WorldWideScience

Sample records for ash flow temperature

  1. Manipulation of the ash flow temperature and viscosity of a carbonaceous Sasol waste stream

    Energy Technology Data Exchange (ETDEWEB)

    J.C. van Dyk; M.J. Keyser; F.B. Waanders; M. Conradie [Syngas and Coal Technologies, Sasolburg (South Africa). Sasol Technology, R& amp; D Division

    2010-01-15

    In 2001 Sasol investigated selected the Lurgi Multi Purpose Gasification (MPG) process for converting a Sasol-Lurgi MK III fixed bed dry bottom coal gasifier at the former Sasolburg coal-to-liquids plant to a slagging gasification process. The MPG process was considered anoption suitable for the gasification of feedstocks which are difficult to manage. The most obvious differences between the feedstocks previously gasified, compared to the Sasol dusty tar, were found to be the viscosity and melting point of the dusty tar. The viscosity of the Sasol dusty tar mixture was higher than a factor of 10 ofpreviously used feedstocks. Another important feedstock property is the ash melting point of the feed within the gasifier. Ash particles fed with the tar melt in the high temperature zone of the flame. Molten ash particles which hit the gasifier wall will solidify and stick to the wall if the wall temperature is below the melting point of the ash. The melting point of the dusty tar ash is 1380{sup o}C and a fluxing agent has to be added to reduce the melting temperature below 1250{sup o}C to limit excessive wear of the refractory lining. It was concluded that the viscosity of dusty tar can be decreased with the addition of specific waste solvent streams. The ash fusion temperatures of dusty tar can be lowered by adding a fluxing agent. The addition of spent Fe-catalyst as fluxing agent was found to be less effective than limestone. The addition of Fe can cause the acid/base ratio to change so that the ash fusion temperature increases. The results show in both oxidizing and reducing atmospheres the Fe-catalyst was transformed into the slag melt as either Fe{sub 2}O{sub 3} under oxidizing conditions and FeO under reducing conditions. The slag showed no sign of metallic Fe and was very homogeneous under oxidizing and reducing conditions. 17 refs., 7 figs., 8 tabs.

  2. The Influence Of Calcite On The Ash Flow Temperature For Semi-Anthracite Coal From Donbas District

    Directory of Open Access Journals (Sweden)

    Čarnogurská Mária

    2014-12-01

    Full Text Available This paper presents the results of research focused on the lowering of ash flow temperature at semianthracite coal from Donbas district by means of additive (calcite dosing. Ash fusion temperatures were set for two coal samples (A, B and for five various states (samples of ash without any additives, with 1%, with 3%, with 5% and with 7% of the additive in total. The macroscopicphotographic method was used for identifying all specific temperatures. Obtained outputs prove that A type coal has a lower value of sphere temperature than B type coal in the whole scope of percentage representation of the additive. The flow temperature dropped in total from 1489 °C to 1280 °C, i.e. by 14% during the test of coal of type A with 7% of the additive; while it was near 10% for coal of type B (from 1450 °C to 1308 °C. Numerical simulations of the process showed that it is not effective to add an additive with a grain size lower than 280 μm by means of wastevapour burners.

  3. High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho

    Science.gov (United States)

    Ekren, E.B.; McIntyre, David H.; Bennett, Earl H.

    1984-01-01

    Rhyolitic rocks were erupted from vents in and adjacent to the Owyhee Mountains and Owyhee Plateau of southwestern Idaho from 16 m.y. ago to about 10 m.y. ago. They were deposited on a highly irregular surface developed on a variety of basement rocks that include granitic rocks of Cretaceous age, quartz latite and rhyodacite tuffs and lava flows of Eocene age, andesitic and basaltic lava flows of Oligocene age, and latitic and basaltic lava flows of early Miocene age. The rhyolitic rocks are principally welded tuffs that, regardless of their source, have one feature in common-namely internal characteristics indicating en-masse, viscous lavalike flowage. The flowage features commonly include considerable thicknesses of flow breccia at the bases of various cooling units. On the basis of the tabular nature of the rhyolitic deposits, their broad areal extents, and the local preservation of pyroclastic textures at the bases, tops, and distal ends of some of the deposits, we have concluded that the rocks were emplaced as ash flows at extremely high temperatures and that they coalesced to liquids before final emplacement and cooling. Temperatures of l090?C and higher are indicated by iron-titanium oxide compositions. Rhyolites that are about 16 m.y. old are preserved mostly in the downdropped eastern and western flanks of the Silver City Range and they are inferred to have been erupted from the Silver City Range. They rarely contain more than about 2 percent phenocrysts that consist of quartz and subequal amounts of plagioclase and alkali feldspar; commonly, they contain biotite, and they are the only rhyolitic rocks in the area to do so. The several rhyolitic units that are 14 m.y. to about 10 m.y. old contain only pyroxene-principally ferriferous and intermediate pigeonites-as mafic constituents. The rhyolites of the Silver City Range comprise many cooling units, none of which can be traced for great distances. Rocks erupted from the Owyhee Plateau include two sequences

  4. ASH MELTING TEMPERATURE PREDICTION FROM CHEMICAL COMPOSITION OF BIOMASS ASH

    OpenAIRE

    Holubcik, Michal; Jandacka, Jozef; Malcho, Milan

    2015-01-01

    Solid fuels, including biomass, consist of combustible, ash and water. Ash in fuel is result of reaction of minerals presented in the biomass. Minerals and other different substances which form ash got into biomass during growth. Ash is solid residue resulted from the perfect laboratory combustion of fuel. It is composed of minerals that are present in the fuel. Some species of biomass ash have low ash melting temperature and can cause various problems in combustion boilers. Ash slags and sin...

  5. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Peter Y. [National Energy Technology Lab. (NETL), Albany, OR (United States); Kwong, Kyei-Sing [National Energy Technology Lab. (NETL), Albany, OR (United States); Bennett, James [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. Here, we measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. We made all measurements in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. Finally, an understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  6. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes*

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Peter

    2015-07-02

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. We measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. All measurements were made in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. An understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  7. Gasification of high ash, high ash fusion temperature bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  8. Behaviour of peat ash in high-temperature processes

    Energy Technology Data Exchange (ETDEWEB)

    Moilanen, A.

    1986-01-01

    The ash-forming constituents are in peat as minerals and bound in the organic framework. The kind of binding is dependent on peat type, plant species composition, acidity of the peatland, etc. Studies carried out with brown coal have indicated that the forms of ash occurrence in the fuel have an influence on the slagging ehaviour of ash in the process. The behaviour is also dependent on the reactor type and conditions in the reactor, for example, on the composition of gas atmosphere, on temperature, and gas flows. For example, the reducing conditions affect especially the occurrence of iron in different oxidation degrees in gasification, and this affects further the melting behaviour of ash. In brown coal gasification, as much as a third of the iron content was found to be reduced to metallic iron in the fluid-bed gasifier. To forecast the slagging behaviour of ash, the melting temperatures of ash are measured. Fouling or partial melting of ash cannot always be monitored with standard measuring methods, as these phenomena may start already at temperatures 200 deg C lower than the lowest melting temperature. THey can be studied for example with thermochemical methods.

  9. Aluminum recovery from coal fly ash by high temperature chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Wijatno, H.

    1977-10-01

    A study of aluminum recovery from power plant fly ash by high temperature chlorination was undertaken to demonstrate that fly ash could be a potential source of aluminum, iron and possibly silicon. Magnetic separation of the iron oxide served as a first step to alleviate the iron contamination problem. However, the agglomeration of some iron oxide with alumina and silica made it difficult to completely separate the iron from the fly ash. Further iron separation was achieved by chlorinating the nonmagnetic ash fraction at 550/sup 0/C for 30 minutes. This reduced the iron oxide content to less than 4 percent by weight. Chlorine flow rates affected the reaction rate much more drastically than temperatures. This suggested that diffusion was the major rate-controlling step. Besides Fe/sub 2/O/sub 3/, Al/sub 2/O/sub 3/ and SiO/sub 2/, other oxides such as CaO, K/sub 2/O, Na/sub 2/O and MgO might have complicated the alumina recovery by forming individual chlorides or complexes. Investigating methods for separating more Fe/sub 2/O/sub 3/, and possibly CaO, K/sub 2/O, Na/sub 2/O and MgO from the nonmagnetic ash fraction before chlorinating it is highly recommended.

  10. Effect of refractory agent on ash fusibility temperatures of briquette

    Institute of Scientific and Technical Information of China (English)

    Guo-xing CUI; Kui HUANG; Ming-sui LIN

    2013-01-01

    To solve the problem of the low ash fusion point of briquette,this paper reported that the ash fusibility temperatures can be elevated by changing ash ingredients through blending refractory agents in briquette ash,which will create favorable conditions for moving bed continuous gasification of briquette with oxygen-rich air.The effects of Al2O3,SiO2,kaolin,dry powder and bentonite on ash fusibility temperatures were studied,based upon the relationship between briquette ash components and ash fusibility.The results show that the increasing of ash fusibility temperatures by adding the same amount (11%,w)of refractory agents follows the sequence of SiO2,bentonite,dry powder,kaolin,Al2O3,with the softening temperatures beingelevated by 37.2,57.6,60.4,82.6 and 104.4 ℃.With the same ratio of SiO2/Al2O3 in briquette,adding the Al2O3 component is more effective than SiO2 for raising ash fusibility temperatures.In this paper,inexpensive kaolin and bentonite rich in Al2O3 are found to be better refractory agents,and the suitable adding quantities are 9% and 11%,respectively.

  11. Pyritic ash-flow tuff, Yucca Mountain, Nevada -- A discussion

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, S.I.; Larson, L.T.; Noble, D.C. [Univ. of Nevada, Reno, NV (United States)

    1994-12-31

    Textural and mineralogic evidence exists for at least one episode of widespread hydrothermal alteration of volcanic rocks deep in Yucca Mountain, Nevada. Despite this evidence, Castor et al. infer that most of the pyrite found in tuffs at Yucca Mountain was introduced as ejecta (lithic fragments) incorporated during the eruptions of the tuffs, rather than by in-situ hydrothermal activity. Their conclusions appear to be based on their observation that most of the pyrite resides in unaltered to variably altered and veined lithic fragments, whereas pyrite-bearing veins are absent in the tuff matrix, titanomagnetite and mafic phenocrysts in the matrix are generally not replaced by pyrite, and feldspar phenocrysts in the pyritic tuff matrix are generally unaltered. Castor et al. dismiss the much smaller quantities of pyrite disseminated in the tuff matrix, including relatively rare pyritized hornblende and biotite grains, as xenolithic as well. The pyritic tuffs belong to large-volume, subalkaline rhyolite ash-flow units (ca. > 150 to 250 km{sup 3} each). The interpretation of Castor et al. has broad implications for the temperature, fO{sub 2} and fS{sub 2} of major ash flow eruptions. Pyrite origin also bears on the nature of past fluid flow and water-rock reactions at Yucca Mountain, which in turn are important factors in assessing the potential for currently undiscovered mineral resources in the area of the proposed nuclear waste repository. We have studied core and cuttings from the same drill holes studied by Castor et al., as well as other drill holes. It is our contention that the inconsistent lateral and stratigraphic distribution of the pyrite, textural features of the pyrite, and phase stability considerations are incompatible with the {open_quotes}lithic{close_quotes} origin of Castor et al., and are more reasonably explained by in-situ formation from hydrothermal fluids containing low, but geochemically significant, concentrations of reduced sulfur.

  12. Magnetic mineralogy of ash flow tuffs: Teasing out effects of emplacement and post-emplacement conditions

    Science.gov (United States)

    Bowles, J. A.; Jackson, M. J.; Gee, J. S.; Bowar, J.; Till, J. L.; Yu, Y.; Vavrek, J. K.; Steindorf, J.

    2010-12-01

    Ash flow tuffs (ignimbrites) typically yield high-quality paleomagnetic data for tectonic studies, and the fine-grained magnetite often hosted in the glassy matrix makes them attractive candidates for paleointensity studies. However, the timing and nature of remanence acquisition in ignimbrites are not sufficiently understood to allow confident interpretation of paleointensity data from ash flows. The glass-hosted magnetite likely crystallizes during cooling, and additional contributions to the remanence may come from coarser, pre-existing phenocrysts and/or lithic fragments. Furthermore, emplacement conditions and post-emplacement processes vary considerably between and within tuffs and may potentially affect the ability to recover ancient field intensity information. To better understand the nature of the magnetic recording assemblage and the effects of emplacement temperature, degree of welding, and hydrothermal alteration, we have collected samples from four different ash flow tuffs. Two well-documented historical ignimbrites - the 1980 ash flows at Mt. St. Helens, Washington, and the 1912 flows from Mt. Katmai in the Valley of Ten Thousand Smokes, Alaska - are complemented by the more extensive and more densely welded 0.76 Ma Bishop Tuff and the 12.4 Ma Tiva Canyon Tuff. Magnetic mineralogy is constrained by frequency-dependent susceptibility; magnetic hysteresis and first-order reversal curve data; analysis of remanence acquisition and demagnetization; high-temperature (300K - 970K) thermomagnetic data; and low-temperature (10K - 300K) remanence data.

  13. Pena Blanca uranium deposits and ash-flow tuffs relationship

    International Nuclear Information System (INIS)

    The Pena Blanca uranium deposits (Chihuahua, Mexico) are associated with a Tertiary sequence of ash-flow tuffs. Stratigraphic control is dominant and uranium mineralization occurs in stratiform and fracture-controlled deposits within 44 My-old units: Nopal Rhyolite and Escuadra Rhyolite. These units consist of highly vapor-phase crystallized ash-flow tuffs. They contain sanidine, quartz and granophyric phenocrysts, and minor ferromagnesian silicates. Nopal and Escuadra units are high-silica alkali-rich rhyolites that have a primary potassic character. The trace-element chemistry shows high concentrations in U-Th-Rb-Cs and low contents in Ba-Sr-Eu. These chemical properties imply a genetic relationship between deposits and host-units. The petrochemical study show that the Nopal Rhyolite and Escuadra Rhyolite are the source of U and of hydrothermal solutions

  14. In Situ Elevated Temperature Testing of Fly Ash Based Geopolymer Composites

    Directory of Open Access Journals (Sweden)

    Les Vickers

    2016-06-01

    Full Text Available In situ elevated temperature investigations using fly ash based geopolymers filled with alumina aggregate were undertaken. Compressive strength and short term creep tests were carried out to determine the onset temperature of viscous flow. Fire testing using the standard cellulose curve was performed. Applying a load to the specimen as the temperature increased reduced the temperature at which viscous flow occurred (compared to test methods with no applied stress. Compressive strength increased at the elevated temperature and is attributed to viscous flow and sintering forming a more compact microstructure. The addition of alumina aggregate and reduction of water content reduced the thermal conductivity. This led to the earlier onset and shorter dehydration plateau duration times. However, crack formation was reduced and is attributed to smaller thermal gradients across the fire test specimen.

  15. A high temperature granulation process for ecological ash recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Sundqvist, Thomas

    1999-07-01

    This thesis is a summary of three papers dealing with new technologies for facilitating ecological biomass ash recirculation back to forest and farm lands. The present outtake of biomass for paper and energy production may be incompatible with a sustainable forestry. The cycle of nutrients contained in the biomass extracted must be closed by ash recirculation in an environmental compatible way. This implies stabilization of the loose ashes/rest-products to a product with low heavy metal contents, controlled leaching properties and a high spreadability. In the present work, two different techniques were evaluated for the possibilities to separate heavy metals from the nutrient elements by utilizing high process temperatures to vaporize the unwanted metals from the condensed bulk materials. The results indicated that direct in-situ separation in fluidized bed combustion systems is possible, but requires too high process temperatures to be practically attractive. On the other hand, the new proposed high temperature treatment method for granulated raw materials was found to significantly separate As, Cd and Pb, with separation efficiencies exceeding 90 % at optimal operating conditions. In addition, the results indicated that the treatment method could be used to significantly delay and control the leaching characteristics, as well as the content of products of incomplete combustion of the produced granules.

  16. Pyritic ash-flow tuff, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    The Yucca Mountain site is underlain by a 1,500-m-thick Miocene volcanic sequence that comprises part of the southwestern Nevada volcanic field. Rocks of this sequence, which consists mainly of ash-flow tuff sheets with minor flows and bedded tuff, host precious metal mineralization in several areas as near as 10 km from the site. In two such areas, the Bullfrog and Bare Mountain mining districts, production and reserves total over 60 t gold and 150 t silver. Evidence of similar precious metal mineralization at the Yucca Mountain site may lead to mining or exploratory drilling in the future, compromising the security of the repository. The authors believe that most of the pyrite encountered by drilling at Yucca Mountain was introduced as pyroclastic ejecta, rather than by in situ hydrothermal activity. Pyritic ejecta in ash-flow tuff are not reported in the literature, but there is no reason to believe that the Yucca Mountain occurrence is unique. The pyritic ejecta are considered by us to be part of a preexisting hydrothermal system that was partially or wholly destroyed during eruption of the tuff units. Because it was introduced as ejecta in tuff units that occur at depths of about 1,000 m, such pyrite does not constitute evidence of shallow mineralization at the proposed repository site; however, the pyrite may be evidence for mineralization deep beneath Yucca Mountain or as much as tens of kilometers from it

  17. THE INFLUENCE OF TEMPERATURE AND ADMIX- TURES ON ACTIVATION OF LOW CALCIUM FLY ASH

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    According to composition and structure properties of low calcium fly ash, the activation and reaction degree of fly ash-lime and fly ash-lime-gypsum system were studied in different alkali surroundings and temperatures by thermal-gravity analysis.The degree of reaction and pore structure analysis test results show that composite alkali play an important role in the activation and degree of reaction of fly ash at room temperature. But when increasing curing temperature, gypsum would play an important role in activation and hydration of fly ash.

  18. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daniel L.Y. Kong; Jay G. Sanjayan; Kwesi Sagoe-Crentsil [Monash University, Clayton, Vic. (Australia). Department of Civil Engineering

    2007-12-15

    This paper presents the results of a study on the effect of elevated temperatures on geopolymers manufactured using metakaolin and fly ash of various mixture proportions. Both types of geopolymers (metakaolin and fly ash) were synthesized with sodium silicate and potassium hydroxide solutions. The strength of the fly ash-based geopolymer increased after exposure to elevated temperatures (800{sup o}C). However, the strength of the corresponding metakaolin-based geopolymer decreased after similar exposure. Both types of geopolymers were subjected to thermogravimetric, scanning electron microscopy and mercury intrusion porosimetry tests. The paper concludes that the fly ash-based geopolymers have large numbers of small pores which facilitate the escape of moisture when heated, thus causing minimal damage to the geopolymer matrix. On the other hand, metakaolin geopolymers do not possess such pore distribution structures. The strength increase in fly ash geopolymers is also partly attributed to the sintering reactions of un-reacted fly ash particles.

  19. Sequential electrodialytic recovery of phosphorus from low-temperature gasification ashes of chemically precipitated sewage sludge

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Erland Jensen, Pernille; Ottosen, Lisbeth M.;

    2016-01-01

    Phosphorus recycling from secondary materials like sewage sludge ashes offers an interesting alternative to imported mineral phosphates. However, a separation of P from the bulk ash is normally required, due to its low plant availability and the presence of heavy metals. More than 80% of P...... was recovered from incineration sewage sludge ashes in the past using a two-compartment electrodialytic cell. In contrast, the recovery was below 30% for ashes from low-temperature gasification using the same setup, due to the high presence of Al- and Fe(III)-P bindings. In the present study, an electrodialytic...... process combining sequentially a pair of two-compartment cells allowed a recovery of up to 70% of phosphorus from these ashes. The use of a second cell, where the ashes were treated in an alkaline pH, allowed the P solubilisation from aluminium and ferric phosphates and its separation from most metals...

  20. Activation of fly ashes by the high temperature and high alkalinity in ASR tests

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    High temperature and high alkalinity are typical testing conditions to accelerate the appraisal process of the suppressing effect of fly ashes on alkali silica reaction(ASR),but the reaction mechanism of fly ashes would be quite different under such conditions compared to the normal condition of temperature and alkalinity.To make a reasonable analysis of the suppressing effect of fly ashes,13 types of fly ashes were tested in this paper by both the accelerated mortar bar test method and the 60°C accelerated concrete prism test method.The results showed that the effect of fly ashes would be magnified under the condition of high temperature and high alkalinity.The XRD analysis showed that all the phases of fly ash could react with the hot alkaline solution except for mullite and a small amount of quartz.Fly ash could be significantly activated by the 80°C 1 mol/L NaOH solution,and form mainly C-S-H phase and P type zeolite,but its effect on inhibiting ASR was exaggerated then.According to the mortar strength test and the ASR suppressing test results,C-S-H phase contributed to mortar strength,but its amount did not decide the ASR suppressing effect of fly ash.

  1. Synthesis and sintering of high-temperature composites based on mechanically activated fly ash

    Directory of Open Access Journals (Sweden)

    Terzić A.

    2012-01-01

    Full Text Available Amount of fly ash which is and yet to be generated in the coming years highlights the necessity of developing new methods of the recycling where this waste can be reused in significant quantity. A new possibility for fly ash utilization is in high-temperature application (thermal insulators or/and refractory material products. As such, fly ash has to adequately answer the mechanical and thermal stability criteria. One of the ways of achieving it is by applying mechanical activation procedure on fly ash. In present study, fly ashes from two different power plants were mechanically activated in a planetary ball mill. Mechanically treated fly ashes were cemented with two different binders: standard Portland cement and high-aluminates cement. Physico-chemical analysis and investigation of mineralogical components of composites are emphasized, due to the changes occurred in fly ash during mechanical activation and sintering of composites. Macro-performance of the composites was correlated to the microstructure of fly ash studied by means of XRD and SEM analysis. Thermal stability of crystalline phases was investigated with DTA. Highlight was placed on determination of relationship between mechanically activated fly ash and obtained composites microstructure on one side and behavior of sintered composites on the other side. [Projekat Ministarstva nauke Republike Srbije, br. 172057, 45008 and a project F-198, financed by Serbian Academy of Sciences and Arts

  2. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    International Nuclear Information System (INIS)

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H

  3. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network

    International Nuclear Information System (INIS)

    Coal ash fusion temperature is important to boiler designers and operators of power plants. Fusion temperature is determined by the chemical composition of coal ash, however, their relationships are not precisely known. A novel neural network, ACO-BP neural network, is used to model coal ash fusion temperature based on its chemical composition. Ant colony optimization (ACO) is an ecological system algorithm, which draws its inspiration from the foraging behavior of real ants. A three-layer network is designed with 10 hidden nodes. The oxide contents consist of the inputs of the network and the fusion temperature is the output. Data on 80 typical Chinese coal ash samples were used for training and testing. Results show that ACO-BP neural network can obtain better performance compared with empirical formulas and BP neural network. The well-trained neural network can be used as a useful tool to predict coal ash fusion temperature according to the oxide contents of the coal ash

  4. Study of thermal-flow processes in ash cooler cooperating with CFB boiler

    Directory of Open Access Journals (Sweden)

    Paweł Regucki

    2016-03-01

    Full Text Available The article presents an example of thermal-flow analysis of the bottom ash cooler cooperating with the circulating fluidized bed boiler. There is presented a mathematical model of series-parallel hydraulic system supplying the ash cooler in cooling water. The numerical calculations indicate an influence of changes of the pipeline geometrical parameters on the cooling water flow rate in the system. Paper discusses the methodology of the studies and presents examples of the results of thermal balance calculations based on the results of measurements. The numerical results of the thermal-flow analysis in comparison with the measurements on the object indicate that the presented approach could be used as a diagnostic tool investigating the technical state of the bottom ash cooler.

  5. Chemical composition of overland flow produced on soils covered with vegetative ash

    Directory of Open Access Journals (Sweden)

    M.B. Bodí

    2013-05-01

    Full Text Available The objective of this study was to ascertain the differences between the soluble elements of ash obtained under laboratory conditions and the dissolved in overland flow from soils covered with a layer of ash. The overland flow was obtained during series of rainfall simulations over soils covered with two different types of ash. This study indicates that the soluble elements released from ash can modify water quality increasing its pH, electrical conductivity and especially cation content. The nutrients solubilised are not necessarily the same as the elemental composition of ash itself. Runoff composition depends on the volume of water produced, on the solubility of the ash components and on the chemical interactions with water from rainfall and soil. After the first intense rain event, most of the elements are solubilised and lixiviated or washed out, however, some of them may increase in the runoff or soil water some weeks later due to chemical interactions with water from rainfall and soil nutrients.

  6. Multivariable Regression and Adaptive Neurofuzzy Inference System Predictions of Ash Fusion Temperatures Using Ash Chemical Composition of US Coals

    Directory of Open Access Journals (Sweden)

    Shahab Karimi

    2014-01-01

    Full Text Available In this study, the effects of ratios of dolomite, base/acid, silica, SiO2/Al2O3, and Fe2O3/CaO, base and acid oxides, and 11 oxides (SiO2, Al2O3, CaO, MgO, MnO, Na2O, K2O, Fe2O3, TiO2, P2O5, and SO3 on ash fusion temperatures for 1040 US coal samples from 12 states were evaluated using regression and adaptive neurofuzzy inference system (ANFIS methods. Different combinations of independent variables were examined to predict ash fusion temperatures in the multivariable procedure. The combination of the “11 oxides + (Base/Acid + Silica ratio” was the best predictor. Correlation coefficients (R2 of 0.891, 0.917, and 0.94 were achieved using nonlinear equations for the prediction of initial deformation temperature (IDT, softening temperature (ST, and fluid temperature (FT, respectively. The mentioned “best predictor” was used as input to the ANFIS system as well, and the correlation coefficients (R2 of the prediction were enhanced to 0.97, 0.98, and 0.99 for IDT, ST, and FT, respectively. The prediction precision that was achieved in this work exceeded that reported in previously published works.

  7. Behavior of Alkali Metals and Ash in a Low-Temperature Circulating Fluidized Bed (LTCFB) Gasifier

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk;

    2016-01-01

    , the low reactor temperature ensures that high-alkali biomass fuels canbe used without risk of bed defluidization. This paper presents the first investigation of the fate of alkali metals and ash in lowtemperaturegasifiers. Measurements on bed material and product gas dust samples were made on a 100 k......A low-temperature circulating fluidized bed system (LTCFB) gasifier allows for pyrolysis and gasification to occurat low temperatures, thereby improving the retention of alkali and other inorganic elements within the system and minimizingthe amount of ash species in the product gas. In addition...

  8. Comenditic and pantelleritic ash-flow tuffs from Volcan Las Navajas, Nayarit, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.A.; Hebre, J.A.

    1985-01-01

    Two distinctive ash-flow tuffs occur around the base of Volcan Las Navajas, a Pleistocene trachyte - peralkaline rhyolite center located in the northwestern segment of the Mexican Volcanic belt. The lower ash-flow unit is locally up to 65 m thick, is lithic rich and contains pumice blocks of comenditic rhyolite. The unit is not extensively exposed, and thus its areal extent and volume cannot be determined. Its chemical characteristics and stratigraphic relationship to other products erupted from Las Navajas suggest that it is related to the formation of the older of the two calderas which occur on Las Navajas. Unconformably overlying this unwelded ash-flow is a pantelleritic airfall pumice unit which is locally welded. This airfall unit is conformably overlain by a welded as-flow tuff that contains fiamme of pantelleritic composition (72 %SiO/sub 2/, 8% FeO*, 900 ppm Zr, agpaitic index of 1.7) as well as pumice blocks that show evidence of various degrees of mixing between pantellerite and trachyte. This suggests eruption from a chemically zoned magma chamber. This unit is locally up to 20 m thick, although its top has been removed by erosion. It is found on all sides of Las Navajas except on the south where it may be covered by Volcan Sanganguey, a Pleistocene to Recent calc-alkaline volcano. The welded ash-flow has been dated by K - Ar at 0.2+/-0.1 m.y. Stratigraphically and chemically this ash-flow appears to be related to the formation of younger of the two calderas.

  9. The desulfurization behavior of mineral matter in ash during coal combustion at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tian-hua; Li, Run-dong; Li, Yan-ji; Zhou, Jun-huz; Cen, Ke-fa [Shenyang Institute of Aeronautical Engineering, Shenyang (China)

    2007-02-15

    In allusion to the desulfurization characteristic of coal ash, the desulfurization of the ash and CaO, Al{sub 2}O{sub 3} added to Changguang coal with different proportions at high temperature was studied. Sulphoaluminate as the main desulfurization product was analyzed by X-ray diffraction and SEM visualization. Experimental results indicate that higher proportion of ash added can improve the desulfurization efficiency. The sulphoaluminate content in residue increases with increasing the addition of ash. The desulfurization efficiency of the additive CaO and Al{sub 2}O{sub 3} is up to 24% at 1300{sup o}C, at the same time the sulphoaluminate is detected in the residue. 6 refs., 10 figs., 2 tabs.

  10. Fly ash porous material using geopolymerization process for high temperature exposure.

    Science.gov (United States)

    Abdullah, Mohd Mustafa Al Bakri; Jamaludin, Liyana; Hussin, Kamarudin; Bnhussain, Mohamed; Ghazali, Che Mohd Ruzaidi; Ahmad, Mohd Izzat

    2012-01-01

    This paper presents the results of a study on the effect of temperature on geopolymers manufactured using pozzolanic materials (fly ash). In this paper, we report on our investigation of the performance of porous geopolymers made with fly ash after exposure to temperatures from 600 °C up to 1000 °C. The research methodology consisted of pozzolanic materials (fly ash) synthesized with a mixture of sodium hydroxide and sodium silicate solution as an alkaline activator. Foaming agent solution was added to geopolymer paste. The geopolymer paste samples were cured at 60 °C for one day and the geopolymers samples were sintered from 600 °C to 1000 °C to evaluate strength loss due to thermal damage. We also studied their phase formation and microstructure. The heated geopolymers samples were tested by compressive strength after three days. The results showed that the porous geopolymers exhibited strength increases after temperature exposure.

  11. Tensile strength of ash cake beds at high-temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.A.; Hurley, J.P.

    1996-12-31

    The Energy and Environmental Research Center (EERC) is working with Electric Power Research Institute (EPRI) and a consortium of companies in partnership with the US Department of Energy (DOE) to perform the research necessary to determine the factors that cause hot-gas cleanup filters to be blinded by ash or to develop deposits that can bridge the filters and cause them to fail. The primary deliverable will be a graphics-driven computer model that can be used as an engineering tool to help predict ash-related hot-gas filter problems based on analyses of coal and sorbent, as well as system operating parameters. This paper presents preliminary testing data on determining the tensile strengths of coal ash particles at elevated temperatures and simulated combustor gas conditions. The range in temperatures for tensile testing is ambient to 900 C. The simulated gas atmosphere includes carbon dioxide, water vapor, oxygen, sulfur dioxide, sodium chloride, hydrochloric acid, and nitrogen. At present, all testing has been performed using ash from the Westinghouse advanced particle filter (APF) at the American Electric Power Service Corporation (AEP) Tidd pressurized fluidized-bed combustor (PFBC) demonstration plant in Ohio. Other sources of filter ashes, including several from non-American PFBC systems, will also be evaluated.

  12. Electrodialytic extraction of phosphorus from ash of low-temperature gasification of sewage sludge

    DEFF Research Database (Denmark)

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M.;

    2015-01-01

    Low-temperature gasification allows the production of energy from biomass with high contents of low melting point compounds, like sewage sludge, and the recycling of the nutrients as P from the resulting ashes as renewable fertiliser. Major drawbacks are, however, the presence of heavy metals and...

  13. Thermal Barrier Coatings Chemically and Mechanically Resistant to High Temperature Attack by Molten Ashes

    Science.gov (United States)

    Gledhill, Andrew

    Thermal barrier coatings (TBCs) are ceramic coatings used on component in the hottest sections of gas turbine engines, used for power generation and aviation. These coatings insulate the underlying metal components and allow for much higher engine operating temperatures, improving the engine efficiency. These increase temperatures engender a new set of materials problems for TBCs. Operating temperatures in engines are now high enough for silicate impurities, either present in the fuel or ingested into the engines, to melt and adhere to the surface of the TBCs. The effects of four such impurities, two coal fly ashes, a petroleum coke-fly ash blend, and volcanic ash from the Eyjafjallajokull volcano were tested with conventional yttria-stabilized zirconia (YSZ) coatings, and found to penetrate through the entire thickness of the coating. This penetration reduces the strain tolerance of the coatings, and can result in premature failure. Testing on a newly built thermal gradient burner rig with simultaneous injection of ash impurities has shown a reduction of life up to 99.6% in these coatings when ash is present. Coatings of an alternative ceramic, gadolinium zirconate (Gd2Zr 2O7), were found to form a dense reaction layer with each of these impurities, preventing further penetration of the molten ash. This dense layer also reduces the strain tolerance, but these coatings were found to have a significantly higher life than the YSZ coatings. Testing with a small amount of ash baked onto the samples showed thirteen times the life of YSZ coatings. When the ash is continuously sprayed onto the hot sample, the life of the Gd2Zr2O7 coatings was nearly twice that of the YSZ. Finally, a delamination model was employed to explain the degradation of both types of coatings. This elastic model that takes into account the degree of penetration, differential cooling in thermal gradient testing, and thermal expansion mismatch with the underlying substrate, predicted the failure of

  14. Ultrasonic detection of solid phase mass flow ratio of pneumatic conveying fly ash

    Science.gov (United States)

    Duan, Guang Bin; Pan, Hong Li; Wang, Yong; Liu, Zong Ming

    2014-04-01

    In this paper, ultrasonic attenuation detection and weight balance are adopted to evaluate the solid mass ratio in this paper. Fly ash is transported on the up extraction fluidization pneumatic conveying workbench. In the ultrasonic test. McClements model and Bouguer-Lambert-Beer law model were applied to formulate the ultrasonic attenuation properties of gas-solid flow, which can give the solid mass ratio. While in the method of weigh balance, the averaged mass addition per second can reveal the solids mass flow ratio. By contrast these two solid phase mass ratio detection methods, we can know, the relative error is less.

  15. Effect of incineration temperature on phosphorus availability in bio-ash from manure.

    Science.gov (United States)

    Thygesen, A M; Wernberg, O; Skou, E; Sommer, S G

    2011-04-01

    In the near future phosphorus (P) will be a limited resource in high demand. This will increase the incentives for recycling P in animal manure. In this study the dry-matter-rich fraction from slurry separation was incinerated and the P availability of the ash fraction examined. The aim was to adjust incineration temperature to support a high plant-availability of P in ash. The plant-availability of P was approximately halved when the incineration temperature was increased from 400 to 700 degrees C. This decrease in plant-availability was probably due to the formation of hydroxyapatite. Incineration temperatures should therefore be kept below 700 degrees C to ensure a high fertilizer efficiency of P in ash. This may conflict with the energy production, which is optimal at temperatures above 800 degrees C. An alternative to incineration may therefore be thermal gasification of the dry-matter-rich fraction, which can be carried out efficiently at lower temperatures. PMID:21877544

  16. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    Science.gov (United States)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  17. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of Cork oak (Quercus Suber)

    Science.gov (United States)

    Ubeda, X.; Pereira, P.; Outeiro, L.; Martin, D.A.

    2009-01-01

    Cork oak, (Quercus suber) is widely distributed in the Mediterranean region, an area subject to frequent fires. The ash produced by burning can have impacts on the soil status and water resources that can differ according to the temperature reached during fire and the characteristics of the litter, defined as the dead organic matter accumulated on the soil surface prior to the fire. The aim of this work is to determine the physical and chemical characteristics of ash produced in laboratory experiments to approximate conditions typical of fires in this region. The litter of Quercus suber collected from two different plots on the Iberian Peninsula, Mas Bassets (Catalonia) and Albufeira (Portugal), was combusted at different temperatures for 2h. We measured Mass Loss (ML per cent), ash colour and CaCO3 content, pH, Electrical Conductivity (EC) and the major cations (Ca2+, Mg2+, K+ and Na+) released from ash slurries created by mixing ash with deionized water. The results showed that ML per cent is higher at all temperatures in Albufeira samples compared to Mas Bassets samples, except at 550??C, and the rate of loss increases faster with temperature than the Mas Bassets samples. At 150??C the ash colour is yellowish, becoming reddish at 200- 250??C and black at 300??C. Above 400??C the ash is grey/white. This thermal degradation is mostly observed in Albufeira litter. The formation of CaCO3 was identified at a lower temperature in Albufeira litter. At temperatures chemistry which may be detrimental to some plants thus altering the recovery of these ecosystems after fire. Low intensity prescribed fire can be a useful tool to land management in these sites, due to the reduced effects of fire temperatures on the physical and chemical properties of surface litter, and can reduce the risk of high temperature wildland fires by reducing fuel loadings. From the perspective of water resources, lower fire temperatures produce fewer impacts on the chemistry of overland flow and

  18. Dust separation at high temperatures a method for cleaning fly ashes? Final report; Stoftavskiljning vid hoeg temperatur en metod foer rening av flygaska? Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Zintl, Frank [TPS Termiska Processer AB, Nykoeping (Sweden)

    2002-12-01

    An experimental study of separation of fly ashes by a filter at high temperatures, 300-650 deg C, with the purpose to study: Capture of heavy metals (Cd, Hg, Pb, Zn) in the fly ash; Relation between heavy metal capture and temperature; Relation between heavy metal capture and the availability of fuel chlorine. Pelletized forestry waste fuel was doped with heavy metals in two different forms. Pelletized Salix was also used, without doping. The study shows that: There is a strong inverse relation between the capture of heavy metals and the filter temperature; There is a strong relation between the availability of chlorine and the capture of heavy metals. Separation at 300-650 deg C gives much less heavy metals in the fly ash, however the ash is not clean enough to allow disposal in ordinary landfills. Thus, high temperature filtering does not seem to be a promising solution for producing 'clean' fly ash.

  19. Time Series Measurements of Diffuse Hydrothermal Flow at the ASHES Vent Field Reveal Tidally Modulated Heat and Volume Flux

    Science.gov (United States)

    Mittelstaedt, E. L.; Fornari, D. J.; Crone, T. J.

    2015-12-01

    Existing time-series measurements of temperature and velocity of diffuse hydrothermal fluids exhibit variability over a range of periods from seconds to days. Frequency analysis of these measurements reveals differences between studies and field locations including nearly white spectra, as well as spectra with peaks at tidal and inertial periods. Based upon these results, previous authors have suggested several processes that may control diffuse flow rates, including tidally induced currents and 'tidal pumping', and have also suggested that there are no systematic controls. To further investigate the processes that control variability in diffuse flow, we use data from a new, deep-sea camera and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), deployed during the July, 2014 cruise of the R/V Atlantis. The DEMS was deployed with DSV Alvin above a fracture network at the Phoenix vent within the ASHES vent field (Axial Seamount, 1541 mbsl). The system collected 20 seconds of imagery at 20 Hz and 24 seconds of temperature measurements at 1 Hz each hour over the period between July 22 and August 2nd. Velocities of the upwelling fluids were calculated using Diffuse Fluid Velocimetry (DFV; Mittelstaedt et al., 2010). DFV is a cross correlation technique that tracks moving index of refraction anomalies (i.e., hot parcels of fluid) through time. Over the ~12 day deployment, median flow rates ranged from 0.5 cm/s to 6 cm/s and mean fluid temperature anomalies from 0°C up to ~6.5°C, yielding an average heat flux density of 0.23 MW/m2. Spectral analysis of both the measured temperatures and calculated velocities yield a peak in normalized power at the semi-diurnal lunar period (M2, 12.4hrs), but no other spectral peaks above the 95% confidence level. Here, we present these results and discuss their implications for the tidal current and tidal pressure models of diffuse flow variability at the ASHES vent field.

  20. Development of sodium/lithium/fly ash sorbents for high temperature post-combustion CO2 capture

    International Nuclear Information System (INIS)

    Highlights: • Fly ash (FA) based Na/Li silicates for high temperature CO2 capture were developed. • Li–Na–FA molar ratios and calcination temperature determined the sorbents CO2 uptake. • CO2 uptake capacity was 2.54 mol CO2/kg sorbent with 12% H2O and 14% CO2 at 700 °C. • Na/Li–FA sorbents maintained their capacity and adsorption/desorption rates after 21 cycles. - Abstract: CO2 capture from combustion processes faces several challenges including high energy penalty, low CO2 partial pressure, high flow rates and presence of water vapours. Absorption of CO2 at high temperature is recently attracting increasingly attention. Alkali metal based sorbents present clear advantages compared to other high temperature sorbents, such as high CO2 capture capacity, lower regeneration temperatures (<750 °C) and excellent stability. In this work, Na/Li-silicates prepared by mixing Na/Li carbonates with fly ash (FA) in various molar ratios were evaluated for their capacity to chemisorb CO2 at 500–700 °C and in presence of H2O (2–12 vol%), diluted CO2 (14 vol%) and CO2 sorption promoters. The results indicate that the carbonate:silica ratio used in the sorbents synthesis significantly affects the CO2 sorption capacity and regeneration temperature. The presence of steam enhances the diffusion of Li and Na ions resulting in higher CO2 uptake. CO2 chemisorption follows a double layer mechanism with formation of carbonate layer on the surface. The simultaneous presence of Li and Na (and K when used as additive) in the formed carbonate layer results in an eutectic melt between 600 and 700 °C, which facilitates the diffusion of the ionic species. Li–Na–FA with molar ratio of 0.5:0.5:1 was the best prepared sorbent with a capacity of 2.54 mol CO2/kg sorbent (12% H2O, 14% CO2 at 700 °C). Absorption/desorption was completed in 15 min with reaction kinetics comparable to that of pure Li4SiO4 sorbents. The tested materials maintained their capacity and absorption

  1. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing

    Energy Technology Data Exchange (ETDEWEB)

    T. Bakharev [Monash University, Clayton, Vic. (Australia). Department of Civil Engineering

    2006-06-15

    This article reports a study of thermal stability of properties upon firing at 800-1200{sup o}C of geopolymer materials prepared using class F fly ash and Na and K alkaline activators. Compressive strength and shrinkage measurements, XRD, SEM (BEI), TGA and MIP were utilised in these studies. The materials were prepared at water/binder ratios in a range of 0.09-0.35, using compaction pressures up to 10 MPa and curing temperatures 80 and 100{sup o}C. Thermal stability of the studied geopolymer materials was rather low. In the samples prepared using sodium-containing activators rapid deterioration of strength at 800{sup o}C was observed, which was connected to a dramatic increase of the average pore size. Initially amorphous structures were replaced by the crystalline Na-feldspars. In materials prepared using fly ash and potassium silicate compressive strength was significantly increased on heating, deterioration of strength started at 1000{sup o}C. After firing these materials remained amorphous with reduced average pore size and significantly increased compressive strength. Compaction at 1-10 MPa reduced shrinkage on firing in all materials. Geopolymer materials prepared using class F fly ash and alkaline activators showed high shrinkage as well as large changes in compressive strength with increasing fired temperature in the range of 800-1200{sup o}C. Thus the materials were found unsuitable for refractory insulation applications.

  2. Ash deposition and high temperature corrosion at combustion of aggressive fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Henriksen, N. [Elsamprojekt A/S, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    In order to reduce CO{sub 2} emission, ELSAM is investigating the possibilities of using biomass - mainly straw - for combustion in high efficiency power plants. As straw has very high contents of chlorine and potassium, a fuel with high corrosion and ash deposition propensities has been introduced. ELSAM has investigated 3 ultra supercritical boiler concepts for combustion of straw alone or together with coal: (1) PF boilers with a relatively low share of straw, (2) CFB boilers with low to high share of straw and (3) vibrating grate boilers with 100% straw. These investigations has mainly been full-scale tests with straw fed into existing boilers. Corrosion tests have been performed in these boilers using temperature regulated probes and in-plant test tubes in existing superheaters. The corrosion has been determined by detailed measurements of wall thickness reduction and light optical microscopic measurements of the material degradation due to high temperature corrosion. Corrosion mechanisms have been evaluated using SEM/EDX together with thermodynamical considerations based on measurements of the chemical environment in the flue gas. Ash deposition is problematic in CFB boilers and in straw fired boilers, especially in years with high potassium and chlorine content of the straw. This ash deposition also is related to condensation of KCl and can probably only be handled by improved cleaning devices. (EG)

  3. Depth of the ash flow deposit in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska

    Science.gov (United States)

    Kienle, Jürgen

    1991-08-01

    In anticipation of a drill hole, seismic refraction and gravity profiles acquired more than 20 years ago have been reinterpreted in light of new density data to determine the thickness of the ash flow deposit in the Valley of the Thousand Smokes (VTTS). The data show the ash flow is at least 170m thick and most likely welded in its lower portion. Its average density is ˜1800 kg m-3. Seismic velocities range from 0.6 to 1 km/sec for the deposit’s unwelded 30-to-50m-thick top section and 1.8 to 2.5 km/sec for the lower welded section. The data confirm the first realistic estimate of the volume of the ash flow of about 11 km³ by Curtis (1968), based on a geomorphic analysis of stream profiles.

  4. Temperature effect on the pressure drop across the cake of coal gasification ash formed on a ceramic filter

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Liang, Y.; Sakong, K.M.; Choi, J.H.; Bak, Y.C. [Gyeongsang National University, Jinju (Republic of Korea). Dept. of Biology & Chemical Engineering

    2008-01-15

    In order to predict the pressure drop across the cake of coal gasification (CG) ash formed on ceramic filter, an empirical equation was developed taking into account several factors, such as the face velocity, ash load, shape factor and size of particles, and especially the operating temperature. The hot air stream of well classified fine particles of CG ash was simulated as the syngas derived from the coal gasification process. The pressure drop behavior and cleaning efficiency of the filter were carefully investigated within the temperature range from room temperature to 673 K. The pressure drop across the ash cake was dominantly governed by the air viscosity, which increased with temperature. It was well expressed by the previously reported-empirical equation (J.H. Choi, Y.C. Bak, H.J. Jang, J.H. Kim, and J.H. Kim, Korean J. Chern. Eng., 21(3) (2004) 726.) with the modification of the viscosity term in the equation for different temperatures. The residual pressure drop rate across the ash cake also increased while the cleaning efficiency of the ceramic filter decreased as temperature increased.

  5. Soil application of ash produced by low-temperature fluidized bed gasification: effects on soil nutrient dynamics and crop response

    DEFF Research Database (Denmark)

    Müller-Stöver, Dorette Sophie; Ahrenfeldt, Jesper; Holm, Jens Kai;

    2012-01-01

    Recycling of residual products of bioenergy conversion processes is important for adding value to the technologies and as a potential beneficial soil fertility amendment. In this study, two different ash materials originating from low temperature circulating fluidized bed (LT-CFB) gasification...... not significantly altered after ash application. SA was generally able to increase the levels of Olsen-P and of the ammonium acetate/acetic acid-extractable K in soil as well as to improve the yield of barley and maize, whereas faba bean did not react positively to ash amendment. CP did not show beneficial effects...... on soil nutrient levels or on crop biomass. We conclude from the results of this study, that—depending on the feedstock used—ashes from LT-CFB gasification of plant biomass can be used to replace mineral fertilizers if they are applied according to their nutrient content, the crop demand, and soil...

  6. Peculiar high temperature corrosion of martensite alloy under impact of Estonian oil shale fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Tallermo, H.; Klevtsov, I. [Thermal Engineering Department of Tallinn Technical University, Tallinn (Estonia)

    1998-12-31

    The superheaters` surfaces of oil shale steam boiler made of pearlitic and austenitic alloys, are subject to intensive corrosion, mainly due to presence of chlorine in external deposits. The applicability of martensitic alloys X1OCrMoVNb91 and X20CrMoV121 for superheaters is examined here and empirical equations allowing to predict alloys` corrosion resistance in the range of operational temperatures are established. Alloy X1OCrMoVNb91 is found been most perspective for superheaters of boilers firing fossil fuel that contain alkaline metals and chlorine. The abnormal dependence of corrosion resistance of martensitic alloys on temperature is revealed, namely, corrosion at 580 deg C in presence of oil shale fly ash is more intensive than at 620 deg C. (orig.) 2 refs.

  7. Superplasticizer Addition to Carbon Fly Ash Geopolymers Activated at Room Temperature

    Directory of Open Access Journals (Sweden)

    Lorenza Carabba

    2016-07-01

    Full Text Available Present concerns about global warming due to the greenhouse emissions in the atmosphere have pushed the cement industry to research alternatives to ordinary Portland cement (OPC. Geopolymer binder may constitute a possible breakthrough in the development of sustainable materials: understanding the effectiveness and the influences of superplasticizers on geopolymer systems is one of the essential requirements for its large-scale implementation. This study aims to investigate the possibility of using commercially available chemical admixtures designed for OPC concrete, to improve fresh properties of fly ash-based geopolymers and mortars. A special emphasis is laid upon evaluating their influence on mechanical and microstructural characteristics of the hardened material realized under room-temperature curing conditions. Results indicate that the addition of a polycarboxylic ether-based superplasticizer, in the amount of 1.0 wt. % by mass of fly ash, promotes an improvement in workability without compromising the final strength of the hardened material. Moreover, the addition of the polycarboxylic ether- and acrylic-based superplasticizers induces a refinement in the pore structure of hardened mortar leading to a longer water saturation time.

  8. Objective rapid delineation of areas at risk from block-and-ash pyroclastic flows and surges

    Science.gov (United States)

    Widiwijayanti, C.; Voight, B.; Hidayat, D.; Schilling, S.P.

    2009-01-01

    Assessments of pyroclastic flow (PF) hazards are commonly based on mapping of PF and surge deposits and estimations of inundation limits, and/or computer models of varying degrees of sophistication. In volcanic crises a PF hazard map may be sorely needed, but limited time, exposures, or safety aspects may preclude fieldwork, and insufficient time or baseline data may be available for reliable dynamic simulations. We have developed a statistically constrained simulation model for block-and-ash type PFs to estimate potential areas of inundation by adapting methodology from Iverson et al. (Geol Soc America Bull 110:972-984, (1998) for lahars. The predictive equations for block-and-ash PFs are calibrated with data from several volcanoes and given by A = (0.05 to 0.1) V2/3, B = (35 to 40) V2/3, where A is cross-sectional area of inundation, B is planimetric area and V is deposit volume. The proportionality coefficients were obtained from regression analyses and comparison of simulations to mapped deposits. The method embeds the predictive equations in a GIS program coupled with DEM topography, using the LAHARZ program of Schilling (1998). Although the method is objective and reproducible, any PF hazard zone so computed should be considered as an approximate guide only, due to uncertainties on the coefficients applicable to individual PFs, the authenticity of DEM details, and the volume of future collapses. The statistical uncertainty of the predictive equations, which imply a factor of two or more in predicting A or B for a specified V, is superposed on the uncertainty of forecasting V for the next PF to descend a particular valley. Multiple inundation zones, produced by simulations using a selected range of volumes, partly accommodate these uncertainties. The resulting maps show graphically that PF inundation potentials are highest nearest volcano sources and along valley thalwegs, and diminish with distance from source and lateral distance from thalweg. The model does

  9. Granular temperature field of monodisperse granular flows

    Science.gov (United States)

    Gollin, Devis; Bowman, Elisabeth; Shepley, Paul

    2015-04-01

    For dry granular flows as well as solid-fluid mixtures such as debris avalanches, the momentum transfer is carried by frictional and collisional stresses. The latter may be described by the granular temperature, which provides a measure of the energy contained within the fluctuating nature of the granular motion. Thus, granular temperature can be used as a valuable means to infer the ability of a granular system to flow. Granular materials are known for the difficulties they pose in obtaining accurate microscale laboratory measurements. This is why many theories, such as the kinetic theory of granular gases, are primarily compared to numerical simulations. However, thanks to recent advancements in optical techniques along with high-speed recording systems, experimentalists are now able to obtain robust measurements of granular temperature. At present, the role of granular temperature in granular flows still entails conjecture. As a consequence, it is extremely important to provide experimental data against which theories and simulations can be judged. This investigation focuses on dry granular flows of sand and spherical beads performed on a simple inclined chute geometry. Fluctuation velocity, granular temperature and velocity patterns are obtained by means of particle image velocimetry (PIV). Flow behaviour is probed for different spatial (interrogation sizes) and temporal (frame rates) resolutions. Through the variation of these parameters an attempt to demonstrate the consistency of the degree of unsteadiness within the flow is made. In many studies a uniform stationary flow state is usually sought or preferably assumed for the simplicity it provides in the calculations. If one tries to measure microscale fields such as granular temperature, this assumption may be inappropriate. Thus, a proper definition of the flow regime should be made in order to estimate the correct flow properties. In addition, PIV analysis is compared against particle tracking velocimetry

  10. Validation of a continuous flow method for the determination of soluble iron in atmospheric dust and volcanic ash.

    Science.gov (United States)

    Simonella, Lucio E; Gaiero, Diego M; Palomeque, Miriam E

    2014-10-01

    Iron is an essential micronutrient for phytoplankton growth and is supplied to the remote areas of the ocean mainly through atmospheric dust/ash. The amount of soluble Fe in dust/ash is a major source of uncertainty in modeling-Fe dissolution and deposition to the surface ocean. Currently in the literature, there exist almost as many different methods to estimate fractional solubility as researchers in the field, making it difficult to compare results between research groups. Also, an important constraint to evaluate Fe solubility in atmospheric dust is the limited mass of sample which is usually only available in micrograms to milligrams amounts. A continuous flow (CF) method that can be run with low mass of sediments (deposited volcanic ash. Both materials tested are easy eroded by wind and are representative of atmospheric dust/ash exported from this region. The uncertainty of the CF method was obtained from seven replicates of one surface sediment sample, and shows very good reproducibility. The replication was conducted on different days in a span of two years and ranged between 8 and 22% (i.e., the uncertainty for the standard method was 6-19%). Compared to other standardized methods, the CF method allows studies of dissolution kinetic of metals and consumes less reagents and time (dust/ash.

  11. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing

    Energy Technology Data Exchange (ETDEWEB)

    T. Bakharev [Monash University, Clayton, Vic. (Australia). Department of Civil Engineering

    2005-06-01

    This paper reports the results of the study of the influence of elevated temperature curing on phase composition, microstructure and strength development in geopolymer materials prepared using Class F fly ash and sodium silicate and sodium hydroxide solutions. In particular, the effect of storage at room temperature before the application of heat on strength development and phase composition was studied. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and SEM were utilised in this study. Long precuring at room temperature before application of heat was beneficial for strength development in all studied materials, as strength comparable to 1 month of curing at elevated temperature can develop in this case only after 24 h of heat curing. The main product of reaction in the geopolymeric materials was amorphous alkali aluminosilicate gel. However, in the case of sodium hydroxide activator in addition to it, traces of chabazite, Linde Type A, Na-P1 (gismondine) zeolites and hydroxysodalite were also present. The type of zeolite present and composition of aluminosilicate gel were dependent on the curing history.

  12. Measurement of temperature conditions in grate zone of a 1 MW wood-pellets boiler fired with high ash content wood-pellets

    OpenAIRE

    Skotland, Christer Heen

    2009-01-01

    The combustion of biomass could in some cases lead to ash problems induced by high temperatures such as ash sintering, agglomeration and melting. The degrees of these problems depend on the fuel feedstock and are highly dependent on the amount of potassium, sodium and chlorine in the biomass. Straw, grass, bark, branches and wood residues are typical examples of biomass fuels that are connected to the mentioned ash problems.Addition of additives in the problematic fuels is a possible measure ...

  13. Effects of ash forming temperature on water-soluble fraction of biomass ash and it’s elements%成灰温度对三种生物质灰及其元素水溶性的影响

    Institute of Scientific and Technical Information of China (English)

    何芳; 于如军; 张毅; 朱继英; 高振强; 孙鹏

    2015-01-01

    The implementation of biomass ash as a fertilizer is beneficial to the sustainable development of agriculture because it can return the elements taken by the plants from soil during the growth. Water solubility of biomass ash together with its elements is a vital property for the fertilizer’s utilization. In this paper, the effects of ash forming temperature on the water solubility of biomass ash and its elements were investigated experimentally. Three typical types of agro-residues in China, i.e. wheat straw, corn stover and rice husk, were chosen for investigation. Materials were collected and the corresponding proximate and elemental analyses were performed. In preparation process, wheat straw and corn stover were milled into powder with the particle size of less than 1 mm. Ashes were prepared in a muffle furnace at different ash forming temperatures in the scope from 400 to 800℃with the temperature interval of 50℃. About 4-5 g of each sample powder and rice husk were put in the crucibles, heated from ambient temperature to ash forming temperature, and then kept at the ash forming temperature for 4 hours in the muffle furnace. After the temperature of the furnace dropped to less than 200℃, the ashes were taken out to the cabinet dryer, cooled to the ambient temperature, and then weighted and sealed in the sample bag for further measurements. It showed that ash contents of wheat straw, corn stover and rice husk decreased significantly with the increase of ash forming temperature. They decreased from 9.8%, 10.9%and 18.4% at 400℃to 6.9%, 8.7%and 16.8%at 800℃respectively. After the preparation of all the ash, two types of measurements were performed. The first was the water solubility measurement of the ashes according to the standard of GB8307-2002. Total ash of about 0.2-0.3 g was put in a beaker of 50 ml and about 25 ml distilled water was added in it. The mixture was heated and boiled for 2 min and then the solution was filtered through a

  14. Hydrothermal Synthesis of Zeolite from Coal Class F Fly Ash. Influence of Temperature

    Directory of Open Access Journals (Sweden)

    Goñi, S.

    2010-06-01

    Full Text Available The influence of temperature of alkaline hydrothermal treatment on the conversion in zeolite of Spanish coal low calcium-fly ash (ASTM class F is presented in this work. Zeolite Na-P1 gismondine type (Na6Al6Si10O32.12H2O was formed at the temperature of 100ºC, which transformed in zeolite; analcime-C type (Na(Si2AlO6H2O and sodalite (1.08 Na2O.Al2O3.1.68SiO2.1.8H2O at 200ºC together with traces of tobermorite-11Å (Ca5(OH2Si6O16.4H2O. At this temperature the 100% of the fly ash reaction was allowed. An equivalent study was carried out in water as reference. The zeolite conversion of the fly ash was characterized by X ray diffraction (XRD, FT infrared (FTIR spectroscopy, surface area (BET-N2 and thermal analyses.

    En este trabajo se presenta el papel que juega la temperatura durante el tratamiento hidrotermal en medio alcalino para convertir una ceniza volante de bajo contenido en cal (clase F, según la norma ASTM en zeolita. Durante este tratamiento a la temperatura de 100ºC se forma Zeolita Na-P1 tipo gismondina (Na6Al6Si10O32.12H2O; al elevar la temperatura a 200ºC, dicha zeolita se transforma en zeolita Analcima C (Na(Si2AlO6H2O y en fase sodalita (1.08 Na2O.Al2O3.1.68SiO2.1.8H2O junto con trazas de tobermorita-11Å (Ca5(OH2Si6O16.4H2O. A esta temperatura y en estas condiciones se ha conseguido un 100% de reacción. Un estudio equivalente se ha llevado a cabo empleando agua como medio de referencia. La conversión de ceniza volante en zeolita se ha caracterizado mediante técnicas, como difracción de Rayos X (DRX, espectroscopia

  15. Sintesis ZSM-5 dari Fly Ash Sawit Sebagai Sumber Silika dengan Variasi Nisbah Molar Si/Al dan Temperatur Sintesis

    Directory of Open Access Journals (Sweden)

    Ida Zahrina

    2012-12-01

    Full Text Available Palm fly ash is biomass/waste in the  palm oil industry. Palm fly ash has high content of amorphous silica. ZSM-5 is one of synthetic zeolite which is widely used as catalyst in industries. ZSM-5 has high activity and selectivity to several hydrocarbon conversion reaction. Hence, ZSM-5 is being investigated for the conversion of vegetable oil to hydrocarbon.  It can be synthesized from silica and alumina. Sources of silica that can be added to the ZSM-5 synthesis,  are sodium silicate, hydrated silica, water glass sol silica, gelled silica, clay, precipitated silicaand calcined silica. ZSM-5 was synthesized free-template by using palm fly ash as silica source. In this research synthesis of ZSM-5 was carried out in autoclave at 18 hours and Na2O/Al2O3 molar ratio by various molar ratio from 30 to 40 and temperature in the range of 150 to 190 oC. The product was then analized using FTIR method. The best ZSM-5 product was obtained at Si/Al molar ratio of 40 and process temperature of 150 oC. Keywords: FTIR, Palm fly ash, ZSM-5

  16. Leaching behaviour of bottom ash from RDF high-temperature gasification plants

    International Nuclear Information System (INIS)

    This study investigated the physical properties, the chemical composition and the leaching behaviour of two bottom ash (BA) samples from two different refuse derived fuel high-temperature gasification plants, as a function of particle size. The X-ray diffraction patterns showed that the materials contained large amounts of glass. This aspect was also confirmed by the results of availability and ANC leaching tests. Chemical composition indicated that Fe, Mn, Cu and Cr were the most abundant metals, with a slight enrichment in the finest fractions. Suitability of samples for inert waste landfilling and reuse was evaluated through the leaching test EN 12457-2. In one sample the concentration of all metals was below the limit set by law, while limits were exceeded for Cu, Cr and Ni in the other sample, where the finest fraction showed to give the main contribution to leaching of Cu and Ni. Preliminary results of physical and geotechnical characterisation indicated the suitability of vitrified BA for reuse in the field of civil engineering. The possible application of a size separation pre-treatment in order to improve the chemical characteristics of the materials was also discussed.

  17. Experimental evidence for de novo synthesis of PBDD/PBDF and PXDD/PXDF as well as dioxins in the thermal processes of ash samples

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, K.; Ishikawa, N. [National Inst. for Environmental Studies, Tsukuba (Japan)

    2005-07-01

    Fly ash in gasification-melting plants and conventional incineration plants can form dioxins through a process known as de novo synthesis. This paper investigated the de novo synthesis of dioxins formed as a result of fly ash catalysis activities. Thermal experiments using fly ash were performed using a flow-through reactor to investigate the formation of brominated and chlorinated-brominated dibenzodioxins (PBDD/F) and dibenzofurans (PXDD/F). Ash samples were collected at conventional stoker incineration and gasification-melting plants. Samples included ash from a bag filter (Ash A); ash from a fluidized gasification and melting furnace plant (Ash C); boiler ash (Ash B); and ash containing tetrabromobisphenol (Ash D). Samples were subjected to a thermal treatment at 300 degrees C. Results showed that dioxin levels were very high for Ash A, which suggested that temperature had a significant influence on de novo synthesis. Dioxin concentrations for Ash C had a relatively low carbon content. Considerable concentrations of PXDD/PXDF were determined for Ash A. High PBDD, PBDF, PXDD and PXDF were observed for Ash D and Ash B. The total amount of dioxins in Ash A were relatively slow to change before and after the thermal treatment of the sample. The homologue distribution patterns of PCDD and PCDF in Ash A showed significant alterations after treatment. It was concluded that de novo dioxin synthesis occurred during the experimental procedure. Results suggested that carbon content plays an important role in the production of dioxins. 3 refs., 2 tabs., 4 figs.

  18. Field and seismic evaluation of the block-and-ash flows emplaced from eruption columns of the 2005 Vulcanian explosions at Volcán de Colima, Mexico

    Science.gov (United States)

    Zobin, Vyacheslav M.; Carrasco-Núñez, Gerardo; Vargas-Gutiérrez, Víctor R.

    2016-04-01

    The May-September 2005 Vulcanian explosion sequence was the most intense of all the activity during the recent 1998-2015 unrest at Volcán de Colima, Mexico. This study presents field measurements of volume and runout distances of block-and-ash flows emplaced from eruption columns that punctuated the six largest explosions of this sequence. The energy of these explosions and the emplacement duration of the pyroclastic flows were obtained from broadband seismic signals associated with these events. The field and seismic characteristics of the 2005 explosions at Volcán de Colima and associated block-and-ash flows showed that six explosions with energy ranging between 3.0 × 1011 and 1.5 × 1013 J emplaced the block-and-ash flows with volumes ranging between 1.8 × 105 and 3.1 × 105 m3 DRE (dense rock equivalent). Analysis of durations of seismic signals associated with the movement of the 2005 block-and-ash flows emplaced from the eruption columns allowed us to quantify them as M3-magnitude events using the techniques proposed by Zobin et al. (Bull Volcanol 67: 679-688, 2005) to quantify the block-and-ash flows emplaced from the partial collapse of the lava dome at Volcán de Colima.

  19. A fast Eulerian multiphase flow model for volcanic ash plumes: turbulence, heat transfer and particle non-equilibrium dynamics.

    Science.gov (United States)

    Cerminara, Matteo; Esposti Ongaro, Tomaso; Carlo Berselli, Luigi

    2014-05-01

    We have developed a compressible multiphase flow model to simulate the three-dimensional dynamics of turbulent volcanic ash plumes. The model describes the eruptive mixture as a polydisperse fluid, composed of different types of gases and particles, treated as interpenetrating Eulerian phases. Solid phases represent the discrete ash classes into which the total granulometric spectrum is discretized, and can differ by size and density. The model is designed to quickly and accurately resolve important physical phenomena in the dynamics of volcanic ash plumes. In particular, it can simulate turbulent mixing (driving atmospheric entrainment and controlling the heat transfer), thermal expansion (controlling the plume buoyancy), the interaction between solid particles and volcanic gas (including kinetic non-equilibrium effects) and the effects of compressibility (over-pressured eruptions and infrasonic measurements). The model is based on the turbulent dispersed multiphase flow theory for dilute flows (volume concentration effects only at the first order. We adopt LES formalism (which is preferable in transient regimes) for compressible flows to model the non-linear coupling between turbulent scales and the effect of sub-grid turbulence on the large-scale dynamics. A three-dimensional numerical code has been developed basing on the OpenFOAM computational framework, a CFD open source parallel software package. Numerical benchmarks demonstrate that the model is able to capture important non-equilibrium phenomena in gas-particle mixtures, such as particle clustering and ejection from large-eddy turbulent structures, as well as compressibility and thermal effects. A quantitative assessment of the reliability of Direct Numerical Simulation (DNS) and LES results with respect to modeling approximations and numerical errors has been carried out by comparing numerical results to experimental and computational studies of homogeneous, isotropic turbulence. In such a simplified

  20. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    Science.gov (United States)

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. PMID:25263218

  1. Fusion characterization of biomass ash

    DEFF Research Database (Denmark)

    Ma, Teng; Fan, Chuigang; Hao, Lifang;

    2016-01-01

    The ash fusion characteristics are important parameters for thermochemical utilization of biomass. In this research, a method for measuring the fusion characteristics of biomass ash by Thermo-mechanical Analyzer, TMA, is described. The typical TMA shrinking ratio curve can be divided into two...... stages, which are closely related to ash melting behaviors. Several characteristics temperatures based on the TMA curves are used to assess the ash fusion characteristics. A new characteristics temperature, Tm, is proposed to represent the severe melting temperature of biomass ash. The fusion...... characteristics of six types of biomass ash have been measured by TMA. Compared with standard ash fusibility temperatures (AFT) test, TMA is more suitable for measuring the fusion characteristics of biomass ash. The glassy molten areas of the ash samples are sticky and mainly consist of K-Ca-silicates....

  2. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)

    Science.gov (United States)

    Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.

    2016-01-01

    Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall

  3. Conceptual flow sheets development for coal conversion plant coal handling-preparation and ash/slag removal operations

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    This report presents 14 conceptual flow sheets and major equipment lists for coal handling and preparation operations that could be required for future, commercial coal conversion plants. These flow sheets are based on converting 50,000 tons per day of clean coal representative of the Pittsburgh and Kentucky No. 9 coal seams. Flow sheets were used by Union Carbide Corporation, Oak Ridge National Laboratory, in a survey of coal handling/preparation equipment requirements for future coal conversion plants. Operations covered in this report include run-of-mine coal breaking, coarse coal cleaning, fine coal cleaning, live storage and blending, fine crushing (crushing to top sizes ranging from 1/4-inch to 20 mesh), drying, and grinding (70 percent minus 200 mesh). Two conceptual flow sheets and major equipment lists are also presented for handling ash or granulated slag and other solid wastes produced by nine leading coal conversion processes. These flow sheets provide for solid wastes transport to an environmentally acceptable disposal site as either dry solids or as a water slurry.

  4. Shedding of ash deposits

    DEFF Research Database (Denmark)

    Zbogar, Ana; Frandsen, Flemming; Jensen, Peter Arendt;

    2009-01-01

    Ash deposits formed during fuel thermal conversion and located on furnace walls and on convective pass tubes, may seriously inhibit the transfer of heat to the working fluid and hence reduce the overall process efficiency. Combustion of biomass causes formation of large quantities of troublesome....... Low melting temperatures make straw ashes especially troublesome, since their stickiness is higher at lower temperatures, compared to coal ashes. Increased stickiness will eventually lead to a higher collection efficiency of incoming ash particles, meaning that the deposit may grow even faster...

  5. Simultaneous Temperature and Velocity Diagnostic for Reacting Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A diagnostic technique is proposed for measuring temperature and velocity simultaneously in a high temperature reacting flow for aiding research in propulsion. The...

  6. Palmar skin blood flow and temperature responses throughout endoscopic sympathectomy.

    Science.gov (United States)

    Crandall, Craig G; Meyer, Dan M; Davis, Scott L; Dellaria, Suzanne M

    2005-01-01

    Thoracic surgical sympathectomy is often performed to treat primary palmar and axillary hyperhidrosis. An increase in palmar skin temperature is frequently used to identify the success of the procedure. Because changes in palmar skin temperature occur secondary to changes in skin blood flow, the objective of this study was to test the hypothesis that monitoring palmar skin blood flow would provide greater temporal resolution relative to monitoring palmar skin temperature. In 11 patients with palmar and/or axillary hyperhidrosis, we measured palmar skin temperature and blood flow (via laser Doppler flowmetry) throughout the sympathectomy procedure. Five minutes after the initial cautery, skin blood flow increased from 48 +/- 7 perfusion units to 121 +/- 17 perfusion units (P 0.05). The time required to reach peak skin blood flow (22 +/- 3 min) was significantly less than the time required to reach peak skin temperature (34 +/- 0.3 min; P <0.001). Finally at 5, 10, and 15 min after the initial cautery, skin blood flow increased to a larger percentage of the total increase in skin blood flow relative skin temperature (all P <0.006). These data suggest that monitoring skin blood flow provides greater temporal resolution when compared with monitoring skin temperature during thoracic sympathectomy. However, the initial cautery of the parietal pleura over the ganglion may result in increases in skin blood flow before physical disruption of the ganglion. This occurrence may limit the utility of skin blood-flow measurements in identifying the success of the procedure. PMID:15616091

  7. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  8. Correlation of skin temperature and blood flow oscillations

    Science.gov (United States)

    Sagaidachnyi, A. A.; Usanov, D. A.; Skripal, A. V.; Fomin, A. V.

    2012-03-01

    Interrelation of skin temperature and blood flow oscillations of fingers under normal conditions in healthy subjects has been investigated. Oscillations of a blood flow were measured by means of photoplethysmography; oscillations of a temperature were registered by means of thermal imaging camera. The method of blood flow reconstruction by temperature oscillations with the use of the Pennes bioheat transfer equation and a definition of delay time of a temperature in relation to blood flow signal has been described. Temperature oscillations have a lag in relation to blood flow oscillations of approximately 10-20 seconds. Delay time of temperature waves can be used for the definition of an effective thickness of a tissue layer separating blood vessels and skin surface. Use of the described technique of comparison of finger blood flow and temperature oscillations allows to raise correlation coefficient of the signals from 0.35 to 0.63 on average, which testifies of high degree of conditionality of temperature oscillations by blood flow oscillations. The considered method of non-contact restoration of blood flow oscillations by means of temperature oscillation measurements might find practical application in skin thermal lesions research, research of influence of physical and chemical factors on a skin microcirculation.

  9. Elemental composition of peats ashed at low temperatures (95 C), from the Fraser delta, British Columbia, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, F.; Labonte, M. (Geological Survey of Canada, Calgary, Alberta (Canada). Inst. of Sedimentary and Petroleum Geology); Bustin, M.R. (Univ. of British Columbia, Vancouver (Canada). Dept. of Geological Sciences)

    The elemental distribution in peat deposits from Fraser delta, British Columbia, Canada were examined on peat ashed at low temperature (95 C) using INAA, DCP, and AA. Chlorine, B, Br, Mo, Na, S, and U are sensitive indicators of the depositional environment of these peats. The distribution of elements is related to water salinity. High concentrations of Cl and Na are encountered in samples deposited in brackish water environment and in the contact between the peat and the sea water. The concentration of Cl and Na decrease with decreasing distance from the contact with sea water. Silicon has the lowest concentration on the top of the fresh water peat and the highest on or near the top of brackish water peat. The concentration of the authigenic uranium in peats appears to be related to water salinity. The highest values are found in brackish water peat, indicating that uranium is possibly concentrated by its interaction with salt and carbonates. Compared to the Clark value, the only elements enriched in the peats ashes are: As, Br, Mo, Sb, and Se while Ca, Mg, and Mn are depleted. The ternary diagram of La-Th-Sc, which is associated with the detrital minerals, points to a uniform source for the minerals encountered in these peats.

  10. Integrated flow and temperature modeling at the catchment scale

    DEFF Research Database (Denmark)

    Loinaz, Maria Christina; Davidsen, Hasse Kampp; Butts, Michael;

    2013-01-01

    Changes in natural stream temperature levels can be detrimental to the health of aquatic ecosystems. Water use and land management directly affect the distribution of diffuse heat sources and thermal loads to streams, while riparian vegetation and geomorphology play a critical role in how thermal......–groundwater dynamics affect stream temperature. A coupled surface water–groundwater and temperature model has therefore been developed to quantify the impacts of land management and water use on stream flow and temperatures. The model is applied to the simulation of stream temperature levels in a spring-fed stream...... loads are buffered. In many areas, groundwater flow is a significant contribution to river flow, particularly during low flows and therefore has a strong influence on stream temperature levels and dynamics. However, previous stream temperature models do not properly simulate how surface water...

  11. Removal of fly-ash and dust particulate matters from syngas produced by gasification of coal by using a multi-stage dual-flow sieve plate wet scrubber.

    Science.gov (United States)

    Kurella, Swamy; Meikap, Bhim Charan

    2016-08-23

    In this work, fly-ash water scrubbing experiments were conducted in a three-stage lab-scale dual-flow sieve plate scrubber to observe the performance of scrubber in fly-ash removal at different operating conditions by varying the liquid rate, gas rate and inlet fly-ash loading. The percentage of fly-ash removal efficiency increases with increase in inlet fly-ash loading, gas flow rate and liquid flow rate, and height of the scrubber; 98.55% maximum percentage of fly-ash removal efficiency (ηFA) is achieved at 19.36 × 10(-4) Nm(3)/s gas flow rate (QG) and 48.183 × 10(-6) m(3)/s liquid flow rate (QL) at 25 × 10(-3) kg/Nm(3) inlet fly-ash loading (CFA,i). A model has also been developed for the prediction of fly-ash removal efficiency of the column using the experimental results. The predicted values calculated using the correlation matched well with the experimental results. Deviations observed between the experimental and the predicted values were less than 20%. PMID:27230635

  12. Application of Fly Ash from Solid Fuel Combustion in Concrete

    DEFF Research Database (Denmark)

    Pedersen, Kim Hougaard

    2008-01-01

    Nordjyllandsværket, unit 3; 3) post treatment of fly ash to lower its AEA adsorptivity. The foam index test is the method usually employed to determine the degree of fly ash interference with AEAs in concrete. The test involves the use of commercial AEAs and visual observation of foam stability. These facts reduce...... with implementation of low-NOx combustion technologies. The present thesis concerns three areas of importance within this field: 1) testing of fly ash adsorption behavior; 2) the influence of fuel type and combustion conditions on the ash adsorption behaviour including full-scale experiments at the power plant...... has a low sensitivity toward small variations in AEA adsorption between different fly ashes and it requires further work before a finished procedure is accomplished. Finally, it was shown that changes in temperature affect both test methods. Pulverized fuel has been combusted in an entrained flow...

  13. Integrated flow and temperature modeling at the catchment scale

    Science.gov (United States)

    Loinaz, Maria C.; Davidsen, Hasse Kampp; Butts, Michael; Bauer-Gottwein, Peter

    2013-07-01

    Changes in natural stream temperature levels can be detrimental to the health of aquatic ecosystems. Water use and land management directly affect the distribution of diffuse heat sources and thermal loads to streams, while riparian vegetation and geomorphology play a critical role in how thermal loads are buffered. In many areas, groundwater flow is a significant contribution to river flow, particularly during low flows and therefore has a strong influence on stream temperature levels and dynamics. However, previous stream temperature models do not properly simulate how surface water-groundwater dynamics affect stream temperature. A coupled surface water-groundwater and temperature model has therefore been developed to quantify the impacts of land management and water use on stream flow and temperatures. The model is applied to the simulation of stream temperature levels in a spring-fed stream, the Silver Creek Basin in Idaho, where stream temperature affects the populations of fish and other aquatic organisms. The model calibration highlights the importance of spatially distributed flow dynamics in the catchment to accurately predict stream temperatures. The results also show the value of including temperature data in an integrated flow model calibration because temperature data provide additional constraints on the flow sources and volumes. Simulations show that a reduction of 10% in the groundwater flow to the Silver Creek Basin can cause average and maximum temperature increases in Silver Creek over 0.3 °C and 1.5 °C, respectively. In spring-fed systems like Silver Creek, it is clearly not feasible to separate river habitat restoration from upstream catchment and groundwater management.

  14. Measuring Temperature in Pipe Flow with Non-Homogeneous Temperature Distribution

    Science.gov (United States)

    Klason, P.; Kok, G. J.; Pelevic, N.; Holmsten, M.; Ljungblad, S.; Lau, P.

    2014-04-01

    Accurate temperature measurements in flow lines are critical for many industrial processes. It is normally more a rule than an exception in such applications to obtain water flows with inhomogeneous temperature distributions. In this paper, a number of comparisons were performed between different 100 ohm platinum resistance thermometer (Pt-100) configurations and a new speed-of-sound-based temperature sensor used to measure the average temperature of water flows with inhomogeneous temperature distributions. The aim was to achieve measurement deviations lower than 1 K for the temperature measurement of water flows with inhomogeneous temperature distributions. By using a custom-built flow injector, a water flow with a hot-water layer on top of a cold-water layer was created. The temperature difference between the two layers was up to 32 K. This study shows that the deviations to the temperature reference for the average temperature of four Pt-100s, the multisensor consisting of nine Pt-100s, and the new speed-of-sound sensors are remarkably lower than the deviation for a single Pt-100 under the same conditions. The aim of reaching a deviation lower than 1 K was achieved with the speed-of-sound sensors, the configuration with four Pt-100s, and the multisensor. The promising results from the speed-of sound temperature sensors open the possibility for an integrated flow and temperature sensor. In addition, the immersion depth of a single Pt-100 was also investigated at three different water temperatures.

  15. Temperature and flow distribution in planar SOFC stacks

    Directory of Open Access Journals (Sweden)

    Monica Østenstad

    1995-07-01

    Full Text Available Simulation of a planar Solid Oxide Fuel Cell stack requires the solution of the mass balances of the chemical species, the energy balances, the charge balance and the channel flow equations in order to compute the species concentrations, the temperature distributions, the current density and the channel flows. The unit cell geometry can be taken into account by combining detailed modeling of a unit cell with a homogenized model of a whole stack. In this study the effect of the asymmetric temperature distribution on the channel flows in a conventional cross-flow design has been investigated. The bidirectional cross-flow design is introduced, for which we can show more directional temperature and flow distributions.

  16. Analysis of the 2006 block-and-ash flow deposits of Merapi Volcano, Java, Indonesia, using high-spatial resolution IKONOS images and complementary ground based observations

    Science.gov (United States)

    Thouret, Jean-Claude; Gupta, Avijit; Liew, Soo Chin; Lube, Gert; Cronin, Shane J.; Surono, Dr

    2010-05-01

    On 16 June 2006 an overpass of IKONOS coincided with the emplacement of an active block-and-ash flow fed by a lava dome collapse event at Merapi Volcano (Java, Indonesia). This was the first satellite image recorded for a moving pyroclastic flow. The very high-spatial resolution data displayed the extent and impact of the pyroclastic deposits emplaced during and prior to, the day of image acquisition. This allowed a number of features associated with high-hazard block-and-ash flows emplaced in narrow, deep gorges to be mapped, interpreted and understood. The block-and-ash flow and surge deposits recognized in the Ikonos images include: (1) several channel-confined flow lobes and tongues in the box-shaped valley; (2) thin ash-cloud surge deposit and knocked-down trees in constricted areas on both slopes of the gorge; (3) fan-like over bank deposits on the Gendol-Tlogo interfluves from which flows were re-routed in the Tlogo secondary valley; (4) massive over bank lobes on the right bank from which flows devastated the village of Kaliadem 0.5 km from the main channel, a small part of this flow being re-channeled in the Opak secondary valley. The high-resolution IKONOS images also helped us to identify geomorphic obstacles that enabled flows to ramp and spill out from the sinuous channel, a process called flow avulsion. Importantly, the avulsion redirected flows to unexpected areas away from the main channel. In the case of Merapi we see that the presence of valley fill by previous deposits, bends and man-made dams influence the otherwise valley-guided course of the flows. Sadly, Sabo dams (built to ameliorate the effect of high sediment load streams) can actually cause block-and-ash flows to jump out of their containing channel and advance into sensitive areas. Very-high-spatial resolution satellite images are very useful for mapping and interpreting the distribution of freshly erupted volcanic deposits. IKONOS-type images with 1-m resolution provide opportunities to

  17. A Cold Model Experimental Study on the Flow Characterisitcs of Bed Baterial in A Fluidized ed Bottom Ash Cooler in a CFB Boiler

    Institute of Scientific and Technical Information of China (English)

    LuXiaofeng; LiYourong

    2000-01-01

    A cold model experimental study on the flowing characteristics of bed meterial between a fluidized bed ash cooler and a furnace of CFB boiler were discussed in this paper.The research results showed that flowing status of the bed material in a bubbling bed,which was run with a circulating fluidized bed together in parallel operation,was influenced by the pressure difference between the CFB and the bubbling bed,the switch status of unlocking air ,and the structure of the exit of the bubbling bed.There was a circulating flow of bed material between CFB and bubbling bed.

  18. Skin temperature and subcutaneous adipose blood flow in man

    DEFF Research Database (Denmark)

    Astrup, A; Bülow, J; Madsen, J

    1980-01-01

    correlation between skin temperature and ATBF. In the range from 25 to 37 degrees CATBF increased 9% of the control flow on average per centigrade increase in skin temperature. ATBF at the control side was uninfluenced by the contralateral variations in skin temperature. Although no better correlation could......The abdominal subcutaneous adipose tissue blood flow (ATBF) was measured bilaterally by the 133Xe washout method. At one side of the skin (epicutaneous) temperature was varied with a temperature blanket, the other side served as control. There was a significant (P less than 0.001) positive...... be demonstrated between ATBF and subcutaneous temperature than between ATBF and skin temperature, arguments are presented in favour of the hypothesis that ATBF is influenced by the subcutaneous temperature rather than via reflexes from the skin. Infiltration of the 133Xe depots with 20 microgram...

  19. Acoustic tomographic imaging of temperature and flow fields in air

    International Nuclear Information System (INIS)

    Acoustic travel-time tomography is a remote sensing technique that uses the dependence of sound speed in air on temperature and wind speed along the sound propagation path. Travel-time measurements of acoustic signals between several sound sources and receivers travelling along different paths through a measuring area give information on the spatial distribution of temperature and flow fields within the area. After a separation of the two influences, distributions of temperature and flow can be reconstructed using inverse algorithms. As a remote sensing method, one advantage of acoustic travel-time tomography is its ability to measure temperature and flow field quantities without disturbing the area under investigation due to insertion of sensors. Furthermore, the two quantities—temperature and flow velocity—can be recorded simultaneously with this measurement method. In this paper, an acoustic tomographic measurement system is introduced which is capable of resolving three-dimensional distributions of temperature and flow fields in air within a certain volume (1.3 m × 1.0 m × 1.2 m) using 16 acoustic transmitter–receiver pairs. First, algorithms for the 3D reconstruction of distributions from line-integrated measurements are presented. Moreover, a measuring apparatus is introduced which is suited for educational purposes, for demonstration of the method as well as for indoor investigations. Example measurements within a low-speed wind tunnel with different incident flow situations (e.g. behind bluff bodies) using this system are shown. Visualizations of the flow illustrate the plausibility of the tomographically reconstructed flow structures. Furthermore, alternative individual measurement methods for temperature and flow speed provide comparable results

  20. Pipeline flow of heavy oil with temperature-dependent viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br

    2010-07-01

    The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)

  1. Spreading dynamic of viscous volcanic ash in stimulated jet engine conditions

    Science.gov (United States)

    song, wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado

    2016-04-01

    The ingestion of volcanic ash is widely recognised as a potentially fatal hazard for aircraft operation. The volcanic ash deposition process in a jet turbine is potentially complex. Volcanic ash in the air stream enters the inner liners of the combustors and partially or completely melts under the flames up to 2000 °C, at which point part of the ash deposits in the combustor fuel nozzle. Molten volcanic particles within high energy airflow escape the combustor to enter the turbine and impact the stationary (e.g., inlet nozzle guide vanes) and rotating airfoils (e.g., first stage high-pressure turbine blades) at high speed (up to Mach 1.25) in different directions, with the result that ash may stick, flow and remain liquid or solidify. Thus, the wetting behaviour of molten volcanic ash particle is fundamental to investigate impingement phenomena of ash droplet on the surface of real jet engine operation. The topic of wetting has received tremendous interest from both fundamental and applied points of view. However, due to the interdisciplinary gap between jet engine engineering and geology science, explicit investigation of wetting behaviour of volcanic ash at high temperature is in its infancy. We have taken a big step towards meeting this challenge. Here, we experimentally and theoretically investigate the wetting behaviour of viscous volcanic ash over a wide temperature range from 1100 to 1550 °C using an improved sessile-drop method. The results of our experiment demonstrate that temperature and viscosity play a critical role in determining the wetting possibility and governing the spreading kinetics of volcanic ash at high temperatures. Our systemic analysis of spreading of molten volcanic ash systems allows us to report on the fundamental differences between the mechanisms controlling spreading of organic liquids at room temperature and molten volcanic ash droplets.

  2. Measuring Water Vapor and Ash in Volcanic Eruptions with a Millimeter-Wave Radar/Imager

    CERN Document Server

    Bryan, Sean; Vanderkluysen, Loÿc; Groppi, Christopher; Paine, Scott; Bliss, Daniel W; Aberle, James; Mauskopf, Philip

    2016-01-01

    Millimeter-wave remote sensing technology can significantly improve measurements of volcanic eruptions, yielding new insights into eruption processes and improving forecasts of drifting volcanic ash for aviation safety. Radiometers can measure water vapor density and temperature inside eruption clouds, improving on existing measurements with infrared cameras that are limited to measuring the outer cloud surface. Millimeter-wave radar can measure the 3D mass flow of volcanic ash inside eruption plumes and drifting fine ash clouds, offering better sensitivity than existing weather radar measurements and the unique ability to measure ash particle size in-situ. Here we present sensitivity calculations in the context of developing the WAMS (Water and Ash Millimeter-wave Spectrometer) instrument. WAMS, a radar/radiometer system constructed with off-the-shelf components, would be able to measure water vapor and ash throughout an entire eruption cloud, a unique capability.

  3. Volcanic ash melting under conditions relevant to ash turbine interactions

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-03-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  4. Volcanic ash melting under conditions relevant to ash turbine interactions.

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-03-02

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  5. Volcanic ash melting under conditions relevant to ash turbine interactions.

    Science.gov (United States)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  6. Operating experience using venturi flow meters at liquid helium temperature

    International Nuclear Information System (INIS)

    Experiences using commercial venturi to measure single phase helium flow near 4 K (degree Kelvin) for cooling superconducting magnets have been presented. The mass flow rate was calculated from the differential pressure and the helium density evaluated from measured pressure and temperature. The venturi flow meter, with a full range of 290 g/s (0.29 Kg/s) at design conditions, has been found to be reliable and accurate. The flow measurements have been used, with great success, for evaluating the performance of a cold centrifugal compressor, the thermal acoustic heat load of a cryogenic system and the cooling of a superconducting magnet after quench

  7. Measured gas and particle temperatures in VTT's entrained flow reactor

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Sørensen, L.H.

    2006-01-01

    Particle and gas temperature measurements were carried out in experiments on VTTs entrained flow reactor with 5% and 10% oxygen using Fourier transform infrared emission spectroscopy (FTIR). Particle temperature measurements were performed on polish coal,bark, wood, straw particles, and bark...... and wood particles treated with additive. A two-color technique with subtraction of the background light was used to estimate particle temperatures during experiments. A transmission-emission technique was used tomeasure the gas temperature in the reactor tube. Gas temperature measurements were in good...

  8. Durability of class C fly ash belite cement in simulated sodium chloride radioactive liquid waste: Influence of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A. [Eduardo Torroja Institute for Construction Science (CSIC), C/Serrano Galvache 4, 28033 Madrid (Spain)], E-mail: aguerrero@ietcc.csic.es; Goni, S. [Eduardo Torroja Institute for Construction Science (CSIC), C/Serrano Galvache 4, 28033 Madrid (Spain)], E-mail: sgoni@ietcc.csic.es; Allegro, V.R. [Eduardo Torroja Institute for Construction Science (CSIC), C/Serrano Galvache 4, 28033 Madrid (Spain)], E-mail: allegro@ietcc.csic.es

    2009-03-15

    This work is a continuation of a previous durability study of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) that is very rich in sulphate salts. The same experimental methodology was applied in the present case, but with a SRLW rich in sodium chloride. The study was carried out by testing the flexural strength of mortars immersed in simulated radioactive liquid waste that was rich in chloride (0.5 M), and demineralised water as a reference, at 20 and 40 deg. C over a period of 180 days. The reaction mechanism of chloride ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated chloride radioactive liquid waste (SCRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive Friedel's salt inside the pores; accordingly, the microstructure was refined.

  9. Temperature measurement in laminar free convective flow using digital holography.

    Science.gov (United States)

    Hossain, Md Mosarraf; Shakher, Chandra

    2009-04-01

    A method for measurement of temperature in laminar free convection flow of water is presented using digital holographic interferometry. The method is relatively simple and fast because the method uses lensless Fourier transform digital holography, for which the reconstruction algorithm is simple and fast, and also the method does not require use of any extra experimental efforts as in phase shifting. The quantitative unwrapped phase difference is calculated experimentally from two digital holograms recorded in two different states of water--one in the quiescent state, the other in the laminar free convection. Unknown temperature in laminar free convection is measured quantitatively using a known value of temperature in the quiescent state from the unwrapped phase difference, where the equation by Tilton and Taylor describing the variation of refractive index of water with temperature is used to connect the phase with temperature. Experiments are also performed to visualize the turbulent free convection flow.

  10. The Measurement and Calculation of Temperature of the Furnace Tube with Ash Deposition%积灰炉管管壁温度的检测与计算

    Institute of Scientific and Technical Information of China (English)

    孙全胜

    2012-01-01

    通过对积灰炉管的传热过程分析建立传热模型,并确定炉管表面温度计算公式.对比计算结果与刮去灰垢后管壁温度,发现二者基本吻合,证明此计算方法可得到比较准确的管壁温度,以保证生产的安全运行.%Base on analysing the heat transfer process of furnace tube with ash deposition, established the heat transfer model and the computational formula for the temperature of tube surface. Comparing the computing resultes with the temperater of the tube surface without ash deposition, we can find that they are consistent with each other. Accurate furnace tuber temperature would be got using the computationeli for mula, in order to ensure the safe operation.

  11. Reproductive and developmental biology of the emerald ash borer parasitoid Spathius galinae (Hymenoptera: Braconidae) as affected by temperature

    Science.gov (United States)

    Emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive pest of serious concern in North America. To complement ongoing biological control efforts, Spathius galinae Belokobylskij and Strazenac (Hymenoptera: Braconidae), a recently-described specialist parasitoid of ...

  12. Dielectric properties of fly ash

    Indian Academy of Sciences (India)

    S C Raghavendra; R L Raibagkar; A B Kulkarni

    2002-02-01

    This paper reports the dielectric properties of fly ash. The dielectric measurements were performed as a function of frequency and temperature. The sample of fly ash shows almost similar behaviour in the frequency and temperature range studied. The large value of dielectric constant in the typical frequency range is because of orientation polarization and tight binding force between the ions or atoms in the fly ash. The sample of fly ash is of great scientific and technological interest because of its high value of dielectric constant (104).

  13. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2009-07-01

    Full Text Available This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD. In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5o error.

  14. Ash Properties of Alternative Biomass

    DEFF Research Database (Denmark)

    Capablo, Joaquin; Jensen, Peter Arendt; Pedersen, Kim Hougaard;

    2009-01-01

    The ash behavior during suspension firing of 12 alternative solid biofuels, such as pectin waste, mash from a beer brewery, or waste from cigarette production have been studied and compared to wood and straw ash behavior. Laboratory suspension firing tests were performed on an entrained flow...

  15. NUMERICAL SIMULATION OF CAVITATION FLOW UNDER HIGH PRESSURE AND TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-guo; ZHANG Ling-xin; SHAO Xue-ming

    2011-01-01

    The numerical simulation of cavitation flow on a 2D NACA0015 hydrofoil under high pressure and temperature is performed. The Singhal's cavitation model is adopted combined with an improved RNG k-ε turbulence model to study the cavitation flow. The thermal effect in the cavitation flow is taken into account by introducing the energy equation with a source term based on the latent heat transfer. The code is validated by a case of a hydrofoil under two different temperatures in a comparison between the simulation and the experiment. Computational results show that the latent heat of vaporization has a significant impact on the cavitation process in the high temperature state, and the cavity in the high temperature state is thinner and shorter than that in a normal state with the same cavitation number, due to the fact that the heat absorption in the cavitation area reduces the local temperature and the saturated vapor pressure. This numerical study provides some guidance for the design of machineries in the High Pressure and Temperature (HPT) state.

  16. Multicomponent, multiphase flow in porous media with temperature variation

    Energy Technology Data Exchange (ETDEWEB)

    Wingard, J.S.; Orr, F.M. Jr.

    1990-10-01

    Recovery of hydrocarbons from porous media is an ongoing concern. Advanced techniques augment conventional recovery methods by injecting fluids that favorably interact with the oil. These fluids interact with the oil by energy transfer, in the case of steam injection, or by mass transfer, as in a miscible gas flood. Often both thermal and compositional considerations are important. An understanding of these injection methods requires knowledge of how temperature variations, phase equilibrium and multiphase flow in porous media interact. The material balance for each component and energy balance are cast as a system of non-strictly hyperbolic partial differential equations. This system of equations is solved using the method of characteristics. The model takes into account the phase behavior by using the Peng-Robinson equation of state to partition the individual components into different phases. Temperature effects are accounted for by the energy balance. Flow effects are modelled by using fractional flow curves and a Stone's three phase relative permeability model. Three problems are discussed. The first problem eliminates the phase behavior aspect of the problem by studying the flow of a single component as it undergoes an isothermal phase change. The second couples the effects of temperature and flow behavior by including a second component that is immiscible with the original component. Phase behavior is added by using a set of three partially miscible components that partition into two or three separate phases. 66 refs., 54 figs., 14 tabs.

  17. Temperature and pressure measurements at cold exit of counter-flow vortex tube with flow visualization of reversed flow

    Science.gov (United States)

    Yusof, Mohd Hazwan bin; Katanoda, Hiroshi; Morita, Hiromitsu

    2015-02-01

    In order to clarify the structure of the cold flow discharged from the counter-flow vortex tube (VT), the temperature and pressure of the cold flow were measured, and the existence and behavior of the reversed flow at the cold exit was studied using a simple flow visualization technique consisting of a 0.75mm-diameter needle, and an oil paint droplet. It is observed through this experiment that the Pitot pressure at the cold exit center can either be lower or higher than atmospheric pressure, depending on the inlet pressure and the cold fraction, and that a reversed flow is observed when the Pitot pressure at the cold exit center is lower than atmospheric pressure. In addition, it is observed that when reducing the cold fraction from unity at any arbitrary inlet pressure, the region of reversed and colder flow in the central part of cold exit extends in the downstream direction.

  18. Experimental study on low temperature thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs) in fly ash

    Institute of Scientific and Technical Information of China (English)

    YAN Jianhua; CHEN Tong; LU Shengyong; LI Xiaodong; GU Yueling; CEN Kefa

    2007-01-01

    The effects of temperature and time on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)distribution in fly ash of a municipal solid waste incinerator(MSWI) were studied in a tubular oven under nitrogen atmosphere.The PCDD/Fs in the gas phase and solid phase were detected by high-resolution gas chromatography coupled with low resolution mass spectrometry (HRGC/LRMS)separately.The experimental results showed that the major congener was octa-chlorinated dibenzo-p-dioxin (OCDD) in the gas phase and the low chlorinated congeners were the major products in the solid phase.There were high levels of OCDD in the gas phase in several experimental conditions althoughthe PCDD/Fs in the solid phase could be decomposed.The optimum condition for PCDD/Fs decomposition in fly ash was a heating time of 60 min at 400 ℃ under nitrogen atmosphere.

  19. Recycling of Pre-Washed Municipal Solid Waste Incinerator Fly Ash in the Manufacturing of Low Temperature Setting Geopolymer Materials

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-08-01

    Full Text Available In this work, three samples of municipal solid waste incinerators fly ash (MSWI-FA have been stabilized in systems containing coal fly ash to create geopolymers through a polycondensation reaction. Monolithic products have been obtained with both MSWI fly ash as received and after the partial removal of chloride and sulfate by water washing. The polycondensation products have been characterized qualitatively by means of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy and quantitatively, through the determination of the volume of reacted water and silicate. Furthermore, the heavy metals and chloride releases together with the physico-mechanical properties have been evaluated on the hardened products. In conclusion, considering the technological and environmental performances of the obtained geopolymers, they could be suitable for many non-structural applications, such as backfilling of abandoned quarries, decorative materials or brick fireplaces, hearths, patios, etc.

  20. Global Stream Temperatures and Flows under Climate Change

    Science.gov (United States)

    van Vliet, M. T.; Yearsley, J. R.; Franssen, W. H.; Ludwig, F.; Haddeland, I.; Lettenmaier, D. P.; Kabat, P.

    2012-12-01

    Climate change will affect thermal and hydrologic regimes of rivers, having a direct impact on human water use and freshwater ecosystems. Here we assess the impact of climate change on stream temperature and streamflow globally. We used a physically-based stream temperature river basin model (RBM) linked to the Variable Infiltration Capacity (VIC) model. The modelling framework was adapted for global application including impacts of reservoirs and thermal heat discharges, and was validated using observed water temperature and river discharge records in large river basins globally. VIC-RBM was forced with an ensemble of bias-corrected Global Climate Model (GCM) output resulting in global projections of daily streamflow and water temperature for the 21st century. Global mean and high (95th percentile) stream temperatures are projected to increase on average by 0.8-1.6 (1.0-2.2)°C for the SRES B1-A2 scenario for 2071-2100 relative to 1971-2000. The largest water temperature increases are projected for Europe, North America, Southeast Asia, South Africa and parts of Australia. In these regions, the sensitivities for warming are exacerbated by projected decreases in summer low flows. Large increases in water temperature combined with decreases in low flows are found for the southeastern U.S., Europe and eastern China. These regions could potentially be affected by increased deterioration of water quality and freshwater habitats, and reduced water available for beneficial uses such as thermoelectric power production.

  1. Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators

    Directory of Open Access Journals (Sweden)

    Bernal, S. A.

    2015-06-01

    Full Text Available This study assessed the mechanical properties, and structural changes induced by high temperature exposure, of alkali-silicate activated slag cements produced with sodium silicates derived from silica fume (SF and rice husk ash (RHA. Similar reaction products were identified, independent of the type of silicate used, but with subtle differences in the composition of the C-S-H gels, leading to different strength losses after elevated temperature exposure. Cements produced with the alternative activators developed higher compressive strengths than those produced with commercial silicate. All samples retained strengths of more than 50 MPa after exposure to 600 °C, however, after exposure to 800 °C only the specimens produced with the RHA-based activator retained measurable strength. This study elucidated that silicate-activated slag binders, either activated with commercial silicate solutions or with sodium silicates based on SF or RHA, are stable up to 600 °C.Este estudio evaluó las propiedades mecánicas, y cambios estructurales inducidos por exposición a temperaturas elevadas, de cementos de escoria activada alcalinamente producidos con silicatos sódicos derivados de humo de sílice (SF y ceniza de cascarilla de arroz (RHA. Se identificaron productos de reacción similares, independiente del tipo de silicato utilizado, pero con diferencias menores en la composición de las geles C-S-H, lo cual indujo diferentes pérdidas de resistencia posterior a exposición a temperaturas elevadas. Los cementantes producidos con los activadores alternativos desarrollaron resistencias a la compresión más altas que aquellos producidos con silicato comercial. Todas las muestras retuvieron resistencias de más de 50 MPa posterior a la exposición a 600 °C, sin embargo, posterior a la exposición a 800 °C únicamente muestras producidas con activadores de RHA retuvieron resistencias medibles. Este estudio elucidó que cementantes de escoria activada con

  2. Constitutive model of discontinuous plastic flow at cryogenic temperatures

    CERN Document Server

    Skoczen, B; Bielski, J; Marcinek, D

    2010-01-01

    FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. Some of these materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha) and evolution of micro-damage. The constitutive model presented in the paper is focused on the discontinuous plastic flow (serrated yielding) and takes into account the relevant thermodynamic background. The discontinuous plastic flow reflecting the DSA effect is described by the mechanism of local catastrophic failure of Lomer-Cottrell (LC) locks under the stress fields related to the accumulating edge dislocations (below the transition temperature from the screw dislocations to the edge dislocations mode T-1). The failure of LC locks leads to mass...

  3. Melting and Sintering of Ashes

    DEFF Research Database (Denmark)

    Hansen, Lone Aslaug

    1997-01-01

    in the ashes lead to increased melt fractions in the temperature range 600-750°C.b) Bottom ashes from straw combustion consist purely of silicates, with varying ratios of the quite refractory Al-silicates and quartz to the less refractory K- and Ca-silicates. Bottom ashes melt in the temperature range 800......-1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction...

  4. Ash formation, deposition, corrosion, and erosion in conventional boilers

    Energy Technology Data Exchange (ETDEWEB)

    Benson, S.A.; Jones, M.L. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  5. Controlling formaldehyde emissions with boiler ash.

    Science.gov (United States)

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  6. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    Science.gov (United States)

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant.

  7. The study of velocimetry in high temperature flow

    International Nuclear Information System (INIS)

    High temperature flow velocity measurement system is presented. This system employs the ultrasonic buffer rod method and pulsed Doppler method. The buffer rod has a cooling jacket to use the high efficiency room temperature transducer. A numerical simulation is applied to design the optimised buffer rod, and its result shows good agreement with an experiment. For considering ultrasonic velocimetry method, the temperature dependency of sound velocity in the molten glass at the temperature of 1000°C to 1200°C is obtained and its difference is within plus-minus 5 per-cent in the molten borosilicate glass. Therefore, we can apply ultrasonic technique. Using this technique, the velocity, especially the speed of relative moving wall is obtained. (author)

  8. Use of ashes and ash-and-slad wastes in construction

    Directory of Open Access Journals (Sweden)

    P. Lahtinen

    2011-06-01

    Full Text Available The use of ash waste saves expenses on main materials without compromising the quality of the product, while solving the problem of disposal of ash materials. The aim of this work is classification of ashes and evaluation its use in construction.Classification of ash-and-slad wastes based on type of burned coal, way of incineration, flame temperature, way of ash disposal is made. The chemical composition and behavior of shale ash, its main deposits, its advantages as a mineral concrete admixture are analysed. Fly ashes are divided into siliceous ashes and basic ashes.Various application areas of ash-and-slad wastes in construction are considered, the examples of its use are given.

  9. High resolution temperature measurement technique for measuring marine heat flow

    Institute of Scientific and Technical Information of China (English)

    QIN; YangYang; YANG; XiaoQiu; WU; BaoZhen; SUN; ZhaoHua; SHI; XiaoBin

    2013-01-01

    High resolution temperature measurement technique is one of the key techniques for measuring marine heat flow. Basing on Pt1000 platinum resistance which has the characteristics of high accuracy and good stability, we designed a bridge reversal excitation circuit for high resolution temperature measurement. And the deep ocean floor in-situ test results show that: (1) temperature deviation and peak-to-peak resolution of the first version circuit board (V1) are 1.960-1.990 mK and 0.980-0.995 m Kat 1.2-2.7°C, respectively; and temperature deviation and peak-to-peak resolution of the second circuit board (V2) are 2.260mK and 1.130 mK at 1.2-1.3°C, respectively; (2) During the 2012NSFC-IndOcean cruise, seafloor geothermal gradient at Ind2012HF03,-07 and-12 stations (water depth ranges from 3841 to 4541 m) were successfully measured, the values are 59.1,75.1 and 71.6°C/km, respectively. And the measurement errors of geothermal gradient at these three stations are less than 3.0% in terms of the peak-to-peak resolution. These indicate that the high resolution temperature measurement technique based on Pt1000 platinum resistance in this paper can be applied to marine heat flow measurement to obtain high precision geothermal parameters.

  10. Flow and Temperature Fields in Slab Continuous Casting Molds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to develop super-board and super-thick slabs, the flow and temperature fields were studied in slab continuous casting molds under different practical conditions, such as slab dimensions, with-drawing slab speed, design of nozzles, and superheat temperature. The results showed that it is preferred to incline nozzle bores downwards and the submerged depth of the nozzles is best kept between 250€?300 mm. In addition, the solidified shell is thicker at the wide face than that at the narrow face, while the thin points along the wide face exist both in the center and in the some area toward each respective end.

  11. Finite element simulation of temperature dependent free surface flows

    Science.gov (United States)

    Engelman, M. S.; Sani, R. L.

    1985-01-01

    The method of Engelman and Sani (1984) for a finite-element simulation of incompressible surface flows with a free and/or moving fluid interface, such as encountered in crystal growth and coating and polymer technology, is extended to temperature-dependent flows, including the effect of temperature-dependent surface tension. The basic algorithm of Saito and Scriven (1981) and Ruschak (1980) has been generalized and implemented in a robust and versatile finite-element code that can be employed with relative ease for the simulation of free-surface problems in complex geometries. As a result, the costly dependence on the Newton-Raphson algorithm has been eliminated by replacing it with a quasi-Newton iterative method, which nearly retains the superior convergence properties of the Newton-Raphson method.

  12. Rheology of fly ashes from coal and biomass co-combustion

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Frandsen, Flemming

    2010-01-01

    The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of vario...... viscosity leading to higher stickiness of the ash particles. Wood co-firing has only minor effects, due to the composition of wood ash and the low percentage of wood in the coal/biomass blend.......The presence of large amounts of alkali metals, chlorine and sulphur in most biomass fuels - compared to coal - can create serious ash-related problems such as deposition, agglomeration and/or corrosion. This paper discusses the viscosity characteristics of fly ash from the co-combustion of various...... coal/biomass blends in a pilot scale pf-boiler. The produced data provide information on the melting of the ash and its flow characteristics, as a function of temperature, which may be used to modify the temperature profile of the boiler in order to avoid slagging. Straw co-firing lowers the ash...

  13. Ash in the Soil System

    Science.gov (United States)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  14. Characterization of fly ash from bio and municipal waste

    DEFF Research Database (Denmark)

    Lima, Ana T.; Ottosen, Lisbeth M.; Pedersen, Anne Juul;

    2008-01-01

    Four different fly ashes are characterized in the present paper. The ashes differ in the original fuel type and were sampled at distinct plants. The investigation includes two different ashes from municipal solid waste incineration (with and without sorbents addition), a straw ash and an ash from...... on leaching characteristics, Cd is found mainly associated with carbonates in MSW fly ash and is associated with oxides in straw and co-combustion of wood and oil ash, while Cr is mainly associated with oxides in all studied fly ashes or with carbonates in straw ash. Among the studied parameters, crystalline...... minerals present in fly ash are discussed, measured by an XRD apparatus. Fuel is of main importance to determine Cd and Cr final concentration on fly ash, while flue gas temperature plays an important role as well. The goal of the present work is to underline the main parameters that determine fly ash...

  15. Experimental Study on Gasification and Ash Fusion Characteristics of Coal with High Ash Fusion Temperatures%高灰熔点煤气化特性及灰渣熔融特性的研究

    Institute of Scientific and Technical Information of China (English)

    乌晓江; 张忠孝; 徐雪元; 刘建斌; 张建文

    2011-01-01

    在0.1-0.2 kg/h小型电加热式常压气流床气化装置上,研究了不同温度、不同O/C物质的量比对高灰熔点煤气化特性和煤灰熔融特性的影响.结果表明:在不同温度下,随着O/C物质的量比增加,CO2体积分数呈线性增加.当O/C物质的量比较低时,H2和CH4体积分数较高;随着O/C物质的量比的增加,合成气中H2和CH4的含量下降较快.在不同温度下,随着O/C物质的量比的增加,碳转化率增加;但当O/C物质的量比达到1.1时,进一步增大O/C物质的量比,则使得炉内煤焦及合成气中可燃气体(CO、H2、CH4等)的燃烧%The effect of temperature and O/C molar ratio on coal gasification and ash fusion characteristics was studied in a 0.1~0.2 kg/h lab-scale electrical entrained-bed coal gasification setup.Results show that the yield of CO2 in syngas increases linearly with rising O/C molar ratio at different temperatures.When O/C molar ratio is at relatively low value,the yields of H2 and CH4 are relatively high,but the yields drop rapidly later on with increasing O/C molar ratio.The carbon conversion increases with growing O/C molar ratio at different temperatures.However,when the O/C molar ratio arrives at 1.1,with further increase of O/C molar ratio,more CO2 and H2O as well as less CO and H2 will be produced due to the increasing combustion share of combustible gases in char and syngas,such as CO,H2 and CH4,which subsequently lead to lower cold gas efficiency.Based on above test conditions,the optimum O/C molar ratio window is found to be 0.9-1.1 while the optimum temperature window is 1 300-1 350 ℃ for Huainan high ash fusion temperature coal with dry ash handling system.

  16. Diffuse venting at the ASHES hydrothermal field: Heat flux and tidally modulated flow variability derived from in situ time-series measurements

    Science.gov (United States)

    Mittelstaedt, Eric; Fornari, Daniel J.; Crone, Timothy J.; Kinsey, James; Kelley, Deborah; Elend, Mitch

    2016-04-01

    Time-series measurements of diffuse exit-fluid temperature and velocity collected with a new, deep-sea camera, and temperature measurement system, the Diffuse Effluent Measurement System (DEMS), were examined from a fracture network within the ASHES hydrothermal field located in the caldera of Axial Seamount, Juan de Fuca Ridge. The DEMS was installed using the HOV Alvin above a fracture near the Phoenix vent. The system collected 20 s of 20 Hz video imagery and 24 s of 1 Hz temperature measurements each hour between 22 July and 2 August 2014. Fluid velocities were calculated using the Diffuse Fluid Velocimetry (DFV) technique. Over the ˜12 day deployment, median upwelling rates and mean fluid temperature anomalies ranged from 0.5 to 6 cm/s and 0°C to ˜6.5°C above ambient, yielding a heat flux of 0.29 ± 0.22 MW m-2 and heat output of 3.1± 2.5 kW. Using a photo mosaic to measure fracture dimensions, the total diffuse heat output from cracks across ASHES field is estimated to be 2.05 ± 1.95 MW. Variability in temperatures and velocities are strongest at semidiurnal periods and show significant coherence with tidal height variations. These data indicate that periodic variability near Phoenix vent is modulated both by tidally controlled bottom currents and seafloor pressure, with seafloor pressures being the dominant influence. These results emphasize the importance of local permeability on diffuse hydrothermal venting at mid-ocean ridges and the need to better quantify heat flux associated with young oceanic crust.

  17. Study on the volcanic ash cloud with Feng Yun-3 meteorological satellite data

    Science.gov (United States)

    Gong, Cai-lan T.; Jiang, Shan; Hu, Yong; Meng, Peng

    2013-09-01

    Volcano eruption can produce a mass of volcanic ash floating in the air for a long period, which will seriously threaten the aerial planes safety, and cause the air pollution, it could do harm to people's living environment and their health. Take the Iceland Eyjafjallajokull volcano as an example which erupted in April to May 2010, the volcano ash cloud were derived with the visible and infrared scanning radiometer of FengYun-3(FY-3 VIRR) meteorological satellite data. The medium wave infrared (MWIR) and the thermal infrared split windows (THIR-SW) data were used separately. the MODIS THIR-SW data were also be used to retrieve ash cloud to test the results derived from FY-3 VIRR data. It showed that the MWIR was more applicable for the ash cloud retrieving than the THIR-SW with FY-3 VIRR data, and the threshold value should be adjusted to around negative 1 rather than 0 for VIRR THIR-SW data. And the threshold should be adjusted with the THIR-SW of FY-3. The ash cloud radiation and bright temperature(BT), spatial distribution characteristics were also analyzed quantitatively with the two channels data. The study could provide parameters for the prediction of volcanic ash cloud dispersion simulate. When the real temperature of lava flow were high enough, the sensor will show a false bright temperature, how to retrieve the real temperature of the higher lava flow is a problem need to be studied in the future.

  18. Ash after forest fires. Effects on soil hydrology and erosion

    Science.gov (United States)

    Bodí, Merche B.

    2013-04-01

    Hillslopes were though to be most susceptible to enhanced hydro-geomorphological responses immediately following burning, with susceptibility declining during the first months or years depending on the soil and vegetation recovery. However, Cerdà (1998) found some indices in that immediately after the fire, the thin wettable ash layer that typically covers the ground could absorb rainfall and prevent or delay the onset of overland flow and associated erosion. Therefore the time lag while ash remains on the ground become of crucial importance to protect the soil after a wildfire. The effect of this ash layer was rarely been considered in detail because ash has often been reduced or redistributed by wind or water erosion before the onset of monitoring and thus the data collection typically begun some weeks or month after the fire. The first papers focussed only on ash and its hydrological effects were published by Cerdà and Doerr (2008) and by Woods and Balfour (2008). The results showed that the soil covered with ash indeed reduced and delayed surface runoff, reduced soil splash detachment and produced lower sediment yield compared to bare terrain. However, these findings arose more questions, as for instance: Why in other research there were indices that ash reduces infiltration? what is the mechanism by which why ash reduces overland flow? The research went further with Bodí PhD. First of all, it was crucial the agreement on the fact that the material "ash" is very variable depending on the original vegetation and the type and temperature of combustion. Therefore ash properties are different between wildfires even and within a fire. This is the main reason of its different effects and thus ash not always reduces runoff and sediment yield. In this way, depending on the nature of ash, it can increase overland flow if it is crusted (usually it contains a high content of calcium carbonate), it is water repellent (with high contents of organic carbon and specially

  19. Influence of Bed Ash and Fly Ash Replacement in Mortars

    Directory of Open Access Journals (Sweden)

    S. L. Summoogum-Utchanah

    2015-03-01

    Full Text Available The study evaluates the influence of fly ash and bottom ash as partial cement substitutes in mortars by studying the particle size distribution, consistency, flow, fresh density, air content, compressive strength and flexural strength characteristics. The results revealed that fly ash and cement had relatively the same particle size distribution unlike bottom ash. In the fresh state, as the amount of pozzolans increased in the mixtures, the mortars showed an enhancement in workability, were susceptible to water loss by bleeding, and exhibited a decline in fresh density. The early strength gains of the fly ash samples were low but reached higher than the control after 28 days of curing. The flexural strength increased as the fly ash content rose to reach a maximum at 20 % replacement. However, the 2-day compressive strength of bottom ash samples was higher than the control but decreased after 28 days of curing while the flexural strength declined with addition of bottom ash except at 5 % substitution.

  20. Experimental studies on pulp and paper mill sludge ash behavior in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Latva-Somppi, J. [VTT Chemical Technology, Espoo (Finland). Process Technology

    1998-11-01

    reduced. During sludge combustion the largest ash particles, over 200 - 300 lam, were accumulated in the bed due to their size. Ash was also accumulated in the bed as micron-size particles adhered to the sand surface fanning a sintered layer. Bench-scale tests showed that this type of layer, fonmed during bark combustion, initiated bed agglomeration and resulted in defluidization without combustion at 988 deg C. Wirb pulp and paper mill sludges the layer fonnation was not connected to bed agglomeration at the studied temperatures up to 1,000 deg C. Presumably, the bark-derived K species in the layer decreased the ash viscosity and triggered bed agglomeration. Trace elements were not accumulated excessively in the bed. Ash deposits were foamed on the furnace wall above the bed. Ash and sand particles were deposited on the surface roughness probably from the down-flowing particle flux near the wall. Ash sintering densified the structure. Condensed or molten ash species were not detected in the structure. The ash viscosity was lower in the pulp mill sludge resulting in larger deposits than during paper mill sludge firing. Calculations indicate that when the ash viscosity is less than 1,000 - 3,000 Pa s, large ash and sand particles are incorporated in the deposit. (orig.) 121 refs. LIEKKI Research Programme

  1. Fly ash quality and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Barta, L.E.; Lachner, L.; Wenzel, G.B. [Inst. for Energy, Budapest (Hungary); Beer, M.J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  2. High-temperature entrained flow gasification of biomass

    DEFF Research Database (Denmark)

    Qin, Ke; Lin, Weigang; Jensen, Peter Arendt;

    2012-01-01

    Biomass (wood and straw) gasification has been studied in a laboratory scale atmospheric pressure entrained flow reactor. Effects of reaction temperature, steam/carbon molar ratio, excess air ratio, and biomass type on the solid, liquid and gas products were investigated. The biomass was completely...... converted at all investigated operating conditions and the syngas contained nearly no tar but some soot at the highest applied reaction temperature of 1350°C. With a rise of reaction temperature from 1000°C to 1350°C, the yield of producer gas (defined as the sum of H2, CO, CO2 and hydrocarbons up to C3...... species) increased dramatically by 72%. The H2/CO molar ratio in syngas was close to 1 at reaction temperature above 1200°C with steam addition. Higher temperature was beneficial to lower the amount of tar while the soot yield showed a peak of 56.7g/kg fuel at 1200°C. With steam addition, the producer gas...

  3. Can ash clog soil pores?

    Science.gov (United States)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  4. The Wilson Flow and the finite temperature phase transition

    OpenAIRE

    Wandelt, Michèle; Knechtli, Francesco; Günther, Michael

    2016-01-01

    We consider the determination of the finite temperature phase transition in the Yang--Mills SU(3) gauge theory. We compute the difference of the spatial and temporal energy density at a physical Wilson flow time. This difference is zero in the confined phase and becomes non zero in the deconfined phase. We locate the phase transition by using a new technique based on an exponential smoothing spline. This method is an alternative to the determination of the phase transition based on the Polyak...

  5. Isothermal, isobaric, elevated temperature, high-pressure, flow calorimeter

    Science.gov (United States)

    Christensen, J. J.; Hansen, L. D.; Izatt, R. M.; Eatough, D. J.; Hart, R. M.

    1981-08-01

    An isothermal, isobaric, flow calorimeter suitable for measuring either endothermic or exothermic heats of mixing from 273 to 423 K and from 0.1 to 40.5 MPa is described. Energy effects from 0.15 to 30 J/min can be measured to an accuracy of ±0.5% for standard test systems at a constant temperature through the use of an automatically controlled heater and a constant cooling Peltier device. The calorimeter was tested by measuring the heat of mixing of water-ethanol at 383 K and 1 MPa and was found to produce data in good agreement with published literature values.

  6. The Wilson Flow and the finite temperature phase transition

    CERN Document Server

    Wandelt, Michèle; Günther, Michael

    2016-01-01

    We consider the determination of the finite temperature phase transition in the Yang--Mills SU(3) gauge theory. We compute the difference of the spatial and temporal energy density at a physical Wilson flow time. This difference is zero in the confined phase and becomes non zero in the deconfined phase. We locate the phase transition by using a new technique based on an exponential smoothing spline. This method is an alternative to the determination of the phase transition based on the Polyakov loop susceptibility and can also be used with dynamical fermions.

  7. Ash melting behavior by Fourier transform infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI Han-xu; QIU Xiao-sheng; TANG Yong-xin

    2008-01-01

    A Fourier Transform Infrared Spectroscopic (FTIR) method involving a Fe2O3 flux was used to learn how China's coal ash melts. The relationship between ash fusion temperature and chemical composition, as well as the effects of Fe2O3 flux on the ash fusion temperature were studied. The relationship between ash fusion temperature and chemical composition, mineralogical phases and functional groups was analyzed with the FTIR method. The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks, which is of great significance for the study of ash behavior.

  8. Effect of sintering temperature on mechanical behaviour and bioactivity of sol-gel synthesized bioglass-ceramics using rice husk ash as a silica source

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, J.P., E-mail: jyotiprakash_nitrkl@rediffmail.com [Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India); Bera, J., E-mail: bera@rediffmail.com [Department of Ceramic Engineering, National Institute of Technology, Rourkela, Odisha 769008 (India)

    2010-11-01

    Bioglass-ceramics with SiO{sub 2}-Na{sub 2}O-CaO composition was prepared by sol-gel method using rice husk ash as a silica source. Material was sintered at different temperatures ranging from 900 to 1050 deg. C for 2 h. Phase-formation behaviour, densification characteristics, and mechanical strength of glass-ceramics were investigated. The material sintered at 1000 deg. C showed a good mechanical strength. Mechanical properties were correlated with microstructural features. Both in vitro bioactivity and biodegradability of sintered material were investigated by incubating in simulated body fluid and Tris buffer solution, respectively. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction were used to investigate the surface deposition during body fluid incubation. Both bioactivity and degradability decreased with increase in sintering temperature.

  9. 78 FR 65306 - Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams

    Science.gov (United States)

    2013-10-31

    ... Development. The report describes best practices for the deployment of continuous temperature and flow sensors... AGENCY Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams AGENCY... Continuous Monitoring of Temperature and Flow in Wadeable Streams'' (EPA/600/R-13/170). The EPA also...

  10. Effect of temperature on the hydration process and strength development in blends of Portland cement and activated coal gangue or fly ash

    Institute of Scientific and Technical Information of China (English)

    Pei-ming WANG; Xian-ping LIU

    2011-01-01

    This paper describes the results of an investigation into the effect of the variation of curing temperatures between 0 and 60 ℃ on the hydration process,pore structure variation,and compressive strength development of activated coal gangue-cement blend (ACGC).Hardened ACGC pastes cured for hydration periods from 1 to 360 d were examined using the non-evaporable water method,thermal analysis,mercury intrusion porosimetry,and mechanical testing.To evaluate the specific effect of activated coal gangue (ACG) as a supplementary cementing material (SCM),a fly ash-cement blend (FAC) was used as a control.Results show that raising the curing temperature accelerates pozzolanic reactions involving the SCMs,increasing the degree of hydration of the cement blends,and hence increasing the rate of improvement in strength.The effect of curing temperature on FAC is greater than that on ACGC.The pore structure of the hardened cement paste is improved by increasing the curing temperature up to 40 ℃,but when the curing temperature reaches 60 ℃,the changing nature of the pore structure leads to a decrease in strength.The correlation between compressive strength and the degree of hydration and porosity is linear in nature.

  11. EDU 626 ASH

    OpenAIRE

    NARESH 40 course tutorial/tutorialoutlet

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com     Product Description EDU 626 Week 1 Research Topic (Ash) EDU 626 Week 2 Annotated Bibliography (Ash) EDU 626 Week 2 Critical Thinking Questions (Ash) EDU 626 Week 3 Procedures or Methods (Ash) EDU 626 Week 4 Critical Thinking Questions (Ash) EDU 626 Week 5 Critical Thinking Questions (Ash) EDU 626 Week 6 Final Paper (Ash)  

  12. Corrosion of high temperature resisting alloys exposed to heavy fuel ash; Corrosion de aleaciones resistentes a altas temperaturas expuestas a ceniza de combustoleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Wong Moreno, Adriana del Carmen

    1998-03-01

    The objective of the performed research was to study the degradation process by high temperature corrosion of alloys exposed to heavy fuel oil ashes through a comparative experimental evaluation of its performance that allowed to establish the mechanisms involved in the phenomenon. The experimentation carried out involved the determination of the resistance to the corrosion of 14 alloys of different type (low and medium alloy steels, ferritic and austenitic stainless steels, nickel base alloys and a FeCrAl alloy of type ODS) exposed to high temperatures (580 Celsius degrees - 900 Celsius degrees) in 15 ash deposits with different corrosive potential, which were collected in the high temperature zone of boilers of thermoelectric power stations. The later studies to the corrosion tests consisted of the analysis by sweeping electron microscopy supported by microanalysis of the corroded probes, with the purpose of determining the effect of Na, V and S on the corrosivity of the ash deposits and the effect of the main alloying elements on the corrosion resistance of the alloys. Such effects are widely documented to support the proposed mechanisms of degradation that are occurring. The global analysis of the generated results has allowed to propose a model to explain the global mechanism of corrosion of alloys exposed to the high temperatures of ash deposits. The proposed model, complements the processed one by Wilson, widely accepted for fused vanadates, as far as on one hand, it considers the effect of the sodium sulfate presence (in addition to the vanadium compounds) in the deposits, and on the other hand, it extends it to temperatures higher than the point of fusion of constituent vanadium compounds of the deposits. Both aspects involve considering the roll that the process of diffusion of species has on the degradation and the capacity of protection of the alloy. The research performed allowed to confirm what the Wilson model had established for deposits with high

  13. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao;

    2016-01-01

    . Therefore, timely removal of ash deposits is essential for optimal boiler operation. In order to improve the qualitative and quantitative understanding of deposit shedding in boilers, this study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash...... deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000 °C. Subsequently, the deposits were sheared off by an electrically controlled arm, and the corresponding adhesion strength was measured. The results reveal the effect of temperature, ash/deposit composition......, sintering duration, and steel type on the adhesion strength....

  14. Utilization of ash fractions from alternative biofuels used in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Hinge, J.; Christensen, I. (Danish Technological Inst., Aarhus (Denmark)); Dahl, J. (Force Technology, Broendby (Denmark)); Arendt Jensen, P. (DTU-CHEC, Kgs. Lyngby (Denmark)); Soendergaard Birkmose, T. (Dansk Landbrugsraadgivning, Landscentret, Aarhus (Denmark)); Sander, B. (DONG Energy, Fredericia (Denmark)); Kristensen, O. (Kommunekemi A/S, Nyborg (Denmark))

    2008-07-15

    It is expected, that demand for the traditional biomass resources wood and straw will increase over the next years. In other projects a number of agro industrial waste products has been tested and characterized as fuels for power plants. The annual production in Denmark of these fuels is estimated at roughly 400.000 tons of Dry Matter per year, so the potential is substantial. The agro industrial biomass products include: Grain screening waste, pea shells, soy waste, cocoa waste, sugar beet waste, sunflower waste, shea waste, coffee waste, olive waste, rice shell waste, potato waste, pectin waste, carrageen waste, tobacco waste, rape seed waste and mash from breweries. In the PSO project 5075, 5 different types of fuel pellets was produced, which were rendered suitable for combustion in power plants. In this project, ash is produced from the above mentioned 5 mixtures together with another 2 mixtures produced especially for this project. From the 5 mixtures from PSO 5075, ash is produced at Danish Technological Institute's slag analyzer. These ash products are rendered comparable to ash from grate fired boilers at power plants. The ash/slag from the combustion in the slag analyzer was then grinded - thus resulting in a total of 5 ash products. At DTU CHEC's Entrained Flow Reactor, ash products from the 5+2 mixtures were produced. These ash products are rendered comparable to ash produced form suspension fired boilers at power plants. For each of the 7 mixtures, bottom-, cyclone and filter ash was taken out separately resulting in a total of 21 ash samples. The produced ashes have been evaluated for their properties as directly applied fertilizer. Furthermore, scenarios have been set up to assess the feasibility in producing artificial fertilizer from the ash products, based on known processes. In the main components the content of Na, S, Cl and K is significantly higher in filter ashes, whereas the content of Mg, Al, Si and Ca is significantly lower. The

  15. Surface modification of oil fly ash and its application in selective capturing of carbon dioxide

    Science.gov (United States)

    Yaumi, Ali L.; Hussien, Ibnelwaleed A.; Shawabkeh, Reyad A.

    2013-02-01

    Oil fly ash from power generation plants was activated with 30% NH4OH and used for selective adsorption of carbon dioxide from CO2/N2 mixture. The treated samples were characterized for their surface area, morphology, crystalline phase, chemical composition and surface functional groups. Energy dispersive X-ray analysis showed an increase in the carbon contents from 45 to 73 wt% as a result of leaching out metal oxides. XRD proved that chemical activation of ash resulted in diminishing of major crystalline phases of zeolite, and other alumino-silicates leaving only quartz and mullite. BET analysis showed an increase in surface area from 59 to 318 m2/g after chemical activation and the pore volume increased from 0.0368 to 0.679 cm3/g. This increase in pore volume is supported by the results of SEM, where more micropores were opened with well-defined particle sizes and porous structure. The TGA of the treated fly ash showed stability at higher temperature as the weight loss decreased with increasing temperature. For treated ash, the FTIR displayed new peaks of amine functional group. The treated ash was used for the removal of CO2 from CO2/N2 mixture and the maximum adsorption/capturing capacity was found to be 240 mg/g. This capacity increases with increase in initial gas concentration, inlet flow rate and temperature suggesting the endothermic nature of the interaction between the gas molecules and the surface of the ash.

  16. Temperature and high pressure effects on choked flow in the microchannel

    Science.gov (United States)

    Parahovnik, Anatoly; Fraiman, Leonid; Rosinsky, Israel; Yossifon, Gilad

    2016-02-01

    We studied the choked flow behavior of gas flow in a single microchannel at inlet pressures of up to 2.2 MPa. Fair agreement was obtained between the basic compressible flow theory, known as Fanno flow, numerical simulations, and experiments for the mass flow rate dependency on the inlet pressure. Investigation of the effect of varying the inlet temperature on the choked flow behavior revealed that the power law scaling of the maximum flow rate on the temperature varies with inlet pressure. This was suggested, using numerical simulations, to be a result of heat loss to the environment.

  17. High energy sodium based room temperature flow batteries

    Science.gov (United States)

    Shamie, Jack

    As novel energy sources such as solar, wind and tidal energies are explored it becomes necessary to build energy storage facilities to load level the intermittent nature of these energy sources. Energy storage is achieved by converting electrical energy into another form of energy. Batteries have many properties that are attractive for energy storage including high energy and power. Among many different types of batteries, redox flow batteries (RFBs) offer many advantages. Unlike conventional batteries, RFBs store energy in a liquid medium rather than solid active materials. This method of storage allows for the separation of energy and power unlike conventional batteries. Additionally flow batteries may have long lifetimes because there is no expansion or contraction of electrodes. A major disadvantage of RFB's is its lower energy density when compared to traditional batteries. In this Thesis, a novel hybrid Na-based redox flow battery (HNFB) is explored, which utilizes a room temperature molten sodium based anode, a sodium ion conducting solid electrolyte and liquid catholytes. The sodium electrode leads to high voltages and energy and allows for the possibility of multi-electron transfer per molecule. Vanadium acetylacetonate (acac) and TEMPO have been investigated for their use as catholytes. In the vanadium system, 2 electrons transfers per vanadium atom were found leading to a doubling of capacity. In addition, degradation of the charged state was found to be reversible within the voltage range of the cell. Contamination by water leads to the formation of vanadyl acetylacetonate. Although it is believed that vanadyl complex need to be taken to low voltages to be reduced back to vanadium acac, a new mechanism is shown that begins at higher voltages (2.1V). Vanadyl complexes react with excess ligand and protons to reform the vanadium complex. During this reaction, water is reformed leading to the continuous cycle in which vanadyl is formed and then reduced back

  18. On The Temperature Field of a Viscous Reacting Flow Near a Moving Wall with Thermal Radiation

    OpenAIRE

    B.I. Olajuwon; Ayeni, R. O.

    2005-01-01

    We examine the temperature field of a viscous reacting flow near a moving wall with thermal radiation. Of particular interest is the effect of thermal radiation parameter and the Frank-kamenetskii parameter on the flow.

  19. 环境温度对蒸压粉煤灰砖混合料消化的影响%Effect of environmental temperature on slaking of autoclaved fly ash brick mixture

    Institute of Scientific and Technical Information of China (English)

    张建营

    2012-01-01

      The paper analyzes the effect of environmental temperature on slaking of autoclaved fly ash brick mixture, and the relationship between mixture and environmental temperature.%  分析了蒸压粉煤灰砖影响混合料消化的因素,分析了混合料与环境温度的关系,并对某企业存在的问题给出了解决办法。

  20. Temperature and flow rate effects on mass median diameters of thermally generated malathion and naled fogs.

    Science.gov (United States)

    Brown, J R; Chew, V; Melson, R O

    1993-06-01

    The effects of temperature and flow rate on mass median diameters (mmds) of thermally generated aerosol clouds were studied. Number 2 fuel oil alone, undiluted and diluted malathion 91, and undiluted naled were examined. There was a significant flow rate x temperature interaction on the mmds of diluted malathion fogs: i.e., differences among flow rates depended on temperature and vice versa. PMID:8350082

  1. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: Synergy of chloride and sulphate ions

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, A., E-mail: aguerrero@ietcc.csic.es [Eduardo Torroja Institute for Construction Science (CSIC), C/Serrano Galvache, 4, 28033 Madrid (Spain); Goni, S., E-mail: sgoni@ietcc.csic.es [Eduardo Torroja Institute for Construction Science (CSIC), C/Serrano Galvache, 4, 28033 Madrid (Spain); Allegro, V.R., E-mail: allegro@ietcc.csic.es [Eduardo Torroja Institute for Construction Science (CSIC), C/Serrano Galvache, 4, 28033 Madrid (Spain)

    2009-06-15

    The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 deg. C and 40 deg. C during a period of 180 days. The durability has been evaluated by the changes of the flexural strength of mortar, fabricated with this cement, immersed in a simulated radioactive liquid waste rich in sulfate (0.5 M), chloride (0.5 M) and sodium (1.5 M) ions - catalogued like severely aggressive for the traditional Portland cement - and demineralised water, which was used as reference. The reaction mechanism of sulphate, chloride and sodium ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the chloride binding and formation of Friedel's salt was inhibited by the presence of sulphate. Sulphate ion reacts preferentially with the calcium aluminate hydrates forming non-expansive ettringite which precipitated inside the pores; the microstructure was refined and the mechanical properties enhanced. This process was faster and more marked at 40 deg. C.

  2. Effect of temperature on the durability of class C fly ash belite cement in simulated radioactive liquid waste: synergy of chloride and sulphate ions.

    Science.gov (United States)

    Guerrero, A; Goñi, S; Allegro, V R

    2009-06-15

    The durability of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) rich in a mixed sodium chloride and sulphate solution is presented here. The effect of the temperature and potential synergic effect of chloride and sulfate ions are discussed. This study has been carried out according to the Koch-Steinegger test, at the temperature of 20 degrees C and 40 degrees C during a period of 180 days. The durability has been evaluated by the changes of the flexural strength of mortar, fabricated with this cement, immersed in a simulated radioactive liquid waste rich in sulfate (0.5M), chloride (0.5M) and sodium (1.5M) ions--catalogued like severely aggressive for the traditional Portland cement--and demineralised water, which was used as reference. The reaction mechanism of sulphate, chloride and sodium ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the chloride binding and formation of Friedel's salt was inhibited by the presence of sulphate. Sulphate ion reacts preferentially with the calcium aluminate hydrates forming non-expansive ettringite which precipitated inside the pores; the microstructure was refined and the mechanical properties enhanced. This process was faster and more marked at 40 degrees C.

  3. Removal of uranium from simulated fly ash by chloride volatilization method

    International Nuclear Information System (INIS)

    Fly ash is generated from LWR nuclear power plant as a low-level waste, which is contaminated with a small amount of radioactive materials, composed mainly of uranium oxide. The constituents of the fly ash are similar to those of the ore; the major components of the ash are oxides of silicon, aluminum, sodium, magnesium, zinc, iron sodium and uranium. In this study, removal of uranium from the simulated fly ash, of which composition was U3O8: 10, CaO:25, SiO2: 25, Al2O3: 20, MgO: 10, ZnO:5, Fe2O3: 3 and Na2CO3: 2 wt%, by chloride volatilization method was examined. The simulated fly ash was chlorinated by the same manner as the dry way processing for the ore; namely, the ash was heated in a flow of chlorine in the presence of carbon at high temperatures. In the case of volatilization of uranium from U3O8 and a simulated fly ash by chlorination using chlorine and carbon, it was seen that uranium of both samples showed similar volatilization behaviour: The volatilization ratio of uranium (VU) increased with increasing temperature from 800 to 1100 C. The VU value attained 99.9% at 1100 C. Iron, silicon and zinc showed similar behaviour to uranium, namely, they vaporized completely. The volatilization ratio of aluminum, magnesium and sodium were still high in a range 80-90%. The volatilization ratio of calcium was ∼40% under the same chlorination condition, though it changed to chloride. For recovery of uranium from fly ash by chlorination using chlorine in the presence of carbon, high volatilization ratio of uranium can be achieved at high temperatures. Volatilization ratio of other components also increases, which decreases the amount of decontaminated residue resulting in the reducing of decontamination effect. Selection of heating condition is important. (author)

  4. Agglomeration behaviour of high ash Indian coals in fluidized bed gasification pilot plant

    International Nuclear Information System (INIS)

    Although gasification of high ash Indian coals is gaining importance, the resultant uncertainties associated with agglomerate formation are still unresolved. To address this, a suitable pilot scale Fluidized Bed Gasifier was utilized in this study. Stabilized operating conditions in terms of coal feed rate, air feed rate, bed temperature, etc., already identified for maximum possible carbon conversion, were maintained in all experiments and the steam flow rate was only varied. Though the ash fusion temperature of the coals were above 1200 °C, agglomerate was formed during gasification at 950 °C with ‘steam to coal ratio’ less than 0.15 (kg/kg). On increasing this ratio above 0.2 local heat-concentration and agglomeration could be avoided with certainty. Chemical composition alone was not sufficient to explain the relative strength of ash-agglomerates. Compositional variation and state of iron within the matrix were assessed through SEM-EDX and electron paramagnetic resonance (EPR) study, respectively. The probing also required the ash-loading and iron-loading factors to be freshly defined in the context of gasification. Localized heat, large compositional variation, presence of iron in Fe2+ state, ash-loading/iron-loading factors influenced intensity of agglomerate formation. Finally, low temperature agglomerate formation was explained by SiO2–Al2O3–FeO phase diagram. - Highlights: • Pilot plant studies on agglomerate formation during high ash coal gasification. • AFT, chemical analysis of coal ash could not give proper indication. • Ash-/iron-loading factors, compositional variation, Fe2+ leads to agglomeration. • Steam to coal ratio was controlled judiciously to avoid agglomeration. • Cause for agglomeration investigated in depth and remedial adjustment was focused

  5. Direct Quantitative Analysis of Arsenic in Coal Fly Ash

    Directory of Open Access Journals (Sweden)

    Sri Hartuti

    2012-01-01

    Full Text Available A rapid, simple method based on graphite furnace atomic absorption spectrometry is described for the direct determination of arsenic in coal fly ash. Solid samples were directly introduced into the atomizer without preliminary treatment. The direct analysis method was not always free of spectral matrix interference, but the stabilization of arsenic by adding palladium nitrate (chemical modifier and the optimization of the parameters in the furnace program (temperature, rate of temperature increase, hold time, and argon gas flow gave good results for the total arsenic determination. The optimal furnace program was determined by analyzing different concentrations of a reference material (NIST1633b, which showed the best linearity for calibration. The optimized parameters for the furnace programs for the ashing and atomization steps were as follows: temperatures of 500–1200 and 2150°C, heating rates of 100 and 500°C s−1, hold times of 90 and 7 s, and medium then maximum and medium argon gas flows, respectively. The calibration plots were linear with a correlation coefficient of 0.9699. This method was validated using arsenic-containing raw coal samples in accordance with the requirements of the mass balance calculation; the distribution rate of As in the fly ashes ranged from 101 to 119%.

  6. ExB mean flows in finite ion temperature plasmas

    CERN Document Server

    Madsen, J; Naulin, V; Nielsen, A H

    2016-01-01

    The impact of ion pressure dynamics on E x B mean flows is investigated. Three stresses in addition to the Reynolds stress are shown to modify the E x B mean flow. These additional terms in the stress tensor all require ion pressure fluctuations. Quasi-linear analysis indicates that these additional stresses are as important as the standard Reynolds stress and hence must be taken into account in analysis of E x B mean flows.

  7. Magnetic properties in an ash flow tuff with continuous grain size variation: a natural reference for magnetic particle granulometry

    Science.gov (United States)

    Till, J.L.; Jackson, M.J.; Rosenbaum, J.G.; Solheid, P.

    2011-01-01

    The Tiva Canyon Tuff contains dispersed nanoscale Fe-Ti-oxide grains with a narrow magnetic grain size distribution, making it an ideal material in which to identify and study grain-size-sensitive magnetic behavior in rocks. A detailed magnetic characterization was performed on samples from the basal 5 m of the tuff. The magnetic materials in this basal section consist primarily of (low-impurity) magnetite in the form of elongated submicron grains exsolved from volcanic glass. Magnetic properties studied include bulk magnetic susceptibility, frequency-dependent and temperature-dependent magnetic susceptibility, anhysteretic remanence acquisition, and hysteresis properties. The combined data constitute a distinct magnetic signature at each stratigraphic level in the section corresponding to different grain size distributions. The inferred magnetic domain state changes progressively upward from superparamagnetic grains near the base to particles with pseudo-single-domain or metastable single-domain characteristics near the top of the sampled section. Direct observations of magnetic grain size confirm that distinct transitions in room temperature magnetic susceptibility and remanence probably denote the limits of stable single-domain behavior in the section. These results provide a unique example of grain-size-dependent magnetic properties in noninteracting particle assemblages over three decades of grain size, including close approximations of ideal Stoner-Wohlfarth assemblages, and may be considered a useful reference for future rock magnetic studies involving grain-size-sensitive properties.

  8. Plastic flow peculiarities of V-4Ti-4Cr alloys under high temperatures

    International Nuclear Information System (INIS)

    Full text of publication follows: Mechanical properties and plastic flow peculiarities of V-4Ti-4Cr alloys (Russian technology) in temperature interval 300-1100 K under tension and compression tests (the deformation rate is 10-3 s-1) have been researched. The temperature windows have been determined, inside which the serrated flow and anomaly strengthening of the alloys arises. The serrated flow is observed under tension and compression flows, but the value of the stress drop is lower under compression than under tension. The flow mechanism of alloys changes under the temperature ∼700 K (there is a bend on the temperature dependence of the stress drop). Inside the temperature intervals where there is the serrated flow, the anomaly strengthening of the alloys is observed (the yield point and yield stress increase as the temperature increases). Using the X-ray analysis, the peculiarities of the structure state of the solid solutions for the alloys and metallic vanadium (initial and after plastic flow states under different temperatures) have been researched. The solid solutions (substitutional and interstitial elements) are divided and the heterophase structures of the alloys are observed. The type and the intensity of the concentration layering are controlled by the interstitial elements (the temperature up to 570-620 K ) and the substitutional elements, especially titanium (the temperature 670-970 K). The model of the serrated flow of the alloys has been suggested and the criteria of its realization have been determined. (authors)

  9. Water temperature in irrigation return flow from the Upper Snake Rock watershed

    Science.gov (United States)

    Water returning to a river from an irrigated watershed could increase the water temperature in the river. The objective of this study was to compare the temperature of irrigation return flow water with the temperature of the diverted irrigation water. Water temperature was measured weekly in the mai...

  10. 灰化温度及热解气氛对生物质灰灼烧失重特性的影响%Influence of ashing temperature and pyrolysis atmosphere on weight loss properties of biomass ash obtained by combustion

    Institute of Scientific and Technical Information of China (English)

    姚锡文; 许开立

    2015-01-01

    Nowadays, sustainable development and increasing fuel demand necessitate the identification of possible energy resources. Biomass resource is regarded as a green renewable energy and will be more important in the future, which attracts the worldwide attention regarding their renewable nature, carbon dioxide-neutral characteristic, and world-wide availability. Consequently, many countries are putting great emphasis on the exploration of bio-energy. However, the use of biomass as fuel generates a large amount of residual ash, which causes serious environmental problems and has great passive influence on the chemical conversion of biomass. The biomass ash is easy to melt and volatilize, and it can not only reduce the utilization efficiency of equipment but also shorten their service life. Moreover, the inorganic species existing in biomass such as alkali oxides and salts can aggravate agglomeration, deposition, and corrosion problems on boiler’s heat transfer surfaces. So during the combustion or gasification processing, the ash with complex composition and high volatility often leads to slugging and erosion/corrosion in thermal conversion processing systems. Rice husk (RH) and rice straw (RS) are the main by-products during the process of rice processing, and they are the clean and renewable energy. Especially, in comparison to other agricultural wastes, the ash content of RH is much higher. So far, a series of studies have been carried out to investigate the characteristics of biomass ash through experiment. But the studies on the influence of ashing temperature and pyrolysis atmosphere on the properties of biomass ash are limited. In this paper, in order to investigate the weight loss regularities of biomass ash at different ashing temperature and pyrolysis atmosphere, thermogravimetric analysis was conducted to comparatively study the pyrolysis weight loss mechanism of rice husk ash (RHA) and rice straw ash (RSA) ashing at 600 and 815℃ in air and nitrogen. The

  11. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  12. Heat-conduction error of temperature sensors in a fluid flow with nonuniform and unsteady temperature distribution.

    Science.gov (United States)

    Khine, Soe Minn; Houra, Tomoya; Tagawa, Masato

    2013-04-01

    In temperature measurement of non-isothermal fluid flows by a contact-type temperature sensor, heat conduction along the sensor body can cause significant measurement error which is called "heat-conduction error." The conventional formula for estimating the heat-conduction error was derived under the condition that the fluid temperature to be measured is uniform. Thus, if we apply the conventional formula to a thermal field with temperature gradient, the heat-conduction error will be underestimated. In the present study, we have newly introduced a universal physical model of a temperature-measurement system to estimate accurately the heat-conduction error even if a temperature gradient exists in non-isothermal fluid flows. Accordingly, we have been able to successfully derive a widely applicable estimation and/or evaluation formula of the heat-conduction error. Then, we have verified experimentally the effectiveness of the proposed formula using the two non-isothermal fields-a wake flow formed behind a heated cylinder and a candle flame-whose fluid-dynamical characteristics should be quite different. As a result, it is confirmed that the proposed formula can represent accurately the experimental behaviors of the heat-conduction error which cannot be explained appropriately by the existing formula. In addition, we have analyzed theoretically the effects of the heat-conduction error on the fluctuating temperature measurement of a non-isothermal unsteady fluid flow to derive the frequency response of the temperature sensor to be used. The analysis result shows that the heat-conduction error in temperature-fluctuation measurement appears only in a low-frequency range. Therefore, if the power-spectrum distribution of temperature fluctuations to be measured is sufficiently away from the low-frequency range, the heat-conduction error has virtually no effect on the temperature-fluctuation measurements even by the temperature sensor accompanying the heat-conduction error in

  13. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    Science.gov (United States)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  14. Update of Columbia River flow and temperature data measured at Priest Rapids Dam and Vernita Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; Newbill, C.A.

    1983-09-01

    Columbia River temperatures and flow rates are collected daily at Priest Rapids Dam and Vernita Bridge. These data are necessary for assessing trends or changes in river conditions downstream of Priest Rapids Dam. In order to analyze this data, Pacific Northwest Laboratory developed a computerized data base using existing US Geological Survey flow and temperature records at Priest Rapids Dam and Vernita Bridge. Daily-averaged temperature and daily flow information on the Columbia River just downstream of Priest Rapids Dam and upstream of river mile 380 were collected and stored in a data base. A newly developed computer model, COLSTAT (Columbia River Statistical Update), used the data base to statistically analyze temperature and flow conditions by computing the frequency of occurrence and duration of selected temperatures and flow rates for the Columbia River. Information regarding the data base is presented, as well as, a description of the COLSTAT model.

  15. Experimental Study on an On-Line Measurement of High Temperature Circulating Ash Flux in a Circulating Fluidized Bed Boiler

    Institute of Scientific and Technical Information of China (English)

    Lu Xiaofeng; Li Yourong

    2001-01-01

    A new kind of measuring method that may be used to measure high temperature circulating solid particles flux in a circulating fluidized bed boiler is studied in this paper. The measuring method is founded on the principle of thermal equilibrium. A series of cold tests and hot tests were carried to optimize the structure and collocation of water-cooling tubes and showed that the method had the advantage of simple, accurate, reliable and good applicability for on-line usage in a circulating fluidized bed boiler.

  16. Resonating microbridge mass flow sensor with low-temperature glass-bonded cap wafer

    OpenAIRE

    Legtenberg, Rob; Bouwstra, Siebe; Fluitman, Jan H.J

    1991-01-01

    A resonating microbridge mass flow sensor has been realized suspended inside a micro flow channel. Thin-film technologies and micromachining are used for the fabrication of the sensor wafer and a cap wafer with opposing V-grooves. A low-temperature glass-bonding technique is used to assemble the wafers allowing for feedthrough of the electrical connections. Measurements show sensitivities of the resonance frequency of several kHz per sccm nitrogen gas flows at average temperature elevations o...

  17. Spectral Properties of a Two Component and Two Temperature Advective Flow

    CERN Document Server

    Mandal, S; Mandal, Samir; Chakrabarti, Sandip K.

    2005-01-01

    Low angular momentum accretion flows very often have centrifugal pressure supported standing shock waves which can accelerate flow particles. The accelerated particles in turn emit synchrotron radiation in presence of magnetic fields. Efficient cooling of the electrons reduces its temperature in comparison to the protons. In this paper, we assume two temperature flows to explore this property of shocks and present an example of the emitted radiation spectrum.

  18. Volcanic ash: What it is and how it forms

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.

    1991-09-13

    There are four basic eruption processes that produce volcanic ash: (1) decompression of rising magma, gas bubble growth, and fragmentation of the foamy magma in the volcanic vent (magmatic), (2) explosive mixing of magma with ground or surface water (hydrovolcanic), (3) fragmentation of country rock during rapid expansion of steam and/or hot water (phreatic), and (4) breakup of lava fragments during rapid transport from the vent. Variations in eruption style and the characteristics of volcanic ashes produced during explosive eruptions depend on many factors, including magmatic temperature, gas content, viscosity and crystal content of the magma before eruption, the ratio of magma to ground or surface water, and physical properties of the rock enclosing the vent. Volcanic ash is composed of rock and mineral fragments, and glass shards, which is less than 2 mm in diameter. Glass shard shapes and sizes depend upon size and shape of gas bubbles present within the magma immediately before eruption and the processes responsible for fragmentation of the magma. Shards range from slightly curved, thin glass plates, which were broken from large, thin-walled spherical bubble walls, to hollow needles broken from pumiceous melts containing gas bubbles stretched by magma flow within the volcanic vent. Pumice fragments make up the coarser-grained portions of the glass fraction. Particle sizes range from meters for large blocks expelled near the volcanic vent to nanometers for fine ash and aerosol droplets within well-dispersed eruption plumes. 18 refs., 6 figs., 1 tab.

  19. Can vegetative ash be water repellent?

    Science.gov (United States)

    Bodí, M. B.; Cerdà, A.; Mataix-Solera, J.; Doerr, S. H.

    2012-04-01

    In most of the literature, ash is referred to as a highly wettable material (e.g. Cerdà and Doerr, 2008; Etiegni and Campbell, 1991; Woods and Balfour 2010). However, the contrary was suggested in few articles, albeit with no further quantification (Gabet and Sternberg, 2008; Khanna et al., 1996; Stark, 1977). To clarify this question, water repellency measurements on ash using the Water Drop Penetration Times (WDPT) method were performed on ash from Mediterranean ecosystems and it was found to be water repellent (Bodí et al. 2011). Water repellency on ash from different wildfires ranged from 40 to 10 % occurrence with samples being extreme repellent (lasting more than 3600 s to penetrate). Part of the ash produced in the laboratory was also water repellent. After that, other ash samples had been found water repellent in wildfires in Colorado (unpublished results), Portugal (Gonzalez-Pelayo, 2009), or in prescribed fires in Australia (Bodí et al. 2011b; Petter Nyman, personnal communication). All the samples exhibiting water repellent properties had in common that were combusted at low temperatures, yielding in general ash with dark colour and contents of organic carbon of more than 18 % (Bodí et al. 2011a), although these properties were not exactly proportional to its water repellency occurrence or persistence. In addition, the species studied in Bodí et al. (2011) had been found to produce different levels of WR repellency, being ash from Pinus halepensis more repellent than that from Quercus coccifera and Rosmarins officinalis. Ash from Eucaliptus radiata had been found also very water repellent, as Pinus halepensis (unpublished data). The reasons of the existance of water repellent ash are that the charred residue produced by fire (an also contained in the ash) can contain aromatic compounds that have a lower free energy than water and therefore behave as hydrophobic materials with reduced solubility (Almendros et al., 1992 and Knicker, 2007

  20. An experimental investigation of fluid flow and wall temperature distributions in an automotive headlight

    International Nuclear Information System (INIS)

    Detailed measurements of wall temperatures and fluid flow velocities inside an automotive headlight with venting apertures are presented. Thermocouples have been used to characterize the temperature distributions in the walls of the reflectors under transient and steady operating conditions. Quantification of the markedly three-dimensional flow field inside the headlight cavities was achieved through the use of laser-Doppler velocimetry for the latter condition only. Significant thermal stratification occurs in the headlight cavities. The regime corresponding to steady operating conditions is characterized by the development of a vortex-dominated flow. The interaction of the main vortex flow with the stream of colder fluid entering the enclosed volume through the venting aperture contributes significantly to increase the complexity of the basic flow pattern. Globally, the results have improved the understanding of the temperature loads and fluid flow phenomena inside a modern automotive headlight

  1. Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration

    Science.gov (United States)

    Batir, Joseph F.; Blackwell, David D.; Richards, Maria C.

    2016-06-01

    The objective of this research is to contribute to the understanding of the thermal regime of Alaska and its relationship to geology, regional tectonics, and to suggest potential sites for future geothermal energy production. New heat flow data were collected and are combined with existing published and unpublished data, although large sections of Alaska still lack data. Fault traces were implemented into the heat flow contouring as an additional gridding constraint, to incorporate both heat flow measurements and geology. New heat flow data supported the use of geologic trends in the heat flow mapping procedure, and a heat flow map of Alaska was produced with this added constraint. The multi-input contouring strategy allows production of a map with a regional interpretation of heat flow, in addition to site-specific heat flow and thermal model interpretations in areas with sufficient data density. Utilizing the new heat flow map, temperature-at-depth curves were created for example areas. Temperature-at-depth curves are calculated to 10 km depth for the areas of Anchorage, Fairbanks, Juneau, the Alaska Peninsula, Bristol Bay, and the Copper River Basin. The temperatures-at-depth predicted near the population centers of Anchorage and Juneau are relatively low, limiting the geothermal resource potential. The Fairbanks area temperature estimates are near conventional power production temperatures (150 °C) between 3.5 and 4 km. All data areas, except at Juneau, have temperatures sufficient for low temperature geothermal applications (40 °C) by 2 km. A high heat flow region exists within the Aleutian Volcanic Arc, although new data show heat flow variations from 59 to 120 mW m-2, so individual geothermal resources within the arc will be irregularly located.

  2. Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration

    Science.gov (United States)

    Batir, Joseph F.; Blackwell, David D.; Richards, Maria C.

    2016-06-01

    The objective of this research is to contribute to the understanding of the thermal regime of Alaska and its relationship to geology, regional tectonics, and to suggest potential sites for future geothermal energy production. New heat flow data were collected and are combined with existing published and unpublished data, although large sections of Alaska still lack data. Fault traces were implemented into the heat flow contouring as an additional gridding constraint, to incorporate both heat flow measurements and geology. New heat flow data supported the use of geologic trends in the heat flow mapping procedure, and a heat flow map of Alaska was produced with this added constraint. The multi-input contouring strategy allows production of a map with a regional interpretation of heat flow, in addition to site-specific heat flow and thermal model interpretations in areas with sufficient data density. Utilizing the new heat flow map, temperature-at-depth curves were created for example areas. Temperature-at-depth curves are calculated to 10 km depth for the areas of Anchorage, Fairbanks, Juneau, the Alaska Peninsula, Bristol Bay, and the Copper River Basin. The temperatures-at-depth predicted near the population centers of Anchorage and Juneau are relatively low, limiting the geothermal resource potential. The Fairbanks area temperature estimates are near conventional power production temperatures (150 °C) between 3.5 and 4 km. All data areas, except at Juneau, have temperatures sufficient for low temperature geothermal applications (40 °C) by 2 km. A high heat flow region exists within the Aleutian Volcanic Arc, although new data show heat flow variations from 59 to 120 mW m‑2, so individual geothermal resources within the arc will be irregularly located.

  3. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging.

    Science.gov (United States)

    Deng, Shijie; Wang, Peng; Liu, Shengnan; Zhao, Tianze; Xu, Shanzhi; Guo, Mingjiang; Yu, Xinglong

    2016-01-01

    A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow rates within a wide range of tens to hundreds of μL/min could be detected. The flow rate sensor is resistant to disturbances and can be easily integrated into microfluidic lab-on-chip systems. PMID:27347960

  4. Adhesion Strength of Biomass Ash Deposits

    DEFF Research Database (Denmark)

    Laxminarayan, Yashasvi; Jensen, Peter Arendt; Wu, Hao;

    2015-01-01

    This study investigates the shear adhesion strength of biomass ash deposits on superheater tubes. Artificial biomass ash deposits were prepared on superheater tubes and sintered in an oven at temperatures up to 1000°C. Subsequently, the deposits were sheared off with the help of an electrically...... controlled arm. Higher sintering temperatures resulted in greater adhesion strengths, with a sharp increase observed near the melting point of the ash. Repetition of experiments with fixed operation conditions revealed considerable variation in the obtained adhesion strengths, portraying the stochastic...

  5. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.

    Science.gov (United States)

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K

    2012-08-01

    This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 μA and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications.

  6. Vitrification of simulated radioactive Rocky Flats plutonium containing waste ash with a stir-melter system

    International Nuclear Information System (INIS)

    A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter trademark System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats waste stream. The glass developed falls within the SiO2 +Al2O3 / ΣAlkali / B2O3 System. The glass batch contained approximately 40 wt % of ash, the ash was modified to contain ∼5 wt % CeO2 to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt % water to 40 wt % solids ratio. Glass melting temperature was maintained at approximately 1050 degrees C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables' settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates out of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run

  7. Chemical reactions accompanying fluid flow through granite held in a temperature gradient

    Science.gov (United States)

    Moore, Diane E.; Morrow, C.A.; Byerlee, J.D.

    1983-01-01

    Distilled water was passed at a low rate down a temperature gradient through cylinders of Barre and Westerly Granite. Temperatures ranged from 80-100??C at the outer edges of the cylinders to 250-300??C in central, drilled holes which housed the heating coils. The measured permeabilities of the granite cylinders decreased by as much as two orders of magnitude in experiments of 1-3 weeks' duration. The amount of permeability decrease varied directly with temperature and inversely with the rate of fluid flow. The compositions of the fluids discharged from the granites were functions of temperature and flow rate as well as mineral composition, with dissolved silica concentrations showing trends different from those of the other analyzed species. Fluids from experiments run at higher temperatures but at much lower initial rates of fluid flow had higher concentrations of most ions but substantially lower dissolved silica contents. In contrast, an increase in temperature at similar rates of fluid flow resulted in higher silica concentrations. In the experiments, the distilled water acquired enough dissolved materials at high temperatures to become supersaturated with respect to several minerals at the low-temperature edges of the cylinders. Some of this material, particularly silica, was deposited along grain boundaries and microfractures, causing the observed permeability decreases. The very low rates of fluid flow in some high-temperature experiments significantly increased the rates of SiO2 precipitation and reduced dissolved silica concentrations relative to other species in the discharged fluids. ?? 1983.

  8. The effects of water flow and temperature on thermal regime around a culvert built on permafrost

    Institute of Scientific and Technical Information of China (English)

    Loriane Prier; Guy Dor; CR Burn

    2014-01-01

    Temperature and water flow through a culvert beneath the Alaska Highway near Beaver Creek, Yukon, were measured at hourly intervals between June and October 2013. These data were used to simulate the effect of the culvert on the thermal regime of the road embankment and subjacent permafrost. A 2-D thermal model of the embankment and permafrost was developed with TEMP/W and calibrated using field observations. Empirical relations were obtained between water tem-peratures at the entrance to the culvert, flow into the culvert, and water temperatures inside the structure. Water temper-atures at the entrance and inside the culvert had a linear relation, while water temperatures inside the culvert and water flow were associated by a logarithmic relation. A multiple linear regression was used to summarize these relations. From this relationship, changes in the flow rate and water temperatures at the entrance of the culvert were simulated to obtain pre-dicted water temperatures in the culvert. The temperatures in the culvert were used in the thermal model to determine their effects on the ground thermal regime near the culvert. Variation of ±10%in water flow rate had no impact on the thermal regime underneath the culvert. Variation of water temperature at the entrance of the culvert had a noticeable influence on the thermal regime. A final simulation was conducted without insulation beneath the culvert. The thaw depth was 30 cm with insulation, and 120 cm without insulation, illustrating the importance of insulation to the ground thermal regime.

  9. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow

    Indian Academy of Sciences (India)

    Rajeev Ranjan Kumar; D V Ramana; R N Singh

    2012-10-01

    Near-subsurface temperatures have signatures of climate change. Thermal models of subsurface have been constructed by prescribing time dependent Dirichlet type boundary condition wherein the temperature at the soil surface is prescribed and depth distribution of temperature is obtained. In this formulation it is not possible to include the relationship between air temperatures and the temperature of soil surface. However, if one uses a Robin type boundary condition, a transfer coefficient relates the air and soil surface temperatures which helps to determine both the temperature at the surface and at depth given near surface air temperatures. This coefficient is a function of meteorological conditions and is readily available. We have developed such a thermal model of near subsurface region which includes both heat conduction and advection due to groundwater flows and have presented numerical results for changes in the temperature–depth profiles for different values of transfer coefficient and groundwater flux. There are significant changes in temperature and depth profiles due to changes in the transfer coefficient and groundwater flux. The analytical model will find applications in the interpretation of the borehole geothermal data to extract both climate and groundwater flow signals.

  10. Application of a vortex shedding flowmeter to the wide range measurement of high temperature gas flow

    International Nuclear Information System (INIS)

    A single flowmeter was required for helium gas measurement in a Gas Cooled Fast Breeder Reactor loss of coolant simulator. Volumetric flow accuracy of +-1.0% of reading was required over the Reynolds Number range 6 x 103 to 1 x 106 at flowing pressures from 0.2 to 9 MPa (29 to 1305 psia) at 3500C (6600F) flowing temperature. Because of its inherent accuracy and rangeability, a vortex shedding flowmeter was selected and specially modified to provide for a remoted thermal sensor. Experiments were conducted to determine the relationship between signal attenuation and sensor remoting geometry, as well as the relationship between gas flow parameters and remoted thermal sensor signal for both compressed air and helium gas. Based upon the results of these experiments, the sensor remoting geometry was optimized for this application. The resultant volumetric flow rangeability was 155:1. The associated temperature increase at the sensor position was 90C above ambient (250F) at a flowing temperature of 3500C. The volumetric flow accuracy was measured over the entire 155:1 flow range at parametric values of flowing density. A volumetric flow accuracy of +- % of reading was demonstrated

  11. Application of a vortex shedding flowmeter to the wide range measurement of high temperature gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S.P.; Ennis, R.M. Jr.; Herndon, P.G.

    1981-01-01

    A single flowmeter was required for helium gas measurement in a Gas Cooled Fast Breeder Reactor loss of coolant simulator. Volumetric flow accuracy of +-1.0% of reading was required over the Reynolds Number range 6 x 10/sup 3/ to 1 x 10/sup 6/ at flowing pressures from 0.2 to 9 MPa (29 to 1305 psia) at 350/sup 0/C (660/sup 0/F) flowing temperature. Because of its inherent accuracy and rangeability, a vortex shedding flowmeter was selected and specially modified to provide for a remoted thermal sensor. Experiments were conducted to determine the relationship between signal attenuation and sensor remoting geometry, as well as the relationship between gas flow parameters and remoted thermal sensor signal for both compressed air and helium gas. Based upon the results of these experiments, the sensor remoting geometry was optimized for this application. The resultant volumetric flow rangeability was 155:1. The associated temperature increase at the sensor position was 9/sup 0/C above ambient (25/sup 0/F) at a flowing temperature of 350/sup 0/C. The volumetric flow accuracy was measured over the entire 155:1 flow range at parametric values of flowing density. A volumetric flow accuracy of +- % of reading was demonstrated.

  12. Experimental study of temperature fluctuations in forced stably stratified turbulent flows

    CERN Document Server

    Eidelman, A; Gluzman, Y; Kleeorin, N; Rogachevskii, I

    2013-01-01

    We study experimentally temperature fluctuations in stably stratified forced turbulence in air flow. In the experiments with an imposed vertical temperature gradient, the turbulence is produced by two oscillating grids located nearby the side walls of the chamber. Particle Image Velocimetry is used to determine the turbulent and mean velocity fields, and a specially designed temperature probe with sensitive thermocouples is employed to measure the temperature field. We found that the ratio [(\\ell_x \

  13. Speciation of Chromium in Bottom Ash Obtained by the Incineration of the Leather Waste Shavings

    Directory of Open Access Journals (Sweden)

    k. louhab

    2006-01-01

    Full Text Available The evolution of bottom ash morphology and chromium metals behavior during incineration of a leather waste shavings at different incineration temperature have been studied. The Cr, Ca, Mg, Cl rates in bottom ashes, flay ashes and emitted gases in different incineration temperature of the tannery wastes are also determined. The morphology of the bottom ashes obtained by incineration at different temperature from the leather waste shavings was examined by MEB. The result show that the temperature and the length of incineration influence on the structure of the bottom ash and on the chromium in the bottom ash.

  14. [Ash Meadows Purchase Proposal

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A proposal sent to the Richard King Mellon Foundation for a loan to fund the purchase of Ash Meadows by the Nature Conservancy. Ash Meadows, set outside of Las...

  15. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    Science.gov (United States)

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  16. Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (Final Report)

    Science.gov (United States)

    This final report is a technical "best practices" document describing sensor deployment for and collection of continuous temperature and flow data at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, placement, and ins...

  17. Plasma Flow and Temperature in a Gliding Reactor with Different Electrode Configurations

    Directory of Open Access Journals (Sweden)

    J. Sláma

    2012-01-01

    Full Text Available This paper deals with the plasma flow shape depending on the electrode form of a gliding discharge plasma-chemical reactor, and with the temperature distribution along the direction of the plasma flow in one specific electrode form. The shape of the electrodes and their mutual position has a significant influence on the design of a gliding discharge reactor and its applications. It is crucial to know the temperature distribution in the reactor’s chamber design and discharge application. Three configurations with model shapes of wire electrodes were therefore tested (low-divergent, circular, high-divergent and the plasma flow was described. The experiments were performed in air at atmospheric pressure and at room temperature. In order to map the reactive plasma region of the flow we investigated the visible spectral lines that were emitted. The gas temperature was measured using an infrared camera.

  18. Experimental Investigation of Entrainment Rate by Debris Flows: from Shear Stress to Granular Temperature

    Science.gov (United States)

    Hill, K. M.; Longjas, A.; Moberly, D.

    2015-12-01

    Debris flows - flows of boulders, gravel, sand, fine particles, and fluids - erode sediment from steep hillsides and deposit them at lower slopes. Current model frameworks for erosion by debris flow vary significantly and include those that consider macroscopic fields such as excess shear stresses, similar to traditional models of bedload transport, to those that consider the "granular" physics, from force chains (related to bed fabric) to granular temperatures (related to random kinetic energy of the flow). We perform experiments to investigate the underlying mechanics associated with entrainment of bed materials by overlying flows in an instrumented laboratory debris flow flume. In particular, we investigate how the erosion rate of a flowing mass impinging on an erodible bed of particles depends on boundary conditions, dynamics of the flow, and the state of the bed. Using high speed imaging to capture average and instantaneous particle dynamics simultaneously with bed stress measurements, we investigate the effectiveness of a variety of model frameworks for capturing the relationships between flow dynamics and erosion rates. We find no correlation between the bed shear stress associated with the mass of the flow and erosion rate. Similarly, we found no correlation between the erosion rate and a Reynolds stress, that is, the stress associated with correlations between downstream and vertical velocity fluctuations. On the other hand, we found that granular temperature is well-correlated with entrainment rate during particular phases of our experimental debris flow. In particular, we found the instantaneous entrainment rate ɛ is linearly dependent on the ratio of the granular temperature Tg to the kinetic energy associated with the average flow velocity u: ɛ ~ (Tg / ρm u2) where ρm is the local instantaneous density of the flow. We present these results and discuss how they vary with the state of the flow, boundary conditions, and particle mixtures.

  19. Distributed measurement of flow rate in conduits using heated fiber optic distributed temperature sensing

    Science.gov (United States)

    Sánchez, Raúl; Zubelzu, Sergio; Rodríguez-Sinobas, Leonor; Juana, Luis

    2016-04-01

    In some cases flow varies along conduits, such as in irrigated land drainage pipes and channels, irrigation laterals and others. Detailed knowledge of flow rate along the conduit makes possible analytical evaluation of water distribution and collection systems performance. Flow rate can change continuously in some systems, like in drainage pipes and channels, or abruptly, like in conduits bifurcations or emitter insertions. A heat pulse along the conduit makes possible to get flow rate from continuity and heat balance equations. Due to the great value of specific heat of water, temperature changes along conduit are smaller than the noise that involves the measurement process. This work presents a methodology that, dealing with the noise of distributed temperature measurements, leads to flow rate determination along pressurized pipes or open channel flows.

  20. Dual role of cerebral blood flow in regional brain temperature control in the healthy newborn infant.

    Science.gov (United States)

    Iwata, Sachiko; Tachtsidis, Ilias; Takashima, Sachio; Matsuishi, Toyojiro; Robertson, Nicola J; Iwata, Osuke

    2014-10-01

    Small shifts in brain temperature after hypoxia-ischaemia affect cell viability. The main determinants of brain temperature are cerebral metabolism, which contributes to local heat production, and brain perfusion, which removes heat. However, few studies have addressed the effect of cerebral metabolism and perfusion on regional brain temperature in human neonates because of the lack of non-invasive cot-side monitors. This study aimed (i) to determine non-invasive monitoring tools of cerebral metabolism and perfusion by combining near-infrared spectroscopy and echocardiography, and (ii) to investigate the dependence of brain temperature on cerebral metabolism and perfusion in unsedated newborn infants. Thirty-two healthy newborn infants were recruited. They were studied with cerebral near-infrared spectroscopy, echocardiography, and a zero-heat flux tissue thermometer. A surrogate of cerebral blood flow (CBF) was measured using superior vena cava flow adjusted for cerebral volume (rSVC flow). The tissue oxygenation index, fractional oxygen extraction (FOE), and the cerebral metabolic rate of oxygen relative to rSVC flow (CMRO₂ index) were also estimated. A greater rSVC flow was positively associated with higher brain temperatures, particularly for superficial structures. The CMRO₂ index and rSVC flow were positively coupled. However, brain temperature was independent of FOE and the CMRO₂ index. A cooler ambient temperature was associated with a greater temperature gradient between the scalp surface and the body core. Cerebral oxygen metabolism and perfusion were monitored in newborn infants without using tracers. In these healthy newborn infants, cerebral perfusion and ambient temperature were significant independent variables of brain temperature. CBF has primarily been associated with heat removal from the brain. However, our results suggest that CBF is likely to deliver heat specifically to the superficial brain. Further studies are required to assess the

  1. Influence of temperature and lithium purity on corrosion of ferrous alloys in a flowing lithium environment

    International Nuclear Information System (INIS)

    Corrosion data have been obtained on ferritic HT-9 and Fe-9Cr-1Mo steel and austenitic Type 316 stainless steel in a flowing lithium environment at temperatures between 372 and 5380C. The corrosion behavior is evaluated by measurements of weight loss as a function of time and temperature. A metallograhic characterization of materials exposed to a flowing lithium environment is presented. (orig.)

  2. Numerical Simulation of Coupled Molten Steel Flow and Temperature Fields in Compact Strip Production Casting

    Institute of Scientific and Technical Information of China (English)

    LIU Xu-feng; ZHANG Jie-yu; DU Wei-dong; ZHAI Qi-jie; LI Qiang

    2007-01-01

    Based on the casting manufacture practice of steel slabs by CSP technology, the flow and the temperature fields of the funnel mould and the secondary cooling segment were simulated using the commercial code,CFX4. Compared with other physical investigations, the correlative data of the present simulation results are in good agreement with them. Therefore, a more comprehensive survey for metallurgy characteristic of the flow and the temperature fields in CSP continuous casting process can be achieved.

  3. Two Models of DMFC under Effects of Cathode Humidification Temperature and Anode Flow Rate

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper introduced a novel self-adjustment of parameters of fuzzy neural networks. Then,the effects of cathode humidification temperature and anode flow rate on the performance of direct methanol fuel cell (DMFC)were described respectively. Two dynamic performance models of DMFC under the influences of cathode humidification temperature and anode flow rate were established separately based on fuzzy neural networks. The simulation results show the accuracy of the models established is satisfactory.

  4. Plasma Flow and Temperature in a Gliding Reactor with Different Electrode Configurations

    OpenAIRE

    Sláma, J.

    2012-01-01

    This paper deals with the plasma flow shape depending on the electrode form of a gliding discharge plasma-chemical reactor, and with the temperature distribution along the direction of the plasma flow in one specific electrode form. The shape of the electrodes and their mutual position has a significant influence on the design of a gliding discharge reactor and its applications. It is crucial to know the temperature distribution in the reactor’s chamber design and discharge application. Three...

  5. Influence of Feeding Mode on Flow and Temperature Field for Twin Roll Strip Casting Process

    Institute of Scientific and Technical Information of China (English)

    MIAO Yu-chuan; XU Jian-zhong; WANG Guo-dong; LIU Xiang-hua

    2003-01-01

    A three-dimensional finite element method was developed to simulate the fluid flow, heat transfer and solidification for twin roll strip casting. An improved two-equation κ-ε model was used to incorporate the turbulence in fluid flow. The influence of vertical feeding and submerged entry nozzle feeding on the flow and temperature field was discussed. The optimum submersion depth and entry angle of submerged nozzle were obtained through comparison of the simulation results.

  6. Development of a FBG vortex flow sensor for high-temperature applications

    NARCIS (Netherlands)

    Cheng, L.K.; Schiferli, W.; Nieuwland, R.A.; Franzen, A.; Boer, J.J. den; Jansen, T.H.

    2011-01-01

    A robust fibre optic flow sensor has been developed to measure liquid or gas flows at ambient temperatures up to 300°C and pressures up to 100 bar. While such environmental conditions are typical in pressurized steam systems in the oil and gas industry (downhole and surface), wider applications are

  7. Influence of magnetic field on the turbulence of plane high temperature gas flow

    Energy Technology Data Exchange (ETDEWEB)

    Levitan, Yu.S.

    1977-01-01

    Expressions are obtained within the framework of the Prandtl hypothesis and proposition on local-isotropic turbulence for turbulent friction and thermal flow in a channel flow of an electrical-conducting medium with a current along the channel's axis in the internal magnetic field, and which account for temperature fluctuations of the medium. 6 references.

  8. Reburning Characteristics of Residual Carbon in Fly Ash from CFB Boilers

    Science.gov (United States)

    Zhang, S. H.; Luo, H. H.; Chen, H. P.; Yang, H. P.; Wang, X. H.

    The content of residual carbon in fly ash of CFB boilers is a litter high especially when low-grade coal, such as lean coal, anthracite coal, gangue, etc. is in service, which greatly influences the efficiency of boilers and fly ash further disposal. Reburn of fly ash through collection, recirculation in CFB furnace or external combustor is a possibly effective strategy to decrease the carbon content, mainly depending on the residual carbon reactivity. In this work, the combustion properties of residual carbon in fly ash and corresponding original coal from large commercial CFB boilers (Kaifeng (440t/h), and Fenyi (410t/h), all in china) are comparably investigated through experiments. The residual carbon involved was firstly extracted and enriched from fly ash by means of floating elutriation to mitigate the influence of ash and minerals on the combustion behavior of residual carbon. Then, the combustion characteristic of two residual carbons and the original coal particles was analyzed with thermogravimetric analyzer (TGA, STA409C from Nestch, Germany). It was observed that the ignition temperature of the residual carbon is much higher than that of original coal sample, and the combustion reactivity of residual carbon is not only dependent on the original coal property, but also the operating conditions. The influence of oxygen content and heating rate was also studied in TGA. The O2 concentration is set as 20%, 30%, 40% and 70% respectively in O2/N2 gas mixture with the flow rate of 100ml/min. It was found that higher oxygen content is favor for decreasing ignition temperature, accelerating the combustion rate of residual carbon. And about 40% of oxygen concentration is experimentally suggested as an optimal value when oxygen-enriched combustion is put into practice for decreasing residual carbon content of fly ash in CFB boilers.

  9. 2.8-Ma ash-flow caldera at Chegem River in the northern Caucasus Mountains (Russia), contemporaneous granites, and associated ore deposits

    Science.gov (United States)

    Lipman, P.W.; Bogatikov, O.A.; Tsvetkov, A.A.; Gazis, C.; Gurbanov, A.G.; Hon, K.; Koronovsky, N.V.; Kovalenko, V.I.; Marchev, P.

    1993-01-01

    Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ?? 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 ?? 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ?? 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite

  10. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  11. A Temperature-Profile Method for Estimating Flow Processes in Geologic Heat Pipes

    International Nuclear Information System (INIS)

    Above-boiling temperature conditions, as encountered, for example, in geothermal reservoirs and in geologic repositories for the storage of heat-producing nuclear wastes, may give rise to strongly altered liquid and gas flow processes in porous subsurface environments. The magnitude of such flow perturbation is extremely hard to measure in the field. We therefore propose a simple temperature-profile method that uses high-resolution temperature data for deriving such information. The energy that is transmitted with the vapor and water flow creates a nearly isothermal zone maintained at about the boiling temperature, referred to as a heat pipe. Characteristic features of measured temperature profiles, such as the differences in the gradients inside and outside of the heat pipe regions, are used to derive the approximate magnitude of the liquid and gas fluxes in the subsurface, for both steady-state and transient conditions

  12. Plastic flow behavior of a Ti-Al-Nb-Mn alloy at high temperatures

    International Nuclear Information System (INIS)

    High-temperature deformation of a gamma TiAl-based alloy containing 49.5 pct Al, 2.5 pct Nb and 1.1 pct Mn is studied using the constant-strain-rate isothermal compression-test technique. Axisymmetric tests were conducted in the strain rate range 0.001 to 10.0/s and at temperatures ranging from 1000 to 1400 C. The flow curves obtained at temperatures below 1250 C exhibit significant flow softening. This is correlated with the occurrence of shear localization, dynamic recrystallization, and wedge cracking. The flow-stress data are analyzed in terms of the strain-rate and temperature sensitivity. Strain-rate sensitivity decreases continuously with an increase in the strain rate and a decrease in the test temperature. In contrast, temperature sensitivity decreases with an increase in strain rate at all temperatures above 1050 C. A constitutive relationship between flow stress and the temperature-compensated strain rate is found to be valid in the temperature range 1000-1250 C. 20 refs

  13. Effect of horizontal heat and fluid flow on the vertical temperature distribution in a semiconfining layer

    Science.gov (United States)

    Lu, N.; Ge, S.

    1996-01-01

    By including the constant flow of heat and fluid in the horizontal direction, we develop an analytical solution for the vertical temperature distribution within the semiconfining layer of a typical aquifer system. The solution is an extension of the previous one-dimensional theory by Bredehoeft and Papadopulos [1965]. It provides a quantitative tool for analyzing the uncertainty of the horizontal heat and fluid flow. The analytical results demonstrate that horizontal flow of heat and fluid, if at values much smaller than those of the vertical, has a negligible effect on the vertical temperature distribution but becomes significant when it is comparable to the vertical.

  14. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.C.

    1979-08-15

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.

  15. Flow stress and material model study at high strain rate and low temperature

    Science.gov (United States)

    Kandasamy, R.; Brar, N. S.

    1994-07-01

    The flow stress of M200 maraging steel, C1008 steel, and 6061-T6 aluminum at low temperatures to 123 K and at a strain rate of about 103 s-1 is measured using split Hopkinson bar (SHB). Liquid nitrogen is used to cool the specimen to the desired temperature. The flow stress of M200 increased to 1.93 GPa at 123 K, an increase of 22 percent compared to 1.58 GPa at room temperature. In the case of 6061-T6 aluminum the flow stress remains at about 390 MPa at temperatures in the range 293 to 123 K. For C1008 steel, the flow stress increased to 860 MPa at 123 K from its room temperature value of 610 MPa. The failure strain for C1008 steel at 123 K was 0.02, compared to 0.2 at room temperature, suggesting a ductile to brittle transition. The Johnson-Cook material model constant ``m'', which accounts for temperature effect, is 0.5 for C1008 at temperatures in the range 123 K to 950 K.

  16. DNS of channel flow with conjugate heat transfer - Budgets of turbulent heat fluxes and temperature variance

    OpenAIRE

    Flageul Cédric, Benhamadouche Sofiane, Lamballais Éric, Laurence Dominique.

    2014-01-01

    The present work provides budgets of turbulent heat fluxes and temperature variance for a channel flow with different thermal boundary conditions: an imposed temperature, an imposed heat flux and with conjugate heat transfer combined with an imposed heat flux at the outer wall.

  17. Prediction of Stratified Flow Temperature Profiles in a Fully Insulated Environment

    Directory of Open Access Journals (Sweden)

    Ahmad S. Awad

    2014-07-01

    Full Text Available The aim of the study is to present an analytical model to predict the temperature profiles in thermal stratified environment. Thermal stratification is encountered in many situations. The flow of contaminants and hydrocarbons in environment often get stratified. The prediction of temperature profiles and flow characteristics are essential for HVAC applications, environment and energy management. The temperature profiles in the stratified region are successfully obtained, in terms of flow-operating functions. The analytical model agrees well with the published experimental data as well as the related closed-form solutions, which is helpful for HVAC applications. The model will be further developed and incorporated within a numerical model in order to investigate the flow field characteristics and establish correlations for a wide range of parameters.

  18. High temperature flow behaviour of SiC reinforced lithium aluminosilicate composites

    Indian Academy of Sciences (India)

    Santanu Das; V S R Murthy; G S Murty

    2001-04-01

    The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of crystalline phase. Further, with the addition of 40 vol.% SiC additions, the strain rate sensitivity of flow stress decreased. While the activation energy for flow in LAS was 300 kJ/mole, it increased to 995 kJ/mole with the addition of 40 vol.% SiC reinforcements.

  19. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans

    OpenAIRE

    Wingo, Jonathan E.; David A Low; Keller, David M.; Brothers, R. Matthew; Shibasaki, Manabu; Crandall, Craig G.

    2010-01-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdial...

  20. Mean surface temperature prediction models for broiler chickens—a study of sensible heat flow

    Science.gov (United States)

    Nascimento, Sheila Tavares; da Silva, Iran José Oliveira; Maia, Alex Sandro Campos; de Castro, Ariane Cristina; Vieira, Frederico Marcio Corrêa

    2014-03-01

    Body surface temperature can be used to evaluate thermal equilibrium in animals. The bodies of broiler chickens, like those of all birds, are partially covered by feathers. Thus, the heat flow at the boundary layer between broilers' bodies and the environment differs between feathered and featherless areas. The aim of this investigation was to use linear regression models incorporating environmental parameters and age to predict the surface temperatures of the feathered and featherless areas of broiler chickens. The trial was conducted in a climate chamber, and 576 broilers were distributed in two groups. In the first trial, 288 broilers were monitored after exposure to comfortable or stressful conditions during a 6-week rearing period. Another 288 broilers were measured under the same conditions to test the predictive power of the models. Sensible heat flow was calculated, and for the regions covered by feathers, sensible heat flow was predicted based on the estimated surface temperatures. The surface temperatures of the feathered and featherless areas can be predicted based on air, black globe or operative temperatures. According to the sensible heat flow model, the broilers' ability to maintain thermal equilibrium by convection and radiation decreased during the rearing period. Sensible heat flow estimated based on estimated surface temperatures can be used to predict animal responses to comfortable and stressful conditions.

  1. Laminar-Turbulent Transition: The change of the flow state temperature with the Reynolds number

    CERN Document Server

    Chekmarev, Sergei F

    2014-01-01

    Using the previously developed model to describe laminar/turbulent states of a viscous fluid flow, which treats the flow as a collection of coherent structures of various size (Chekmarev, Chaos, 2013, 013144), the statistical temperature of the flow state is determined as a function of the Reynolds number. It is shown that at small Reynolds numbers, associated with laminar states, the temperature is positive, while at large Reynolds numbers, associated with turbulent states, it is negative. At intermediate Reynolds numbers, the temperature changes from positive to negative as the size of the coherent structures increases, similar to what was predicted by Onsager for a system of parallel point-vortices in an inviscid fluid. It is also shown that in the range of intermediate Reynolds numbers the temperature exhibits a power-law divergence characteristic of second-order phase transitions.

  2. Application of mathematical model for high-temperature resistance of fly ash geopolymers%地聚物固化体抗高温性能及数学模型研究

    Institute of Scientific and Technical Information of China (English)

    金漫彤; 黄彩菊; 邵江平; 许杭俊; 王连军

    2011-01-01

    地聚物对焚烧飞灰中的重金属具有良好的固定作用.为了进一步探索固化飞灰后的地聚物固化体的抗环境侵蚀性能,开展了固化体高温-恒温时间-地聚物抗压强度的研究及经受高温后固化体的重金属浸出试验,探讨抗压强度与高温、恒温时间之间的关系以及地聚物固化垃圾焚烧飞灰的稳定性.通过对固化体试块的高温试验以及对不同温度、不同恒温时间下固化体抗压强度试验,分析这三者之间的关系,建立数学模型,并根据实验结果拟合温度-恒温时间-抗压强度的三维曲面.%Geopolymers can effectively immobilize the heavy metals in the municipal solid waste incineration fly ash.In order to further explore the environment corrosion resistance of fly ash geopolymer, high temperature test of geopolymer is presented, referring to the relationship between high-temperature, constant temperature and compressive strength.Through the compressive strength test of geopolymer test cubes at different temperature and different constant temperature time, the coupling relationship among temperature, constant temperature time and compressive strength of geopolymer is analyzed, and the mathematical models of these is established.Additionally the leaching concentractions of heavy metals in the fly ash-geopolymers after heating are determined to examine the stability.Based on the results of test, the 3D curved surface of temperature,constant temperature time and compressive strength of geopolymer is fitted.

  3. Rarefaction effects in dilute granular Poiseuille flow: Knudsen minimum and temperature bimodality

    Science.gov (United States)

    Mahajan, Achal; Alam, Meheboob

    2015-11-01

    The gravity-driven flow of smooth inelastic hard-disks through a channel, analog of granular Poiseuille flow, is analysed using event-driven simulations. We find that the variation of the mass-flow rate (Q) with Knudsen number (Kn) can be non-monotonic in the elastic limit (i.e. the restitution coefficient en --> 1) in channels with very smooth walls. The Knudsen minimum effect (i.e. the minimum flow rate occurring at Kn ~ O (1) for the Poiseuille flow of a molecular gas) is found to be absent in a granular gas with en competition between dissipation and rarefaction seems to be responsible for the observed dependence of both mass-flow rate and temperature bimodality on Kn and en . [Alam etal. 2015, JFM (revised)].

  4. A chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrometer. I. The low-temperature flow system.

    Science.gov (United States)

    Oldham, James M; Abeysekera, Chamara; Joalland, Baptiste; Zack, Lindsay N; Prozument, Kirill; Sims, Ian R; Park, G Barratt; Field, Robert W; Suits, Arthur G

    2014-10-21

    We report the development of a new instrument that combines chirped-pulse microwave spectroscopy with a pulsed uniform supersonic flow. This combination promises a nearly universal detection method that can deliver isomer and conformer specific, quantitative detection and spectroscopic characterization of unstable reaction products and intermediates, product vibrational distributions, and molecular excited states. This first paper in a series of two presents a new pulsed-flow design, at the heart of which is a fast, high-throughput pulsed valve driven by a piezoelectric stack actuator. Uniform flows at temperatures as low as 20 K were readily achieved with only modest pumping requirements, as demonstrated by impact pressure measurements and pure rotational spectroscopy. The proposed technique will be suitable for application in diverse fields including fundamental studies in spectroscopy, kinetics, and reaction dynamics.

  5. Investigation on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin

    2013-10-22

    Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racks of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the

  6. Fly ash carbon passivation

    Science.gov (United States)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  7. Chemical composition in relation with biomass ash structure

    Science.gov (United States)

    Holubcik, Michal; Jandacka, Jozef

    2014-08-01

    Biomass combustion can be more complicated like combustion of fossil fuels because it is necessary to solve problems with lower ash melting temperature. It can cause a lot of problems during combustion process. Chemical composition of biomass ash has great impact on sinters and slags creation in ash because it affects structure of heated ash. In this paper was solved relation between chemical composition and structure of heated ash from three types of biomass (spruce wood, miscanthus giganteus and wheat straw). Amount of SiO2, CaO, MgO, Al2O3 and K2O was determined. Structure of heated ash was optically determined after heating to 1000 °C or 1200 °C. Results demonstrated that chemical composition has strong effect on structure and color of heated ash.

  8. Temperature rise of He Ⅱ forced flow and its negative Joule-Thomson effect

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu; JU Yong-lin; ZHENG Qing-rong; LU Xue-sheng; GU An-zhong

    2009-01-01

    The temperature rise of He Ⅱ transfer system due to the negative Joule-Thomson (JT) effect is one of the major problems in the He Ⅱ forced flow system design. Negative Joule-Thomson effect of the He Ⅱ forced flow was analyzed and calculated in this paper. The temperature rise due to the heat leak along the transfer pipeline was calculated by the simplified equation and was modified by considering the negative Joule-Thomson effect. The modified results were compared with the temperature rise obtained by non-linear differential equations with consideration of the pressure gradient. The results show that the pressure gradient has strong effect on the temperature distribution. The modified results are in good agreement with the values calculated by the complicated equation, which verifies the effectiveness of the simplified equation in calculating the temperature rise when the negative JT effect of He Ⅱ is known.

  9. Method for increasing -SiC yield on solid state reaction of coal fly ash and activated carbon powder

    Indian Academy of Sciences (India)

    Sulardjaka; Jamasri; M W Wildan; Kusnanto

    2011-07-01

    A novel process for increasing -SiC yield on solid state reaction of coal fly ash and micro powder activated carbon powder has been proposed. -SiC powder was synthesized at temperature 1300°C for 2 h under vacuum condition with 1 l/min argon flow. Cycling synthesis process has been developed for increasing -SiC yield on solid state reaction of coal fly ash and activated carbon powder. Synthesized products were analyzed by XRD with Cu-K radiation, FTIR spectrometer and SEM fitted with EDAX. The results show that the amount of relative -SiC is increased with the number of cycling synthesis.

  10. Crustal heat flow measurements in western Anatolia from borehole equilibrium temperatures

    Science.gov (United States)

    Erkan, K.

    2014-01-01

    Results of a crustal heat flow analysis in western Anatolia based on borehole equilibrium temperatures and rock thermal conductivity data are reported. The dataset comprises 113 borehole sites that were collected in Southern Marmara and Aegean regions of Turkey in 1995-1999. The measurements are from abandoned water wells with depths of 100-150 m. Data were first classed in terms of quality, and the low quality data, including data showing effects of hydrologic disturbances on temperatures, were eliminated. For the remaining 34 sites, one meter resolution temperature-depth curves were carefully analyzed for determination of the background geothermal gradients, and any effects of terrain topography and intra-borehole fluid flow were corrected when necessary. Thermal conductivities were determined either by direct measurements on representative surface outcrop or estimated from the borehole lithologic records. The calculated heat flow values are 85-90 mW m-2 in the northern and central parts of the Menderes horst-graben system. Within the system, the highest heat flow values (> 100 mW m-2) are observed in the northeastern part of Gediz Graben, near Kula active volcanic center. The calculated heat flow values are also in agreement with the results of studies on the maximum depth of seismicity in the region. In the Menderes horst-graben system, surface heat flow is expected to show significant variations as a result of active sedimentation and thermal refraction in grabens, and active erosion on horst detachment zones. High heat flow values (90-100 mW m-2) are also observed in the peninsular (western) part of Çanakkale province. The heat flow anomaly here may be an extension of the high heat flow zone previously observed in the northern Aegean Sea. Moderate heat flow values (60-70 mW m-2) are observed in eastern part of Çanakkale and central part of Balıkesir provinces.

  11. Crustal heat flow measurements in western Anatolia from borehole equilibrium temperatures

    Directory of Open Access Journals (Sweden)

    K. Erkan

    2014-01-01

    Full Text Available Results of a crustal heat flow analysis in western Anatolia based on borehole equilibrium temperatures and rock thermal conductivity data are reported. The dataset comprises 113 borehole sites that were collected in Southern Marmara and Aegean regions of Turkey in 1995–1999. The measurements are from abandoned water wells with depths of 100–150 m. Data were first classed in terms of quality, and the low quality data, including data showing effects of hydrologic disturbances on temperatures, were eliminated. For the remaining 34 sites, one meter resolution temperature-depth curves were carefully analyzed for determination of the background geothermal gradients, and any effects of terrain topography and intra-borehole fluid flow were corrected when necessary. Thermal conductivities were determined either by direct measurements on representative surface outcrop or estimated from the borehole lithologic records. The calculated heat flow values are 85–90 mW m−2 in the northern and central parts of the Menderes horst-graben system. Within the system, the highest heat flow values (> 100 mW m−2 are observed in the northeastern part of Gediz Graben, near Kula active volcanic center. The calculated heat flow values are also in agreement with the results of studies on the maximum depth of seismicity in the region. In the Menderes horst-graben system, surface heat flow is expected to show significant variations as a result of active sedimentation and thermal refraction in grabens, and active erosion on horst detachment zones. High heat flow values (90–100 mW m−2 are also observed in the peninsular (western part of Çanakkale province. The heat flow anomaly here may be an extension of the high heat flow zone previously observed in the northern Aegean Sea. Moderate heat flow values (60–70 mW m−2 are observed in eastern part of Çanakkale and central part of Balıkesir provinces.

  12. Study of glass ceramic material on the base of ash group simulating slag of plasma shaft furnace for high temperature reprocessing of radioactive wastes

    International Nuclear Information System (INIS)

    Using the methods of X-ray diffraction, differential thermal and micro-probe analysis it is shown that the processes of minerals formation and homogenization in ash residue based charge under the heating up to 1450 deg C take place with a high rate and completely finish during 10 minutes. Homogeneous materials containing besides glassy phase crystalline phases and metallic shots are formed in this process. The products obtained with fluxes (dolomite and clay) additions are more homogeneous than a flux-less fused slag. Losses of α-radioactive nuclides during the melting of ash residue at 1300 deg C do not exceed 1.5% and is likely attributed with the products of uranium decay. Hydrolytic stability of the slags estimated from the rate of α-radioactive elements lixiviation is on the level of (1.4-5.7)x10-4 g/(cm2 x day) at 95 deg C

  13. Hydrogen/Oxygen Reactions at High Pressures and Intermediate Temperatures: Flow Reactor Experiments and Kinetic Modeling

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Glarborg, Peter

    A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, ignition occurs at the temperature of 775–800 K. In general, the present model provides a good agreement with the measurements in the flow reactor and with recent data on laminar burning velocity and ignition delay time.......A series of experimental and numerical investigations into hydrogen oxidation at high pressures and intermediate temperatures has been conducted. The experiments were carried out in a high pressure laminar flow reactor at 50 bar pressure and a temperature range of 600–900 K. The equivalence ratio......, the mechanism is used to simulate published data on ignition delay time and laminar burning velocity of hydrogen. The flow reactor results show that at reducing, stoichiometric, and oxidizing conditions, conversion starts at temperatures of 750–775 K, 800–825 K, and 800–825 K, respectively. In oxygen atmosphere...

  14. Influence of fluid temperature gradient on the flow within the shaft gap of a PLR pump

    Science.gov (United States)

    Qian, W.; Rosic, B.; Zhang, Q.; Khanal, B.

    2016-03-01

    In nuclear power plants the primary-loop recirculation (PLR) pump circulates the high temperature/high-pressure coolant in order to remove the thermal energy generated within the reactor. The pump is sealed using the cold purge flow in the shaft seal gap between the rotating shaft and stationary casing, where different forms of Taylor-Couette flow instabilities develop. Due to the temperature difference between the hot recirculating water and the cold purge water (of order of 200 °C), the flow instabilities in the gap cause temperature fluctuations, which can lead to shaft or casing thermal fatigue cracks. The present work numerically investigated the influence of temperature difference and rotating speed on the structure and dynamics of the Taylor-Couette flow instabilities. The CFD solver used in this study was extensively validated against the experimental data published in the open literature. Influence of temperature difference on the fluid dynamics of Taylor vortices was investigated in this study. With large temperature difference, the structure of the Taylor vortices is greatly stretched at the interface region between the annulus gap and the lower recirculating cavity. Higher temperature difference and rotating speed induce lower fluctuating frequency and smaller circumferential wave number of Taylor vortices. However, the azimuthal wave speed remains unchanged with all the cases tested. The predicted axial location of the maximum temperature fluctuation on the shaft is in a good agreement with the experimental data, identifying the region potentially affected by the thermal fatigue. The physical understandings of such flow instabilities presented in this paper would be useful for future PLR pump design optimization.

  15. Study on the structural change and heat transfer characteristics of ash deposit layers in the coal gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Kazuyoshi Ichikawa; Yuso Oki; Jun Inumaru [Central Research Institute of Electric Power Industry (CREIPI) (Japan)

    2005-07-01

    Ash deposition is often observed in the coal gasifier. As it may interfere the operation of gasifier, in case of excessive deposition, a study is needed to evaluate the ash deposition characteristics on the gasifier wall, its ability to grow after deposition, and influence of the formation of deposition layers on the heat transfer capability in advance. CRIEPI has conducted a study of the basic gasification process and operational technology using a 2T/D air-blown pressurized entrained-flow coal gasifier (2 T/D gasifier) since 1983. In a previous work, the authors calculated the ash liquid phase ratio as an index of the ash melting characteristics in correspondence to continuous temperature change, and established the relationship with the ash deposition characteristics. We also proposed as the technique to predict ash deposition characteristics in the gasifier by construction of a model based upon the correlation and introduction into the numerical analysis code. In this report, the relationship between the sintering structure and the heat transfer characteristics of deposition layer is studied. The heat transfer mechanism in the layer was also pursued. 7 refs., 6 figs., 1 tab.

  16. Separated flow behind a backward-facing step under a stationary temperature disturbance

    Science.gov (United States)

    Boiko, A. V.; Dovgal, A. V.; Sorokin, A. M.

    2015-11-01

    The flow in the separation region of laminar boundary layer behind a rectangular backward-facing step has been experimentally examined under temperature non-uniformity of the flow. The data were obtained in a subsonic wind tunnel at Reynolds numbers M ≪ 1. The temperature disturbance was generated using a system of Peltier elements provided on the model surface upstream of the separation line. The effect of heating/cooling of the wall on the mean and fluctuating flow components was evaluated using hot-wire measurements. The experimental data were supplemented with calculations of linear-stability characteristics of model velocity profiles in the separated boundary layer. As a result, the response of the separated flow to a stationary thermal perturbation was revealed.

  17. Hydraulic transportation of fly ash: a laboratory-scale investigation

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Sastry, B.S. [Anna University, Chennai (India). Dept. of Mining Engineering

    2006-07-01

    Flow behaviour of fly ash slurry is a very complex phenomenon. The present study tries to examine the relation between flow rate and pressure loss of fly ash slurry under laboratory-scale experiment set up in the light of available theoretical background. Pressure loss increases with the increase in flow rate and solid concentration but pressure losses can be saved by the addition of 2200 PPM (parts per million) concentration of polyacrylamide polymer. 6 refs., 7 figs., 4 tabs.

  18. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m3/s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  19. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    Energy Technology Data Exchange (ETDEWEB)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m/sup 3//s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested.

  20. CO2 capture and sorbent regeneration performances of some wood ash materials

    International Nuclear Information System (INIS)

    Highlights: • Wood ash is tried as a new sorbent for CO2 capture from flue gas after combustion. • The CO2 capture capacity of wood ash is in the range of 0.35–0.54 mmol CO2/g. • The sorbent can be completely regenerated below 200 °C. • For the recycle of environmental pollutants, wood ash is a low cost CO2 sorbent. - Abstract: Wood ash, which is recognized as an environmental pollutant, is tried as a new material for CO2 capture in this work. Five wood ash samples obtained from different raw materials were chosen, and an experimental demonstration of the CO2 capture performances of these wood ash samples was present in detail in a modified fixed bed reactor system. The CO2 capture and the sorbent regeneration performances of wood ash were investigated under different conditions by changing the temperature, H2O concentration, gas flow rate and the heating rate. The CO2 capture capacities are in the range of 0.35–0.54 mmol CO2/g for different wood ash samples under the condition of 60 °C, 10% CO2 + 12% H2O. The CO2 capture processes contain two parts for these samples. One is the physical adsorption process, and another is the chemical reaction of K2CO3 with CO2 and H2O to form KHCO3, K2CO3·1.5H2O and K4H2(CO3)3·1.5H2O. The desired wood ash is proved to be regenerable and stable during 10-cycle CO2 sorption–desorption tests. The deactivation model and the Avrami–Erofeyev model are adopted to evaluate the CO2 sorption and desorption kinetics of this sample respectively. Considering the low cost, and the recycling of environmental pollutants, wood ash is a nice choice for CO2 capture

  1. Analysis of Temperature and Plastic Flow during Friction Stir Spot Welding Using Particle Method

    Science.gov (United States)

    Hirasawa, Shigeki; Badarinarayan, Harsha; Okamoto, Kazutaka; Tomimura, Toshio; Kawanami, Tsuyoshi; Hirano, Shigeki

    Friction stir spot welding (FSSW) is a new metal-joining process, and a numerical simulation code to calculate optimal welding conditions is desired. In this paper, we analyzed temperature distribution and plastic deformation flow during the FSSW process with the fluid flow model and the elastic-plastic deformation model using the particle method. Spot welds are made with a cylindrical pin tool having flat shoulder with a fixed tool rotational speed. Simulation results predict an axisymmetric temperature distribution with the temperature below the tool in the region of 300 °C. The material flow predicted by the elastic-plastic deformation model is similar to experimental results. The model predicts the material flow at the pin periphery is in the upward direction. Near the shoulder, there are two flow patterns observed - beneath the shoulder, the material is pushed downward due to the force acting from the shoulder face, whereas on the shoulder periphery the material flows upward and outward due to extrusion of the material that is caused by the shoulder plunge. This extruded material shows up on the specimen surface as burr.

  2. Prediction of Air Flow and Temperature Distribution Inside a Yogurt Cooling Room Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    A Surendhar

    2015-01-01

    Full Text Available Air flow and heat transfer inside a yogurt cooling room were analysed using Computational Fluid Dynamics. Air flow and heat transfer models were based on 3D, unsteady state, incompressible, Reynolds-averaged Navier-Stokes equations and energy equations. Yogurt cooling room was modelled with the measured geometry using 3D design tool AutoCAD. Yogurt cooling room model was exported into the flow simulation software by specifying properties of inlet air, yogurt, pallet and walls of the room. Packing material was not considered in this study because of less thickness (cup-0.5mm, carton box-1.5mm and negligible resistance created in the conduction of heat. 3D Computational domain was meshed with hexahedral cells and governing equations were solved using explicit finite volume method. Air flow pattern inside the room and the temperature distribution in the bulk of palletized yogurt were predicted. Through validation, the variation in the temperature distribution and velocity vector from the measured value was found to be 2.0oC (maximum and 30% respectively. From the simulation and the measured value of the temperature distribution, it was observed that the temperature was non-uniform over the bulk of yogurt. This might be due to refrigeration capacity, air flow pattern, stacking of yogurt or geometry of the room. Required results were achieved by changing the location of the cooling fan.

  3. Prediction of high temperature flow stress in 9Cr-1Mo ferritic steel during hot compression

    International Nuclear Information System (INIS)

    Constitutive analysis was performed on the experimental true stress-true strain data obtained from hot isothermal compression tests on 9Cr-1Mo steel in a wide range of temperatures (1173-1373 K, i.e. 900-1100 oC) and strain rates (0.01-100 s-1). The constitutive equation for hot deformation is represented by a hyperbolic-sine Arrhenius type equation relating flow stress, strain rate and temperature, and could be described by the Zener-Hollomon parameter in an exponential type equation. The influence of strain was incorporated in the constitutive equation by considering the variation of material constants as a function of strain. It is observed that the compensation for strain could not accurately predict the flow stress for the entire strain rate and temperature regime. The constitutive equation was revised incorporating compensation for both strain and strain rate by suitably modifying the Zener-Hollomon parameter and the modified constitutive equation is found to give good prediction of flow stresses for most strain rate and temperature combinations. - Highlights: → Constitutive analysis is performed on hot compression flow data on 9Cr-1Mo steel. → The influence of strain was incorporated in hyperbolic-sine constitutive equation. → The material constants in constitutive equation were found to vary with strain. → Constitutive equation was revised by suitably modifying the Zener-Hollomon parameter. → The modified constitutive equation gave good prediction of the flow stress.

  4. Prediction of high temperature flow stress in 9Cr-1Mo ferritic steel during hot compression

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.A. [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Dept of Atomic Energy, Kalpakkam 603102, Tamil Nadu (India); Phaniraj, C., E-mail: phani@igcar.gov.in [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Dept of Atomic Energy, Kalpakkam 603102, Tamil Nadu (India); Ravishankar, C.; Bhaduri, A.K.; Sivaprasad, P.V. [Materials Technology Division, Indira Gandhi Centre for Atomic Research, Dept of Atomic Energy, Kalpakkam 603102, Tamil Nadu (India)

    2011-12-15

    Constitutive analysis was performed on the experimental true stress-true strain data obtained from hot isothermal compression tests on 9Cr-1Mo steel in a wide range of temperatures (1173-1373 K, i.e. 900-1100 {sup o}C) and strain rates (0.01-100 s{sup -1}). The constitutive equation for hot deformation is represented by a hyperbolic-sine Arrhenius type equation relating flow stress, strain rate and temperature, and could be described by the Zener-Hollomon parameter in an exponential type equation. The influence of strain was incorporated in the constitutive equation by considering the variation of material constants as a function of strain. It is observed that the compensation for strain could not accurately predict the flow stress for the entire strain rate and temperature regime. The constitutive equation was revised incorporating compensation for both strain and strain rate by suitably modifying the Zener-Hollomon parameter and the modified constitutive equation is found to give good prediction of flow stresses for most strain rate and temperature combinations. - Highlights: > Constitutive analysis is performed on hot compression flow data on 9Cr-1Mo steel. > The influence of strain was incorporated in hyperbolic-sine constitutive equation. > The material constants in constitutive equation were found to vary with strain. > Constitutive equation was revised by suitably modifying the Zener-Hollomon parameter. > The modified constitutive equation gave good prediction of the flow stress.

  5. Modelling of temperature in deep boreholes and evaluation of geothermal heat flow at Forsmark and Laxemar

    International Nuclear Information System (INIS)

    This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with air

  6. Modelling of temperature in deep boreholes and evaluation of geothermal heat flow at Forsmark and Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, Jan; Back, Paer-Erik; Laendell, Maerta; Sundberg, Anders (GEO INNOVA AB, Linkoeping (Sweden))

    2009-06-15

    This report presents modelling of temperature and temperature gradients in boreholes in Laxemar and Forsmark and fitting to measured temperature data. The modelling is performed with an analytical expression including thermal conductivity, thermal diffusivity, heat flow, internal heat generation and climate events in the past. As a result of the fitting procedure it is also possible to evaluate local heat flow values for the two sites. However, since there is no independent evaluation of the heat flow, uncertainties in for example thermal conductivity, diffusivity and the palaeoclimate temperature curve are transferred into uncertainties in the heat flow. Both for Forsmark and Laxemar, reasonably good fits were achieved between models and data on borehole temperatures. However, none of the general models achieved a fit within the 95% confidence intervals of the measurements. This was achieved in some cases for the additional optimised models. Several of the model parameters are uncertain. A good model fit does not automatically imply that 'correct' values have been used for these parameters. Similar model fits can be expected with different sets of parameter values. The palaeoclimatically corrected surface mean heat flow at Forsmark and Laxemar is suggested to be 61 and 56 mW/m2 respectively. If all uncertainties are combined, including data uncertainties, the total uncertainty in the heat flow determination is judged to be within +12% to -14% for both sites. The corrections for palaeoclimate are quite large and verify the need of site-specific climate descriptions. Estimations of the current ground surface temperature have been made by extrapolations from measured temperature logging. The mean extrapolated ground surface temperature in Forsmark and Laxemar is estimated to 6.5 deg and 7.3 deg C respectively. This is approximately 1.7 deg C higher for Forsmark, and 1.6 deg C higher for Laxemar compared to data in the report SKB-TR-06-23. Comparison with

  7. Large concentration changes due to thermal diffusion effects in gas flow microsystems with temperature gradients

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Johannessen, Tue; Jensen, Søren;

    Thermal diffusion, or Sorét diffusion, is shown to cause significant concentration changes and transients in gas flow microsystems with temperature gradients. In a silicon microsystem, a temperature gradient of about 100 oC/mm is measured to produce concentration transients of up to 13.......7 % in an argon/helium mixture, when the flow is abruptly changed from a high value to a low value. Finite element simulations of the thermal diffusion in a geometry similar to the experimental setup reproduce the measurements....

  8. Radiation effect on temperature distribution in three-dimensional Couette flow with suction or injection

    Institute of Scientific and Technical Information of China (English)

    Bhupendra.Kumar Sharma; Mamta Agarwal; R.C.Chaudhary

    2007-01-01

    A theoretical analysis of three-dimensional Couette flow with radiation effect on temperature distribution has been analysed, when the injection of the fluid at the lower stationary plate is a transverse sinusoidal one and its corresponding removal by constant suction through the upper porous plate is in uniform motion. Due to this type of injection velocity, the flow becomes three-dimensional. The effect of Prandtl number,radiation parameter and injection parameter on rate of heat transfer has been examined by the help of graphs. The Prandtl number has a much greater effect on the temperature distribution than the injection or radiation parameter.

  9. CONJUGATE MODEL FOR HEAT AND MASS TRANSFER OF POROUS WALL IN THE HIGH TEMPERATURE GAS FLOW

    Institute of Scientific and Technical Information of China (English)

    A.F. Polyakov; D.L.Reviznikov; 沈青; 魏叔如

    2001-01-01

    Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow.The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.

  10. Study of VTOL in ground-effect flow field including temperature effect

    Science.gov (United States)

    Hill, W. G.; Jenkins, R. C.; Kalemaris, S. G.; Siclari, M. J.

    1982-01-01

    Detailed pressure, temperature, and velocity data were obtained for twin-fan configurations in-ground-effect and flow models to aid in predicting pressures and upwash forces on aircraft surfaces were developed. For the basic experiments, 49.5 mm-diameter jets were used, oriented normal to a simulated round plane, with pressurized, heated air providing a jet. The experimental data consisted of: (1) the effect of jet height and temperature on the ground, model, and upwash pressures, and temperatures, (2) the effect of simulated aircraft surfaces on the isolated flow field, (3) the jet-induced forces on a three-dimensional body with various strakes, (4) the effects of non-uniform coannular jets. For the uniform circular jets, temperature was varied from room temperature (24 C) to 232 C. Jet total pressure was varied between 9,300 Pascals and 31,500 Pascals. For the coannular jets, intended to represent turbofan engines, fan temperature was maintained at room temperature while core temperature was varied from room temperature to 437 C. Results are presented.

  11. Effects of elevated temperatures on the mechanical properties of high fly ash content concrete%高温作用对大掺量粉煤灰混凝土力学性能影响

    Institute of Scientific and Technical Information of China (English)

    贾福萍; 崔艳莉; 孙宜兵; 程勇

    2011-01-01

    In this paper, the effects of elevated temperatures on the mechanical properties of high fly ash content concrete (HFCC) are presented. The specimens were prepared with three different replacements of cement by fly ash 30%,40% and 50% and were tested after exposure to elevated temperature 250, 450, 550 and 650°C respectively, compared with plain Portland concrete. The results showed that as the elevated temperature increases, the residual compressive strength and the residual tensile strength both apparently decrease and the deterioration of tensile strength was much quicker than the deterioration in compressive strength. The results also showed the influence of fly ash replacement on the degraded ratio of strength is complicated. After an exposure to the elevated temperatures, the degraded ratio of compressive strength is less than plain ordinary Portland concrete (PC) and one of tensile strength, except 30% fly ash replacement, remains the same. Based on the experiments, the alternating simulation formula for determining the relationship between residual strength ratio, elevated temperature and fly ash, the replacement is developed by using regression of results, which provide the theoretical basis for the evaluation and repair of HFCC after elevated temperature.%研究了高温作用对大掺量粉煤灰混凝土(HFCC)立方体力学性能的影响,探讨了不同加热温度、不同粉煤灰掺量与HFCC残余强度的关系.将粉煤灰掺量30%、40%和50%的混凝土立方体试块加热至250,450,550和650℃进行强度测试,并与素混凝土(不掺粉煤灰)试块进行对比.研究结果表明,随着温度升高,HFCC残余抗压、劈裂抗拉强度均出现明显退化,劈裂抗拉强度退化尤为明显;随着粉煤灰的掺入,粉煤灰掺量对强度退化率的影响具有复杂性:高温后HFCC抗压强度退化率均低于普通混凝土强度退化率;劈裂抗拉强度退化率除粉煤灰掺量30%外均低于普通混凝土退化

  12. A Study on Flow Behavior of AA5086 Over a Wide Range of Temperatures

    Science.gov (United States)

    Asgharzadeh, A.; Jamshidi Aval, H.; Serajzadeh, S.

    2016-03-01

    Flow stress behavior of AA5086 was determined using tensile testing at different temperatures from room temperature to 500 °C and strain rates varying between 0.002 and 1 s-1. The strain rate sensitivity parameter and occurrence of dynamic strain aging were then investigated in which an Arrhenius-type model was employed to study the serrated flow. Additionally, hot deformation behavior at temperatures higher than 320 °C was evaluated utilizing hyperbolic-sine constitutive equation. Finally, a feed forward artificial neural network model with back propagation learning algorithm was proposed to predict flow stress for all deformation conditions. The results demonstrated that the strain rate sensitivity at temperature range of 25-270 °C was negative due to occurrence of dynamic strain aging leading to significant reduction in fracture strain. The serrated yielding activation energy was found to be 46.1 kJ/mol. It indicated that the migration of Mg-atoms could be the main reason for this phenomenon. The hot deformation activation energy of AA5086 was also calculated about 202.3 kJ/mol while the dynamic recovery was the main softening process. Moreover, the ANN model having two hidden layers was shown to be an efficient structure for determining flow stress of the examined alloy for all temperatures and strain rates.

  13. Characterizing the Hydrological Properties of Wildfire Ash

    Science.gov (United States)

    Woods, S.; Balfour, V.

    2010-12-01

    Wildfires are extreme disturbance events that can increase runoff and erosion rates by 2-3 orders of magnitude. Fire related sediment presents a significant geomorphic hazard in terms of debris flows and other catastrophic erosion events, but ultimately plays a key role in landscape evolution in fire prone regions. The hyper-dessicated ash and soil layers making up the near surface profile in recently burned areas respond very differently to rainfall than the litter and unburned soil that existed prior to the fire. Limited knowledge regarding the hydrological properties of the ash-soil profile, and the ash layer in particular, currently limits efforts to model the infiltration process in burned areas and hence predict the location and magnitude of post fire runoff and erosion events. In our ongoing research we are investigating and quantifying the hydrologic properties of wildfire ash. Wherever possible we use conventional laboratory techniques from soil hydrology but in some cases we have had to adapt these techniques to account for the distinct physical and chemical properties of ash, such as the variability in particle density and the partial solubility of many of the mineral components. Some of the hydrologic properties of ash, such as the hydraulic conductivity, are similar to those of a mineral soil with a comparable particle size distribution. For example, ash from Spain with a silty loam texture had a hydraulic conductivity of 7 x 10-4 cm s-1, which is within the range reported for mineral soils with the same texture. However, other properties such as the porosity are considerably different; an undisturbed ash sample with a sandy loam texture had a porosity of 93 percent compared to the typical range of 30 to 50 percent for mineral soils with this texture. Scanning electron microscopy analysis indicates that the contrasting hydrologic properties of ash and soil are due to differences in the particle shape, particle packing and pore structure. Using examples

  14. Heat transfer in pulsating laminar flow in a pipe - A constant wall temperature

    Science.gov (United States)

    Kita, Y.; Hirose, K.; Hayashi, T.

    1982-02-01

    An analytical model of heat transfer in a pulsating laminar pipe flow with a constant wall temperature is presented. Governing equations for the velocity profile and the wall shear stress are defined and the temperature field is studied for an instantaneous Nusselt number. Cases of steady and unsteady temperature fields are considered, along with the heat flux in the unsteady state, and a ratio for the Nusselt number in the steady state to that in the pulsating flow is obtained. A method for deriving the instantaneous pipe friction factor is demonstrated and the range of the pressure-gradient amplitudes is determined. Finally, conditions are formulated in which the temperature field, including the heat flux, at the wall are equal to that of the steady state.

  15. Study on temperature and flow fluctuation phenomena in pressurizer spray pipe of PWR

    International Nuclear Information System (INIS)

    Thermal fatigue cracking may initiate in pressurizer spray pipe of PWR where oscillations of water surface may exist. In order to clarify the flow and thermal conditions in the pressurizer spray pipe, an experiment was conducted for a steam-water flow using a mock-up pressurizer spray pipe. It was shown that the fluid temperature fluctuations were not caused by the waves on the water surface, but were caused by temperature fluctuations in water layer below the interface. Visualization tests were conducted to investigate the detail mechanism of the fluctuation using the rectangular pipe made of polycarbonate resin. The clouds were observed below the steam-water interface and it seemed like an internal wave. It was shown that the maximum of the temperature fluctuations increases with increase the steam-water temperature difference and the prominent frequency of the fluctuations was nearly equal to 0.1Hz∼1Hz. (author)

  16. On the impact of additional spectral bands usage on RST-ASH performance in volcanic ash plume detected from space

    Science.gov (United States)

    Falconieri, Alfredo; Filizzola, Carolina; Marchese, Francesco; Pergola, Nicola; Tramutoli, Valerio

    2016-04-01

    RST-ASH is an algorithm developed for detecting and tracking volcanic ash clouds from space based on the Robust Satellite Technique (RST) multi-temporal approach. For the identification of ash affected areas RST-ASH uses two local variation indexes in combination. They analyse the Brightness Temperature Differences (BTD) of the signal measured at 11 μm and 12 μm and at around 3.5 and 11 μm wavelengths to detect ash in both nighttime and daytime conditions. RST-ASH was tested on Advanced Very High Resolution Radiometer (AVHRR) and on Moderate Resolution Imaging Spectroradiometer (MODIS) records and was then implemented on Spinning Enhanced Visible and Infrared Imager (SEVIRI) for studying and monitoring eruptions of different volcanoes. In this study, some experimental configurations of RST-ASH, analyzing signal also in other spectral bands (e.g. VIS, SO2) will be tested and assessed, studying recent ash plumes (e.g. Etna, Eyjafjallajökull, Grímsvötn) affecting different geographic areas. Results achieved using both polar and geostationary satellite data will be evaluated even for comparison with other state of the art methods. The work shows that when the extended spectral capabilities offered by high temporal resolution satellites are exploited an improvement of RST-ASH performance in some observational and plume conditions is achievable, making RST-ASH still more suited for identifying and monitoring ash clouds in the framework of possible operational scenarios.

  17. Evaluating the Flow Processes in Ultrafine-Grained Materials at Elevated Temperatures

    OpenAIRE

    Megumi Kawasaki; Terence G. Langdon

    2013-01-01

    When polycrystalline materials are tested in tension at elevated temperatures, the flow mechanisms depend upon various parameters including the temperature of testing, the applied stress and the material grain size. The plotting of deformation mechanism maps is a procedure used widely in displaying and interpreting the creep properties of conventional coarse-grained metals but there have been few attempts to date to use this same procedure for ultrafine-grained and nanocrystalline materials p...

  18. Unsteady Flow of a Dusty Conducting Fluid Between Parallel Porous Plates With Temperature Dependent Viscosity

    OpenAIRE

    ATTIA, Hazem A.

    2005-01-01

    This paper studies unsteady laminar flow of dusty conducting fluid between parallel porous plates with temperature dependent viscosity. The fluid is acted upon by a constant pressure gradient and an external uniform magnetic field is applied perpendicular to the plates. The parallel plates are assumed to be porous and subjected to a uniform suction from above and injection from below. The viscosity of the fluid is assumed to vary exponentially with temperature. The governing nonlin...

  19. High temperature ultrasonic gas flow sensor based on lead free piezoelectric material

    OpenAIRE

    Krsmanovic, Dalibor

    2011-01-01

    The review of current technologies for measurement of gas velocity in stack flow applications is undertaken and it is shown that the ultrasonic time-of-flight method is the most suitable and offers a number of advantages over alternatives. Weakness of current piezoelectric based transducers are identified as the inability to operate at temperatures above 400 ?C due to limitation of piezoelectric materials used, and a case for development of an alternative high temperature material is put forw...

  20. Influence of Slip Condition on Unsteady Free Convection Flow of Viscous Fluid with Ramped Wall Temperature

    Directory of Open Access Journals (Sweden)

    Sami Ul Haq

    2015-01-01

    Full Text Available The objective of this study is to explore the influence of wall slip condition on a free convection flow of an incompressible viscous fluid with heat transfer and ramped wall temperature. Exact solution of the problem is obtained by using Laplace transform technique. Graphical results to see the effects of Prandtl number Pr, time t, and slip parameter η on velocity and skin friction for the case of ramped and constant temperature of the plate are provided and discussed.

  1. Convective heat transfer for incompressible laminar gas flow in micropassage with constant wall temperature

    Institute of Scientific and Technical Information of China (English)

    安刚; 李俊明; 王补宣

    2001-01-01

    Theoretical investigations have been performed on the convective heat transfer for incompressible laminar flow of gases through microtube and parallel-plates micropassages with constant wall temperature. Considering the change in thermal conductivity and viscosity of gas in wall adjacent region from the kinetic theory, mathematical models are built for both of the micropassages. The dimensionless temperature distribution and the corresponding heat transfer characteristics are simulated numerically, and the results discussed briefly.

  2. Recovering germanium from coal ash by chlorination with ammonium chloride

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new process of enriching germanium from coal ash was developed. The process involves in mixing the coal ash and ammonium chloride and then roasting the mixture to produce germanium chloride that is then absorbed by dilute hydrochloric acid and hydrolyzed to germanium oxide. The germanium recovery reached to 80.2% at the optimum condition: mass ratio of NH4Cl/coal ash is 0.15, roasting temperature 400℃ and roasting time 90 min.

  3. Ash chemistry and sintering, verification of the mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In this project four sintering mechanisms have been studied, i.e., partial melting with a viscous liquid, partial melting with a non-viscous liquid, chemical reaction sintering and solid state sintering. The work has aimed at improving the understanding of ash sintering mechanisms and quantifying their role in combustion and gasification. The work has been oriented in particular on the understanding of biomass ash behavior. The work has not directly focused on any specific technical application. However, results can also be applied on other fuels such as brown coal, petroleum coke, black liquor and different types of wastes (PDF, RDF, MSW). In one part of study the melting behavior was calculated for ten biomass ashes and compared with lab measurements of sintering tendencies. The comparison showed that the T{sub 15} temperatures, i.e. those temperatures at which the ashes contained 15 % molten phase, correlated fairly well with the temperature at which the sintering measurements detected sintering. This suggests that partial melting can be predicted fairly accurate for some ashes already with the today existing thermodynamic calculation routines. In some cases, however the melting calculations did not correlate with the detected sintering temperatures. In a second part detailed measurements on ash behavior was conducted both in a semi full scale CFB and a lab scale FBC. Ashes and deposits were collected and analyzed in several different ways. These analyses show that the ash chemistry shifts radically when the fuel is shifted. Fuels with silicate based ashes behaved totally different than those with an oxide or salt based ash. The chemistry was also affected by fuel blending. The ultimate goal has been to be able to predict the ash thermal behavior during biomass thermal conversion, using the fuel and ash elemental analyses and a few operational key parameters as the only input data. This goal has not yet today been achieved. (author)

  4. Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments

    International Nuclear Information System (INIS)

    Highlights: ► Element release during fly ash extraction experiments controlled by mineralogy. ► Strontium isotopes in fly ash are not homogenized during coal combustion. ► Element correlations with 87Sr/86Sr indicate chemically resistant silicate phase. ► Sr isotopes can uniquely identify fly ash fluids leaking into the environment. - Abstract: The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in 87Sr/86Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface

  5. Temperature measurements in carbonatite lava lakes and flows from oldoinyo lengai, Tanzania.

    Science.gov (United States)

    Krafft, M; Keller, J

    1989-07-14

    The petrogenesis of carbonatites has important implications for mantle processes and for the magmatic evolution of mantle melts rich in carbon dioxide. Oldoinyo Lengai, Tanzania, is the only active carbonatite volcano on Earth. Its highly alkalic, sodium-rich lava, although different in composition from the more common calcium-rich carbonatites, provides the opportunity for observations of the physical characteristics of carbonatite melts. Temperature measurements on active carbonatitic lava flows and from carbonatitic lava lakes were carried out during a period of effusive activity in June 1988. Temperatures ranged from 491 degrees to 519 degrees C. The highest temperature, measured from a carbonatitic lava lake, was 544 degrees C. These temperatures are several hundred degrees lower than measurements from any silicate lava. At the observed temperatures, the carbonatite melt had lower viscosities than the most fluid basaltic lavas. The unusually low magmatic temperatures were confirmed with 1-atmosphere melting experiments on natural samples. PMID:17787875

  6. Changes of the ash structure

    Science.gov (United States)

    Peer, Václav; Friedel, Pavel; Janša, Jan

    2016-06-01

    The aim of the article is to appraisal of the changes in the structure of the ash due to the addition of compounds capable of the eutectics composition change. For the transformation were used limestone and dolomite dosed in amounts of 2, 5 and 10 wt.% with pellets of spruce wood, willow wood and refused derived fuel. Combustion temperatures of the mixtures were adjusted according to the temperatures reached during the using of fuels in power plants, i.e. 900, 1000, 1100 and 1200 °C.

  7. Airborne-temperature-survey maps of heat-flow anomalies for exploration geology

    Science.gov (United States)

    Delgrande, N. K.

    1982-11-01

    Precise airborne temperature surveys depicted small predawn surface temperature differences related to heat flow anomalies at the Long Valley, California, KGRA. Zones with conductive heat flow differences of 45 + or - 16 nu cal/sq cm(s) has predawn surface temperature differences of 1.4 + or - 0.3 C. The warmer zones had hot water circulating in a shallow (less than 60-m-deep) aquifer. Hot wate is a useful geochemical indicator of geothermal and mineral resource potential. The precise airborne temperature survey method recorded redundant infrared scanner signals at two wavelengths (10 to 12 micrometers and 4.5 to 5.5 micrometers) and two elevations (0.3 km and 1.2 km). Ground thermistor probes recorded air and soil temperatures during the survey overflights. Radiometric temperatures were corrected for air path and reflected sky radiation effects. Corrected temperatures were displayed in image form with color coded maps which depicted 0.24 C temperature differences.

  8. Study of a Liquid Plug-Flow Thermal Cycling Technique Using a Temperature Gradient-Based Actuator

    Directory of Open Access Journals (Sweden)

    Yusuke Fuchiwaki

    2014-10-01

    Full Text Available Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.

  9. Deformation microstructure and positive temperature dependence of flow stress in Ni3Ge

    International Nuclear Information System (INIS)

    Single crystalline specimens of Ni3Ge were compressed along [0 0 1] at different temperatures. Temperature dependence of the critical resolved shear stress (τ0(T)) has been obtained. Detailed measurements at cryogen temperatures (4.2-77 K temperature interval) showed that the increase of the yield stress with temperature starts at liquid helium temperature. The values of the apparent activation volume (V*) have been obtained as a result of stress relaxation tests repeated along the stress-strain curve at different stress levels at seven temperatures (77, 293, 373, 473, 573, 673, 773 K). Transmission electron microscopy (TEM) methods were used to analyze the evolution of dislocation structure with temperature and strain. The measurements of the straight dislocations fraction determined as δ = ρsd / ρ, (ρsd is the straight dislocation density, ρ is a total dislocation density) have been performed. The experimental data obtained in different tests in Ni3Ge confirm two-stage nature of the positive temperature dependence of the flow stress of alloys with the L12 structure. The model of thermal strengthening considering two different types of mechanisms, first acting at low temperatures and second at high has been proposed. Using this model the temperature dependence of the critical resolved shear stress has been approximated and the activation parameters of thermal strengthening of Ni3Ge have been obtained

  10. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    Science.gov (United States)

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested.

  11. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    Energy Technology Data Exchange (ETDEWEB)

    S. W. Clark and H. M Sulloway

    2007-10-31

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  12. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    Energy Technology Data Exchange (ETDEWEB)

    S. W. Clark and H. M. Sulloway

    2007-09-26

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  13. Measurement of Plasma Ion Temperature and Flow Velocity from Chord-Averaged Emission Line Profile

    Indian Academy of Sciences (India)

    Xu Wei

    2011-03-01

    The distinction between Doppler broadening and Doppler shift has been analysed, the differences between Gaussian fitting and the distribution of chord-integral line shape have also been discussed. Local ion temperature and flow velocity have been derived from the chord-averaged emission line profile by a chosen-point Gaussian fitting technique.

  14. A new fibre-optic sensor for high-temperature flow measurement

    NARCIS (Netherlands)

    Schiferli, W.; Cheng, L.K.; Jansen, T.H.

    2012-01-01

    Measuring flow is essentia ìn the process and oil & gas ìndustry. In the oil and gas industry, orifice plates and vortex meters are popular, since their lack of moving parts makes them robust. However, the need for electronics limits maximum process temperatures to 150 to 200'C. Special electronics

  15. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    Science.gov (United States)

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  16. Determination of primary flow by correlation of temperatures of the coolant

    International Nuclear Information System (INIS)

    Correlation techniques are often used to assess primary coolant flow in nuclear reactors. Observable fluctuations of some physical or chemical coolant properties are suitable for this purpose. This work describes a development carried out at the National Atomic Energy Commission of Argentina (CNEA) to apply this technique to correlate temperature fluctuations. A laboratory test was performed. Two thermocouples were installed on a hydraulic loop. A stationary flow of water circulated by the mentioned loop, where a mechanical turbine type flowmeter was installed. Transit times given by the correlation flowmeter, for different flow values measured with the mechanical flowmeter, were registered and a calibration between them was done. A very good linear behavior was obtained in all the measured range. It was necessary to increase the fluctuation level by adding water at different temperatures at the measuring system input. (author)

  17. Influence of temperature and addition of fiber in the flow behavior of orange juice

    Directory of Open Access Journals (Sweden)

    Raúl Siche

    2012-12-01

    Full Text Available In this study the influence of the addition of orange fiber in the flow behavior of orange juice was evaluated, using for this the Herschel-Bulkley model parameters. It was observed that the flow behavior of the juices changed due to the addition of fiber, from Newtonian to Pseudoplastic when its fiber content was 5% and the temperature changed from 30 °C to 20 °C, and from Pseudoplastic to Herschel-Bulkley when its fiber content was 12.5% and the temperature changed from 10 °C to 0 °C. The increase in fiber content resulted in a progressive increase of consistency and a decrease of the flow behavior index.

  18. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  19. Investigation of Nano Structural Changes by Annealing Temperature and Uniform Oxygen Flow on Ti Layers

    Directory of Open Access Journals (Sweden)

    Haleh Kangarlou

    2011-01-01

    Full Text Available Problem statement: Ti films of the same thickness, deposition angle (near normal and deposition rate were deposited on glass substrates at room temperature under UHV conditions. Approach: Different annealing temperatures 423 K, 523 K and 623 K with uniform 7 cm3 sec-1, oxygen flow, were used to produce titanium oxide layers. Results: Thin film structures were studied using AFM, XRD and spectrophotometer methods. Roughness of the films changed due to annealing process. Conclusion/Recommendations: The getting property of Ti and annealing temperature can play an important role on the structure of the films.

  20. Heat flow and subsurface temperature distributions in central and western New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S.; Fromm, K.

    1984-01-01

    Initiation of a geothermal energy program in western and central New York requires knowledge of subsurface temperatures for targeting areas of potential resources. The temperature distribution in possible geothermal reservoirs, calculated from heat flow measurements and modeling techniques, shows that a large area of New York can be considered for exploitation of geothermal resources. Though the temperatures at currently accessible depths show the availability of only a low-temperature (less than 100/sup 0/C), direct-use resource, this can be considered as an alternative for the future energy needs of New York State. From analysis of bottom-hole-temperature data and direct heat flow measurements, estimates of temperatures in the Cambrian Sandstones provide the basis of the economic evaluation of the reservoir. This reservoir contains the extractable fluids needed for targeting a potential geothermal well site in the low-temperature geothermal target zone. In the northern section of the Appalachian basin, reservoir temperatures in the Cambrian are below 50/sup 0/C but may be over 80/sup 0/C in the deeper parts of the basin in southern New York State. Using a minimum of 50/sup 0/C as a useful reservoir temperature, temperatures in excess of this value are encountered in the Theresa Formation at depths in excess of 1300 meters. Considering a maximum depth for economical drilling to be 2500 meters with present technology, the 2500 meters to the Theresa (sea level datum) forms the lower limit of the geothermal resource. Temperatures in the range of 70/sup 0/C to 80/sup 0/C are predicted for the southern portion of New York State.

  1. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    Science.gov (United States)

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  2. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2015-03-01

    Full Text Available An artificial neural network (ANN constitutive model and Johnson–Cook (J–C model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnson–Cook (J–C model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and temperatures. The experimental stress–strain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25°–300 °C, strains (0.05–0.3 and strain rates (1500–4500 s−1 were employed to formulate J–C model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The J–C model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R and average absolute relative error (AARE. R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.

  3. Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Ravindranadh BOBBILI; B. RAMAKRISHNA; V. MADHU; A.K. GOGIA

    2015-01-01

    An artificial neural network (ANN) constitutive model and JohnsoneCook (JeC) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on JohnsoneCook (JeC) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tem-peratures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures (25?e300 ?C), strains (0.05e0.3) and strain rates (1500e4500 s?1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures.

  4. Stagnation temperature in a cold hypersonic flow produced by a light free piston compression facility

    Science.gov (United States)

    Widodo, Agung; Buttsworth, David

    2013-04-01

    Stagnation temperatures at the nozzle exit of the University of Southern Queensland hypersonic wind tunnel facility have been identified using an aspirating tube device with a 0.075 mm diameter k-type butt-welded thermocouple junction positioned at its inlet. Because of the finite thermal inertia of the thermocouple, a response time correction is introduced, and uncertainties in the response time correction are assessed and minimized by operating the aspirating device over a range of different initial temperatures. Pressure measurements within the barrel of the wind tunnel facility were used to estimate a theoretical upper bound on the flow stagnation temperature by assuming isentropic compression of the test gas. Results demonstrate that for the current operating conditions, the gas which is first delivered into the hypersonic nozzle has a stagnation temperature almost identical to the isentropic compression value of around 560 K, but a cooling effect is registered for the duration of the test flow which is about 200 ms. Thermodynamic simulations based on an unsteady energy balance model with turbulent heat transfer from the test gas within the barrel demonstrate a cooling effect of a similar magnitude to that indicated by the measured temperature variation, suggesting that strong mixing of the test gas occurs within the barrel during flow discharge through the hypersonic nozzle.

  5. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    Energy Technology Data Exchange (ETDEWEB)

    Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S. [Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Ishizawa, A.; Watanabe, T.-H. [National Institute for Fusion Science, Gifu 509-5292 (Japan)

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger than or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.

  6. Research of Heat Transfer Model in Rotary Ash Coolers%滚筒冷渣器传热模型的研究

    Institute of Scientific and Technical Information of China (English)

    司小东; 吕俊复; 王巍; 李金晶

    2011-01-01

    分析了携带翅片滚筒冷渣器内灰渣颗粒的流动过程和传热过程,提出了滚筒冷渣器一维轴向传热模型,模型中考虑了渣中未燃尽碳的残余燃烧,模型参数根据文献和实验室实验确定.利用该模型对一台300MW循环流化床锅炉上滚筒冷渣器的温度进行了预测,并与实际运行参数进行了比较.结果表明:该模型可以很好地预测滚筒冷渣器出口灰渣的温度和冷却水温度.%By analyzing the flow and heat transfer process of ash particles in a rotary ash cooler with fins, a one-dimensional heat transfer model was proposed, in which the reburning of residual carbon in bottom ash was considered while the model parameters determined in accordance with relevant reference materials and experimental results. Using the model, temperatures of rotary ash cooler for a 300 MW circulating fluidized bed boiler were predicted, which were then compared with actual operation parameters. Comparison results prove the model to be accurate in predicting ash discharge and cooling water temperatures of rotary ash coolers.

  7. On dynamic recrystallization during solid state flow: Effects of stress and temperature

    Science.gov (United States)

    De Bresser, J. H. P.; Peach, C. J.; Reijs, J. P. J.; Spiers, C. J.

    A hypothesis is advanced that dynamic recrystallization of Earth materials undergoing solid state flow may represent a balance between grain size reduction and grain growth processes occurring directly in the boundary between the dislocation and diffusion creep fields. Accordingly, the recrystallized grain size (D) and flow stress (σ) at steady state will be related by the equation delineating the field boundary, which in general is temperature dependent. Creep experiments on a metallic rock analogue, Magnox, yielded D=101.12exp[29.3/RT]σ-1.23 and demonstrated that D (µm) decreases with increasing σ (MPa) and increasing temperature (T) in a manner which is in agreement with the field boundary hypothesis. If the model applies to rocks, the widely accepted idea that dynamic recrystallization can lead to major rheological weakening in the Earth may not hold. Moreover, empirical D-σ relations, used in paleo-piezometry, will need to be modified to account for temperature effects.

  8. A multi-temperature TVD algorithm for relaxing hypersonic flows. [Total Variation Diminishing

    Science.gov (United States)

    Cambier, Jean-Luc; Menees, Gene P.

    1989-01-01

    In this paper, the extension of a multispecies TVD algorithm, second-order accurate for real-gas flows to a multitemperature formulation is described. The convection algorithm is coupled to internal relaxation processes, and the features of the coupling are examined. The first version consists of a three-temperature model, where translational-rotational, vibrational, and electronic energy modes are separately convected. Although several species are present, there is only one vibrational temperature in this model. The second version generalizes to a vibrational temperature for each molecular specie, with additional couplings between species. The algorithms are applied to a generic two-dimensional flow field, and results are compared with experimental observations.

  9. Using Combined Temperature, Flow and Level Data to Investigate River-Aquifer Interaction Scaling Issue

    Science.gov (United States)

    McCallum, A. M.; Andersen, M. S.; Rau, G. C.; Acworth, I.

    2011-12-01

    Interactions between surface water and groundwater need to be understood for the water resource to be managed appropriately (Winter et al., 1998). However, these can vary at different spatial and temporal scales making quantification of them difficult. Using heat as a natural tracer of water movement has increasingly become popular. The method utilises the natural daily temperature fluctuations within a surface water body which, by the processes of conduction and convention, leads to a temperature response at depth. However, how such point measurements relate to larger scales remains uncertain. In this paper a combination of temperature, flow and level data, collected in a semi-arid region of Australia, are used to investigate this issue. The studied river reach has two flow gauges separated by 34 km which makes computing differential flows (i.e. losses or gains from river) possible. A field site next to the river has a weather station (recording solar radiation and atmospheric pressure and temperature) and a groundwater piezometer in the riverbank. Six arrays with temperature loggers at four depths to 1 m depth were installed vertically into the riverbed between the two gauges. The top and bottom levels also had pressure transducers. A series of dam-release and storm-induced flow events occurred within the eight-month deployment period. The riverbed and bank responded to the flow events in the river, thereby providing times series of potentially gaining and losing periods. The temperature records in the river and riverbed were filtered to retain the daily signal for computing seepage velocities using the method of Hatch et al. (2006). The seepage velocities obtained ranged from approximately -0.8 to 0.1 m/day. The temporal pattern of seepage velocity was similar between all six sites: the velocities increased during high-flows and reached a near-constant value at low-flows; before and after the main flow event the near-constant value changed, reflecting scouring

  10. High Temperature Flow Response Modeling of Ultra-Fine Grained Titanium

    Directory of Open Access Journals (Sweden)

    Seyed Vahid Sajadifar

    2015-07-01

    Full Text Available This work presents the mechanical behavior modeling of commercial purity titanium subjected to severe plastic deformation (SPD during post-SPD compression, at temperatures of 600-900 °C and at strain rates of 0.001-0.1 s−1. The flow response of the ultra-fine grained microstructure is modeled using the modified Johnson-Cook model as a predictive tool, aiding high temperature forming applications. It was seen that the model was satisfactory at all deformation conditions except for the deformation temperature of 600 °C. In order to improve the predictive capability, the model was extended with a corrective term for predictions at temperatures below 700 °C. The accuracy of the model was displayed with reasonable agreement, resulting in error levels of less than 5% at all deformation temperatures.

  11. Cold Temperature Effects on Long-Term Nitrogen Transformation Pathway in a Tidal Flow Constructed Wetland.

    Science.gov (United States)

    Pang, Yunmeng; Zhang, Yan; Yan, Xingjun; Ji, Guodong

    2015-11-17

    The present study investigated long-term treatment performance and nitrogen transformation mechanisms in tidal flow constructed wetlands (TFCWs) under 4, 8, and 12 °C temperature regimes. High and stable ammonium (NH4(+)-N) removal efficiency (93-96%) was achieved in our TFCWs, whereas nitrate (NO3(-)-N) was accumulated at different levels under different temperatures. Quantitative response relationships showed anammox/amoA, (narG+napA)/amoA, and (narG+napA)/bacteria were the respective key functional gene groups determining 4, 8, and 12 °C NO3(-)-N reduction. Pathway analysis revealed the contribution of these functional gene groups along a depth gradient. In addition, denitrification process increased, while anammox process decreased consistent with a rise in temperature from 4 to 12 °C. Furthermore, cold temperatures exhibited different effects on anammox and denitrification and their long-term acclimatization capacities changed with temperature. PMID:26460580

  12. Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

  13. Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz

    2012-04-01

    Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

  14. Characteristics of MSWI fly ash during vitrification

    Institute of Scientific and Technical Information of China (English)

    TIAN Shu-lei; WANG Qi; WANG Qun-hui; MA Hong-zhi

    2009-01-01

    The vitrification characteristics of municipal solid waste incinerator (MSWI) fly ash were investigated. Effects of temperature on the binding efficiency of heavy metals, the change of chemical compositions and the weight loss of fly ash in the range of 800 - 1350 ℃ were studied. Toxicity Characteristic Leaching Procedure (TCLP) of the United States was used to analyze the leaching characteristics of heavy metals in fly ash and molten slag. Results indicate that chemical compositions, the weight loss of fly ash and the binding efficiency of heavy metals in fly ash have a tremendous change in the range of 1150 - 1260 ℃. The percentage of CaO, SiO2and AI203 increases with the increasing temperature, whereas it is contrary for SO3 , K2O, Na20 and CI; especially when the temperature is 1260 ℃, the percentage of these four elements decreases sharply from 43.72%to 0. 71%. The weight loss occurs obviously in the range of 1150 - 1260 ℃. Heavy metals of Pb and Cd are almost vaporized above 1000 ℃. Cr is not volatile and its binding efficiency can reach 100% below 1000 ℃. Resuits of TCLP indicate that the heavy metal content of molten slag is beyond stipulated limit values.

  15. Mineralogy and phase transition of oil sands coke ash

    Energy Technology Data Exchange (ETDEWEB)

    Heemun Jang; Thomas H. Etsell [University of Alberta, Edmonton, AB (Canada). Department of Chemical and Materials Engineering

    2006-08-15

    Coke obtained from Syncrude and Suncor was investigated to characterize the metals and minerals by ashing it at various temperatures. Samples were collected by high temperature ashing at 100{sup o}C intervals from 400 to 1200{sup o}C. Samples were also obtained from low temperature ashing (LTA) which gives little effect on the mineral assemblage compared to HTA samples. X-ray diffraction patterns of Suncor and Syncrude coke ash were analyzed qualitatively and quantitatively to characterize the mineral phases in the sample and their thermal transition behavior. In Suncor ash, kaolinite, illite, gypsum, anhydrite, microcline, anorthite, hematite, sillimanite and quartz were dominant phases in ash from the LTA temperature up to 700{sup o}C, and mullite, cristobalite, hercynite, albite, anorthite, pseudobrookite and other iron-titanium oxides were dominant mineral phases from 700 to 1200{sup o}C. In Syncrude ash, illite, anhydrite, quartz, anorthite, microcline, sillimanite and hematite were dominant up to 700{sup o}C, and hercynite, anorthite, albite, pseudobrookite and other iron-titanium oxides were dominant up to 1200{sup o}C. The higher quantities of Ca, K and Na, and the lower quantities of V, Fe and Ni in Syncrude ash resulted in higher amorphocity and the different mineral phases. 32 refs., 3 figs., 5 tabs.

  16. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  17. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding

    Science.gov (United States)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.

    2016-01-01

    Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary

  18. Multitechnique multielemental analysis of coal and fly ash

    International Nuclear Information System (INIS)

    The coal sample is first ashed with high temperature ashing or with RF plasma low temperature ashing. The coal ash or fly ash can be analyzed for major ash elements by fusing with lithium tetraborate in an automatic fusion device, the Claisse Fluxer. The ash samples are also dissolved in a Parr bomb in a mixture of aqua regia and HF. Subsequently, the solutions are analyzed for eight major (Al, Ca, Fe, K, Mg, Na, Si, and Ti) and 20 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, P, Pb, Sb, Se, Sr, U, V, and Zn) by inductively coupled plasma emission spectroscopy. Mercury in coal and fly ash is determined on a separate aliquot by the cold vapor atomic absorption technique. Fluorine and chlorine in the samples are determined by fusing with Na2CO3 and Eschka mixture, respectively, and then measuring the two ions in solution with specific ion electrodes. Oxygen in the samples can be determined rapidly and nondestructively by 14-MeV neutron activation analysis. These methods have been tested by analyzing several NBS coal and fly ash standards with good accuracy and reproducibility. 10 tables

  19. Technique to Measure the Coronal Electron Temperature and Radial Flow Speed

    Science.gov (United States)

    Reginald, N. L.; Davila, J. M.; St Cyr, O. C.

    2011-12-01

    During the March 2006 total solar eclipse we conducted an imaging experiment using the Imaging Spectrograph of Coronal Electrons (ISCORE) to determine the coronal electron temperature and its radial flow speed in the low solar corona. This technique required taking images of the solar eclipse through four broadband filters centered at 385.0, 398.7, 410.0 and 423.3 nm. The K-coronal temperature is determined from intensity ratios from the 385.0 and 410.0 nm filters, and the K-coronal radial flow speed is determined from intensity ratios from the 398.7 and 423.3 nm filters. The theoretical model for this technique assumes a symmetric corona devoid of any features like streamers that might alter the coronal symmetry. The model also requires an isothermal temperature and a uniform outflow speed all along the line of sight. We will call this the Constant Parameter Thomson Scattering Model (CPTSM). The latter assumption may sound unreasonable but in the symmetric corona with rapid fall of the electron density with height in the solar corona, the major contributions to the K-coronal intensity along a given line of sight comes from the plasma properties in the vicinity of the plane of the sky. But the pressing question is how is the derived plasma properties by ISCORE compare with the nature of the true corona. For this we turn to the CORHEL model by Predictive Science Inc. which used magnetogram data to create a realistic model of the solar corona that are made available through the Community Coordinated Modeling Center (CCMC) at GSFC. That team has consistently produced the expected coronal image days prior to many total eclipses where the major coronal features from their model matched actual coronal image on the day of the eclipse. Using the CORHEL model data we have calculated the K-coronal intensities at 385.0, 398.7, 410.0 and 423.3 nm using the electron density, plasma temperature (assumed to be electron temperature) and the flow speeds of the plasma along the line

  20. The ash in forest fire affected soils control the soil losses. Part 2. Current and future research challenges

    Science.gov (United States)

    Pereira, Paulo; Cerdà, Artemi

    2013-04-01

    Ash distribution on soil surface and impacts on soil properties received a great attention in recently (Pereira et al., 2010; Pereira et al., 2013). Ash it is a highly mobile material that can be easily transported wind, especially in severe wildland fires, where organic matter is reduced to dust, due the high temperatures of combustion. In the immediate period after the fire, ash cover rules soil erosion as previous researchers observed (Cerdà, 1998a; 1998b) and have strong influence on soil hydrological properties, such as water retention (Stoof et al. 2011 ) and wettability (Bodi et al., 2011). Ash it is also a valuable source of nutrients important for plant recuperation (Pereira et al., 2011; Pereira et al., 2012), but can act also as a source contamination, since are also rich in heavy metals (Pereira and Ubeda, 2010). Ash has different physical and chemical properties according the temperature of combustion, burned specie and time of exposition (Pereira et al., 2010). Thus this different properties will have different implications on soil properties including erosion that can increase due soil sealing (Onda et al. 2008) or decrease as consequence of raindrop impact reduction (Cerdà and Doerr, 2008). The current knowledge shows that ash has different impacts on soil properties and this depends not only from the type of ash produced, but of the soil properties (Woods and Balfour, 2010). After fire wind and water strong redistribute ash on soil surface, increasing the vulnerability of soil erosion in some areas, and reducing in others. Understand this mobility is fundamental have a better comprehension about the spatial and temporal effects of ash in soil erosion. Have a better knowledge about this mobility is a priority to future research. Other important aspects to have to be assessed in the future are how ash particulates percolate on soil and how ash chemical composition is important to induce soil aggregation and dispersion. How soil micro topography

  1. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  2. Prediction of FV520B Steel Flow Stresses at High Temperature and Strain Rates

    Science.gov (United States)

    Han, Xiaolan; Zhao, Shengdun; Zhang, Chenyang; Fan, Shuqin; Xu, Fan

    2015-10-01

    In order to develop reliable constitutive equations for the simulation, the hot deformation behavior of FV520B steel was investigated through isothermal compression tests in a wide range of temperatures from 900 °C to 1100 °C at an interval of 50 °C and strain rate from 0.01 to 10 s-1 on Gleeble-1500D simulator. The effects of temperature and strain rate on deformation behavior were represented by Zener-Holloman parameter in an exponent-type equation of Arrhenius constitutive. The influence of strain was incorporated in the constitutive analysis by material constants expressed as a polynomial function of strain. The constitutive equation (considering the compensation of strain) could precisely predict the flow stress only at strain rate 0.01 s-1 except at the temperatures of 900 °C and 1000 °C, whereas the flow stress predicted by a modified equation (incorporating both the strain and strain rate) demonstrated a well agreement with the experimental data throughout the entire range of temperatures and strain rates. Correlation coefficient (R) of 0.988 and average absolute relative error (AARE) of 5.7% verified the validity of developed equation from statistical analysis, which further confirmed that the modified constitutive equation could accurately predict the flow stress of FV520B steel.

  3. BEHAVIOR OF FLOW STRESS OF ALUMINUM SHEETS USED FOR PRESSURE CAN DURING COMPRESSION AT ELEVATED TEMPERATURE

    Institute of Scientific and Technical Information of China (English)

    G.S. Fu; W.Z. Chen; K.W. Qian

    2005-01-01

    The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression testusing Gleeble1500 dynamic hot-simulation testing machine. The results show that the A1 sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the Al pieces prepared by no or conventional melt-treatment, hot deformation activation energy of Al sheets prepared by high-efficient melt-treatment is the smallest (Q = 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality.

  4. Studying the melting behavior of coal, biomass, and coal/biomass ash using viscosity and heated stage XRD data

    DEFF Research Database (Denmark)

    Arvelakis, Stelios; Folkedahl, B.; Dam-Johansen, Kim;

    2006-01-01

    high-temperature rotational viscometer and a hot stage XRD. The produced data were used to calculate the operating temperature of a pilot-scale entrained flow reactor during the cocombustion of biomass/ coal samples in order to ensure the slag flow and to avoid corrosion of the walls due to liquid slag......The use of biomass for power generation can result in significant economical and environmental benefits. The greenhouse emissions can be reduced as well as the cost of the produced electricity. However, ash-related problems, including slagging, agglomeration, and corrosion, can cause frequent...... unscheduled shutdowns, decreasing the availability and increasing the cost of the produced power. In addition, the fouling of the heat exchange surfaces reduces the system efficiency. In this work the melting and rheological properties of various biomass and biomass/ coal ash samples were studied by using a...

  5. Comparative study of oscillating flow characteristics of cryocooler regenerator at low temperatures

    Institute of Scientific and Technical Information of China (English)

    Yonglin JU; Qingqing SHEN

    2009-01-01

    A brief review is presented on previous experimental results and correlations on the friction factor of cryocooler regenerators operating at oscillating flow and pulsating pressure conditions, for different mesh sizes of packed woven screens, focusing on the effects of different operating frequencies ranging from 20 to 80 Hz, at room and cryogenic temperatures. A comparison of the friction factor data with those of other studies is presented to clarify the reason for the difference. Finally, a new oscillating flow correlation of regenerators, in terms of several non-dimensional parameters, is discussed and compared.

  6. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    OpenAIRE

    Pavel Neuberger; Radomír Adamovský; Michaela Šeďová

    2014-01-01

    Temperature changes and heat flows in soils that host “slinky†-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by ...

  7. Heat transfer in MHD unsteady stagnation point flow with variable wall temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Soundalgekar, V.M.; Murty, T.V.R.; Takhar, H.S.

    Indian J.pur~appl. Malh., 21 (4) : 384-389. April 1990 ,HEAT TRANSFER IN MHD UNSTEADY STAGNATION POINT FLOW WITH VARIABLE WALL TEMPERATURE V. M. SOUNDALGEKAR1. T. V. RAMANA MURTy2 AND B. S. TAKHAR3 131A/12 Brindavan Society, Thane 400 601 2/ndian... of free-stream oscillations cn the flow of an incompressible viscous fluid past a semi-infinite boay. The small amplituae pheno menon was studied. The unsteady motion of a semi-infinite plate in a viscous fluid was also studied by Cheng and ElJiott 2...

  8. Fire vegetative ash and erosion in the Mediterranean areas. State of the art and future perspectives

    Science.gov (United States)

    Pereira, Paulo; Cerdà, Artemi

    2013-04-01

    erosion. At this point we are dealing with a complex interaction since interactions, since low severity fires due ash, and high severity fires, due temperature induce soil hydrophobicity. After the fire, other ash properties may interact with soil erosion, as particulate size, and chemical composition, that can induce soil particulates flocculation or dispersion. Ash chemistry is strongly related with fire severity (Pereira et al., 2012). Further studies may be directed in the complex interaction between ash physico-chemical properties interaction with the degree of fire impacts on soil. These and other ideas will be discussed during the session. Acknowledgements, The authors appreciated the support of the project "Litfire", Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Council and FUEGORED (Spanish Network of Forest Fire Effects on Soils http://grupo.us.es/fuegored/). References Bodi, M., Doerr, S., Cerdà, A., Mataix-Solera, J. (2012) Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191: 14-13. Bodi, M., Mataix-Solera, J., Doerr, S., Cerdà, A. (2011) The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic matter content. Geoderma, 160, 599-607. Cerdà, A., Doerr, S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256-263. Onda Y, Dietrich WE, Booker F. 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena. 72, 13-20. Pereira, P., Bodi. M., Úbeda, X., Cerdà, A., Mataix-Solera, J., Balfour, V, Woods, S. (2010) Las cenizas y el ecosistema suelo, In: Cerdà, A. Jordan, A. (eds) Actualización en métodos y técnicas para el estudio de los suelos afectados por incendios forestales, 345-398. Càtedra de Divulgació de la Ciència. Universitat de Valencia. ISBN: 978

  9. Effect of span length and temperature on the 3-D confined flow around a vortex promoter

    Energy Technology Data Exchange (ETDEWEB)

    Martin, E. [Fluid Mechanics Area, School of Industrial Engineering, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo (Spain); Velazquez, A., E-mail: angel.velazquez@upm.es [Aerospace Propulsion and Fluid Mechanics Department, School of Aeronautics, Universidad Politecnica de Madrid, Plaza del Cardenal Cisneros 3, 28040 Madrid (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The article deals with study of vortex promoter flow in a 3-D micro-channel. Black-Right-Pointing-Pointer Aspects studied are: channel aspect ratio and prism surface temperature. Black-Right-Pointing-Pointer Flow is classified into three different regimes depending on different parameters. Black-Right-Pointing-Pointer Results could be used for practical engineering design purposes. - Abstract: This article presents a numerical study on the influence of span length and wall temperature on the 3-D flow pattern around a square section vortex promoter located inside a micro-channel in the low Reynolds number regime. The first objective of the work is to quantify the critical Reynolds number that defines the onset of vortex shedding and to identify the different regimes that appear as a function of the channel aspect ratio (span to height ratio). We found that the critical Reynolds number for the onset of the Karman street regime increases as the aspect ratio decreases. In particular, for the aspect ratio of 1/2 the critical Reynolds number is nearly six times the critical Reynolds number of the 2-D problem. An intermediate oscillating regime between the steady and the Karman street solutions was also found to exist within a rather wide range of Reynolds numbers for small channel aspect ratios. The second objective was to investigate the influence of the vortex promoter wall temperature on both vortex shedding and flow pattern. This has practical engineering implications because the working fluid considered in the article is water that has a viscosity that depends significantly on temperature and promotes a strong coupling between the momentum and energy equations that influences the system behaviour. Results indicate that high surface temperature on the prism promotes the onset of the Karman street, suggesting design guidelines for micro-channel based heat sinks that make use of vortex promoters.

  10. ACC 305 ASH

    OpenAIRE

    admn

    2015-01-01

    ACC 305 ASH Check this A+ tutorial guideline at   http://www.assignmentcloud.com/ACC-305-ASH/ACC-305-ASH-Complete-Class ACC 305 Week 1 Assignments E 3-18, E 3-20, J Case 3-5 ACC 305 Week 1 DQ 1 FASB and Ethics ACC 305 Week 1 DQ 2 Cash versus Accrual & Financial Disclosures ACC 305 Week 2 DQ 1 Earnings Management Case 4-3 ACC 305 Week 2 DQ 2 Revenue Recognition Case 5-2 ACC 305 Week 2 Problem E4-16 Bluebonnet Bakers ACC 305 Week 2 Problem E4-19 ...

  11. HIS 204 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    JOHN

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   HIS 204 Week 1 DQ 1 (Ash) HIS 204 Week 1 DQ 2 (Ash) HIS 204 Week 1 Quiz (Ash) HIS 204 Week 2 DQ 1 (Ash) HIS 204 Week 2 DQ 2 (Ash) HIS 204 Week 2 Quiz (Ash) HIS 204 Week 3 Assignment Women Right, Sacrifices & Independence (Ash) HIS 204 Week 3 DQ 1 (Ash) HIS 204 Week 3 DQ 2 (Ash) HIS 204 Week 4 DQ 1 (Ash) HIS 204 Week 4 DQ 2 (Ash) HIS 204 Week 4 Quiz (Ash) HIS 204 Week 5 DQ 1 (Ash) ...

  12. Sea-surface temperature effects on 3D bora-like flow

    Energy Technology Data Exchange (ETDEWEB)

    Kraljevic, L. [Meteorological and Hydrological Service of Croatia, Zagreb (Croatia); Grisogono, B. [Dept. of Geophysics, Zagreb (Croatia)

    2006-04-15

    A COAMPS (TM) nonhydrostatic numerical model with a higher order turbulence closure scheme is used to study the effect of the sea-surface temperature (SST) on the idealized nonlinear flow over an idealized mountain in the presence of rotation. The low-level jet (LLJ) that develops at both flanks of the mountain is intensified by the Coriolis effect on the northern flank for a westerly flow. Shooting flow develops down the slope ending over the sea while resembling a hydraulic jump. This is considered as bora (bura) like flow. The front is related to the abrupt slowdown of the shooting flow through the hydraulic jump. Seven different idealized cases are addressed, the control run, nearly linear case with Fr = 1.2, and the cases with the SST 10 K colder, and 2.5 K, 5 K, 7.5 K and 10 K warmer than the control run. The maximum wind speeds in the shooting flow and the LLJs are around two times higher than the background wind speeds. The interplay of SST effects and the effects of the asymmetric lee-side vortices modify the location and the shape of the bora front which is found not to be parallel with the shoreline. The front is not stationary in time but exhibits vibrations which are more pronounced at the southern flank associated with the weaker LLJ. (orig.)

  13. Thermal treatment of ashes[Fly Ash from Municipal Waste Incineration]; Termisk rening av askor

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, Karin; Berg, Magnus; Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Nordin, Anders [Umeaa Univ. (Sweden). Dept. of Applied Physics and Electronics

    2003-04-01

    metal concentrate has to be land filled instead of the total amount of ash. The cost for thermal treatment of ash is today relatively high and this kind of ash treatment has an economic interest only during certain circumstances. The process cost is for example not very important if the residues from the process can be used in commercial glass production. Other situations that can make thermal treatment of ashes attractive are further increased land filling costs or new environmental restrictions. Today the cost for land filling in Sweden is relatively low and therefore it is unprofitable to treat ashes with high temperature processes. However, the development of more effective processes and higher costs and taxes for land filling could result in a better economic situation for thermal treatment processes.

  14. Safety aspects of forced flow cooldown transients in Modular High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs), the main Heat Transport System (HTS) and the Shutdown Cooling System n removed by the passive Reactor (SCS) are assumed to have failed. Decay heat is the Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This report used the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits

  15. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.

    1992-01-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits.

  16. Safety aspects of forced flow cooldown transients in modular high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.

    1992-09-01

    During some of the design basis accidents in Modular High Temperature Gas Cooled Reactors (MHTGRs) the main Heat Transport System (HTS) and the Shutdown Cooling System (SCS), are assumed to have failed. Decay heat is then removed by the passive Reactor Cavity Cooling System (RCCS) only. If either forced flow cooling system becomes available during such a transient, its restart could significantly reduce the down-time. This paper uses the THATCH code to examine whether such restart, during a period of elevated core temperatures, can be accomplished within safe limits for fuel and metal component temperatures. If the reactor is scrammed, either system can apparently be restarted at any time, without exceeding any safe limits. However, under unscrammed conditions a restart of forced cooling can lead to recriticality, with fuel and metal temperatures significantly exceeding the safety limits.

  17. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China

    Science.gov (United States)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Li, Xianglan

    2016-04-01

    Geothermal regime of a sedimentary basin not only provides constraint on understanding the basin formation and evolution, but also offers fundamental parameters for hydrocarbon resources assessment. As one of three Precambrian blocks in China, the Tarim craton is also a current hydrocarbon exploration target where the largest sedimentary basin (Tarim Basin) develops with great potential. Although considerable advancement of geothermal regime of this basin has been made during the past decades, nearly all the temperature data in previous studies are from the exploration borehole formation testing temperatures. Recently, we have conducted the steady-state temperature logging in the Tarim basin, and measured abundant rock thermal properties, enabling us to re-visit the thermal regime of this area with more confidence. Our results show that the present-day geothermal gradients for the Tarim Basin vary from 23 K/km to 27 K/km, with a mean of 22 K/km; the values of heat flow range from 40 mW/m2 to 49 mW/m2, with a mean of 43 mW/m2. These new data confirmed that the Tarim Basin has relatively low heat flow and shares similar geothermal regime with other Precambrian cratons in the world. In addition, the new temperatures from the steady-state logs are larger than the bottom hole temperatures (BHT) as 22 degree Celsius, indicating the thermal non-equilibrium for the BHTs used in previous studies. Spatial distribution of the estimated formation temperatures-at-depth of 1~5km within the basin is similar and mainly controlled by crystalline basement pattern. Generally, the temperatures at the depth of 1km range from 29 to 41 degree Celsius, with a mean of 35 degree Celsius; while the temperatures at 3km vary from 63 to 100 degree Celsius, and the mean is 82 degree Celsius; at 5km below the surface, the temperatures fall into a range between 90 and 160 degree Celsius, with a mean of 129 degree Celsius. We further proposed the long-term low geothermal background and large burial

  18. Heat-flow and subsurface temperature history at the site of Saraya (eastern Senegal

    Directory of Open Access Journals (Sweden)

    F. Lucazeau

    2012-06-01

    Full Text Available New temperature measurements from eight boreholes in the West African Craton (WAC reveal superficial perturbations down to 100 meters below the alteration zone. These perturbations are both related to a recent increase of the surface air temperature (SAT and to the site effects caused by fluids circulations and/or the lower conduction in the alterites. The ground surface temperature (GST inverted from the boreholes temperatures is stable in the past (1700–1940 and then dramatically increases in the most recent years (1.5 °C since 1950. This is consistent with the increase of the SAT recorded at two nearby meteorological stations (Tambacounda and Kedougou, and more generally in the Sahel with a coeval rainfall decrease. Site effects are superimposed to the climatic effect and interpreted by advective (circulation of fluids or conductive (lower conductivity of laterite and of high-porosity sand perturbations. We used a 1-D finite differences thermal model and a Monte-Carlo procedure to find the best estimates of these sites perturbations: all the eight boreholes temperatures logs can be interpreted with the same basal heat-flow and the same surface temperature history, but with some realistic changes of thermal conductivity and/or fluid velocity. The GST trend observed in Senegal can be confirmed by two previous boreholes measurements made in 1983 in other locations of West Africa, the first one in an arid zone of northern Mali and the second one in a subhumid zone in southern Mali. Finally, the background heat-flow is low (30 ± 1 m Wm−2, which makes this part of the WAC more similar with the observations in the southern part (33 ± 8 m Wm−2 rather than with those in the northern part and in the PanAfrican domains where the surface heat-flow is 15–20 m Wm−2 higher.

  19. Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Hao; Liu, Nansheng, E-mail: lns@ustc.edu.cn; Lu, Xiyun [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Khomami, Bamin, E-mail: bkhomami@utk.edu [Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-12-15

    Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Re{sub i} (inner cylinder) =1000 and Re{sub o} (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states that emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, −500 < Re{sub o} < 500 in presence of buoyancy (σ = 0.1) with Re{sub i} = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress R{sub rz} are observed for the strongly counter-rotating regimes (Re{sub o} = − 300 and −500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation

  20. Washing of granulated solidification fly ash containing radioactive contaminants

    International Nuclear Information System (INIS)

    Incineration fly ash produced from city garbage, water-and-sewage sludge, and wastes generated by radioactive decontamination activities tends to have a high concentration of radioactive materials, and radioactive cesium in fly ash has high solubility in water. In order to advance the safe processing of incineration fly ash, it is necessary to have a technology for reducing the cesium in the fly ash. Washing the fly ash with water is an effective way of reducing the amount of radioactive cesium. Then, this study developed a new method for washing fly ash after granulated solidification. Laboratory tests showed that 70% or more of the radioactive cesium was removed by washing of the granulated solidification fly ash adjusted into 1-9.5 mm diameter particles under the following conditions: flow rate (SV) ≦ 10h-1 and flow volume ≧ 10 times of fly ash volume. Demonstration tests also confirmed the effectiveness of washing and the reduction of the volume of radioactive wastes. (author)

  1. Open Thermodynamic System Concept for Fluviokarst Underground Temperature and Discharge Flow Assessments

    Science.gov (United States)

    Machetel, P.; Yuen, D. A.

    2012-12-01

    In this work, we propose to use Open Thermodynamic System (OTS) frameworks to assess temperatures and discharges of underground flows in fluviokarstic systems. The theoretical formulation is built on the first and second laws of thermodynamics. However, such assumptions would require steady states in the Control Volume to cancel the heat exchanges between underground water and embedding rocks. This situation is obviously never perfectly reached in Nature where flow discharges and temperatures vary with rainfalls, recessions and seasonal or diurnal fluctuations. First, we will shortly show that the results of a pumping test campaign on the Cent-Font (Hérault, France) fluviokarst during summer 2005 are consistent with this theoretical approach. Second, we will present the theoretical formalism of the OTS framework that leads to equation systems involving the temperatures and/or the discharges of the underground and surface flows.Third, this approach will be applied to the white (2003) conceptual model of fluviokarst, and we will present the numerical model built to assess the applicability of these assumptions. The first order of the field hydrologic properties observed at the Cent-Fonts resurgence are well described by the calculations based on this OTS framework. If this agreement is necessary, it is not sufficient to validate the method. In order to test its applicability, the mixing process has been modelized as a cooling reaction in a Continuous Stirred Tank Reactor (CSTR) for which matrix and intrusive flows are introduced continuously while effluent water is recovered at the output. The enthalpy of the various flows is conserved except for the part that exchanges heat with the embedding rocks. However the numerical model shows that in the water saturated part of the CS, the matrix flow swepts heat by convective-advective processes while temporal heat fluctuations from intrusive flows cross the CV walls. The numerical model shows that the convective flow from

  2. DNS of thermocapillary flows based on two-scalar temperature representation

    Science.gov (United States)

    Bothe, Dieter; Ma, Chen

    2011-11-01

    The direct numerical simulation (DNS) of thermocapillary two-phase flow with free deformable interface requires the solution of the two-phase Navier-Stokes equations in 3D together with the energy balance. We employ the sharp interface model which is solved using an extended volume of fluid method, where the discretization is based on Finite Volumes. The energy equation is given in temperature form, where the temperature field is represented by two scalars, one for each phase. This way the averaging over grid cells is confined to the individual phases and, hence, a smearing of the temperature gradient jump is avoided. Interpolation of the temperature within interfacial cells, exploiting the energy transmission condition, yields accurate temperatures at the interface, which is of utmost importance for the calculation of thermocapillary forces. Here the position and orientation of the interface is approximated by piecewise linear interface construction (PLIC). This method is applied to investigate liquid films on locally heated planar, respectively heated structured substrates. The approach allows for the numerical simulation of evaporating flows coupled with thermal Marangoni effects.

  3. Redistribution of an inlet temperature distortion in an axial flow turbine stage

    Science.gov (United States)

    Butler, T. L.; Sharma, O. P.; Joslyn, H. D.; Dring, R. P.

    1986-06-01

    The results of an experimental program aimed at determining the extent of the redistribution of an inlet temperature distortion in an axial flow turbine stage are presented. The program was conducted in a large-scale, low speed, single stage turbine where air, seeded with CO2 was introduced at one circumferential location upstream of the inlet guide vane. The migration of the seeded air through the turbine was determined by sensing CO2 concentration inside the stage. A temperature distortion was introduced by heating the seeded air. The CO2 concentration contours measured downstream of the vane showed little change with heating, indicating that the vane flowfield was relatively unaffected by the introduction of the temperature distortion. However, the CO2 contours observed on the rotor airfoil surfaces for the case with inlet heating indicated segregation of hot and cold gas, with the higher temperature gas migrating to the pressure side and the lower temperature gas migrating to the suction side. Significant increases in rotor secondary flow were also observed.

  4. Oceanographic Controls on Diffuse Flow Temperature Variability at Main Endeavour Field

    Science.gov (United States)

    Mihaly, S. F.; Matabos, M.; Butterfield, D. A.; Lee, R.; Lilley, M. D.; Sarradin, P. M.; Sarrazin, J.

    2015-12-01

    Temperature observations from the Main Endeavour vent Field (MEF) on the Endeavour segment of the Juan de Fuca Ridge reveal large spatial variability over centimeter length scales. Five thermistor chains with ten sensors each are draped over a faunal assemblage on the the north side of the Grotto mound in the northern part of MEF. Spacing is on the order of 10 cm and the areal coverage is about a square meter. Shimmering fluids are evident in the ROV video during the deployment and recovery of the thermistors indicating that the area is a diffuse venting zone. The temperature variability can be a result of heterogeneity in the degree of diffuse venting and/or variability in the degree of mixing with the cool ambient waters. Concurrent observations from the NEPTUNE cabled observatory are: temperature from a nearby hot fluid (330 deg) vent orifice that is weakly modulated by the surface tide (pressure), temperature from a diffuse flow area artificially sheltered from the ambient currents and measurements of currents from a bottom-mounted ADCP. We use these measurements to argue that the temperature variability is the result of interaction of the buoyant flow with the oceanic currents in the boundary layer at the level of the faunal assemblage.

  5. Removal of Cryptosporidium sized particle under different filtration temperature, flow rate and alum dosing

    Institute of Scientific and Technical Information of China (English)

    XU Guo-ren; Fitzpatrick S. B. Caroline; Gregory John; DENG Lin-yu

    2007-01-01

    Recent Cryptosporidium outbreaks have highlighted concerns about filter efficiency and in particular particle breakthrough. It is essential to ascertain the causes of Cryptosporidium sized particle breakthrough for Cryptosporidium cannot be destroyed by conventional chlorine disinfection. This research tried to investigate the influence of temperature, flow rate and chemical dosing on particle breakthrough during filtration. The results showed that higher temperatures and coagulant doses could reduce particle breakthrough. The increase of filtration rate made the residual particle counts become larger. There was an optimal dose in filtration and was well correlated to ζ potential.

  6. Magnetohydrodynamics and radiation effects on the flow due to moving vertical porous plate with variable temperature

    International Nuclear Information System (INIS)

    The combined effects of magnetohydrodynamics and thermal radiations on unsteady flow of an electrically conducting fluid past an impulsively started infinite vertical porous plate with variable temperature is investigated. A magnetic field of uniform strength is applied along an axis perpendicular to the plate. The plate temperature is raised linearly with time. An exact solution is obtained by Laplace transformation technique. The dependence of the amplitude of velocity and skin-friction on various parameters are discussed in detail with the help of graphs. (author)

  7. Study of flow fractionation characteristics of magnetic chromatography utilizing high-temperature superconducting bulk magnet

    Directory of Open Access Journals (Sweden)

    Satoshi Fukui, Yoshihiro Shoji, Jun Ogawa, Tetsuo Oka, Mitsugi Yamaguchi, Takao Sato, Manabu Ooizumi, Hiroshi Imaizumi and Takeshi Ohara

    2009-01-01

    Full Text Available We present numerical simulation of separating magnetic particles with different magnetic susceptibilities by magnetic chromatography using a high-temperature superconducting bulk magnet. The transient transport is numerically simulated for two kinds of particles having different magnetic susceptibilities. The time evolutions were calculated for the particle concentration in the narrow channel of the spiral arrangement placed in the magnetic field. The field is produced by the highly magnetized high-temperature superconducting bulk magnet. The numerical results show the flow velocity difference of the particle transport corresponding to the difference in the magnetic susceptibility, as well as the possible separation of paramagnetic particles of 20 nm diameter.

  8. Heat and fluid flow through monodisperse spherical random packings: Pressure drop and temperature profile

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, E.

    2009-07-01

    The heat and fluid flow through packings of spherical random particles is computationally studied via finite volume method. A variety of packings of spheres are generated using particulate dynamics simulation methods. Navier-stokes equations are solved for the fluid flow through the interstitium in such porous media. The effects of porosity on permeability and pressure drop are investigated. Pressure gradient within porous media is compared between simulations and the Ergun equation (for lower range of porosity), or the Stokes relation (for the higher range of porosity). In addition, the dependence of pressure gradient on particle diameter (pore size) is examined. On the other hand, the energy equation is solved to model the unsteady heat transfer through the interstitium of porous medium when a stream of hot fluid encounters the particles within porous media of constant temperature. In this context, the effect of pore size on the outlet temperature is investigated. (orig.)

  9. Computer simulation of slightly rarefied gas flows driven by significant temperature variations and their continuum limit

    CERN Document Server

    Rogozin, Oleg

    2014-01-01

    A rigorous asymptotic analysis of the Boltzmann equation for small Knudsen numbers leads, in the general case, to more complicated sets of differential equations than widely used to describe the behavior of gas in terms of classical fluid dynamics. The present paper deals with such one that is valid for significant temperature variations and finite Reynolds numbers at the same time (slow nonisothermal flow equations). A finite-volume solver developed on the open-source CFD platform OpenFOAM is proposed for computer simulation of a slightly rarefied gas in an arbitrary geometry. Typical temperature driven flows are considered as numerical examples. A force acting on uniformly heated bodies is studied as well.

  10. MOSS spectroscopic camera for imaging time resolved plasma species temperature and flow speed

    International Nuclear Information System (INIS)

    A MOSS (Modulated Optical Solid-State) spectroscopic camera has been devised to monitor the spatial and temporal variations of temperatures and flow speeds of plasma ion species, the Doppler broadening measurement being made of spectroscopic lines specified. As opposed to a single channel MOSS spectrometer, the camera images light from plasma onto an array of light detectors, being mentioned 2D imaging of plasma ion temperatures and flow speeds. In addition, compared to a conventional grating spectrometer, the MOSS camera shows an excellent light collecting performance which leads to the improvement of signal to noise ratio and of time resolution. The present paper first describes basic items of MOSS spectroscopy, then follows MOSS camera with an emphasis on the optical system of 2D imaging. (author)

  11. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2014-02-01

    Full Text Available Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by the heat-exchangers, has been characterised by meticulous measurements. These reveal that high concentrations of antifreeze mix in the heat-transfer fluid of the heat exchanger have an adverse impact on heat flows discharged into the soil.

  12. Numerical Simulation of Temperature Distribution and Material Flow During Friction Stir Welding 2017A Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    MimouniOussama

    2016-01-01

    Full Text Available This study describes the use of fluid dynamic code, FLUENT to model the flow of metal in the AA2017A case around the welding tool pin (FSW. A standard threaded tool profile is used for the analysis of phenomena during welding such as heat generation and flow of the material are included. The main objective is to gain a better understanding of the flow of material around a tool. The model showed a large number of phenomena similar to those of the real process. The model has also generated a sufficient amount of heat, which leads to a good estimate of the junction temperature. These results were obtained using a viscosity which is near the solidus softening.

  13. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Bagheri R.

    2013-06-01

    Full Text Available Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C. Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI, Panavia F (Kuraray, Varioloink II (Ivoclar, Maxcem (Kerr, Nexus2 (Kerr and two resin-modified glass-ionomer luting cements (RM-GICs; GC Fuji Plus (GC Corporation, and RelyX Luting 2 (3 M/ESPE. The film thickness and flow rate of each cement (n=15 was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements pro-duced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm.Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature.

  14. Heat Transfer in Hydromagnetic Fluid Flow: Study of Temperature Dependence of Fluid Viscosity

    OpenAIRE

    Shit, G. C.; Sushil Kumar Ghosh; Prof. J. C. Misra

    2014-01-01

    Flow of a viscoelastic fluid through a channel with stretching walls in the presence of a magnetic field has been investigated. The viscosity of the fluid is assumed to vary with temperature. Convective heat transfer is considered along with viscous dissipation and Ohmic dissipation. The equations that govern the motion of the fluid and heat transfer are coupled and non-linear. The governing partial differential equations are reduced to a set of ordinary differential equations by using simila...

  15. Coal Ash Corrosion Resistant Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  16. Shallow subsurface temperatures and some estimates of heat flow from the Colorado Plateau of northeastern Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Sass, J.H.; Stone, C.; Bills, D.J.

    1982-01-01

    Temperature data to depths of a few hundred meters were obtained from 29 wells in northeastern Arizona; 12 in the region surrounding the San Francisco Volcanic Field, 8 in the Black Mesa area, and 9 in the south-central Colorado Plateau which includes the White Mountains. Although there was evidence for local hydrologic disturbances in many temperature profiles, most wells provided an estimate of the conductive thermal gradient at the site. A few thermal conductivities were measured and were combined with published regional averages for the north-central part of the Colorado Plateau to produce crude estimates of regional heat flux. None of the wells was accessible below the regional aquifers. To these depths, heat flow in the area of the San Francisco Volcanic Field appears to be controlled primarily by regional lateral water movement having a significant downward vertical component of velocity. The mean heat flow of 27 +- 5 mWm/sup -2/ is only a third to a quarter of what we would expect in this tectonic setting. The heat that is being carried laterally and downward probably is being discharged at low enthalpy and low elevation in springs and streams of the Colorado Plateau and Mogollon Rim. In the vicinity of Black Mesa, heat-flow averages about 60 mWm/sup -2/, characteristics of the coal interior of the Colorado Plateau. North of the White Mountain Volcanic Field, the average heat flow is about 95 mWm/sup -2/.

  17. Mössbauer characterization of feed coal, ash and fly ash from a thermal power plant

    International Nuclear Information System (INIS)

    The aim of this work was apply 57Fe Transmission Mössbauer Spectroscopy at room temperature in order to study the occurrence of iron-containing mineral phases in: 1) feed coal; 2) coal ash, obtained in different stages of the ASTM D3174 standard method; and 3) fly ash, produced when coal is burned in the TERMOPAIPA IV thermal power plant localized in Boyacá, Colombia. According to obtained results, we can conclude the occurrence of pyrite and jarosite in the feed coal; Fe2+ and Fe3+ crystalline paramagnetic phases, superparamagnetic hematite and hematite in coal ash; Fe2+ and Fe3+ noncrystalline and crystalline phases, magnetite and hematite in fly ash. Precisely, for a basic understanding, this work discusses some the possible transformations that take place during coal combustion

  18. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    Energy Technology Data Exchange (ETDEWEB)

    Lomperski, S.; Gerardi, C. [Argonne National Laboratory, Argonne, IL (United States); Pointer, W.D. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN (United States)

    2015-03-01

    This paper introduces the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70 C discharging from 136 mm hexagonal channels into a 1 x 1 x 1.7 m tank at atmospheric pressure. A 40 m-long, φ155 μm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points over a 0.76 x 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. Sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both. (orig.)

  19. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    International Nuclear Information System (INIS)

    This paper introduces the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70 C discharging from 136 mm hexagonal channels into a 1 x 1 x 1.7 m tank at atmospheric pressure. A 40 m-long, φ155 μm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points over a 0.76 x 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. Sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both. (orig.)

  20. Modelling of semi-liquid aluminium flow in extrusion with temperature effect

    Directory of Open Access Journals (Sweden)

    G. Skorulski

    2007-04-01

    Full Text Available material remains stiff and holds its shape so it can be readily handled, but rapidly thins and flows like a liquid when sheared. It is this behaviour that is the key to the thixoforming process where material flows as a semi-liquid slurry into a die, as in conventional die-casting. Modelling the influence of the temperature distribution heterogeneity on deformation mechanisms during extrusion of the aluminium alloys in semi - liquid phase, the way of preparing samples and experimental technique has been analysed in the following work. There were made an analysis on the influence of the possible temperature distribution in recipient obtained during heating it on the extrusion process proceedings. The conclusions concerning stability of the process and appearing during it deformation mechanisms had been drawn on the ground of the received results. The plasticine and rape oil have been choosen as a substitute materials. Some kind of different variants have been investigated used a special experimental stand. The results of the tests presented below prove that the proposed technique can provide valuable insight into the material flow during deformation of aluminium alloys in the semi-liquid state and thus can give some guidance concerning the desirable temperature distribution within the workpiece.

  1. Prediction of Air Flow and Temperature Profiles Inside Convective Solar Dryer

    Directory of Open Access Journals (Sweden)

    Marian Vintilă

    2014-11-01

    Full Text Available Solar tray drying is an effective alternative for post-harvest processing of fruits and vegetables. Product quality and uniformity of the desired final moisture content are affected by the uneven air flow and temperature distribution inside the drying chamber. The purpose of this study is to numerically evaluate the operation parameters of a new indirect solar dryer having an appropriate design based on thermal uniformity inside the drying chamber, low construction costs and easy accessibility to resources needed for manufacture. The research was focused on both the investigation of different operation conditions and analysis of the influence of the damper position, which is incorporated into the chimney, on the internal cabinet temperature and air flow distribution. Numerical simulation was carried out with Comsol Multiphysics CFD commercial code using a reduced 2D domain model by neglecting any end effects from the side walls. The analysis of the coupled thermal-fluid model provided the velocity field, pressure distribution and temperature distribution in the solar collector and in the drying chamber when the damper was totally closed, half open and fully open and for different operation conditions. The predicted results were compared with measurements taken in-situ. With progressing computing power, it is conceivable that CFD will continue to provide explanations for more fluid flow, heat and mass transfer phenomena, leading to better equipment design and process control for the food industry.

  2. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system.

    Science.gov (United States)

    Rydfjord, Jonas; Svensson, Fredrik; Fagrell, Magnus; Sävmarker, Jonas; Thulin, Måns; Larhed, Mats

    2013-01-01

    In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe), thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications. PMID:24204419

  3. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  4. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system.

    Science.gov (United States)

    Rydfjord, Jonas; Svensson, Fredrik; Fagrell, Magnus; Sävmarker, Jonas; Thulin, Måns; Larhed, Mats

    2013-01-01

    In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe), thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  5. Ash Deposition Trials at Three Power Stations in Denmark

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming; Larsen, Ole Hede

    1998-01-01

    Six full-scale trials were conducted at three power stations in Denmark: Ensted, Funen, and Vendsyssel power stations. During these trials, pulverized coal, bottom ash, fly ash, and deposits from cooled probes were sampled and analyzed with various techniques. On the basis of SEM analyses......, the deposits can be grouped into five textural types, which all possess distinct textural and chemical characteristics. Likewise, the deposition mechanisms for these five types are characteristic and they may be used for constructing a model for the buildup and maturation of an ash deposit. The deposits...... collected on the probes were thin (maximum 2 mm after 9 h) and the influence of operational parameters and probe temperatures on the magnitude of the deposits were minor. The probe temperatures had no influence on the composition of the ash deposits for coals with low ash deposition propensities, whereas...

  6. Leaching of nutrient salts from fly ash from biomass combustion

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Vu, Duc Thuong; Stenby, Mette;

    2005-01-01

    Methods to selectively leach nutrient salts from fly ash, while leaving cadmium un-dissolved were studied. Temperature, pH, water to fly ash ratio are all expected to influence the kinetics and the equilibrium boundaries for this process. Three different leaching methods were investigated. The...... moving bed process with agitation/centrifugation. It was found that a satisfactory leaching of the nutrient salts could be achieved with the third method using only two or three stages, depending on the water to fly ash ratio. It is an advantage to perform the process at temperatures above 50°C as the...... first method was a counter current moving bed process in four stages. The ash was kept in filter bags and leached with water that was introduced into the bags at 40-50°C. In the second method, fly ash and water was brought into contact in a partially fluidized bed. The third method was a counter current...

  7. Mechanical Properties of Aluminum Matrix Composite Reinforced by Carbothermally Reduced of Fly Ash

    Science.gov (United States)

    Jamasri, Wildan, M. W.; Sulardjaka, Kusnanto

    2011-01-01

    The addition of fly ash into aluminum as reinforcement can potentially reduce the production cost and density of aluminum. However, mechanical properties of aluminum matrix composite reinforced by fly ash (MMC ALFA) have some limitations due to the characteristic of fly ash. In this study, a carbothermal reduction process of fly ash and activated carbon powder with particle size <32 μm was performed prior to produce MMC ALFA. The process was carried out in a furnace at 1300° C in vacuum condition under argon flow. Synthesis product was analyzed by XRD with Cu-Kα radiation. From XRD analysis, it shows that the synthesis process can produce SiC powder. The synthesis product was subsequently used as reinforcement particle. Aluminum powder was mixed with 5, 10 and 15% of the synthesized powder, and then uni-axially compacted at pressure of 300 MPa. The compacted product was sintered for 2 hours in argon atmosphere at temperature variation of 550 and 600° C. Flexural strength, hardness and density of MMC ALFA's product were respectively evaluated using a four point bending test method based on ASTM C1161 standard, Brinell hardness scale and Archimedes method. The result of this study shows that the increase of weight of reinforcement can significantly increase the hardness and flexural strength of MMCs. The highest hardness and flexural strength of the MMC product are 300 kg/mm2 and 107.5 MPa, respectively.

  8. Ash transformation and deposition behavior during co-firing biomass with sewage sludge

    DEFF Research Database (Denmark)

    Wang, Liang; Wu, Hao; Jensen, Peter Arendt;

    In the present work, the ash transformation and deposition behavior during wheat straw and wood waste combustion were investigated by combustion experiments in an entrained flow reactor. The influence of sewage sludge addition on ash chemistry and deposition tendency was also studied. During......-Ca-silicates. The deposits formed on a well-controlled sampling probe are dominated by molten particles rich in K silicates. Over 70% of K in the fly ash is water soluble. The fine fly ash from wood waste combustion consists of mainly KCl and NaCl. Both ash clusters and molten spherical particles are found from the...... ash deposits, which mainly contain K-silicates, K-Al-silicates and K-Ca-silicates. The sewage sludge addition significantly reduced the water soluble K and Na in the fly ash from wheat straw and wood waste combustion. Compared to pure wheat straw and wood waste, the ash deposition rates were increased...

  9. Phosphorus recovery from sewage sludge char ash

    NARCIS (Netherlands)

    Atienza-Martinez, M.; Gea, G.; Arauzo, J.; Kersten, S.R.A.; Kootstra, A.M.J.

    2014-01-01

    Phosphorus was recovered from the ash obtained after combustion at different temperatures (600 °C, 750 °C and 900 °C) and after gasification (at 820 °C using a mixture of air and steam as fluidising agent) of char from sewage sludge fast pyrolysis carried out at 530 °C. Depending on the leaching con

  10. The Mineral Transformation of Huainan Coal Ashes in Reducing Atmospheres

    Institute of Scientific and Technical Information of China (English)

    LI Han-xu; Yoshihiko Ninomiya; DONG Zhong-bing; ZHANG Ming-xu

    2006-01-01

    By using the advanced instrumentation of a Computer Controlled Scanning Electron Microscope (CCSEM),X-ray diffraction (XRD) and X-ray fluorescence (XRF), the ash composition and the mineral components of six typical Huainan coals of different origins were studied. The transformation of mineral matter at high temperatures was tracked by XRD in reducing conditions. The quartz phase decreased sharply and the anorthite content tended to increase at first and then decreased with increasing temperatures. The formed mullite phase reached a maximum at 1250 ℃ but showed a tendency of slow decline when the temperature was over 1250 ℃. The mullite formed in the heating process was the main reason of the high ash melting temperature of Huainan coals. Differences in peak intensity of mullite and anorthite reflected differences in phase concentration of the quenched slag fractions, which contributed to the differences in ash melting temperatures. The differences in the location of an amorphous hump maximum indicated differences of glass types which may affect ash melting temperatures. For Huainan coal samples with relatively high ash melting temperatures, the intensity of the diffraction lines for mullite under reducing condition is high while for the samples with relatively low ash melting temperature the intensity for anorthite is high.

  11. Sulphation characteristics of paper sludge ash

    Energy Technology Data Exchange (ETDEWEB)

    Roh, S.A. [Environmental Systems Research Center, Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of); Kim, S.D. [Environmental Systems Research Center, Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering

    2007-04-15

    Landfills are no longer a viable solution for the disposal of sludge produced from waste water treatment plants because of the decrease in available space, rising fees and growing environmental concerns. However, thermal utilization of this waste may be an economic and sustainable disposal solution. Co-combustion of low heating value sludge with fossil fuels has a positive effect for sulfur dioxide (SO{sub 2}) emissions due to the low sulphur content of biomass fuels and increased sulphur retention in the ash. The sulphur retention is attributed to the formation of sulphates, such as CaSO{sub 4}, K{sub 2}SO{sub 4} and Na{sub 2}SO{sub 4}. The amount of fuel-ash-related sulphur sorption increases during co-combustion. Therefore, sorbents for sulphur reduction may not be required if proper control of the biomass feed is maintained. This paper presented a study in which the sulphation characteristics of calcium-rich paper sludge ash were determined for the use of co-combustion of biomass and coal. The calcium in the paper sludge ash came from the limestone filler used in the manufacturing process to increase the density and whiteness of the paper at 2 paper mills in Korea. A thermobalance reactor along with XRD and SEM-EDX were used for the analysis of sulphated ash to determine the effects of sulphation temperature, particle size and SO{sub 2} concentration on sulphation conversion. The activation energy and pre-exponential factor of sulphation reaction of sludge ash were determined based on the uniform-reaction model. X-ray diffraction analysis revealed that most of the sulphation compounds were CaSO{sub 4}. The sulphation occurred uniformly throughout the ash and the CaSO{sub 4} did not block the outer pore of the sludge ash. The uniform distributions of CaO and other inert minerals in the ash resulted in uniform sulphation with good penetration of SO{sub 2} into pores of the sludge ash without pore blocking during sulphation of CaO. 13 refs., 1 tab., 9 figs.

  12. Ash particle erosion on steam boiler convective section

    Energy Technology Data Exchange (ETDEWEB)

    Meuronen, V.

    1997-12-31

    In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. A new, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosion wear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling and circulating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can be used to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an in- line tube bank with six tube rows, and a staggered tube bark with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss

  13. In situ measurements of the spectral emittance of coal ash deposits

    International Nuclear Information System (INIS)

    The spectral emittance of deposits left by bituminous and sub-bituminous coals under oxidizing conditions have been measured in situ. Pulverized coal is injected into a down-fired entrained-flow reactor. Ash accumulates on a probe in the reactor effluent and radiation emitted by the ash layer is recorded using a Fourier transform infrared (FTIR) spectrometer. Values for the spectral emissive power emitted by the ash and the surface temperature of the ash are extracted from these data. These results are then used to calculate the spectral emittance of the deposit. The spectral emittances of ash deposits formed by burning Illinois no. 6 (bituminous) coal and Powder River Basin (sub-bituminous) coal were measured between 3000 and 500 wavenumbers. The spectral emittance of the deposit left by the bituminous coal has a constant value of approximately 0.46 between 3000 and 2400 wavenumbers. Between 2200 and 1200 wavenumbers, the spectral emittance of the deposit increases from approximately 0.47 to approximately 0.61. Between 1200 and 500 wavenumbers, the spectral emittance is relatively constant at 0.61. The spectral emittance of the deposit left by the sub-bituminous coal is also relatively constant between 3000 and 2400 wavenumbers at a value of 0.29. Between 2200 and 500 wavenumbers, the spectral emittance of deposits from the sub-bituminous coal increases from approximately 0.29 to 0.55. Differences between these spectral emittance measurements and those measured ex situ illustrate the importance of making in situ measurements. Band emittances were calculated using the measured spectral emittances, and band emittances of the deposits are reported as functions of temperature.

  14. Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors

    Science.gov (United States)

    Sun, Bing-bing; Li, Shi-peng; Su, Wan-xing; Li, Jun-wei; Wang, Ning-fei

    2016-09-01

    In order to explore the impact of gas temperature on the nozzle damping characteristics of solid rocket motor, numerical simulations were carried out by an experimental motor in Naval Ordnance Test Station of China Lake in California. Using the pulse decay method, different cases were numerically studied via Fluent along with UDF (User Defined Functions). Firstly, mesh sensitivity analysis and monitor position-independent analysis were carried out for the computer code validation. Then, the numerical method was further validated by comparing the calculated results and experimental data. Finally, the effects of gas temperature on the nozzle damping characteristics were studied in this paper. The results indicated that the gas temperature had cooperative effects on the nozzle damping and there had great differences between cold flow and hot fire test. By discussion and analysis, it was found that the changing of mainstream velocity and the natural acoustic frequency resulted from gas temperature were the key factors that affected the nozzle damping, while the alteration of the mean pressure had little effect. Thus, the high pressure condition could be replaced by low pressure to reduce the difficulty of the test. Finally, the relation of the coefficients "alpha" between the cold flow and hot fire was got.

  15. Effects Of Crystallographic Properties On The Ice Nucleation Properties Of Volcanic Ash Particles

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Gourihar R.; Nandasiri, Manjula I.; Zelenyuk, Alla; Beranek, Josef; Madaan, Nitesh; Devaraj, Arun; Shutthanandan, V.; Thevuthasan, Suntharampillai; Varga, Tamas

    2015-04-28

    Specific chemical and physical properties of volcanic ash particles that could affect their ability to induce ice formation are poorly understood. In this study, the ice nucleating properties of size-selected volcanic ash and mineral dust particles in relation to their surface chemistry and crystalline structure at temperatures ranging from –30 to –38 °C were investigated in deposition mode. Ice nucleation efficiency of dust particles was higher compared to ash particles at all temperature and relative humidity conditions. Particle characterization analysis shows that surface elemental composition of ash and dust particles was similar; however, the structural properties of ash samples were different.

  16. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    International Nuclear Information System (INIS)

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated

  17. Temperature effect on shear flow and thixotropic behavior of residual sludge from wastewater treatment plant

    Science.gov (United States)

    Hammadi, L.; Ponton, A.; Belhadri, M.

    2013-08-01

    The temperature and shear rate effects on rheological behavior of residual sludge from wastewater treatment plant was investigated in this work. The model of Herschel-Bulkley was used to fit the shear rate dependence of the shear stress. The temperature increase induced not only an increase in the yield stress and the flow index of sludge but also a decrease of the consistency index of sludge. The temperature dependence of limit viscosity at high shear rate of the residual sludge was fitted by an Arrhenius equation. For constant shear rate applied on the sludge at 20 °C a thixotropic behavior was observed and analyzed using a modified model of Herschel-Bulkley in which a structural parameter λ was included in order to account for the time-dependent effect.

  18. CFD analysis of moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kansal, Anuj Kumar, E-mail: akansal@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, Jyeshtharaj B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Maheshwari, Naresh Kumar, E-mail: nmahesh@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, Pallippattu Krishnan, E-mail: vijayanp@barc.gov.in [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2015-06-15

    Highlights: • 3D CFD of vertical calandria vessel. • Spatial distribution of volumetric heat generation. • Effect of Archimedes number. • Non-dimensional analysis. - Abstract: Three dimensional computational fluid dynamics (CFD) analysis has been performed for the moderator flow and temperature fields inside a vertical calandria vessel of nuclear reactor under normal operating condition using OpenFOAM CFD code. OpenFOAM is validated by comparing the predicted results with the experimental data available in literature. CFD model includes the calandria vessel, calandria tubes, inlet header and outlet header. Analysis has been performed for the cases of uniform and spatial distribution of volumetric heat generation. Studies show that the maximum temperature in moderator is lower in the case of spatial distribution of heat generation as compared to that in the uniform heat generation in calandria. In addition, the effect of Archimedes number on maximum and average moderator temperature was investigated.

  19. The behavior of ash species in suspension fired biomass boilers

    DEFF Research Database (Denmark)

    Jensen, Peter Arendt

    formation in suspension fired boilers. The presentation provides an overview of the knowledge obtained with respect to ash species behavior insuspension fired biomass boilers. A mechanistic understanding of the fly ash formation process in biomass fired PF boilers isobtained today. A high fraction of alkali...... salt species are released to the gas phase during the initial fuel combustion process. The salt species are present in gas phase in the boil chamberand upon cooling in the convective pass aerosols are formed. Recent studies indicates that a large fraction of the residual condensed phase ash fragments...... to generate ash particles typically in the size range of 50 to 200 μm on biomass suspension fired power plant boilers. A fragmentation rate of fuel particles of 3 have been used to describe both the residual ash formation process in laboratory entrained flow reactors and in full scale boilers.A range...

  20. Effect of Coal Properties and Operation Conditions on Flow Behavior of Coal Slag in Entrained Flow Gasifiers: A Brief Review

    Energy Technology Data Exchange (ETDEWEB)

    Wang,Ping; Massoudi, Mehrdad

    2011-01-01

    Integrated gasification combined cycle (IGCC) is a potentially promising clean technology with an inherent advantage of low emissions, since the process removes contaminants before combustion instead of from flue gas after combustion, as in a conventional coal steam plant. In addition, IGCC has potential for cost-effective carbon dioxide capture. Availability and high capital costs are the main challenges to making IGCC technology more competitive and fully commercial. Experiences from demonstrated IGCC plants show that, in the gasification system, low availability is largely due to slag buildup in the gasifier and fouling in the syngas cooler downstream of the gasification system. In the entrained flow gasifiers used in IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter (as fly ash) is entrained with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. Therefore, it is preferable to minimize the quantity of fly ash and maximize slag. In addition, the hot raw syngas is cooled to convert any entrained molten fly slag to hardened solid fly ash prior to entering the syngas cooler. To improve gasification availability through better design and operation of the gasification process, better understanding of slag behavior and characteristics of the slagging process are needed. Slagging behavior is affected by char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio). The viscosity of the slag is used to characterize the behavior of the slag flow and is the dominating factor to determine the probability that ash particles will stick. Slag viscosity strongly depends on the temperature and chemical composition of the slag. Because coal has varying ash content and

  1. Agglomeration in Stripper Ash Coolers and Its Possible Remedial Solutions: a Case Study

    Science.gov (United States)

    Singh, Ravi Inder

    2016-04-01

    The bottom ash of circulating fluidized bed (CFB) boiler contains large amounts of physical heat. When low quality coals are used in these types of boilers, the ash content is normally more than 40 % and the physical heat loss is approximately 3 % if the bottom ash is discharged without cooling. Bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to facilitate the easily handling and transportation of ash. The CFB boiler at BLA Power, Newari, MP (India) is facing problems of clinker formation in strip ash coolers of plant since the installation of unit. These clinkers are basically agglomerates, which leads to defluidization of stripper ash cooler (BAC) units. There are two strip ash coolers in unit. Each strip ash cooler is capable of working independently. The proper functioning of both strip coolers is very important as it is going to increase the combustion efficiency of boiler by stripping of fine unburnt coal particles from ash, which are injected into the furnace. In this paper causes, characterization of agglomerates, thermo gravimetric analysis of fuel used, particular size distribution of coal and sand and possible remedial solution to overcome these agglomerates in strip ash coolers has also been presented. High temperature in compact separators, non uniform supply of coal and not removing small agglomerates from stripper ash cooler are among main causes of agglomeration in stripper ash cooler. Control of compact separator temperature, replacing 10-12 % of bed material and cleaning stripper ash cooler periodically will decrease agglomeration in stripper ash cooler of unit.

  2. Preliminary studies of coolant by-pass flows in a prismatic very high temperature reactor using computational fluid dynamics

    International Nuclear Information System (INIS)

    Three dimensional computational fluid dynamic (CFD) calculations for a 1/12 sector of a prismatic block through the core of a prismatic very high temperature gas-cooled reactor (VHTR) were conducted to investigate the influence of gap geometry on flow and temperature distributions in the reactor core using commercial CFD code FLUENT. Parametric calculations changing the gap width in a whole core length model of fuel and reflector columns were performed. The simulations show the effects of core by-pass flows in the heated core region by comparing results for several gap widths including zero gap width. The calculation results underline the importance of considering inter-column gap width for the evaluation of maximum fuel temperatures and temperature gradients in fuel blocks. It is shown that temperatures of core outlet flow from gaps and channels are strongly affected by the gap width of by-pass flow in the reactor core. (author)

  3. Preliminary studies of coolant by-pass flows in a prismatic very high temperature reactor using computational fluid dynamics

    International Nuclear Information System (INIS)

    Three dimensional computational fluid dynamic (CFD) calculations of a typical prismatic very high temperature gas-cooled reactor (VHTR) were conducted to investigate the influence of gap geometry on flow and temperature distributions in the reactor core using commercial CFD code FLUENT. Parametric calculations changing the gap width in a whole core length model of fuel and reflector columns were performed. The simulations show the effects of core by-pass flows in the heated core region by comparing results for several gap widths including zero gap width. The calculation results underline the importance of considering inter-column gap width for the evaluation of maximum fuel temperatures and temperature gradients in fuel blocks. In addition, it is shown that temperatures of core outlet flow from gaps and channels are strongly affected by the gap width of by-pass flow in the reactor core.

  4. Fiber-optic flow sensors for high-temperature environment operation up to 800°C.

    Science.gov (United States)

    Chen, Rongzhang; Yan, Aidong; Wang, Qingqing; Chen, Kevin P

    2014-07-01

    This Letter presents an all-optical high-temperature flow sensor based on hot-wire anemometry. High-attenuation fibers (HAFs) were used as the heating elements. High-temperature-stable regenerated fiber Bragg gratings were inscribed in HAFs and in standard telecom fibers as temperature sensors. Using in-fiber light as both the heating power source and the interrogation light source, regenerative fiber Bragg grating sensors were used to gauge the heat transfer from an optically powered heating element induced by the gas flow. Reliable gas flow measurements were demonstrated between 0.066  m/s and 0.66  m/s from the room temperature to 800°C. This Letter presents a compact, low-cost, and multiflexible approach to measure gas flow for high-temperature harsh environments.

  5. An ion Doppler spectrometer instrument for ion temperature and flow measurements on SSPX

    International Nuclear Information System (INIS)

    A high-resolution ion Doppler spectrometer (IDS) has been installed on the sustained spheromak plasma experiment to measure ion temperatures and plasma flow. The system is composed of a 1 m focal length Czerny-Turner spectrometer with a diffraction grating line density of 2400 lines/mm, which allows for first order spectra between 300 and 600 nm. A 16-channel photomultiplier tube detection assembly combined with output coupling optics provides a spectral resolution of 0.0126 nm/channel. We calculate in some detail the mapping of curved slit images onto the linear detector array elements. This is important in determining the wavelength resolution and setting the optimum vertical extent of the slit. Also, because of the small wavelength window of the IDS, a miniature fiber-optic survey spectrometer sensitive to a wavelength range 200-1100 nm and having a resolution of 0.2 nm is used to obtain a time-integrated spectrum for each shot to verify specific impurity line radiation. Several measurements validate the systems operation. Doppler broadening of C III 464.72 nm line in the plasma shows time-resolved ion temperatures up to 250 eV for hydrogen discharges, which is consistent with neutral particle energy analyzer measurements. Flow measurements show a sub-Alfvenic plasma flow ranging from 5 to 45 km/s for helium discharges.

  6. Temperature-flow regulation rule in indirect connection heating system and its energy-saving contrast analysis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Primary and secondary networks are treated as a whole in indirect heating systems, and an advanced new temperature-flow regulation method is presented whose flow ratio is greater than 60% in a secondary network and 30% in a primary network when under a partial load. Through deducing and optimizing an exponential function flow regulation rule, the formulae of flow regulation and the supply and return water temperatures are obtained, and their relevant curves are plotted. After comparison, it is found that this control method has a huge energy conservation space, and it should therefore be generalized soon.

  7. Cooling effect of high-temperature steam flow downstream from the turbine bypass valve

    International Nuclear Information System (INIS)

    The main goal of this study is to investigate the evaporation process of a coolant (water droplets) which is injected through spray nozzles mounted on a steam turbine bypass pipeline in a co-generator system. The study includes several important factors: (1) the effects of four elbows on the flow pattern and evaporation process of the water particles, (2) heat transfer that affects the steam temperature and also the evaporation rates, and (3) the effects of a perforated plate on the flow pattern and evaporation process. The investigation of the structure of liquid spray jets during the transition into the gaseous phase was accomplished by developing a physical model of a particle tracking technique to investigate evaporation processes of the liquid droplets in a highly turbulent flow. Through this research, numerous data have been acquired and analyzed for heat transfer mechanisms of the evaporation of the water droplets in the pipeline system along with the cooling of the steam flow. The results of the computations were verified by comparing them with theoretical models, and were shown to be quite reliable

  8. Experimental and analytic study on the core bypass flow in a very high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Hwan; Lim, Hong Sik; Tak, Nam Il; Jun, Ji Su; Kim, Chan Soo; Yun, Churl; Jo, Chang Keun; Lee, Won Jae [KAERI, Daejeon (Korea, Republic of)

    2011-12-15

    A multi-block and multi-layer bypass flow test facility was designed and constructed. Experiments using the facility were carried out for uniform and non-uniform gap distributions of test blocks to produce data for the validation of codes. Using independent models developed for GAMMA+ code in Korea and GAS-NET code in the US, analyses for the bypass experiment were performed and the results were compared. In addition, CFD benchmark calculations by using CFX code in Korea and STARCCM+ in the US were carried out for MIR experiments and the validity of CFD models were assessed. A model for the estimation of bypass flow gap size in VHTR core was developed. And three dimensional core thermo-fluid analysis model considering the bypass gap distribution was developed by using the GAMMA+ code, which was applied to a prismatic core, developed in nuclear hydrogen project in KAERI, to predict core flow distribution and maximum fuel temperature. Finally, two measures of bypass flow reduction were suggested and their performance was assessed by the experiment.

  9. An automated flow calorimeter for heat capacity and enthalpy measurements at elevated temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.

    1990-08-31

    The need for highly accurate thermal property data for a broad range of new application fluids is well documented. To facilitate expansion of the current thermophysical database, an automated flow calorimeter was developed for the measurement of highly accurate isobaric heat capacities and enthalpies of fluids at elevated temperatures and pressures. The experimental technique utilizes traditional electrical power input, adiabatic flow calorimetry with a precision metering pump that eliminates the need for on-line flow rate monitoring. In addition, a complete automation system, greatly simplifies the operation of the apparatus and increases the rapidity of the measurement process. The range over which the instrument was tested, was 300--600 K and 0--12 Mpa, although the calorimeter should perform up to the original design goals of 700 K and 30 MPa. The new flow calorimeter was evaluated by measuring the mean, isobaric, specific heat capacities of liquid water and n-pentane. These experiments yielded an average deviation from the standard literature data of +0.02% and a total variation of 0.05%. Additional data analysis indicated that the overall measurement uncertainty was conservatively estimated as 0.2% with an anticipated precision of 0.1--0.15% at all operating conditions. 44 refs., 27 figs., 2 tabs.

  10. Effect of Ambient and Oxygen Temperature on Flow Field Characteristics of Coherent Jet

    Science.gov (United States)

    Liu, Fuhai; Zhu, Rong; Dong, Kai; Hu, Shaoyan

    2016-02-01

    The coherent jets are now used widely in electric arc furnace steelmaking process to increase the stirring ability, reaction rates, and energy efficiency. However, there has been limited research on the basic physics of the coherent jets. In the present study, the characteristics of flow field of supersonic coherent jet in hot and cold condition were studied. The total temperature and axial velocity were measured by combustion experiment. Flow field characteristics of supersonic coherent jet were simulated by Fluent software. The detailed chemical kinetic mechanism is presently used for the modeling of reactions. It consists of 53 species, plus Ar and N2, for a total of 325 reversible reactions. The present study showed that the shrouding flame decreases the entrainment of the ambient gas to the central supersonic jet, which results in a low expansion rate for the coherent supersonic jet. The higher ambient temperature can prolong the potential core of coherent jet and conventional jet. However, the potential core of coherent jet reduces with oxygen temperature increasing, which is opposite to conventional jet.

  11. Novel cobalt base superalloy and its high-temperature flow behavior

    Institute of Scientific and Technical Information of China (English)

    TANG Chunfeng; PAN Feng; QU Xuanhui; DUAN Baihua; WANG Tianjian; HE Xinbo

    2008-01-01

    A novel cobalt base superalloy containing titanium and aluminum was investigated through metallography, tensile test, and high-temperature isothermal compression deformation. The results show that proper content of titanium and aluminum with can improve the strength and ductility of the cobalt base superalloy. The Co3(Ti,Al) compound with L12 structure precipitates when the novel superalloy is aged at 800℃ for 20h. The ε phase with hcp structure also precipitates when the superalloy is deformed by 28% and then aged at 650℃ for 4h. The ε phase can exist at 800℃. The superalloy has excellent high-temperature mechanical properties. Its maximum flow stress at 850℃ is in the range of 360-475MPa when the strain rate is between 0.0021 and 2.1 s-1. The flow stress of the superalloy during high-temperature deformation can be described by the Zener-Hollomon parameter with a hot deformation activation energy of 397 kJ.mol-1.

  12. Speciation of Zinc in ash investigated by X-ray absorption spectroscopy; Zinks foerekomstformer i aska studerade med en roentgenabsorptionsspektrometrisk metod

    Energy Technology Data Exchange (ETDEWEB)

    Steenari, Britt-Marie; Noren, Katarina

    2008-06-15

    amounts of zinc sulphide or zinc chloride was found. In ash from combustion of MSW zinc is also present in oxide minerals. The modelling of EXAFS data indicated a combination dominated by silicate and containing small amounts of hydroxide or oxide to be the most probable speciation in FBC bottom ash and cyclone ash, i.e. the most silicate rich ashes. The FBC filter ash, i.e. the ash flow containing the smallest mineral particles and compounds that have condensed when the flue gas temperature has decreased, contains the same zinc species as the bottom and cyclone ashes with the addition of a small amount of chloride or sulphide. Fly ashes from two stoker fired MSW combustors were investigated and the results were somewhat different. For one of the ashes the data were very well described by a model based on Zn{sub 2}SiO{sub 4} and a small amount of ZnCl{sub 2}.

  13. Pressure, density, temperature and entropy fluctuations in compressible turbulent plane channel flow

    CERN Document Server

    Gerolymos, G A

    2013-01-01

    We investigate the fluctuations of thermodynamic state-variables in compressible aerodynamic wall-turbulence, using results of direct numerical simulation (DNS) of compressible turbulent plane channel flow. The basic transport equations governing the behaviour of thermodynamic variables (density, pressure, temperature and entropy) are reviewed and used to derive the exact transport equations for the variances and fluxes (transport by the fluctuating velocity field) of the thermodynamic fluctuations. The scaling with Reynolds and Mach number of compressible turbulent plane channel flow is discussed. Correlation coefficients and higher-order statistics of the thermodynamic fluctuations are examined. Finally, detailed budgets of the transport equations for the variances and fluxes of the thermodynamic variables from a well-resolved DNS are analysed. Implications of these results both to the understanding of the thermodynamic interactions in compressible wall-turbulence and to possible improvements in statistical...

  14. Heat Transfer in Hydromagnetic Fluid Flow: Study of Temperature Dependence of Fluid Viscosity

    Directory of Open Access Journals (Sweden)

    G. C. Shit

    2014-01-01

    Full Text Available Flow of a viscoelastic fluid through a channel with stretching walls in the presence of a magnetic field has been investigated. The viscosity of the fluid is assumed to vary with temperature. Convective heat transfer is considered along with viscous dissipation and Ohmic dissipation. The equations that govern the motion of the fluid and heat transfer are coupled and non-linear. The governing partial differential equations are reduced to a set of ordinary differential equations by using similarity transformation. The transformed equations subject to the boundary conditions are solved by developing a suitable finite difference scheme. Numerical estimates of the flow and heat transfer variables are obtained by considering blood as the working fluid. The computational values are found to be in good agreement with those of previous studies.

  15. CFD analysis of flow and temperature distribution inside the calandria of Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Passive systems are being examined for the future AHWR reactor designs. One of these systems is the passive moderator cooling system, which removes heat from the moderator in case of a Station Black Out (SBO). The heavy-water moderator gets heated due to the residual heat from the core structures and rises upward due to buoyancy. This is cooled down in a heat exchanger and returns back to Calandria, completing a natural circulation loop. The natural circulation should provide sufficient cooling to prevent the increase of moderator (Calandria) pressure beyond safe limits. In this paper CFD investigations are carried out to study the temperature distributions and flow distribution inside the Calandria using a three-dimensional CFD code, OpenFoam 2.2.0. The results provide a band of operable mass flow rates which are safe for operation by virtue of prediction of hot spots in the Calandria. (author)

  16. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device

    Science.gov (United States)

    Whalley, Richard D.; Walsh, James L.

    2016-08-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence.

  17. Turbulent jet flow generated downstream of a low temperature dielectric barrier atmospheric pressure plasma device.

    Science.gov (United States)

    Whalley, Richard D; Walsh, James L

    2016-01-01

    Flowing low temperature atmospheric pressure plasma devices have been used in many technological applications ranging from energy efficient combustion through to wound healing and cancer therapy. The generation of the plasma causes a sudden onset of turbulence in the inhomogeneous axisymmetric jet flow downstream of the plasma plume. The mean turbulent velocity fields are shown to be self-similar and independent of the applied voltage used to generate the plasma. It is proposed that the production of turbulence is related to a combination of the small-amplitude plasma induced body forces and gas heating causing perturbations in the unstable shear layers at the jet exit which grow as they move downstream, creating turbulence. PMID:27561246

  18. Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash

    Science.gov (United States)

    Schill, G. P.; Genareau, K.; Tolbert, M. A.

    2015-07-01

    Ice nucleation of volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui eruption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225 to 235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited appreciable heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  19. Dating fluid flow in developing passive margins using low-temperature thermochronology

    Science.gov (United States)

    Gleadow, A. J.; Seiler, C.; Kohn, B. P.

    2012-12-01

    Despite the importance of fluid flow for mass flux and remobilisation in the Earth's crust, the age of past fluid flow events is often difficult to determine, particularly in the low-temperature environment of the shallow crust. This is partly because mineral phases precipitated by low-temperature fluids are either lacking or not very easy to date. Low-temperature thermochronometers such as apatite fission track (AFT) and (U-Th)/He (AHe) systems are, in theory, ideally suited to investigate the temperature interval of hydrothermal fluids near the Earth's surface and could be used to date fluid flow in the shallow crust. In passive margins, however, rift-related faulting, exhumation and post-breakup erosion often result in a much stronger regional cooling signal that relates to tectonic events rather than fluid flow. Moreover, the response of low-temperature thermochronometers to transient and potentially short-lived thermal events associated with hydrothermal fluids has not been studied systematically and is poorly known. In this study, we report AFT and AHe results from two young, regionally important faults that were active at different stages of passive margin evolution in the Gulf of California rift system. In the first case, we investigate the thermal history of the Libertad fault in central Baja California, which represents the breakaway fault for Late Miocene to recent rifting. Regional background AFT and AHe ages range between ~60-35Ma, they predate rifting and are likely associated with steady erosional unroofing of the basement. In contrast, a closely spaced 3D grid of samples from the Libertad escarpment records a distinct Late Miocene thermal event at ~9-8Ma that can be traced several kilometres along the base and a few hundred metres up the escarpment face. In the second case, we collected a 2D grid of samples orthogonal to the Ballenas transform, a transform fault located ~3-5km offshore the coast of central Baja California that is part of the current

  20. MAT 126 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    stylia

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MAT 126 Week 1 DQ 1 (Ash) MAT 126 Week 1 Quiz (Ash) MAT 126 Week 1 Written Assignment (Arithmetic and geometric sequence) (Ash) MAT 126 Week 2 DQ 1 (Ash) MAT 126 Week 2 DQ 2 (Ash) MAT 126 Week 2 Assignment Is It Fat Free (Ash) MAT 126 Week 2 Quiz (Ash) MAT 126 Week 3 DQ 1 (Ash) MAT 126 Week 3 DQ 2 (Ash) MAT 126 Week 3 Assignment Quadratic Equations (Ash) MAT 126 Week 3 Quiz (Ash) MAT 126...

  1. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.

    Science.gov (United States)

    Liu, Caihong; Shamie, Jack S; Shaw, Leon L; Sprenkle, Vincent L

    2016-01-20

    In this study, we have investigated the key factors dictating the cyclic performance of a new type of hybrid sodium-based flow batteries (HNFBs) that can operate at room temperature with high cell voltages (>3 V), multiple electron transfer redox reactions per active ion, and decoupled design of power and energy. HNFBs are composed of a molten Na-Cs alloy anode, flowing aqueous catholyte, and a Na-β″-Al2O3 solid electrolyte as the separator. The surface functionalization of graphite felt electrodes for the flowing aqueous catholyte has been studied for its effectiveness in enhancing V(2+)/V(3+), V(3+)/V(4+), and V(4+)/V(5+) redox couples. The V(4+)/V(5+) redox reaction has been further investigated at different cell operation temperatures for its cyclic stability and how the properties of the solid electrolyte membrane play a role in cycling. These fundamental understandings provide guidelines for improving the cyclic performance and stability of HNFBs with aqueous catholytes. We show that the HNFB with aqueous V-ion catholyte can reach high storage capacity (∼70% of the theoretical capacity) with good Coulombic efficiency (90% ± 1% in 2-30 cycles) and cyclic performance (>99% capacity retention for 30 cycles). It demonstrates, for the first time, the potential of high capacity HNFBs with aqueous catholytes, good capacity retention and long cycling life. This is also the first demonstration that Na-β″-Al2O3 solid electrolyte can be used with aqueous electrolyte at near room temperature for more than 30 cycles. PMID:26720551

  2. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.

    Science.gov (United States)

    Liu, Caihong; Shamie, Jack S; Shaw, Leon L; Sprenkle, Vincent L

    2016-01-20

    In this study, we have investigated the key factors dictating the cyclic performance of a new type of hybrid sodium-based flow batteries (HNFBs) that can operate at room temperature with high cell voltages (>3 V), multiple electron transfer redox reactions per active ion, and decoupled design of power and energy. HNFBs are composed of a molten Na-Cs alloy anode, flowing aqueous catholyte, and a Na-β″-Al2O3 solid electrolyte as the separator. The surface functionalization of graphite felt electrodes for the flowing aqueous catholyte has been studied for its effectiveness in enhancing V(2+)/V(3+), V(3+)/V(4+), and V(4+)/V(5+) redox couples. The V(4+)/V(5+) redox reaction has been further investigated at different cell operation temperatures for its cyclic stability and how the properties of the solid electrolyte membrane play a role in cycling. These fundamental understandings provide guidelines for improving the cyclic performance and stability of HNFBs with aqueous catholytes. We show that the HNFB with aqueous V-ion catholyte can reach high storage capacity (∼70% of the theoretical capacity) with good Coulombic efficiency (90% ± 1% in 2-30 cycles) and cyclic performance (>99% capacity retention for 30 cycles). It demonstrates, for the first time, the potential of high capacity HNFBs with aqueous catholytes, good capacity retention and long cycling life. This is also the first demonstration that Na-β″-Al2O3 solid electrolyte can be used with aqueous electrolyte at near room temperature for more than 30 cycles.

  3. The effect of water temperature and flow on respiration in barnacles: patterns of mass transfer versus kinetic limitation.

    Science.gov (United States)

    Nishizaki, Michael T; Carrington, Emily

    2014-06-15

    In aquatic systems, physiological processes such as respiration, photosynthesis and calcification are potentially limited by the exchange of dissolved materials between organisms and their environment. The nature and extent of physiological limitation is, therefore, likely to be dependent on environmental conditions. Here, we assessed the metabolic sensitivity of barnacles under a range of water temperatures and velocities, two factors that influence their distribution. Respiration rates increased in response to changes in temperature and flow, with an interaction where flow had less influence on respiration at low temperatures, and a much larger effect at high temperatures. Model analysis suggested that respiration is mass transfer limited under conditions of low velocity (mass transfer and kinetic limitation are important. Behavioral monitoring revealed that barnacles fully extend their cirral appendages at low flows and display abbreviated 'testing' behaviors at high flows, suggesting some form of mechanical limitation. In low flow-high temperature treatments, however, barnacles displayed distinct 'pumping' behaviors that may serve to increase ventilation. Our results suggest that in slow-moving waters, respiration may become mass transfer limited as temperatures rise, whereas faster flows may serve to ameliorate the effects of elevated temperatures. Moreover, these results underscore the necessity for approaches that evaluate the combined effects of multiple environmental factors when examining physiological and behavioral performance.

  4. The adsorption of HCl on volcanic ash

    Science.gov (United States)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln ⁡ c = 1.26 + 0.27 ln ⁡ p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental

  5. Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

    CERN Document Server

    Shornikov, A; Wolf, A

    2014-01-01

    We present design and commissioning results of a forced flow cooling system utilizing neon at 30 K. The cryogen is pumped through the system by a room-temperature compression stage. To decouple the cold zone from the compression stage a recuperating counterflow tube-in-tube heat exchanger is used. Commissioning demonstrated successful condensation of neon and transfer of up to 30 W cooling power to the load at 30 K using only 30 g of the cryogen circulating in the system at pressures below 170 kPa.

  6. Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method

    Science.gov (United States)

    Wan, Gang; Jin, Yong; Li, Haiyuan; Li, Baoming

    2016-03-01

    Active boundary layer flow control and boundary layer manipulation in the channel flow that was based on low temperature plasma were studied by means of a lattice Boltzmann method. Two plasma actuators were placed in a row to obtain the influence rule of their separation distance on the velocity profile at three locations and maximum velocity in the flow field. Two plasma actuators were placed symmetrically inside a channel to examine the effect of channel height and voltage on the velocity profile and flow rate. It was found that the channel height controls the distribution of flow velocity, which affected the flow rate and its direction. Increasing plasma voltage had a negative effect on the flow rate due to the generation of a larger and stronger flow vortex.

  7. Synthesis and characterization of fly ash-zinc oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Kunal Yeole

    2014-04-01

    Full Text Available Fly ash, generated in thermal power plants, is recognized as an environmental pollutant. Thus, measures are required to be undertaken to dispose it in an environmentally friendly method. In this paper an attempt is made to coat zinc oxide nano-particles on the surface of fly ash by a simple and environmentally friendly facile chemical method, at room temperature. Zinc oxide may serve as effective corrosion inhibitor by providing sacrificial protection. Concentration of fly ash was varied as 5, 10 and 15 (w/w % of zinc oxide. It was found that crystallinity increased, whereas particle size, specific gravity and oil absorption value decreased with increased concentration of fly ash in zinc oxide, which is attributed to the uniform distribution of zinc oxide on the surface of fly ash. These nanocomposites can potentially be used in commercial applications as additive for anticorrosion coatings.

  8. Theoretical relation between water flow rate in a vertical fracture and rock temperature in the surrounding massif

    CERN Document Server

    Maréchal, Jean-Christophe

    2010-01-01

    A steady-state analytical solution is given describing the temperature distribution in a homogeneous massif perturbed by cold water flow through a discrete vertical fracture. A relation is derived to express the flow rate in the fracture as a function of the temperature measured in the surrounding rock. These mathematical results can be useful for tunnel drilling as it approaches a vertical cold water bearing structure that induces a thermal anomaly in the surrounding massif. During the tunnel drilling, by monitoring this anomaly along the tunnel axis one can quantify the flow rate in the discontinuity ahead before intersecting the fracture. The cases of the Simplon, Mont Blanc and Gotthard tunnels (Alps) are handled with this approach which shows very good agreement between observed temperatures and the theoretical trend. The flow rates before drilling of the tunnel predicted with the theoretical solution are similar in the Mont Blanc and Simplon cases, as well as the flow rates observed during the drilling....

  9. Calculations of High-Temperature Jet Flow Using Hybrid Reynolds-Average Navier-Stokes Formulations

    Science.gov (United States)

    Abdol-Hamid, Khaled S.; Elmiligui, Alaa; Giriamaji, Sharath S.

    2008-01-01

    Two multiscale-type turbulence models are implemented in the PAB3D solver. The models are based on modifying the Reynolds-averaged Navier Stokes equations. The first scheme is a hybrid Reynolds-averaged- Navier Stokes/large-eddy-simulation model using the two-equation k(epsilon) model with a Reynolds-averaged-Navier Stokes/large-eddy-simulation transition function dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier Stokes model in which the unresolved kinetic energy parameter f(sub k) is allowed to vary as a function of grid spacing and the turbulence length scale. This parameter is estimated based on a novel two-stage procedure to efficiently estimate the level of scale resolution possible for a given flow on a given grid for partially averaged Navier Stokes. It has been found that the prescribed scale resolution can play a major role in obtaining accurate flow solutions. The parameter f(sub k) varies between zero and one and is equal to one in the viscous sublayer and when the Reynolds-averaged Navier Stokes turbulent viscosity becomes smaller than the large-eddy-simulation viscosity. The formulation, usage methodology, and validation examples are presented to demonstrate the enhancement of PAB3D's time-accurate turbulence modeling capabilities. The accurate simulations of flow and turbulent quantities will provide a valuable tool for accurate jet noise predictions. Solutions from these models are compared with Reynolds-averaged Navier Stokes results and experimental data for high-temperature jet flows. The current results show promise for the capability of hybrid Reynolds-averaged Navier Stokes and large eddy simulation and partially averaged Navier Stokes in simulating such flow phenomena.

  10. Deposit formation in a full-scale pulverized wood-fired power plant with and without coal fly ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt;

    2013-01-01

    temperatures of ~1300oC and ~800oC, respectively. It was found that during pulverized wood combustion, the deposit formation at the hightemperature location was characterized by a slow and continuous growth of deposits followed by the shedding of a large layer of deposits, while the deposit formation......Ash transformation and deposition in a pulverized wood-fired power plant boiler of 800 MWth were studied with and without the addition of coal fly ash. The transient ash deposition behavior was investigated by using an advanced deposit probe system at two different boiler locations with flue gas...... at the low-temperature location showed a slow initial build-up and a stable mass of deposits after approximately 1-5 h. The deposits collected during pulverized wood combustion contained a considerable amount of K2SO4, KCl, and KOH/K2CO3. With the addition of coal fly ash (~4 times of the mass flow of wood...

  11. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  12. Prediction of Pressure, Temperature, and Velocity Distribution of Two-Phase Flow in Oil Wells

    Energy Technology Data Exchange (ETDEWEB)

    Cazarez-Candia, Octavio [Programa de Yacimientos Naturalmente Fracturados, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas No. 152, Col. San Bartolo Atepehuacan, CP 07730, Mexico D.F. (Mexico); Vasquez-Cruz, Mario A. [Gerencia de Reservas de Hidrocarburos, PEMEX, Av. Marina Nacional No. 329, Col. Huasteca, C.P. 11311, Mexico D.F. (Mexico)

    2005-03-15

    In this work, a one-dimensional, time-dependent homogeneous mathematical model is presented, which can be used for determining the pressure, temperature, and velocity distributions of two-phase flow with three components (water-oil and gas) in oil wells. The numerical solution of the mathematical model, which consists of mass, momentum, and energy conservation equations, is based on the finite difference technique in the implicit scheme. The thermodynamic and transport properties of the fluids are estimated by black oil PVT correlations. The contribution of the terms of the conservation equations to the prediction of field data is studied. As a result, it was observed that the convective terms do not affect significantly the results of the present model. However, the terms in the energy equation containing the Joule-Thomson coefficient affect sensitively the prediction of temperature, but not the prediction of pressure. Numerical results are in agreement with field data and theoretical results reported in the literature.

  13. Electron-temperature and energy-flow history in an imploding plasma.

    Science.gov (United States)

    Gregorian, L; Kroupp, E; Davara, G; Starobinets, A; Fisher, V I; Bernshtam, V A; Ralchenko, Yu V; Maron, Y; Fisher, A; Hoffmann, D H H

    2005-05-01

    The time-dependent radial distribution of the electron temperature in a 0.6 micros, 220-kA gas-puff z-pinch plasma is studied using spatially-resolved observations of line emission from singly to fivefold ionized oxygen ions during the plasma implosion, up to 50 ns before maximum compression. The temperature obtained, together with the previously determined radial distributions of the electron density, plasma radial velocity, and magnetic field, allows for studying the history of the magnetic-field energy coupling to the plasma by comparing the energy deposition and dissipation rates in the plasma. It is found that at this phase of the implosion, approximately 65% of the energy deposited in the plasma is imparted to the plasma radial flow, with the rest of the energy being converted into internal energy and radiation. PMID:16089655

  14. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    Directory of Open Access Journals (Sweden)

    Nicolas Craquelin

    2010-12-01

    Full Text Available We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  15. Measurements of local temperature distributions in rod bundles with sodium flow

    International Nuclear Information System (INIS)

    In an electrically heated 19-rod bundle (P/D = 1.30, W/R = 1.40) with sodium flow the three-dimensional temperature fields in the rod clads were measured. The main characteristics of the test section are three adjacent heater rods in the duct wall zone instrumented on four measuring planes and rotatable by 3600 under full power conditions; furthermore spacer grids which are axially movable, and a system allowing to bow one heater rod over the last third of its heated length. The results of measurements of the azimuthal temperature variations of the rotatable rods are presented for different operating conditions (80 2), different spacer grid positions relative to the measuring planes and different bowing positions of one rod. For better understanding of the experimental results cross sections of the 19-rod bundle were prepared. It became evident, that a well-known bundle geometry is very important for the interpretation of the experimental results. (orig.)

  16. Evaluating the flow processes in ultrafine-grained materials at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Megumi Kawasaki

    2013-06-01

    Full Text Available When polycrystalline materials are tested in tension at elevated temperatures, the flow mechanisms depend upon various parameters including the temperature of testing, the applied stress and the material grain size. The plotting of deformation mechanism maps is a procedure used widely in displaying and interpreting the creep properties of conventional coarse-grained metals but there have been few attempts to date to use this same procedure for ultrafine-grained and nanocrystalline materials produced through the application of severe plastic deformation (SPD. This report examines the potential for using deformation mechanism mapping for materials processed by SPD and presents examples for materials processed using equal-channel angular pressing and high-pressure torsion.

  17. CHEMICAL REACTION EFFECTS ON FLOW PAST AN EXPONENTIALLY ACCELERATED VERTICAL PLATE WITH VARIABLE TEMPERATURE

    Directory of Open Access Journals (Sweden)

    R. Muthucumaraswamy

    2010-12-01

    Full Text Available An analysis is performed to study the unsteady flow past an exponentially accelerated infinite vertical plate with variable temperature and uniform mass diffusion, in the presence of a homogeneous chemical reaction of first-order. The plate temperature is raised linearly with time and the concentration level near the plate is raised uniformly. The dimensionless governing equations are solved using the Laplace transform. The velocity profiles are studied for different physical parameters such as the chemical reaction parameter, thermal Grashof number, mass Grashof number, a, and time. It is observed that the velocity increases with increasing values of a or t. But the trend is just the reverse in the chemical reaction parameter.

  18. Dynamic On-Chip micro Temperature and Flow Sensor for miniaturized lab-on-a-chip instruments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to design, fabricate, and characterize a Dynamic On-Chip Flow and Temperature Sensor (DOCFlaTS) to mature and enable miniaturized...

  19. Experimental study of forced convection heat transfer during upward and downward flow of helium at high pressure and high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Valentin; Narbeh Artoun; Masahiro Kawaji; Donald M. McEligot

    2015-08-01

    Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures up to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.

  20. On the application of the method of turbulent flow to transient and quasi-stationary flow calculations in high temperature reactors with spherical fuel elements

    International Nuclear Information System (INIS)

    For the calculation of flows in high-temperature reactors and of their temperature behavior the equations of the method of turbulent flow in the primitive form are derived for inhomogeneous regions. This system of equations is appropriate for the investigation of transient and quasi-stationary phenomena in pebble beds. By modification of the flow function in parallel arranged reflector channels a parallel flow can be simulated. For simplification the flow in region with a smaller pressure loss is assumed to be a potential flow. For the numerical solution of the time-dependent convective parts of the system of equations a number of explicit and implicit difference methods are compared. If the method using UP-WIND differences is taken to be an interpolation method the introduction of an extension becomes possible, which together with preliminary integration of the fictional terms allows to apply larger time steps. The algebraic system of equations for numerical calculation of a steady flow field also is established by formation of UP-WIND differences for the convective terms. By mathematical verification of some examples the applicability of the mathematical model for flow problems in pebble beds with forced or natural convection is shown. (orig.)

  1. Investigation of temperature fluctuations caused by steam-water two-phase flow in pressurizer spray piping

    International Nuclear Information System (INIS)

    In a PWR plant, a steam-water two-phase flow may possibly exist in the pressurizer spray pipe under a normal operating condition since the flow rate of the spray water is not sufficient to fill the horizontal section of the pipe completely. Initiation of high cycle fatigue cracks is suspected to occur under such thermally stratified two phase flow conditions due to cyclic thermal stress fluctuations caused by oscillations of the water surface. Such oscillations cannot be detected by the measurement of temperature on outer surface of the pipe. In order to clarify the flow and thermal conditions in the pressurizer spray pipe and assess their impact on the pipe structure, an experiment was conducted for a steam-water flow at a low flow rate using a mock-up pressurizer spray pipe. The maximum temperature fluctuation of about 0.2 times of the steam-water temperature difference was observed at the inner wall around water surface in the test section. Visualization tests were conducted to investigate the temperature fluctuation phenomena. It was shown that the fluid temperature fluctuations were not caused by the waves on the water surface, but were caused by liquid temperature fluctuations in water layer below the interface. The influence of small amount of non-condensable gas dissolved in the reactor coolant on the liquid temperature fluctuation phenomena was investigated by injecting air into the experimental loop. The air injection attenuated the liquid temperature fluctuations in the water layer since the condensation was suppressed by the non-condensable gas. It is not expected that wall temperature fluctuation in the actual PWR plant may exceed the temperature equivalent to the fatigue limit stress amplitude when it is assumed to be proportional to the steam-water temperature difference. (author)

  2. Electrodialytic treatment of fly ash

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Pedersen, Anne Juul; Kirkelund, Gunvor Marie;

    Heavy metals are removed from the fly ashes by an electrodialytic treatment with the aim of up-grading the ashes for reuse in stead of disposal in landfill.A great potential for upgrading of bio- and waste incineration ashes by electrodialytic treatment exists. In the future, the applicability...

  3. Non-Uniformity of the Combustor Exit Flow Temperature in Front of the Gas Turbine

    Directory of Open Access Journals (Sweden)

    Błachnio Józef

    2014-12-01

    Full Text Available Various types of damages to gas-turbine components, in particular to turbine blades, may occur in the course of gas turbine operation. The paper has been intended to discuss different forms of damages to the blades due to non-uniformity of the exit flow temperature. It has been shown that the overheating of blade material and thermal fatigue are the most common reasons for these damages. The paper presents results from numerical experiments with use of the computer model of the aero jet engine designed for simulations. The model has been purposefully modified to take account of the assumed non-homogeneity of the temperature field within the working agent at the turbine intake. It turned out that such non-homogeneity substantially affects dynamic and static properties of the engine considered as an object of control since it leads to a lag of the acceleration time and to increase in fuel consumption. The summarized simulation results demonstrate that the foregoing properties of a jet engine are subject to considerable deterioration in pace with gradual increase of the assumed non-homogeneity of the temperature field. The simulations made it possible to find out that variations of the temperature field nonhomogeneity within the working agent at the turbine intake lead to huge fluctuation of the turbine rpm for the idle run.

  4. Multinuclear NMR approach to coal fly ash characterization

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, D.A.

    1991-09-01

    This report describes the application of various nuclear magnetic resonance (NMR) techniques to study the hydration kinetics and mechanisms, the structural properties, and the adsorption characteristics of coal fly ash. Coal fly ash samples were obtained from the Dave Johnston and Laramie River electric power generating plants in Wyoming. Hydrogen NMR relaxation times were measured as a function of time to observe the kinetics of hydration for the two coal fly ashes at different temperatures and water-to-cement ration. The kinetic data for the hydrated coal fly ashes were compared to the hydration of portland cement. The mechanism used to describe the kinetic data for the hydration of portland cement was applied, with reservation, to describe the hydration of the coal fly ashes. The results showed that the coal fly ashes differ kinetically from that of portland cement and from each other. Consequently, both coal fly ashes were judged to be poorer cementitious materials than portland cement. Carbon-13 NMR CP/MAS spectra were obtained for the anhydrous coal fly ashes in an effort to determine the type of organic species that may be present, either adsorbed on the surface or entrained.

  5. A study of fly ash-lime granule unfired brick

    Energy Technology Data Exchange (ETDEWEB)

    P. Chindaprasirt; K. Pimraksa [Khon Kaen University (Thailand). Department of Civil Engineering

    2008-02-15

    In this paper, the properties of fly ash-lime granule unfired bricks are studied. Granules were prepared from mixtures of fly ash and lime at fly ash to hydrated lime ratios of 100:0 (Ca/Si = 0.2), 95:5 (Ca/Si = 0.35) and 90:10 (Ca/Si = 0.5). After a period of moist curing, the microstructure and mineralogy of the granules were studied. Microstructure examination reveals that new phases in the form of needle-like particles are formed at the surface of granule. The granules were used to make unfired bricks using hydrothermal treatment at temperature of 130 {+-} 5{sup o}C and pressure of 0.14 MPa. The microstructures, mineralogical compositions, mechanical properties and environmental impact of bricks were determined. The results reveal that the strengths of unfired bricks are dependent on the fineness of fly ash. The strength is higher with an increase in fly ash fineness. The strengths of the fly ash-lime granule unfired brick are excellent at 47.0-62.5 MPa. The high strength is due to the formation of new products consisting mainly of hibschite and Al-substituted 11 {angstrom} tobermorite. The main advantage of utilization of granule is the ability to increase the pozzolanic reaction of fly ash through moisture retained in the granule. In addition, the heavy elements, in particular Cd, Ni, Pb and Zn are efficiently retained in the fly ash-lime granule unfired brick.

  6. Unsteady Hydromagnetic Flow of a Heat Absorbing Dusty Fluid Past a Permeable Vertical Plate with Ramped Temperature

    Directory of Open Access Journals (Sweden)

    m Das

    2014-01-01

    Full Text Available The unsteady flow and heat transfer of a viscous incompressible, electrically conducting dusty fluid past vertical plate under the influence of a transverse magnetic field is studied with a view to examine the combined effects of suction, heat absorption and ramped wall temperature. The temperature of the wall is assumed to have a temporarily ramped profile which goes on increasing up to a certain time limit and then becomes constant. To investigate the effect of rampedness in wall temperature, the solution for the flow past an isothermal wall is also obtained. The governing partial differential equations are solved using Laplace transformation technique in which the inversion is obtained numerically using Matlab. To validate the results of numerical inversion a comparison between the numerical and analytical values of fluid and particle temperatures and Nusselt number is also presented. The effects of pertinent flow parameters affecting the flow and heat transfer are investigated with the help of graphs and tables. It is found that the increase in suction, heat absorption and particle concentration contribute in thinning the thermal and momentum boundary layers and the velocity and temperature for both the fluid and particle phases are higher in the case of a flow past an isothermal plate than that of a flow past a plate with ramped temperature.

  7. Rapid response sensor to monitor the temperature and flow of liquid metals

    International Nuclear Information System (INIS)

    Two forms of a sensor capable of simultaneously monitoring the temperature and flow of liquid metal coolants within a reactor are described. They operate by measuring the coupling impedances between the sensor and the surrounding electrically conductive coolant. Since the system utilises electrical rather than thermal properties, the response to perturbations is rapid, typically displaying the changed conditions within a few milliseconds. The first form of the sensor was designed to operate whilst protected by a thick walled service tube positioned in the reactor coolant. Providing bends in the tube had a radius greater than 70 cm, the sensor could be removed for inspection and maintenance if necessary. The second sensor was fitted inside a streamlined NaK proof capsule. This was inserted directly into the coolant outlet stream of a fuel pin assembly in the Dounreay Fast Reactor. In this form the sensor successfully monitored flow, entrained gas and temperature excursions during the final operating cycle of D.F.R. (author)

  8. Simulation of temperature and flow fields in an inductively heated melt growth system

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, M.H.; Mohammadi-Manesh, E.; Omid, S. [Physics Department, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2010-11-15

    The goal of the research presented here is to apply a global analysis of an inductively heated Czochralski furnace for a real sapphire crystal growth system and predict the characteristics of the temperature and flow fields in the system. To do it, for the beginning stage of a sapphire growth process, influence of melt and gas convection combined with radiative heat transfer on the temperature field of the system and the crystal-melt interface have been studied numerically using the steady state two-dimensional finite element method. For radiative heat transfer, internal radiation through the grown crystal and surface to surface radiation for the exposed surfaces have been taken into account. The numerical results demonstrate that there are a powerful vortex which arises from the natural convection in the melt and a strong and large vortex that flows upwards along the afterheater side wall and downwards along the seed and crystal sides in the gas part. In addition, a wavy shape has been observed for the crystal-melt interface with a deflection towards the melt. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Limits on Alpha Particle Temperature Anisotropy and Differential Flow from Kinetic Instabilities: Solar Wind Observations

    CERN Document Server

    Bourouaine, Sofiane; Chandran, Benjamin D G; Maruca, Bennett A; Kasper, Justin C

    2013-01-01

    Previous studies have shown that the observed temperature anisotropies of protons and alpha particles in the solar wind are constrained by theoretical thresholds for pressure-anisotropy-driven instabilities such as the Alfv\\'en/ion-cyclotron (A/IC) and fast-magnetosonic/whistler (FM/W) instabilities. In this letter, we use a long period of in-situ measurements provided by the {\\em Wind} spacecraft's Faraday cups to investigate the combined constraint on the alpha-proton differential flow velocity and the alpha-particle temperature anisotropy due to A/IC and FM/W instabilities. We show that the majority of the data are constrained to lie within the region of parameter space in which A/IC and FM/W waves are either stable or have extremely low growth rates. In the minority of observed cases in which the growth rate of the A/IC (FM/W) instability is comparatively large, we find relatively higher values of $T_{\\perp\\alpha}/T_{\\perp p}$ ($T_{\\parallel\\alpha}/T_{\\parallel p}$) when alpha-proton differential flow vel...

  10. Effect of electronic excitation on high-temperature flows behind strong shock waves

    International Nuclear Information System (INIS)

    In the present paper, a strongly non-equilibrium one-dimensional steady-state flow behind the plane shock wave is studied. We consider a high-temperature chemically reacting five-component ionized mixture of nitrogen species (N2/N22/N/N+/e−) taking into account electronic degrees of freedom in N and N+ (170 and 625 electronic energy levels respectively), and electronic-rotational-vibrational modes in N2 and N2+ (5 and 7 electronic terms). Non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer are included to the kinetic scheme. The system of governing equations is written under the assumption that translation and internal energy relaxation is fast whereas chemical reactions and ionization proceed on the macroscopic gas-dynamics time-scale. The developed model is applied to simulate the flow behind a plane shock wave under initial conditions characteristic for the spacecraft re-entry from an interplanetary flight (Hermes and Fire II experiments). Fluid-dynamic parameters behind the shock wave as well as transport coefficients and the heat flux are calculated for the (N2/N2+/N/N+/e−) mixture. The effect of electronic excitation on kinetics, dynamics and heat transfer is analyzed. Whereas the contribution of electronic degrees of freedom to the flow macroparameters is negligible, their influence on the heat flux is found to be important under conditions of Hermes re-entry

  11. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    Energy Technology Data Exchange (ETDEWEB)

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.; Li, H.

    1999-04-08

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash. Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because part of

  12. Numerical simulation of seepage flow field in groundwater source heat pump system and its influence on temperature field

    Institute of Scientific and Technical Information of China (English)

    Jihua HU; Yanjun ZHANG; Danyan DU; Gang WU; Ziwang YU; Chen WANG; Fuquan NI

    2008-01-01

    Energy utilization in the aquifers is a new technology closely related to development of heat pump technique. It is significant for the flow distribution to be predicted in the aquifer surrounding the Groundwater Source Heat Pump System (GSHPS). The authors presented a new concept of "flow transfixion" by analyzing general features of aquifers, and then discussed interaction of the flow transfixion with the heat transfixion, which has practical significance to projects. A numerical model of groundwater flow was established based on the basic tenets of water-heat transferring in the aquifer. On this basis the flow field and the temperature field of GSHPS for a site in Shenyang City were numerically simulated. The basis of the flow transfixion was obtained; it was discussed for the influence of the flow transfixion on the heat transfixion. To a certain extent, the study offers some reference for the projects' design of GSHP in the studied area.

  13. ASH and NASH.

    Science.gov (United States)

    Scaglioni, F; Ciccia, S; Marino, M; Bedogni, G; Bellentani, S

    2011-01-01

    Non-alcoholic steatohepatitis (NASH) and alcoholic steatohepatitis (ASH) have a similar pathogenesis and histopathology but a different etiology and epidemiology. NASH and ASH are advanced stages of non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD). NAFLD is characterized by excessive fat accumulation in the liver (steatosis), without any other evident causes of chronic liver diseases (viral, autoimmune, genetic, etc.), and with an alcohol consumption ≤20-30 g/day. On the contrary, AFLD is defined as the presence of steatosis and alcohol consumption >20-30 g/day. The most common phenotypic manifestations of primary NAFLD/NASH are overweight/obesity, visceral adiposity, type 2 diabetes, hypertriglyceridemia and hypertension. The prevalence of NAFLD in the general population in Western countries is estimated to be 25-30%. The prevalence and incidence of NASH and ASH are not known because of the impossibility of performing liver biopsy in the general population. Up to 90% of alcoholics have fatty liver, and 5-15% of these subjects will develop cirrhosis over 20 years. The risk of cirrhosis increases to 30-40% in those who continue to drink alcohol. About 10-35% of alcoholics exhibit changes on liver biopsy consistent with alcoholic hepatitis. Natural histories of NASH and ASH are not completely defined, even if patients with NASH have a reduced life expectancy due to liver-related death and cardiovascular diseases. The best treatment of AFLD/ASH is to stop drinking, and the most effective first-line therapeutic option for NAFLD/NASH is non-pharmacologic lifestyle interventions through a multidisciplinary approach including weight loss, dietary changes, physical exercise, and cognitive-behavior therapy. PMID:21734385

  14. A Comparative study Of Catalityc Activity Of Heterogeneous Base Of Banana Stem Ash And Fly Ash On Production Of Biodiesel Byultrasonic

    Directory of Open Access Journals (Sweden)

    Marlinda

    2015-08-01

    Full Text Available Abstract The use of heterogeneous catalysts in the production of biodiesel provides many advantages due to heterogeneous catalysts can be easily separated from the product so that it can be reused. This research using heterogeneous catalysts derived from natural materials namely banana stem ash and coal fly ash containing alkali and alkaline earth elements. The preparation of catalyst from banana stem ash and coal fly ash used activator KOH 1.9 N and impregnation with KNO3 15 and then heated to a temperature of 550 0C for 3 hours. Results of preparation banana stem ash contains potassium of 36.52 and surface area of 41.901 m2g. This work presents the effect of ultrasonic assisted of waste cooking oil with methanol as solvent using banana stem ash and coal fly ash as catalyst. The diameter of catalyst particles of banana stem ash and coal fly ash varied at 50 100 150 200 and 250 mesh. The transesterification reaction was performed in the presence of ultrasonic operating frequency constant at 40 kHz methanol molar ratio to oil of 9 1 and reaction time of 30 minutes. The methyl ester biodiesel content of product was 93.26 of banana stems ash and 57 of coal fly ash respectively. The physical property was compared with the National Indonesia Standard SNI 2006 with a density viscosity cloud point flash point and cetane number.

  15. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    Science.gov (United States)

    Sancho, Rafael; Cendón, David; Gálvez, Francisco

    2015-09-01

    The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from - 50 ∘C to 100 ∘C and the strain rates from 10-4 s-1 to 600 s-1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  16. On the '-1' scaling of air temperature spectra in atmospheric surface layer flows

    Science.gov (United States)

    Li, D.; Katul, G. G.; Gentine, P.

    2015-12-01

    The spectral properties of scalar turbulence at high wavenumbers have been extensively studied in turbulent flows, and existing theories explaining the k-5/3 scaling within the inertial subrange appear satisfactory at high Reynolds numbers. Equivalent theories for the low wavenumber range have been comparatively lacking because boundary conditions prohibit attainment of such universal behavior. A number of atmospheric surface layer (ASL) experiments reported a k-1 scaling in air temperature spectra ETT(k) at low wavenumbers but other experiments did not. Here, the occurrence of a k-1 scaling in ETT(k) in an idealized ASL flow across a wide range of atmospheric stability regimes is investigated theoretically and experimentally. Experiments reveal a k-1 scaling persisted across different atmospheric stability parameter values (ζ) ranging from mildly unstable to mildly stable conditions (-0.1budget models and upon using a Heisenberg eddy viscosity as a closure to the spectral flux transfer term, conditions promoting a k-1 scaling are identified. Existence of a k-1 scaling is shown to be primarily linked to an imbalance between the production and dissipation rates of half the temperature variance. The role of the imbalance between the production and dissipation rates of half the temperature variance in controlling the existence of a '-1' scaling suggests that the '-1' scaling in ETT(k) does not necessarily concur with the '-1' scaling in the spectra of longitudinal velocity Euu(k). This finding explains why some ASL experiments reported k-1 in Euu(k) but not ETT(k). It also differs from prior arguments derived from directional-dimensional analysis that lead to simultaneous k-1 scaling in Euu(k) and ETT(k) at low wavenumbers in a neutral ASL.

  17. Flow and failure of an aluminium alloy from low to high temperature and strain rate

    Directory of Open Access Journals (Sweden)

    Sancho Rafael

    2015-01-01

    Full Text Available The mechanical behaviour of an aluminium alloy is presented in this paper. The study has been carried out to analyse the flow and failure of the aluminium alloy 7075-T73. An experimental study has been planned performing tests of un-notched and notched tensile specimens at low strain rates using a servo-hydraulic machine. High strain rate tests have been carried out using the same geometry in a Hopkinson Split Tensile Bar. The dynamic experiments at low temperature were performed using a cryogenic chamber, and the high temperature ones with a furnace, both incorporated to the Hopkinson bar. Testing temperatures ranged from − 50 ∘C to 100 ∘C and the strain rates from 10−4 s−1 to 600 s−1. The material behaviour was modelled using the Modified Johnson-Cook model and simulated using LS-DYNA. The results show that the Voce type of strain hardening is the most accurate for this material, while the traditional Johnson-Cook is not enough accurate to reproduce the necking of un-notched specimens. The failure criterion was obtained by means of the numerical simulations using the analysis of the stress triaxiality versus the strain to failure. The diameters at the failure time were measured using the images taken with an image camera, and the strain to failure was computed for un-notched and notched specimens. The numerical simulations show that the analysis of the evolution of the stress triaxiality is crucial to achieve accurate results. A material model using the Modified Johnson-Cook for flow and failure is proposed.

  18. MGT 330 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    alfoniz

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 330 Week 1 Individual Assignment Functions of Management Paper (Ash) MGT 330 Week 1 DQ 1 (Ash) MGT 330 Week 1 DQ 2 (Ash) MGT 330 Week 1 DQ 3 (Ash) MGT 330 Week 1 Summary (Ash) MGT 330 Week 2 Team Assignment External Internal Factors Paper (Ash) MGT 330 Week 2 Individual Assignment Delegation (Ash) MGT 330 Week 2 Summary (Ash) MGT 330 Week 2 DQ 1 (Ash) MGT 330 Week 2 DQ 2 (Ash) MGT 330 W...

  19. Systematics of Water Temperature and Flow at Tantalus Creek During Calendar Year 2005, Norris Geyser Basin, Yellowstone National Park, Wyoming

    Science.gov (United States)

    Clor, Laura E.; Lowenstern, Jacob B.; Heasler, Henry P.

    2007-01-01

    We analyze data for stream flow and water temperature from Tantalus Creek in the Norris Geyser Basin and their relationship to air temperature, precipitation, and geyser eruptions during calendar year 2005. The creek is of interest because it is the primary drainage of the Norris Geyser Basin and carries a very high proportion of thermal water derived directly from hot springs. Two separate diurnal patterns emerge - (1) a winter pattern where increases in water temperature and stream flow closely track those of air temperature and (2) a summer pattern where water and air temperature are closely aligned but stream flow declines once water temperature reaches its daily maximum. The winter pattern is present when the daily average temperature consistently drops below 0 ?C whereas the summer pattern is recognizable when the daily average temperature regularly exceeds 0 ?C. Spring and fall systematics are much more irregular, although both summer and winter patterns can be discerned occasionally during those seasons. We interpret increases in stream flow associated with the winter pattern to result from addition of locally sourced melt water (both snow and soil-bound ice) that increases in abundance once temperatures increase in the morning. Melting is facilitated by the warm ground temperatures in the geyser basin, which are significantly higher than air temperatures in the winter. The summer pattern appears to be strongly affected by increased evaporation in the afternoon, decreasing flow and cooling the remaining water. Discharge from eruptions at Echinus Geyser are clearly visible as peaks in the hydrograph, and indicate that water from this geyser reach the Tantalus weir in 80 to 90 minutes, reflecting a slug of water that travels about 0.4 m s-1.

  20. Effect of temperature and associated bifurcation in the oscillatory Belousov—Zhabotinskii reaction in a flow reactor

    Science.gov (United States)

    Misra, G. P.

    1992-04-01

    Oscillatory characteristics of the Belousov—Zhabotinskii reaction as a function of temperature have been investigated in a continuous flow stirred tank reactor. Oscillations are not observed above a critical temperature limit. The limit is found to be associated with a Hopf bifurcation. Numerical computations show that the results can be qualitatively interpreted on the basis of the Oregonator model.

  1. Heat exchange in a laminar channel flow with temperature gradients at the walls: possibility for heat transfer reversal

    Science.gov (United States)

    Sánchez, Manuel; Rebollo, Daniel; Campo, Antonio

    This paper presents a detailed numerical study of the heat exchange between two parallel plates with prescribed temperature gradients along the plates and a fluid circulating between them. The interplay between the bulk temperature, the heat flow and the Nusselt number has been clarified.

  2. Heat exchange in a laminar channel flow with temperature gradients at the walls: possibility for heat transfer reversal

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Manuel; Rebollo, Daniel [Instituto de Mecanica Aplicada, Universidad Nacional de San Juan, Libertador Gral. San Martin 1109 (oeste), 5400 San Juan (Argentina); Campo, Antonio [Department of Mechanical Engineering, The University of Vermont, VT 05405, Burlington (United States)

    2004-06-01

    This paper presents a detailed numerical study of the heat exchange between two parallel plates with prescribed temperature gradients along the plates and a fluid circulating between them. The interplay between the bulk temperature, the heat flow and the Nusselt number has been clarified. (orig.)

  3. Influence of temperature-dependent material properties on heat transfer in the turbulent flow over a flat plate

    Science.gov (United States)

    Wehle, F.; Brandt, F.

    The influence of temperature dependence of material properties on heat transfer in a turbulent plate boundary layer is investigated using differential equations for the velocity and temperature fields of even, steady, and compressible boundary layer flows. The results are compared with the well-known material property correction factors of Zhukauskas (1966), Sieder and Tate (1936), and Hufschmidt and Bruck (1968).

  4. Determination of the amplitude and phase relationships between oscillations in skin temperature and photoplethysmography-measured blood flow in fingertips

    International Nuclear Information System (INIS)

    It is well established that skin temperature oscillations in fingertips coexist with blood flow oscillations and there is a certain correlation between them. At the same time, the reasons for differences in waveform and the delay between the blood flow and temperature oscillations are far from being fully understood. In this study we determine the relationships between spectral components of the blood flow and temperature oscillations in fingertips, and we ascertain the frequency dependences of amplitude attenuation and delay time for the temperature oscillations. The blood flow oscillations were considered as a source of thermal waves propagating from micro-vessels towards the skin surface and manifesting as temperature oscillations. The finger temperature was measured by infrared thermography and blood flow was assessed by photoplethysmography for ten healthy subjects. The time–frequency analysis of oscillations was based on the Morlet wavelet transform. The frequency dependences of delay time and amplitude attenuation in temperature compared with blood flow oscillations have been determined in endothelial (0.005–0.02 Hz) and neurogenic (0.02–0.05 Hz) frequency bands using the wavelet spectra. We approximated the experimental frequency dependences by equations describing thermal wave propagation through the medium and taking into account the thermal properties and thickness of a tissue. Results of analysis show that with the increase of frequency f the delay time of temperature oscillations decreases inversely proportional to f1/2, and the attenuation of the amplitude increases directly proportional to exp f1/2. Using these relationships allows us to increase correlation between the processed temperature oscillations and blood flow oscillations from 0.2 to 0.7 within the frequency interval 0.005–0.05 Hz. The established experimental and theoretical relationships clarify an understanding of interrelation between the dynamics of blood flow and skin

  5. Modeling of Air Temperature for Heat Exchange due to Vertical Turbulence and Horizontal Air Flow

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MENG Qing-lin

    2009-01-01

    In order to calculate the air temperature of the near surface layer in urban environment,the Sur-face layer air was divided into several layers in the vertical direction,and some energy bakmce equations were de-veloped for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was tak-en into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area (with a horizontal scale of less than 500 m) and a large area (with ahorizontal scale of more than 1000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus con-cluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.

  6. Operating parameters of liquid helium transfer lines used with continuous flow cryostats at low sample temperatures

    Science.gov (United States)

    Dittmar, N.; Welker, D.; Haberstroh, Ch; Hesse, U.; Krzyzowski, M.

    2015-12-01

    Continuous flow cryostats are used to cool samples to a variable temperature level by evaporating a cryogen, e.g. liquid helium (LHe). For this purpose LHe is usually stored outside the cryostat in a mobile dewar and supplied through a transfer line. In general, the complete setup has to be characterised by the lowest possible consumption of LHe. Additionally, a minimum sample temperature can be favourable from an experimental point of view. The achievement of both requirements is determined by the respective cryostat design as well as by the transfer line. In the presented work operating data, e.g. the LHe consumption during cooldown and steady state, the minimum sample temperature, and the outlet quality are analysed to characterise the performance of a reference transfer line. In addition, an experimental transfer line with built-in pressure sensors has been commissioned to examine the pressure drop along the transfer line, too. During the tests LHe impurities occurred which restricted a steady operation.

  7. Usage of fly ash as a coal desulphurization reagent

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Kuecuekbayrak, S. [Istanbul Technical Univ. (Turkey). Chemical and Metallurgical Engineering Faculty

    1996-12-31

    This paper covers the direct usage of fly ash to remove sulphur from coal. Experiments were carried out on a high sulphur Turkish lignite. 5 g of fly ash was extracted in 200 ml of water under pressure and the dilute solution containing water extractable parts of fly ash was used as desulphurization reagent. Oxygen pressure was created over desulphurization medium during the extraction period by which dissolved oxygen was concentrated in the solution. Effects of temperature, partial pressure of oxygen, and time were investigated in the ranges of 403--498 K, 0.0--1.5 MPa and 15--90 min, respectively.

  8. Using isotopic, hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China

    Science.gov (United States)

    Sun, Ziyong; Ma, Rui; Wang, Yanxin; Ma, Teng; Liu, Yunde

    2016-09-01

    Isotopic and hydrogeochemical analysis, combined with temperature investigation, was conducted to characterize the flow system in the carbonate aquifer at Taiyuan, northern China. The previous division of karst subsystems in Taiyuan, i.e. the Xishan (XMK), Dongshan (DMK) and Beishan (BMK) mountain systems, were also examined. The measured δD, δ 18O and 3He/4He in water indicate that both thermal and cold groundwaters have a meteoric origin rather than deep crustal origin. Age dating using 3H and 14C shows that groundwater samples from discharge zones along faults located at the margin of mountains in the XMK and DMK are a mixture of paleometeoric thermal waters and younger cold waters from local flow systems. 14C data suggest that the average age was about 10,000 years and 4,000 years for thermal and cold groundwater in discharge zones, respectively. Based on the data of temperature, water solute chemical properties, 14C, δ 34SSO4, 87Sr/86Sr and δ 18O, different flow paths in the XMK and DMK were distinguished. Shallow groundwater passes through the upper Ordovician formations, producing younger waters at the discharge zone (low temperature and ionic concentration and enriched D and 18O). Deep groundwater flows through the lower Ordovician and Cambrian formations, producing older waters at the discharge zone (high ionic concentration and temperature and depleted D and 18O). At the margin of mountains, groundwater in deep systems flows vertically up along faults and mixes with groundwater from shallow flow systems. By contrast, only a single flow system through the entire Cambrian to Ordovician formations occurs in the BMK.

  9. Using isotopic, hydrogeochemical-tracer and temperature data to characterize recharge and flow paths in a complex karst groundwater flow system in northern China

    Science.gov (United States)

    Sun, Ziyong; Ma, Rui; Wang, Yanxin; Ma, Teng; Liu, Yunde

    2016-04-01

    Isotopic and hydrogeochemical analysis, combined with temperature investigation, was conducted to characterize the flow system in the carbonate aquifer at Taiyuan, northern China. The previous division of karst subsystems in Taiyuan, i.e. the Xishan (XMK), Dongshan (DMK) and Beishan (BMK) mountain systems, were also examined. The measured δD, δ 18O and 3He/4He in water indicate that both thermal and cold groundwaters have a meteoric origin rather than deep crustal origin. Age dating using 3H and 14C shows that groundwater samples from discharge zones along faults located at the margin of mountains in the XMK and DMK are a mixture of paleometeoric thermal waters and younger cold waters from local flow systems. 14C data suggest that the average age was about 10,000 years and 4,000 years for thermal and cold groundwater in discharge zones, respectively. Based on the data of temperature, water solute chemical properties, 14C, δ 34SSO4, 87Sr/86Sr and δ 18O, different flow paths in the XMK and DMK were distinguished. Shallow groundwater passes through the upper Ordovician formations, producing younger waters at the discharge zone (low temperature and ionic concentration and enriched D and 18O). Deep groundwater flows through the lower Ordovician and Cambrian formations, producing older waters at the discharge zone (high ionic concentration and temperature and depleted D and 18O). At the margin of mountains, groundwater in deep systems flows vertically up along faults and mixes with groundwater from shallow flow systems. By contrast, only a single flow system through the entire Cambrian to Ordovician formations occurs in the BMK.

  10. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.A.; Hurley, J.P.; Watne, T.A.; Katrinak, K.A.; O`Keefe, C.A. [North Dakota Univ., Grand Forks, ND (United States). Energy and Minerals Research Center

    1996-12-31

    Large-scale hot-gas testing over the past several years has revealed numerous cases of cake buildup on filter elements that have been difficult, if not impossible to remove. At times, the cake can bridge between candle filters, leading to high filter failure rates. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature contribute to difficulty in removing the cake. It is speculated that chemical as well as physical effects are playing a role in leading the ash to bond to the filter or to itself. The Energy and Environmental research Center (EERC) at the University of North Dakota is working with Electric Power Research Institute (EPRI) and a consortium of companies in partnership with the US Department of Energy (DOE) to perform the research necessary to determine the factors that cause hot-gas cleanup filters to be blinded by ash or to develop deposits that can bridge the filters and cause them to fail. The objectives of this overall project are threefold: first, to determine the mechanisms by which difficult-to-clean ash is formed; second, to develop a method to determine the rate of blinding/bridging based on fuel and sorbent properties and operating conditions; finally, to provide suggestions fro ways to prevent filter blinding by the troublesome ash. The projects consists of four tasks: field sampling and archive sample analyses, laboratory-scale testing, bench-scale testing, and model and database development testing. This paper present preliminary data from Task 2 on determining the tensile strengths of coal ash particles at elevated temperatures and simulated combustor gas conditions.

  11. Wellbore and groundwater temperature distribution eastern Snake River Plain, Idaho: Implications for groundwater flow and geothermal potential

    Science.gov (United States)

    McLing, Travis L.; Smith, Richard P.; Smith, Robert W.; Blackwell, David D.; Roback, Robert C.; Sondrup, Andrus J.

    2016-06-01

    A map of groundwater temperatures from the Eastern Snake River Plain (ESRP) regional aquifer can be used to identify and interpret important features of the aquifer, including aquifer flow direction, aquifer thickness, and potential geothermal anomalies. The ESRP is an area of high heat flow, yet most of this thermal energy fails to reach the surface, due to the heat being swept downgradient by the aquifer to the major spring complexes near Thousand Springs, ID, a distance of 300 km. Nine deep boreholes that fully penetrate the regional aquifer display three common features: (1) high thermal gradients beneath the aquifer, corresponding to high conductive heat flow in low-permeability hydrothermally-altered rocks; (2) isothermal temperature profiles within the aquifer, characteristic of an actively flowing groundwater; and (3) moderate thermal gradients in the vadose zone with values that indicate that over half of the geothermal heat flow is removed by advective transport in the regional aquifer system. This study utilized temperature data from 250 ESRP aquifer wells to evaluate regional aquifer flow direction, aquifer thickness, and potential geothermal anomalies. Because the thermal gradients are typically low in the aquifer, any measurement of groundwater temperature is a reasonable estimate of temperature throughout the aquifer thickness, allowing the construction of a regional aquifer temperature map for the ESRP. Mapped temperatures are used to identify cold thermal plumes associated with recharge from tributary valleys and adjacent uplands, and warm zones associated with geothermal input to the aquifer. Warm zones in the aquifer can have various causes, including local circulation of groundwater through the deep conductively dominated region, slow groundwater movement in low-permeability regions, or localized heat flow from deeper thermal features.

  12. MAT 221 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    mirat

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MAT 221 Week 1 Assignment 1 Simplifying Expressions (Ash) MAT 221 Week 1 DQ 1 Evaluating Algebraic Expressions (Ash) MAT 221 Week 2 Assignment 2 Inequalities (Ash) MAT 221 Week 2 DQ 1 Formulas (Ash) MAT 221 Week 3 Assignment 3 Two-Variable Inequality (Ash) MAT 221 Week 3 DQ 1 Parallel and Perpendicular (Ash) MAT 221 Week 4 Assignment 4 Financial Polynomials (Ash) MAT 221 Week 4 DQ 1 Initial Investme...

  13. Intrinsic reactivity of biomass-derived char under steam gasification conditions. Potential of wood ash as catalyst.

    NARCIS (Netherlands)

    Nanou, Pavlina; Gutierrez Murillo, Hector E.; Swaaij, van Wim P.M.; Rossum, van Guus; Kersten, Sascha R.A.

    2013-01-01

    The influence of ash on the steam gasification rate of pine wood derived char particles in the temperature range 600–800 °C is investigated. Ash derived from pine wood or specific ash components were added to the pine-wood (before pyrolysis) or to the produced char (after pyrolysis) via physical mix

  14. Influence of flow rate, temperature and pressure on multiphase flows of supercritical carbon dioxide and water using multivariate partial least square regression

    International Nuclear Information System (INIS)

    Supercritical carbon dioxide (scCO2) is often used to replace harmful solvents and can dissolve a wide range of organic compounds. With a favorable critical point at 31 °C and 7.4 MPa, reaching above the critical point for scCO2 is fairly accessible. Because of the compressible nature of scCO2 and the large changes of viscosity and density with temperature and pressure, there is a need to determine the behavior of scCO2 in microfluidic systems. Here, the influence of how parameters such as flow rate, temperature, pressure, and flow ratio affects the length of parallel flow of water and scCO2 and the length of the created CO2 segments are investigated and modeled using multivariate data analysis for a 10 mm long double-y channel. The parallel length and segment size were observed in the laminar regime around and above the critical point of CO2. The flow ratio between the two fluids together with the flow rate influenced both the parallel length and the segment sizes, and a higher pressure resulted in shorter parallel lengths. Regarding the segment length of CO2, longer segments were a result of a higher Weber number for H2O together with a higher temperature in the channel. (paper)

  15. Radiative, two-temperature simulations of low luminosity black hole accretion flows in general relativity

    CERN Document Server

    Sadowski, A; Narayan, R; Abarca, D; McKinney, J C

    2016-01-01

    We present a numerical method which evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components -- ions and electrons -- which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a standard prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation, and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric spacetime of the black hole. Numerical results are presented for five models of low luminosity black hole accretion. ...

  16. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.

    Science.gov (United States)

    Siriruang, Chaichan; Toochinda, Pisanu; Julnipitawong, Parnthep; Tangtermsirikul, Somnuk

    2016-04-01

    The utilization of fly ash as a solid sorbent material for CO2 capture via surface adsorption and carbonation reaction was evaluated as an economically feasible CO2 reduction technique. The results show that fly ash from a coal fired power plant can capture CO2 up to 304.7 μmol/g fly ash, consisting of 2.9 and 301.8 μmol/g fly ash via adsorption and carbonation, respectively. The CO2 adsorption conditions (temperature, pressure, and moisture) can affect CO2 capture performance of fly ash. The carbonation of CO2 with free CaO in fly ashes was evaluated and the results indicated that the reaction consumed most of free CaO in fly ash. The fly ashes after CO2 capture were further used for application as a mineral admixture for concrete. Properties such as water requirement, compressive strength, autoclave expansion, and carbonation depth of mortar and paste specimens using fly ash before and after CO2 capture were tested and compared with material standards. The results show that the expansion of mortar specimens using fly ash after CO2 capture was greatly reduced due to the reduction of free CaO content in the fly ash compared to the expansion of specimens using fresh fly ash. There were no significant differences in the water requirement and compressive strength of specimens using fly ash, before and after CO2 capture process. The results from this study can lead to an alternative CO2 capture technique with doubtless utilization of fly ash after CO2 capture as a mineral admixture for concrete. PMID:26803257

  17. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.

    Science.gov (United States)

    Siriruang, Chaichan; Toochinda, Pisanu; Julnipitawong, Parnthep; Tangtermsirikul, Somnuk

    2016-04-01

    The utilization of fly ash as a solid sorbent material for CO2 capture via surface adsorption and carbonation reaction was evaluated as an economically feasible CO2 reduction technique. The results show that fly ash from a coal fired power plant can capture CO2 up to 304.7 μmol/g fly ash, consisting of 2.9 and 301.8 μmol/g fly ash via adsorption and carbonation, respectively. The CO2 adsorption conditions (temperature, pressure, and moisture) can affect CO2 capture performance of fly ash. The carbonation of CO2 with free CaO in fly ashes was evaluated and the results indicated that the reaction consumed most of free CaO in fly ash. The fly ashes after CO2 capture were further used for application as a mineral admixture for concrete. Properties such as water requirement, compressive strength, autoclave expansion, and carbonation depth of mortar and paste specimens using fly ash before and after CO2 capture were tested and compared with material standards. The results show that the expansion of mortar specimens using fly ash after CO2 capture was greatly reduced due to the reduction of free CaO content in the fly ash compared to the expansion of specimens using fresh fly ash. There were no significant differences in the water requirement and compressive strength of specimens using fly ash, before and after CO2 capture process. The results from this study can lead to an alternative CO2 capture technique with doubtless utilization of fly ash after CO2 capture as a mineral admixture for concrete.

  18. KINETICS OF FLY ASH BENEFICIATION BY CARBON BURNOUT

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph N.D. Dodoo; Dr. Joseph M. Okoh

    2000-11-01

    Surface area analyses performed on fly ash samples reveal that the surface area is controlled by carbon content. The higher surface areas found in large particles are due to the presence of highly porous carbonaceous particles. Adsorption-desorption isotherms and t-plots of fly ash samples indicate that fly ash is porous. BJH Adsorption/Desorption pore size analysis reveal that pore diameters are independent of sieve size. They appear to be dependent only on the nature of the material which confers porosity. Based on the results of Brown and Dykstra (41) it is reasonable to assume that calculations of reaction rates at temperatures above 550 C were confounded by weight losses from processes other than carbon oxidation and, therefore, are not useful in determination of the temperature dependence of carbon oxidation in fly ash. The results of the present study indicate that temperatures below 550 C should be used for future studies in order to satisfactorily assess the temperature dependence of carbon oxidation in fly ash. Furthermore, it is also advisable that percent carbon determinations be performed on fly ash samples after the oxidation reactions to determine whether all carbon present in fly ash is oxidized. This will ensure that reaction rates are representative of the complete oxidation of carbon. An inverse relationship was determined between reaction rates and oxygen concentration for this study. As discussed, this may be due to volatilization of volatiles from fly ash and ease of transport of products away from the reaction sites by the action of the vacuum applied to the samples. A more accurate determination of oxygen dependence of carbon oxidation can be accomplished by the use of specialty gases containing different concentrations of oxygen which could eliminate the need to apply vacuum to the samples.

  19. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    Energy Technology Data Exchange (ETDEWEB)

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  20. Magmatic and fragmentation controls on volcanic ash surface chemistry

    Science.gov (United States)

    Ayris, Paul M.; Diplas, Spyros; Damby, David E.; Hornby, Adrian J.; Cimarelli, Corrado; Delmelle, Pierre; Scheu, Bettina; Dingwell, Donald B.

    2016-04-01

    The chemical effects of silicate ash ejected by explosive volcanic eruptions on environmental systems are fundamentally mediated by ash particle surfaces. Ash surfaces are a composite product of magmatic properties and fragmentation mechanisms, as well as in-plume and atmospheric alteration processes acting upon those surfaces during and after the eruption. Recent attention has focused on the capacity of alteration processes to shape ash surfaces; most notably, several studies have utilised X-ray photoelectron spectroscopy (XPS), a technique probing the elemental composition and coordination state of atoms within the top 10 nm of ash surfaces, to identify patterns of elemental depletions and enrichments relative to bulk ash chemical composition. Under the presumption of surface and bulk equivalence, any disparities have been previously attributed to surface alteration processes, but the ubiquity of some depletions (e.g., Ca, Fe) across multiple ash studies, irrespective of eruptive origin, could suggest these to be features of the surface produced at the instant of magma fragmentation. To investigate this possibility further, we conducted rapid decompression experiments at different pressure conditions and at ambient and magmatic temperature on porous andesitic rocks. These experiments produced fragmented ash material untouched by secondary alteration, which were compared to particles produced by crushing of large clasts from the same experiments. We investigated a restricted size fraction (63-90 μm) from both fragmented and crushed materials, determining bulk chemistry and mineralogy via XRF, SEM-BSE and EPMA, and investigated the chemical composition of the ash surface by XPS. Analyses suggest that fragmentation under experimental conditions partitioned a greater fraction of plagioclase-rich particles into the selected size fraction, relative to particles produced by crushing. Trends in surface chemical composition in fragmented and crushed particles mirror that

  1. Fly ash effects. II. The active effect of fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Aiqin Wang; Chengzhi Zhang; Wei Suna [Southeast University, Nanjing (China). Department of Materials Science and Engineering

    2004-11-01

    This paper examines the method for determining the hydration degree of cement clinker and the pozzolanic reaction degree of fly ash in the system of cement and fly ash. In the base, the active effect of fly ash is studied. The studied results show that the active effect includes two aspects: (1) Fly ash has stronger pozzolanic activity and can react with Ca(OH)2, and (2) it can promote the hydration of cement. When the content of fly ash is less, its pozzolanic activity can exert well, but its promoting role to the hydration of cement is weaker. When the content of fly ash is more, it is less than its pozzolanic activity can be used, but its promoting role to the hydration of cement is stronger.

  2. Ashes for organic farming

    OpenAIRE

    Kousa, T.; Heinonen, M; Suoniitty, T.; Peltonen, K

    2013-01-01

    Nowadays only eight percent of the cultivated field area is used for organic farming. The Ministry of Agriculture and Forestry has published the guidelines for the program of organic farming to diversify the supply and the consumption of organic food. The aim is to increase organically arable land to 20% by the year 2020.The demand of organic fertilizer products is strongly increasing. Interest in forestry by-products (ash, bark, zero fiber, etc.) for use in organic production has recently be...

  3. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    Directory of Open Access Journals (Sweden)

    José E. O. Reges

    2016-07-01

    Full Text Available This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1; 10.47% and 9.88% (for injection zone 2. Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  4. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    Science.gov (United States)

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  5. Increasing synchrony of high temperature and low flow in western North American streams: double trouble for coldwater biota?

    Science.gov (United States)

    Arismendi, Ivan; Safeeq, Mohammad; Johnson, Sherri L.; Dunham, Jason B.; Haggerty, Roy

    2013-01-01

    Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (Tmax_w) and stream flow minima (Qmin) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and decreases in low flow during summer/fall have been reported. We hypothesized that an earlier peak flow could be shifting the timing of low flow and leading to a decrease in the interval between Tmax_w and Qmin. We also examined if years with extreme low Qmin were associated with years of extreme high Tmax_w. We tested these hypotheses using long32 term data from 22 minimally human-influenced streams for the period 1950-2010. We found trends toward a shorter time lag between Tmax_w and Qmin over time and a strong negative association between their magnitudes. Our findings show that aquatic biota may be increasingly experiencing narrower time windows to recover or adapt between these extreme events of low flow and high temperature. This study highlights the importance of evaluating multiple environmental drivers to better gauge the effects of the recent climate variability in freshwaters.

  6. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles.

    Science.gov (United States)

    Reges, José E O; Salazar, A O; Maitelli, Carla W S P; Carvalho, Lucas G; Britto, Ursula J B

    2016-07-13

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved.

  7. Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures

    Science.gov (United States)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2016-08-01

    The analytical evaluation of diurnal temperature variation in riverbed sediments provides detailed information on exchange fluxes between rivers and groundwater. The underlying assumption of the stationary, one-dimensional vertical flow field is frequently violated in natural systems where subsurface water flow often has a significant horizontal component. In this paper, we present a new methodology for identifying the geometry of the subsurface flow field using vertical temperature profiles. The statistical analyses are based on model optimisation and selection and are used to evaluate the shape of vertical amplitude ratio profiles. The method was applied to multiple profiles measured around in-stream geomorphological structures in a losing reach of a gravel bed river. The predominant subsurface flow field was systematically categorised in purely vertical and horizontal (hyporheic, parafluvial) components. The results highlight that river groundwater exchange flux at the head, crest and tail of geomorphological structures significantly deviated from the one-dimensional vertical flow, due to a significant horizontal component. The geometry of the subsurface water flow depended on the position around the geomorphological structures and on the river level. The methodology presented in this paper features great potential for characterising the spatial patterns and temporal dynamics of complex subsurface flow geometries by using measured temperature time series in vertical profiles.

  8. Aerodynamic characteristics of popcorn ash particles

    Energy Technology Data Exchange (ETDEWEB)

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S. [University of Alabama, Birmingham, AL (United States). Dept. of Mechanical Engineering

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  9. Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer

    OpenAIRE

    Li, Jing; Zhuang, Xinguo; Font, Oriol; Moreno, Natalia; Vallejo, V. Ramón; Querol, Xavier; Tobias, Aurelio

    2014-01-01

    This study focuses on the synthesis of merlinoite from Chinese coal fly ashes by KOH direct conversion method, with special emphasis on the application of synthetic merlinoite as fertilizer. These fly ashes were collected from two pulverized-coal combustion (PCC) power plants in Xinjiang, Northwest China. The synthesis results are influenced by fly ash characteristics and different synthesis conditions (KOH solution concentrations, activation temperature, time, and KOH/fly ash ratios). A high...

  10. Ash Management Review—Applications of Biomass Bottom Ash

    Directory of Open Access Journals (Sweden)

    Harpuneet S. Ghuman

    2012-10-01

    Full Text Available In industrialized countries, it is expected that the future generation of bioenergy will be from the direct combustion of residues and wastes obtained from biomass. Bioenergy production using woody biomass is a fast developing application since this fuel source is considered to be carbon neutral. The harnessing of bioenergy from these sources produces residue in the form of ash. As the demand for bioenergy production increases, ash and residue volumes will increase. Major challenges will arise relating to the efficient management of these byproducts. The primary concerns for ash are its storage, disposal, use and the presence of unburned carbon. The continual increase in ash volume will result in decreased ash storage facilities (in cases of limited room for landfill expansion, as well as increased handling, transporting and spreading costs. The utilization of ash has been the focus of many studies, hence this review investigates the likely environmental and technological challenges that increased ash generation may cause. The presence of alkali metals, alkaline earth metals, chlorine, sulphur and silicon influences the reactivity and leaching to the inorganic phases which may have significant impacts on soils and the recycling of soil nutrient. Discussed are some of the existing technologies for the processing of ash. Unburned carbon present in ash allows for the exploration of using ash as a fuel. The paper proposes sieve fractionation as a suitable method for the separation of unburnt carbon present in bottom ash obtained from a fixed-bed combustion system, followed by the application of the gasification technology to particle sizes of energy importance. It is hoped that this process will significantly reduce the volume of ash disposed at landfills.

  11. Incident energy dependence of the mean kinetic energy, flow and temperature azimuthal distributions

    International Nuclear Information System (INIS)

    The squeeze-out phenomena initially predicted by hydrodynamical calculations has been extensively studied experimentally. A unified representation of the observed trends can be done in terms of the azimuthal distribution of the total mass or kinetic energy. Previously reported comprehensive description of the squeeze-out phenomena in the range 0.25 - 1.15 A · GeV was based on the parametrization of the total mass spectra with an expression characteristic for radially symmetric shell expansion. As far as such a situation can hardly be encountered in heavy ion collisions and is not specific at all for mid-central geometries, we prefer to present also the experimental information free of any model which can be used to extract it. Due to this reasons we report also the results on azimuthal distribution of the mean kinetic energy (kincm>) besides the ones corresponding to β and T values. The azimuthal distributions of kincm>, β and T can be fit with the following expression: (kincm>, β,T) = (kincm>, β,T)0 - (Δ kincm>, Δβ, ΔT) ·cos2Φ. The excitation functions of (kincm>, β,T)max and (kincm>, β,T)min from 90 A · MeV to 400 A · MeV are given. The ellipsoidal character of the flow with the major axis perpendicular to the reaction plane constantly enhances from 90 to 400 A· MeV. At 90 A · MeV the two values are very similar. The lower slope in (E,β,T)min is due to the fact that the violence of the expansion increases faster as a function of incident energy than the decrease of the passage time. At higher incident energy the relativistic contraction and the gradient of the thermal pressure in the reaction plane due to the confinement created by the spectator matter are increasing. The two slopes reverse and a crossing point is expected. It would correspond to an elliptic flow with the major axis aligned in the reaction plane. A larger modulation in the mean kinetic energy or flow relative to temperature can be explained by the larger variation of the

  12. Measuring the mechanical efficiency of a working cardiac muscle sample at body temperature using a flow-through calorimeter.

    Science.gov (United States)

    Taberner, Andrew J; Johnston, Callum M; Pham, Toan; June-Chiew Han; Ruddy, Bryan P; Loiselle, Denis S; Nielsen, Poul M F

    2015-08-01

    We have developed a new `work-loop calorimeter' that is capable of measuring, simultaneously, the work-done and heat production of isolated cardiac muscle samples at body temperature. Through the innovative use of thermoelectric modules as temperature sensors, the development of a low-noise fluid-flow system, and implementation of precise temperature control, the heat resolution of this device is 10 nW, an improvement by a factor of ten over previous designs. These advances have allowed us to conduct the first flow-through measurements of work output and heat dissipation from cardiac tissue at body temperature. The mechanical efficiency is found to vary with peak stress, and reaches a peak value of approximately 15 %, a figure similar to that observed in cardiac muscle at lower temperatures.

  13. Natural Convection Flow along an Isothermal Vertical Flat Plate with Temperature Dependent Viscosity and Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Mamun Molla

    2014-01-01

    Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.

  14. Convection in rotating flows with simultaneous imposition of radial and vertical temperature gradients

    CERN Document Server

    Banerjee, Ayan Kumar; Bhattacharya, Amitabh; Balasubramanian, Sridhar

    2016-01-01

    Laboratory experiments were conducted to study heat transport characteristics in a nonhomogeneously heated fluid annulus subjected to rotation along the vertical axis (z). The nonhomogeneous heating was obtained by imposing radial and vertical temperature gradient ({\\Delta}T). The parameter range for this study was Rayleigh number, Ra=2.43x10^8-3.66x10^8, and Taylor number, Ta=6.45x10^8-27x10^8. The working fluid was water with a Prandtl number, Pr=7. Heat transport was measured for varying rotation rates ({\\Omega}) for fixed values of {\\Delta}T. The Nusselt number, Nu, plotted as a function of Ta distinctly showed the effect of rotation on heat transport. In general, Nu was found to have a larger value for non-rotating convection. This could mean an interplay of columnar plumes and baroclinic wave in our system as also evident from temperature measurements. Laser based imaging at a single vertical plane also showed evidence of such flow structure.

  15. Numerical study on the fluid flow pass a square cylinder: The temperature-viscosity dependence

    Science.gov (United States)

    Lu, Jianhua; Li, Sheng; Guo, Zhaoli; Shi, Baochang

    2014-10-01

    In this paper, the 2D fluid flow pass a heated/cooled square cylinder exposed to a constant free-stream upward velocity is simulated via a multiple relaxation time (MRT) lattice-Boltzmann (LB) method. The buoyancy effect on the drag and lift coefficients as well as Nusselt number related is compared with the results in the existing literatures to validate the code used. The effect of temperature-viscosity dependence is then investigated to test whether the effect can be neglected or not for the mixed convection case. It is shown that the effect cannot be ignored when |Ri| > 0.15. Fortunately, the effect can be captured by using an effective temperature formula [J. M. Shi, D. Ferlach, M. Breuer, G. Biswas and F. Durst, Phys. Fluids16, 4331 (2004)] in a rather large range of Ri. All the numerical results, from another angle, also demonstrate that the MRT method is an efficient tool in simulating the problems such as the present one.

  16. Magnetic resonance flow velocity and temperature mapping of a shape memory polymer foam device

    Directory of Open Access Journals (Sweden)

    Wilson Thomas S

    2009-12-01

    Full Text Available Abstract Background Interventional medical devices based on thermally responsive shape memory polymer (SMP are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. Methods A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Results Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Conclusions Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  17. Using water chemistry, isotopes and microbiology to evaluate groundwater sources, flow paths and geochemical reactions in the Death Valley flow system, USA

    International Nuclear Information System (INIS)

    Springs of Ash Meadows and Furnace Creek (near or in Death Valley, CA) have nearly constant flow, temperature, chemistry, and similar δ2H and δ18O signatures. These factors indicate shared water sources and/or analogous geochemical reactions along similar flow paths. DNA-based (16S rRNA gene) microbial diversity assessments further illuminate these relationships. Whereas, all Ash Meadows springs share related archaea populations, variations in carbon-14 (Crystal Spring) and strontium isotopes, Na+, SO42-, and methane concentrations (Big Spring), correspond with microbial differences within and between the two discharge areas. Similar geochemical signatures linking Ash Meadows and Furnace Creek springs appear to support a distinct end member at Big Spring in Ash Meadows, which is also supported by coincident enrichment in microbial methanogens and methanotrophs. Conversely, DNA libraries from a deep carbonate well (878 m) located between Ash Meadows and Furnace Creek (BLM-1), indicate no shared microbial diversity between Ash Meadows or Furnace Creek springs. (authors)

  18. Using water chemistry, isotopes and microbiology to evaluate groundwater sources, flow paths and geochemical reactions in the Death Valley flow system, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, James M.; Hershey, Ronald L. [Desert Research Institute, 2215 Raggio Pwky, Reno, NV, USA 89512 (United States); Moser, Duane P.; Fisher, Jenny C.; Reihle, Jessica; Wheatley, Alexandra [Desert Research Institute, 755 E. Flamingo Rd, Las Vegas, NV, USA 89130 (United States); Baldino, Cristi; Weissenfluh, Darrick [US Fish and Wildlife Service, Ash Meadows NWR, Amargosa Valley, NV, USA 89020 (United States)

    2013-07-01

    Springs of Ash Meadows and Furnace Creek (near or in Death Valley, CA) have nearly constant flow, temperature, chemistry, and similar δ{sup 2}H and δ{sup 18}O signatures. These factors indicate shared water sources and/or analogous geochemical reactions along similar flow paths. DNA-based (16S rRNA gene) microbial diversity assessments further illuminate these relationships. Whereas, all Ash Meadows springs share related archaea populations, variations in carbon-14 (Crystal Spring) and strontium isotopes, Na{sup +}, SO{sub 4}{sup 2-}, and methane concentrations (Big Spring), correspond with microbial differences within and between the two discharge areas. Similar geochemical signatures linking Ash Meadows and Furnace Creek springs appear to support a distinct end member at Big Spring in Ash Meadows, which is also supported by coincident enrichment in microbial methanogens and methanotrophs. Conversely, DNA libraries from a deep carbonate well (878 m) located between Ash Meadows and Furnace Creek (BLM-1), indicate no shared microbial diversity between Ash Meadows or Furnace Creek springs. (authors)

  19. INF 325 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    SINDHU

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com INF 325 Week 1 DQ 1 Network Management (Ash) INF 325 Week 1 DQ 2 Ethernet Network (Ash) INF 325 Week 1 Commercial Internet Expansion (Ash) INF 325 Week 2 DQ 1 UTP Cord Problem (Ash) INF 325 Week 2 DQ 2 Managed Switches (Ash) INF 325 Week 2 Leased Lines (Ash) INF 325 Week 3 DQ 1 WPA (Ash) INF 325 Week 3 DQ 2 Remote Access Management (Ash) INF 325 Week 3 Mobile Service (Ash) INF 325 Week 4 DQ 1 Ro...

  20. INF 336 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    MADURA

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com INF 336 Week 1 DQ 1 Risk Management (Ash) INF 336 Week 1 DQ 2 Organizational Structure (Ash) INF 336 Week 2 DQ 1 Supply Process Improvements (Ash) INF 336 Week 2 DQ 2 Outsourcing (Ash) INF 336 Week 2 Assignment Article Review (Ash) INF 336 Week 3 DQ 1 Capital Goods (Ash) INF 336 Week 3 DQ 2 Quality (Ash) INF 336 Week 3 Assignment Need Definition (Ash) INF 336 Week 4 DQ 1 Procuring Services (Ash) ...

  1. MGT 401 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    kennith

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 401 Week 1 Individual Assignment Strategic Management Process Paper (Ash) MGT 401 Week 1 Class Activity Week 1 (Ash) MGT 401 Week 1 DQ 1 (Ash) MGT 401 Week 1 DQ 2 (Ash) MGT 401 Week 2 Learning Team Business Model Comparison Example (Ash) MGT 401 Week 2 DQ 1 (Ash) MGT 401 Week 2 DQ 2 (Ash) MGT 401 Week 2 Class Activity (Ash) MGT 401 Week 3 Individual Assignment Business Plan Evaluation (Ash) ...

  2. INF 410 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    MADHURA

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com     INF 410 Week 1 DQ 1 Project Life Cycle (Ash) INF 410 Week 1 DQ 2 The Importance of Project Management (Ash) INF 410 Week 1 Quiz (Ash) INF 410 Week 2 DQ 1 Project Charter (Ash) INF 410 Week 2 DQ 2 Project Management Plan (Ash) INF 410 Week 2 Quiz (Ash) INF 410 Week 3 DQ 1 Risk Identification (Ash) INF 410 Week 3 DQ 2 Triple Constraint (Ash) INF 410 Week 3 Quiz (Ash) INF 410 Week 4 DQ...

  3. Effects of wall shear stress on unsteady MHD conjugate flow in a porous medium with ramped wall temperature.

    Directory of Open Access Journals (Sweden)

    Arshad Khan

    Full Text Available This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details.

  4. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    Science.gov (United States)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    produced ash has significant and not always constructive pedological, ecological, hydrological and geomorphological effects and impacts (Shakesby, 2011). Abundant scientific information is assembled either from control fires by collecting samples before and after wildfire event, or conducting laboratory experiments exanimating data under truly isolated conditions (Lugassi et al., 2013). However, an integration and synthesis of the knowledge about ash including deeper understanding of inter-correlation between chemical, physical and morphological compounds in open post-burn environment and its possible interactions in soil formation or impact on soil composition are highly needed. The main aim of the presented study was to advance the science of soil-fire relationship by recognizing the remains ash as a new soil-forming factor, on par with the traditionally recognized factors: parent material, topography, time, climate, organisms, and recently recognized human activity as the sixth factor. This research was conducted to develop new methods to assess impacts and quantify the contributions/influences of post-fire products, mainly ash, on soil composition and soil properties in post-burned environment. We conducted several controlled experiments using 40 soil samples (typical Mediterranean Rendzina soil, pH 6.84, a grayish-brown, humus- and free calcium carbonate- rich, intra-zonal). The samples include bare soils and different types and loads of forest litter, were exposed to different temperatures (200° C, 400° C and 600° C) in a muffle furnace for 2 hours (Pereira et al. 2011) as fire temperature plays a key role in determining ash properties. The ash produced at a low temperatures (50% carbon and retains many of the structural characteristics of the parent material. At higher temperatures, the residue ash is greyish, consisted of very fine particles that preserve almost none of the original structural characteristics of the fuel (Woods and Balfour, 2008) creating

  5. TEGENA: Detailed experimental investigations of temperature and velocity distributions in rod bundle geometries with turbulent sodium flow

    International Nuclear Information System (INIS)

    Precise knowlege of the velocity and temperature distributions is necessary in fuel element design (rod bundles with longitudinal flow). The detail codes required in the fine analysis of non-uniformly cooled bundle zones are presently at the stage of development. In order to verify these computer codes, the mean fluid temperatures and the related RMS values of the temperature fluctuations were measured in a heated bundle, TEGENA, containing four rods arranged in one row (P/D = W/D = 1.147) with sodium cooling (Pr≅0.005). The temperature distribution in the structures was determined as the necessary boundary condition for the temperature profiles in the fluid. The experiments were carried out with different types of heating (uniform load and flux tilting) and the flow conditions were varied in the ranges 4000≤Re≤76,000; 20≤Pe≤400. The essential processes of thermal development took place under uniform load within a heated bundle length of about 100 hydraulic diameters. In the main measuring plane at the end of the heated zone, after 200 hydraulic diameters, the flow can be termed largely developed thermally. There, the temperature profiles measured in the fluid exhibit pronounced maxima in the narrowest gaps of the subchannels as well as pronounced minima in the centers of the subchannels at the unheated wall. In the zones of maximum temperature gradients the temperature fluctuations attain maximum and minimum values, respectively, at the points of disappearance of the temperature gradients. In all cases of flux tilting investigated the flow at the end of the heated zone had not yet developed thermally. (orig.)

  6. Full-scale ash deposition measurements at Avedøre Power Plant unit 2 during suspension-firing of wood with and without coal ash addition

    DEFF Research Database (Denmark)

    Wu, Hao; Shafique Bashir, Muhammad; Jensen, Peter Arendt

    along with the fly ash and bottom ash from the plant were characterized extensively by SEM-EDS, ICP-OES/IC and XRD. Based on the results from the present work, the deposit formation and shedding mechanisms under different operational conditions were proposed and discussed. The influence of coal ash......The formation of deposits during suspension-firing of wood at Avedøre Power Plant unit 2 (AVV2) was studied by using an advanced deposit probe system. The tests were conducted both with and without coal ash addition, and at two different locations with flue gas temperatures of 1250-1300 oC and 750...... addition on deposit formation during wood suspension-firing at AVV2 was evaluated. It was revealed that the addition of coal fly ash could significantly influence the ash deposition/shedding behaviors and the deposit properties. The effect was evident at both measurement locations. At the location...

  7. Unsteady/Steady Hydromagnetic Flow of Reactive Viscous Fluid in a Vertical Channel with Thermal Diffusion and Temperature Dependent Properties

    Directory of Open Access Journals (Sweden)

    Ime J. Uwanta

    2016-01-01

    Full Text Available The problem of unsteady as well as steady hydromagnetic natural convection and mass transfer flow of viscous reactive, incompressible and electrically conducting fluid between two vertical walls in the presence of uniform magnetic field applied normal to the flow region is studied. Thermal diffusion, temperature dependent variable viscosity and thermal conductivity are assumed to exist within the channel. The governing partial differential equations are solved numerically using implicit finite difference scheme. Results of the computations for velocity, temperature, concentration, skin friction, rate of heat and mass transfer are presented graphically to study the hydrodynamic behavior of fluid in the channel.

  8. Design, Analysis, and Initial Testing of a Fiber-Optic Shear Gage for 3D, High-Temperature Flows

    OpenAIRE

    Orr, Matthew William

    2004-01-01

    Design, Analysis, and Initial Testing of a Fiber-Optic Shear Gage for 3D, High-Temperature Flows Matthew W. Orr Dr. Joseph A. Schetz, Chairman Aerospace Engineering Abstract This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the flo...

  9. Can pore-clogging by ash explain post-fire runoff?

    NARCIS (Netherlands)

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Verónica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow pro

  10. Validity and reliability of temperature measurement by heat flow thermistors, flexible thermocouple probes and thermistors in a stirred water bath

    International Nuclear Information System (INIS)

    We determined the validity and reliability of heat flow thermistors, flexible thermocouple probes and general purpose thermistors compared with a calibrated reference thermometer in a stirred water bath. Validity (bias) was defined as the difference between the observed and criterion values, and reliability as the repeatability (standard deviation or typical error) of measurement. Data were logged every 5 s for 10 min at water temperatures of 14, 26 and 38 °C for ten heat flow thermistors and 24 general purpose thermistors, and at 35, 38 and 41 °C for eight flexible thermocouple probes. Statistical analyses were conducted using spreadsheets for validity and reliability, where an acceptable bias was set at ±0.1 °C. None of the heat flow thermistors, 17% of the flexible thermocouple probes and 71% of the general purpose thermistors met the validity criterion for temperature. The inter-probe reliabilities were 0.03 °C for heat flow thermistors, 0.04 °C for flexible thermocouple probes and 0.09 °C for general purpose thermistors. The within trial intra-probe reliability of all three temperature probes was 0.01 °C. The results suggest that these temperature sensors should be calibrated individually before use at relevant temperatures and the raw data corrected using individual linear regression equations

  11. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems.

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes. PMID:26520986

  12. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    CERN Document Server

    Mikhailenko, V V Mikhailenko V S; Koepke, M E

    2014-01-01

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused by a gradient in either the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, hydrodynamic plasma stability is investigated, real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises fr...

  13. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Science.gov (United States)

    Oßwald, Patrick; Köhler, Markus

    2015-10-01

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  14. Ash properties of some dominant Greek forest species

    International Nuclear Information System (INIS)

    The elemental and chemical wood ash compositions of six dominant Greek fuels was investigated using a variety of techniques, including thermal gravimetric analysis (TG), differential thermal analysis (DTA), atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD). In addition, the alkalinity of wood ash was determined by titration. The ash was prepared by combustion at low (600 deg. C), middle (800 deg. C) and high temperatures (1000 deg. C). The ash composition is very important because thousands of hectares of wildlands are burned annually in Greece. The resulting deposits affect soil properties (i.e., pH) and provide a source of inorganic constituents (i.e., Ca, K, Na, Mg, etc.), while the most soluble compounds (i.e., sodium and potassium hydroxides and carbonates) do not persist through the wet season. The samples selected were: Pinus halepensis (Aleppo pine), Pinus brutia (Calabrian pine), Olea europaea (Olive), Cupressus sempervirens (Italian cypress), Pistacia lentiscus (Mastic tree), Quercus coccifera (Holly oak)

  15. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    Science.gov (United States)

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated. PMID:18838261

  16. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    Science.gov (United States)

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.

  17. [Study on mercury re-emissions during fly ash utilization].

    Science.gov (United States)

    Meng, Yang; Wang, Shu-Xiao

    2012-09-01

    The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%. PMID:23243850

  18. The Low Temperature Oxidation of 2,7-Dimethyloctane in a Pressurized Flow Reactor

    Science.gov (United States)

    Farid, Farinaz

    The complexity of real fuels has fostered the use of simple mixtures of hydrocarbons whose combustion behavior approximates that of real fuels in both experimental and computational studies to develop models of the combustion of the real fuel. These simple mixtures have been called surrogates. Lightly branched paraffins are an important class of constituents in gasoline, diesel and aviation turbine fuels and therefore are primary candidates for use as a component in a surrogate. Unfortunately, fundamental studies on combustion characteristics of high molecular weight mono- and di-methylated iso-paraffins are scarce. Therefore, this study was designed to investigate the low-temperature oxidation of 2,7-dimethyloctane (2,7-DMO) (C10H22), a lightly branched isomer of decane. Replicate 2,7-DMO oxidation experiments were conducted in a pressurized flow reactor (PFR) over the temperature range of 550 -- 850 K, at a pressure of 8 atm and an equivalence ratio of 0.3 in 4.21% oxygen / nitrogen. The reactivity was mapped by continuous monitoring of CO, CO 2, and O2 using a non-dispersive infrared (NDIR) carbon monoxide / carbon dioxide analyzer and an electrochemical oxygen sensor. For examining the underlying reaction chemistry, detailed speciation of samples was performed at selected temperatures using a gas chromatograph with a flame ionization detector coupled to a mass spectrometer. Comparable oxidation experiments for n-decane were carried out to examine the unique effects of branching on fuel reactivity and distribution of major stable intermediates. For both isomers, the onset of negative temperature coefficient (NTC) region was observed near 700 K, with the reactivity decreasing with increasing the temperature. The flow reactor study of n-decane oxidation confirmed that the isomerization reduces the amount of CO produced at peak reactivity. In addition to reaction inhibition, branching affected the distribution of C2-C 4 olefin intermediates. While the oxidation of

  19. Effect of Temperature Reversion on Hot Ductility and Flow Stress-Strain Curves of C-Mn Continuously Cast Steels

    Science.gov (United States)

    Dong, Zhihua; Li, Wei; Long, Mujun; Gui, Lintao; Chen, Dengfu; Huang, Yunwei; Vitos, Levente

    2015-08-01

    The influence of temperature reversion in secondary cooling and its reversion rate on hot ductility and flow stress-strain curve of C-Mn steel has been investigated. Tensile specimens were cooled at various regimes. One cooling regime involved cooling at a constant rate of 100 °C min-1 to the test temperature, while the others involved temperature reversion processes at three different reversion rates before deformation. After hot tensile test, the evolution of mechanical properties of steel was analyzed at various scales by means of microstructure observation, ab initio prediction, and thermodynamic calculation. Results indicated that the temperature reversion in secondary cooling led to hot ductility trough occurring at higher temperature with greater depth. With increasing temperature reversion rate, the low temperature end of ductility trough extended toward lower temperature, leading to wider hot ductility trough with slightly reducing depth. Microstructure examinations indicated that the intergranular fracture related to the thin film-like ferrite and (Fe,Mn)S particles did not changed with varying cooling regimes; however, the Widmanstatten ferrite surrounding austenite grains resulted from the temperature reversion process seriously deteriorated the ductility. In addition, after the temperature reversion in secondary cooling, the peak stress on the flow curve slightly declined and the peak of strain to peak stress occurred at higher temperature. With increasing temperature reversion rate, the strain to peak stress slightly increased, while the peak stress showed little variation. The evolution of plastic modulus and strain to peak stress of austenite with varying temperature was in line with the theoretical prediction on Fe.

  20. Reducing carbon-in-ash

    Energy Technology Data Exchange (ETDEWEB)

    Nigel S. Dong [IEA Clean Coal Centre, London (United Kingdom)

    2010-05-15

    High levels of carbon-in-ash lead to reduced power plant efficiency and higher fuel costs, degrade the performance of electrostatic precipitators and increase emissions of particulates. Increased carbon levels in the fly ash can lead to problems with ash use in cement/concrete production. This report reviews current measures and technologies that can be used to prevent excessive carbon-in-ash in pulverised coal combustion (PCC) power plants. These include coal cleaning, coal fineness improvement, reduction of distribution imbalance of coal among burners, increasing coal-air mixing rates at both burner and OFA levels and optimising excess air ratios. A plasma-assisted combustion enhancement technology can help achieve better ignition and more stable flame for coals that are normally difficult to burn. Computer-based combustion optimisation using expert systems, neural network systems and coal combustion simulation is becoming an invaluable means to tackle the carbon-in-ash issue. This report also reviews the regulations in nine major coal-consuming countries, which stipulate the maximum unburnt carbon levels permitted for fly ash for use in concrete/cement production. The Loss on Ignition (LOI) parameter is used in all national standards, although it is considered inadequate and may exclude some usable fly ash from being utilised. Performance-based regulations are more appropriate and have been adopted by Canada and USA. The EU and Canada now permit the use of fly ash produced from co-combustion of coal and biomass. China and Russia allow very high LOI levels for certain fly ash but the other countries require similar LOI limits for fly ash for use in concrete. Finally, this report discusses measures and technologies for reduction of carbon-in-ash, including classification, froth flotation, triboelectrostatic separators, thermal processes and carbon surface modification. 146 refs., 19 figs., 15 tabs.

  1. Deposition and immersion mode nucleation of ice by three distinct samples of volcanic ash using Raman spectroscopy

    Science.gov (United States)

    Schill, G. P.; Genareau, K.; Tolbert, M. A.

    2015-01-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui euption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225-235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  2. Thermodynamic Characteristic Study of a High-temperature Flow-rate Control Valve for Fuel Supply of Scramjet Engines

    Institute of Scientific and Technical Information of China (English)

    ZENG Wen; TONG Zhizhong; LI Songjing; LI Hongzhou; ZHANG Liang

    2012-01-01

    Thermodynamic characteristics are of great importance for the performance of a high-temperature flow-rate control valve,as high-temperature environment may bring problems,such as blocking of spool and increasing of leakage,to the valve.In this paper,a high-temperature flow-rate control valve,pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet engines.After introducing the construction and working principle,the thermodynamic mathematical models of the valve are built based on the heat transfer methods inside the valve.By using different boundary conditions,different methods of simulations are carried out and compared.The steady-state and transient temperature field distribution inside the valve body are predicted and temperatures at five interested points are measured.By comparing the simulation and experimental results,a reasonable 3D finite element analysis method is suggested to predict the thermodynamic characteristics of the high-temperature flow-rate control valve.

  3. BUS 611 Ash course tutorial / uophelp

    OpenAIRE

    uophelp

    2015-01-01

    For more course tutorials visit www.uophelp.com   BUS 611 Week 1 Assignment Article Review (Ash Course) BUS 611 Week 2 Assignment Project Risk (Ash Course) BUS 611 Week 3 Assignment WBS (Ash Course) BUS 611 Week 4 Assignment Integrated Project Management Tools (Ash Course) BUS 611 Week 5 Assignment Monthly Status Reports (Ash Course) BUS 611 Week 6 Final Research Paper (Ash Course)  

  4. Measurement of natural activity in peat ashes

    International Nuclear Information System (INIS)

    High proportions of radioactive materials in peat ashes may involve radiation hazards during handling and deposition of these waste materials. Measurements have been performed to determine the content of radioactive materials in ashes from peat burning. The activities in fly ash and ''solid'' ash in seven peat-fired power plants in Sweden are presented. The methods of analysing and measuring peat ashes for activity from different radionuclides are described. The activity levels in ash samples are given

  5. Can pore-clogging by ash explain post-fire runoff?

    Science.gov (United States)

    Stoof, Cathelijne R.; Gevaert, Anouk I.; Baver, Christine; Hassanpour, Bahareh; Morales, Veronica L.; Zhang, Wei; Martin, Deborah; Giri, Shree K.; Steenhuis, Tammo S.

    2016-01-01

    Ash plays an important role in controlling runoff and erosion processes after wildfire and has frequently been hypothesised to clog soil pores and reduce infiltration. Yet evidence for clogging is incomplete, as research has focussed on identifying the presence of ash in soil; the actual flow processes remain unknown. We conducted laboratory infiltration experiments coupled with microscope observations in pure sands, saturated hydraulic conductivity analysis, and interaction energy calculations, to test whether ash can clog pores (i.e. block pores such that infiltration is hampered and ponding occurs). Although results confirmed previous observations of ash washing into pores, clogging was not observed in the pure sands tested, nor were conditions found for which this does occur. Clogging by means of strong attachment of ash to sand was deemed unlikely given the negative surface charge of the two materials. Ponding due to washing in of ash was also considered improbable given the high saturated conductivity of pure ash and ash–sand mixtures. This first mechanistic step towards analysing ash transport and attachment processes in field soils therefore suggests that pore clogging by ash is unlikely to occur in sands. Discussion is provided on other mechanisms by which ash can affect post-fire hydrology.

  6. THE COMPRESSIVE AND FLEXURAL STRENGTHS OF SELF-COMPACTING CONCRETE USING RAW RICE HUSK ASH

    Directory of Open Access Journals (Sweden)

    MD NOR ATAN

    2011-12-01

    Full Text Available This study investigates the compressive and flexural strengths of self-compacting concrete incorporating raw rice husk ash, individually and in combination with other types of mineral additives, as partial cement replacement. The additives paired with raw rice husk ash were fine limestone powder, pulverized fuel ash and silica fumes. The mix design was based on the rational method where solid constituents were fixed while water and superplasticizer contents were adjusted to produce optimum viscosity and flowability. All mixes were designed to achieve SF1 class slump-flow with conformity criteria ≥ 520 mm and ≤ 700 mm. Test results show that 15% replacement of cement using raw rice husk ash produced grade 40 concrete. It was also revealed that 30% and 45% cement replacements using raw rice husk ash combined with limestone powder and raw rice husk ash combined with limestone powder and silica fume respectively, produced comparable compressive strength to normal concrete and improved flexural strengths.

  7. Effect of substrate temperature and gas flow ratio on the nanocomposite TiAlBN coating

    Science.gov (United States)

    Rosli, Z. M.; Kwan, W. L.; Juoi, J. M.

    2016-07-01

    Nanocomposite TiAlBN (nc-TiAlBN) coatings were successfully deposited via RF magnetron sputtering by varying the nitrogen-to-total gas flow ratio (RN), and substrate temperature (TS). All coatings were deposited on AISI 316 substrates using single Ti-Al-BN hot-pressed disc as a target. The grain size, phases, and chemical composition of the coatings were evaluated using glancing angle X-ray diffraction analysis (GAXRD) and X-ray photoelectron spectroscopy (XPS). Results showed that the grains size of the deposited nc-TiAlBN coatings were in the range of 3.5 to 5.7 nm and reached a nitride saturation state as early as 15 % RN. As the nitrogen concentration decreases, boron concentration increased from 9 at.% to 16.17 at.%. and thus, increase the TiB2 phase within the coatings. The TS, however, showed no significant effect either on the crystallographic structure, grain size, or in the chemical composition of the deposited nc-TiAlBN coating.

  8. Modeling and measuring neighborhood scale flow, turbulence, and temperature within Chicago heat island

    Science.gov (United States)

    Conry, Patrick; Sharma, Ashish; Leo, Laura; Fernando, H. J. S.; Potosnak, Mark; Hellmann, Jessica

    2013-11-01

    The modeling of urban heat island (UHI) requires a multi-scale approach as it involves numerous physical phenomena spanning a range of scales. We have performed a comprehensive study of Chicago's UHI via coupling of mesoscale Weather Research and Forecasting (WRF) and micro-scale ENVI-met models. The application of the latter model to a Lincoln Park neighborhood and a parallel observational campaign will be the primary focus of this presentation. ENVI-met employs a computational fluid dynamics model to represent heterogeneity of urban areas, providing fine resolution output of UHI dynamics. In the field campaign, two stations located on rooftops of DePaul University buildings were each equipped with a sonic anemometer and vertical array of thermocouples, allowing investigations of spatial variability of flow, turbulent fluxes, and temperature profiles in an urban roughness sublayer. One of these was located above a rooftop garden and the other above a conventional rooftop. Downscaled output from the WRF model or a set of observational data served as initial and boundary conditions for the ENVI-met model. The model's predicative capabilities were assessed through comparison with another set of observational data, and dynamical causes for the model's poor behavior were identified. Funded by NSF Grant No. 0934592 and ND-ECI.

  9. Analysis of Fluid Flow and Heat Transfer Model for the Pebble Bed High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    S. Yamoah

    2012-06-01

    Full Text Available The pebble bed type high temperature gas cooled nuclear reactor is a promising option for next generation reactor technology and has the potential to provide high efficiency and cost effective electricity generation. The reactor unit heat transfer poses a challenge due to the complexity associated with the thermalflow design. Therefore to reliably simulate the flow and heat transport of the pebble bed modular reactor necessitates a heat transfer model that deals with radiation as well as thermal convection and conduction. In this study, a model with the capability to simulate fluid flow and heat transfer in the pebble bed modular reactor core has been developed. The developed model was implemented on a personal computer using FORTRAN 95 programming language. Several important fluid flow and heat transfer parameters have been examined: including the pressure drop over the reactor core, the heat transfer coefficient, the Nusselt number and the effective thermal conductivity of the fuel pebbles. Results obtained from the simulation experiments show a uniform pressure in the radial direction for a core to fuel element diameter (D/d ratio>20 and the heat transfer coefficient increases with increasing temperature and coolant mass flow rate. The model can adequately account for the flow and heat transfer phenomenon and the loss of pressure through friction in the pebble bed type high temperature nuclear reactor.

  10. ECO 316(ASH) course tutorial/tutorialoutlet

    OpenAIRE

    naresh 1

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   ECO 316 Week 1 DQ 1 Should You Invest Short Term (Ash) ECO 316 Week 1 DQ 2 Treasury Inflation Protection Bonds (Ash) ECO 316 Week 1 Quiz (Chapter 1-6) (Ash) ECO 316 Week 2 DQ 1 New Product, Will I Be Rich (Ash) ECO 316 Week 2 DQ 2 Mutual Fund Regulation (Ash) ECO 316 Week 2 Quiz (Chapter 7-12) (Ash) ECO 316 Week 3 DQ 1 Exchange Rate Risk (Ash) ECO 316 Week 3 DQ 2 Should I Expect a Bail Out (Ash) ...

  11. CRJ 303 ASH course tutorial/tutorialoutlet

    OpenAIRE

    naresh 1

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   Product Description CRJ 303 Week 1 DQ 1 Goals of Sentencing (Ash) CRJ 303 Week 1 DQ 2 Sentencing Techniques (Ash) CRJ 303 Week 2 DQ 1 Punishment (Ash) CRJ 303 Week 2 DQ 2 Privatizing Prisons (Ash) CRJ 303 Week 2 Assignment Jails vs. Prisons (Ash) CRJ 303 Wee 3 DQ 1 Probation and Parole (Ash) CRJ 303 Week 3 DQ 2 Civil Commitments (Ash) CRJ 303 Week 3 Assignment Juvenile Detainees (Ash) CRJ 303...

  12. PSY 496 ASH Tutorial Course / Uoptutorial

    OpenAIRE

    John Allen

    2015-01-01

    PSY 496 Week 1 Assignment Foundations for the Final Paper (Ash) PSY 496 Week 2 Assignment Finalized Resources and Revisions for the Final Paper (Ash) PSY 496 Week 1 DQ 1 Approaches to Research (Ash) PSY 496 Week 1 DQ 2 Measuring Change (Ash) PSY 496 Week 2 DQ 1 Protecting Participants from Harm (Ash) PSY 496 Week 2 DQ 2 Areas of Competence (Ash) PSY 496 Week 2 Journal Ethics in Research and Practice (Ash) PSY 496 Week 3 Assignment Final Paper Draft (Ash) PSY 49...

  13. MGT 415 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    kennith archi

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MGT 415 Week 1 DQ 1 Organizational Design (Ash) MGT 415 Week 1 DQ 2 The Research Project (Ash) MGT 415 Week 2 DQ 1 Group Development Process (Ash) MGT 415 Week 2 DQ 2 Influence of Informal Groups (Ash)  MGT 415 Week 3 DQ 1 Group Cohesion and Productivity (Ash) MGT 415 Week 3 DQ 2 Norms and Conformity (Ash) MGT 415 Week 3 Assignment Best Workplace (Ash) MGT 415 Week 4 DQ 1 Group Decisions (Ash) ...

  14. HIS 103 ASH course tutorial/tutorialoutlet

    OpenAIRE

    NARESH 34

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   HIS 103 Week 1 DQ 1 (Transition to Agriculture) (Ash) HIS 103 Week 1 DQ 2 (Early Complex Societies) (Ash) HIS 103 Week 1 Quiz (Ash) HIS 103 Week 1 Assignment (Ash) HIS 103 Week 2 Assignment Greco Roman Influence Paper (Ash) HIS 103 Week 2 DQ 1 Chinese Social and Political Order Systems (Ash) HIS 103 Week 2 DQ 2 Caste System (Ash) HIS 103 Week 2 Quiz (Ash) HIS 103 Week 3 Assignment Black Death Dra...

  15. MAT 222 ASH Course Tutorial / Tutorialoutlet

    OpenAIRE

    mirat

    2015-01-01

    For more course tutorials visit www.tutorialoutlet.com   MAT 222 Week 1 Solving Proportions (Ash) MAT 222 Week 1 DQ 1 Can't Cancel Terms (Ash) MAT 222 Week 2 DQ 1 One-Variable Compound Inequalities (Ash) MAT 222 Week 2 Two-Variable Inequalities (Ash) MAT 222 Week 3 DQ 1 Simplifying Radicals (Ash) MAT 222 Week 3 Real World Radical Formulas (Ash) MAT 222 Week 4 DQ 1 Solving Quadratic Equations (Ash) MAT 222 Week 4 Real World Quadratic Functions (Ash) ...

  16. BUS 642 Ash course tutorial / uophelp

    OpenAIRE

    uophelp

    2015-01-01

    www.uophelp.com     BUS 642 Week 1 DQ 1 Scientific Thinking (Ash Course) BUS 642 Week 1 DQ 2 Making Research Decisions (Ash Course) BUS 642 Week 1 Exercises (Ash Course) BUS 642 Week 2 DQ 1 Ethics in Business Research (Ash Course) BUS 642 Week 2 DQ 2 Design of Research (Ash Course) BUS 642 Week 2 Exercises (Ash Course) BUS 642 Week 3 DQ 1 Measurement Scales (Ash Course) BUS 642 Week 3 DQ 2 Clarifying the Research Questions (Ash Course) BUS...

  17. Volcanic ash - Terrestrial versus extraterrestrial

    Science.gov (United States)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  18. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    in water. The content of the selected heavy metals (i.e. Cr, Ni, Pb and Cd) complied with the Danish Statutory Order on the use of bio-ash for agricultural purposes; however, critical releases of Cr were detected in the leachate extracts, especially in the fly ash. High alkaline pHs were measured in all...

  19. Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

    NARCIS (Netherlands)

    Tiwari, Arvind; Dubey, Swapnil; Sandhu, G.S.; Sodha, M.S.; Anwar, S.I.

    2009-01-01

    In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, resp

  20. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes.

    Science.gov (United States)

    Mohee, Romeela; Boojhawon, Anuksha; Sewhoo, Babita; Rungasamy, Selven; Somaroo, Geeta D; Mudhoo, Ackmez

    2015-08-15

    This study investigates the potential of incorporating inorganic amendments such as coal and bagasse ashes in different composting mixes. 10 different composting mixes were assessed as follows: A-20% bagasse ash (BA) with unsorted municipal solid wastes (UMSW); B-40% BA with UMSW; C-UMSW; D-20% BA with sorted municipal solid wastes (SMSW); E-40% BA with SMSW; F-SMSW; G-20% coal ash (CA) with UMSW; H-40% CA with UMSW; I-20% CA with SMSW and J-40% CA with SMSW. The composting processes were carried out in rotary drum composters. Composting mixes D, F, G and I achieved a temperature above 55 °C for at least 3 days, with the following peak temperatures: D-62 °C, F-57 °C, G-62 °C and I-58 °C. D resulted in the highest average net Volatile solids (VS) degradation of 68.6% and yielded the highest average volume reduction of 66.0%. The final compost from D, G, I, C and F were within range for electrical conductivities (EC) (794-1770 μS/cm) and pH (6.69-7.12). The ashes also helped in maintaining high average water holding capacities within the range of 183-217%. The C/N ratio of sorted wastes was improved by the addition of 20% coal ash and bagasse ash. Higher germination indices, above 0.8 were obtained for the ash-amended compost (D, G, I), indicating the feasibility and enhancement of using bagasse and coal ash as inorganic amendment in the composting process. Regarding heavy metals content, the chromium concentration for the composting mix G was found to be the highest whereas mixes D and I showed compliance with the MS (Mauritian Standards) 164 standards.

  1. Investigation of Transient MHD Couette flow and Heat Transfer of Dusty Fluid with Temperature-Dependent Oroperties

    Directory of Open Access Journals (Sweden)

    sobhan mosayebidorcheh

    2015-01-01

    Full Text Available In the present study, transient MHD Couette flow and heat transfer of dusty fluid between two parallel plates and the effect of the temperature dependent properties has been investigated. The thermal conductivity and viscosity of the fluid are assumed as linear and exponential functions of temperature, respectively. A constant pressure gradient and an external uniform magnetic field are considered in the main flow direction and perpendicular to the plates, respectively. A hybrid treatment based on finite difference method (FDM and differential transform method (DTM is used to solve the coupled flow and heat transfer equations. The effects of the variable properties, Hartman number, Hall current, Reynolds number and suction velocity on the Nusselt number and skin friction factor have been discussed. It is found that when Hartman number increases, skin friction of the upper and lower plates increases.

  2. Free Convective Fluctuating MHD Flow through Porous Media Past a Vertical Porous Plate with Variable Temperature and Heat Source

    Directory of Open Access Journals (Sweden)

    A. K. Acharya

    2014-01-01

    Full Text Available Free convective magnetohydrodynamics (MHD flow of a viscous incompressible and electrically conducting fluid past a hot vertical porous plate embedded in a porous medium in the presence of heat source has been studied in this paper. The temperature of the plate varies both in space and time. The main objective of this paper is to study the effect of porosity of the medium coupled with the variation of plate temperature with regard to space and in time. The effect of pertinent parameters characterizing the flow has been presented through the graphs. It is important to record that the presence of porous media has no significant contribution to the flow characteristics and viscous dissipation compensates for the heating and cooling of the plate due to convective current.

  3. Using fly ash for construction

    Energy Technology Data Exchange (ETDEWEB)

    Valenti, M.

    1995-05-01

    Each year electrical utilities generate 80 million tons of fly ash, primarily from coal combustion. Typically, utilities dispose of fly ash by hauling it to landfills, but that is changing because of the increasing cost of landfilling, as well as environmental regulations. Now, the Electric Power Research Institute (EPRI), in Palo Alto, Calif., its member utilities, and manufacturers of building materials are finding ways of turning this energy byproduct into the building blocks of roads and structures by converting fly ash into construction materials. Some of these materials include concrete and autoclaved cellular concrete (ACC, also known as aerated concrete), flowable fill, and light-weight aggregate. EPRI is also exploring uses for fly ash other than in construction materials. One of the more high-end uses for the material is in metal matrix composites. In this application, fly ash is mixed with softer metals, such as aluminum and magnesium, to strengthen them, while retaining their lighter weight.

  4. Unsteady magnetohydrodynamic free convection flow of a second grade fluid in a porous medium with ramped wall temperature.

    Science.gov (United States)

    Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown. PMID:24785147

  5. Unsteady magnetohydrodynamic free convection flow of a second grade fluid in a porous medium with ramped wall temperature.

    Directory of Open Access Journals (Sweden)

    Samiulhaq

    Full Text Available Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i second grade fluid in the absence of magnetic field and porous medium and (ii Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.

  6. Unsteady magnetohydrodynamic free convection flow of a second grade fluid in a porous medium with ramped wall temperature.

    Science.gov (United States)

    Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown.

  7. Unsteady Magnetohydrodynamic Free Convection Flow of a Second Grade Fluid in a Porous Medium with Ramped Wall Temperature

    Science.gov (United States)

    Samiulhaq; Ahmad, Sohail; Vieru, Dumitru; Khan, Ilyas; Shafie, Sharidan

    2014-01-01

    Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely: (i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters is graphically shown. PMID:24785147

  8. Flow

    DEFF Research Database (Denmark)

    2009-01-01

    Flow er en positiv, koncentreret tilstand, hvor al opmærksomhed er samlet om en bestemt aktivitet, som er så krævende og engagerende, at man må anvende mange mentale ressourcer for at klare den. Tidsfornemmelsen forsvinder, og man glemmer sig selv. 'Flow' er den første af en række udsendelser om...

  9. EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS; ANNUAL

    International Nuclear Information System (INIS)

    Tests were performed in simulated flue gas streams using two fly ash samples from the electrostatic precipitators of two full-scale utility boilers. One fly ash was derived from a Powder River Basin (PRB) coal, while the other was derived from Blacksville coal (Pittsburgh No. 8 seam). The tests were performed at temperatures of 120 and 180 C under different gas compositions using whole fly ash samples as well as magnetic and nonmagnetic concentrates from sized fly ash. Only the Blacksville ash contained magnetic phases. The whole and fractionated fly ash samples were analyzed for morphology, chemical composition, mineralogical composition, total organic carbon, porosity, and surface area. Mineralogically, the Blacksville ash was composed predominantly of magnetite, hematite, quartz, and mullite, while the PRB ash contained mostly quartz with lesser amounts of lime, periclase, and calcium aluminum oxide. The iron oxides in the Blacksville ash were concentrated almost entirely in the largest size fraction. As anticipated, there was not a clean separation of magnetic (Fe-rich) and nonmagnetic (aluminosilicate-rich) phases for the Blacksville ash. The Blacksville ash had a significantly higher surface area and a much higher unburned carbon content than the PRB ash. Elemental mercury (Hg) streams were injected into the simulated flue gas and passed over filters (housed in a convection oven) loaded with fly ash. Concentrations of total, oxidized, and elemental Hg downstream from the ash samples were determined by the Ontario Hydro Method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables. Based on the statistical analyses, the presence of HCl, NO, NO(sub 2), and SO(sub 2) and all two-way gas interactions were significant. In addition, it appears that even four-factor interactions between those gases are significant. The HCl, NO(sub 2), and SO(sub 2) were critical gases resulting in Hg oxidation, while

  10. The 1815 Tambora ash fall: implications for transport and deposition of distal ash on land and in the deep sea

    Science.gov (United States)

    Kandlbauer, Jessica; Carey, Steven N.; Sparks, R. Stephen J.

    2013-04-01

    Tambora volcano lies on the Sanggar Peninsula of Sumbawa Island in the Indonesian archipelago. During the great 1815 explosive eruption, the majority of the erupted pyroclastic material was dispersed and subsequently deposited into the Indian Ocean and Java Sea. This study focuses on the grain size distribution of distal 1815 Tambora ash deposited in the deep sea compared to ash fallen on land. Grain size distribution is an important factor in assessing potential risks to aviation and human health, and provides additional information about the ash transport mechanisms within volcanic umbrella clouds. Grain size analysis was performed using high precision laser diffraction for a particle range of 0.2 μm-2 mm diameter. The results indicate that the deep-sea samples provide a smooth transition to the land samples in terms of grain size distributions despite the different depositional environments. Even the very fine ash fraction (advances versus the ash component depositing once the eruption terminates. With the historical data on eruption duration (maximum 24 h) and volumetric flow rate of the umbrella cloud (˜1.5-2.5 × 1011 m3/s) as input to the improved model, and assuming a combination of 3 h Plinian phase and 21 h co-ignimbrite phase, it reduces the mean deviation of the predicted versus observed grain size distribution by more than half (˜9.4 % to ˜3.7 %) if both ash components are considered.

  11. Prediction total specific pore volume of geopolymers produced from waste ashes by fuzzy logic

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2012-04-01

    Full Text Available In the present work, total specific pore volume of inorganic polymers (geopolymers made from seeded fly ash and rice husk bark ash has been predicted by fuzzy logic. Different specimens, made from a mixture of fly ash and rice husk bark ash in fine and coarse form together with alkali activator made of water glass and NaOH solution, were subjected to porosimetry tests at 7 and 28 days of curing. The curing regime was different: one set of the specimens were cured at room temperature until reaching to 7 and 28 days and the other sets were oven cured for 36 hours at the range of 40-90 °C and then cured at room temperature until 7 and 28 days. A model based on fuzzy logic for predicting the total specific pore volume of the specimens has been presented. To build the model, training and testing using experimental results from 120 specimens were conducted. The used data as the inputs of fuzzy logic models are arranged in a format of six parameters that cover the percentage of fine fly ash in the ashes mixture, the percentage of coarse fly ash in the ashes mixture, the percentage of fine rice husk bark ash in the ashes mixture, the percentage of coarse rice husk bark ash in the ashes mixture, the temperature of curing and the time of water curing. According to the input parameters, in the fuzzy logic model, the pore volume of each specimen was predicted. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the total specific pore volume of the geopolymer specimens in the considered range.

  12. Do phytotoxic allelochemicals remain in ashes after burning Chrysanthemoides monilifera subsp. monilifera (boneseed)?

    Science.gov (United States)

    Harun, Md Abdullah Yousuf Al; Johnson, Joshua; Robinson, Randall W

    2016-06-01

    Australia is facing challenges in controlling Chrysanthemoides monilifera subsp. monilifera (boneseed). However, burning has achieved some success in this regard. We aimed to investigate the comparative phytotoxicity of boneseed dried powder and ashes (burnt at 450°C and 250°C). Phenolic compounds in powder and ashes were measured using Folin-Ciocalteu assay and HPLC. The phytotoxicity of boneseed powder and ash extracts was assessed through germination bioassay on Lactuca sativa and the phytotoxicity of litter and ashes was evaluated using field soil, both in growth chamber. Burning of boneseed reduced total phenolics in ashes of boneseed organs by 99% and 100% both at high and low temperatures. The four phenolic compounds that were detected in boneseed were either absent or at negligible levels in the ashes, with inversely related to temperature. Both boneseed ash extracts and litter ash-mediated soil significantly reduced phytotoxicity displaying increased germination, biometric and biochemical parameters of test species compared with unburnt powder extracts and litter powder-mediated soil respectively, with greater reduction of phytotoxicity found for ashes produced at the lower temperature. Interestingly, the ash extracts and litter ash-mediated soil were found to stimulate some of those parameters of the test species compared to control. There was no excessive reactive oxygen species (ROS) produced in test species exposed to ash extracts compared with unburnt powder extracts. These findings suggest that burning of boneseed is an appropriate method of weed control and that this approach will reduce phytotoxicity of this species on native plants. PMID:27266307

  13. Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    We used thermal chemical vapor deposition (CVD) to synthesize few-layer graphene (FLG) films at a low temperature (600 °C). The FLG films were synthesized on Ni foils using a gaseous mixture of various ratios of H2 to acetylene (C2H2). We investigated that the effects of C2H2 flow on the structural properties of graphene. The quality of low-temperature CVD FLG films was investigated by Raman spectroscopy, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. The results of Raman spectroscopy revealed that C2H2 flux clearly influences the features of FLG films. To enhance the quality of FLG films grown by low-temperature CVD, the films were grown under various gas flow ratios. The results demonstrated that the common thermal CVD method that uses C2H2 as a supplemental carbon source constitutes a low-cost and easy way to synthesize graphene films at low temperature for graphene-based applications. - Highlights: • We synthesized the graphene on nickel foil by thermal CVD method. • The graphene was successfully synthesized at a low temperature of 600 °C. • The acetylene flows were controlled to enhance the quality of graphene

  14. Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Tonya M; Stewart, Brian W; Capo, Rosemary C; Schroeder, Karl T; Chapman, Elizabeth C; Spivak-Birndorf, Lev J; Vesper, Dorothy J; Cardone, Carol R; Rohar, Paul C

    2013-05-01

    The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.

  15. Prediction of Single-Peak Flow Stress Curves at High Temperatures Using a New Logarithmic-Power Function

    Science.gov (United States)

    Shafiei, Ehsan; Dehghani, Kamran

    2016-09-01

    In this study, using a nonlinear estimation of strain hardening rate versus strain, a new phenomenological constitutive equation is developed. Utilizing the presented model, three new equations were presented to determine the peak strain, critical strain for initiation of dynamic recrystallization (DRX), and transition strain associated with the maximum softening rate of DRX. Also, two temperature and strain rate-sensitive parameters were introduced to generate flow stress curve at any desired deformation conditions. The predicted results were found to be in a good agreement with the ones measured experimentally. Maximum errors in prediction of peak strain, critical strain, and transition strain were about 8, 11, and 4%, respectively. In addition, evaluation of maximum errors in prediction of flow stress indicates that the presented constitutive equation gives a more precise estimation of flow stress curves in comparison with the previous models pertaining modeling of single-peak flow stress curves.

  16. Analysis of two-phase flow instability in helical tube steam generator in high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yu; Lv, Xuefeng; Wang, Shengfei; Niu, Fenglei; Tian, Li [North China Electric Power Univ., Beijing (Switzerland)

    2012-03-15

    The steam generator composed of multi-helical tubes is used in high temperature gas cooled reactors and two-phase flow instability should be avoided in design. And density-wave oscillation which is mainly due to flow, density and the relationship between the pressure drop delays and feedback effects is one of the two-phase flow instability phenomena easily to occur. Here drift-flux model is used to simulate the performance of the fluid in the secondary side and frequency domain and time domain methods are used to evaluate whether the density-wave oscillation will happen or not. Several operating conditions with nominal power from 15% to 30% are calculated in this paper. The results of the two methods are in accordance, flow instability will occur when power is less than 20% nominal power, which is also according with the result of the experiments well.

  17. Investigation on the Relation of CICC Stability Margin to Mass Flow Rate and Operating Temperature of Helium

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To circulate supercritical helium, a differential pressure between inlet and outlet has to be applied. A differential pressure can be generated by a refrigerating compressor which forces the coolant through cooling channels. A differential pressure corresponds to a constant flow rate in a constant length. The coolant flow rate was set at different values from 0.2 to 2.8 g/s. The numerical simulation was performed using the 1-D mathematical model (Gandalf). The results of the experiment and simulation show that the larger the coolant flow rate, the higher the stability margin is. It is also showed that the shorter the cooling channel, the higher the stability margin is with the same coolant flow rate. Meanwhile, we also introduce the influence of temperature and pressure on the stability margin of CICC.

  18. Temporal and spatial variations in fly ash quality

    Science.gov (United States)

    Hower, J.C.; Trimble, A.S.; Eble, C.F.

    2001-01-01

    Fly ash quality, both as the amount of petrographically distinguishable carbons and in chemistry, varies in both time and space. Temporal variations are a function of a number of variables. Variables can include variations in the coal blend organic petrography, mineralogy, and chemistry; variations in the pulverization of the coal, both as a function of the coal's Hardgrove grindability index and as a function of the maintenance and settings of the pulverizers; and variations in the operating conditions of the boiler, including changes in the pollution control system. Spatial variation, as an instantaneous measure of fly ash characteristics, should not involve changes in the first two sets of variables listed above. Spatial variations are a function of the gas flow within the boiler and ducts, certain flow conditions leading to a tendency for segregation of the less-dense carbons in one portion of the gas stream. Caution must be applied in sampling fly ash. Samples from a single bin, or series of bins, m ay not be representative of the whole fly ash, providing a biased view of the nature of the material. Further, it is generally not possible to be certain about variation until the analysis of the ash is complete. ?? 2001 Elsevier Science B.V. All rights reserved.

  19. Study of the influence of water properties dependency with the temperature in a laminar downward flow between parallel flat plates

    International Nuclear Information System (INIS)

    In this work we develop a model that contemplates stationary completely developed laminar downward flow between flat parallel plates with uniform and constant heat fluxes. The Boussinesq approach is used in the momentum equation, taking into account the change of the density with the temperature only in the gravitational term. The system is at atmospheric pressure and the dependencies of the density and the thermal conductivity with the temperature are also considered. The velocity and temperature profiles, the friction factor, the heat transfer coefficient and the Nusselt Number are calculated, for different flow rates and heating powers. The results allow to obtain some conclusions that can be of interest in the study of research reactors with forced downward refrigeration and flat plate fuels, although these calculations do not exactly represent the real behavior inside these channels. (author)

  20. Constitutive Modeling of High-Temperature Flow Behavior of Al-0.62Mg-0.73Si Aluminum Alloy

    Science.gov (United States)

    Sun, Y.; Ye, W. H.; Hu, L. X.

    2016-04-01

    The high-temperature flow behavior of an aerospace structural material Al-0.62 Mg-0.73Si aluminum alloy was researched in this work. The isothermal compression tests were carried out in the temperature range of 683-783 K and strain rate range of 0.001-1 s-1. Based on the obtained true stress-true strain curves, the constitutive relationship of the alloy was revealed by establishing the Arrhenius-type constitutive model and a modified Johnson-Cook model. It was found that the flow characteristics were closely related to deformation temperature and strain rate. The activation energy of the studied material was calculated to be approximately 174 kJ mol-1. A comparative study has been conducted on the accuracy and reliability of the proposed models using statistics analysis method. It was proved by error analysis that the Arrhenius-type model had a better performance than the modified Johnson-Cook model.