2014-05-01

    Physicochemical computer simulation of water-rock systems at a temperature of 25-150°C and under a pressure of up to 600 bar has been carried out for quantitative description of the mineralization formation conditions at sandstone- and shale-hosted copper deposits. The simulation is based on geological and geochemical information concerning the Zhezqazghan deposit and considers (i) a source of ore matter, (ii) composition of the fluid that transfers ore matter to the ore formation zone, and (iii) factors of ore concentration. It has been shown that extraction of copper from minerals of rocks and its accumulation in aqueous solution are optimal at a high mass ratio of rock to water (R/W > 10), Eh of +200 to -100 mV, and an obligatory content of chloride ions in the aqueous phase. The averaged ore-bearing fluid Cl95SO44//Ca50(Na + K)30Mg19 (eq %), pH ˜ 4, mineralization of up to 400 g/L, is formed by the interaction of red sandstone beds with a sedimentogenic brine (a product of metamorphism of seawater in carbonate rocks enriched in organic matter). The ore concentration proceeds in the course of cooling from 150 to 50°C during filtration of ore-bearing fluid through red sandstone beds in the rock-water system thermodynamically opened with respect to the reductive components.

  6. The formation of Palæoproterozoic banded iron formations and their associated Fe and Mn deposits, with reference to the Griqualand West deposits, South Africa

    Science.gov (United States)

    Klemm, Dietrich D.

    2000-01-01

    This paper models the physico-chemical conditions of a Neoarchæan to Palæoproterozoic marine basin in which the sedimentary sequence of BIF, Fe and Mn ores of the Lake Superior-type formed. The model is based on Eh-pH diagram stability fields for Fe, silica and Mn solubilities (taken from the literature) and on field observations of the lithological sequences. BIF formation took place in epicontinental marine basins with free access to the ocean. The main Fe source for BIF formation was ocean enriched with about 6-10 ppm ferrous Fe of hydrothermal geochemical affinity. Land-derived Fe influxes into the BIF-forming basins certainly contributed, but the lack of clastic sedimentation precludes estimation of element budgets. The main silica source for formation of chert layers is sea water. If silica was precipitated by evaporation, the silica concentration of the BIF-forming sea must have been close to saturation (15-20 ppm). Biogenic silica concentration from a possible silica undersaturated sea may not be excluded. These inferred BIF-forming conditions fit the global occurrence of Lake Superior-type BIF in general, whereas special sedimentary environments were probably responsible for the formation of highly enriched laminated Fe ore at the Maremane Dome and in the Sishen-Kathu mining district in Griqualand West, and for the FeMn ores in the Kalahari field. Formation of laminated Fe ore in the Maremane Dome and in the Sishen-Kathu areas were restricted to local deeps within the BIF basins, caused by karst collapse in the underlying Campbellrand dolomites. In such deeps, increased pH values relative to the normal BIF-forming sea caused sufficiently increased silica solubility, resulting in the almost exclusive sedimentation of colloidal Fe precipitates. In the Kalahari field, the BIF sedimentation pile became silica-depleted when approaching the Mn layers. This was genetically controlled by the increased pH of sea water and increased silica solubility. Under

  7. Sodium sulphate deposits of Neogene age: the Kirmir Formation, Beypazari Basin, Turkey

    Science.gov (United States)

    Ortí, Federico; Gündogan, Ibrahim; Helvaci, Cahit

    2002-01-01

    The Evaporite Member of the Kirmir Formation was deposited in shallow lacustrine environments during the upper Miocene. The most soluble minerals of this member can be currently observed in the Çayirhan mine. The Evaporite Member, which is composed of secondary gypsum at outcrop, can be subdivided into a bedded lower unit and a massive upper unit. In the bedded lower unit, most of the gypsum throughout the basin can be identified as having been transformed from glauberite. In the glauberite layers of the Çayirhan mine, some glauberite textures ('clear glauberite') suggest a primary, subaqueous, free precipitation on a depositional floor. More common, however, are the glauberite textures indicating an interstitial growth within a clayey-magnesitic matrix. In the thenardite layers accompanying the glauberite in the Çayirhan mine, some disruption structures can be assigned to synsedimentary dissolution. These structures together with the textures of the thenardite suggest that the original sodium sulphate was mirabilite, thenardite being a secondary phase, which formed during early to moderate burial diagenesis. The massive upper unit, in which evidence of sodium-bearing minerals is absent, is characterized by laminated to banded gypsum and nodular gypsum in the marginal areas of the evaporitic basin, whereas thick, clast-supported gypsum breccias prevail in the northern, deeper part of the basin. The brecciation of these calcium sulphate layers occurred as a result of synsedimentary, gravitative slumping under tectonic control. Although the sulphur isotopic values (δ 34S) of the sulphates of the Kirmir Formation suggest a marine-derived brine supply, the oxygen isotopic values (δ 18O) and the strontium ratios ( 87Sr/ 86Sr) do not support such a supply. The origin of the mother brines, the glauberite genesis, the depositional model of the sodium sulphates, and the salinity evolution are discussed.

  8. Deposition of rheomorphic ignimbrite D (Mogán Formation), Gran Canaria, Canary Islands, Spain

    Science.gov (United States)

    Kobberger, Gustav; Schmincke, Hans-Ulrich

    Rheomorphic ignimbrite D (13.4Ma, Upper Mogán Formation on Gran Canaria), a multiple flow-single cooling unit, is divided into four major structural zones that differ in fabric and finite strain of deformed pyroclasts. Their structural characteristics indicate contrasting deformation mechanisms during rheomorphic flow. The zones are: (a) a basal zone (vitrophyre) with pure uniaxial flattening perpendicular to the foliation; (b) an overlying shear zone characterized by asymmetric fabrics and a significantly higher finite strain, with an ellipsoid geometry similar to stretched oblate bodies; (c) a central zone with a finite strain geometry similar to that of the underlying shear zone but without evidence of a rotational strain component; and (d) a slightly deformed to non-deformed top zone where the almost random orientation of subspherical pyroclasts suggests preservation of original, syn-depositional clast shapes. Rheomorphic flow in D is the result of syn- to post-depositional remobilization of a hot pyroclastic flow as shown by kinematic modeling based on: (a) the overall vertical structural zonation suggested by finite strain and fabric analysis; (b) the relation of shear sense to topography; (c) the interrelationship of the calculated vertical cooling progression at the base of the flow (formation of vitrophyre) and the related vertical changes in strain geometry; (d) the complex lithification history; and (e) the consequent mechanisms of deformational flow. Rheomorphic flow was caused by load pressure due to an increase in the vertical accumulation of pyroclastic material on a slope of generally 6-8°. We suggest that every level of newly deposited pyroclastic flow material of D first passed through a welding process that was dominated by compaction (pure flattening) before rheomorphic deformation started.

  9. Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Nitin Padture

    2011-12-31

    Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

  10. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  11. Oil ash corrosion; A review of utility boiler experience

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D. (Babcock and Wilcox Co., Alliance, OH (United States)); Seeley, R.R. (Babcock and Wilcox Canada Ltd., Cambridge, ON (Canada))

    1991-02-01

    In this paper a review of experience with oil ash corrosion is presented along with current design practices used to avoid excessive tube wastage. Factors influencing oil ash corrosion include fuel chemistry, boiler operation, and boiler design. These factors are interdependent and determine the corrosion behavior in utility boilers. Oil ash corrosion occurs when vanadium-containing ash deposits on boiler tube surfaces become molten. These molten ash deposits dissolve protective oxides and scales causing accelerated tube wastage. Vanadium is the major fuel constituent responsible for oil ash corrosion. Vanadium reacts with sodium, sulfur, and chlorine during combustion to produce lower melting temperature ash compositions, which accelerate tube wastage. Limiting tube metal temperatures will prevent ash deposits from becoming molten, thereby avoiding the onset of oil ash corrosion. Tube metal temperatures are limited by the use of a parallel stream flow and by limiting steam outlet temperatures. Operating a boiler with low excess air has helped avoid oil ash corrosion by altering the corrosive combustion products. Air mixing and distribution are essential to the success of this palliative action. High chromium alloys and coatings form more stable protective scaled on tubing surfaces, which result in lower oil ash corrosion rates. However, there is not material totally resistant to oil ash corrosion.

  12. Ordovician ash geochemistry and the establishment of land plants

    Directory of Open Access Journals (Sweden)

    Parnell John

    2012-08-01

    Full Text Available Abstract The colonization of the terrestrial environment by land plants transformed the planetary surface and its biota, and shifted the balance of Earth’s biomass from the subsurface towards the surface. However there was a long delay between the formation of palaeosols (soils on the land surface and the key stage of plant colonization. The record of palaeosols, and their colonization by fungi and lichens extends well back into the Precambrian. While these early soils provided a potential substrate, they were generally leached of nutrients as part of the weathering process. In contrast, volcanic ash falls provide a geochemically favourable substrate that is both nutrient-rich and has high water retention, making them good hosts to land plants. An anomalously extensive system of volcanic arcs generated unprecedented volumes of lava and volcanic ash (tuff during the Ordovician. The earliest, mid-Ordovician, records of plant spores coincide with these widespread volcanic deposits, suggesting the possibility of a genetic relationship. The ash constituted a global environment of nutrient-laden, water-saturated soil that could be exploited to maximum advantage by the evolving anchoring systems of land plants. The rapid and pervasive inoculation of modern volcanic ash by plant spores, and symbiotic nitrogen-fixing fungi, suggests that the Ordovician ash must have received a substantial load of the earliest spores and their chemistry favoured plant development. In particular, high phosphorus levels in ash were favourable to plant growth. This may have allowed photosynthesizers to diversify and enlarge, and transform the surface of the planet.

  13. Volcanic ash as an oceanic iron source and sink

    Science.gov (United States)

    Rogan, Nicholas; Achterberg, Eric P.; Le Moigne, Frédéric A. C.; Marsay, Chris M.; Tagliabue, Alessandro; Williams, Richard G.

    2016-03-01

    Volcanic ash deposition to the ocean forms a natural source of iron (Fe) to surface water microbial communities. Inputs of lithogenic material may also facilitate Fe removal through scavenging. Combining dissolved Fe (dFe) and thorium-234 observations alongside modeling, we investigate scavenging of Fe in the North Atlantic following the Eyjafjallajökull volcanic eruption. Under typical conditions biogenic particles dominate scavenging, whereas ash particles dominate during the eruption. The size of particles is important as smaller scavenging particles can become saturated with surface-associated ions. Model simulations indicate that ash deposition associated with Eyjafjallajökull likely led to net Fe removal. Our model suggests a threefold greater stimulation of biological activity if ash deposition had occurred later in the growing season when the region was Fe limited. The implications of ash particle scavenging, eruption timing, and particle saturation need to be considered when assessing the impact of ash deposition on the ocean Fe cycle and productivity.

  14. Factors controlling alkali salt deposition in recovery boilers - particle formation and deposition; Soodakattilan likaantuminen ja siihen vaikuttavien tekijoeiden hallinta - hiukkasten muodostuminen ja depositio

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E.I.; Mikkanen, P.; Ylaetalo, S. [VTT Chemistry, Espoo (Finland); Jokiniemi, J.K.; Lyyraenen, J.; Pyykoenen, J.; Saastamoinen, J. [VTT Energy, Espoo (Finland)

    1996-12-01

    In this project, the aim was to find out those critical factors that control the deposit formation in the recovery boilers. We focus on the particle formation, growth and deposition as well as the single black liquor particle combustion behaviour. The final goal is the development of the predictive model to be used to describe deposit growth and subsequent behaviour as well as the dependence of deposition on black liquor characteristics and boiler operation conditions. During year 1995 an experimental study on the aerosol particle formation within the recovery boiler furnace and a sensitivity study with the Aerosol Behaviour in Combustion (ABC) code were carried out. The experimental study confirmed the fact that the particles are already formed in the recovery boiler furnace. The particle formation is initiated in the boundary layer of the burning droplet or smelt bed, where metals are vaporised and oxidised to form tiny seed particles. Trace amounts of metals were measured in all particle sizes and the sensitivity study with the ABC model gave further evidence of the seed formation was necessary primary step in the particle formation. At the furnace outlet the sintration ratio and the sulfation ratio of the particles were dependent on the furnace temperature and the residence time in the furnace. At ESP inlet three types of particles were observed (1) fine particles with the major mass mode at about 1-2 {mu}m, (2) large agglomerates in sizes larger than 8 {mu}m, and (3) spherical particles about 2-4 {mu}m in size. The fine particles were formed from vapours and the large agglomerates were formed from fine particles agglomerated on heat exchanger surfaces and re-entrained back to flue gas flow. The large agglomerates also contain vapours that have directly condensed to surfaces. The large spherical particles contain silicon and pass the process almost unchanged. (Abstract Truncated)

  15. Ice Formation via Deposition Mode Nucleation on Bare and Alcohol-covered Graphite Surfaces

    CERN Document Server

    Kong, Xiangrui; Thomson, Erik S; Pettersson, Jan B C

    2013-01-01

    Deposition of water on aerosol particles contributes to ice cloud formation in the atmosphere with implications for the water cycle and climate on Earth. The heterogeneous ice nucleation process is influenced by physico-chemical properties of the substrate, but the mechanisms remain incompletely understood. Here, we report on ice formation on bare and alcohol-covered graphite at temperatures from 175 to 213 K, probed by elastic helium and light scattering. Water has a low wettability on bare and butanol-covered graphite resulting in the growth of rough ice surfaces. In contrast, pre-adsorbed methanol provides hydrophilic surface sites and results in the formation of smooth crystalline ice; an effect that is pronounced also for sub-monolayer methanol coverages. The alcohols primarily reside at the ice surface and at the ice-graphite interface with a minor fraction being incorporated into the growing ice structures. Methanol has no observable effect on gas/solid water vapor exchange whereas butanol acts as a tr...

  16. Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems.

    Science.gov (United States)

    Jha, Vinay Kumar; Nagae, Masahiro; Matsuda, Motohide; Miyake, Michihiro

    2009-06-01

    Zeolitic materials have been prepared from coal fly ash as well as from a SiO(2)-Al(2)O(3) system upon NaOH fusion treatment, followed by subsequent hydrothermal processing at various NaOH concentrations and reaction times. During the preparation process, the starting material initially decomposed to an amorphous form, and the nucleation process of the zeolite began. The carbon content of the starting material influenced the formation of the zeolite by providing an active surface for nucleation. Zeolite A (Na-A) was transformed into zeolite X (Na-X) with increasing NaOH concentration and reaction time. The adsorption isotherms of the obtained Na-X based on the characteristics required to remove heavy ions such as Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were examined in multi-metal systems. Thus obtained experimental data suggests that the Langmuir and Freundlich models are more accurate compared to the Dubinin-Kaganer-Radushkevich (DKR) model. However, the sorption energy obtained from the DKR model was helpful in elucidating the mechanism of the sorption process. Further, in going from a single- to multi-metal system, the degree of fitting for the Freundlich model compared with the Langmuir model was favored due to its basic assumption of a heterogeneity factor. The Extended-Langmuir model may be used in multi-metal systems, but gives a lower value for equilibrium sorption compared with the Langmuir model.

  17. Tectonophysics of hydrothermal ore formation: an example of the Antei Mo-U deposit, Transbaikalia

    Science.gov (United States)

    Petrov, V. A.; Rebetsky, Yu. L.; Poluektov, V. V.; Burmistrov, A. A.

    2015-07-01

    The Antei deposit of the southeastern Transbaikalian region is one of the largest uranium mines in Russia. It is hosted by the Late Paleozoic granitic basement of the Streltsovskaya caldera and was formed as a result of Late Mesozoic tectonothermal activity. Vein and stockwork-disseminated molybdenum-uranium mineralization at this deposit is controlled by zones of intense hydrothermal alteration, cataclasis, brecciation, and intense fracturing along steeply dipping faults, which acted as conduits for mineralizing fluids and hosts to the ore bodies. The upper edge of the ore-bearing zone is located at a depth of 400 m, and its lower edge was intersected at a depth of 1300 m from the day surface. The conditions of ore localization were determined using structural-geological and petrophysical studies coupled with numerical modeling of the effects of gravitational body forces at purely elastic and postcritical elastoplastic deformational stages. The dynamics of the tectonic stress field in the rock massif was reconstructed using the results of mapping of morphogenetic and kinematic characteristics of fault and fracture systems, as well as data on petrography and mineralogy of rocks and vein-filling material. It was shown that the fault framework of the deposit was formed in four tectonic stages, three of which took place in the geologic past and one of which reflects recent geologic history. Each tectonic stage was characterized by different parameters of the tectonic stress-strain field, fault kinematics, and conditions of mineral formation. The following types of metasomatic rocks are recognized within the deposit: high-temperature K-feldspar rocks and albitites (formed during the Late Paleozoic as the primary structural elements of a granitic massif) and Late Mesozoic low-temperature preore (hydromicatized rocks), synore (hematite, albite, chlorite, and quartz) and postore (kaolinite-smectite) rocks. The following petrophysical parameters were determined for all

  18. Pressure Drop Research of Diesel Particulate Filter for Ash Deposition in Deep Bed%柴油机微粒捕集器灰烬深床沉积压降特性

    Institute of Scientific and Technical Information of China (English)

    龚金科; 陈韬; 鄂加强; 王曙辉; 左青松; 江俊豪

    2013-01-01

    Based on the pattern and morphology of deposited ash at the filter wall,a mathematical model of ash deposition in the deep bed was proposed using a physical model of the spherical unit packed bed.The model describes the variation of trap unit size and permeability and investigates the pressure drop on the filter body.Then an accelerated aging bench test was taken to verify the calculation.Results show that pressure drop is increased significantly in the deep bed filtration phase and becomes flat in the cake filtration phase.The deviation between the calculated and experimental values is less than 8% and this confirms that the model can reasonably describe the ash deposition process at the filter wall.The study has the reference to predict DPF failure and provides theoretical guidance for the optimization of anti-clogging.%基于过滤壁面内灰烬深床沉积规律和形态,运用球状单元填充床多孔介质物理模型,建立了过滤壁面内灰烬深床沉积数学模型.根据该数学模型研究壁面捕集单元尺寸和渗透率随灰烬沉积量和壁面深度的变化规律,以及过滤体压降随深床沉积灰烬质量的变化规律,并通过灰烬沉积加速老化台架试验验证了计算模型.结果表明,灰烬深床沉积阶段过滤体压降明显增加,滤饼沉积阶段压降增加变得平缓,过滤体灰烬深床沉积阶段压降损失计算值与试验值误差不超过8%,该模型能合理描述灰烬在过滤壁面内的沉积过程,为微粒捕集器的抗堵塞优化研究和失效预测提供理论依据.

  19. Physicochemical Conditions during the Formation of Dalingkou Ag—Pb—Zn Deposit,Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    魏元柏; 陈武

    1993-01-01

    On the basis of mineral paragenesis and the chemistry and homogenization temperatures of fluid inclusions,the physicochemical parameters were calculated for the formation of the Dalingkou Ag-Pb-Zu deposit in Zhejiang.From the early to the late stage of mineralization the ore-forming temperature veriation was found to be 298.5 ℃→267.0℃→217.6℃→167.3℃,with a corresponding pH change of 3.0-5.8→6.1→6.7→5.0→7.3.The pressure changed from 403.8to 128.5atm,and logfS2-9.9→-11.2→-44.2;and logf CO2 around -1.55.In conjunction with geological observations.the deposit is considered to be of meso-epithermal origin,i.e.,it was formed after continental volcanic-subvolcanic activity.The major factors affecting ore precipitation are the decreasing temperature and the increasing pH of ore-forming solutions.

  20. The layered subsurface - periglacial slope deposits as crucial elements for soil formation and variability

    Science.gov (United States)

    Völkel, Jörg; Huber, Juliane

    2014-05-01

    Still most concepts of soil formation, weathering production rates and weathering front ideas are dealing with a monolayered near-surface underground and subsoil. At best a line is given on so-called moved regolith. In fact the subsurface is often characterized by stratified and multilayered slope deposits with thicknesses exceeding 1 m. These stratified slope sediments play a significant role in the nature of the physical and chemical properties as well as on soil forming processes. Examples are given for sediment sourced chemical elements and common clay minerals, and the significance of slope sediments as both barriers and pathways for interflow that moves through the stratified sediments. The stratified subsurface is often datable by numeric age techniques (OSL) showing up how sediment features contradict weathering effects and meaning e.g. for soil genesis. In the mid latitudes, geomorphic and sedimentologic evidence supports a periglacial origin, involving solifluction, for the origin of these slope deposits. The study areas are situated within the Colorado Front Range, U.S. and the Bavarian Forest, Germany. The projects are currently financed and supported by the German Science Foundation DFG. Literature: Völkel, J., Huber, J. & Leopold, M. (2011): Significance of slope sediments layering on physical characteristics and interflow within the Critical Zone… - Applied Geochemistry 26: 143-145.

  1. Dominant formation of the microsized carbon coils by a short time SF6 flow incorporation during the initial deposition stage.

    Science.gov (United States)

    Jeon, Young-Chul; Yi, Soung Soo; Kim, Sung-Hoon

    2013-08-01

    By SF6 gas incorporation for relatively short time during the initial deposition stage, carbon coils could be formed on nickel catalyst layer-deposited silicon oxide substrate using C2H2 and H2 as source gases under thermal chemical vapor deposition system. The characteristics (formation density and morphology) of as-grown carbon coils were investigated as a function of SF6 flow injection time. 5-min SF6 flow injection time is appropriate to produce the dominant microsized geometry for carbon coils without the appearance of the nanosized carbon coils. The geometry for the microsized carbon coils follows a typical double-helix structure and the shape of the rings constituting the coils is a flat-type. Fluorine's intrinsic etching characteristics for the nanosized carbon coils during the initial deposition stage seems to be the cause for the dominant formation of the microsized carbon coils in the case of 5-min SF6 flow injection time.

  2. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    Science.gov (United States)

    Kucha, H.; Raith, J.

    2009-04-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular

  3. The Origin of the Terra Meridiani Sediments: Volatile Transport and the Formation of Sulfate Bearing Layered Deposits on Mars

    Science.gov (United States)

    Niles, P.B.

    2008-01-01

    The chemistry, sedimentology, and geology of the Meridiani sedimentary deposits are best explained by eolian reworking of the sublimation residue of a large scale ice/dust deposit. This large ice deposit was located in close proximity to Terra Meridiani and incorporated large amounts of dust, sand, and SO2 aerosols generated by impacts and volcanism during early martian history. Sulfate formation and chemical weathering of the initial igneous material is hypothesized to have occurred inside of the ice when the darker mineral grains were heated by solar radiant energy. This created conditions in which small films of liquid water were created in and around the mineral grains. This water dissolved the SO2 and reacted with the mineral grains forming an acidic environment under low water/rock conditions. Subsequent sublimation of this ice deposit left behind large amounts of weathered sublimation residue which became the source material for the eolian process that deposited the Terra Meridiani deposit. The following features of the Meridiani sediments are best explained by this model: The large scale of the deposit, its mineralogic similarity across large distances, the cation-conservative nature of the weathering processes, the presence of acidic groundwaters on a basaltic planet, the accumulation of a thick sedimentary sequence outside of a topographic basin, and the low water/rock ratio needed to explain the presence of very soluble minerals and elements in the deposit. Remote sensing studies have linked the Meridiani deposits to a number of other martian surface features through mineralogic similarities, geomorphic similarities, and regional associations. These include layered deposits in Arabia Terra, interior layered deposits in the Valles Marineris system, southern Elysium/Aeolis, Amazonis Planitia, and the Hellas basin, Aram Chaos, Aureum Chaos, and Ioni Chaos. The common properties shared by these deposits suggest that all of these deposits share a common

  4. Redox-Controled Preservation of Mediterranean Sapropel S1 deposits during Formation and Interruption

    Science.gov (United States)

    De Lange, Gert J.; Filippidi, Amalia; Goudeau, Marie-Louise; Hennekam, Rick

    2016-04-01

    Organic-rich units (sapropels) occur in Mediterraneran sediments in a repetitive, climate-controled way. Their deposition is thought to be precession-related and to be associated with humid climate conditions. The last humid period from 11 - 5 kyr 14C ago, occurred simultaneous with a sustained circum-Mediterranean wet period and vegetated Sahara. Within that period, the most recent sapropel (S1) formed synchronously between 9.8 and 5.7 14C ky BP at all water depths greater than a few hundred metres. As a consequence of increased fresh water (monsoon) input, surface waters had a reduced salinity and concomitantly the deep (> 1.8 km) eastern Mediterranean Sea was devoid of oxygen during 4,000 years of S1 formation. This has resulted in a differential basin-wide preservation of S1sediments determined by water depth, as a result of different ventilation/climate-related redox conditions above and below 1.8 km. The end of this period is marked by a basin-wide high sedimentary manganese-oxide peak that represents an abrupt re-ventilation of the deep-water at 5.7 kyr. The sustaining oxic conditions thereafter have resulted in a downward progressing oxidation-front that is not only characterized by the degradation of most organic matter over its active pathway, but also by the built-up of manganese oxide. The latter has resulted in a secondary diagenetic Mn-peak below the first, upper, ventilation Mn-peak. Apart from the major re-ventilation event at the end of sapropel S1 formation, also other, short-term ventilation events appear to have occurred during its formation, notably during the 8.2 ka event. This potentially basin-wide event is particularly noticeable at relatively shallow near-coastal sites of high sedimentation rates. It marks a brief episode of not only re-oxygenated deep water thus reduced preservation, but also decreased primary productivity thus nutrient supply. This 8.2 cal ka BP interruption event is thought to be related to enhanced deep water formation

  5. Volcanic ash impacts on critical infrastructure

    Science.gov (United States)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern WWTPs can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20 years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using

  6. Formation of Metal Nano- and Micropatterns on Self-Assembled Monolayers by Pulsed Laser Deposition Through Nanostencils and Electroless Deposition

    NARCIS (Netherlands)

    Speets, Emiel A.; Riele, te Paul; Boogaart, van den Marc A.F.; Doeswijk, Lianne M.; Ravoo, Bart Jan; Rijnders, Guus; Brugger, Jürgen; Reinhoudt, David N.; Blank, Dave H.A.

    2006-01-01

    Patterns of noble-metal structures on top of self-assembled monolayers (SAMs) on Au and SiO2 substrates have been prepared following two approaches. The first approach consists of pulsed laser deposition (PLD) of Pt, Pd, Au, or Cu through nano- and microstencils. In the second approach, noble-metal

  7. Formation of magnesite and siderite deposits in the Southern Urals—evidence of inclusion fluid chemistry

    Science.gov (United States)

    Prochaska, W.; Krupenin, M.

    2013-02-01

    World-class deposits of magnesite and siderite occur in Riphean strata of the Southern Urals, Russia. Field evidence, inclusion fluid chemistry, and stable isotope data presented in this study clearly proof that the replacement and precipitation processes leading to the formation of the epigenetic dolomite, magnesite and hydrothermal siderite were genetically related to evaporitic fluids affecting already lithified rocks. There is, however, a systematic succession of events leading to the formation of magnesite in a first stage. After burial and diagenesis the same brines were modified to hot and reducing hydrothermal fluids and were the source for the formation of hydrothermal siderite. The magnesites of the Satka Formation as well as the magnesites and the siderites of the Bakal Formation exhibit low Na/Br (106 to 222) and Cl/Br (162 to 280) ratios plotting on the seawater evaporation trend, indicating that the fluids acquired their salinity by evaporation processes of seawater. Temperature calculations based on cation exchange thermometers indicate a formation temperature of the magnesites of ~ 130 °C. Considering the fractionation at this temperature stable isotope evidence shows that the magnesite forming brines had δ18OSMOW values of ~ +1 ‰ thus indicating a seawater origin of the original fluid. Furthermore it proves that these fluids were not yet affected by appreciable fluid-rock interaction, which again implies magnesite formation in relatively high crustal levels. In contrast to the magnesites, the siderite mineralization was caused by hydrothermal fluids that underwent more intense reactions with their host rocks in deeper crustal levels compared to the magnesite. The values of 87Sr /86Sr in the siderites are substantially higher compared to the host rock slates. They also exceed the 87Sr /86Sr ratios of the magnesites and the host rock limestones indicating these slates as the source of iron as a consequence of water-rock interaction. The siderites

  8. Mesoscopic Modeling of Thrombus Formation and Growth: Platelet Deposition in Complex Geometries

    Science.gov (United States)

    Yazdani, Alireza; Karniadakis, George

    2014-11-01

    Haemodynamics and blood rheology are important contributing factors to thrombus formation at a vulnerable vessel wall, and adhesion of platelets to a vascular surface, particularly in regions of flow stagnation, recirculation and reattachment is significantly important in formation of thrombi. For example, haemodynamic micro-environment can have effects on thrombosis inside the atherosclerotic plaques and aneurysms. To study these effects, we have developed and validated a model for platelet aggregation in blood flow using Dissipative Particle Dynamics (DPD) method. In this model platelets are considered as single DPD particles interacting with each other via Morse potential once activated. We assign an activation delay time to each platelet such that they remain passive during that time. We investigate the effect of different geometries on platelet aggregation by considering arterial stenosis at different levels of occlusion, and aneurysms of different shapes and sizes. The results show a marked increase in platelet aggregation within the boundaries of deceleration zone by increasing the degree of stenosis. Further, we observe enhanced platelet margination and wall deposition in the presence of red blood cells.

  9. Laser ablation source for formation and deposition of size-selected metal clusters.

    Science.gov (United States)

    Vucković, S; Svanqvist, M; Popok, V N

    2008-07-01

    This work describes construction of a source and optimisation of its parameters for production of cluster ion beams using material ablation by the second harmonic of a Nd:YAG laser (532 nm). The influence of different source parameters such as carrier gas pressure, laser power, delay time between gas, and laser pulses as well as nozzle configuration on the cluster formation are studied. For the current experiments the laser ablation cluster source was optimized for production of Con+ cluster ions. Clusters with n up to 150 atoms are registered by a time-of-flight mass spectrometer. Deposition of size-selected Co50+ clusters with kinetic energies in the interval of 250-4850 eV/cluster on highly ordered pyrolytic graphite is studied. At the highest impact energies the clusters are implanted. Craters and well-like structures can be seen by scanning tunneling microscopy at impact spots. A decrease in cluster kinetic energy leads to formation of bumplike structures which probably represent damaged graphite areas with incorporated Co atoms. Further decrease in the cluster impact energy to the level of 450-250 eV/cluster creates condition for so-called cluster pinning when the cluster constituents are intact but the energy transferred to the graphite is still enough to produce radiation defects to which the cluster is bound.

  10. Effect of fly ash on VAM formation and growth response of pulse crops infested with Glomus aggregatum in sterile soil

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, C.N.; Garampalli, H.R. [Gulbarga University, Gulbarga (India). Dept. of P.G. Studies and Research in Botany

    2002-07-01

    The effect of flyash amendment at 3 concentrations (10%, 20% and 30%) on the infectivity and efficacy of Glomus aggregatum was studied by conducting a pot culture experiment with sterile low fertile soil using pigeon pea (Cajanus cagan (L.) Millsp.) Cv. Maruti and Chick pea (Cicer ariteinum L.) Cv. Annigeri, the two pulse crop cultivars of this region. It is evident from the present investigation that the percent vesicular arbuscular mycorrhiza, VAM colonization in both the crops significantly decreased with the increase of flyash content in the soil. The formation of VAM fungal structures (vesicles and arbuscules) inside the host root was also found completely suppressed at higher concentrations of flyash. The effectiveness of G. aggregatum under the influence of flyash was found significantly affected as compared to control, when judged by the growth response of pigeon pea. However in chickpea VAM association could slightly increase the growth over its control. Flyash amendment alone also has shown positive influence on the growth of both the crops over their controls (without VAM association). This influence of flyash amendment together with the usefulness of VAM fungi, as bioremediation agents can be exploited suitably in reclamation of waste lands and soils overburdened with flyash. 40 refs., 3 tabs.

  11. Fusion characteristics of volcanic ash relevant to aviation hazards

    Science.gov (United States)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  12. Volcanic Ashes Intercalated with Cultural Vestiges at Archaeological Sites from the Piedmont to the Amazon, Ecuador

    Science.gov (United States)

    Valverde, Viviana; Mothes, Patricia; Andrade, Daniel

    2014-05-01

    A mineralogical analysis was done on 70 volcanic ashes; 9 corresponding to proximal samples of seven volcanoes: Cotopaxi (4500 yBP), Guagua Pichincha (3300 yBP, 1000 yBP and 1660 yAD), Cuicocha (3100 yBP), Pululahua (2400 yBP), Ninahuilca (2350 yBP and 4600 yBP) and 61 to distal ashes collected at eight archaeological sites in the Coastal, Sierra and Amazon regions of Ecuador. Cultural vestiges are from Pre-ceramic, Formative, Regional Development and Integration periods, with the exception of a site denominated Hacienda Malqui, which also has Inca vestiges. The sampling process was done in collaboration with various archaeologists in 2011-2013. The volcanic ashes were washed, dried and divided in order to obtain a representative fraction and their later analysis with binocular microscope. The microscope analysis allowed determination of the characteristics of each component of volcanic ash. These main elements are: pumice fragments, minerals, volcanic glass, lithics and exogenous material (non volcanic). The petrographic analysis of distal volcanic ash layers at each archaeological site was correlated by their components and characteristics with proximal volcanic ashes of source volcanoes. Some correlations permitted obtaining a relative age for the layers of distal volcanic ash in the archaeological sites. The petrographic analysis showed a correlation between the archaeological sites of Las Mercedes - Los Naranjos, Rumipamba and El Condado (located west of Quito) with the eruptive activity of Guagua Pichincha volcano (3300 yBP, 1000 yBP and 1660 yAD) and Pululahua volcano (2400 yBP). Also, a correlation with eruptive activity of Ninahuilca (2350 yBP), Cotopaxi (4500 yBP) and Quilotoa (800 yBP) volcanoes at Hda. Malqui (60 km west of Latacunga) was provided by mineralogy of the respective ashes expulsed by these volcanoes. The ash layers at Cuyuja (50 km east of Quito) are mostly superficial; they are associated with Quilotoa's 800 yBP plinian. Finally at the

  13. Depositional environments and sequence stratigraphy of the Bahram Formation (middleelate Devonian) in north of Kerman, south-central Iran

    Institute of Scientific and Technical Information of China (English)

    Afshin Hashmie; Ali Rostamnejad; Fariba Nikbakht; Mansour Ghorbanie; Peyman Rezaie; Hossien Gholamalian

    2016-01-01

    This study is focused on sedimentary environments, facies distribution, and sequence stratigraphy. The facies and sequence stratigraphic analyses of the Bahram Formation (middleelate Devonian) in south-central Iran are based on two measured stratigraphic sections in the southern Tabas block. The Bah-ram Formation overlies red sandstones Padeha Formation in sections Hutk and Sardar and is overlain by Carboniferous carbonate deposits of Hutk Formation paraconformably, with a thickness of 354 and 386 m respectively. Mixed siliciclastic and carbonate sediments are present in this succession. The field observations and laboratory studies were used to identify 14 micro/petrofacies, which can be grouped into 5 depositional environments: shore, tidal flat, lagoon, shoal and shallow open marine. A mixed carbonate-detrital shallow shelf is suggested for the depositional environment of the Bahram Formation which deepens to the east (Sardar section) and thins in southern locations (Hutk section). Three 3rd-order cyclic siliciclastic and carbonate sequences in the Bahram Formation and one sequence shared with the overlying joint with Hutk Formation are identified, on the basis of shallowing upward patterns in the micro/pertofacies.

  14. Ash agglomeration during fluidized bed gasification of high sulphur content lignites

    Energy Technology Data Exchange (ETDEWEB)

    Marinov, V.; Marinov, S.P.; Lazarov, L.; Stefanova, M. (SRTI Energydesign, Sofia (Bulgaria))

    1992-09-01

    Intensive ash agglomeration has hampered the fluidized bed gasification of lignites from the Elhovo deposit (Bulgaria) containing 5.9 wt% sulphur in the dry state. Samples of slag and agglomerates from the pilot plant have been examined by means of chemical, X-ray analysis, IR spectroscopy and scanning electron microscopy. Pyrrhotite (FeS) and wustite (FeO) have been established in the agglomerates, where junctions between ash particles have been found to consist of magnetite, spinel and garnet grains. The chemical reactions leading to garnet formation have been studied. Centres of sintering and centres of melting during the ash agglomeration process have been distinguished. The pyrite product, an eutectic of FeS and FeO melting at 924[degree]C, is assumed to be responsible for the cessation of lignite gasification with steam and air under pressure at a bed temperature of 930[degree]. 11 refs., 3 figs., 6 tabs.

  15. CALCAREOUS PLANKTON BIOSTRATIGRAPHY AND AGE OF THE MIDDLE MIOCENE DEPOSITS OF LONGANO FORMATION (EASTERN MATESE MOUNTAINS, SOUTHERN APENNINES

    Directory of Open Access Journals (Sweden)

    FABRIZIO LIRER

    2005-03-01

    Full Text Available The integrated calcareous plankton biostratigraphy (planktonic foraminifera and calcareous nannofossils and an accurate fieldwork, allowed us the reconstruction of the sedimentary evolution of the Longano Formation (Orbulina Marls. In particular the correlation between the bioevents recognised in the Orbulina Marls sequence and those recorded in astronomically calibrated Middle Miocene sections, offered the possibility to date the passage from the shallow-water Cusano Formation to the deep-water deposits of the Longano Formation at about 13.21 Ma and the successive onset of terrigenous deposits of the Pietraroia Formation at 10.54 Ma. In addition, an high resolution study of the terrigenous sequence, showed that this sedimentary event is not abrupt but it is characterised by a progressive increase, bed by bed, of the siliciclastic fraction up to the deposition of the sandstones. The recognition in all the studied sections of the base of the first Acme (AB1 of Paragloborotalia siakensis dated at 13.21 Ma, just above the phosphate-rich interval (this interval marks the transition between Cusano and Longano Formations, proved that the transgression which led to the deposition of the Orbulina Marls was synchronous in all the south-eastern Matese Mountains. 

  16. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    Science.gov (United States)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-09-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  17. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    Science.gov (United States)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-07-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  18. Comparative analysis of heat transfer,ash deposition and attrition performances on different extended surfaces%不同扩展换热面传热、积灰、磨损特性对比

    Institute of Scientific and Technical Information of China (English)

    赵虹; 周霭琳; 施浩勋; 陈理帅; 邓芙蓉; 杨建国; 胡劲逸

    2015-01-01

    To optimize and select the low temperature heat exchanger,comparative analysis on heat transfer, ash deposition and attrition performances of H-finned tubes and spiral finned tubes was conducted,by ther-modynamic calculation and numerical simulation methods.The results show that,with conventional struc-tural parameters,the spiral finned tube with unit length has higher heat transfer efficiency,and its steel consumption (flow resistance)is only 42.87% (61.45%)of that of the H-finned tube when heat transfer rate is the same.Due to the special groove structure,the swirling generated in the H-finned tube has the opposite direction to the malnstream.It shocks to the tube lee side vertically,so the H-finned tube can a-chieve ash self-removing.The abrasion of the H-finned tubes is lighter overall,and the fin has no sideway scouring.Therefore,the spiral finned tube has better heat transfer property while the H-finned tube has ad-vantages in ash deposition and attrition resistance.%为了对低温换热器优化选型,利用热力计算和数值模拟的方法,对比分析了螺旋肋片管和 H型鳍片管的传热、积灰、磨损特性.结果表明:常规结构参数下,单位长度的螺旋肋片管具有更大的换热效率,在达到相同换热量时,其钢材消耗是 H 型鳍片管的42.87%,烟气阻力是 H型鳍片管的61.45%;H 型鳍片管由于其特殊的沟槽结构,形成的涡流方向与主流速度相反,垂直冲刷基管背风面,达到自清灰的目的,其鳍片无侧向气流冲刷,整体磨损较轻.因此,螺旋肋片管的换热性能更好,但 H 型鳍片管的防积灰和耐磨性均优于螺旋肋片管.

  19. Accessing the Impact of Sea-Salt Emissions on Aerosol Chemical Formation and Deposition Over Pearl River Delta, China

    Science.gov (United States)

    Fan, Q.; Wang, X.; Liu, Y.; Wu, D.; Chan, P. W.; Fan, S.; Feng, Y.

    2015-12-01

    Sea-salt aerosol (SSA) emissions have a significant impact on aerosol pollution and haze formation in the coastal areas. In this study, Models-3/CMAQ modeling system was utilized to access the impact of SSA emissions on aerosol chemical formation and deposition over Pearl River Delta (PRD), China in July 2006. More SSAs were transported inland from the open-ocean under the southeast wind in summertime. Two experiments (with and without SSA emissions in the CMAQ model) were set up to compare the modeling results with each other. The results showed that the increase of sulfate concentrations were more attributable to the primary emissions of coarse SO42- particles in SSA, while the increase of nitrate concentrations were more attributable to secondary chemical formations, known as the mechanisms of chloride depletion in SSA. In the coastal areas, 17.62 % of SO42-, 26.6% of NO3- and 38.2% of PM10 were attributed to SSA emissions, while those portions were less than 1% in the inland areas. The increases of PM10 and its components due to SSA emissions resulted in higher deposition fluxes over PRD, particularly in the coastal areas, except for the wet deposition of nitrate. Nitrate was more sensitive to SSA emissions in chemical formations than sulfate and dry deposition of aerosol was also more sensitive than that for wet deposition. Process analysis of sulfate and nitrate was applied to find out the difference of physical and chemical mechanisms between Guangzhou (the inland areas) and Zhuhai (the coastal areas). The negative contributions of dry deposition process to both sulfate and nitrate concentrations increased if SSA emissions were taken into account in the model, especially for Zhuhai. The negative contributions of cloud process also increased due to cloud scavenging and wet deposition process. In the coastal area, the gas-to-particle conversions became more active with high contributions of aerosol process to nitrate concentrations.

  20. Experimental techniques to determine salt formation and deposition in supercritical water oxidation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J.P.C.; LaJeunesse, C.A.; Rice, S.F.

    1994-08-01

    Supercritical Water Oxidation (SCWO) is an emerging technology for destroying aqueous organic waste. Feed material, containing organic waste at concentrations typically less than 10 wt % in water, is pressurized and heated to conditions above water`s critical point where the ability of water to dissolve hydrocarbons and other organic chemicals is greatly enhanced. An oxidizer, is then added to the feed. Given adequate residence time and reaction temperature, the SCWO process rapidly produces innocuous combustion products. Organic carbon and nitrogen in the feed emerge as CO{sub 2} and N{sub 2}; metals, heteroatoms, and halides appear in the effluent as inorganic salts and acids. The oxidation of organic material containing heteroatoms, such as sulfur or phosphorous, forms acid anions. In the presence of metal ions, salts are formed and precipitate out of the supercritical fluid. In a tubular configured reactor, these salts agglomerate, adhere to the reactor wall, and eventually interfere by causing a flow restriction in the reactor leading to an increase in pressure. This rapid precipitation is due to an extreme drop in salt solubility that occurs as the feed stream becomes supercritical. To design a system that can accommodate the formation of these salts, it is important to understand the deposition process quantitatively. A phenomenological model is developed in this paper to predict the time that reactor pressure begins to rise as a function of the fluid axial temperature profile and effective solubility curve. The experimental techniques used to generate effective solubility curves for one salt of interest, Na{sub 2}SO{sub 4}, are described, and data is generated for comparison. Good correlation between the model and experiment is shown. An operational technique is also discussed that allows the deposited salt to be redissolved in a single phase and removed from the affected portion of the reactor. This technique is demonstrated experimentally.

  1. Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency

    Science.gov (United States)

    Luby, Alexandra O.; Breitner, Emily K.; Comfort, Kristen K.

    2016-08-01

    Due to their advantageous characteristics, gold nanoparticles (AuNPs) are being increasingly utilized in a vast array of biomedical applications. However, the efficacy of these procedures are highly dependent upon strong interactions between AuNPs and the surrounding environment. While the field of nanotechnology has grown exponentially, there is still much to be discovered with regards to the complex interactions between NPs and biological systems. One area of particular interest is the generation of a protein corona, which instantaneously forms when NPs encounter a protein-rich environment. Currently, the corona is viewed as an obstacle and has been identified as the cause for loss of application efficiency in physiological systems. To date, however, no study has explored if the protein corona could be designed and advantageously utilized to improve both NP behavior and application efficacy. Therefore, we sought to identify if the formation of a preliminary protein corona could modify both AuNP characteristics and association with the HaCaT cell model. In this study, a corona comprised solely of epidermal growth factor (EGF) was successfully formed around 10-nm AuNPs. These EGF-AuNPs demonstrated augmented particle stability, a modified corona composition, and increased deposition over stock AuNPs, while remaining biocompatible. Analysis of AuNP dosimetry was repeated under dynamic conditions, with lateral flow significantly disrupting deposition and the nano-cellular interface. Taken together, this study demonstrated the plausibility and potential of utilizing the protein corona as a means to influence NP behavior; however, fluid dynamics remains a major challenge to progressing NP dosimetry.

  2. Reaction path and crystallograpy of cobalt silicide formation on silicon(001) by reaction deposition epitaxy

    Science.gov (United States)

    Lim, Chong Wee

    CaF2-structure CoSi2 layers were formed on Si(001) by reactive deposition epitaxy (RDE) and compared with CoSi2 layers obtained by conventional solid phase growth (SPG). In the case of RDE, CoSi 2 formation occurred during Co deposition at elevated temperature while for SPG, Co was deposited at 25°C and silicidation took place during subsequent annealing. My results demonstrate that RDE CoSi2 layers are epitaxial with a cube-on-cube relationship, 001CoSi2 ‖001Si and 100CoSi2 ‖100 Si . In contrast, SPG films are polycrystalline with a mixed 111/002/022/112 orientation. I attribute the striking difference to rapid Co diffusion during RDE for which the high Co/Si reactivity gives rise to a flux-limited reaction resulting in the direct formation of the disilicide phase. Initial formation of CoSi2(001) follows the Volmer-Weber mode with two families of island shapes: inverse pyramids and platelets. The rectangular-based pyramidal islands extend along orthogonal directions, bounded by four {111} CoSi2/Si interfaces, and grow with a cube-on-cube orientation with respect to Si(001). Platelet-shaped islands are bounded across their long directions by {111} twin planes and their narrow directions by 511CoSi2 ‖111Si interfaces. The top and bottom surfaces are {22¯1}, with 22¯1 CoSi2‖001 Si , and {1¯1¯1}, with 1¯1¯ 1CoSi2‖ 11¯1Si , respectively. The early stages of film growth (tCo ≤ 13 A) are dominated by the twinned platelets due to a combination of higher nucleation rates and rapid elongation along preferred directions. However, at tCo ≥ 13 A, island coalescence becomes significant as orthogonal platelets intersect and block elongation along fast growth directions. Further island growth becomes dominated by the untwinned islands. I show that high-flux low-energy Ar+ ion irradiation during RDE growth dramatically increases the area fraction of untwinned regions from 0.17 in films grown under standard magnetically balanced conditions in which the ratio

  3. The formation of Luoboling porphyry Cu-Mo deposit: Constraints from zircon and apatite

    Science.gov (United States)

    Li, Cong-ying; Hao, Xi-luo; Liu, Ji-qiang; Ling, Ming-xing; Ding, Xing; Zhang, Hong; Sun, Wei-dong

    2017-02-01

    The Luobuling porphyry Cu-Mo deposit belongs to the Late Cretaceous Zijinshan Cu-Au-Mo mineralization field in southeastern China. Due to intensive hydrothermal alteration and weathering, it is very difficult to collect fresh whole rock samples for geochemical and isotopic studies in Luobuling. Zircon and apatite are accessory minerals that are resistant to hydrothermal alterations. In this study, we compared the trace element and isotope compositions of zircon and apatite from ore-bearing and barren samples to understand the formation of the Luoboling Cu-Mo deposit. Zircon U-Pb LA-ICP-MS dating shows that the Luoboling porphyries formed at 100 Ma (100.3 ± 1.2 Ma, 100.6 ± 1.5 Ma and 98.6 ± 1.2 Ma), which belongs to the late stage mineralization of the Zijinshan mineralization field. Zhongliao porphyritic granodiorite has the same age as the deposit (99.5 ± 1.6 Ma). The age of barren Sifang granodiorite is slightly older (109.7 ± 0.8 Ma). All these zircon grains have high Ce4+/Ce3+ ratios, indicating high oxygen fugacities. The ore-bearing samples show variable εHf(t) of - 7.3 to 0.2, suggesting either heterogeneous sources or mixing of two different magmas. Interestingly, the Hf isotope composition of barren samples is systematically higher (εHf(t) of - 3.6 to 5.5), implying a lower contribution of crustal materials. The OH mole percent of apatite grains from barren samples (LBL22-03 and SF09-05) is 0.5, which is higher than that of apatite from the ore-bearing samples (LBL20-01 LBL20-02 and LBL22-02), indicating lower F, Cl contents or higher water contents in the magma. In apatite from the ore-bearing samples, Sr is high, indicating the absence of plagioclase crystallization. In contrast, barren samples have varied and lower Sr, indicating that apatite crystallization was accompanied by plagioclase. These patterns were controlled by water contents because the crystallization of plagioclase is suppressed by high water contents in magmas. It also suggests

  4. Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained Zeolite X in multi-metal systems

    Energy Technology Data Exchange (ETDEWEB)

    Jha, V.K.; Nagae, M.; Matsuda, M.; Miyake, M. [Okayama University, Okayama (Japan). Dept. of Material & Energy Science

    2009-06-15

    Zeolitic materials have been prepared from coal fly ash as well as from a SiO{sub 2}-Al{sub 2}O{sub 3} system upon NaOH fusion treatment, followed by subsequent hydrothermal processing at various NaOH concentrations and reaction times. During the preparation process, the starting material initially decomposed to an amorphous form, and the nucleation process of the zeolite began. The carbon content of the starting material influenced the formation of the zeolite by providing an active surface for nucleation. Zeolite A (Na-A) was transformed into zeolite X (Na-X) with increasing NaOH concentration and reaction time. The adsorption isotherms of the obtained Na-X based on the characteristics required to remove heavy ions such as Ni{sup 2+}, Cu{sup 2+}, Cd{sup 2+} and Pb{sup 2+} were examined in multi-metal systems. Thus obtained experimental data suggests that the Langmuir and Freundlich models are more accurate compared to the Dubinin-Kaganer-Radushkevich (DKR) model. However, the sorption energy obtained from the DKR model was helpful in elucidating the mechanism of the sorption process. Further, in going from a single- to multi-metal system, the degree of fitting for the Freundlich model compared with the Langmuir model was favored due to its basic assumption of a heterogeneity factor. The Extended-Langmuir model may be used in multi-metal systems, but gives a lower value for equilibrium sorption compared with the Langmuir model.

  5. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru [rapid communication

    Science.gov (United States)

    Rosenbaum, Gideon; Giles, David; Saxon, Mark; Betts, Peter G.; Weinberg, Roberto F.; Duboz, Cecile

    2005-10-01

    A large number of ore deposits that formed in the Peruvian Andes during the Miocene (15-5 Ma) are related to the subduction of the Nazca plate beneath the South American plate. Here we show that the spatial and temporal distribution of these deposits correspond with the arrival of relatively buoyant topographic anomalies, namely the Nazca Ridge in central Peru and the now-consumed Inca Plateau in northern Peru, at the subduction zone. Plate reconstruction shows a rapid metallogenic response to the arrival of the topographic anomalies at the subduction trench. This is indicated by clusters of ore deposits situated within the proximity of the laterally migrating zones of ridge subduction. It is accordingly suggested that tectonic changes associated with impingement of the aseismic ridge into the subduction zone may trigger the formation of ore deposits in metallogenically fertile suprasubduction environments.

  6. Spectral characteristics of banded iron formations in Singhbhum craton, eastern India:Implications for hematite deposits on Mars

    Institute of Scientific and Technical Information of China (English)

    Mahima Singh; Jayant Singhal; K. Arun Prasad; V.J. Rajesh; Dwijesh Ray; Priyadarshi Sahoo

    2016-01-01

    Banded iron formations (BIFs) are major rock units having hematite layers intermittent with silica rich layers and formed by sedimentary processes during late Archean to mid Proterozoic time. In terrestrial environment, hematite deposits are mainly found associated with banded iron formations. The BIFs in Lake Superior (Canada) and Carajas (Brazil) have been studied by planetary scientists to trace the evo-lution of hematite deposits on Mars. Hematite deposits are extensively identified in Meridiani region on Mars. Many hypotheses have been proposed to decipher the mechanism for the formation of these deposits. On the basis of geomorphological and mineralogical studies, aqueous environment of deposi-tion is found to be the most supportive mechanism for its secondary iron rich deposits. In the present study, we examined the spectral characteristics of banded iron formations of Joda and Daitari located in Singhbhum craton in eastern India to check its potentiality as an analog to the aqueous/marine envi-ronment on Mars. The prominent banding feature of banded iron formations is in the range of few millimeters to few centimeters in thickness. Fe rich bands are darker (gray) in color compared to the light reddish jaspilitic chert bands. Thin quartz veins (<4 mm) are occasionally observed in the hand-specimens of banded iron formations. Spectral investigations have been conducted in VIS/NIR region of electromagnetic spectrum in the laboratory conditions. Optimum absorption bands identified include 0.65, 0.86, 1.4 and 1.9 mm, in which 0.56 and 0.86 mm absorption bands are due to ferric iron and 1.4 and 1.9 mm bands are due to OH/H2O. To validate the mineralogical results obtained from VIS/NIR spectral radiometry, laser Raman and Fourier transform infrared spectroscopic techniques were utilized and the results were found to be similar. Goethite-hematite association in banded iron formation in Singhbhum craton suggests dehydration activity, which has altered the primary

  7. Volcanic ash at Santiaguito dome complex, Guatemala

    Science.gov (United States)

    Hornby, Adrian; Kendrick, Jackie; Lavallée, Yan; Cimarelli, Corrado; von Aulock, Felix; Rhodes, Emma; Kennedy, Ben; Wadsworth, Fabian

    2015-04-01

    Dome-building volcanoes often suffer episodic explosions. Examination of eruptive activity at Santiaguito dome complex (Guatemala) reveals that gas-and-ash explosions are concordant with rapid inflation/ deflation cycles of the active dome. During these explosions strain is accommodated along marginal faults, where tensional fracture mechanisms and friction dominate, complicating the model of ash generation by bubble rupture in magma. Here, we describe textural features, morphology and petrology of ash collected before, during and after a dome collapse event at Santiaguito dome complex on the 28th November 2012. We use QEM-scan (on more than 35000 grains), laser diffraction granulometry and optical and scanning microscopy to characterise the samples. The ash samples show a bimodal size distribution and a range of textures, crystal content and morphologies. The ash particles are angular to sub-angular and are relatively dense, so do not appear to comprise of pore walls. Instead the ash is generally blocky (>70%), similar to the products of shear magma failure. The ash samples show minor variation before, during and after dome collapse, specifically having a smaller grain size and a higher fraction of phenocrysts fragments before collapse. Textural analysis shows vestiges of chemically heterogeneous glass (melt) filaments originating from the crystals and crosscut by fragmentation during volcanic ash formation. High-velocity friction can induce melting of dome lavas, producing similar disequilibrium melting textures. This work shows the importance of deformation mechanisms in ash generation at lava domes and during Vulcanian activity.

  8. Formation and Transport of Atomic Hydrogen in Hot-Filament Chemical Vapor Deposition Reactors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we focus on diamond film hot-filament chemical vapor deposition reactors where the only reactant ishydrogen so as to study the formation and transport of hydrogen atoms. Analysis of dimensionless numbers forheat and mass transfer reveals that thermal conduction and diffusion are the dominant mechanisms for gas-phaseheat and mass transfer, respectively. A simplified model has been established to simulate gas-phase temperature andH concentration distributions between the filament and the substrate. Examination of the relative importance ofhomogeneous and heterogeneous production of H atoms indicates that filament-surface decomposition of molecularhydrogen is the dominant source of H and gas-phase reaction plays a negligible role. The filament-surface dissociationrates of H2 for various filament temperatures were calculated to match H-atom concentrations observed in the liter-ature or derived from power consumption by filaments. Arrhenius plots of the filament-surface hydrogen dissociationrates suggest that dissociation of H2 at refractory filament surface is a catalytic process, which has a rather lowereffective activation energy than homogeneous thermal dissociation. Atomic hydrogen, acting as an important heattransfer medium to heat the substrate, can freely diffuse from the filament to the substrate without recombination.

  9. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes (Miura Peninsula, Japan)

    Science.gov (United States)

    Mazumder, Rajat; van Loon, A. J. (Tom); Malviya, Vivek P.; Arima, Makoto; Ogawa, Yujuro

    2016-10-01

    The Mio-Pliocene Misaki Formation of the Miura Group (Miura Peninsula, Japan) shows an extremely wide variety of soft-sediment deformation structures. The most common deformation structures are load casts and associated flame structures, dish-and-pillar structures, synsedimentary faults, multilobated convolutions, chaotic deformation structures, sedimentary veins and dykes, and large-scale slides and slump scars. The formation, which accumulated in a deep-sea environment (2000-3000 m), is well exposed in and around Jogashima; it consists of relative thin (commonly dm-scale) alternations of deep-marine fine-grained sediments and volcanic ejecta that are, as a rule, coarse-grained. Since the formation represents fore-arc deposits of the Izu-Bonin and the Honsu arc collision zone, it might be expected that tectonic activity also played a role as a trigger of the soft-sediment deformation structures that abound in these sediments. This is indicated, indeed, by the abundance of soft-sediment deformations over large lateral distances that occur in numerous beds that are sandwiched between undeformed beds. On the basis of their characteristics and the geological context, these layers can be explained satisfactorily only by assuming deformation triggered by seismicity, which must be related to the Izu-Bonin and Honsu arc collision. The layers thus form deep-marine seismites.

  10. Agglomeration and Deposition Behaviour of Solid Recovered Fuel

    DEFF Research Database (Denmark)

    Pedersen, Morten Nedergaard; Jensen, Peter Arendt; Nielsen, Mads

    2015-01-01

    contains significant quantities of common plastics such as polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). Fluidized bed experiments to examine the pyrolysis of polymers have shown that bed agglomeration can result from melting plastics or sticky char residues in the case...... materials such as plastic and paper than mixed MSW [2]. The inhomogeneous nature of SRF [3] makes it difficult to combust and many problems may arise concerning e.g. combustion control, feeding of fuel [2,4], deposit formation [5], or accumulation of impurities [3]. Laboratory ash fusion tests typically...... of PET [11,12]. The main objective of this study was to characterize the combustion of SRF and especially the deposition propensity of SRF and the main constituents of SRF. This relates both to the low temperature deposits formed during plastic pyrolysis and the high temperature deposits formed by ash...

  11. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Institute of Scientific and Technical Information of China (English)

    David I. Groves; Richard J. Goldfarb; M. Santosh

    2016-01-01

    -flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hy-drocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All un-equivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.

  12. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    Science.gov (United States)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  13. Ash and heavy metals in fluidized-bed combustion of wood wastes; Tuhka ja raskasmetallit puuperaeisen jaetteen kerrosleijupoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Kaessi, T.; Aittoniemi, P. [IVO Power Engineering, Vantaa (Finland); Kauppinen, E.; Latva-Somppi, J.; Kurkela, J. [VTT Chemical Technology, Espoo (Finland); Partanen, J. [IVO Technology Centre, Vantaa (Finland)

    1997-10-01

    Ash formation and deposition mechanisms during co-combustion of pulp mill sludge and bark in industrial bubbling fluidized bed (BFB) combustor have been studied. Similar fuels were used in a bench-scale BFB for co-combustion of sludge and bark pellets and comparative studies with separate combustion of these fuels. Results indicated that in industrial scale unit significant fraction of ash had vaporization. About 14 mass-% of the total fly ash was found in the particle size below 0.2 {mu}m. The vaporized species consisted of potassium (K), sulfur (S), chlorine (Cl) and also of minor quantities of sodium (Na). In the benchscale similar vaporization fractions during co-combustion were measured, about 11 mass-%. During the combustion of bark this ratio, about 20 mass-%, was higher than during sludge combustion. The vaporized ash fraction was in the case of dried sludge combustion about 7 mass-%, but with wet sludge the vaporization rate was remarkably lower, about 1-2 mass-%. An increase in the bed temperature increased also ash vaporization. Test run period without combustion at elevated temperatures produced very low quantities of vaporized ash. The vaporized species in bench-scale test during bark pellet combustion were K, S and Cl, for sludge combustion also Na was clearly detected. No condensation of the vaporized species in bed area or furnace walls was observed. Bed defluidization was studied in the bench-scale unit. During bark pellet combustion the bed-agglomeration proceeded via small ash particle, below 2 {mu}m, coating on sand particle surface and consequent bonding between the ash layers. In the case of sludge combustion the accumulation of large ash particles and sintering of these porous agglomerates was observed to cause bed coarsening and defluidization. (orig.)

  14. Molecular dynamics simulation of the formation of sp3 hybridized bonds in hydrogenated diamondlike carbon deposition processes.

    Science.gov (United States)

    Murakami, Yasuo; Horiguchi, Seishi; Hamaguchi, Satoshi

    2010-04-01

    The formation process of sp3 hybridized carbon networks (i.e., diamondlike structures) in hydrogenated diamondlike carbon (DLC) films has been studied with the use of molecular-dynamics simulations. The processes simulated in this study are injections of hydrocarbon (CH3 and CH) beams into amorphous carbon (a-C) substrates. It has been shown that diamondlike sp3 structures are formed predominantly at a subsurface level when the beam energy is relatively high, as in the "subplantation" process for hydrogen-free DLC deposition. However, for hydrogenated DLC deposition, the presence of abundant hydrogen at subsurface levels, together with thermal spikes caused by energetic ion injections, substantially enhances the formation of carbon-to-carbon sp3 bonds. Therefore, the sp3 bond formation process for hydrogenated DLC films essentially differs from that for hydrogen-free DLC films.

  15. Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions

    Science.gov (United States)

    Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.

    2016-02-01

    Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.

  16. The causes of milk deposit formation on the walls of the heat exchangers during the heat treatment of milk

    Directory of Open Access Journals (Sweden)

    Bojan Matijević

    2006-03-01

    Full Text Available The results of research on finding the causes and preventing the formation of milk deposit are described in this paper.During the heat treatment of milk, an unwanted phenomenon occurs; the formation of milk deposit on heating surfaces of heat exchangers. This phenomenon causes the decrease of heat transfer coefficient as well as the pressure drop, it restricts the flow of milk, and causes additional production costs and increases production loss.The formation of milk deposit is a result of complex processes caused by thermal treatment of proteins and mineral substances in milk. Factors which cause milk deposit are: pH - value, the amount of proteins and mineral substances in milk, dissolved gases in milk, characteristics of heating surface, the difference in temperatures of milk and heating surfaces, and the regime of milk circulation. The chemical composition of milk can not be influenced, but the standards of heat treatment in order to minimise this phenomenon can, and that is precisely the topic of the latest researches.

  17. Formation and Characterization of Europium Bisphthalocyanine Organic Nanowires by Electrochemical Deposition

    Institute of Scientific and Technical Information of China (English)

    Han Bo ZHOU; Hong Zheng CHEN; Lei CAO; Yu RONG; Jin Zhi SUN; Mang WANG

    2004-01-01

    Europium bisphthalocyanine (EuPc2) nanowires were prepared by electrochemical deposition method. Scanning electron microscopy (SEM) images show the evolution of the morphologies of nanowires obtained under different deposition time (Td). The optical properties of europium bisphthalocyanine films were studied by UV-Vis absorption spectra. The morphology of EuPc2 nanowires could be controlled by changing deposition conditions, which provides a useful method to make organic nanowires.

  18. Triple oxygen and sulfur isotope analyses of sulfate extracted from voluminous volcanic ashes in the Oligocene John Day Formation: insight into dry climate conditions and ozone contribution to supereruptions

    Science.gov (United States)

    Workman, J.; Bindeman, I. N.; Martin, E.; Retallack, G.; Palandri, J. L.; Weldon, N.

    2014-12-01

    Large volume pyroclastic silicic eruptions emit hundreds of megatons of SO2 into the troposphere and stratosphere that is oxidized into sulfuric acid (H2SO4) by a variety of reactions with mass independent oxygen signatures (MIF), Δ17O>0. Sulfuric acid is then preserved as gypsum in parental volcanic deposits. Diagenic effects are mass dependent and can dilute, but otherwise do not affect MIF ratios. Pleistocene Yellowstone and Bishop tuffs and modern volcanic eruptions preserved under arid climate conditions in North American playa lakes, preserve small amounts of volcanic sulfate as gypsum. This gypsum's Δ17O>0, in combination with isotopic variations of δ18O, δ33S and δ34S is distinct from sedimentary sulfate and reveals its original MIF sulfate isotopic signal and the effect of super eruptions on the atmosphere, and ozone consumption in particular. We use linear algebraic equations to resolve volcanic versus sedimentary (MIF=0) sources. We have found that many large volume ignimbrites have very high initial Δ17O in volcanic sulfate that can only be acquired from reaction with stratospheric ozone. We here investigate nine thick (>2 m) ash beds ranging in age from ~33-23 Ma in the John Day Formation of central Oregon, including massive 28.6 Ma Picture Gorge tuff of newly identified Crooked River supercaldera. The 28.6 Ma Picture Gorge tuff (PGT) has the highest measured Δ17O of 3.5‰, and other tuffs (Tin Roof, Biotite, Deep Creek) have +1.3 to 3.4‰ Δ17O excesses. Sulfate from modern smaller tropospheric eruptions studied for comparison have a resolvable 0.4‰ range consistent with liquid-phase based H2O2 oxidation. The PGT is coeval with the ignimbrite flare-up in western N. America, the 28-29 Ma eruption of the 5000 km3 Fish Canyon tuff and the 28 Ma Never Summer Field eruption in Nebraska-Colorado that have the highest measured Δ17O of 6‰ (Bao et al. 2003). We speculate on the climatic/atmospheric effects of these multiple ~28 Ma supereruptions

  19. Characterization and formation mechanism of nano-structured hydroxyapatite coatings deposited by the liquid precursor plasma spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yi; Song Lei; Huang Tao; Liu Xiaoguang; Xiao Yanfeng; Wu Yao; Wu Fang; Gu Zhongwei, E-mail: fangwu0808@yahoo.co [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)

    2010-10-01

    Nano-structured hydroxyapatite (HA) coatings were deposited on the Ti-6Al-4V alloy substrate by the liquid precursor plasma spraying (LPPS) process. The thermal behavior of the HA liquid precursor was analyzed to interpret the phase change and structure transformation during the formation process of the nano-structured HA coatings. The phase composition, structure and morphology of the nano-structured HA coatings were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM) and Fourier transform infrared (FTIR) spectroscopy. The XRD spectra showed that the coatings deposited by the LPPS process mainly consisted of the HA phase and the crystallite size was measured to be 56 nm. The SEM observation showed that the as-deposited LPPS coatings had small splat size, and nano-scale HA particles were found in certain regions of the coating surface. The FTIR spectroscopy showed the strong presence of the OH{sup -} group in the as-deposited LPPS coatings, indicating a superior structural integrity. In addition, the coatings deposited by the LPPS process were also carbonated HA coatings. The results indicate that the LPPS process is a promising plasma spraying technique for depositing nano-structured HA coatings with unique microstructural features that are desirable for improving the biological performance of the HA coatings.

  20. Microfabric analysis of Mn-carbonate laminae deposition and Mn-sulfide formation in the Gotland Deep, Baltic Sea

    Science.gov (United States)

    Burke, Ian T.; Kemp, Alan E. S.

    2002-05-01

    The manganese carbonate deposits of the anoxic Littorina sediments of the Gotland Deep have been commonly related to the periodic renewal of deep water by inflowing saline water from the North Sea. The use of scanning electron microscopy-based techniques allows identification of small-scale sedimentary and geochemical features associated with Mn-carbonate laminae, which has significant implications for models of Mn-carbonate formation. Varves occurring in the Littorina sequence contain up to four laminae that may be placed in a seasonal cycle, and kutnahorite laminae occur within varves only as a winter-early spring deposit. This kutnahorite laminae seasonality is in agreement with the seasonal distribution of major Baltic inflow events recorded in historical records, and a direct causal link between inflows and kutnahorite deposition is implied. Benthic foraminifera tests are found to be heavily encrusted in kutnahorite, implying that benthic recolonization during oxidation events occurs concurrently with kutnahorite formation. The relatively common occurrence of small (50 to 100 μm) hexagonal γ-Mn-sulfide pseudomorphs, associated with 13% of kutnahorite laminae studied, is reported in Gotland Deep sediments for the first time. Although Mn-sulfide crystals are not usually preserved in the sediment, the discovery of Mn-sulfide pseudomorphs suggests that initial formation of Mn-sulfide in the Gotland Deep may occur much more commonly during the process of kutnahorite formation than previous reports of Mn-sulfide occurrence have implied.

  1. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration.

    Science.gov (United States)

    Weibel, Gisela; Eggenberger, Urs; Schlumberger, Stefan; Mäder, Urs K

    2016-12-19

    This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu(0)-alloy-phase and to a minor degree due to secondary precipitation (PbCl2). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs.

  2. Long term deposit formation in aviation turbine fuel at elevated temperature

    Science.gov (United States)

    Giovanetti, A. J.; Szetela, E. J.

    1986-01-01

    An experimental characterization is conducted for the relationships between deposit mass, operating time, and temperature, in coking associated with aviation fuels under conditions simulating those typical of turbine engine fuel systems. Jet A and Suntech A fuels were tested in stainless steel tubing heated to 420-750 K, over test durations of between 3 and 730 hr and at fuel velocities of 0.07-1.3 m/sec. Deposit rates are noted to be a strong function of tube temperature; for a given set of test conditions, deposition rates for Suntech A exceed those of Jet A by a factor of 10. Deposition rates increased markedly with test duration for both fuels. The heated tube data obtained are used to develop a global chemical kinetic model for fuel oxidation and carbon deposition.

  3. Formation of Jarosite in the Marwrth Vallis Region of Mars by Weathering Within Paleo-Ice Deposits

    Science.gov (United States)

    Michalski, J. R.; Niles, Paul B.

    2011-01-01

    Here we report new detections of jarosite in the Mawrth Vallis region of Mars. These newly recognized deposits expand the known occurrences of sulfates [1-2] in the region and further expand the already considerable geologic-mineralogic diversity of the Mawrth Vallis area [3-6]. The occurrence of sulfates such as jarosite in geologic contact with thick deposits of phyllosilicates in the Mawrth Vallis area is a relatively rare case on Mars where the enigmatic transition from an early phyllosilicateforming era to a younger sulfate-forming era [7] can be explored. We propose an ice-weathering model which can potentially explain the formation of jarosite-silicakaolinite within acidic ice deposits.

  4. Fly ash-reinforced thermoplastic starch composites

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.F.; Yu, J.G.; Wang, N. [Tianjin University, Tianjin (China). School of Science

    2007-01-02

    As a by-product from the combustion of pulverized coal, fly ash was, respectively, used as the reinforcement for formamide and urea-plasticized thermoplastic starch (FUPTPS) and glycerol-plasticized thermoplastic starch (GPTPS). The introduction of fly ash improved tensile stress from 4.56 MPa to 7.78 MPa and Youngs modulus increased trebly from 26.8 MPa to 84.6 MPa for fly ash-reinforced FUPTPS (A-FUPTPS), while tensile stress increased from 4.55 MPa to 12.86 MPa and Youngs modulus increased six times from 76.4 MPa to 545 MPa for fly ash-reinforced GPTPS (A-GPTPS). X-ray diffractograms illustrated that fly ash destroyed the formation of starch ordered crystal structure, so both A-GPTPS and FUPTPS could resist the starch re-crystallization (retrogradation). Also fly ash improved water resistance of TPS. As shown by rheology, during the thermoplastic processing, the extruder screw speed effectively adjusted the flow behavior of A-FUPTPS, while the increasing of the processing temperature effectively ameliorated the flow behavior of A-GPTPS. However, superfluous ash contents (e.g., 20 wt%) worsened processing fluidity and resulted in the congregation of fly ash in FUPTPS matrix (tested by SEM) rather than in GPTPS matrix. This congregation decreased the mechanical properties and water resistance of the materials.

  5. Altered callose deposition during embryo sac formation of multi-pistil mutant (mp1) in Medicago sativa.

    Science.gov (United States)

    Zhou, H C; Jin, L; Li, J; Wang, X J

    2016-06-03

    Whether callose deposition is the cause or result of ovule sterility in Medicago sativa remains controversial, because it is unclear when and where changes in callose deposition and dissolution occur during fertile and sterile embryo sac formation. Here, alfalfa spontaneous multi-pistil mutant (mp1) and wild-type plants were used to compare the dynamics of callose deposition during embryo sac formation using microscopy. The results showed that both mutant and wild-type plants experienced megasporogenesis and megagametogenesis, and there was no significant difference during megasporogenesis. In contrast to the wild-type plants, in which the mature embryo sac was observed after three continuous cycles of mitosis, functional megaspores of mutant plants developed abnormally after the second round of mitosis, leading to degeneration of synergid, central, and antipodal cells. Callose deposition in both mutant and wild-type plants was first observed in the walls of megasporocytes, and then in the megaspore tetrad walls. After meiosis, the callose wall began to degrade as the functional megaspore underwent mitosis, and almost no callose was observed in the mature embryo sac in wild-type plants. However, callose deposition was observed in mp1 plants around the synergid, and increased with the development of the embryo sac, and was mainly deposited at the micropylar end. Our results indicate that synergid, central, and antipodal cells, which are surrounded by callose, may degrade owing to lack of nutrition. Callose accumulation around the synergid and at the micropylar end may hinder signals required for the pollen tube to enter the embryo sac, leading to abortion.

  6. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles

    Science.gov (United States)

    Ouyang, Minggao; Chu, Zhengyu; Lu, Languang; Li, Jianqiu; Han, Xuebing; Feng, Xuning; Liu, Guangming

    2015-07-01

    Charging procedures at low temperatures severely shorten the cycle life of lithium ion batteries due to lithium deposition on the negative electrode. In this paper, cycle life tests are conducted to reveal the influence of the charging current rate and the cut-off voltage limit on the aging mechanisms of a large format LiFePO4 battery at a low temperature (-10 °C). The capacity degradation rates accelerate rapidly after the charging current reaches 0.25 C or the cut-off voltage reaches 3.55 V. Therefore the scheduled current and voltage during low-temperature charging should be reconsidered to avoid capacity degradation. Lithium deposition contributes to low-temperature aging mechanisms, as something needle-like which might be deposited lithium is observed on the surface of the negative electrode after disassembling the aged battery cell. To confirm our explanation, incremental capacity analysis (ICA) is performed to identify the characteristics of the lithium deposition induced battery aging mechanisms. Furthermore, the aging mechanism is quantified using a mechanistic model, whose parameters are estimated with the particle swarm optimization algorithm (PSO). The loss of reversible lithium originating from secondary SEI formation and dead lithium is confirmed as the cause of the aging.

  7. Renal Light Chain Deposition Associated with the Formation of Intracellular Crystalline Inclusion Bodies in Podocytes: A Rare Case Report.

    Science.gov (United States)

    Wang, Yuan-da; Dong, Zhe-yi; Zhang, Xue-guang; Zhang, Wei; Yin, Zhong; Qiu, Qiang; Chen, Xiang-mei

    2016-01-01

    We herein report the case of an elderly woman with bone pain and proteinuria as the main clinical manifestations. The patient was diagnosed with the IgG κ type of multiple myeloma. Her renal pathology consisted of widespread κ light chain protein deposition associated with the formation of large quantities of rod-like crystals in podocytes. This phenomenon is very rare. We explored the significance of this crystal formation via a detailed and descriptive analysis and also performed a literature review, thus providing data to increase the available information about this type of disease.

  8. [Ash Meadows Purchase Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A proposal sent to the Richard King Mellon Foundation for a loan to fund the purchase of Ash Meadows by the Nature Conservancy. Ash Meadows, set outside of Las Vegas...

  9. Origin of ferricretes in fluvial-marine deposits of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt

    Science.gov (United States)

    Tanner, Lawrence H.; Khalifa, Mohamed A.

    2010-03-01

    The type section of the Lower Cenomanian Bahariya Formation at Gebel El-Dist (Bahariya Oasis, Western Desert), Egypt, comprises claystones, mudstones, siltstones and sandstones deposited in fluvial-deltaic coastal plain, lagoonal, estuarine and shallow marine environments. The formation is characterized by an abundance of ferruginous sandstones that locally weather to form prominent iron crusts. These centimeter to decimeter-scale ferruginous horizons display a continuum of features ranging from unaltered sandstone with a pervasive ferruginous matrix to distinct ironstone beds with massive, nodular, vesicular and pisolitic textures. Ferruginous sandstone typically occurs at the tops of sandstone beds, or bracketing the base and top of beds, in the fining-upward cycles of deltaic plain deposits in the lower part of the formation and on a low-energy fluvial floodplain in the middle of the formation. Indurated ironstone beds occur mainly as the caps of coarsening-upward cycles of prograding shoreface sediments through much of the formation. We interpret the ironstone crusts as ferricretes, formed by iron accumulation that resulted from the oxidation and precipitation of soluble iron or colloids transported in the sediment load or by groundwater. This accumulation possibly took place at the water table or possibly below the water table at the fresh water/saline water interface. However, base-level fall and subsequent subaerial exposure of the sediments resulted in reworking and pedogenic modification of some of the iron-impregnated horizons.

  10. Formation of palladium nanofilms using electrochemical atomic layer deposition (E-ALD) with chloride complexation.

    Science.gov (United States)

    Sheridan, Leah B; Gebregziabiher, Daniel K; Stickney, John L; Robinson, David B

    2013-02-05

    Pd thin films were formed by electrochemical atomic layer deposition (E-ALD) using surface-limited redox replacement (SLRR) of Cu underpotential deposits (UPD) on polycrystalline Au substrates. An automated electrochemical flow deposition system was used to deposit Pd atomic layers using a sequence of steps referred to as a cycle. The initial step was Cu UPD, followed by its exchange for Pd ions at open circuit, and finishing with a blank rinse to complete the cycle. Deposits were formed with up to 75 cycles and displayed proportional deposit thicknesses. Previous reports by this group indicated excess Pd deposition at the flow cell ingress, from electron probe microanalysis (EPMA). Those results suggested that the SLRR mechanism did not involve direct transfer between a Cu(UPD) atom and a Pd(2+) ion that would take its position. Instead, it was proposed that electrons are transferred through the metallic surface to reduce Pd(2+) ions near the surface where their activity is highest. It was proposed that if the cell was filled completely before a significant fraction of the Cu(UPD) atoms had been oxidized then the deposit would be homogeneous. Previous work with EDTA indicated that the hypothesis had merit, but it proved to be very sensitive to the EDTA concentration. In the present study, chloride was used to complex Pd(2+) ions, forming PdCl(4)(2-), to slow the exchange rate. Both complexing agents led to a decrease in the rate of replacement, producing more homogeneous films. Although the use of EDTA improved the homogeneity, it also decreased the deposit thickness by a factor of 3 compared to the thickness obtained via the use of chloride.

  11. The climatic impact of supervolcanic ash blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Morgan T.; Sparks, R.S.J. [University of Bristol, Department of Earth Sciences, Bristol (United Kingdom); Valdes, Paul J. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2007-11-15

    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Nino Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to investigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change. (orig.)

  12. Apatite formation behaviour during metasomatism in the Bathtub Intrusion (Babbitt deposit, Duluth Complex, USA)

    Science.gov (United States)

    Raič, Sara; Mogessie, Aberra; Krenn, Kurt; Hauzenberger, Christoph A.; Tropper, Peter

    2016-04-01

    The mineralized troctolitic Bathtub intrusion (Duluth Complex, NE-Minnesota) is known for its famous Cu-Ni-Sulfide±PGM Babbitt deposit, where platinum group minerals (PGMs) are either hosted by primary magmatic sulfides (base metal sulfides) or associated with hydrothermally altered portions. This secondary generation of PGMs is present in alteration patches and suggests the involvement of hydrothermal fluids in the mobilization of platinum-group elements (PGEs). Accessory fluorapatite in these samples reveals besides H2O- and CO2-rich primary fluid inclusions, textural and compositional variations that also record magmatic and metasomatic events. Based on detailed back-scattered electron imaging (BSE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS), a primary magmatic origin is reflected by homogeneous or zoned grains, where zoning patterns are either concentric or oscillatory, with respect to LREE. Late magmatic to hydrothermal processes are indicated by grains with bright LREE-enriched rims or conversion textures with REE-enriched patches in the interior of the apatite. A metasomatic formation of monazite from apatite is documented by the presence of monazite inclusions in apatite and newly grown monazite at altered apatite rims. They formed by the release of REEs from the apatite during a fluid-induced alteration, based on the coupled substitution Ca2+ + P5+ = REE3+ + Si4+ (Rønsbo 1989; Rønsbo 2008). Samples with monazite inclusions in apatite further display occurrences of PGMs associated with hydrothermal alteration patches (chlorite + amphibole). The presence of H2O- and CO2-rich fluid inclusions in apatite, the metasomatically induced monazite growth, as well as the occurrence of PGMs in hydrothermally alteration zones, also suggest the involvement of aqueous chloride complexes in a H2O dominated fluid in the transportation of LREE and redistribution of the second generation of PGEs. Rønsbo, J.G. (1989): Coupled substitutions

  13. Stratigraphy, age, and depositional setting of the Miocene Barstow Formation at Harvard Hill, central Mojave Desert, California

    Science.gov (United States)

    Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.

    2010-01-01

    New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before

  14. Dental calculus: recent insights into occurrence, formation, prevention, removal and oral health effects of supragingival and subgingival deposits.

    Science.gov (United States)

    White, D J

    1997-10-01

    Dental calculus, both supra- and subgingival occurs in the majority of adults worldwide. Dental calculus is calcified dental plaque, composed primarily of calcium phosphate mineral salts deposited between and within remnants of formerly viable microorganisms. A viable dental plaque covers mineralized calculus deposits. Levels of calculus and location of formation are population specific and are affected by oral hygiene habits, access to professional care, diet, age, ethnic origin, time since last dental cleaning, systemic disease and the use of prescription medications. In populations that practice regular oral hygiene and with access to regular professional care, supragingival dental calculus formation is restricted to tooth surfaces adjacent to the salivary ducts. Levels of supragingival calculus in these populations is minor and the calculus has little if any impact on oral-health. Subgingival calculus formation in these populations occurs coincident with periodontal disease (although the calculus itself appears to have little impact on attachment loss), the latter being correlated with dental plaque. In populations that do not practice regular hygiene and that do not have access to professional care, supragingival calculus occurs throughout the dentition and the extent of calculus formation can be extreme. In these populations, supragingival calculus is associated with the promotion of gingival recession. Subgingival calculus, in "low hygiene" populations, is extensive and is directly correlated with enhanced periodontal attachment loss. Despite extensive research, a complete understanding of the etiologic significance of subgingival calculus to periodontal disease remains elusive, due to inability to clearly differentiate effects of calculus versus "plaque on calculus". As a result, we are not entirely sure whether subgingival calculus is the cause or result of periodontal inflammation. Research suggests that subgingival calculus, at a minimum, may expand the

  15. Lithofacies, depositional environments, regional biostratigraphy and age of the Chitarwata Formation in the Bugti Hills, Balochistan, Pakistan

    Science.gov (United States)

    Métais, Grégoire; Antoine, Pierre-Olivier; Baqri, S. R. Hassan; Crochet, Jean-Yves; De Franceschi, Dario; Marivaux, Laurent; Welcomme, Jean-Loup

    2009-02-01

    The Oligocene-early Miocene Chitarwata Formation records a critical interval of terrestrial sedimentation that predates the Siwalik deposits on the Potwar Plateau of north-central Pakistan. This Oligocene-early Miocene time interval has long been considered as lacking in the entire Indo-Pakistan region. The Chitarwata Formation is widely exposed in the Sulaiman Range, but has never been described in detail in the Sulaiman Lobe, where the famous fossiliferous strata called 'Bugti Bone Beds' have been known for over a century and half. The Chitarwata Formation represents coastal-delta at the base, and plain and fluvial environments at the top. Lithofacies and sedimentary structures of the Chitarwata Formation in the Bugti area are described in detail, and show a clearly distinct lithologic pattern, different from that reported from the Zinda Pir area. The Chitarwata Formation also records an important transition in the evolution of the drainage systems in the area during the late Paleogene and early Neogene. This transition from the west-flowing paleo-Indus fluvial system to the development of the ancestral Indus drainage system may explain the numerous hiatuses that characterize the Chitarwata Formation. The abundance of fossil mammals from the Chitarwata and overlying Vihowa formation in the Bugti Hills provides critical biochronologic information that sheds new light on biostratigraphic correlation with the Zinda Pir area and for the entire Sulaiman Range.

  16. Boron isotope systematics of tourmaline formation in the Sullivan Pb-Zn-Ag deposit, British Columbia, Canada

    Science.gov (United States)

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1999-01-01

    We report here the results of 54 boron isotope analyses of tourmaline associated with the giant Sullivan Pb-Zn-Ag deposit in southeastern British Columbia, Canada. The ??11B values range from -11.1 to -2.9???, which is almost as great as the range found worldwide in tourmalines from 33 massive sulfide deposits and tourmalinites in dominantly clastic metasedimentary terranes. The major control on the overall ??11B values of the Sullivan tourmalinites is the boron source. Potential controls over the large range of the data also include: (1) differences in formation temperatures of the tourmalinites, (2) different stages of tourmaline formation, (3) variations in the proportions of dissolved boron incorporated into the tourmaline (Rayleigh fractionation), (4) seawater entrainment, and (5) post-depositional metamorphism. The boron isotope data at Sullivan are consistent with boron derivation from leaching of footwall clastic sediments. However, the great abundance of tourmaline in the Sullivan deposit suggests that the local clastic sediments were not the sole source of boron, and we argue that non-marine evaporites, buried deep below the orebody, are the most viable source of this additional boron. It is likely that some of the variation in tourmaline ??11B values reflect mixing of boron from these two sources. Comparison of the potential effects of these controls with geologic and other geochemical evidence suggests that major causes for the wide range of ??11B values measured at Sullivan are seawater entrainment and Rayleigh fractionation, although in places, post-depositional alteration and thermal metamorphism were important in determining ??11B values of some of the recrystallized tourmalinites.

  17. Petrography and geochemistry of achnelithic tephra from Las Herrerías Volcano (Calatrava volcanic field, Spain): Formation of nephelinitic achneliths and post-depositional glass alteration

    Science.gov (United States)

    Carracedo-Sánchez, M.; Sarrionandia, F.; Arostegui, J.; Errandonea-Martin, J.; Gil-Ibarguchi, J. I.

    2016-11-01

    We present the results of a petrographic and geochemical study carried out on a layer of achnelithic tephra outcropping at the base of the volcanic cone of Las Herrerías (Miocene-Quaternary volcanic region of Campo de Calatrava, Spain). The tephra, with a composition of nephelinite and ash (volcanic maar lake. Afterwards, there was no more water circulation through the achnelithic tephra, which was sealed from water by overlying hydrovolcanic tuff deposits. It was this isolation that made possible the preservation of glass to the present day.

  18. The leachability of carbon-14-labelled 3,4-benzopyrene from coal ash into aqueous systems

    NARCIS (Netherlands)

    Besemer, A.C.; Kanij, J.

    1984-01-01

    The leachability of polycyclic aromatic hydrocarbons from coal ash into aqueous systems was studied. Carbon-14-labeled 3,4-Benzopyrene (BaP) was deposited on coal fly ash by adsorption from the liquid phase in quantities of about 10 ??g/g ash. After a thermal treatment in air at 120??C for 2 hours t

  19. ADVANCED POWER SYSTEMS - ASH BEHAVIOR IN POWER SYSTEMS. INCLUDES THE SEMIANNUAL REPORT FOR THE PERIOD JANUARY 01, 1998 - JUNE 30, 1998.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature; Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined; Identify the relationship between the temperature of critical viscosity (T{sub cv}) as measured in a viscometer and the crystallization occurring in the melt; Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles; Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems; and Evaluate corrosion for alloys being used in supercritical combustion systems.

  20. HiRISE views enigmatic deposits in the Sirenum Fossae region of Mars

    Science.gov (United States)

    Grant, John A.; Wilson, Sharon A.; Noe Dobrea, Eldar; Fergason, Robin L.; Griffes, Jennifer L.; Moore, Jeffery M.; Howard, Alan D.

    2010-01-01

    HiRISE images together with other recent orbital data from Mars define new characteristics of enigmatic Hesperian-aged deposits in Sirenum Fossae that are mostly 100-200 m thick, drape kilometers of relief, and often display generally low relief surfaces. New characteristics of the deposits, previously mapped as the "Electris deposits," include local detection of meter-scale beds that show truncating relationships, a generally light-toned nature, and a variably blocky, weakly indurated appearance. Boulders shed by erosion of the deposits are readily broken down and contribute little to talus. Thermal inertia values for the deposits are ˜200 J m -2 K -1 s -1/2 and they may incorporate hydrated minerals derived from weathering of basalt. The deposits do not contain anomalous amounts of water or water ice. Deflation may dominate degradation of the deposits over time and points to an inventory of fine-grained sediment. Together with constraints imposed by the regional setting on formation processes, these newly resolved characteristics are most consistent with an eolian origin as a loess-like deposit comprised of redistributed and somewhat altered volcanic ash. Constituent sediments may be derived from airfall ash deposits in the Tharsis region. An origin directly related to airfall ash or similar volcanic materials is less probable and emplacement by alluvial/fluvial, impact, lacustrine, or relict polar processes is even less likely.

  1. Marine mesocosm bacterial colonisation of volcanic ash

    Science.gov (United States)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  2. The Cement Solidification of Municipal Solid Waste Incineration Fly Ash

    Institute of Scientific and Technical Information of China (English)

    HOU Haobo; HE Xinghua; ZHU Shujing; ZHANG Dajie

    2006-01-01

    The chemical composition, the content and the leachability of heavy metals in municipal solid waste incineration ( MSWI) fly ash were tested and analyzed. It is shown that the leachability of Pb and Cr exceeds the leaching toxicity standard, and so the MSWI fly ash is considered as hazardous waste and must be solidifled. The effect of solidifying the MSWI fly ash by cement was studied, and it is indicated that the heavy metals can be well immobilized if the mass fraction of the fly ash is appropriate. The heavy metals were immobilized within cement hydration products through either physical fixation, substitution, deposition or adsorption mechanisms.

  3. Uplift and submarine formation of some Melanesian porphyry copper deposits: Stable isotope evidence

    Science.gov (United States)

    Chivas, A.R.; O'Neil, J.R.; Katchan, G.

    1984-01-01

    Hydrogen and oxygen isotope analyses of sericites and kaolinites from four young porphyry copper deposits (Ok Tedi (1.2 Ma) and Yandera (6.5 Ma), Papua New Guinea; Koloula (1.5 Ma), Solomon Islands; and Waisoi (ocean water. For Ok Tedi, the non-magmatic component was a meteoric water with an isotopic composition different from that of the present meteoric water in the region. The isotopic signature of the former meteoric water is consistent with a surface elevation of 200 m a.s.l. or less at the time of mineralization. The deposit was later exposed and supergene kaolinitization commenced at approximately 1200 m a.s.l. Uplift and erosion has continued to the present at which time the elevation of the exposed deposit is 1800 m a.s.l. This rate of uplift is consistent with that known from other geological evidence. If the rate of uplift were approximately constant during the last 1.2 Ma, the age of supergene enrichment can be dated at approximately 0.4 Ma B.P. Similarly, influx of meteoric water at Yandera occurred when the ground surface above the deposit was at an elevation of approximately 600 m a.s.l. The deposit's present elevation is 1600 m a.s.l. In this case a total uplift of approximately 2.2 km is indicated, with removal of 1.2 km of overburden by erosion. ?? 1984.

  4. Depositional conditions for the Kuna Formation, Red Dog Zn-PB-Ag-Barite District, Alaska, inferred from isotopic and chemical proxies

    Science.gov (United States)

    Johnson, Craig A.; Dumoulin, Julie A.; Burruss, Robert A.; Slack, John F.

    2015-01-01

    Water column redox conditions, degree of restriction of the depositional basin, and other paleoenvironmental parameters have been determined for the Mississippian Kuna Formation of northwestern Alaska from stratigraphic profiles of Mo, Fe/Al, and S isotopes in pyrite, C isotopes in organic matter, and N isotopes in bulk rock. This unit is important because it hosts the Red Dog and Anarraaq Zn-Pb-Ag ± barite deposits, which together constitute one of the largest zinc resources in the world. The isotopic and chemical proxies record a deep basin environment that became isolated from the open ocean, became increasingly reducing, and ultimately became euxinic. The basin was ventilated briefly and then became isolated again just prior to its demise as a discrete depocenter with the transition to the overlying Siksikpuk Formation. Ventilation corresponded approximately to the initiation of bedded barite deposition in the district, whereas the demise of the basin corresponded approximately to the formation of the massive sulfide deposits. The changes in basin circulation during deposition of the upper Kuna Formation may have had multiple immediate causes, but the underlying driver was probably extensional tectonic activity that also facilitated fluid flow beneath the basin floor. Although the formation of sediment-hosted sulfide deposits is generally favored by highly reducing conditions, the Zn-Pb deposits of the Red Dog district are not found in the major euxinic facies of the Kuna basin, nor did they form during the main period of euxinia. Rather, the deposits occur where strata were permeable to migrating fluids and where excess H2S was available beyond what was produced in situ by decomposition of local sedimentary organic matter. The known deposits formed mainly by replacement of calcareous strata that gained H2S from nearby highly carbonaceous beds (Anarraaq deposit) or by fracturing and vein formation in strata that produced excess H2S by reductive dissolution of

  5. EFFECT OF RESIDUAL STRESS ON THE MARTENSITIC TRANS- FORMATION OF SPUTTER-DEPOSITED SMA THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    L. Wang; D. Xu; B.C. Cai

    2002-01-01

    TiNi thin films were sputter-deposited on circular single-crystal silicon substrates un-der various sputtering parameters. The crystal structure and residual stress of the as-deposited films were determined by X-ray diffraction and substrate-curvature method.The phenomenon of stress-suppressed martensitic transformation was observed. It isconsidered that the residual stresses in SMA thin films based on circular substratesact as balanced biaxial tensile stresses. The status of equilibrant delays the align-ment of self-accommodated variants and the volume shrinkage during the martensitictransformation.

  6. Magnetron sputtering cluster apparatus for formation and deposition of size-selected metal nanoparticles

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    The experimental setup utilizing a DC magnetron sputtering source for production of metal clusters, their size (mass) selection and following deposition in high vacuum is described. The source is capable to form clusters of various metals, for example, copper, silver, gold etc. Cluster size...... selection is achieved using an electrostatic quadrupole mass selector. The deposited silver clusters are studied using atomic force microscopy. The height distributions show typical relative standard size deviation of 9-13% for given sizes in the range between 5-23 nm. Thus, the apparatus demonstrates good...

  7. CONCENTRIC TUBE-FOULING RIG FOR INVESTIGATION OF FOULING DEPOSIT FORMATION FROM PASTEURISER OF VISCOUS FOOD LIQUID

    Directory of Open Access Journals (Sweden)

    N. I. KHALID

    2013-02-01

    Full Text Available This paper reports the work on developing concentric tube-fouling rig, a new fouling deposit monitoring device. This device can detect and quantify the level of fouling deposit formation. It can also functioning as sampler for fouling deposit study, which can be attached at any food processing equipment. The design is initiated with conceptual design. The rig is designed with inner diameter of 7 cm and with tube length of 37 cm. A spiral insert with 34.5 cm length and with 5.4 cm diameter is fitted inside the tube to ensure the fluid flows around the tube. In this work, the rig is attached to the lab-scale concentric tube-pasteurizer to test its effectiveness and to collect a fouling sample after pasteurization of pink guava puree. Temperature changes are recorded during the pasteurization and the data is used to plot the heat transfer profile. Thickness of the fouling deposit is also measured. The trends for thickness, heat resistance profile and heat transfer profile for concentric tube-fouling rig matched the trends obtained from lab-scale concentric tube-pasteurizer very well. The findings from this work have shown a good potential of this rig however there is a limitation with spiral insert, which is discussed in this paper.

  8. Biomimetic formation of titania thin films: effect of amino acids on the deposition process.

    Science.gov (United States)

    Durupthy, Olivier; Jeurgens, Lars P H; Bill, Joachim

    2011-05-01

    Different types of amino acids have been used as additives to control the aqueous deposition of titanium dioxide thin films on single-crystal Si wafers. Thin titania films can be obtained through a chemical bath deposition (CBD) process using TiCl₄ as a precursor in an aqueous solution at temperatures below 100 °C. The addition of amino acids to the deposition solution was shown to reduce the thickness and roughness of the films and to increase their density. These protein building blocks were employed to modify the deposition rate as well as the size of aggregates that form the film. The thickness, crystallinity, morphology and composition of the grown films were characterized by a variety of techniques, including XRD, XPS, AFM and SEM. The consequences of the type of the amino acid additive (and its concentration in the solution) on the microstructural evolutions of the deposed films are thus revealed and discussed on the basis of the organic-inorganic interactions in solution and at the film surface.

  9. Formation of tilted clusters in the electrochemical deposition of copper on n-gas(001)

    DEFF Research Database (Denmark)

    Smilgies, D.M.; Feidenhans'l, Robert Krarup; Scherb, G.

    1996-01-01

    Using in-situ synchrotron X-ray diffraction, we have studied the epitaxial properties of Cu clusters electrochemically deposited on n-GaAs(001) substrates. The Cu clusters have (001) base planes and their [100] directions are aligned with the [110] directions of the GaAs(001) surface unit cell, b...

  10. Lithofacies, depositional environments, and regional stratigraphy of the lower Eocene Ghazij Formation, Balochistan, Pakistan

    Science.gov (United States)

    Johnson, Edward A.; Warwick, P.D.; Roberts, S.B.; Khan, I.H.

    1999-01-01

    A regional stratigraphic investigation of one of the most important coal-bearing lithostratigraphic units in Pakistan, the report includes sedimentologic observations taken from outcrops and measured sections, information derived from petrographic and paleontologic analyses, depositional interpretations, and descriptions of regional trends.

  11. Facies distribution, depositional environment, and petrophysical features of the Sharawra Formation, Old Qusaiba Village, Central Saudi Arabia

    Science.gov (United States)

    Abbas, Muhammad Asif; Kaminski, Michael; Umran Dogan, A.

    2016-04-01

    The Silurian Sharawra Formation has great importance as it rests over the richest source rock of the Qusaiba Formation in central Saudi Arabia. The Sharawra Formation has four members including Jarish, Khanafriyah, Nayyal, and Zubliyat. The formation mainly consists of sandstone and siltstone with subordinate shale sequences. The lack of published research on this formation requires fundamental studies that can lay the foundation for future research. Three outcrops were selected from the Old Qusaiba Village in Central Saudi Arabia for field observations, petrographical and petrophysical study. Thin section study has been aided by quantitative mineralogical characterization using scanning electron microscopy - energy dispersive spectroscopy and powder x-ray diffraction (XRD) for both minerals, cements, and clay minerals (detrital and authigenic). The outcrops were logged in detail and nine different lithofacies have been identified. The thin section study has revealed the Sharawra Formation to be mainly subarkosic, while the mica content increases near to its contact with the Qusaiba Formation. The XRD data has also revealed a prominent change in mineralogy with inclusion of minerals like phlogopite and microcline with depths. Field observations delineated a prominent thinning of strata as lithofacies correlation clearly shows the thinning of strata in the southwestern direction. The absence of outcrop exposures further supports the idea of southwestern thinning of strata. This is mainly attributed to local erosion and the presence of thicker shale interbeds in the southeastern section, which was probably subjected to more intense erosion than the northwestern one. The Sharawra Formation rests conformably over the thick transgressive shale sequence, deposited during the post glacial depositional cycle. The lowermost massive sandstone bed of the Sharawra Formation represents the beginning of the regressive period. The shale interbeds in the lower part are evidence of

  12. Reworking Intensity—A Key Factor Leading to the Formation of Superlarge Gold Deposits in Greenstone Belts and Metamorphosed Microclastic Rocks in China

    Institute of Scientific and Technical Information of China (English)

    王秀璋; 陆德复; 等

    1999-01-01

    The greenstone belt and metamorphosed microclastic rock-type superlarge gold deposits in China are hosted in metamorphic rocks and later intrusive bodies.Sedimentation.regional metamorphism and mineralization contributed a lot to the formation of the deposits,so did remelting magmatic process to some deposits,but the deposits were finally formed by reworking processes.The key factor leading to the formation of superlarge gold deposits is the reworking intensity,which for superlarge gold deposits is reflected by the large-scale reworked source rocks and even ore materials of various sources,strongly oxidized ore-forming fluids with a long and repeated active history and stable geothermal heat current.The factor which decides the reworking intensity is the network consisting of structures of different classes.

  13. Low temperature magnetic characterisation of fire ash residues

    Science.gov (United States)

    Peters, C.; Thompson, R.; Harrison, A.; Church, M. J.

    Fire ash is ideally suited to mineral magnetic studies. Both modern (generated by controlled burning experiments) and archaeological ash deposits have been studied, with the aim of identifying and quantifying fuel types used in prehistory. Low temperature magnetic measurements were carried out on the ash samples using an MPMS 2 SQUID magnetometer. The low temperature thermo-remanence cooling curves of the modern ash display differences between fuel sources. Wood and well-humified peat ash display an increase in remanence with cooling probably related to a high superparamagnetic component, consistent with room temperature frequency dependent susceptibilities of over 7%. In comparison fibrous-upper peat and peat turf display an unusual decrease in remanence, possibly due to an isotropic point of grains larger than superparamagnetic in size. The differences have been successfully utilised in unmixing calculations to quantify fuel components within four archaeological deposits from the Northern and Western Isles of Scotland.

  14. Assessment of soda ash calcination treatment of Turkish trona ore

    Directory of Open Access Journals (Sweden)

    Gezer Sibel

    2016-01-01

    Full Text Available Trona is relatively rare, non-metallic mineral, Na2CO3 · NaHCO3 · 2H2O. The pure material contains 70.3% sodium carbonate and by calcination the excess CO2 and water can be driven off, yielding natural soda ash. The terms soda ash and sodium carbonate are used interchangeably. Trona calcining is a key process step in production of soda ash (sodium carbonate anhydrate from the relatively cheap trona ore. The calcination reaction may proceeds in a sequence of steps. Depending on the conditions, it may result in formation of either sodium carbonate monohydrate (Na2CO3 · H2O, sodium sesquicarbonate or weigschederite (Na2CO3 · 3NaHCO3. The Beypazarı Turkish trona deposit is the second largest deposit in the world with the content of 84% trona. The decomposition of trona appeared to be a single stage process across the temperature range studied (150-200 °C with the representative samples of different size fractions in the draught up metallurgical furnace. The optimum particle size and calcination time were −6.35 mm and 30 minutes, respectively, at calcination temperature of 175 °C in a metallurgical furnace. Microwave-induced dry calcination of trona was possible and 5 minutes of calcination time at a power level of 900 was sufficient for complete calcination of −6.35 mm feed. This includes short time calcinations with the goal of improving economics and simplifying the thermal process.

  15. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  16. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-04-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time strongly suggests a connection between oceanic iron-fertilisation and volcanic ash supply.

  17. Volcanic ash as fertiliser for the surface ocean

    Directory of Open Access Journals (Sweden)

    B. Langmann

    2010-01-01

    Full Text Available Iron is a key limiting micro-nutrient for marine primary productivity. It can be supplied to the ocean by atmospheric dust deposition. Volcanic ash deposition into the ocean represents another external and so far largely neglected source of iron. This study demonstrates strong evidence for natural fertilisation in the iron-limited oceanic area of the NE Pacific, induced by volcanic ash from the eruption of Kasatochi volcano in August 2008. Atmospheric and oceanic conditions were favourable to generate a massive phytoplankton bloom in the NE Pacific Ocean which for the first time establishes a causal connection between oceanic iron-fertilisation and volcanic ash supply.

  18. The influence of nanoparticle aggregation on formation of ZrO{sub 2} electrolyte thin films by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kalinina, E.G., E-mail: kalinina@iep.uran.ru [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 106 Amundsen Street, 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Street, 620002 Ekaterinburg (Russian Federation); Efimov, A.A. [Moscow Institute of Physics and Technology, 9 Institutskii per., 141700 Dolgoprudny, Moscow Region (Russian Federation); Safronov, A.P. [Institute of Electrophysics, Russian Academy of Sciences, Ural Branch, 106 Amundsen Street, 620016 Ekaterinburg (Russian Federation); Ural Federal University, 19 Mira Street, 620002 Ekaterinburg (Russian Federation)

    2016-08-01

    The paper presents the results of the studies of electrically stabilized nonaqueous suspensions of ZrO{sub 2} stabilized by Y{sub 2}O{sub 3} (YSZ) nanoparticles with an average diameter of 11 nm for the formation of green films of electrolyte for solid oxide fuel cells. Nanoparticles were de-aggregated to different degrees, which were provided by the ultrasonic treatment and the centrifugation, and monitored by the dynamic light scattering. YSZ green thin films were obtained by the electrophoretic deposition (EPD) on dense lanthanum strontium manganite cathodes using suspensions with the average diameter of aggregates: 107; 66; 53 nm. To investigate the possibilities of EPD we used the model drying of the same suspensions cast upon the same substrates. It was shown that the structure and the morphology of the green films obtained by EPD was different compared to the films prepared by the model drying of the suspension. The drying of the stable suspension resulted in the formation of loose aggregates on the surface. The efficient packing of electrically stabilized particles was prevented by the forces of electrostatic repulsion between them. In the case of EPD the electrocoagulation of particles near the cathode takes place with the formation of dense aggregates. As a result, uncharged spherical aggregates with an average size of about 100–200 nm settle on the surface of the cathode and pack into a uniform dense coating suitable for the subsequent sintering of a gas-tight coating for the solid YSZ electrolyte. - Highlights: • Impact of nanoparticle aggregation on the electrophoretic deposition is studied. • Sedimentation of stabilized particles results in formation of loose aggregates. • The formation of dense layer is facilitated by electrocoagulation of particles.

  19. Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings.

    Science.gov (United States)

    Sojoudi, Hossein; Walsh, Matthew R; Gleason, Karen K; McKinley, Gareth H

    2015-06-09

    Blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases (also called gas hydrates) can compromise project safety and economics in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Cyclopentane (CyC5) hydrate has attracted interest as a model system for studying natural gas hydrates, because CyC5, like typical natural gas hydrate formers, is almost fully immiscible in water; and thus CyC5 hydrate formation is governed not only by thermodynamic phase considerations but also kinetic factors such as the hydrocarbon/water interfacial area, as well as mass and heat transfer constraints, as for natural gas hydrates. We present a macroscale investigation of the formation and adhesion strength of CyC5 hydrate deposits on bilayer polymer coatings with a range of wettabilities. The polymeric bilayer coatings are developed using initiated chemical vapor deposition (iCVD) of a mechanically robust and densely cross-linked polymeric base layer (polydivinylbenzene or pDVB) that is capped with a covalently attached thin hydrate-phobic fluorine-rich top layer (poly(perfluorodecyl acrylate) or pPFDA). The CyC5 hydrates are formed from CyC5-in-water emulsions, and differential scanning calorimetry (DSC) is used to confirm the thermal dissociation properties of the solid hydrate deposits. We also investigate the adhesion of the CyC5 hydrate deposits on bare and bilayer polymer-coated silicon and steel substrates. Goniometric measurements with drops of CyC5-in-water emulsions on the coated steel substrates exhibit advancing contact angles of 148.3 ± 4.5° and receding contact angles of 142.5 ± 9.8°, indicating the strongly emulsion-repelling nature of the iCVD coatings. The adhesion strength of the CyC5 hydrate deposits is reduced from 220 ± 45 kPa on rough steel substrates to 20 ± 17 kPa on the polymer-coated steel substrates. The measured strength of CyC5 hydrate

  20. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  1. Sedimentary facies and sequential architecture of tide-influenced alluvial deposits : an example from the middle Eocene Capella formation, South-Central Pyrenees, Spain

    NARCIS (Netherlands)

    Cuevas Gozalo, M.C

    1989-01-01

    The sediments investigated consist of a thick sequence of clastic deposits of middle Eocene age, the Capella Formation. At the time of deposition the sedimentary basin was tectonically active. Tectonic influence in the sedimentary sequence is recognized from angular unconformities, synsedimentary fa

  2. The role of phase separation for self-organized surface pattern formation by ion beam erosion and metal atom co-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hofsaess, H.; Zhang, K.; Pape, A.; Bobes, O.; Broetzmann, M. [Georg-August University Goettingen, II. Institute of Physics, Goettingen (Germany)

    2013-05-15

    We investigate the ripple pattern formation on Si surfaces at room temperature during normal incidence ion beam erosion under simultaneous deposition of different metallic co-deposited surfactant atoms. The co-deposition of small amounts of metallic atoms, in particular Fe and Mo, is known to have a tremendous impact on the evolution of nanoscale surface patterns on Si. In previous work on ion erosion of Si during co-deposition of Fe atoms, we proposed that chemical interactions between Fe and Si atoms of the steady-state mixed Fe{sub x} Si surface layer formed during ion beam erosion is a dominant driving force for self-organized pattern formation. In particular, we provided experimental evidence for the formation of amorphous iron disilicide. To confirm and generalize such chemical effects on the pattern formation, in particular the tendency for phase separation, we have now irradiated Si surfaces with normal incidence 5 keV Xe ions under simultaneous gracing incidence co-deposition of Fe, Ni, Cu, Mo, W, Pt, and Au surfactant atoms. The selected metals in the two groups (Fe, Ni, Cu) and (W, Pt, Au) are very similar regarding their collision cascade behavior, but strongly differ regarding their tendency to silicide formation. We find pronounced ripple pattern formation only for those co deposited metals (Fe, Mo, Ni, W, and Pt), which are prone to the formation of mono and disilicides. In contrast, for Cu and Au co-deposition the surface remains very flat, even after irradiation at high ion fluence. Because of the very different behavior of Cu compared to Fe, Ni and Au compared to W, Pt, phase separation toward amorphous metal silicide phases is seen as the relevant process for the pattern formation on Si in the case of Fe, Mo, Ni, W, and Pt co-deposition. (orig.)

  3. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    Science.gov (United States)

    Varga, György; Cserháti, Csaba; Kovács, János; Szalai, Zoltán

    2016-09-01

    Several hundred tons of windblown dust material are lifted into the atmosphere and are transported every year from Saharan dust source areas towards Europe having an important climatic and other environmental effect also on distant areas. According to the systematic observations of modern Saharan dust events, it can be stated that dust deflated from North African source areas is a significant constituent of the atmosphere of the Carpathian Basin and Saharan dust deposition events are identifiable several times in a year. Dust episodes are connected to distinct meteorological situations, which are also the determining factors of the different kinds of depositional mechanisms. By using the adjusted values of dust deposition simulations of numerical models, the annual Saharan dust flux can be set into the range of 3.2-5.4 g/m2/y. Based on the results of past mass accumulation rates calculated from stratigraphic and sedimentary data of loess-paleosol sequences, the relative contribution of Saharan dust to interglacial paleosol material was quantified. According to these calculations, North African exotic dust material can represent 20-30% of clay and fine silt-sized soil components of interglacial paleosols in the Carpathian Basin. The syngenetic contribution of external aeolian dust material is capable to modify physicochemical properties of soils and hereby the paleoclimatic interpretation of these pedogene stratigraphic units.

  4. The Formation of Nanocrystalline Diamond Coating on WC Deposited by Microwave Assisted Plasma CVD

    Science.gov (United States)

    Toff, M. R. M.; Hamzah, E.; Purniawan, A.

    2010-03-01

    Diamond is one form of carbon structure. The extreme hardness and high chemical resistant of diamond coatings determined that many works on this area relate to coated materials for tribological applications in biomedicine, as mechanical seals or cutting tools for hard machining operations. In the work, nanocrystalline diamond (NCD) coated tungsten carbide (WC) have been deposited by microwave assisted plasma chemical vapor deposition (MAPCVD) from CH4/H2 mixtures. Morphology of NCD was investigated by using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The quality of NCD is defined as ratio between diamond and non diamond and also full width at half maximum (FWHM) was determined using Raman spectra. The result found that the NCD structure can be deposited on WC surface using CH4/H2 gas mixture with grain size ˜20 nm to 100 nm. Increase %CH4 concentration due to increase the nucleation of NCD whereas decrease the quality of diamond. Based on Raman spectra, the quality of NCD is in the range ˜98.82-99.01% and 99.56-99.75% for NCD and microcrystalline (MCD), respectively. In addition, FWHM of NCD is high than MCD in the range of 8.664-62.24 cm-1 and 4.24-5.05 cm-1 for NCD and MCD respectively that indicate the crystallineity of NCD is smaller than MCD.

  5. The Eocene Rusayl Formation, Oman, carbonaceous rocks in calcareous shelf sediments: Environment of deposition, alteration and hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Dill, H.G.; Wehner, H.; Kus, J. [Federal Institute for Geosciences and Natural Resources, P.O. Box 510163, D-30631 Hannover (Germany); Botz, R. [University Kiel, Geological-Paleontological Department, Olshausenstrasse 40-60, D-24118 Kiel (Germany); Berner, Z.; Stueben, D. [Technical University Karlsruhe, Institute for Mineralogy and Geochemistry, Fritz-Haber-Weg 2, D-76131 Karlsruhe (Germany); Al-Sayigh, A. [Sultan Qaboos University, Geological Dept. PO Box 36, Al-Khod (Oman)

    2007-10-01

    Paralic carbonaceous series intercalated among calcareous shelf sediments have seldom been investigated. During the early Eocene, calcareous and siliciclastic sediments were deposited on a wide shelf in front of low-reliefed hinterland in the Al Khawd region in NE Oman. The siliciclastic-calcareous sediments originated from strongly reworked debris of the Arabic Shield. The underlying Semail Ophiolite did not act as a direct source of debris but provided some heat to increase the maturity of carbonaceous rocks and modify the isotope signal of the calcareous minerals in the Rusayl Formation. A multidisciplinary approach involving sedimentology, mineralogy, chemistry, coal petrography and paleontology resulted in the establishment of nine stratigraphic lithofacies units and provides the reader with a full picture from deposition of the mixed carbonaceous-calcareous-siliciclastic rocks to the most recent stages of post-depositional alteration of the Paleogene formations. The calcareous Jafnayn Formation (lithofacies unit I) developed in a subtidal to intertidal regime, influenced episodically by storms. Deepening of the calcareous shelf towards younger series was ground to a halt by paleosols developing on a disconformity (lithofacies unit II) and heralding the onset of the Rusayl Formation. The stratigraphic lithofacies units III and IV reflect mangrove swamps which from time to time were flooded through washover fans from the open sea. The presence of Spinozonocolpites and the taxon Avicennia, which today belong to a coastal marsh vegetational community, furnish palynological evidence to the idea of extensive mangrove swamps in the Rusayl Formation [El Beialy, S.Y., 1998. Stratigraphic and palaeonenvironmental significance of Eocene palynomorphs from the Rusayl Shale Formation, Al Khawd, northern Oman. Review of Palaeobotany and Palynology 102, 249-258]. During the upper Rusayl Formation (lithofacies units V through VII) algal mats episodically flooded by marine

  6. Depositional Environment of the Batuasih Formation on the Basis of Foraminifera Content: A Case Study in Sukabumi Region, West Java Province, Indonesia

    Directory of Open Access Journals (Sweden)

    M. Hendrizan

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v7i2.139The research was carried out on the sediments of the Batuasih Formation cropping out at Batuasih Village, Cibatu River, Padaarang Sukabumi. Data obtained from field observation, as well as foraminifera and sedimentology analyses conducted in the laboratory, were used to interpret its depositional environment. The investigation was focused on planktonic and benthic foraminiferal assemblages for depositional environment interpretation that might not be used by previous researchers. The Batuasih Formation is composed of black shaly claystone, where the lower part is rich in clay ball, and limestone intercalations in the upper part of the formation. In Cibatu Section, no clay balls is recognized in the lower part, but intercalations of limestone still occur. However, a contrast difference is found in Padaarang section, where green claystone interbeds with fine-grained sandstone. The Batuasih Formation conformably overlies the Walat Formation containing conglomerate. Foraminifera fossil found in the Batuasih Formation consists of bad preserved black benthic and planktonic foraminifera, more abundant towards the lower part of formation. Based on foraminifera assemblage comprising genus Uvigerina, Cibicides, Elphidium, Operculina, Bulimina, Bolivina, Eponides, and Neoconorbina, supported by sedimentology data, the Batuasih Formation was deposited in a shallow to deep marine environtment, during Early Oligocene (P19 time. Upwards to be the Rajamandala Formation, the depositional environment tends to be shallower gradually.

  7. Facies characteristics of the basal part of the Talchir Formation, Talchir Basin, India – depositional history revisited

    Indian Academy of Sciences (India)

    Prabir Dasgupta; Rishiraj Sahoo

    2007-02-01

    The lowest unit of the Talchir Formation of Talchir Basin, Orissa, was described by pioneer workers as the 'basal oulder bed'. In an attempt to explain the co-existence of gravel and clay, materials of contrasting hydraulic properties, a probable situation resembling the effects of the action of ground-ice enabled boulders to be carried down by sluggish currents resulting in an intermixture of large boulders and fine mud was conceived. Misinterpretation of this conclusion led to a general tendency to describe the 'basal boulder bed' as 'glacial tillite'. However, the unit described as 'basal boulder bed is actually represented by a matrix rich conglomerate with pockets of normally graded silty clay. The present study reveals that the depositional imprints preserved in this part of the sedimentary succession indicate emplacement of successive debris flows generated through remobilization of pre-existing unconsolidated sediments. Small pockets of fine-grained turbidites presumably deposited from the entrained turbidity currents associated with the debris flows suggest the composite character of the debris flow deposit.

  8. A study on the genetic relations between Permian Longtan Formation coal series strata and Carlin-type gold deposits, southwestern Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    NIE Aiguo; MEI Shiquan; GUAN Daiyun; WU Pan; ZHANG Zhuru

    2008-01-01

    A large number of the Carlin-type gold deposits occur in the Longtan Formation in southwestern Guizhou Province. The Longtan Formation contains abundant basalt, tuff and siliceous rocks. All rocks of the Longtan Formation are enriched in gold, which were deposited in a limited platform environment in the transition zone from marine to continental. The process of sedimentation was accompanied by the eruption of Emeishan basalt and hydrothermal deposition controlled by co-sedimentary submarine deep faults in the west, which led to the formation of a peculiar gold-bearing formation with coal series strata. This formation controlled the occurrence of the Carlin-type gold deposits in southwestern Guizhou Province. In response to the remobilization of the Emei mantle plume during the Yanshanian period, As, Au and other ore-forming materials were continuously extracted by deeply circulating waters from the Emeishan basalt and coal seams, thereafter forming ore-forming hydrothermal solutions.When these elements were transported in the coal seams, large amounts of As, Au and other elements were enriched in pyrite within the coal seams, thus forming high-As coal and Carlin-type gold deposits in the Longtan Formation coal series strata.

  9. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.; Gupta, S. [Univ. of Newcastle (Australia)

    1996-10-01

    A mechanistic study is detailed in which coal ash is heated with the shrinkage and electrical resistance measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to rapid rates of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples where therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity are then quantified and related to the shrinkage events and standard ash fusion temperatures.

  10. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Wall, T.F.; Creelman, R.A.; Gupta, R. [Univ. of Newcastle, Callaghan (Australia)

    1996-12-31

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to the rapid rate of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenization, viscosity and ash fusion mechanisms.

  11. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  12. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se [Department of Chemical Engineering, Stanford University, Stanford, California 94305 and Department of Engineering Sciences, Division of Solid State Electronics, Uppsala University, 75121 Uppsala (Sweden); Grehl, Thomas; Brongersma, Hidde H. [ION-TOF GmbH, Heisenbergstraße 15, 48149 Münster (Germany); Tanskanen, Jukka T.; Mullings, Marja N.; Mackus, Adriaan J. M.; MacIsaac, Callisto; Bent, Stacey Francine, E-mail: sbent@stanford.edu [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Yee, Ye Sheng [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Clemens, Bruce M. [Department of Material Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-03-15

    A broad and expanding range of materials can be produced by atomic layer deposition at relatively low temperatures, including both oxides and metals. For many applications of interest, however, it is desirable to grow more tailored and complex materials such as semiconductors with a certain doping, mixed oxides, and metallic alloys. How well such mixed materials can be accomplished with atomic layer deposition requires knowledge of the conditions under which the resulting films will be mixed, solid solutions, or laminated. The growth and lamination of zinc oxide and tin oxide is studied here by means of the extremely surface sensitive technique of low energy ion scattering, combined with bulk composition and thickness determination, and x-ray diffraction. At the low temperatures used for deposition (150 °C), there is little evidence for atomic scale mixing even with the smallest possible bilayer period, and instead a morphology with small ZnO inclusions in a SnO{sub x} matrix is deduced. Postannealing of such laminates above 400 °C however produces a stable surface phase with a 30% increased density. From the surface stoichiometry, this is likely the inverted spinel of zinc stannate, Zn{sub 2}SnO{sub 4}. Annealing to 800 °C results in films containing crystalline Zn{sub 2}SnO{sub 4}, or multilayered films of crystalline ZnO, Zn{sub 2}SnO{sub 4}, and SnO{sub 2} phases, depending on the bilayer period.

  13. An Investigation on the Formation of Carbon Nanotubes by Two-Stage Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. S. Shamsudin

    2012-01-01

    Full Text Available High density of carbon nanotubes (CNTs has been synthesized from agricultural hydrocarbon: camphor oil using a one-hour synthesis time and a titanium dioxide sol gel catalyst. The pyrolysis temperature is studied in the range of 700–900°C at increments of 50°C. The synthesis process is done using a custom-made two-stage catalytic chemical vapor deposition apparatus. The CNT characteristics are investigated by field emission scanning electron microscopy and micro-Raman spectroscopy. The experimental results showed that structural properties of CNT are highly dependent on pyrolysis temperature changes.

  14. Ice Formation via Deposition Mode Nucleation Onto Dust Particulates: The University of Toronto Continuous Flow Diffusion Chamber

    Science.gov (United States)

    Kanji, Z. A.; Abbatt, J. P.; Cotton, R.; Demott, P.; Jones, H.; Möhler, O.; Stetzer, O.

    2008-12-01

    Laboratory studies are described whereby the heterogeneous ice nucleating ability of various dust samples were studied, for particles suspended in a newly built thermal gradient continuous flow diffusion chamber (TG-CFDC). Ice formation is observed using an optical particle counter (OPC) and the relative humidity (RH) and temperature conditions of the flow system are validated by observing homogenous freezing of H2SO4 aerosols. At the Fourth International Ice Nucleation Workshop (ICIS 07) in Karslruhe, Germany this system was used to investigate ice nucleation primarily in the vapor deposition mode, for Arizona Test Dust (ATD), Israeli Desert Dust (ID), Canary Island Dust (CID), Saharan Dust (SD), Graphite Spark Soot, Snomax® (dead bacteria) and live bacteria. The aerosol size was in the submicron range with an approximate cut off of 700 nm and a mode of 350 nm. Temperatures for nucleation were varied from 265 - 230 K. The dust aerosols were generally found to be more efficient than soot. At warmer temperatures (263 K) the bacteria were found to be active in the deposition mode which was not the case for dusts. Among the various dust types at 248 K, the CID was more efficient than ATD at nucleating ice when efficiency is based on lowest onset RH conditions for ice formation in our chamber. We also present preliminary results for the effect of total surface area versus size of aerosols on ice nucleation using ATD as a surrogate for naturally occurring mineral dust.

  15. Formation Dynamics of CH3NH3PbI3 Perovskite Following Two-Step Layer Deposition.

    Science.gov (United States)

    Patel, Jay B; Milot, Rebecca L; Wright, Adam D; Herz, Laura M; Johnston, Michael B

    2016-01-07

    Hybrid metal-halide perovskites have emerged as a leading class of semiconductors for optoelectronic devices because of their desirable material properties and versatile fabrication methods. However, little is known about the chemical transformations that occur in the initial stages of perovskite crystal formation. Here we follow the real-time formation dynamics of MAPbI3 from a bilayer of lead iodide (PbI2) and methylammonium iodide (MAI) deposited through a two-step thermal evaporation process. By lowering the substrate temperature during deposition, we are able to initially inhibit intermixing of the two layers. We subsequently use infrared and visible light transmission, X-ray diffraction, and photoluminescence lifetime measurements to reveal the room-temperature transformations that occur in vacuum and ambient air, as MAI diffuses into the PbI2 lattice to form MAPbI3. In vacuum, the transformation to MAPbI3 is incomplete as unreacted MAI is retained in the film. However, exposure to moist air allows for conversion of the unreacted MAI to MAPbI3, demonstrating that moisture is essential in making MAI more mobile and thus aiding perovskite crystallization. These dynamic processes are reflected in the observed charge-carrier lifetimes, which strongly fluctuate during periods of large ion migration but steadily increase with improving crystallinity.

  16. Zintl layer formation during perovskite atomic layer deposition on Ge (001)

    Science.gov (United States)

    Hu, Shen; Lin, Edward L.; Hamze, Ali K.; Posadas, Agham; Wu, HsinWei; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-02-01

    Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO3 perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy. Similar binding energy shifts are found for Ba, Sr, and Ge when using either chemical or elemental metal sources. The observed germanium surface core level shifts are consistent with the flattening of the initially tilted Ge surface dimers using both molecular and atomic metal sources. Similar binding energy shifts and changes in dimer tilting with alkaline earth metal adsorption are found with density functional theory calculations. High angle angular dark field scanning transmission microscopy images of BaTiO3, SrZrO3, SrHfO3, and SrHf0.55Ti0.45O3 reveal the location of the Ba (or Sr) atomic columns between the Ge dimers. The results imply that the organic ligands dissociate from the precursor after precursor adsorption on the Ge surface, producing the same Zintl template critical for perovskite growth on Group IV semiconductors during molecular beam epitaxy.

  17. The effects of colloidal SiO2 and inhibitor on the solid deposit formation in geothermal water of low hardness

    Directory of Open Access Journals (Sweden)

    Stanković Novica J.

    2011-01-01

    Full Text Available Low solubility of SiO2 and its occurrence in geothermal waters in the form of ionic, colloidal and suspended state are the main cause of the solid deposit occurrence. Certain chemical types of silica, under the influence of Fe2+, Al3+, F−, OH- ions and other micro-constituents, and due to significantly decreased solubility of SiO2, stimulate nucleation, particle growth and solid deposit formation. The aim of this paper is to inhibit the process of nucleation and solid deposit formation by adding originally designed inhibitor in the form of an emulsion, when the total concentration of the present and added colloidal SiO2 is beyond the solubility limit (120 mg/dm3. By turbidimetric, SEM, EDS and XRD analysis, the processes of solid deposit formation were investigated in Vranjska Banja (Serbia spa geothermal water source (water hardness of 4ºdH, and theoretical and practical conclusions were made.

  18. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  19. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  20. Wildland fire ash: future research directions

    Science.gov (United States)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  1. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  2. Depositional environment and source potential of Jurassic coal-bearing sediments (Gresten Formation, Hoflein gas/condensate field, Austria)

    Energy Technology Data Exchange (ETDEWEB)

    Sachsenhofer, R.F.; Bechtel, A.; Kuffner, T.; Rainer, T.; Gratzer, R.; Sauer, R.; Sperl, H. [Mount University of Leoben, Leoben (Austria)

    2006-05-15

    Coal-bearing Jurassic sediments (Gresten Formation; Lower Quartzarenite Member) are discussed as source rocks for gas and minor oil in the basement of the Alpine-Carpathian frontal zone (e.g. Hoflein gas/condensate field). Core material has therefore been analysed to characterize depositional environment and source potential of the Lower Quartzarenite Member (LQM). Geochemical data from the Hoflein condensate are used to establish a Source-condensate correlation. The LQM was deposited in a flood basin with transitions to a delta-plain environment. Coal originated in frequently flooded mires and evolved within an oxygenated and acidic environment. It is inferred from geochemical data that organic matter from aquatic macrophytes and gymnosperms contributed to coal formation. Wildfires were abundant and oxidation of plant remains occurred frequently. This resulted in the formation of dull coal with very high inertinite contents. Bituminous shales were formed in deeper waters under dysoxic conditions. Apart from abundant algae and micro-organisms, it is concluded that there was an increased contribution of higher land plants relative to macrophytes to the biomass of the shales. Despite high inertinite contents, coal within the LQM has a significant oil potential. Bituminous shales contain a Type III-II kerogen. According to pyrolysis-gas chromatography data, coal and shale generate a high wax paraffinic oil. The organic matter is immature to marginal mature (0.55% Rr). Bituminous shales are considered a potential source for the Hoflein condensate. Coal may be the source for gas and minor oil in the Klement Field, but is not the source for the condensate.

  3. Formation and physical properties of YBCO thick films grown by using the electrophoretic deposition method

    CERN Document Server

    Kim, U J; Kim, Y C; Han, S K; Kang, K Y

    1999-01-01

    Thick films of the YBa sub 2 Cu sub 3 O subgamma sub - subdelta (YBCO) superconductor were prepared by using the electrophoretic deposition technique and a flexible wire as the substrate. The transition temperature of the wires was 91 K, the intragranular magnetic critical current density J sub c sub g sup m sup a sup g was about 10 sup 5 A/cm sup 2 at 77 K in a weak field, and the transport J sub c sup t sup r sup a sup n sup s was about 365 A/cm sup 2 at 77 K. We calculated the intergranular magnetic critical current J sub c sub J sup m sup a sup g and the activation energy from the AC-susceptibility measurements, and their values were about 444 A/cm sup 2 at 77 K and 2.02 eV, respectively.

  4. A Study on Reactive Spray Deposition Technology Processing Parameters in the Context of Pt Nanoparticle Formation

    Science.gov (United States)

    Roller, Justin M.; Maric, Radenka

    2015-12-01

    Catalytic materials are complex systems in which achieving the desired properties (i.e., activity, selectivity and stability) depends on exploiting the many degrees of freedom in surface and bulk composition, geometry, and defects. Flame aerosol synthesis is a process for producing nanoparticles with ample processing parameter space to tune the desired properties. Flame dynamics inside the reactor are determined by the input process variables such as solubility of precursor in the fuel; solvent boiling point; reactant flow rate and concentration; flow rates of air, fuel and the carrier gas; and the burner geometry. In this study, the processing parameters for reactive spray deposition technology, a flame-based synthesis method, are systematically evaluated to understand the residence times, reactant mixing, and temperature profiles of flames used in the synthesis of Pt nanoparticles. This provides a framework for further study and modeling. The flame temperature and length are also studied as a function of O2 and fuel flow rates.

  5. Facies analysis and depositional environments of the OligoceneeMiocene Asmari Formation, Zagros Basin, Iran

    Institute of Scientific and Technical Information of China (English)

    Mohammad Sahraeyan; Mohammad Bahrami; Solmaz Arzaghi

    2014-01-01

    The Asmari Formation (a giant hydrocarbon reservoir) is a thick carbonate sequence of the Oligocenee Miocene in the Zagros Basin, southwest of Iran. This formation is exposed at Tang-e-Lendeh in the Fars interior zone with a thickness of 190 m comprising medium and thick to massive bedded carbonates. The age of the Asmari Formation in the study area is the late Oligocene (Chattian)eearly Miocene (Burdigalian). Ten microfacies are defined, characterizing a gradual shallowing upward trend;the related environments are as follows:open marine (MF 8e10), restricted lagoon (MF 6e7), shoal (MF 3e5), lagoon (MF 2), and tidal flat (MF 1). Based on the environmental interpretations, a homoclinal ramp consisting of inner and middle parts prevails. MF 3e7 are characterized by the occurrence of large and small porcelaneous benthic foraminifera representing a shallow-water setting of an inner ramp, influenced by wave and tidal pro-cesses. MF 8e10, with large particles of coral and algae, represent a deeper fair weather wave base of a middle ramp setting.

  6. Agglomeration and Deposition Behaviour of Solid Recovered Fuel

    DEFF Research Database (Denmark)

    Pedersen, Morten Nedergaard; Jensen, Peter Arendt; Hjuler, Klaus;

    2016-01-01

    Waste-derived fuels, such as solid recovered fuel (SRF), are increasingly being used in, e.g., the cement industry as a means to reduce cost. The inhomogeneous nature of SRF makes it difficult to combust, and many problems may arise within, e.g., combustion control, feeding of fuel, deposit...... formation, or accumulation of impurities. The combustion of polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), wood, and SRF were studied in a rotary drum furnace. The combustion was recorded on a camera (60 frames per second), so that any agglomeration or deposition of fuel or ash...... could be monitored. PE and PP pose no significant risk of forming deposits in a combustion environment (T > 800 °C) as a result of a rapid devolatilization, while PET may cause deposits as a result of a sticky char residue. The deposition tendency of the investigated SRF is low, and it may be managed...

  7. Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile

    Science.gov (United States)

    Wilson, T. M.; Cole, J. W.; Stewart, C.; Cronin, S. J.; Johnston, D. M.

    2011-04-01

    Tephra fall from the August 1991 eruption of Volcán Hudson affected some 100,000 km2 of Patagonia and was almost immediately reworked by strong winds, creating billowing clouds of remobilised ash, or `ash storms'. The immediate impacts on agriculture and rural communities were severe, but were then greatly exacerbated by continuing ash storms. This paper describes the findings of a 3-week study tour of the diverse environments of southern Patagonia affected by ash storms, with an emphasis on determining the impacts of repeated ash storms on agriculture and local practices that were developed in an attempt to mitigate these impacts. Ash storms produce similar effects to initial tephra eruptions, prolonged for considerable periods. These have included the burial of farmland under dune deposits, abrasion of vegetation and contamination of feed supplies with fine ash. These impacts can then cause problems for grazing animals such as starvation, severe tooth abrasion, gastrointestinal problems, corneal abrasion and blindness, and exhaustion if sheep fleeces become laden with ash. In addition, ash storms have led to exacerbated soil erosion, human health impacts, increased cleanup requirements, sedimentation in irrigation canals, and disruption of aviation and land transport. Ash deposits were naturally stabilised most rapidly in areas with high rainfall (>1,500 mm/year) through compaction and enhanced vegetation growth. Stabilisation was slowest in windy, semi-arid regions. Destruction of vegetation and suppression of regrowth by heavy tephra fall (>100 mm) hindered the stabilisation of deposits for years, and reduced the surface friction which increased wind erosivity. Stabilisation of tephra deposits was improved by intensive tillage, use of windbreaks and where there was dense and taller vegetative cover. Long-term drought and the impracticality of mixing ash deposits with soil by tillage on large farms was a barrier to stabilising deposits and, in turn

  8. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  9. Depositional Settings of the basal López de Bertodano Formation, Maastrichtian, Antarctica

    Directory of Open Access Journals (Sweden)

    E.B. Olivero

    2007-12-01

    Full Text Available In Snow Hill and Seymour islands the lower Maastrichtian, basal part of the L ópez de Bertodano Formation, rests on a high relief, erosive surface elaborated in the underlying Snow Hill Island Formation. Mudstone-dominated beds with inclined heterolithic stratification dominate the basal strata of the López de Bertodano Formation. They consist of rhythmical alternations of friable sandy- and clayeymudstone couplets, with ripple cross lamination, mud drapes, and flaser bedding. They are characterized by a marked lenticular geometry, reflecting the filling of tide-influenced channels of various scales and paleogeographic positions within a tide-dominated embayment or estuary. Major, sand-rich channel fills, up to 50-m thick, bounded by erosive surfaces probably represent inlets, located on a more central position in the estuary. Minor channel fills, 1- to 3-m thick, associated with offlapping packages with inclined heterolithic stratification probably represent the lateral accretion of point bars adjacent to migrating tidal channels in the upper estuary. Both types of channel fills bear relatively abundant marine fauna, are intensively bioturbated, and are interpreted as a network of subtidal channels. In southwestern Snow Hill Island, the minor offlapping packages have scarce marine fossils and bear aligned depressions interpreted as poor preserved dinosaur footprints. They represent the lateral accretion of point bars adjacent to intertidal creeks, probably located on the fringes of a mud-dominated estuary or embayment. The basal unconformity was produced by subaerial erosion; hence the inferred estuarine settings are consistent with the beginning of a new transgressive sedimentary cycle.

  10. Depositional Environment of Fine-Grained Sedimentary Rocks of the Sinamar Formation, Muara Bungo, Jambi

    Directory of Open Access Journals (Sweden)

    M. Heri Hermiyanto Zajuli

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i1.153The research area is situated in the northwestern side of South Sumatra Basin, which is a part of Muara Bungo Regency, Jambi Province. The Oligocene Sinamar Formation consists of shale, claystone, mudstone, sandstone, conglomeratic sandstone, and coal-seam intercalations. This research was focused on fine sedimentary rock of Sinamar Formation, such as shale, claystone, and mudstone. Primary data were collected from SNM boreholes which have depths varying from 75 m up to 200 m, and outcrops that were analyzed by organic petrographic method, gas chromatography-mass spectrometry (GC-MS of normal alkanes including isoprenoids, and sterane. The dominant maceral group is exinite, composed of alginite (3.4 - 18%, and resinite (1.6 - 5.6%, while vitrinite maceral consists of tellocolinite 0.4 - 0.6%, desmocollinite 0.4%, and vitrodetrinite 8.4 - 16.6%. Organic petrography and biomarker analyses show that organic materials of shales were derived from high plants and algae especially Botrycoccus species. Botrycoccus and fresh water fish fossil, found in the shale indicate a lacustrine environment.

  11. What Controls the Sizes and Shapes of Volcanic Ash? Integrating Morphological, Textural and Geochemical Ash Properties to Decipher Eruptive Processes

    Science.gov (United States)

    Liu, E. J.; Cashman, K. V.; Rust, A.

    2015-12-01

    Volcanic ash particles encompass a diverse spectrum of shapes as a consequence of differences in the magma properties and the magma ascent and eruption conditions. We show how the quantitative analysis of ash particle shapes can be a valuable tool for deciphering magma fragmentation and transport processes. Importantly, integrating morphological data with ash texture (e.g. bubble and crystal sizes) and dissolved volatile data provides valuable insights into the physical and chemical controls on the resulting ash deposit. To explore the influence of magma-water interaction (MWI) on fine ash generation, we apply this multi-component characterisation to tephra from the 2500BC Hverfjall Fires, Iceland. Here, coeval fissure vents spanned sub-aerial to shallow lacustrine environments. Differences in the size and morphology of pyroclasts thus reflect fragmentation mechanisms under different near-surface conditions. Using shape parameters sensitive to both particle roughness and internal vesicularity, we quantify the relative proportions of dense fragments, bubble shards, and vesicular grains from 2-D SEM images. We show that componentry (and particle morphology) varies as a function of grain size, and that this variation can be related back to the bubble size distribution. Although both magmatic and hydromagmatic deposits exhibit similar component assemblages, they differ in how these assemblages change with grain size. These results highlight the benefits of characterising ash deposits over a wide range of grain sizes, and caution against inferring fragmentation mechanism from a narrow grain size range. Elevated matrix glass S concentrations in hydromagmatic ash (600-1500 ppm) compared to those in magmatic ash and scoria lapilli (200-500 ppm) indicate interrupted vesiculation. In contrast to the subaerial 'dry' deposits, fragmentation during MWI likely occurred over a greater range of depths with quench rates sufficient to prevent post-fragmentation degassing. High

  12. Characteristic Features of the Formation of a Combined Magnetron-Laser Plasma in the Processes of Deposition of Film Coatings

    Science.gov (United States)

    Burmakov, A. P.; Kuleshov, V. N.; Prokopchik, K. Yu.

    2016-09-01

    A block diagram of a facility for combined magnetron-laser deposition of coatings and of the systems of controlling and managing this process is considered. The results of analysis of the influence of the gas medium and of laser radiation parameters on the emission-optical properties of laser plasma are considered. The influence of the laser plasma on the electric characteristics of a magnetron discharge is analyzed. The formation of the laser plasma-initiated pulse arc discharge has been established and the influence of the laser radiation parameters on the electric characteristics of this discharge has been determined. The emission optical spectra of the magnetron discharge plasma and of erosion laser plasma are compared separately and in combination.

  13. Iliac artery mural thrombus formation. Effect of antiplatelet therapy on 111In-platelet deposition in baboons

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, S.R.; Paxton, L.D.; Harker, L.A.

    1986-09-01

    To measure the rate, extent, and time course of arterial mural thrombus formation in vivo and to assess the effects of antiplatelet therapy in that setting, we have studied autologous /sup 111/In-platelet deposition induced by experimental iliac artery aneurysms in baboons. Scintillation camera imaging analyses were performed at 1, 24, 48, and 72 hours after implantation of the device. Correction for tissue attenuation was determined by using a small, comparably located /sup 111/In source implanted at the time of surgery. In five animals, /sup 111/In-platelet activity accumulated progressively after device implantation, reaching a maximum after the third day. Repeat image analysis carried out 2 weeks after the surgical procedure also showed progressive accumulation of /sup 111/In-platelets over 3 days but at markedly reduced amounts as compared with the initial study. In five additional animals, treatment with a combination of aspirin and dipyridamole begun 1 hour after surgical implantation reduced /sup 111/In-platelet deposition to negligible levels by the third day. Although platelet survival time was shortened and platelet turnover was reciprocally increased in all operated animals, platelet survival and turnover were not affected by antiplatelet therapy. We conclude that, in contrast to platelet survival and turnover measurements, /sup 111/In-platelet imaging is a reliable and sensitive method for localizing and quantifying focal arterial thrombi and for assessing the effects of antiplatelet therapy.

  14. Facies analysis and paleoenvironmental interpretation of Piacenzian carbonate deposits from the Guitar Formation of Car Nicobar Island, India

    Directory of Open Access Journals (Sweden)

    Amit K. Ghosh

    2013-11-01

    Full Text Available Facies characterization of Piacenzian (late Pliocene carbonate sediments of the Guitar Formation in Car Nicobar Island, India and the subsequent integration of paleoecological data have been applied to interpret the paleoenvironment of the coralline algal-reef deposits. Thin-section analysis reveals that Amphiroa, Corallina and Jania are the dominant geniculate corallines, while Lithothamnion, Mesophyllum, Phymatolithon, Lithophyllum, Spongites and Lithoporella are the major non-geniculate corallines contributing to the sedimentary facies. Numerous small and larger benthic foraminifera also dominate the biogenic assemblages. Corals, barnacle shells, echinoid spines, fragments of bryozoans, mollusks and ostracodes are the subordinate constituents. Grainstones dominate the studied facies while packstones and boundstones (with wackestone elements are the sub-lithofacies showing a fair representation. Six carbonate facies presenting a complete reef complex have been distinguished that were deposited in shallow intertidal, back-reef shelf/lagoon, reef and deeper fore-reef shelf settings. Evidences of coralline algal and benthic foraminiferal assemblages, taphonomic signatures of abrasion and fragmentation, grain size, angularity and encrustation indicate a shallow to relatively deeper bathymetric horizon of approximately 10–60 m that corresponds to a regime of high to moderate hydrodynamic conditions.

  15. Geochemical correlation and 40Ar/39Ar dating of the Kern River ash bed and related tephra layers: Implications for the stratigraphy of petroleum-bearing formations in the San Joaquin Valley, California

    Science.gov (United States)

    Baron, D.; Negrini, R.M.; Golob, E.M.; Miller, D.; Sarna-Wojcicki, A.; Fleck, R.J.; Hacker, B.; Erendi, A.

    2008-01-01

    The Kern River ash (KRA) bed is a prominent tephra layer separating the K and G sands in the upper part of the Kern River Formation, a major petroleum-bearing formation in the southern San Joaquin Valley (SSJV) of California. The minimum age of the Kern River Formation was based on the tentative major-element correlation with the Bishop Tuff, a 0.759??0.002 Ma volcanic tephra layer erupted from the Long Valley Caldera. We report a 6.12??0.05 Ma 40Ar/39Ar date for the KRA, updated major-element correlations, trace-element correlations of the KRA and geochemically similar tephra, and a 6.0??0.2 Ma 40Ar/39Ar age for a tephra layer from the Volcano Hills/Silver Peak eruptive center in Nevada. Both major and trace-element correlations show that despite the similarity to the Bishop Tuff, the KRA correlates most closely with tephra from the Volcano Hills/Silver Peak eruptive center. This geochemical correlation is supported by the radiometric dates which are consistent with a correlation of the KRA to the Volcano Hills/Silver Peak center but not to the Bishop Tuff. The 6.12??0.05 Ma age for the KRA and the 6.0??0.2 Ma age for the tephra layer from the Volcano Hills/Silver Peak eruptive center suggest that the upper age of the Kern River Formation is over 5 Ma older than previously thought. Re-interpreted stratigraphy of the SSJV based on the new, significantly older age for the Kern River Formation opens up new opportunities for petroleum exploration in the SSJV and places better constraints on the tectonostratigraphic development of the SSJV. ?? 2007 Elsevier Ltd and INQUA.

  16. A generic model of pattern formation in Mississippi Valley-Type deposits based on analytical findings

    Science.gov (United States)

    Kelka, Ulrich; Veveakis, Manolis; Beaudoin, Nicolas; Poulet, Thomas; Koehn, Daniel; Regenauer-Lieb, Klaus; Chung, Peter; Berndt, Jasper

    2016-04-01

    Rhythmically banded dolomites (zebra dolomite) are found worldwide, and are frequently associated with mineralization of the Mississippi Valley-Type (MVT). These rocks consist of dark fine grained and impurity-rich layers alternating with light coarse grained and virtually impurity-free layers. The texture of the light layers is similar to the one of tectonic syntaxial veins where crystals grow towards a median line. We present petrographic and chemical analysis of zebra dolomite samples from the San Vicente mine, Central Peru. The applied methods are petrographic microscopy, SEM, EBSD, EMP and LA-ICP-MS. The findings influence the development of a generic model of pattern formation. We found the density and the distribution of second-phase material to be one striking feature. The impurities are accumulated in the dark layers, which show an even higher density of second-phase material than the surrounding impurity-rich dolomite. With CL, it was possible to detect a luminescent structure in the center of the light bands which seems to be present independent of the thickness and spacing of the respective layers. This structure was analysed in more detail with EMP. We further found that the dolomite crystals in the dark and light layers are chemically similar but show a variation in some trace elements. Based on the analytical findings, we put forward a mathematical model of zebra dolomite formation based on Cnoidal waves. We believe that the light coarse grained layers represent hydromechanical instabilities arising during the diagenetic compaction of a fluid saturated, impurity-rich dolomite. Our approach is based on the extension of the classical compaction bands theory to a viscose, non-linear rheology. In the model, the spacing between two light coarse grained layers is linked to the compaction length during the pattern formation. With the formulation of a 1D steady-state solution we can relate the genesis of the structure to physical parameter, such as

  17. Application of Fly Ash from Solid Fuel Combustion in Concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard

    2008-01-01

    reactor to test the impact of changes in operating conditions and fuel type on the AEA adsorption of ash and NOx formation. Increased oxidizing conditions, obtained by improved fuel-air mixing or higher excess air, decreased the AEA requirements of the produced ash by up to a factor of 25. This was due...... on a carbon black. The reactor was modeled with CFD and a relationship between oxygen concentration in the early stage of combustion and the AEA adsorption properties of the ash was observed. The NOx formation increased by up to three times with more oxidizing conditions and thus, there was a trade....... The AEA requirements of a fly ash can be suppressed by exposing it to oxidizing species, which oxidizes the carbon surface and thus prevents the AEA to be adsorbed. In the present work, two fly ashes have been ozonated in a fixed bed reactor and the results showed that ozonation is a potential post...

  18. Ash fusion temperatures and their association with the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Gupta, R.P. [Cooperative Research Centre for Black Coal Utilisation, Newcastle, NSW (Australia); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia)

    1997-04-01

    Ash deposition on furnace walls in PF (pulverized fuel) furnaces is called slagging when it occurs in the high temperature areas of furnaces directly exposed to flame radiation and fouling in other regions such as tubes in the convection section of the boiler. There are well documented shortcomings of certain approaches relating to their uncertainties as predictive tools for plant performance such as poor repeatability and re-producibility of ash fusion measurements. The nature of physical and chemical changes occurring during melting of coal ash has been investigated in the current study to provide an alternative procedure to the ash fusion test. Shrinkage measurements are frequently used in metallurgy and ceramic science to study the physical properties of materials at high temperatures. The output of this experiment provides three to four `peaks` (maximum rate of shrinkage with temperature) of different intensity and at different temperatures which are related to melting characteristics of the sample. It was concluded that shrinkage extents exceeding 50 percent indicated that the effect of the ash particle size is of secondary importance compared to ash chemistry in determining shrinkage levels, with fine particles giving rapid shrinkage events 10 degrees C lower in temperature. (author). 7 figs., refs.

  19. Analysis of CaCO3 deposit formation and degradation during the molt cycle of the terrestrial isopod Porcellio scaber (Crustacea, Isopoda).

    Science.gov (United States)

    Fabritius, Helge; Ziegler, Andreas

    2003-05-01

    Terrestrial isopods store cuticular calcium in large sternal deposits composed of an amorphous CaCO(3) compound. A large part of the deposits consists of numerous small spherules that increase the exposed surface to facilitate resorption of CaCO(3) during cuticle mineralization. It is not known how these spherules are formed and how they are dissolved. This paper presents for the first time an analysis of ultrastructural changes occurring in the sternal CaCO(3) deposits of a terrestrial isopod during their formation and degradation. Our results indicate that formation of the spherules takes place in a specialized aggregation zone, in which 10- to 30-nm-thick granules form agglomerations that then increase in size to form spherules that reveal a concentric growth pattern. Degradation of the deposits occurs in a manner that exposes a maximum of surface area on all levels of their structural organization.

  20. Geology and formation of titaniferous placer deposits in Upper Jogaz Valley area, Fanuj, Sistan and Baluchestan province, Iran

    Directory of Open Access Journals (Sweden)

    Seyed Javad Moghaddasi

    2015-10-01

    Full Text Available Introduction The Fanuj titaniferous placer deposits are located 35 km northwest of the Fanuj, Sistan and Baluchestan province (1 . The studied area comprises a (2 small part of the late Cretaceous Fanuj-Maskutan (Rameshk ophiolite complex (Arshadi and Mahdavi, 1987. Reconnaissance and comprehensive exploration programs in the Fanuj district (East of the 1:100000 Fanuj quadrangle map,Yazdi, 2010 revealed that the Upper Jogaz Valley area has the highest concentration of titaniferous placer deposits. In this study, geology and formation of the titaniferous placer deposits in Upper Jogaz Valley area are discussed. Materials and Methods (3 Forty samples were collected from surface and drainage sediments to evaluate the potential for titaniferous placers. Mineralogical studies indicated the high Ti (ilmenite bearing areas, which led to detailed exploration by 29 shallow drill holes and 9 trenches. A total of 61 sub-surface samples were collected for heavy mineral studies and ore grade determination. The exploration studies suggest that the the Upper Jogaz Valley area in the Fanuj district has a high potential for titaniferous placer deposits. Extensive exposures of black sands in the sreambeds of this area suggested detailed sampling, so that 12 holes were drilled (2-3 m depthfrom which 26 samples were collected, and five trenches were excavated to 2-4 m depth (4. The distribution of drill holes and trenches were plotted with “Logplot” software for further interpretation. Twenty-two samples from these drill holes were analyzed for TiO2. Results The reconnaissance and comprehensive exploration in Fanuj district shows that the Upper Jogaz Valley area has the highest concentration of titaniferous placer deposits. The general geology of the region and petrology and mineralogy of collected samples suggest that the source rock of the Upper Jogaz Valley titaniferous placers is the hornblende- and olivine-gabbro unit of the Fanuj-Ramesh ophiolites. The Ti

  1. Cenomanian-Turonian Bentonites of the Boquillas Formation, Texas, USA: keys to understanding Carbonate Shelf deposition in a Greenhouse Climate

    Science.gov (United States)

    Bergman, Steve; Eldrett, James; Ma, Chao; Minisini, Daniel; Macaulay, Calum; Ozkan, Aysen; Kelly, Amy

    2016-04-01

    The Boquillas Formation (Fm.) (equivalent to the Eagle Ford Group) was deposited at the Southern end of the Cretaceous Western Interior Seaway (KWIS) and the northwestern margin of the Gulf of Mexico Carbonate Shelf (passive margin) in a starved retroarc foreland basin setting during part of the Cenomanian and Turonian Stages (CT; 97-90 Ma). The Boquillas Fm. includes several Oceanic Anoxic Events (OAE) marked by global Carbon Isotope Excursions (CIE) and trace metal anomalies. Here we provide a robust zircon U/Pb geochronologic framework used to accurately interpret and predict variability in facies distribution. The Boquillas Fm. consists of a succession of cyclic marlstone and limestone beds and over 300 bentonites deposited in a distal, restricted, suboxic setting mostly below storm wave base. Bentonites are generally homogenous clay-rich layers 1-10 cm thick (average 5 cm, up to 1 m) showing sharp contacts and strong yellow-orange mineral fluorescence under UV light. In addition to detailed logging of roadcuts, two research wells drilled behind outcrops, Shell IONA-1 and Shell INNES-1, recovered >330 m of continuous core from the Austin Chalk at surface through the Boquillas and Buda Limestone Fm. The bentonites form ~5% of the 60-111 m thick Boquillas Fm. intervals and are interpreted as distal pyroclastic fall deposits from large volume (>10-100 km3) Plinian eruptions from calderas associated with the subduction-related Western North American Cordilleran magmatic arc. Some of the Boquillas Fm. bentonites can be correlated using cores, petrophysical logs, geochemistry, and biostratigraphy for more than 1000 km to the north within the Western Interior Seaway at the CT global stratotype (GSSP) section at Pueblo, CO as well as many other sections in the KWIS. This contribution integrates new high-precision zircon U/Pb TIMs age data (2σ as low as 0.05 Myr) from both core and outcrop samples with independent proxies derived from sedimentology, biostratigraphy

  2. Thaumasite formation in hydraulic mortars by atmospheric SO2 deposition

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2001-12-01

    Full Text Available Sulphation of mortars and concretes is a function of diverse environmental factors (SO2 aerosol, temperature, etc as well as some material characteristics. One of the phases that could be formed as consequence of the sulphation of the hydraulic binder is thaumasite. In this paper different hydraulic mortars have been exposed to laboratory exposure chambers in order to reproduce thaumasite formation due to atmospheric SO2. Under the laboratory exposure conditions, thaumasite was formed in hydraulic lime mortars, and mortars elaborated with ordinary Portland cement as well as mineralized white portland cement. However, thaumasite was not formed in mortars made of lime and pozzolan. The first product formed as a result of the SO2-mortar interaction was gypsum. Gypsum reacted with calcite and C-S-H gel, present in the samples, giving place to thaumasite. Low temperature promotes thaumasite formation.

    La sulfatación de morteros y hormigones depende de las condiciones ambientales (SO2 aerosol, temperatura, etc., así como de las características del material. Una de las fases que se puede formar como consecuencia de la sulfatación de los ligantes hidráulicos es la taumasita. En este trabajo se han expuesto diferentes morteros hidráulicos en cámaras de laboratorio con el fin de reproducir la formación de taumasita por efecto del SO2 atmosférico. Bajo las condiciones de laboratorio se formó taumasita en los morteros de cal hidráulica y en los morteros fabricados con cemento portland y cemento blanco mineralizado. Sin embargo, cuando el ligante utilizado en los morteros fue cal y puzolana, no se formó taumasita. El yeso fue el primer producto formado en la interacción entre los morteros y el SO2. A continuación, este yeso reaccionó con la calcita y el gel C-S-H dando lugar a la formación de taumasita. Las bajas temperaturas favorecieron la formación de taumasita.

  3. Re-burning of ash in grate boilers; Omfoerbraenning av askor i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, Kristina; Myringer, Aase; Nordgren, Daniel; Rydberg, Stina [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2005-03-01

    High contents of unburnt carbon in ashes that are dumped or recycled, is questionable from both an economical and an environmental point of view. The content of unburnt carbon in bottom and fly ash from grate boilers varies greatly between different plants but can sometimes exceed 50 %. Re-burning of ash that is separated before a final dust separation, is a relatively cheep and simple method for reducing the content of unburnt carbon in ash, which both reduces the fuel cost and the deposit cost, i.e. the cost of landfilling or recycling. As from 2005 it is prohibited to deposit ash with a too high content of unburnt organic material; the content is limited to 18 weight % of unburnt carbon. The study was carried out in two phases. The aim of the first phase was to map the different techniques used for re-burning ash that are used in grate boilers today. The mapping was done through telephone interviews and comprises technical descriptions of the systems, gathering of operational know-how, installations costs and the effect of the systems on the amount of ash generated at the plants and the content of unburnt carbon in the ash. In order to accomplish a deeper technical and economical evaluation of ash re-burning systems, the second phase involved field studies at two plants. In addition screening tests were done to investigate the connection between the content of unburnt carbon and particle size. The potential of reducing the amount of circulated inorganic material by sieving the ash before bringing it back to the furnace could thereby be determined. 13 plants that utilize re-burning of ash were identified, of which two plants re-burn the bottom ash that floats up to the surface in the wet ash removal system. The remaining 11 plants re-burn fly ash. At three plants the fly ash is first separated in a mesh sieve or similar equipment and only the coarser fly ash is re-burnt. As the amount of bottom ash that surfaces in the wet ash-removal is relatively small

  4. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    obtained during coal/straw co-firing, substantive sintering strength was observed to build up in the ashes below the melting onset. The strength obtained was thus assumed to be due to viscous flow sintering, and the sintering onset was for the four ashes investigated simultaneous to a calculated ash......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...... of melt in the investigated ashes has been determined as a function of temperature. Ash fusion results have been correlated to the chemical and mineralogical composition of the ashes, to results from a standard ash fusion test and to results from sintering experiments. Furthermore, the ash fusion results...

  5. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  6. Extraction of vanadium from athabasca tar sands fly ash

    Science.gov (United States)

    Gomez-Bueno, C. O.; Spink, D. R.; Rempel, G. L.

    1981-06-01

    The production of refinery grade oil from the Alberta tar sands deposits as currently practiced by Suncor (formally Great Canadian Oil Sands Ltd.—GCOS) generates a substantial amount of petroleum coke fly ash which contains appreciable amounts of valuable metals such as vanadium, nickel and titanium. Although the recovery of vanadium from petroleum ash is a well established commercial practice, it is shown in the present work that such processes are not suitable for recovery of vanadium from the GCOS fly ash. The fact that the GCOS fly ash behaves so differently when compared to other petroleum fly ash is attributed to its high silicon and aluminum contents which tie up the metal values in a silica-alumina matrix. Results of experiments carried out in this investigation indicate that such matrices can be broken down by application of a sodium chloride/water roast of the carbon-free fly ash. Based on results from a series of preliminary studies, a detailed investigation was undertaken in order to define optimum conditions for a vanadium extraction process. The process developed involves a high temperature (875 to 950 °C) roasting of the fly ash in the presence of sodium chloride and water vapor carried out in a rotary screw kiln, followed by dilute sodium hydroxide atmosphereic leaching (98 °C) to solublize about 85 pet of the vanadium originally present in the fly ash. It was found that the salt roasting operation, besides enhancing vanadium recovery, also inhibits silicon dissolution during the subsequent leaching step. The salt roasting treatment is found to improve vanadium recovery significantly when the fly ash is fully oxidized. This is easily achieved by burning off the carbon present in the “as received” fly ash under excess air. The basic leaching used in the new process selectively dissolves vanadium from the roasted ash, leaving nickel and titanium untouched.

  7. Effect of particle volume fraction on the settling velocity of volcanic ash particles: insights from joint experimental and numerical simulations

    OpenAIRE

    Del Bello, Elisabetta; Taddeucci, Jacopo; de’ Michieli Vitturi, Mattia; Scarlato, Piergiorgio; Andronico, Daniele; Scollo, Simona; Kueppers, Ulrich; Ricci, Tullio

    2017-01-01

    Most of the current ash transport and dispersion models neglect particle-fluid (two-way) and particle-fluid plus particle-particle (four-way) reciprocal interactions during particle fallout from volcanic plumes. These interactions, a function of particle concentration in the plume, could play an important role, explaining, for example, discrepancies between observed and modelled ash deposits. Aiming at a more accurate prediction of volcanic ash dispersal and sedimentation, the settling of ash...

  8. Physical Properties of Volcanic Deposits on Venus from Radar Polarimetry

    Science.gov (United States)

    Carter, Lynn M.; Campbell, Donald B.; Campbell, Bruce A.

    2005-01-01

    Studies of the morphology and radar properties of volcanic deposits can aid in understanding their differences and formation. On Venus, volcanoes range in size from large highland edifices, such as Theia Mons, to small shields and domes which are often found in groups of tens to hundreds. In plains regions, windstreaks are sometimes found near shield fields, suggesting that there may be fine grained deposits associated with the volcanoes. Previous studies of Bell Regio suggest the presence of fine-grained material in a low dielectric constant triangular shaped region on the flank of Tepev Mons, which may be crater ejecta or a pyroclastic deposit spread westward by wind. The eastern caldera on Tepev Mons shows a steep trend in backscattered power with incidence angle and has high RMS-slopes, implying a finegrained covering such as ash. Radar waves can easily penetrate smooth mantling layers such as ash and aeolian deposits. If a radar system can measure two orthogonal polarizations, it is possible to detect subsurface scattering and infer the presence of surficial deposits. The Magellan spacecraft could only measure one polarization and was therefore not able to fully characterize the polarization state of the radar echoes. We compare Arecibo dual-polarization data for Venus to Magellan images and emissivity data to investigate the physical properties of volcanic deposits.

  9. Estimating the frequency of volcanic ash clouds over northern Europe

    Science.gov (United States)

    Watson, E. J.; Swindles, G. T.; Savov, I. P.; Lawson, I. T.; Connor, C. B.; Wilson, J. A.

    2017-02-01

    Fine ash produced during explosive volcanic eruptions can be dispersed over a vast area, where it poses a threat to aviation, human health and infrastructure. Here, we focus on northern Europe, which lies in the principal transport direction for volcanic ash from Iceland, one of the most active volcanic regions in the world. We interrogate existing and newly produced geological and written records of past ash fallout over northern Europe in the last 1000 years and estimate the mean return (repose) interval of a volcanic ash cloud over the region to be 44 ± 7 years. We compare tephra records from mainland northern Europe, Great Britain, Ireland and the Faroe Islands, with records of proximal Icelandic volcanism and suggest that an Icelandic eruption with a Volcanic Explosivity Index rating (VEI) ≥ 4 and a silicic magma composition presents the greatest risk of producing volcanic ash that can reach northern Europe. None of the ash clouds in the European record which have a known source eruption are linked to a source eruption with VEI < 4. Our results suggest that ash clouds are more common over northern Europe than previously proposed and indicate the continued threat of ash deposition across northern Europe from eruptions of both Icelandic and North American volcanoes.

  10. Sulphation characteristics of paper sludge ash

    Energy Technology Data Exchange (ETDEWEB)

    Roh, S.A. [Environmental Systems Research Center, Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of); Kim, S.D. [Environmental Systems Research Center, Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering

    2007-04-15

    Landfills are no longer a viable solution for the disposal of sludge produced from waste water treatment plants because of the decrease in available space, rising fees and growing environmental concerns. However, thermal utilization of this waste may be an economic and sustainable disposal solution. Co-combustion of low heating value sludge with fossil fuels has a positive effect for sulfur dioxide (SO{sub 2}) emissions due to the low sulphur content of biomass fuels and increased sulphur retention in the ash. The sulphur retention is attributed to the formation of sulphates, such as CaSO{sub 4}, K{sub 2}SO{sub 4} and Na{sub 2}SO{sub 4}. The amount of fuel-ash-related sulphur sorption increases during co-combustion. Therefore, sorbents for sulphur reduction may not be required if proper control of the biomass feed is maintained. This paper presented a study in which the sulphation characteristics of calcium-rich paper sludge ash were determined for the use of co-combustion of biomass and coal. The calcium in the paper sludge ash came from the limestone filler used in the manufacturing process to increase the density and whiteness of the paper at 2 paper mills in Korea. A thermobalance reactor along with XRD and SEM-EDX were used for the analysis of sulphated ash to determine the effects of sulphation temperature, particle size and SO{sub 2} concentration on sulphation conversion. The activation energy and pre-exponential factor of sulphation reaction of sludge ash were determined based on the uniform-reaction model. X-ray diffraction analysis revealed that most of the sulphation compounds were CaSO{sub 4}. The sulphation occurred uniformly throughout the ash and the CaSO{sub 4} did not block the outer pore of the sludge ash. The uniform distributions of CaO and other inert minerals in the ash resulted in uniform sulphation with good penetration of SO{sub 2} into pores of the sludge ash without pore blocking during sulphation of CaO. 13 refs., 1 tab., 9 figs.

  11. Ash cloud aviation advisories

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.; Ellis, J.S. [Lawrence Livermore National Lab., CA (United States); Schalk, W.W.; Nasstrom, J.S. [EG and G, Inc., Pleasanton, CA (United States)

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  12. Aquifer composition and the tendency toward scale-deposit formation during reverse osmosis desalination - Examples from saline ground water in New Mexico, USA

    Science.gov (United States)

    Huff, G.F.

    2006-01-01

    Desalination is expected to make a substantial contribution to water supply in the United States by 2020. Currently, reverse osmosis is one of the most cost effective and widely used desalination technologies. The tendency to form scale deposits during reverse osmosis is an important factor in determining the suitability of input waters for use in desalination. The tendency toward scale formation of samples of saline ground water from selected geologic units in New Mexico was assessed using simulated evaporation. All saline water samples showed a strong tendency to form CaCO3 scale deposits. Saline ground water samples from the Yeso Formation and the San Andres Limestone showed relatively stronger tendencies to form CaSO4 2H2O scale deposits and relatively weaker tendencies to form SiO2(a) scale deposits than saline ground water samples from the Rio Grande alluvium. Tendencies toward scale formation in saline ground water samples from the Dockum Group were highly variable. The tendencies toward scale formation of saline waters from the Yeso Formation, San Andres Limestone, and Rio Grande alluvium appear to correlate with the mineralogical composition of the geologic units, suggesting that scale-forming tendencies are governed by aquifer composition and water-rock interaction. ?? 2006 Elsevier B.V. All rights reserved.

  13. An aggregation model for ash particles in volcanic clouds

    Science.gov (United States)

    Costa, A.; Folch, A.; Macedonio, G.; Durant, A.

    2009-12-01

    A large fraction of fine ash particles injected into the atmosphere during explosive eruptions aggregate through complex interactions of surface liquid layers, electrostatic forces, and differences in particle settling velocities. The aggregates formed have a different size and density compared to primary particles formed during eruption which dramatically changes the dynamics of sedimentation from the volcanic cloud. Consequently, the lifetime of ash particles in the atmosphere is reduced and a distal mass deposition maximum is often generated in resulting tephra deposits. A complete and rigorous description of volcanic ash fallout requires the full coupling of models of volcanic cloud dynamics and dispersion, and ash particle transport, aggregation and sedimentation. Furthermore, volcanic ash transport models should include an aggregation model that accounts for the interaction of all particle size classes. The problem with this approach is that simulations would require excessively long computational times thereby prohibiting its application in an operational setting during an explosive volcanic eruption. Here we present a simplified model for ash particle transport and aggregation that includes the effects of water in the volcanic cloud and surrounding atmosphere. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average sticking efficiency factors, and collision frequency functions that account for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. A parametric study on the key parameters of the model was performed. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, including the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. In these cases, mass deposited as a function of deposit area and the particle

  14. Experimental evidence for de novo synthesis of PBDD/PBDF and PXDD/PXDF as well as dioxins in the thermal processes of ash samples

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, K.; Ishikawa, N. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2005-07-01

    Fly ash in gasification-melting plants and conventional incineration plants can form dioxins through a process known as de novo synthesis. This paper investigated the de novo synthesis of dioxins formed as a result of fly ash catalysis activities. Thermal experiments using fly ash were performed using a flow-through reactor to investigate the formation of brominated and chlorinated-brominated dibenzodioxins (PBDD/F) and dibenzofurans (PXDD/F). Ash samples were collected at conventional stoker incineration and gasification-melting plants. Samples included ash from a bag filter (Ash A); ash from a fluidized gasification and melting furnace plant (Ash C); boiler ash (Ash B); and ash containing tetrabromobisphenol (Ash D). Samples were subjected to a thermal treatment at 300 degrees C. Results showed that dioxin levels were very high for Ash A, which suggested that temperature had a significant influence on de novo synthesis. Dioxin concentrations for Ash C had a relatively low carbon content. Considerable concentrations of PXDD/PXDF were determined for Ash A. High PBDD, PBDF, PXDD and PXDF were observed for Ash D and Ash B. The total amount of dioxins in Ash A were relatively slow to change before and after the thermal treatment of the sample. The homologue distribution patterns of PCDD and PCDF in Ash A showed significant alterations after treatment. It was concluded that de novo dioxin synthesis occurred during the experimental procedure. Results suggested that carbon content plays an important role in the production of dioxins. 3 refs., 2 tabs., 4 figs.

  15. Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, B.-M.; Lindqvist, O. [Chalmers University of Technology, Goeteborg (Sweden); Karlsson, L.G. [Kemakta Consulting AB, Stockholm (Sweden)

    1999-11-01

    The release of mineral nutrients and other species from untreated and stabilised wood ash has been investigated. Stabilisation is applied with the aim to modify the solubility of ash components and the ash particle size, i.e. to form dense ash particle agglomerates. This process induces the formation of several secondary minerals. The most important reaction is the transformation of Ca(OH){sub 2} into CaCO{sub 3} which lowers the calcium leaching rate significantly. A significant fraction of the alkali metals, K and Na, is present in salts which are rapidly released. The short-term release of these salts, as simulated in laboratory experiments, was not reduced by the stabilisation methods applied. Generally, low leaching rates were observed for the important plant nutrients P and Mg as well as for Fe and other metals from both untreated and agglomerated ashes. Thermodynamics equilibrium modelling of the hardening process showed that in addition to the transformation of Ca(OH){sub 2} to CaCO{sub 3}, formation of the mineral ettringite is possible at a high pH. Experimental results have confirmed this. As the pH in the pore solution decreases during long-term leaching ettringite will be transformed into calcium carbonate and gypsum. In accordance with the experimental results, no formation of secondary solubility controlling potassium or sodium minerals was indicated by the modelling results. (author)

  16. Gas/aerosol-ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles

    Science.gov (United States)

    Delmelle, Pierre; Lambert, Mathieu; Dufrêne, Yves; Gerin, Patrick; Óskarsson, Niels

    2007-07-01

    The reactions occurring between gases/aerosols and silicate ash particles in volcanic eruption plumes remain poorly understood, despite the fact that they are at the origin of a range of volcanic, environmental, atmospheric and health effects. In this study, we apply X-ray photoelectron spectroscopy (XPS), a surface-sensitive technique, to determine the chemical composition of the near-surface region (2-10 nm) of nine ash samples collected from eight volcanoes. In addition, atomic force microscopy (AFM) is used to image the nanometer-scale surface structure of individual ash particles isolated from three samples. We demonstrate that rapid acid dissolution of ash occurs within eruption plumes. This process is favoured by the presence of fluoride and is believed to supply the cations involved in the deposition of sulphate and halide salts onto ash. AFM imaging also has permitted the detection of extremely thin (< 10 nm) coatings on the surface of ash. This material is probably composed of soluble sulphate and halide salts mixed with sparingly soluble fluoride compounds. The surface approach developed here offers promising aspects for better appraising the role of gas/aerosol-ash interaction in dictating the ability of ash to act as sinks for various volcanic and atmospheric chemical species as well as sources for others.

  17. FORMATION OF GOLD-BEARING HYDROFRACTURING BRECCIA BODIES IN TECTONIC LENSES: A CASE STUDY ON SHUANGWANG GOLD DEPOSIT, SHAANXI, CHINA

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Macro-microscopic tectonic analysis and lithologic features show that the gold-bearing breccia bodies in the Shuangwang gold deposit, for hydrofracturing of the deep-sourced and alkali-rich fluids in the Devonian sodic rock series, are identified as hydrofracturing breccia bodies. Since the Indosinian,intracontinental collisional orogenesis results in multiple fracturings and magmatic emplacements in the Qinling area. Deep-sourced fluids resulting from deep fractures and granitoid magmatic intrusion are of a supercritical nature. Joint action between the fluid-rock system and structures leads to hydroffacturing and ore formation of the gold deposit.Firstly, the progressive coaxial compression caused the competent sodic rock series and the incompetent pelitic rock series to be deformed and partitioned. Lens-like weak-strain domains are hence formed and distributed at the approximate equidistance zones and the linear strong-strain zones,respectively. Subsequently, the progressive non-coaxial shearing and right-lateral and high-angle oblique thrusting lead to the most developed fracture system in the core of the weak-strain domain to turn from compression to extension and to link up with the deep fracture systems. The periodical huge pressure decline in the pumping center causes the deep-sourced confined fluids to develop periodic tectonic pumping, hydrofracturing and precipitation-healing in the sodic rock series. The gold-bearing hydrofracturing breccia bodies are hence ultimately formed at near-equidistance tectonic lenses. On the basis of the above model, the predicted concealed gold-bearing hydrofracturing breccia bodies have been preliminarily validated by latest drillings.

  18. Thermally induced formation of metastable nanocomposites in amorphous Cr-Zr-O thin films deposited using reactive ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Rafaja, David, E-mail: rafaja@ww.tu-freiberg.de [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Wüstefeld, Christina [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Abrasonis, Gintautas [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Braeunig, Stefan [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Baehtz, Carsten [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Hanzig, Florian; Dopita, Milan [Institute of Materials Science, Freiberg University of Technology, D-09599 Freiberg (Germany); Krause, Matthias [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Gemming, Sibylle [Helmholtz-Zentrum Dresden-Rossendorf, P.O. Box 510119, D-01314 Dresden (Germany); Institute of Physics, Technische Universität Chemnitz, D-09126 Chemnitz (Germany)

    2016-08-01

    Successive crystallization of amorphous Cr-Zr-O thin films, formation of the (Cr,Zr){sub 2}O{sub 3}/(Zr,Cr)O{sub 2} nanocomposites and the thermally induced changes in the hexagonal crystal structure of metastable (Cr,Zr){sub 2}O{sub 3} were investigated by means of in situ high-temperature synchrotron diffraction experiments up to 1100 °C. The thin films were deposited at room temperature by using reactive ion beam sputtering, and contained 3–15 at.% Zr. At low Zr concentrations, chromium-rich (Cr,Zr){sub 2}O{sub 3} crystallized first, while the crystallization of zirconium-rich (Zr,Cr)O{sub 2} was retarded. Increasing amount of zirconium shifted the onset of crystallization in both phases to higher temperatures. For 3 at.% of zirconium in amorphous Cr-Zr-O, (Cr,Zr){sub 2}O{sub 3} crystallized at 600 °C. At 8 at.% Zr in the films, the crystallization of (Cr,Zr){sub 2}O{sub 3} started at 700 °C. At 15 at.% Zr, the Cr-Zr-O films remained amorphous up to the annealing temperature of 1000 °C. Metastable hexagonal (Cr,Zr){sub 2}O{sub 3} accommodated up to ~ 3 at.% Zr. Excess of zirconium formed tetragonal zirconia, which was stabilized by chromium. - Highlights: • Amorphous Cr-Zr-O thin films were deposited using reactive ion beam sputtering. • After annealing in vacuum, metastable (Cr,Zr){sub 2}O{sub 3}/(Zr,Cr)O{sub 2} nanocomposites form. • The crystallization temperature depends strongly on the Zr concentration. • Metastable hexagonal (Cr,Zr){sub 2}O{sub 3} accommodates up to 3.2 at.% of zirconium. • Zirconium oxide crystallizes in tetragonal form, as it is stabilized by chromium.

  19. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang;

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  20. Characterizing and Exploring the Formation Mechanism of Salt Deposition by Reusing Advanced-softened, Silica-rich, Oilfield-produced Water (ASOW) in Superheated Steam Pipeline

    Science.gov (United States)

    Dong, Bin; Xu, Ying; Lin, Senmin; Dai, Xiaohu

    2015-11-01

    To dispose of large volumes of oilfield-produced water, an environmentally friendly method that reuses advanced-softened, silica-rich, oilfield-produced water (ASOW) as feedwater was implemented via a 10-month pilot-scale test in oilfield. However, salt deposition detrimental to the efficiency and security of steam injection system was generated in superheated steam pipeline. To evaluate the method, the characteristics and formation mechanism of the deposition were explored. The silicon content and total hardness of the ASOW were 272.20 mg/L and 0.018 mg/L, respectively. Morphology and composition of the deposition were determined by scanning electron microscope-energy dispersive spectrometry (SEM-EDS), inductively coupled plasma-mass spectroscopy (ICP-MS), X-ray diffraction (XRD), laser Raman spectroscopy (LRS) and X-ray photoelectron spectroscopy (XPS). Na2Si2O5, Na2CO3 and trace silanes were identified in the deposition. In addition, the solubility of the deposition was about 99%, suggesting that it is very different from traditional scaling. The results of a simulation experiment and thermal analysis system (TGA and TG-FTIR) proved that Na2CO3 and Si(OH)4 (gas) are involved in the formation of Na2Si2O5, which is ascribed mainly to the temperature difference between the superheated steam and the pipe wall. These findings provide an important reference for improving the reuse of ASOW and reducing its deposition.

  1. Ash dispersal dynamics: state of the art and perspectives

    Science.gov (United States)

    Sulpizio, R.

    2013-05-01

    Volcanic ash, during dispersal and deposition, is among the major hazards from explosive eruptions. Volcanic ash fallout can disrupt communities downwind, interrupt surface transportation networks and lead to closure of airports. Airborne ash seriously threatens modern jet aircraft in flight. In several documented cases, encounters between aircraft and volcanic clouds have resulted in engine flameout and near crashes, so there is a need to accurately predict the trajectory of volcanic ash clouds in order to improve aviation safety and reduce economic losses. The ash clouds affect aviation even in distal regions, as demonstrated by several eruptions with far-range dispersal. Recent examples include Crater Peak 1992, Tungurahua 1999-2001, Mount Cleveland 2001, Chaitén 2008, Eyjafjallajökull 2010, Grimsvötn 2011, and Cordón-Caulle 2011. Amongst these, the April-May 2010 eruption of Eyjafjallajökull in Iceland provoked the largest civil aviation breakdown. Accumulation of tephra can produce roof collapse, interruption of lifelines (roads, railways, etc.), disruption to airport operations, and damage to communications and electrical power lines. Deposition of ash decreases soil permeability, increases surface runoff, and promotes floods. Ash leaching can result in the pollution of water resources, damage to agriculture, pastures, and livestock, impinge on aquatic ecosystems, and alteration of the geochemical environment on the seafloor. Despite the potential big impact, the dispersal dynamics of volcanic ash is still an unsolved problem for volcanologists, which claims for fiture high level research. Here, a critical overview about models (field, experimental and numerical) for inversion of field data to gain insights on physics of dispersal of volcanic ash is proposed. A special focus is devoted to some physical parameters that are far from a satisfactory inversion (e.g. reconstruction of total grain size distribution), and clues for future research are suggested.

  2. Micro- and nanobands in late Archean and Palaeoproterozoic banded-iron formations as possible mineral records of annual and diurnal depositions

    Science.gov (United States)

    Li, Yi-Liang

    2014-04-01

    The microbands in Precambrian banded-iron formations (BIFs) have been conjectured to record annual or even diurnal depositions. However, these bands have rarely been observed in high resolution at their true (micro) scale. Here, I suggest that nanobands of fine-grained hematite represent possible diurnal depositions and that microbands of chert/jasper represent possible annual depositions in three sets of BIFs: 2460-Myr BIFs from the Kuruman Iron Formation, Transvaal Supergroup of South Africa; 2480-Myr BIFs from the Dales Gorge Member of the Brockman Iron Formation, Western Australia; and 2728-Myr BIFs from the Hunter Mine Group, Abitibi Greenstone Belt, Canada. Observations made using scanning electron microscopy indicate that hematite and chert were syngenetic, and that there was a hiatus between their precipitation and the genesis of the remainder of the minerals containing structural Fe(II). Spindle-like grains of hematite, monocrystals of magnetite, and ferro-dolomite formed microbands of ∼30-70 μm in thickness, which appear cyclically in the matrix of the chert. Neither the band-bound magnetite and dolomite nor the linear formations of the hematite spindles represent annual depositions due to their diagenetic features. The thinnest microbands (∼3-∼12 μm) were observed in the chert and jasper, and indicate depositional rates of 6.6-22.2 m/Myr in the BIFs. These rates are consistent with the integrated deposition rates calculated by geochronologic methods for the BIFs, if annual deposition is assumed. The ∼26-nm nanobands observed only in hematite grains reflect an annual deposition of ∼18.6 μm, or ∼18.6 m/Myr, which is also consistent with the depositional rate calculated by geochronologic methods. It is tentatively suggested that these ∼26-nm nanobands were formed from the diurnal precipitation of Fe(III) resulting from the circadian metabolism of Fe(II)-oxidizing or oxygen-evolving photosynthetic microorganisms, which slowed down the rise

  3. Formation of PdHg by reaction of palladium thin film contacts deposited onto mercuric iodide ({alpha}-HgI{sub 2}) radiation detector crystals

    Energy Technology Data Exchange (ETDEWEB)

    Medlin, D.L. [Sandia National Labs., Livermore, CA (United States); Van Scyoc, J.M. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Gilbert, T.S. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Schlesinger, T.E. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Boehme, D. [Sandia National Labs., Livermore, CA (United States); Schieber, M. [Sandia National Labs., Livermore, CA (United States); Natarajan, M. [TN Technologies, Inc., Round Rock, TX (United States); James, R.B. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    The microstructure and phase distribution of palladium thin films sputter deposited onto {alpha}-HgI{sub 2} for use as electrical contacts in radiation detectors are investigated using electron microscopy. Our results show a limited reaction to form palladium mercuride (PdHg). It is shown that the formation of PdHg via several reaction pathways is thermodynamically feasible. (orig.).

  4. Isotopically heavy carbon in C21 to C25 regular isoprenoids in halite-rich deposits from the Sdm Formation, Dead Sea, Israel

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Grice, K.; Schouten, S.; Nissenbaum, A.; Charrach, J.

    1998-01-01

    A series of Miocene/Pliocene halite deposits (with extremely low organic carbon contents) from the Sdom Formation (Dead Sea Basin, Israel) have been studied. Distributions and contents of biomarkers have been determined using GC MS and irm-GCMS analyses, respectively. The hydrocarbon fractions cons

  5. Physicochemical Conditions of the Formation of Beryl and Aquamarin in Mufushan Granopegmatite Deposit,Hunan Province,China

    Institute of Scientific and Technical Information of China (English)

    李兆麟; 牛贺才; 等

    1994-01-01

    The formation of the Mufushan granopegmatite was closely related to the Late Yenshanian multiphase and multistage magmatic activities,More than one generation of beryl and aquamarine occur in different types of pegmatite in the granites.The presence of melt and melt-fluid inclusions strongly indicates a melt-solution character of the pegmatitic magma.Forming temperatures of the different generations of beryl in a Na+-K+,Ca2+-CO32--Cl--SO42- solution ranges from 990℃to 200℃.Aquamarine was formed at 720-180℃.The contents of alkali metals(Na++K+)in th ore-formming solution of aquamarine are lower than those in the beryl,but the contents of alkali earths(Ca) and salinity are higher,The granite was generated by remelting of the basement formation(meta-sedimentary rocks of the Lengjiaxi Group)which also served as the source of ore-forming material.Beryllium in the pegmatite was transported mainly in the form of Na[Be(CO3)2],with part of it being complexed with Cl- and SO42-.During the generation and evolution of the pegmatite,equilibrium might have been reached in the solid-melt-fluid or solid-fluid system.The intergranular solutions may have reacted with the early crystallized minerals,resulting in potash-feldsparization,albitization and muscovitization during which the ore-forming elements were mobilized and transported in favour of ore deposition.

  6. Coal ash fusion temperatures -- New characterization techniques, and associations with phase equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Gupta, R.P.; Gupta, S. [Univ. of Newcastle, New South Wales (Australia). Dept. of Chemical Engineering; Creelman, R.A. [R.A. Creelman and Associates, Epping, New South Wales (Australia); Coin, C. [ACIRL Ipswich, Booval, Queensland (Australia); Lowe, A. [Pacific Power, Sydney, New South Wales (Australia)

    1996-12-31

    The well-documented shortcomings of the standard technique for estimating the fusion temperature of coal ash are its subjective nature and poor accuracy. Alternative measurements based on the shrinkage and electrical conductivity of heating samples are therefore examined with laboratory ash prepared at about 800 C in crucibles, as well as combustion ash sampled from power stations. Sensitive shrinkage measurements indicate temperatures of rapid change which correspond to the formation of liquid phases that can be identified on ternary phase diagrams. The existence and extent of formation of these phases, as quantified by the magnitude of peaks in the test, provide alternative ash fusion temperatures. The peaks from laboratory ashes and corresponding combustion ashes derived from the same coals show clear differences which may be related to the evaporation of potassium during combustion and the reactions of the mineral residues to form combustion ash.

  7. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany

    Science.gov (United States)

    Pfaff, Katharina; Hildebrandt, Ludwig H.; Leach, David L.; Jacob, Dorrit E.; Markl, Gregor

    2010-01-01

    The Mississippi Valley-type (MVT) Zn-Pb-Ag deposit in the Wiesloch area, Southwest Germany, is controlled by graben-related faults of the Upper Rhinegraben. Mineralization occurs as vein fillings and irregular replacement ore bodies consisting of sphalerite, banded sphalerite, galena, pyrite, sulfosalts (jordanite and geocronite), barite, and calcite in the Middle Triassic carbonate host rock. Combining paragenetic information, fluid inclusion investigations, stable isotope and mineral chemistry with thermodynamic modeling, we have derived a model for the formation of the Wiesloch deposit. This model involves fluid mixing between ascending hot brines (originating in the crystalline basement) with sedimentary formation waters. The ascending brines originally had a near-neutral pH (around 6) and intermediate oxidation state, reflecting equilibrium with granites and gneisses in the basement. During fluid ascent and cooling, the pH of the brine shifted towards more acidic (around 4) and the oxidation state increased to conditions above the hematite-magnetite buffer. These chemical characteristics contrast strongly with those of the pore and fracture fluid residing in the limestone aquifer, which had a pH between 8 and 9 in equilibrium with calcite and was rather reduced due to the presence of organic matter in the limestone. Mixing between these two fluids resulted in a strong decrease in the solubility of silver-bearing sphalerite and galena, and calcite. Besides Wiesloch, several Pb-Zn deposits are known along the Upper Rhinegraben, including hydrothermal vein-type deposits like Badenweiler and the Michael mine near Lahr. They all share the same fluid origin and formation process and only differ in details of their host rock and fluid cooling paths. The mechanism of fluid mixing also seems to be responsible for the formation of other MVT deposits in Europe (e.g., Reocin, Northern Spain; Treves, Southern France; and Cracow-Silesia, Poland), which show notable

  8. Multiphase flow modelling of volcanic ash particle settling in water using adaptive unstructured meshes

    OpenAIRE

    Jacobs, C.T.; Collins, G S; M. D. Piggott; S. C. Kramer; Wilson, C.R.G.

    2013-01-01

    Small-scale experiments of volcanic ash particle settling in water have demonstrated that ash particles can either settle slowly and individually, or rapidly and collectively as a gravitationally unstable ash-laden plume. This has important implications for the emplacement of tephra deposits on the seabed. Numerical modelling has the potential to extend the results of laboratory experiments to larger scales and explore the conditions under which plumes may form and persist, but many existing ...

  9. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  10. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications.

    Science.gov (United States)

    Popa, A C; Stan, G E; Besleaga, C; Ion, L; Maraloiu, V A; Tulyaganov, D U; Ferreira, J M F

    2016-02-01

    This work reports on the unprecedented magnetron sputtering deposition of submicrometric hollow cones of bioactive glass at low temperature in the absence of any template or catalyst. The influence of sputtering conditions on the formation and development of bioglass cones was studied. It was shown that larger populations of well-developed cones could be achieved by increasing the argon sputtering pressure. A mechanism describing the growth of bioglass hollow cones is presented, offering the links for process control and reproducibility of the cone features. The composition, structure, and morphology of the as-synthesized hollow cones were investigated by energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), grazing incidence geometry X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM)-selected area electron diffraction (SAED). The in vitro biological performance, assessed by degradation tests (ISO 10993-14) and cytocompatibility assays (ISO 10993-5) in endothelial cell cultures, was excellent. This allied with resorbability and the unique morphological features make the submicrometer hollow cones interesting candidate material devices for focal transitory permeabilization of the blood-brain barrier in the treatment of carcinoma and neurodegenerative disorders.

  11. Direct synthesis of carbon nanofibers from South African coal fly ash.

    Science.gov (United States)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-01-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  12. Direct synthesis of carbon nanofibers from South African coal fly ash

    Science.gov (United States)

    Hintsho, Nomso; Shaikjee, Ahmed; Masenda, Hilary; Naidoo, Deena; Billing, Dave; Franklyn, Paul; Durbach, Shane

    2014-08-01

    Carbon nanofibers (CNFs), cylindrical nanostructures containing graphene, were synthesized directly from South African fly ash (a waste product formed during the combustion of coal). The CNFs (as well as other carbonaceous materials like carbon nanotubes (CNTs)) were produced by the catalytic chemical vapour deposition method (CCVD) in the presence of acetylene gas at temperatures ranging from 400°C to 700°C. The fly ash and its carbonaceous products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), laser Raman spectroscopy and Brunauer-Emmett-Teller (BET) surface area measurements. It was observed that as-received fly ash was capable of producing CNFs in high yield by CCVD, starting at a relatively low temperature of 400°C. Laser Raman spectra and TGA thermograms showed that the carbonaceous products which formed were mostly disordered. Small bundles of CNTs and CNFs observed by TEM and energy-dispersive spectroscopy (EDS) showed that the catalyst most likely responsible for CNF formation was iron in the form of cementite; X-ray diffraction (XRD) and Mössbauer spectroscopy confirmed these findings.

  13. MAT 126 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    stylia

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MAT 126 Week 1 DQ 1 (Ash) MAT 126 Week 1 Quiz (Ash) MAT 126 Week 1 Written Assignment (Arithmetic and geometric sequence) (Ash) MAT 126 Week 2 DQ 1 (Ash) MAT 126 Week 2 DQ 2 (Ash) MAT 126 Week 2 Assignment Is It Fat Free (Ash) MAT 126 Week 2 Quiz (Ash) MAT 126 Week 3 DQ 1 (Ash) MAT 126 Week 3 DQ 2 (Ash) MAT 126 Week 3 Assignment Quadratic Equations (Ash) MAT 126 Week 3 Quiz (Ash) MAT 126...

  14. Basin-Scale Sand Deposition in the Upper Triassic Xujiahe Formation of the Sichuan Basin, Southwest China: Sedimentary Framework and Conceptual Model

    Institute of Scientific and Technical Information of China (English)

    Xiucheng Tan; Qingsong Xia; Jingshan Chen; Ling Li; Hong Liu; Bing Luo; Jiwen Xia; Jiajing Yang

    2013-01-01

    The Upper Triassic Xujiahe(须家河) Formation in the Sichuan (四川) Basin,Southwes China is distinctive for the basin-scale sand deposition.This relatively rare sedimentary phenomenon has not been well interpreted.Here we addressed this issue by discussing sedimentary framework and conceptual model.Analysis of sedimentary setting implied that the basin received transgression during the deposition.It had multiple provenance supplies and river networks,as being surrounded by oldlands in multiple directions including the north,east and south.Thus,the basin was generally characterized by coastal and widely open and shallow lacustrine deposition during the Late Triassic Xujiahe period.This is similar to the modern well-known Poyang(鄱阳) Lake.Therefore,we investigated the framework and conceptual model of the Sichuan Basin during the Xujiahe period with an analogue to the Poyang Lake.Results show that the conceptual model of the deposition can be divided into transgressive and regressive stages.The first,third and fifth members of the formation are in transgressive stage and the deposits are dominated by shore and shallow lacustrine mud.In contrast,the deposition is mainly of braided river channel sand deposits during the regressive stage,mainly including the second,fourth and sixth members of the formation.The sand deposited in almost the entire basin because of the lateral migration and forward moving of the cross networks of the braided rivers.The multiple alternations of short and rapid transgression and relatively long regression are beneficial to the basin-scale sand deposition.Thus,the main channel of the braided river and its extensional areas are favorable for the development of hydrocarbon reservoir.This provides practical significance to the reservoir evaluation and exploration.In addition,the results also justify the relatively distinctive sedimentary phenomenon in the study area and may also have implications for understanding the large

  15. Role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium deposits: insights from reactive-flow modeling

    Science.gov (United States)

    Aghbelagh, Yousef Beiraghdar; Yang, Jianwen

    2017-03-01

    The role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium (URU) deposits in sedimentary basins during tectonically quiet periods is investigated. A number of reactive-flow modeling experiments at the deposit scale were carried out by assigning different dip angles and directions to a fault and various permeabilities to hydrostratigraphic units). The results show that the fault dip angle and direction, and permeability of the hydrostratigraphic units govern the convection pattern, temperature distribution, and uranium mineralization. A vertical fault results in uranium mineralization at the bottom of the fault within the basement, while a dipping fault leads to precipitation of uraninite below the unconformity either away from or along the plane of the fault, depending on the fault permeability. A more permeable fault causes uraninite precipitates along the fault plane, whereas a less permeable one gives rise to the precipitation of uraninite away from it. No economic ore mineralization can form when either very low or very high permeabilities are assigned to the sandstone or basement suggesting that these units seem to have an optimal window of permeability for the formation of uranium deposits. Physicochemical parameters also exert an additional control in both the location and grade of URU deposits. These results indicate that the difference in size and grade of different URU deposits may result from variation in fluid flow pattern and physicochemical conditions, caused by the change in structural features and hydraulic properties of the stratigraphic units involved.

  16. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of vario...

  17. Role of low-energy ion irradiation in the formation of an aluminum germanate layer on a germanium substrate by radical-enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Yukio, E-mail: y-fukuda@rs.suwa.tus.ac.jp; Yamada, Daichi; Yokohira, Tomoya; Yanachi, Kosei [Tokyo University of Science, Suwa, 5000-1 Toyohira, Chino, Nagano 391-0292 (Japan); Yamamoto, Chiaya; Yoo, Byeonghak; Sato, Tetsuya [University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Yamanaka, Junji [University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-8511 (Japan); Takamatsu, Toshiyuki [SST Inc., 989-6 Shimadadai, Yachiyo, Chiba 276-0004 (Japan); Okamoto, Hiroshi [Hirosaki University, 3 Bunkyo, Hirosaki 036-8561 (Japan)

    2016-03-15

    Radical-enhanced atomic layer deposition uses oxygen radicals generated by a remote microwave-induced plasma as an oxidant to change the surface reactions of the alternately supplied trimethylaluminum precursor and oxygen radicals on a Ge substrate, which leads to the spontaneous formation of an aluminum germanate layer. In this paper, the effects that low-energy ions, supplied from a remote microwave plasma to the substrate along with the oxygen radicals, have on the surface reactions were studied. From a comparative study of aluminum oxide deposition under controlled ion flux irradiation on the deposition surface, it was found that the ions enhance the formation of the aluminum germanate layer. The plasma potential measured at the substrate position by the Langmuir probe method was 5.4 V. Assuming that the kinetic energy of ions arriving at the substrate surface is comparable to that gained by this plasma potential, such ions have sufficient energy to induce exchange reactions of surface-adsorbed Al atoms with the underlying Ge atoms without causing significant damage to the substrate. This ion-induced exchange reaction between Al and Ge atoms is inferred to be the background kinetics of the aluminum germanate formation by radical-enhanced atomic layer deposition.

  18. Sedimentation of the basal Kombolgie Formation (Upper Precambrian-Carpentarian) Northern Territory, Australia: possible significance in the genesis of the underlying Alligator Rivers unconformity-type uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Ojakangas, R.W.

    1979-10-01

    The 1400 to 1500 My old Kombolgie Formation of the MacArthur Basin of the Northern Territory overlies or has overlain unconformity-type uranium deposits including Jabiluka, Ranger, Koongarra, Nabarlek and the small deposits of the South Alligator River Valley. A brief study of the basal portion of the formation showed it to consist entirely of mature conglomerates and quartzose sandstones. Analysis of the bedding types (planar cross beds, trough cross beds and parallel beds) and other sedimentary structures (mainly ripple marks and parting lineation) fit a braided alluvial plain model. A paleocurrent study utilizing about 400 measurements from nine localities located along the westward-facing 250 kilometer-long erosional escarpment of the Arnhem Land Plateau showed the dominant paleocurrent trend to be from west and northwest towards the east and southeast, with local divergence. The data and interpretation presented are relevant to the supergene model of uranium deposition at the unconformity, for they add to the suggestion that additional uranium deposits similar to Jabiluka Two may underlie the Kombolgie Formation eastward from the present escarpment.

  19. Ash properties of some dominant Greek forest species

    Energy Technology Data Exchange (ETDEWEB)

    Liodakis, S. [Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, Athens 157 73 (Greece)]. E-mail: liodakis@central.ntua.gr; Katsigiannis, G. [Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, Athens 157 73 (Greece); Kakali, G. [Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, Athens 157 73 (Greece)

    2005-10-15

    The elemental and chemical wood ash compositions of six dominant Greek fuels was investigated using a variety of techniques, including thermal gravimetric analysis (TG), differential thermal analysis (DTA), atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD). In addition, the alkalinity of wood ash was determined by titration. The ash was prepared by combustion at low (600 deg. C), middle (800 deg. C) and high temperatures (1000 deg. C). The ash composition is very important because thousands of hectares of wildlands are burned annually in Greece. The resulting deposits affect soil properties (i.e., pH) and provide a source of inorganic constituents (i.e., Ca, K, Na, Mg, etc.), while the most soluble compounds (i.e., sodium and potassium hydroxides and carbonates) do not persist through the wet season. The samples selected were: Pinus halepensis (Aleppo pine), Pinus brutia (Calabrian pine), Olea europaea (Olive), Cupressus sempervirens (Italian cypress), Pistacia lentiscus (Mastic tree), Quercus coccifera (Holly oak)

  20. Ash and sludge covering of mine waste. Benefits and/or risks using ash and sludge for covering of mine waste; Askor och roetslam som taeckskikt foer gruvavfall. Foerdelar och/eller risker med att anvaenda aska och slam som taeckskikt foer gruvavfall

    Energy Technology Data Exchange (ETDEWEB)

    Baeckstroem, Mattias; Johansson, Inger [Oerebro Univ. (Sweden). Man-Technology-Environment Research Centre

    2004-01-01

    One of the main sources for metal pollution in Sweden is mine waste. One way to decrease the leaching of metals from mine waste areas is covering which decreases the formation of acid drainage. There is a shortage of appropriate materials to use for covering, and excavation of till and clay from the environment might cause damages on the landscape. Previous studies have demonstrated that sludge and ashes are suitable materials for covering of waste deposits. When covering mine waste with ash and sludge various positive effects would arise, since the production of drainage water decreases as well as the pH increases due to the high buffer-capacity of the ash. In Ervalla outside Oerebro an area with mine waste has been covered with ash and sludge. This area gives a unique possibility to study benefits and/or risks with the covering of mine waste with ash and sludge. This report is a summary of the first phase of the project and the focus has been on characterisation of the material that has been used for covering. Also a monitoring program for the area has started. Preliminary findings indicate that that the covering decreases the leaching of some metals whereas the leaching of some metals increases. A decrease in the concentration of iron, nickel, cobalt and lead was observed and an increase was observed for arsenic, barium, chromium and copper.

  1. Surface area, porosity and water adsorption properties of fine volcanic ash particles

    Science.gov (United States)

    Delmelle, Pierre; Villiéras, Frédéric; Pelletier, Manuel

    2005-02-01

    Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (500 Å. All the specimens had similar pore size distributions, with a small peak centered around 50 Å. These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ~10-2 g. Some volcanic implications of this study are discussed.

  2. Implementation of routine ash predictions using a general purpose atmospheric dispersion model (HYSPLIT) adapted for calculating ash thickness on the ground.

    Science.gov (United States)

    Hurst, Tony; Davis, Cory; Deligne, Natalia

    2016-04-01

    GNS Science currently produces twice-daily forecasts of the likely ash deposition if any of the active or recently active volcanoes in New Zealand was to erupt, with a number of alternative possible eruptions for each volcano. These use our ASHFALL program for calculating ash thickness, which uses 1-D wind profiles at the location of each volcano derived from Numerical Weather Prediction (NWP) model output supplied by MetService. HYSPLIT is a hybrid Lagrangian dispersion model, developed by NOAA/ARL, which is used by MetService in its role as a Volcanic Ash Advisory Centre, to model airborne volcanic ash, with meteorological data provided by external and in-house NWP models. A by-product of the HYSPLIT volcanic ash dispersion simulations is the deposition rate at the ground surface. Comparison of HYSPLIT with ASHFALL showed that alterations to the standard fall velocity model were required to deal with ash particles larger than about 50 microns, which make up the bulk of ash deposits near a volcano. It also required the ash injected into the dispersion model to have a concentration based on a typical umbrella-shaped eruption column, rather than uniform across all levels. The different parameters used in HYSPLIT also caused us to revisit what possible combinations of eruption size and column height were appropriate to model as a likely eruption. We are now running HYSPLIT to produce alternative ash forecasts. It is apparent that there are many times at which the 3-D wind model used in HYSPLIT gives a substantially different ash deposition pattern to the 1-D wind model of ASHFALL, and the use of HYSPLIT will give more accurate predictions. ASHFALL is likely still to be used for probabilistic hazard forecasting, in which very large numbers of runs are required, as HYSPLIT takes much more computer time.

  3. Isotopic and fluid-inclusion constraints on the formation of polymetallic vein deposits in the central Argentinian Patagonia

    Science.gov (United States)

    Dejonghe, Léon; Darras, Benoît; Hughes, Guillermo; Muchez, Philippe; Scoates, James S.; Weis, Dominique

    2002-03-01

    The lead isotope compositions of galena and the fluid-inclusion systematics of nine barite-bearing polymetallic (Au, Ag, Pb, Zn) deposits of the central Argentinian Patagonia (Chubut and Rio Negro provinces) have been investigated to constrain the compositions and sources of the mineralizing fluids. Most of the deposits occur as veins, with less common wall-rock disseminations and/or stockworks, and are low-sulfidation epithermal deposits hosted in Jurassic volcanic rocks. Fluid-inclusion homogenization temperatures (Th) from quartz and sphalerite from the deposits fall within the range of 100-300 °C, with the highest measured average temperatures for the most eastern deposits (Mina Angela - 298 °C; Cañadón Bagual - 343 °C). The salinities of the hydrothermal fluids at all deposits were low to moderate (≤10.4 equiv. wt% NaCl). Three groups of ore deposits can be defined on the basis of 206Pb/204Pb ratios for galena and these show a general decrease from west to east (from 18.506 to 18.000). The central Argentinian Patagonia deposits have distinctly less radiogenic lead isotope compositions than similar deposits from Peru and Chile, except for the porphyry copper deposits of central and southern Peru. Galena from the Mina Angela deposit is characterized by very low radiogenic lead isotope compositions (18.000Precambrian basement. The geographic trend in lead isotope compositions of both galena and whole rocks indicates a crustal contribution which increases eastwards, also reflected in the strontium-neodymium isotope systematics of the host lavas. Finally, due to the lack of precise age determinations for the central Patagonian polymetallic deposits, a potential link with Andean porphyry copper systems remains an open question.

  4. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD

    Directory of Open Access Journals (Sweden)

    Denis V. Nazarov

    2015-12-01

    Full Text Available In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD, chemical etching and atomic layer deposition (ALD. For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD. Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material.

  5. Formation of silicon nanoislands on crystalline silicon substrates by thermal annealing of silicon rich oxide deposited by low pressure chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenrui [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico); Aceves-Mijares, Mariano [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico); Luna-Lopez, A [Department of Electronics, INAOE, Apartado 51, Puebla, Puebla 72000 (Mexico); Du Jinhui [College of Material Science and Chemistry Engineering, Tianjin Polytechnical University (China); Bian Dongcai [College of Material Science and Chemistry Engineering, Tianjin Polytechnical University (China)

    2006-10-14

    We report the preparation and characterization of Si nanoislands grown on a c-Si substrate by thermal annealing of silicon-rich oxide (SRO) films deposited using a conventional low pressure chemical vapour deposition (LPCVD) technique. Transmission electron microscopy revealed that a high density of Si nanoislands was formed on the surface of the c-Si substrate during thermal annealing. The nanoislands are nanocrystallites with the same crystal orientation as the substrate. The strain at the c-Si/SRO interface is probably the main reason for the nucleation of the self-assembled Si nanoislands that epitaxially grow on the c-Si substrate. The proposed method is very simple and compatible with Si integrated circuit technology.

  6. Characterization and Quantification of Deposit Build-up and Removal in Straw Suspension-Fired Boilers - Ph.d. thesis Muhammad Shafique Bashir

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad

    of the local parameters as fuel gas temperature, probe surface temperature and fuel changes. Simulation results showed that the model over predicts the DDF-rate quantitatively but the qualitative behavior was in accordance with the experimental findings. The model predictions regarding probe heat uptake were......An increased use of biomass in large suspension-red power plants can be a relatively economic and potentially also efficient way to utilize biomass for heat and power production. However, large deposit formation problems limit the electrical efficiency by limiting the maximum applicable superheater...... in different biomass suspension-red boilers by using advanced ash deposition probes. Two kinds of ash deposition probes have been used. A horizontal probe that has been developed further, which can register probe temperature, deposit mass uptake, heat uptake and video monitoring. First steps have also been...

  7. Agglomeration in Stripper Ash Coolers and Its Possible Remedial Solutions: a Case Study

    Science.gov (United States)

    Singh, Ravi Inder

    2016-04-01

    The bottom ash of circulating fluidized bed (CFB) boiler contains large amounts of physical heat. When low quality coals are used in these types of boilers, the ash content is normally more than 40 % and the physical heat loss is approximately 3 % if the bottom ash is discharged without cooling. Bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to facilitate the easily handling and transportation of ash. The CFB boiler at BLA Power, Newari, MP (India) is facing problems of clinker formation in strip ash coolers of plant since the installation of unit. These clinkers are basically agglomerates, which leads to defluidization of stripper ash cooler (BAC) units. There are two strip ash coolers in unit. Each strip ash cooler is capable of working independently. The proper functioning of both strip coolers is very important as it is going to increase the combustion efficiency of boiler by stripping of fine unburnt coal particles from ash, which are injected into the furnace. In this paper causes, characterization of agglomerates, thermo gravimetric analysis of fuel used, particular size distribution of coal and sand and possible remedial solution to overcome these agglomerates in strip ash coolers has also been presented. High temperature in compact separators, non uniform supply of coal and not removing small agglomerates from stripper ash cooler are among main causes of agglomeration in stripper ash cooler. Control of compact separator temperature, replacing 10-12 % of bed material and cleaning stripper ash cooler periodically will decrease agglomeration in stripper ash cooler of unit.

  8. National volcanic ash operations plan for aviation

    Science.gov (United States)

    ,; ,

    2007-01-01

    International Civil Aviation Organization’s (ICAO) International Airways Volcano Watch. This plan defines agency responsibilities, provides a comprehensive description of an interagency standard for volcanic ash products and their formats, describes the agency backup procedures for operational products, and outlines the actions to be taken by each agency following an occurrence of a volcanic eruption that subsequently affects and impacts aviation services. Since our most recent International Conference on Volcanic Ash and Aviation Safety, volcanic ash-related product and service activities have grown considerably along with partnerships and alliances throughout the aviation community. In January 2005, the National Oceanic and Atmospheric Administration’s National Centers for Environment Prediction began running the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model in place of the Volcanic Ash Forecast Transport and Dispersion (VAFTAD) model, upgrading support to the volcanic ash advisory community. Today, improvements to the HYSPLIT model are ongoing based on recommendations by the OFCM-sponsored Joint Action Group for the Selection and Evaluation of Atmospheric Transport and Diffusion Models and the Joint Action Group for Atmospheric Transport and Diffusion Modeling (Research and Development Plan). Two international workshops on volcanic ash have already taken place, noticeable improvements and innovations in education, training, and outreach have been made, and federal and public education and training programs on volcanic ash-related products, services, and procedures iv continue to evolve. For example, in partnership with Embry-Riddle Aeronautical University and other academic institutions, volcanic ash hazard and mitigation training has been incorporated into aviation meteorology courses. As an essential next step, our volcanic ash-related efforts in the near term will be centered on the development of an interagency implementation plan to

  9. Lung deposited surface area in Leicester urban background site/UK: Sources and contribution of new particle formation

    Science.gov (United States)

    Hama, Sarkawt M. L.; Ma, Nan; Cordell, Rebecca L.; Kos, Gerard P. A.; Wiedensohler, Alfred; Monks, Paul S.

    2017-02-01

    Lung Deposited Surface Area (LDSA) has been identified as a potential metric for the correlation of a physical aerosol particle properties with health outcomes. Currently, there is little urban LDSA data. As a case study, we investigated measurements of LDSA (alveolar) concentrations in a mid-size European city. LDSA and associated measurements were carried out over 1.5 years at an urban background site in Leicester, UK. Average LDSA concentrations in the cold (November-April) and warm (May-October) seasons of UK were 37 and 23 μm2 cm-3, respectively. LDSA correlates well (R2 = 0.65-0.7, r = 0.77-0.8) with traffic related pollutants, such as equivalent black carbon (eBC) and NOX. We also report for the first time in the UK the correlation between an empirically derived LDSA and eBC. Furthermore, the effect of wind speed and direction on the LDSA was explored. Higher LDSA concentrations are observed at low wind speeds (1-2 m s-1), owing to local traffic emissions. In addition, the diurnal variation of LDSA showed a second peak in the afternoon under warm and relatively clean atmospheric conditions, which can be attributed to photochemical new particle formation (NPF) and growth into the Aitken mode range. These NPF events increased the average background LDSA concentrations from 15.5 to 35.5 μm2 cm-3, although they might not be health-relevant. Overall, the results support the notion that local traffic emissions are a major contributor to observed LDSA concentrations with a clear seasonal pattern with higher values during winter.

  10. Progression in sulfur isotopic compositions from coal to fly ash: Examples from single-source combustion in Indiana

    Science.gov (United States)

    Yaofa, Jiang; Elswick, E.R.; Mastalerz, Maria

    2008-01-01

    Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur ( 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in ??34S for sulfur species within and between the low-sulfur and high-sulfur coal. The ??34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the ??34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the ??34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of ??34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in ??34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition. The ??34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7???) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2???). This indicates a fractionation of sulfur isotopes

  11. Lithofacies, age, depositional setting, and geochemistry of the Otuk Formation in the Red Dog District, northwestern Alaska

    Science.gov (United States)

    Dumoulin, Julie A.; Burruss, Robert A.; Blome, Charles D.

    2013-01-01

    Complete penetration of the Otuk Formation in a continuous drill core (diamond-drill hole, DDH 927) from the Red Dog District illuminates the facies, age, depositional environment, source rock potential, and isotope stratigraphy of this unit in northwestern Alaska. The section, in the Wolverine Creek plate of the Endicott Mountains Allochthon (EMA), is ~82 meters (m) thick and appears structurally uncomplicated. Bedding dips are generally low and thicknesses recorded are close to true thicknesses. Preliminary synthesis of sedimentologic, paleontologic, and isotopic data suggests that the Otuk succession in DDH 927 is a largely complete, albeit condensed, marine Triassic section in conformable contact with marine Permian and Jurassic strata. The Otuk Formation in DDH 927 gradationally overlies gray siliceous mudstone of the Siksikpuk Formation (Permian, based on regional correlations) and underlies black organic-rich mudstone of the Kingak(?) Shale (Jurassic?, based on regional correlations). The informal shale, chert, and limestone members of the Otuk are recognized in DDH 927, but the Jurassic Blankenship Member is absent. The lower (shale) member consists of 28 m of black to light gray, silty shale with as much as 6.9 weight percent total organic carbon (TOC). Thin limy layers near the base of this member contain bivalve fragments (Claraia sp.?) consistent with an Early Triassic (Griesbachian-early Smithian) age. Gray radiolarian chert dominates the middle member (25 m thick) and yields radiolarians of Middle Triassic (Anisian and Ladinian) and Late Triassic (Carnian-late middle Norian) ages. Black to light gray silty shale, like that in the lower member, forms interbeds that range from a few millimeters to 7 centimeters in thickness through much of the middle member. A distinctive, 2.4-m-thick interval of black shale and calcareous radiolarite ~17 m above the base of the member has as much as 9.8 weight percent TOC, and a 1.9-m-thick interval of limy to cherty

  12. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    Science.gov (United States)

    Groves, David I.; Goldfarb, Richard J.; Santosh, M.

    2016-01-01

    It is quite evident that it is not anomalous metal transport, nor unique depositional conditions, nor any single factor at the deposit scale, that dictates whether a mineral deposit becomes a giant or not. A hierarchical approach thus is required to progressively examine controlling parameters at successively decreasing scales in the total mineral system to understand the location of giant gold deposits in non-arc environments. For giant orogenic, intrusion-related gold systems (IRGS) and Carlin-type gold deposits and iron oxide-copper-gold (IOCG) deposits, there are common factors among all of these at the lithospheric to crustal scale. All are sited in giant gold provinces controlled by complex fundamental fault or shear zones that follow craton margins or, in the case of most Phanerozoic orogenic giants, define the primary suture zones between tectonic terranes. Giant provinces of IRGS, IOCG, and Carlin-type deposits require melting of metasomatized lithosphere beneath craton margins with ascent of hybrid lamprophyric to granitic magmas and associated heat flux to generate the giant province. The IRGS and IOCG deposits require direct exsolution of volatile-rich magmatic-hydrothermal fluids, whereas the association of such melts with Carlin-type ores is more indirect and enigmatic. Giant orogenic gold provinces show no direct relationship to such magmatism, forming from metamorphic fluids, but show an indirect relationship to lamprophyres that reflect the mantle connectivity of controlling first-order structures.

  13. MGT 330 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    alfoniz

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 330 Week 1 Individual Assignment Functions of Management Paper (Ash) MGT 330 Week 1 DQ 1 (Ash) MGT 330 Week 1 DQ 2 (Ash) MGT 330 Week 1 DQ 3 (Ash) MGT 330 Week 1 Summary (Ash) MGT 330 Week 2 Team Assignment External Internal Factors Paper (Ash) MGT 330 Week 2 Individual Assignment Delegation (Ash) MGT 330 Week 2 Summary (Ash) MGT 330 Week 2 DQ 1 (Ash) MGT 330 Week 2 DQ 2 (Ash) MGT 330 W...

  14. Design and capabilities of an experimental setup based on magnetron sputtering for formation and deposition of size-selected metal clusters on ultra-clean surfaces

    Science.gov (United States)

    Hartmann, H.; Popok, V. N.; Barke, I.; von Oeynhausen, V.; Meiwes-Broer, K.-H.

    2012-07-01

    The design and performance of an experimental setup utilizing a magnetron sputtering source for production of beams of ionized size-selected clusters for deposition in ultra-high vacuum is described. For the case of copper cluster formation the influence of different source parameters is studied and analyzed. Size-selected clusters are deposited on substrates and the efficiency of an electrostatic quadrupole mass selector is tested. Height analysis using atomic force microscopy (AFM) demonstrates relative standard size deviations of 7%-10% for the particles of various sizes between 6 nm and 19 nm. Combined analysis by AFM and transmission electron microscopy reveals that the clusters preserve almost spherical shape after the deposition on amorphous carbon substrates. Supported nanoparticles of a few nanometres in diameter have crystalline structure with a face-centered cubic (fcc) lattice.

  15. Electrochemical formation of Mg-Li-Y alloys by co-deposition of magnesium,lithium and yttrium ions in molten chlorides

    Institute of Scientific and Technical Information of China (English)

    XUE Yun; YAN Yongde; ZHANG Milin; HAN Wei; ZHANG Zhijian

    2012-01-01

    An electrochemical approach for the preparation of Mg-Li-Y alloys via co-reduction of Mg,Li,and Y on a molybdenum electrode in LiCl-KCl-MgCl2-YCl3 melts at 943 K was investigated.Cyclic voltammograms (CVs) illuminated that the underpotential deposition (UPD) of yttrium on pre-deposited magnesium led to the formation of a liquid Mg-Y alloy,and the succeeding underpotential deposition of lithium on pre-deposited Mg-Y led to the formation of a liquid Mg-Li-Y alloy.Chronopotentiometry measurements indicated that the order of electrode reactions was as follows:discharge of Mg(Ⅱ) to Mg-metal,electroreduction of Y on the surface of Mg with formation of ε-Mg24+xY5 and after that the discharge of Li+ with the deposition of Mg-Li-Y alloys.X-ray diffraction (XRD) indicated that Mg-Li-Y alloys with different phases were formed via galvanostatic electrolysis.The microstructure of different phases of Mg-Li-Y alloys was characterized by optical microscope (OM) and scanning electron microscopy (SEM).The analysis results of inductively coupled plasma atomic emission spectrometer (ICP-AES) showed that the chemical compositions of Mg-Li-Y alloys corresponded with the phase structures of the XRD patterns,and the lithium and yttrium contents of Mg-Li-Y alloys depended on the concentrations of MgCl2 and YCl3.

  16. Ca, Mg deposit under cathodic protection: action of natural sulpho-genic bacteria; Formation du depot calco-magnesien sous protection cathodique, action des bacteries sulfurogenes naturelles

    Energy Technology Data Exchange (ETDEWEB)

    Godart, C.; Dagbert, C.; Galland, J. [Ecole Centrale de Paris, Lab. Corrosion Fragilisation Hydrogene, 92 - Chatenay-Malabry (France)

    2002-07-01

    The application of the cathodic protection, as well as the formation of the Ca, Mg deposit that results, are currently very defined but solely in marine environment exempt of bacteria, the open ocean. The investigation in natural sea water, in presence of sulpho-genic bacteria, achieved on long terms (two months) are infrequent. The calcareous deposit evolution is mainly function of different parameters: the cathodic protective potential, the application time of this one, the yield Mg/ca of the middle, its microbial load and the organic matter presence dissolved. In artificial sea water, the deposit now presents some features known, so magnesium appears solely for very cathodic potentials, returning the pH favorable to its precipitation. As for the calcium, il can be formed down to weaker pH. However, for kinetics reasons, magnesium can appear earlier. In sea water to weak bacterial pollution, magnesium appears little for potentials cathodic since -800 mV/ECS. However, more the application time increases (until two months) more the quantity of calcium increases and cover magnesium. In sea water where the bacterial concentration (at least 10{sup 8} Bacteria reducing sulphate and thio-sulphate.ml{sup -1}) is important, the features of the deposit remain the same. Only the compactness and the density of the deposit are different: they increase in presence of bacteria. This survey shows that: the bacterial presence and more especially the bacteria sulfuro-genes, the chemical composition of the sea water and the concentration in dissolved oxygen, are factors influencing the formation and the evolution of the deposit calcareous more or less. (authors)

  17. Anodic dissolution of gold in a solution of 1,3-diaminopropane with the formation of a cathodic deposit and a colloidal solution of Au

    Science.gov (United States)

    Vedenyapina, M. D.; Ubushieva, G. Ts.; Kuznetsov, V. V.; Makhova, N. N.; Vedenyapin, A. A.

    2016-11-01

    The corrosion of a Au anode in a solution of 1,3-diaminopropane (DAP) is studied by means of gravimetry. It is found that the products of corrosion of Au electrode in galvanostatic conditions are reduced on a Pt cathode with the formation of either an electrolytic Au deposit or a colloidal solution of metallic Au, depending on the current strength. The kinetics of the dissolution of Au in the presence of DAP is investigated. The formation of a complex of Au with DAP is observed, and a structure for it is proposed.

  18. Formation of the physical vapor deposited CdS Cu In,Ga Se2 interface in highly efficient thin film solar cells

    OpenAIRE

    Rusu, M.; Glatzel, Th.; Neisser, A.; Kaufmann, C.A.; Sadewasser, S.; Lux Steiner, M. Ch.

    2006-01-01

    We report on the buffer absorber interface formation in highly efficient 14.5 , AM1.5 ZnO CdS Cu In,Ga Se2 solar cells with a physical vapor deposited CdS buffer. For Se decapped Cu In,Ga Se2 CIGSe absorbers we observe sulfur passivation of the CIGSe grain boundaries during CdS growth and at the interface a thermally stimulated formation of a region with a higher band gap than that of the absorber bulk, determining the height of the potential barrier at the CdS CIGSe interface. For air ex...

  19. An investigation of the hydrodynamic relationships in the gas formations of the upper and lower Pannon of the Aldye deposit. [Includes calculations of gas coming from different strata

    Energy Technology Data Exchange (ETDEWEB)

    Zoltan, B.; Istvan, P.; Laszlo, V.; Tibor, M.

    1985-01-01

    The problems in developing gas formations of complex structure which are bedded one under the other and are associated with a hydrodynamic link are analyzed. A great number of ratings of the material balance was conducted in order to refine the reserves of the deposits and to explain the hydrodynamic relationships of individual formations and their groups. A complex rating program is developed for a computer (EVM) which may be used to model the process of development of gas collectors of a complex system in a stratum and the operation of wells and oil field pipelines with consideration of assigned boundary (threshold) conditions.

  20. The classical and alternative pathways of complement activation play distinct roles in spontaneous C3 fragment deposition and membrane attack complex (MAC) formation on human B lymphocytes

    DEFF Research Database (Denmark)

    Leslie, Robert Graham Quinton; Nielsen, Claus Henrik

    2004-01-01

    The contributions of the classical (CP) and alternative (AP) pathways of complement activation to the spontaneous deposition of C3 fragments and the formation of membrane attack complexes (MAC) on human B lymphocytes, were assessed by incubating peripheral blood mononuclear cells with autologous ...... of MAC formation was also found to be highly pathway dependent, with the AP being about 15-fold more efficient at initiating this process than the CP. A model accounting for the effectiveness of the AP in both preserving C3 fragment integrity and initiating MAC is presented....

  1. Stratigraphic sections, depositional environments, and metal content of the upper part of the Middle Pennsylvanian Minturn Formation, Northern Sangre De Cristo Range, Custer and Saguache counties, Colorado

    Science.gov (United States)

    Clark, R.F.; Walz, D.M.

    1985-01-01

    The calcareous upper part of the 2,000-meter-thick Middle Pennsylvanian Minturn Formation (Lindsey and others, 1985) in the northern Sangre de Cristo Range is a key stratigraphic interval for correlating rocks and mapping the structure of the range. The stratigraphy of this complex and heretofore poorly known interval is reported here in order to provide a basis for correlation among the structural blocks in the range. Inferred depositional environments of the upper part of the Minturn Formation are described briefly.

  2. Paragenesis and chemistry of multistage tourmaline formation in the sullivan Pb-Zn-Ag deposit, British Columbia

    Science.gov (United States)

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1998-01-01

    /rock conditions, rather than control by the chemical composition of the original host sediments. Rare Fe-rich schorl within the bedded Pb-Zn-Ag ores is believed to have formed on the sea floor by reaction of an Fe-rich brine pool with detrital aluminous sediments. Postore emplacement of gabbro sills and local dikes in the footwall produced Fe-rich hydrothermal fluids, which were responsible for formation of minor Fe-rich dravite-schorl which overprinted earlier dravite. Postore, but synsedimentary, hydrothermal alteration involving entrained seawater was responsible for deposition of dravite and uvite in the hanging wall and for dravite in the brown tourmalinites of the shallow footwall. Mg-rich dravite-uvite associated with chlorite and in discordant rims on schorl in the bedded ores formed by sulfide-silicate reactions during greenschist facies regional metamorphism.

  3. The Origin of the Meridiani Sediments: the Key for Understanding the Formation of Sulfates and Layered Deposits on Mars

    Science.gov (United States)

    Niles, P.B.; Michalski, J.

    2009-01-01

    Following the discoveries made by the Opportunity rover at Meridiani Planum, members of the MER science team proposed that the Meridiani deposits are playa evaporites reworked by eolian processes. Alternate hypotheses have also been proposed to explain the deposits at Meridiani Planum, and these have highlighted serious problems with the provenance of the sedimentary material in the proposed playa hypothesis. These problems include: indications of cation-conservative weathering, the lack of a topographic basin, the intimate commingling of the most soluble and least soluble salts, and the overall scale of the deposit. These observations are important challenges to the playa scenario, and suggest that the sediment was derived from a different source.

  4. Characteristics of deltaic deposits in the Cretaceous Pierre Shale, Trinidad Sandstone, and Vermejo Formation, Raton Basin, Colorado.

    Science.gov (United States)

    Flores, R.M.; Tur, S.M.

    1982-01-01

    Detailed facies analyses of closely spaced measured surface sections in the Trinidad and adjacent areas of Colorado reflect deposition in the river-influenced delta. That this deltaic system was accompanied by abandonment of subdeltas is indicated by a destructional-deltaic facies of heavily bioturbated, carbonaceous sandstones, siltstones, and shales best recorded in the delta front deposits of the Trinidad Sandstone. Coal accumulation of the Vermejo deposits nevertheless remained primarily controlled by persistent organic sedimentation in interdistributary backswamps. These backswamps, which accumulated thick, lenticular coals, were formed during the normal constructional phase of the delta plain. -from Authors

  5. Phosphorus recovery from sewage sludge ash through an electrodialytic process

    DEFF Research Database (Denmark)

    Guedes, Paula; Couto, Nazare; Ottosen, Lisbeth M.

    2014-01-01

    The electrodialytic separation process (ED) was applied to sewage sludge ash (SSA) aiming at phosphorus (P) recovery. As the SSA may have high heavy metals contents, their removal was also assessed. Two SSA were sampled, one immediately after incineration (SA) and the other from an open deposit (SB...

  6. Gravity flow deposits of the Maceio Formation - Alagoas Basin, NE of Brazil; Depositos de fluxos gravitacionais da Formacao Maceio - Bacia de Alagoas, NE do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Arienti, Luci Maria [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Gerencia de Sedimentologia e Petrologia]. E-mail: arienti@petrobras.com.br

    2006-05-15

    This work deals with the Aptian rift section of Maceio Formation (Albian), Alagoas Basin, Northeast of Brazil, using data from outcrops and wells (Tabuleiro dos Martins Field). Studies of facies, process, depositional systems, facies tract and sequences were performed to characterize hyperpicnal turbidities; of which sediments were directly input by catastrophic river floods. Sequence stratigraphy concepts can be used for rift-section analysis, considering the concept of - climate systems tracts - and the result is an excellent correlation between deposit types and climate conditions. Transgressive system tracts (TTS) related to humid periods represent phases of high siliciclastic input into the basin, resulting on sandstone turbidity sequences, typically enriched by continental organic matter. In contrast, later high stand system tracts (LHST), corresponding to arid conditions, are dominated by muddy lacustrine deposits, enriched by algalic organic matter and showing mud cracks. Locally, low stand system tracts (LST) dominated by evaporites are found in restricted areas. Climate and tectonics were the main controlling factors of the architecture and frequency of the sequences. This study showed that an integrated approach, using outcrops and subsurface data, is a powerful tool to understand facies and depositional process, sequences and their stacking pattern on continental- rift deposits. (author)

  7. Thermal behaviour of ESP ash from municipal solid waste incinerators.

    Science.gov (United States)

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L

    2009-07-15

    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  8. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece); Georgiou, E.P.; Tsopani, A.; Piperi, L. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780 Athens (Greece)

    2011-03-15

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  9. Local natural electric fields - the electrochemical factor of formation of placers and the criterion of prospectings of oil and gas deposits on the Arctic shelf

    Science.gov (United States)

    Kholmiansky, Mikhail; Anokhin, Vladimir; Kholmianskaia, Galina

    2014-05-01

    On the basis litologo-facial, geo- and hydrochemical characteristics of a cross-section lito - and shelf hydrospheres, the estimation of structural features modern and paleostatic local electric fields and their influence on transportation of the suspended mineral material is made. The formula of dynamic carrying over of the ore material which is in a subcolloidal condition under the influence of natural electric field of a shelf is deduced. On a structure of a friable cover and its features on G.I. Teodorovicha's method position of oxidation-reduction border, sign Eh was reconstructed. On the basis of the established dependence between Eh and local substatic electric field of a shelf it was reconstructed paleostatic a field and its influence on the weighed mineral particles was estimated. Influence of local electric field on lithodynamic moving of ore minerals is estimated for a shelf of the Arctic seas of Russia. On the basis of this estimation and data on structure of a friable cover the map of influence of local electric field on sedimentation and transportation of ore minerals for water area of the East Arctic seas of Russia is constructed. For Laptev seas and East-Siberian the areas in which limits local electric field promoted are revealed and promotes formation Holocene placers of an ilmenite, a cassiterite and gold. For Chukchi and the Bering Seas such estimation is made for all friable cover. hydrocarbonic deposits located on water area of the Arctic shelf of the Russian Federation, initiate occurrence of jet auras of dispersion of heavy metals in ground deposits and in a layer of the sea water, blocking these deposits. Intensity of auras and their spatial position is caused by a geological structure of deposits of breeds containing them, lithodynamic and oceanologic factors. On the basis of the theoretical representations developed by M.A.Holmjansky and O.F.Putikova (Holmjansky, Putikov, 2000, 2006, 2008) application of electrochemical updating of

  10. Sedimentary environments and stratigraphy of the carbonate-silicilastic deposits of the Shirgesht Formation: implications for eustasy and local tectonism in the Kalmard Block, Central Iran

    Directory of Open Access Journals (Sweden)

    aram bayetgoll

    2015-10-01

    Full Text Available Introduction   Sedimentological and sequence stratigraphic analysis providing insight into the main relationships between sequence architecture and stacking pattern, syn/post-depositional tectonics, and eustatic sea-level fluctuations (Gawthorpe and Leeder 2000; Zecchin et al. 2003, 2004; Carpentier et al. 2007. Relative variations in sea level are due to tectonic activity and eustasy. The Shirgesht Formation in the Kalmard Block of Central Iran provides a useful case study for to determine the processes responsible on internal architecture and stacking pattern of depositional sequences in a half-graben basin. In the Shirgesht Formation, siliciclastic and carbonate successions of the Kalmard Basin, the cyclic stratigraphic record is the result of the complex interaction of regional uplift, eustasy, local tectonics, sediment supply, and sedimentary processes (Bayet-Goll 2009, 2014; Hosseini-Barzi and Bayet-Goll 2009.     Material & Methods   Lower Paleozoic successions in Tabas and Kalmard blocks from Central Iran share the faunal and floral characteristics with other Gondwana sectors such as south-western Europe and north Africa–Middle East (Ghaderi et al. 2009. The geology of these areas was outlined by Ruttner et al. (1968 and by Bruton et al. (2004. The Cambrian-Middle Triassic strata in the Kalmard Block were deposited in a shallow water platform that possesses lithologic dissimilarities with the Tabas area (Aghanabati 2004. The occurrence of two active faults indicates clearly that Kalmard basin formed a mobile zone throughout the Paleozoic so that lithostratigraphic units show considerably contrasting facies in comparison with Tabas basin (Hosseini-Barzi and Bayet-Goll 2009; Bayet-Goll 2014 . The Shirgesht Formation in the Block Kalmard is mainly composed of carbonate-siliciclastic successions that disconformability overlain Kalmard Formation (attributed to Pre-Cambrian and is underlain by Gachal (Carboniferous or Rahdar (Devonian

  11. The role of complement receptors type 1 (CR1, CD35) and 2 (CR2, CD21) in promoting C3 fragment deposition and membrane attack complex formation on normal peripheral human B cells

    DEFF Research Database (Denmark)

    Nielsen, Claus Henrik; Pedersen, Morten Løbner; Marquart, Hanne Vibeke

    2002-01-01

    Normal human B lymphocytes are known to activate the alternative pathway (AP) of complement, leading to C3-fragment deposition and membrane attack complex (MAC) formation. The process is mediated via complement receptor type 2 (CR2, CD21), with complement receptor type 1 (CR1, CD35) playing...... a subsidiary role. In this study, we examine the relative contributions of CR1 and CR2 to the deposition of C3 fragments and MAC on B lymphocytes under circumstances where all complement pathways are operational. C3-fragment deposition and MAC formation were assessed on human peripheral B lymphocytes......) bearing CR1, however, markedly reduced both C3-fragment deposition and MAC formation. Our data suggest that C3-fragment deposition and MAC formation on B lymphocytes in vivo may involve both AP and classical pathway activation, with CR1 contributing significantly to the latter. On the other hand...

  12. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany

    Science.gov (United States)

    Pfaff, Katharina; Hildebrandt, Ludwig H.; Leach, David L.; Jacob, Dorrit E.; Markl, Gregor

    2010-10-01

    The Mississippi Valley-type (MVT) Zn-Pb-Ag deposit in the Wiesloch area, Southwest Germany, is controlled by graben-related faults of the Upper Rhinegraben. Mineralization occurs as vein fillings and irregular replacement ore bodies consisting of sphalerite, banded sphalerite, galena, pyrite, sulfosalts (jordanite and geocronite), barite, and calcite in the Middle Triassic carbonate host rock. Combining paragenetic information, fluid inclusion investigations, stable isotope and mineral chemistry with thermodynamic modeling, we have derived a model for the formation of the Wiesloch deposit. This model involves fluid mixing between ascending hot brines (originating in the crystalline basement) with sedimentary formation waters. The ascending brines originally had a near-neutral pH (around 6) and intermediate oxidation state, reflecting equilibrium with granites and gneisses in the basement. During fluid ascent and cooling, the pH of the brine shifted towards more acidic (around 4) and the oxidation state increased to conditions above the hematite-magnetite buffer. These chemical characteristics contrast strongly with those of the pore and fracture fluid residing in the limestone aquifer, which had a pH between 8 and 9 in equilibrium with calcite and was rather reduced due to the presence of organic matter in the limestone. Mixing between these two fluids resulted in a strong decrease in the solubility of silver-bearing sphalerite and galena, and calcite. Besides Wiesloch, several Pb-Zn deposits are known along the Upper Rhinegraben, including hydrothermal vein-type deposits like Badenweiler and the Michael mine near Lahr. They all share the same fluid origin and formation process and only differ in details of their host rock and fluid cooling paths. The mechanism of fluid mixing also seems to be responsible for the formation of other MVT deposits in Europe (e.g., Réocin, Northern Spain; Trèves, Southern France; and Cracow-Silesia, Poland), which show notable

  13. Geochemical and Nd isotopic constraints on provenance and depositional setting of the Shihuiding Formation in the Shilu Fe-Co-Cu ore district, Hainan Province, South China

    Science.gov (United States)

    Yu, Liangliang; Zou, Shaohao; Cai, Jianxin; Xu, Deru; Zou, Fenghui; Wang, Zhilin; Wu, Chuanjun; Liu, Meng

    2016-04-01

    The Shihuiding Formation, a subordinate succession hosting the Fe-Co-Cu ores, is a suite of Neoproterozoic terrigenous clastic rocks occurring in the Shilu Fe-Co-Cu ore district of the Hainan Island, South China. Integrated petrographical, geochemical, and Nd isotopic analyses have been carried out on 23 sandstone specimens of the Shihuiding Formation in order to understand their provenance and the tectonic setting of their deposition. The samples can be divided into two groups, quartzose sandstones (13 samples) and ferruginous sandstones (10 samples). The ferruginous sandstones have average SiO2 and Fetotal contents of 77.23 wt.% and 18.09 wt.%, respectively, and this contrasts with the higher average SiO2 (94.04 wt.%) and lower Fetotal (2.67 wt.%) contents of the quartzose sandstones. The bivariant Th/Sc and Zr/Sc ratios indicate a predominantly recycled sedimentary provenance, and the low to medium degrees of weathering are commonly indicated by an average chemical index of maturity (CIM) of 81 and an average chemical index of alteration (CIA) of 68. The Shihuiding Formation sandstones have REE contents of 21-249 ppm, with LREE/HREE = 9.18 and δEu = 0.67. The εNd (970 Ma) values of -5.7 to -3.4, and model (TDM) ages of 2099-1773 Ma are compatible with a source mainly from the Paleo- to Mesoproterozoic Baoban Group, a suite of metamorphosed sedimentary rocks intruded by ca. 1450 Ma granites. Quantitative provenance modeling indicates that the Shihuiding Formation sandstones are best modeled with a mixture of 29% plagioclase-amphibole gneiss (29 P), 38% quartz-muscovite schist (38 Q), and 33% granite (33 G) detritus. Mixing the εNd values of the sandstones, calculated at 970 Ma, indicates that the sediment received 22-47% (average 34%) of its detritus from the Baoban Group quartz-muscovite schists. Components from hydrothermal fluids may also have been involved during deposition of the Shihuiding Formation sandstones, as revealed by a bivariant Al/(Al + Fe + Mn

  14. INVESTIGATION OF FOULING DEPOSIT FORMATION DURING PASTEURIZATION OF CHILI SAUCE BY USING LAB-SCALE CONCENTRIC TUBE-PASTEURIZER

    Directory of Open Access Journals (Sweden)

    NUR ATIKA ALI

    2014-06-01

    Full Text Available This paper investigates the characteristics of fouling deposits obtained from chilli sauce pasteurization. A lab-scale concentric tube-pasteurizer was used to pasteurize the chilli sauce at 0.712 kg/min and 90±5°C. It was operated for 3 hours. Temperature changes were recorded during pasteurization and the data was used to plot the heat transfer profile and the fouling resistance profile. The thickness of the fouling deposit was also measured and the image was taken for every hour. The fouling deposit was collected at every hour to test its stickiness, hardness and flow behaviour. Proximate analysis was also performed and it shows that the fouling deposit from the chilli sauce is categorized as carbohydrate-based fouling deposits. Activation energy of chilli sauce is 7049.4 J.mole-1 which shows a greater effect of temperature on the viscosity. The hardness, stickiness of fouling deposit and the heat resistance increases as the chilli sauce continuously flows inside the heat exchanger.

  15. Ash Management Review—Applications of Biomass Bottom Ash

    Directory of Open Access Journals (Sweden)

    Harpuneet S. Ghuman

    2012-10-01

    Full Text Available In industrialized countries, it is expected that the future generation of bioenergy will be from the direct combustion of residues and wastes obtained from biomass. Bioenergy production using woody biomass is a fast developing application since this fuel source is considered to be carbon neutral. The harnessing of bioenergy from these sources produces residue in the form of ash. As the demand for bioenergy production increases, ash and residue volumes will increase. Major challenges will arise relating to the efficient management of these byproducts. The primary concerns for ash are its storage, disposal, use and the presence of unburned carbon. The continual increase in ash volume will result in decreased ash storage facilities (in cases of limited room for landfill expansion, as well as increased handling, transporting and spreading costs. The utilization of ash has been the focus of many studies, hence this review investigates the likely environmental and technological challenges that increased ash generation may cause. The presence of alkali metals, alkaline earth metals, chlorine, sulphur and silicon influences the reactivity and leaching to the inorganic phases which may have significant impacts on soils and the recycling of soil nutrient. Discussed are some of the existing technologies for the processing of ash. Unburned carbon present in ash allows for the exploration of using ash as a fuel. The paper proposes sieve fractionation as a suitable method for the separation of unburnt carbon present in bottom ash obtained from a fixed-bed combustion system, followed by the application of the gasification technology to particle sizes of energy importance. It is hoped that this process will significantly reduce the volume of ash disposed at landfills.

  16. Spreading dynamic of viscous volcanic ash in stimulated jet engine conditions

    Science.gov (United States)

    song, wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado

    2016-04-01

    The ingestion of volcanic ash is widely recognised as a potentially fatal hazard for aircraft operation. The volcanic ash deposition process in a jet turbine is potentially complex. Volcanic ash in the air stream enters the inner liners of the combustors and partially or completely melts under the flames up to 2000 °C, at which point part of the ash deposits in the combustor fuel nozzle. Molten volcanic particles within high energy airflow escape the combustor to enter the turbine and impact the stationary (e.g., inlet nozzle guide vanes) and rotating airfoils (e.g., first stage high-pressure turbine blades) at high speed (up to Mach 1.25) in different directions, with the result that ash may stick, flow and remain liquid or solidify. Thus, the wetting behaviour of molten volcanic ash particle is fundamental to investigate impingement phenomena of ash droplet on the surface of real jet engine operation. The topic of wetting has received tremendous interest from both fundamental and applied points of view. However, due to the interdisciplinary gap between jet engine engineering and geology science, explicit investigation of wetting behaviour of volcanic ash at high temperature is in its infancy. We have taken a big step towards meeting this challenge. Here, we experimentally and theoretically investigate the wetting behaviour of viscous volcanic ash over a wide temperature range from 1100 to 1550 °C using an improved sessile-drop method. The results of our experiment demonstrate that temperature and viscosity play a critical role in determining the wetting possibility and governing the spreading kinetics of volcanic ash at high temperatures. Our systemic analysis of spreading of molten volcanic ash systems allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids at room temperature and molten volcanic ash droplets.

  17. Depositional Characteristics of Lake-Floor Fan of Cretaceous Lower Yaojia Formation in Western Part of Central Depression Region,Songliao Basin

    Institute of Scientific and Technical Information of China (English)

    Xin Renchen; Li Guifan; Feng Zhiqiang; Liang Jiangping; Lin Changsong

    2009-01-01

    Based on the integrated subsurface data,including those of over 600 m drilled cores,more than 30 drilled wells and 600 km2 three-dimensional (3D) seismic-reflection data of the study area, the characteristics of the lake-floor fan of lower Yaojia(姚家) Formation have been clarified.An evident lacustrine slope break and a steep slope belt developed in the west of Songliao(松辽)basin during depositional period of Qingshankou(青山口)-Yaojia formations(K2).The slope gradient was about 15 m/km.During the depositional period of lower Yaojia Formation,the lake shrank and the shore line of the western Songliao basin shifted to the lacustrine slope-break.The wedge-shaped sediment body,which is interpreted as the lowstand system tract of SQy1 (LSTy1),developed in the area below the slope-break.The LSTyl is pinched out in the west of the study area.As to the thickness of LSTyl,ft is thicker in the east with SO m in its thickness than in the west The LSTyl,rich in sandstone,can be divided into lower part LSTylL and upper part LSTy1u based on two onlap seismic reflection phases,and core and logging data clearly.The various sediments' gravity flow deposits developed and the complex of lake-floor fan formed in the LSTyl under the slope-break in the western part of the central depression region.The lake-floor fan consists of various sediments' gravity flow deposits,including: (1) turbidity deposits with characteristics of Bouma sequences; (2) sand-bearing muddy debrite dominated by mud and mixed by sand; (3) mud-bearing sandy debrites characterized by dominated sand and mixed by mud; (4) sandy debris laminar flow deposits with massive or inclined bedding,and (5) sandy slump deposits developed as deforma tional sedimentary structure.During the lower lake-level period (LSTy1L),the western clinoform region was erosion or sediment pass-by area; the terrigenous clastic was directly transported to deep-water area,converted to channelized sandy debris flow,and combined with slump

  18. MGT 401 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    kennith

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 401 Week 1 Individual Assignment Strategic Management Process Paper (Ash) MGT 401 Week 1 Class Activity Week 1 (Ash) MGT 401 Week 1 DQ 1 (Ash) MGT 401 Week 1 DQ 2 (Ash) MGT 401 Week 2 Learning Team Business Model Comparison Example (Ash) MGT 401 Week 2 DQ 1 (Ash) MGT 401 Week 2 DQ 2 (Ash) MGT 401 Week 2 Class Activity (Ash) MGT 401 Week 3 Individual Assignment Business Plan Evaluation (Ash) ...

  19. ZEOLITIZATION OF SEWAGE SLUDGE ASH WITH A FUSION METHOD

    Directory of Open Access Journals (Sweden)

    Jolanta Latosińska

    2016-11-01

    Full Text Available The study shows the results of zeolitization of municipal sewage sludge ash with the indirect fusion method followed by a hydrothermal method. The zeolitization of sewage sludge ash was conducted at the melting temperature of 550°C and the melting time of 60 minutes, crystallization temperatures of 60°C and 90°C, crystallization time of 6 hours and the SSA:NaOH ratio of 1:1.8; 1:1.4. The research of modified sewage sludge ashes included the observation of changes of ash particles surface and the identification of crystalized phases. The zeolitization of sewage sludge ash at the ratio of SSA:NaOH 1.0:1.4 did not cause the formation of zeolite phases. On the other hand, the zeolitization at the ratio of SSA:NaOH 1.0:1.8 resulted in the formation of desired zeolite phases such as zeolite Y (faujasite and hydroxysodalite. The presented method of sewage sludge ash zeolitization allows to obtain highly usable material. Synthesized zeolites may be used as adsorbents and ion exchangers. They can be potentially used to remove heavy metals as well as ammonia from water and wastewater.

  20. Environmental impacts of the Tennessee Valley Authority Kingston coal ash spill. 2. Effect of coal ash on methylmercury in historically contaminated river sediments.

    Science.gov (United States)

    Deonarine, Amrika; Bartov, Gideon; Johnson, Thomas M; Ruhl, Laura; Vengosh, Avner; Hsu-Kim, Heileen

    2013-02-19

    The Tennessee Valley Authority Kingston coal ash spill in December 2008 deposited approximately 4.1 million m(3) of fly ash and bottom ash into the Emory and Clinch River system (Harriman, Tennessee, U.S.A.). The objective of this study was to investigate the impact of the ash on surface water and sediment quality over an eighteen month period after the spill, with a specific focus on mercury and methylmercury in sediments. Our results indicated that surface water quality was not impaired with respect to total mercury concentrations. However, in the sediments of the Emory River near the coal ash spill, total mercury concentrations were 3- to 4-times greater than sediments several miles upstream of the ash spill. Similarly, methylmercury content in the Emory and Clinch River sediments near the ash spill were slightly elevated (up to a factor of 3) at certain locations compared to upstream sediments. Up to 2% of the total mercury in sediments containing coal ash was present as methylmercury. Mercury isotope composition and sediment geochemical data suggested that elevated methylmercury concentrations occurred in regions where native sediments were mixed with coal ash (e.g., less than 28% as coal ash in the Emory River). This coal ash may have provided substrates (such as sulfate) that stimulated biomethylation of mercury. The production of methylmercury in these areas is a concern because this neurotoxic organomercury compound can be highly bioaccumulative. Future risk assessments of coal ash spills should consider not only the leaching potential of mercury from the wastes but also the potential for methylmercury production in receiving waters.

  1. Understanding volcanism at the PETM: Abundant volcanic ash layers in the Central Tertiary Basin of Spitsbergen, Svalbard

    Science.gov (United States)

    Jones, Morgan; Eliassen, Gauti; Svensen, Henrik; Jochmann, Malte; Friis, Bjarki; Jerram, Dougal; Planke, Sverre

    2014-05-01

    During the early Tertiary, Svalbard developed a fold-thrust belt on its western margin with an associated foreland basin in the central-south of what is now Spitsbergen. This Central Tertiary Basin (CTB) is a syn-orogenic sedimentary basin in a strike-slip regime. The CTB contains the ~1900 m thick Van Mijenfjorden group, a dominantly sandstone-shale succession that was deposited in a North-South extending basin. Sediments in this group display evidence of major transgressive-regressive cycles related to local tectonics and eustatic sea level change. This basin is ideal for study as it has been extensively cored for coal prospecting, allowing a suite of sedimentary logs across the basin to be considered. Prominent marker beds in this sedimentary sequence are 1-30 cm thick bentonites, formed from the chemical weathering of volcanic tuff deposits. In this study, we focus on 8 sedimentary logs across the CTB, spanning the Palaeocene to lower Eocene in age. Bentonites are common in the Palaeocene cores (Basilika and Grumantbyen formations), while rarer but still occasionally present in the Eocene Frysjaodden formation. The cores had between 3-12 observable bentonite layers that showed large variations in preservation and subsequent reworking. Roots and other finer organic material were common, especially when the bentonites were found next to coal seams. Geochemical affinities between ash layers were investigated to identify basin-wide depositional events, with the aim of elucidating the provenance of these ashes. This sedimentary sequence is of broader interest as it covers the Palaeocene-Eocene thermal maximum (PETM), an extreme global warming event driven by large releases to the atmosphere of CO2 and/or CH4, evidenced by a negative carbon isotope excursion in both the ocean and atmosphere. Potential sources include volcanism and associated gas release from intruded sediments, CH4 hydrate dissociation, and/or the oxidation of organic matter. These formations are

  2. Ash in the Soil System

    Science.gov (United States)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  3. Formation and characterization of the MgO protecting layer deposited by plasma-enhanced metal-organic chemical-vapor deposition

    CERN Document Server