WorldWideScience

Sample records for ascl1 target genes

  1. FOXO3 Shares Common Targets with ASCL1 Genome-wide and Inhibits ASCL1-Dependent Neurogenesis

    Directory of Open Access Journals (Sweden)

    Ashley E. Webb

    2013-08-01

    Full Text Available FOXO transcription factors are central regulators of longevity from worms to humans. FOXO3, the FOXO isoform associated with exceptional human longevity, preserves adult neural stem cell pools. Here, we identify FOXO3 direct targets genome-wide in primary cultures of adult neural progenitor cells (NPCs. Interestingly, FOXO3-bound sites are enriched for motifs for bHLH transcription factors, and FOXO3 shares common targets with the proneuronal bHLH transcription factor ASCL1/MASH1 in NPCs. Analysis of the chromatin landscape reveals that FOXO3 and ASCL1 are particularly enriched at the enhancers of genes involved in neurogenic pathways. Intriguingly, FOXO3 inhibits ASCL1-dependent neurogenesis in NPCs and direct neuronal conversion in fibroblasts. FOXO3 also restrains neurogenesis in vivo. Our study identifies a genome-wide interaction between the prolongevity transcription factor FOXO3 and the cell-fate determinant ASCL1 and raises the possibility that FOXO3’s ability to restrain ASCL1-dependent neurogenesis may help preserve the neural stem cell pool.

  2. Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandre A.S.F. Raposo

    2015-03-01

    Full Text Available The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

  3. Ascl1 is a required downstream effector of Gsx gene function in the embryonic mouse telencephalon

    Directory of Open Access Journals (Sweden)

    Allen Zegary J

    2009-02-01

    Full Text Available Abstract Background The homeobox gene Gsx2 (formerly Gsh2 is known to regulate patterning in the lateral ganglionic eminence (LGE of the embryonic telencephalon. In its absence, the closely related gene Gsx1 (previously known as Gsh1 can partially compensate in the patterning and differentiation of ventral telencephalic structures, such as the striatum. However, the cellular and molecular mechanisms underlying this compensation remain unclear. Results We show here that in the Gsx2 mutants Gsx1 is expressed in only a subset of the ventral telencephalic progenitors that normally express Gsx2. Based on the similarities in the expression of Gsx1 and Ascl1 (Mash1 within the Gsx2 mutant LGE, we examined whether Ascl1 plays an integral part in the Gsx1-based recovery. Ascl1 mutants show only modest alterations in striatal development; however, in Gsx2;Ascl1 double mutants, striatal development is severely affected, similar to that seen in the Gsx1;Gsx2 double mutants. This is despite the fact that Gsx1 is expressed, and even expands, in the Gsx2;Ascl1 mutant LGE, comparable to that seen in the Gsx2 mutant. Finally, Notch signaling has recently been suggested to be required for normal striatal development. In spite of the fact that Notch signaling is severely disrupted in Ascl1 mutants, it actually appears to be improved in the Gsx2;Ascl1 double mutants. Conclusion These results, therefore, reveal a non-proneural requirement of Ascl1 that together with Gsx1 compensates for the loss of Gsx2 in a subset of LGE progenitors.

  4. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs

    Directory of Open Access Journals (Sweden)

    Mark D. Borromeo

    2016-08-01

    Full Text Available Small cell lung carcinoma (SCLC is a high-grade pulmonary neuroendocrine tumor. The transcription factors ASCL1 and NEUROD1 play crucial roles in promoting malignant behavior and survival of human SCLC cell lines. Here, we find that ASCL1 and NEUROD1 identify heterogeneity in SCLC, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1, but not NEUROD1, is present in mouse pulmonary neuroendocrine cells, and only ASCL1 is required in vivo for tumor formation in mouse models of SCLC. ASCL1 targets oncogenic genes including MYCL1, RET, SOX2, and NFIB while NEUROD1 targets MYC. ASCL1 and NEUROD1 regulate different genes that commonly contribute to neuronal function. ASCL1 also regulates multiple genes in the NOTCH pathway including DLL3. Together, ASCL1 and NEUROD1 distinguish heterogeneity in SCLC with distinct genomic landscapes and distinct gene expression programs.

  5. Transcriptional control of vertebrate neurogenesis by the proneural factor Ascl1

    Directory of Open Access Journals (Sweden)

    Francisca eVasconcelos

    2014-12-01

    Full Text Available Proneural transcription factors such as Ascl1 function as master regulators of neurogenesis in vertebrates, being both necessary and sufficient for the activation of a full program of neuronal differentiation. Novel insights into the dynamics of Ascl1 expression at the cellular level, combined with the progressive characterization of its transcriptional program, have expanded the classical view of Ascl1 as a differentiation factor in neurogenesis. These advances resulted in a new model, whereby Ascl1 promotes sequentially the proliferation and differentiation of neural/stem progenitor cells. The multiple activities of Ascl1 are associated with the activation of distinct direct targets at progressive stages along the neuronal lineage. How this temporal pattern is established is poorly understood. Two modes of Ascl1 expression recently described (oscillatory versus sustained are likely to be of importance, together with additional mechanistic determinants such as the chromatin landscape and other transcriptional pathways. Here we revise these latest findings, and discuss their implications to the gene regulatory functions of Ascl1 during neurogenesis.

  6. Analysis list: Ascl1 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Ascl1 Embryo,Embryonic fibroblast,Neural + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/As...cl1.Embryo.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ascl1.Embryonic_fibroblas...cl1.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Ascl1.5.tsv http://dbarc...hive.biosciencedbc.jp/kyushu-u/mm9/target/Ascl1.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/As...t.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Ascl1.Neural.tsv http://dbarchive.bios

  7. Localization of the human achaete-scute homolog gene (ASCL 1) distal to phenylalanine hydroxylase (PAH) and proximal to tumor rejection antigen (TRA 1) on chromosome 12q22-q23

    Energy Technology Data Exchange (ETDEWEB)

    Renault, B.; Kucherlapati, R.; Krauter, K. [Albert Einstein College of Medicine, Bronx, NY (United States); Lieman, J.; Ward, D. [Yale Univ. School of Medicine, New Haven, CT (United States)

    1995-11-01

    ASCL1, the human achaete-scute homolog, is a helix-loop-helix transcription factor that was previously assigned to chromosome 12 using a rodent-human somatic hybrid panel. We now placed this gene on a yeast artificial chromosome contig encompassing position 119 cM of the Genethon genetic map between the two genes phenylalanine hydroxylase (PAH) and tumor rejection antigen 1 (TRA1). We also localized ASCL1 in the 12q22-q23 cytogenetic interval by using fluorescence in situ hybridization. 13 refs., 2 figs.

  8. Ascl1 promotes tangential migration and confines migratory routes by induction of Ephb2 in the telencephalon

    Science.gov (United States)

    Liu, Yuan-Hsuan; Tsai, Jin-Wu; Chen, Jia-Long; Yang, Wan-Shan; Chang, Pei-Ching; Cheng, Pei-Lin; Turner, David L.; Yanagawa, Yuchio; Wang, Tsu-Wei; Yu, Jenn-Yah

    2017-01-01

    During development, cortical interneurons generated from the ventral telencephalon migrate tangentially into the dorsal telencephalon. Although Achaete-scute family bHLH transcription factor 1 (Ascl1) plays important roles in the developing telencephalon, whether Ascl1 regulates tangential migration remains unclear. Here, we found that Ascl1 promoted tangential migration along the ventricular zone/subventricular zone (VZ/SVZ) and intermediate zone (IZ) of the dorsal telencephalon. Distal-less homeobox 2 (Dlx2) acted downstream of Ascl1 in promoting tangential migration along the VZ/SVZ but not IZ. We further identified Eph receptor B2 (Ephb2) as a direct target of Ascl1. Knockdown of EphB2 disrupted the separation of the VZ/SVZ and IZ migratory routes. Ephrin-A5, a ligand of EphB2, was sufficient to repel both Ascl1-expressing cells in vitro and tangentially migrating cortical interneurons in vivo. Together, our results demonstrate that Ascl1 induces expression of Dlx2 and Ephb2 to maintain distinct tangential migratory routes in the dorsal telencephalon. PMID:28276447

  9. Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma

    Directory of Open Access Journals (Sweden)

    Luke A. Wylie

    2015-05-01

    Full Text Available Neuroblastoma (NB, although rare, accounts for 15% of all paediatric cancer mortality. Unusual among cancers, NBs lack a consistent set of gene mutations and, excluding large-scale chromosomal rearrangements, the genome seems to be largely intact. Indeed, many interesting features of NB suggest that it has little in common with adult solid tumours but instead has characteristics of a developmental disorder. NB arises overwhelmingly in infants under 2 years of age during a specific window of development and, histologically, NB bears striking similarity to undifferentiated neuroblasts of the sympathetic nervous system, its likely cells of origin. Hence, NB could be considered a disease of development arising when neuroblasts of the sympathetic nervous system fail to undergo proper differentiation, but instead are maintained precociously as progenitors with the potential for acquiring further mutations eventually resulting in tumour formation. To explore this possibility, we require a robust and flexible developmental model to investigate the differentiation of NB's presumptive cell of origin. Here, we use Xenopus frog embryos to characterise the differentiation of anteroventral noradrenergic (AVNA cells, cells derived from the neural crest. We find that these cells share many characteristics with their mammalian developmental counterparts, and also with NB cells. We find that the transcriptional regulator Ascl1 is expressed transiently in normal AVNA cell differentiation but its expression is aberrantly maintained in NB cells, where it is largely phosphorylated on multiple sites. We show that Ascl1's ability to induce differentiation of AVNA cells is inhibited by its multi-site phosphorylation at serine-proline motifs, whereas overexpression of cyclin-dependent kinases (CDKs and MYCN inhibit wild-type Ascl1-driven AVNA differentiation, but not differentiation driven by a phospho-mutant form of Ascl1. This suggests that the maintenance of ASCL1

  10. Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system.

    Science.gov (United States)

    Aaker, Joshua D; Patineau, Andrea L; Yang, Hyun-Jin; Ewart, David T; Nakagawa, Yasushi; McLoon, Steven C; Koyano-Nakagawa, Naoko

    2010-04-19

    During neural development, members of MTG family of transcriptional repressors are induced by proneural basic helix-loop-helix (bHLH) transcription factors and in turn inhibit the activity of the bHLH proteins, forming a negative feedback loop that regulates the normal progression of neurogenesis. Three MTG genes, MTG8, MTG16 and MTGR1, are expressed in distinct patterns in the developing nervous system. Various bHLH proteins are also expressed in distinct patterns. We asked whether there is a functional relationship between specific MTG and bHLH proteins in developing chick spinal cord. First, we examined if each MTG gene is induced by specific bHLH proteins. Although expression of NEUROG2, ASCL1 and MTG genes overlapped, the boundaries of gene expression did not match. Ectopic expression analysis showed that MTGR1 and NEUROD4, which show similar expression patterns, are regulated differently by NEUROG2 and ASCL1. Thus, our results show that expression of MTG genes is not regulated by a single upstream bHLH protein, but represents an integration of the activity of multiple regulators. Next, we asked if each MTG protein inhibits specific bHLH proteins. Transcription assay showed that NEUROG2 and ASCL1 are inhibited by MTGR1 and MTG16, and less efficiently by MTG8. Deletion mapping of MTGR1 showed that MTGR1 binds NEUROG2 and ASCL1 using multiple interaction surfaces, and all conserved domains are required for its repressor activity. These results support the model that MTG proteins form a higher-order repressor complex and modulate transcriptional activity of bHLH proteins during neurogenesis.

  11. File list: Oth.EmF.50.Ascl1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.50.Ascl1.AllCell mm9 TFs and others Ascl1 Embryonic fibroblast SRX323557,SR...X323561,SRX323559 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.50.Ascl1.AllCell.bed ...

  12. File list: Oth.EmF.05.Ascl1.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.EmF.05.Ascl1.AllCell mm9 TFs and others Ascl1 Embryonic fibroblast SRX323557,SR...X323561,SRX323559 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.EmF.05.Ascl1.AllCell.bed ...

  13. Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit.

    Science.gov (United States)

    Hufnagel, Robert B; Riesenberg, Amy N; Quinn, Malgorzata; Brzezinski, Joseph A; Glaser, Tom; Brown, Nadean L

    2013-05-01

    Retinal neurons and glia arise from a common progenitor pool in a temporal order, with retinal ganglion cells (RGCs) appearing first, and Müller glia last. The transcription factors Atoh7/Math5 and Ascl1/Mash1 represent divergent bHLH clades, and exhibit distinct spatial and temporal retinal expression patterns, with little overlap during early development. Here, we tested the ability of Ascl1 to change the fate of cells in the Atoh7 lineage when misexpressed from the Atoh7 locus, using an Ascl1-IRES-DsRed2 knock-in allele. In Atoh7(Ascl1KI/+) and Atoh7(Ascl1KI/Ascl1KI) embryos, ectopic Ascl1 delayed cell cycle exit and differentiation, even in cells coexpressing Atoh7. The heterozygous retinas recovered, and eventually produced a normal complement of RGCs, while homozygous substitution of Ascl1 for Atoh7 did not promote postnatal retinal fates precociously, nor rescue Atoh7 mutant phenotypes. However, our analyses revealed two unexpected findings. First, ectopic Ascl1 disrupted cell cycle progression within the marked Atoh7 lineage, but also nonautonomously in other retinal cells. Second, the size of the Atoh7 retinal lineage was unaffected, supporting the idea of a compensatory shift of the non-proliferative cohort to maintain lineage size. Overall, we conclude that Ascl1 acts dominantly to block cell cycle exit, but is incapable of redirecting the fates of early RPCs.

  14. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  15. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo.

    Science.gov (United States)

    Liu, Yueguang; Miao, Qinglong; Yuan, Jiacheng; Han, Su'e; Zhang, Panpan; Li, Sanlan; Rao, Zhiping; Zhao, Wenlong; Ye, Qian; Geng, Junlan; Zhang, Xiaohui; Cheng, Leping

    2015-06-24

    In vivo induction of non-neuronal cells into neurons by transcription factors offers potential therapeutic approaches for neural regeneration. Although generation of induced neuronal (iN) cells in vitro and in vivo has been reported, whether iN cells can be fully integrated into existing circuits remains unclear. Here we show that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo. Specific expression of Ascl1 in astrocytes by infection with GFAP-adeno-associated virus (AAV) vector converts astrocytes in dorsal midbrain, striatum, and somatosensory cortex of postnatal and adult mice into functional neurons in vivo. These iN cells mature progressively, exhibiting neuronal morphology and markers, action potentials, and synaptic inputs from and output to existing neurons. Thus, a single transcription factor, Ascl1, is sufficient to convert brain astrocytes into functional neurons, and GFAP-AAV is an efficient vector for generating iN cells from astrocytes in vivo.

  16. Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina.

    Directory of Open Access Journals (Sweden)

    Nicolas Mazurier

    Full Text Available In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.

  17. Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina.

    Science.gov (United States)

    Mazurier, Nicolas; Parain, Karine; Parlier, Damien; Pretto, Silvia; Hamdache, Johanna; Vernier, Philippe; Locker, Morgane; Bellefroid, Eric; Perron, Muriel

    2014-01-01

    In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.

  18. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility.

    Science.gov (United States)

    Roach, Gillian; Heath Wallace, Rachel; Cameron, Amy; Emrah Ozel, Rifat; Hongay, Cintia F; Baral, Reshica; Andreescu, Silvana; Wallace, Kenneth N

    2013-04-15

    The vertebrate intestinal epithelium is renewed continuously from stem cells at the base of the crypt in mammals or base of the fold in fish over the life of the organism. As stem cells divide, newly formed epithelial cells make an initial choice between a secretory or enterocyte fate. This choice has previously been demonstrated to involve Notch signaling as well as Atonal and Her transcription factors in both embryogenesis and adults. Here, we demonstrate that in contrast to the atoh1 in mammals, ascl1a is responsible for formation of secretory cells in zebrafish. ascl1a-/- embryos lack all intestinal epithelial secretory cells and instead differentiate into enterocytes. ascl1a-/- embryos also fail to induce intestinal epithelial expression of deltaD suggesting that ascl1a plays a role in initiation of Notch signaling. Inhibition of Notch signaling increases the number of ascl1a and deltaD expressing intestinal epithelial cells as well as the number of developing secretory cells during two specific time periods: between 30 and 34hpf and again between 64 and 74hpf. Loss of enteroendocrine products results in loss of anterograde motility in ascl1a-/- embryos. 5HT produced by enterochromaffin cells is critical in motility and secretion within the intestine. We find that addition of exogenous 5HT to ascl1a-/- embryos at near physiological levels (measured by differential pulse voltammetry) induce anterograde motility at similar levels to wild type velocity, distance, and frequency. Removal or doubling the concentration of 5HT in WT embryos does not significantly affect anterograde motility, suggesting that the loss of additional enteroendocrine products in ascl1a-/- embryos also contributes to intestinal motility. Thus, zebrafish intestinal epithelial cells appear to have a common secretory progenitor from which all subtypes form. Loss of enteroendocrine cells reveals the critical need for enteroendocrine products in maintenance of normal intestinal motility.

  19. Systematic analysis of the achaete-scute complex-like gene signature in clinical cancer patients.

    Science.gov (United States)

    Wang, Chih-Yang; Shahi, Payam; Huang, John Ting Wei; Phan, Nam Nhut; Sun, Zhengda; Lin, Yen-Chang; Lai, Ming-Derg; Werb, Zena

    2017-01-01

    The achaete-scute complex-like (ASCL) family, also referred to as 'achaete-scute complex homolog' or 'achaete-scute family basic helix-loop-helix transcription factor', is critical for proper development of the nervous system and deregulation of ASCL plays a key role in psychiatric and neurological disorders. The ASCL family consists of five members, namely ASCL1, ASCL2, ASCL3, ASCL4 and ASCL5. The ASCL1 gene serves as a potential oncogene during lung cancer development. There is a correlation between increased ASCL2 expression and colon cancer development. Inhibition of ASCL2 reduced cellular proliferation and tumor growth in xenograft tumor experiments. Although previous studies demonstrated involvement of ASCL1 and ASCL2 in tumor development, little is known on the remaining ASCL family members and their potential effect on tumorigenesis. Therefore, a holistic approach to investigating the expression of ASCL family genes in diverse types of cancer may provide new insights in cancer research. In this study, we utilized a web-based microarray database (Oncomine; www.oncomine.org) to analyze the transcriptional expression of the ASCL family in clinical cancer and normal tissues. Our bioinformatics analysis revealed the potential involvement of multiple ASCL family members during tumor onset and progression in multiple types of cancer. Compared to normal tissue, ASCL1 exhibited a higher expression in cancers of the lung, pancreas, kidney, esophagus and head and neck, whereas ASCL2 exhibited a high expression in cancers of the breast, colon, stomach, lung, head and neck, ovary and testis. ASCL3, however, exhibited a high expression only in breast cancer. Interestingly, ASCL1 expression was downregulated in melanoma and in cancers of the bladder, breast, stomach and colon. ASCL2 exhibited low expression levels in sarcoma, melanoma, brain and prostate cancers. Reduction in the expression of ASCL3 was detected in lymphoma, bladder, cervical, kidney and epithelial

  20. Gene targeting with retroviral vectors

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.; Bernstein, A. (Toronto Univ., ON (Canada))

    1989-04-01

    The authors have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418/sup r/ cell per 3 x 10/sup 6/ infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.

  1. Gene targeting in malaria parasites.

    Science.gov (United States)

    Ménard, R; Janse, C

    1997-10-01

    Gene targeting, which permits alteration of a chosen gene in a predetermined way by homologous recombination, is an emerging technology in malaria research. Soon after the development of techniques for stable transformation of red blood cell stages of Plasmodium falciparum and Plasmodium berghei, genes of interest were disrupted in the two species. The main limitations of gene targeting in malaria parasites result from the intracellular growth and slow replication of these parasites. On the other hand, the technology is facilitated by the very high rate of homologous recombination following transformation with targeting constructs (approximately 100%). Here, we describe (i) the vector design and the type of mutation that may be generated in a target locus, (ii) the selection and screening strategies that can be used to identify clones with the desired modification, and (iii) the protocol that was used for disrupting the circumsporozoite protein (CS) and thrombospondin-related anonymous protein (TRAP) genes of P. berghei.

  2. Gene Targeting in Neuroendocrinology.

    Science.gov (United States)

    Candlish, Michael; De Angelis, Roberto; Götz, Viktoria; Boehm, Ulrich

    2015-09-20

    Research in neuroendocrinology faces particular challenges due to the complex interactions between cells in the hypothalamus, in the pituitary gland and in peripheral tissues. Within the hypothalamus alone, attempting to target a specific neuronal cell type can be problematic due to the heterogeneous nature and level of cellular diversity of hypothalamic nuclei. Because of the inherent complexity of the reproductive axis, the use of animal models and in vivo experiments are often a prerequisite in reproductive neuroendocrinology. The advent of targeted genetic modifications, particularly in mice, has opened new avenues of neuroendocrine research. Within this review, we evaluate various mouse models used in reproductive neuroendocrinology and discuss the different approaches to generate genetically modified mice, along with their inherent advantages and disadvantages. We also discuss a variety of versatile genetic tools with a focus on their potential use in reproductive neuroendocrinology.

  3. Progress of gene targeting in mouse

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Gene targeting is a powerful approach of study- ing the genefunction in vivo. Specific genetic modifications, including simple gene disruption, point mutations, large chromosomal deletions and rearrangements, targeted incor- poration of foreign genes, could be introduced into the mouse genome by gene targeting. Recent studies make it possible to do the gene targeting with temporal and spatial control.

  4. Targeted gene flow for conservation.

    Science.gov (United States)

    Kelly, Ella; Phillips, Ben L

    2016-04-01

    Anthropogenic threats often impose strong selection on affected populations, causing rapid evolutionary responses. Unfortunately, these adaptive responses are rarely harnessed for conservation. We suggest that conservation managers pay close attention to adaptive processes and geographic variation, with an eye to using them for conservation goals. Translocating pre-adapted individuals into recipient populations is currently considered a potentially important management tool in the face of climate change. Targeted gene flow, which involves moving individuals with favorable traits to areas where these traits would have a conservation benefit, could have a much broader application in conservation. Across a species' range there may be long-standing geographic variation in traits or variation may have rapidly developed in response to a threatening process. Targeted gene flow could be used to promote natural resistance to threats to increase species resilience. We suggest that targeted gene flow is a currently underappreciated strategy in conservation that has applications ranging from the management of invasive species and their impacts to controlling the impact and virulence of pathogens.

  5. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  6. Targeting Gene-Virotherapy for Cancer

    Institute of Scientific and Technical Information of China (English)

    Xin-Yuan LIU; Jing-Fa GU; Wen-Fang SHI

    2005-01-01

    Gene therapy and viral therapy for cancer have therapeutic effects, but there has been no significant breakthrough in these two forms of therapy. Therefore, a new strategy called "targeting genevirotherapy", which combines the advantages of gene therapy and viral therapy, has been formulated. This new therapy has stronger antitumor effects than either gene therapy or viral therapy. A tumor-specific replicative adenovirus vector ZD55 (E1B55KD deleted Adv.) was constructed and various single therapeutic genes were inserted into ZD55 to form ZD55-gene. These are the targeting gene-virotherapy genes. But experiments showed that a single gene was not effective in eliminating the tumor mass, and therefore two genes were separately inserted into ZD55. This strategy is called "targeting dual gene-virotherapy" (with PCT patent). Better results were obtained with this strategy, and all the xenograft tumor masses were completely eliminated in all mice when two suitable genes producing a synergetic or compensative effect were chosen. Twenty-six papers on these strategies have been published by researchers in our laboratory.Furthermore, an adenoviral vector with two targeting promoters harboring two antitumor genes has been constructed for cancer therapy. Promising results have been obtained with this adenoviral vectorand another patent has been applied for. This antitumor strategy can be used to kill tumor cells completely with minimum damage to normal cells.

  7. Targeting tumor suppressor genes for cancer therapy.

    Science.gov (United States)

    Liu, Yunhua; Hu, Xiaoxiao; Han, Cecil; Wang, Liana; Zhang, Xinna; He, Xiaoming; Lu, Xiongbin

    2015-12-01

    Cancer drugs are broadly classified into two categories: cytotoxic chemotherapies and targeted therapies that specifically modulate the activity of one or more proteins involved in cancer. Major advances have been achieved in targeted cancer therapies in the past few decades, which is ascribed to the increasing understanding of molecular mechanisms for cancer initiation and progression. Consequently, monoclonal antibodies and small molecules have been developed to interfere with a specific molecular oncogenic target. Targeting gain-of-function mutations, in general, has been productive. However, it has been a major challenge to use standard pharmacologic approaches to target loss-of-function mutations of tumor suppressor genes. Novel approaches, including synthetic lethality and collateral vulnerability screens, are now being developed to target gene defects in p53, PTEN, and BRCA1/2. Here, we review and summarize the recent findings in cancer genomics, drug development, and molecular cancer biology, which show promise in targeting tumor suppressors in cancer therapeutics.

  8. Targeted gene repair – in the arena

    OpenAIRE

    2003-01-01

    The development of targeted gene repair is under way and, despite some setbacks, shows promise as an alternative form of gene therapy. This approach uses synthetic DNA molecules to activate and direct the cell’s inherent DNA repair systems to correct inborn errors. The progress of this technique and its therapeutic potential are discussed in relation to the treatment of genetic diseases.

  9. Magnetic targeting strategies in gene delivery.

    Science.gov (United States)

    Delyagina, Evgenya; Li, Wenzhong; Ma, Nan; Steinhoff, Gustav

    2011-11-01

    Gene delivery is a process of the insertion of transgenes into cells with the purpose to obtain the expression of encoded protein. The therapeutic application of this process is termed gene therapy, which is becoming a promising instrument to treat genetic and acquired diseases. Although numerous methods of gene transfer have already been developed, including biological, physical and chemical approaches, the optimal strategy has to be discovered. Importantly, it should be effective, selective and safe to be translated to the clinic. Magnetic targeting has been demonstrated as an effective strategy to decrease side effects of gene transfer, while increasing the selectivity and efficiency of the applied vector. This article will focus on the latest progress in the development of different magnetic vectors, based on both viral and nonviral gene delivery agents. It will also include a description of magnetic targeting applications in stem cells and in vivo, which has gained interest in recent years due to the rapid development of technology.

  10. Targeting Herpetic Keratitis by Gene Therapy

    Directory of Open Access Journals (Sweden)

    Hossein Mostafa Elbadawy

    2012-01-01

    Full Text Available Ocular gene therapy is rapidly becoming a reality. By November 2012, approximately 28 clinical trials were approved to assess novel gene therapy agents. Viral infections such as herpetic keratitis caused by herpes simplex virus 1 (HSV-1 can cause serious complications that may lead to blindness. Recurrence of the disease is likely and cornea transplantation, therefore, might not be the ideal therapeutic solution. This paper will focus on the current situation of ocular gene therapy research against herpetic keratitis, including the use of viral and nonviral vectors, routes of delivery of therapeutic genes, new techniques, and key research strategies. Whereas the correction of inherited diseases was the initial goal of the field of gene therapy, here we discuss transgene expression, gene replacement, silencing, or clipping. Gene therapy of herpetic keratitis previously reported in the literature is screened emphasizing candidate gene therapy targets. Commonly adopted strategies are discussed to assess the relative advantages of the protective therapy using antiviral drugs and the common gene therapy against long-term HSV-1 ocular infections signs, inflammation and neovascularization. Successful gene therapy can provide innovative physiological and pharmaceutical solutions against herpetic keratitis.

  11. Gene targeting in adult rhesus macaque fibroblasts

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2008-03-01

    Full Text Available Abstract Background Gene targeting in nonhuman primates has the potential to produce critical animal models for translational studies related to human diseases. Successful gene targeting in fibroblasts followed by somatic cell nuclear transfer (SCNT has been achieved in several species of large mammals but not yet in primates. Our goal was to establish the protocols necessary to achieve gene targeting in primary culture of adult rhesus macaque fibroblasts as a first step in creating nonhuman primate models of genetic disease using nuclear transfer technology. Results A primary culture of adult male fibroblasts was transfected with hTERT to overcome senescence and allow long term in vitro manipulations. Successful gene targeting of the HPRT locus in rhesus macaques was achieved by electroporating S-phase synchronized cells with a construct containing a SV40 enhancer. Conclusion The cell lines reported here could be used for the production of null mutant rhesus macaque models of human genetic disease using SCNT technology. In addition, given the close evolutionary relationship and biological similarity between rhesus macaques and humans, the protocols described here may prove useful in the genetic engineering of human somatic cells.

  12. Recombinant fungal entomopathogen RNAi target insect gene.

    Science.gov (United States)

    Hu, Qiongbo; Wu, Wei

    2016-11-01

    RNA interference (RNAi) technology is considered as an alternative for control of pests. However, RNAi has not been used in field conditions yet, since delivering exogenous ds/siRNA to target pests is very difficult. The laboratory methods of introducing the ds/siRNA into insects through feeding, micro feeding / dripping and injecting cannot be used in fields. Transgenic crop is perhaps the most effective application of RNAi for pest control, but it needs long-time basic researches in order to reduce the cost and evaluate the safety. Therefore, transgenic microbe is maybe a better choice. Entomopathogenic fungi generally invade the host insects through cuticle like chemical insecticides contact insect to control sucking sap pests. Isaria fumosorosea is a common fungal entomopathogen in whitefly, Bemisia tabaci. We constructed a recombinant strain of I. fumosorosea expressing specific dsRNA of whitefly's TLR7 gene. It could silence the TLR7 gene and improve the virulence against whitefly. Transgenic fungal entomopathogen has shown great potential to attain the application of RNAi technology for pests control in fields. In the future, the research interests should be focused on the selection of susceptible target pests and their vital genes, and optimizing the methods for screening genes and recombinants as well.

  13. Gene expression profiling: can we identify the right target genes?

    Directory of Open Access Journals (Sweden)

    J. E. Loyd

    2008-12-01

    Full Text Available Gene expression profiling allows the simultaneous monitoring of the transcriptional behaviour of thousands of genes, which may potentially be involved in disease development. Several studies have been performed in idiopathic pulmonary fibrosis (IPF, which aim to define genetic links to the disease in an attempt to improve the current understanding of the underlying pathogenesis of the disease and target pathways for intervention. Expression profiling has shown a clear difference in gene expression between IPF and normal lung tissue, and has identified a wide range of candidate genes, including those known to encode for proteins involved in extracellular matrix formation and degradation, growth factors and chemokines. Recently, familial pulmonary fibrosis cohorts have been examined in an attempt to detect specific genetic mutations associated with IPF. To date, these studies have identified families in which IPF is associated with mutations in the gene encoding surfactant protein C, or with mutations in genes encoding components of telomerase. Although rare and clearly not responsible for the disease in all individuals, the nature of these mutations highlight the importance of the alveolar epithelium in disease pathogenesis and demonstrate the potential for gene expression profiling in helping to advance the current understanding of idiopathic pulmonary fibrosis.

  14. AAV-Based Targeting Gene Therapy

    Directory of Open Access Journals (Sweden)

    Wenfang Shi

    2008-01-01

    Full Text Available Since the first parvovirus serotype AAV2 was isolated from human and used as a vector for gene therapy application, there have been significant progresses in AAV vector development. AAV vectors have been extensively investigated in gene therapy for a broad application. AAV vectors have been considered as the first choice of vector due to efficient infectivity, stable expression and non-pathogenicity. However, the untoward events in AAV mediated in vivo gene therapy studies proposed the new challenges for their further applications. Deep understanding of the viral life cycle, viral structure and replication, infection mechanism and efficiency of AAV DNA integration, in terms of contributing viral, host-cell factors and circumstances would promote to evaluate the advantages and disadvantages and provide more insightful information for the possible clinical applications. In this review, main effort will be focused on the recent progresses in gene delivery to the target cells via receptor-ligand interaction and DNA specific integration regulation. Furthermore AAV receptor and virus particle intracellular trafficking are also discussed.

  15. Polyamine analogues targeting epigenetic gene regulation.

    Science.gov (United States)

    Huang, Yi; Marton, Laurence J; Woster, Patrick M; Casero, Robert A

    2009-11-04

    Over the past three decades the metabolism and functions of the polyamines have been actively pursued as targets for antineoplastic therapy. Interactions between cationic polyamines and negatively charged nucleic acids play a pivotal role in DNA stabilization and RNA processing that may affect gene expression, translation and protein activity. Our growing understanding of the unique roles that the polyamines play in chromatin regulation, and the discovery of novel proteins homologous with specific regulatory enzymes in polyamine metabolism, have led to our interest in exploring chromatin remodelling enzymes as potential therapeutic targets for specific polyamine analogues. One of our initial efforts focused on utilizing the strong affinity that the polyamines have for chromatin to create a backbone structure, which could be combined with active-site-directed inhibitor moieties of HDACs (histone deacetylases). Specific PAHAs (polyaminohydroxamic acids) and PABAs (polyaminobenzamides) polyamine analogues have demonstrated potent inhibition of the HDACs, re-expression of p21 and significant inhibition of tumour growth. A second means of targeting the chromatin-remodelling enzymes with polyamine analogues was facilitated by the recent identification of flavin-dependent LSD1 (lysine-specific demethylase 1). The existence of this enzyme demonstrated that histone lysine methylation is a dynamic process similar to other histone post-translational modifications. LSD1 specifically catalyses demethylation of mono- and di-methyl Lys4 of histone 3, key positive chromatin marks associated with transcriptional activation. Structural and catalytic similarities between LSD1 and polyamine oxidases facilitated the identification of biguanide, bisguanidine and oligoamine polyamine analogues that are potent inhibitors of LSD1. Cellular inhibition of LSD1 by these unique compounds led to the re-activation of multiple epigenetically silenced genes important in tumorigenesis. The use of

  16. Gene expression-targeted isoflavone therapy.

    Science.gov (United States)

    Węgrzyn, Alicja

    2012-04-01

    Lysosomal storage diseases (LSD) form a group of inherited metabolic disorders caused by dysfunction of one of the lysosomal proteins, resulting in the accumulation of certain compounds. Although these disorders are among first genetic diseases for which specific treatments were proposed, there are still serious unsolved problems that require development of novel therapeutic procedures. An example is neuronopathy, which develops in most of LSD and cannot be treated efficiently by currently approved therapies. Recently, a new potential therapy, called gene expression-targeted isoflavone therapy (GET IT), has been proposed for a group of LSD named mucopolysaccharidoses (MPS), in which storage of incompletely degraded glycosaminoglycans (GAGs) results in severe symptoms of virtually all tissues and organs, including central nervous system. The idea of this therapy is to inhibit synthesis of GAGs by modulating expression of genes coding for enzymes involved in synthesis of these compounds. Such a modulation is possible by using isoflavones, particularly genistein, which interfere with a signal transduction process necessary for stimulation of expression of certain genes. Results of in vitro experiments and studies on animal models indicated a high efficiency of GET IT, including correction of behavior of affected mice. However, clinical trials, performed with soy isoflavone extracts, revealed only limited efficacy. This caused a controversy about GET IT as a potential, effective treatment of patients suffering from MPS, especially neuronopathic forms of these diseases. It this critical review, I present possible molecular mechanisms of therapeutic action of isoflavones (particularly genistein) and suggest that efficacy of GET IT might be sufficiently high when using relatively high doses of synthetic genistein (which was employed in experiments on cell cultures and mouse models) rather than low doses of soy isoflavone extracts (which were used in clinical trials). This

  17. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  18. The mechanism of gene targeting in human somatic cells.

    Science.gov (United States)

    Kan, Yinan; Ruis, Brian; Lin, Sherry; Hendrickson, Eric A

    2014-04-01

    Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB) repair known as homologous recombination (HR). The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  19. Gene Targeting Without DSB Induction Is Inefficient in Barley.

    Science.gov (United States)

    Horvath, Mihaly; Steinbiss, Hans-Henning; Reiss, Bernd

    2016-01-01

    Double strand-break (DSB) induction allowed efficient gene targeting in barley (Hordeum vulgare), but little is known about efficiencies in its absence. To obtain such data, an assay system based on the acetolactate synthase (ALS) gene was established, a target gene which had been used previously in rice and Arabidopsis thaliana. Expression of recombinases RAD51 and RAD54 had been shown to improve gene targeting in A. thaliana and positive-negative (P-N) selection allows the routine production of targeted mutants without DSB induction in rice. We implemented these approaches in barley and analysed gene targeting with the ALS gene in wild type and RAD51 and RAD54 transgenic lines. In addition, P-N selection was tested. In contrast to the high gene targeting efficiencies obtained in the absence of DSB induction in A. thaliana or rice, not one single gene targeting event was obtained in barley. These data suggest that gene targeting efficiencies are very low in barley and can substantially differ between different plants, even at the same target locus. They also suggest that the amount of labour and time would become unreasonably high to use these methods as a tool in routine applications. This is particularly true since DSB induction offers efficient alternatives. Barley, unlike rice and A. thaliana has a large, complex genome, suggesting that genome size or complexity could be the reason for the low efficiencies. We discuss to what extent transformation methods, genome size or genome complexity could contribute to the striking differences in the gene targeting efficiencies between barley, rice and A. thaliana.

  20. Targeted gene knockout in chickens mediated by TALENs

    OpenAIRE

    Park, Tae Sub; Lee, Hong Jo; Kim, Ki Hyun; Kim, Jin-Soo; Han, Jae Yong

    2014-01-01

    Targeted gene knockout by editing specific loci in genome has revolutionized the field of functional genomics. Transcription activator-like effector nucleases (TALENs) are representative next-generation platforms for customized genomic editing in transgenic animals, as well as cultured cells in vitro. In this study, in combination with chicken primordial germ cell line with germ-line transmission capacity, we generated the ovalbumin gene knockout chickens by TALEN-mediated gene targeting. Our...

  1. Molecular pathways: targeting ETS gene fusions in cancer.

    Science.gov (United States)

    Feng, Felix Y; Brenner, J Chad; Hussain, Maha; Chinnaiyan, Arul M

    2014-09-01

    Rearrangements, or gene fusions, involving the ETS family of transcription factors are common driving events in both prostate cancer and Ewing sarcoma. These rearrangements result in pathogenic expression of the ETS genes and trigger activation of transcriptional programs enriched for invasion and other oncogenic features. Although ETS gene fusions represent intriguing therapeutic targets, transcription factors, such as those comprising the ETS family, have been notoriously difficult to target. Recently, preclinical studies have demonstrated an association between ETS gene fusions and components of the DNA damage response pathway, such as PARP1, the catalytic subunit of DNA protein kinase (DNAPK), and histone deactylase 1 (HDAC1), and have suggested that ETS fusions may confer sensitivity to inhibitors of these DNA repair proteins. In this review, we discuss the role of ETS fusions in cancer, the preclinical rationale for targeting ETS fusions with inhibitors of PARP1, DNAPK, and HDAC1, as well as ongoing clinical trials targeting ETS gene fusions.

  2. Characterisation of genome-wide PLZF/RARA target genes.

    Directory of Open Access Journals (Sweden)

    Salvatore Spicuglia

    Full Text Available The PLZF/RARA fusion protein generated by the t(11;17(q23;q21 translocation in acute promyelocytic leukaemia (APL is believed to act as an oncogenic transcriptional regulator recruiting epigenetic factors to genes important for its transforming potential. However, molecular mechanisms associated with PLZF/RARA-dependent leukaemogenesis still remain unclear.We searched for specific PLZF/RARA target genes by ChIP-on-chip in the haematopoietic cell line U937 conditionally expressing PLZF/RARA. By comparing bound regions found in U937 cells expressing endogenous PLZF with PLZF/RARA-induced U937 cells, we isolated specific PLZF/RARA target gene promoters. We next analysed gene expression profiles of our identified target genes in PLZF/RARA APL patients and analysed DNA sequences and epigenetic modification at PLZF/RARA binding sites. We identify 413 specific PLZF/RARA target genes including a number encoding transcription factors involved in the regulation of haematopoiesis. Among these genes, 22 were significantly down regulated in primary PLZF/RARA APL cells. In addition, repressed PLZF/RARA target genes were associated with increased levels of H3K27me3 and decreased levels of H3K9K14ac. Finally, sequence analysis of PLZF/RARA bound sequences reveals the presence of both consensus and degenerated RAREs as well as enrichment for tissue-specific transcription factor motifs, highlighting the complexity of targeting fusion protein to chromatin. Our study suggests that PLZF/RARA directly targets genes important for haematopoietic development and supports the notion that PLZF/RARA acts mainly as an epigenetic regulator of its direct target genes.

  3. Gene therapy of cancer and development of therapeutic target gene

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Min; Kwon, Hee Chung

    1998-04-01

    We applied HSV-tk/GCV strategy to orthotopic rat hepatoma model and showed anticancer effects of hepatoma. The increased expression of Lac Z gene after adenovirus-mediated gene delivery throughout hepatic artery was thought that is increased the possibility of gene therapy for curing hepatoma. With the construction of kGLP-laboratory, it is possible to produce a good quantity and quality of adenovirus in lage-scale production and purification of adenovirus vector. Also, the analysis of hepatoma related genes by PCR-LOH could be used for the diagnosis of patients and the development of therapeutic gene.

  4. Peroxisome proliferator-activated receptor alpha target genes.

    Science.gov (United States)

    Rakhshandehroo, Maryam; Knoch, Bianca; Müller, Michael; Kersten, Sander

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  5. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2010-01-01

    Full Text Available The peroxisome proliferator-activated receptor alpha (PPARα is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.

  6. Targeted gene mutation in Phytophthora spp.

    NARCIS (Netherlands)

    Lamour, K.H.; Finley, L.; Hurtado-Gonzales, O.; Gobena, D.; Tierney, M.; Meijer, H.J.G.

    2006-01-01

    The genus Phytophthora belongs to the oomycetes and is composed of plant pathogens. Currently, there are no strategies to mutate specific genes for members of this genus. Whole genome sequences are available or being prepared for Phytophthora sojae, P. ramorum, P. infestans, and P. capsici and the d

  7. Genome-wide identification of KANADI1 target genes.

    Directory of Open Access Journals (Sweden)

    Paz Merelo

    Full Text Available Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV. A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.

  8. TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/.

  9. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined D

  10. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined D

  11. The hair follicle as a target for gene therapy.

    Science.gov (United States)

    Gupta, S; Domashenko, A; Cotsarelis, G

    2001-01-01

    The hair follicle possesses progenitor cells for continued hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be targeted by topical gene delivery to mouse skin. Using a combination of liposomes and DNA, we demonstrated the feasibility of targeting hair follicle cells in human scalp xenografts as well. We defined liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection occurred only during anagen onset. Considerations and obstacles for using gene therapy to treat alopecias and skin disease are discussed. A theoretical framework for future gene therapy treatments for cutaneous and systemic disorders is presented.

  12. Viroreplicative Gene Therapy Targeted to Prostate Cancer

    Science.gov (United States)

    2010-08-01

    drug 5- fluorouracil ( 5FU ), as RCR vectors using this suicide gene have moved forward to Phase I clinical trials for the treatment of patients...mutations (T5.0002). The specific enzyme activity was measured by a calibrated HPLC assay to detect 5FU , the conversion product of the 5FC prodrug...in protein extracts from infected cells harvested 5 days post-infection at MOI = 0.1, and is expressed as nmol 5FU produced per min per mg protein

  13. Cancer gene therapy targeting angiogenesis: An updated review

    Institute of Scientific and Technical Information of China (English)

    Ching-Chiu Liu; Zan Shen; Hsiang-Fu Kung; Marie CM Lin

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971,scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of antiangiogenesis therapy. Transfer of anti-angiogenesis genes has Received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy.

  14. Positive-negative-selection-mediated gene targeting in rice

    Directory of Open Access Journals (Sweden)

    Zenpei eShimatani

    2015-01-01

    Full Text Available Gene targeting (GT refers to the designed modification of genomic sequence(s through homologous recombination (HR. GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive-negative selection (PNS is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice—a major crop worldwide—reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology (NPBT based on PNS are discussed.

  15. Different Polycomb group complexes regulate common target genes in Arabidopsis.

    Science.gov (United States)

    Makarevich, Grigory; Leroy, Olivier; Akinci, Umut; Schubert, Daniel; Clarenz, Oliver; Goodrich, Justin; Grossniklaus, Ueli; Köhler, Claudia

    2006-09-01

    Polycomb group (PcG) proteins convey epigenetic inheritance of repressed transcriptional states. Although the mechanism of the action of PcG is not completely understood, methylation of histone H3 lysine 27 (H3K27) is important in establishing PcG-mediated transcriptional repression. We show that the plant PcG target gene PHERES1 is regulated by histone trimethylation on H3K27 residues mediated by at least two different PcG complexes in plants, containing the SET domain proteins MEDEA or CURLY LEAF/SWINGER. Furthermore, we identify FUSCA3 as a potential PcG target gene and show that FUSCA3 is regulated by MEDEA and CURLY LEAF/SWINGER. We propose that different PcG complexes regulate a common set of target genes during the different stages of plant development.

  16. Hypoxia-regulated target genes implicated in tumor metastasis

    Directory of Open Access Journals (Sweden)

    Tsai Ya-Ping

    2012-12-01

    Full Text Available Abstract Hypoxia is an important microenvironmental factor that induces cancer metastasis. Hypoxia/hypoxia-inducible factor-1α (HIF-1α regulates many important steps of the metastatic processes, especially epithelial-mesenchymal transition (EMT that is one of the crucial mechanisms to cause early stage of tumor metastasis. To have a better understanding of the mechanism of hypoxia-regulated metastasis, various hypoxia/HIF-1α-regulated target genes are categorized into different classes including transcription factors, histone modifiers, enzymes, receptors, kinases, small GTPases, transporters, adhesion molecules, surface molecules, membrane proteins, and microRNAs. Different roles of these target genes are described with regards to their relationship to hypoxia-induced metastasis. We hope that this review will provide a framework for further exploration of hypoxia/HIF-1α-regulated target genes and a comprehensive view of the metastatic picture induced by hypoxia.

  17. Targeting of AID-mediated sequence diversification to immunoglobulin genes.

    Science.gov (United States)

    Kothapalli, Naga Rama; Fugmann, Sebastian D

    2011-04-01

    Activation-induced cytidine deaminase (AID) is a key enzyme for antibody-mediated immune responses. Antibodies are encoded by the immunoglobulin genes and AID acts as a transcription-dependent DNA mutator on these genes to improve antibody affinity and effector functions. An emerging theme in field is that many transcribed genes are potential targets of AID, presenting an obvious danger to genomic integrity. Thus there are mechanisms in place to ensure that mutagenic outcomes of AID activity are specifically restricted to the immunoglobulin loci. Cis-regulatory targeting elements mediate this effect and their mode of action is probably a combination of immunoglobulin gene specific activation of AID and a perversion of faithful DNA repair towards error-prone outcomes.

  18. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Fillat, Cristina, E-mail: cristina.fillat@crg.es; Jose, Anabel; Ros, Xavier Bofill-De; Mato-Berciano, Ana; Maliandi, Maria Victoria; Sobrevals, Luciano [Programa Gens i Malaltia, Centre de Regulació Genòmica-CRG, UPF, Parc de Recerca Biomedica de Barcelona-PRBB and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona (Spain)

    2011-01-18

    The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  19. Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer.

    Science.gov (United States)

    Lu, Yi

    2009-07-02

    Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.

  20. Gene Targeting and Expression Modulation by Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    Peptide nucleic acids (PNA) are artificial structural mimics of nucleic acids capable of sequence specific hybridization to both RNA and DNA. Thus they have obvious potential as gene targeting agents for drug discovery approaches. An overview with emphasis on recent progress on RNA "interference"...

  1. E2F target genes: unraveling the biology

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Ciro, Marco; Cocito, Andrea

    2004-01-01

    The E2F transcription factors are downstream effectors of the retinoblastoma protein (pRB) pathway and are required for the timely regulation of numerous genes essential for DNA replication and cell cycle progression. Several laboratories have used genome-wide approaches to discover novel target ...

  2. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    Science.gov (United States)

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

  3. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer

    NARCIS (Netherlands)

    van Beusechem, VW; van Rijswijk, ALCT; van Es, HHG; Haisma, HJ; Pinedo, HM; Gerritsen, WR

    2000-01-01

    Adenoviral vector systems for gene therapy can be much improved by targeting vectors to specific cell types. This requires both the complete ablation of native adenovirus tropism and the introduction of a novel binding affinity in the viral capsid. We reasoned that these requirements could be fulfil

  4. [The hair follicle as a target for gene therapy].

    Science.gov (United States)

    Cotsarelis, G

    2002-05-01

    The hair follicle possesses progenitor cells required for continuous hair follicle cycling and for epidermal keratinocytes, melanocytes and Langerhans cells. These different cell types can be the target of topical gene delivery in the skin of the mouse. Using a combination of liposomes and DNA, we demonstrate the feasibility of targeting hair follicle cells in human scalp xenografts. We consider liposome composition and stage of the hair cycle as important parameters influencing transfection of human hair follicles. Transfection is possible only during the early anagen phase. Factors and obstacles for the use of gene therapy in treating alopecia and skin diseases are discussed. A theoretical framework for future treatment of cutaneous and systemic disorders using gene therapy is presented.

  5. Integrative analysis of RUNX1 downstream pathways and target genes

    Directory of Open Access Journals (Sweden)

    Liu Marjorie

    2008-07-01

    Full Text Available Abstract Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML. The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1 cell lines with RUNX1 mutations from FPD-AML patients, 2 over-expression of RUNX1 and CBFβ, and 3 Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease

  6. Identification of novel androgen receptor target genes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Gerald William L

    2007-06-01

    Full Text Available Abstract Background The androgen receptor (AR plays critical roles in both androgen-dependent and castrate-resistant prostate cancer (PCa. However, little is known about AR target genes that mediate the receptor's roles in disease progression. Results Using Chromatin Immunoprecipitation (ChIP Display, we discovered 19 novel loci occupied by the AR in castrate resistant C4-2B PCa cells. Only four of the 19 AR-occupied regions were within 10-kb 5'-flanking regulatory sequences. Three were located up to 4-kb 3' of the nearest gene, eight were intragenic and four were in gene deserts. Whereas the AR occupied the same loci in C4-2B (castrate resistant and LNCaP (androgen-dependent PCa cells, differences between the two cell lines were observed in the response of nearby genes to androgens. Among the genes strongly stimulated by DHT in C4-2B cells – D-dopachrome tautomerase (DDT, Protein kinase C delta (PRKCD, Glutathione S- transferase theta 2 (GSTT2, Transient receptor potential cation channel subfamily V member 3 (TRPV3, and Pyrroline-5-carboxylate reductase 1 (PYCR1 – most were less strongly or hardly stimulated in LNCaP cells. Another AR target gene, ornithine aminotransferase (OAT, was AR-stimulated in a ligand-independent manner, since it was repressed by AR siRNA knockdown, but not stimulated by DHT. We also present evidence for in vivo AR-mediated regulation of several genes identified by ChIP Display. For example, PRKCD and PYCR1, which may contribute to PCa cell growth and survival, are expressed in PCa biopsies from primary tumors before and after ablation and in metastatic lesions in a manner consistent with AR-mediated stimulation. Conclusion AR genomic occupancy is similar between LNCaP and C4-2B cells and is not biased towards 5' gene flanking sequences. The AR transcriptionally regulates less than half the genes nearby AR-occupied regions, usually but not always, in a ligand-dependent manner. Most are stimulated and a few are

  7. RFMirTarget: predicting human microRNA target genes with a random forest classifier.

    Directory of Open Access Journals (Sweden)

    Mariana R Mendoza

    Full Text Available MicroRNAs are key regulators of eukaryotic gene expression whose fundamental role has already been identified in many cell pathways. The correct identification of miRNAs targets is still a major challenge in bioinformatics and has motivated the development of several computational methods to overcome inherent limitations of experimental analysis. Indeed, the best results reported so far in terms of specificity and sensitivity are associated to machine learning-based methods for microRNA-target prediction. Following this trend, in the current paper we discuss and explore a microRNA-target prediction method based on a random forest classifier, namely RFMirTarget. Despite its well-known robustness regarding general classifying tasks, to the best of our knowledge, random forest have not been deeply explored for the specific context of predicting microRNAs targets. Our framework first analyzes alignments between candidate microRNA-target pairs and extracts a set of structural, thermodynamics, alignment, seed and position-based features, upon which classification is performed. Experiments have shown that RFMirTarget outperforms several well-known classifiers with statistical significance, and that its performance is not impaired by the class imbalance problem or features correlation. Moreover, comparing it against other algorithms for microRNA target prediction using independent test data sets from TarBase and starBase, we observe a very promising performance, with higher sensitivity in relation to other methods. Finally, tests performed with RFMirTarget show the benefits of feature selection even for a classifier with embedded feature importance analysis, and the consistency between relevant features identified and important biological properties for effective microRNA-target gene alignment.

  8. C/EBPδ gene targets in human keratinocytes.

    Directory of Open Access Journals (Sweden)

    Serena Borrelli

    Full Text Available C/EBPs are a family of B-Zip transcription factors--TFs--involved in the regulation of differentiation in several tissues. The two most studied members--C/EBPα and C/EBPβ--play important roles in skin homeostasis and their ablation reveals cells with stem cells signatures. Much less is known about C/EBPδ which is highly expressed in the granular layer of interfollicular epidermis and is a direct target of p63, the master regular of multilayered epithelia. We identified C/EBPδ target genes in human primary keratinocytes by ChIP on chip and profiling of cells functionally inactivated with siRNA. Categorization suggests a role in differentiation and control of cell-cycle, particularly of G2/M genes. Among positively controlled targets are numerous genes involved in barrier function. Functional inactivation of C/EBPδ as well as overexpressions of two TF targets--MafB and SOX2--affect expression of markers of keratinocyte differentiation. We performed IHC on skin tumor tissue arrays: expression of C/EBPδ is lost in Basal Cell Carcinomas, but a majority of Squamous Cell Carcinomas showed elevated levels of the protein. Our data indicate that C/EBPδ plays a role in late stages of keratinocyte differentiation.

  9. Identification of novel Notch target genes in T cell leukaemia

    Directory of Open Access Journals (Sweden)

    Warrander Fiona

    2009-06-01

    Full Text Available Abstract Background Dysregulated Notch signalling is believed to play an important role in the development and maintenance of T cell leukaemia. At a cellular level, Notch signalling promotes proliferation and inhibits apoptosis of T cell acute lymphoblastic leukaemia (T-ALL cells. In this study we aimed to identify novel transcriptional targets of Notch signalling in the T-ALL cell line, Jurkat. Results RNA was prepared from Jurkat cells retrovirally transduced with an empty vector (GFP-alone or vectors containing constitutively active forms of Notch (N1ΔE or N3ΔE, and used for Affymetrix microarray analysis. A subset of genes found to be regulated by Notch was chosen for real-time PCR validation and in some cases, validation at the protein level, using several Notch-transduced T-ALL and non-T-ALL leukaemic cell lines. As expected, several known transcriptional target of Notch, such as HES1 and Deltex, were found to be overexpressed in Notch-transduced cells, however, many novel transcriptional targets of Notch signalling were identified using this approach. These included the T cell costimulatory molecule CD28, the anti-apoptotic protein GIMAP5, and inhibitor of DNA binding 1 (1D1. Conclusion The identification of such downstream Notch target genes provides insights into the mechanisms of Notch function in T cell leukaemia, and may help identify novel therapeutic targets in this disease.

  10. A Novel Gene Delivery System Targeting Urokinase Receptor

    Institute of Scientific and Technical Information of China (English)

    Xing-Hui SUN; Li TAN; Chun-Yang LI; Chang TONG; Jin FAN; Ping LI; Yun-Song ZHU

    2004-01-01

    Recombinant proteins that combine different functions required for cell targeting and intracellular delivery of DNA present an attractive approach for the development of nonviral gene delivery vectors. Here, we described a novel protein termed ATF-lys10 which facilitated cell-specific gene transfer via receptor-mediated endocytosis. ATF-lys 10 was composed of the amino-terminal fragment of urokinase and ten lysines at the carboxyl terminus. Bacterially expressed ATF-lys 10 protein existed in soluble form, and had antigenicity of human urokinase. Purified ATF-lys 10 specifically bound to uPAR-expressing cells and formed protein-DNA complexes with plasmid pGL3-control. After neutralization of excess negative charge with poly-L-lysine, these complexes served as a specific gene delivery vector for uPAR-expressing cells. Lysosomotropic compounds, such as chloroquine, drastically increased the ATF-lysl0 mediated gene delivery efficiency. Our results suggest that the recombinant protein ATF-lys 10 with the properties of DNA binding and tumor cell targeting represents a promising method for gene transfer and expression in tumor cells.

  11. RNA Interference Targeting Leptin Gene Effect on Hepatic Stellate Cells

    Institute of Scientific and Technical Information of China (English)

    XUE Xiulan; LIN Jusheng; SONG Yuhu; SUN Xuemei; ZHOU Hejun

    2005-01-01

    To construct the specific siRNA expression vectors and investigate their effect on leptin and collagen I in HSC, which provide a new approach to the prevent and treat hepatic fibrosis. The five siRNAs against leptin gene were transcript synthesized intracellularly by expression templates of plasmid vector psiRNA-hH1neo. The recombinant leptin siRNA plasmid vectors could express in eukaryocyte , and then to evaluate them by using enzyme cutting and sequencing. The recombinant plasmids were transfected into HSCs using Lipofectamine methods respectively. The cells were selected after growing in DMEM containing 300 μg/mL G418 for about 4 weeks. Gene expression of leptin and collagen I were showed by Western blot analysis and reverse transcription polymerase chain reaction (RT-PCR). Identification by enzyme cutting and sequencing showed that the leptin siRNA expression vectors were constructed successfully, and leptin siRNA could inhibit the leptin and collagen I gene expression effectively. It was concluded that RNA interference-mediated silencing of leptin gene diminished leptin and collagen I gene expression in HSCs. Furthermore, attenuated the extracellular matrix over-deposition at the same time. Leptin gene is ideal targets of gene therapy for liver fibrosis.

  12. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells.

    Science.gov (United States)

    Smih, F; Rouet, P; Romanienko, P J; Jasin, M

    1995-01-01

    Double-strand breaks (DSBs) are recombinogenic lesions in chromosomal DNA in yeast, Drosophila and Caenorhabditis elegans. Recent studies in mammalian cells utilizing the I-Scel endonuclease have demonstrated that in some immortalized cell lines DSBs in chromosomal DNA are also recombinogenic. We have now tested embryonic stem (ES) cells, a non-transformed mouse cell line frequently used in gene targeting studies. We find that a DSB introduced by I-Scel stimulates gene targeting at a selectable neo locus at least 50-fold. The enhanced level of targeting is achieved by transient expression of the I-Scel endonuclease. In 97% of targeted clones a single base pair polymorphism in the transfected homologous fragment was incorporated into the target locus. Analysis of the targeted locus demonstrated that most of the homologous recombination events were 'two-sided', in contrast to previous studies in 3T3 cells in which 'one-sided' homologous events predominated. Thus ES cells may be more faithful in incorporating homologous fragments into their genome than other cells in culture. Images PMID:8559659

  13. Reproducible gene targeting in recalcitrant Escherichia coli isolates

    Directory of Open Access Journals (Sweden)

    De Greve Henri

    2011-06-01

    Full Text Available Abstract Background A number of allele replacement methods can be used to mutate bacterial genes. For instance, the Red recombinase system of phage Lambda has been used very efficiently to inactivate chromosomal genes in E. coli K-12, through recombination between regions of homology. However, this method does not work reproducibly in some clinical E. coli isolates. Findings The procedure was modified by using longer homologous regions (85 bp and 500-600 bp, to inactivate genes in the uropathogenic E. coli strain UTI89. An lrhA regulator mutant, and deletions of the lac operon as well as the complete type 1 fimbrial gene cluster, were obtained reproducibly. The modified method is also functional in other recalcitrant E. coli, like the avian pathogenic E. coli strain APEC1. The lrhA regulator and lac operon deletion mutants of APEC1 were successfully constructed in the same way as the UTI89 mutants. In other avian pathogenic E. coli strains (APEC3E, APEC11A and APEC16A it was very difficult or impossible to construct these mutants, with the original Red recombinase-based method, with a Red recombinase-based method using longer (85 bp homologous regions or with our modified protocol, using 500 - 600 bp homologous regions. Conclusions The method using 500-600 bp homologous regions can be used reliably in some clinical isolates, to delete single genes or entire operons by homologous recombination. However, it does not invariably show a greater efficiency in obtaining mutants, when compared to the original Red-mediated gene targeting method or to the gene targeting method with 85 bp homologous regions. Therefore the length of the homology regions is not the only limiting factor for the construction of mutants in these recalcitrant strains.

  14. Mannan-Modified PLGA Nanoparticles for Targeted Gene Delivery

    Directory of Open Access Journals (Sweden)

    Fansheng Kong

    2012-01-01

    Full Text Available The studies of targeted gene delivery nanocarriers have gained increasing attention during the past decades. In this study, mannan modified DNA loaded bioadhesive PLGA nanoparticles (MAN-DNA-NPs were investigated for targeted gene delivery to the Kupffer cells (KCs. Bioadhesive PLGA nanoparticles were prepared and subsequently bound with pEGFP. Following the coupling of the mannan-based PE-grafted ligands (MAN-PE with the DNA-NPs, the MAN-DNA-NPs were delivered intravenously to rats. The transfection efficiency was determined from the isolated KCs and flow cytometry was applied for the quantitation of gene expression after 48 h post transfection. The size of the MAN-DNA-NPs was found to be around 190 nm and the Zeta potential was determined to be −15.46mV. The pEGFP binding capacity of MAN-DNA-NPs was (88.9±5.8% and the in vitro release profiles of the MAN-DNA-NPs follow the Higuchi model. When compared with non-modified DNA-NPs and Lipofectamine 2000-DNA, MAN-DNA-NPs produced the highest gene expressions, especially in vivo. The in vivo data from flow cytometry analysis showed that MAN-DNA-NPs displayed a remarkably higher transfection efficiency (39% than non-modified DNA-NPs (25% and Lipofectamine 2000-DNA (23% in KCs. The results illustrate that MAN-DNA-NPs have the ability to target liver KCs and could function as promising active targeting drug delivery vectors.

  15. Tapping natural reservoirs of homing endonucleases for targeted gene modification

    OpenAIRE

    2011-01-01

    Homing endonucleases mobilize their own genes by generating double-strand breaks at individual target sites within potential host DNA. Because of their high specificity, these proteins are used for “genome editing” in higher eukaryotes. However, alteration of homing endonuclease specificity is quite challenging. Here we describe the identification and phylogenetic analysis of over 200 naturally occurring LAGLIDADG homing endonucleases (LHEs). Biochemical and structural characterization of end...

  16. Targeted gene repair: the ups and downs of a promising gene therapy approach.

    Science.gov (United States)

    de Semir, David; Aran, Josep M

    2006-08-01

    As a novel form of molecular medicine based on direct actions over the genes, targeted gene repair has raised consideration recently above classical gene therapy strategies based on genetic augmentation or complementation. Targeted gene repair relies on the local induction of the cell's endogenous DNA repair mechanisms to attain a therapeutic gene conversion event within the genome of the diseased cell. Successful repair has been achieved both in vitro and in vivo with a variety of corrective molecules ranging from oligonucleotides (chimeraplasts, modified single-stranded oligonucleotides, triplex-forming oligonucleotides), to small DNA fragments (small fragment homologous replacement (SFHR)), and even viral vectors (AAV-based). However, controversy on the consistency and lack of reproducibility of early experiments regarding frequencies and persistence of targeted gene repair, particularly for chimeraplasty, has flecked the field. Nevertheless, several hurdles such as inefficient nuclear uptake of the corrective molecules, and misleading assessment of targeted repair frequencies have been identified and are being addressed. One of the key bottlenecks for exploiting the overall potential of the different targeted gene repair modalities is the lack of a detailed knowledge of their mechanisms of action at the molecular level. Several studies are now focusing on the assessment of the specific repair pathway(s) involved (homologous recombination, mismatch repair, etc.), devising additional strategies to increase their activity (using chemotherapeutic drugs, chimeric nucleases, etc.), and assessing the influence of the cell cycle in the regulation of the repair process. Until therapeutic correction frequencies for single gene disorders are reached both in cellular and animal models, precision and undesired side effects of this promising gene therapy approach will not be thoroughly evaluated.

  17. Construction of gene targeting vectors from lambda KOS genomic libraries.

    Science.gov (United States)

    Wattler, S; Kelly, M; Nehls, M

    1999-06-01

    We describe a highly redundant murine genomic library in a new lambda phage, lambda knockout shuttle (lambda KOS) that facilitates the very rapid construction of replacement-type gene targeting vectors. The library consists of 94 individually amplified subpools, each containing an average of 40,000 independent genomic clones. The subpools are arrayed into a 96-well format that allows a PCR-based efficient recovery of independent genomic clones. The lambda KOS vector backbone permits the CRE-mediated conversion into high-copy number pKOS plasmids, wherein the genomic inserts are automatically flanked by negative-selection cassettes. The lambda KOS vector system exploits the yeast homologous recombination machinery to simplify the construction of replacement-type gene targeting vectors independent of restriction sites within the genomic insert. We outline procedures that allow the generation of simple and more sophisticated conditional gene targeting vectors within 3-4 weeks, beginning with the screening of the lambda KOS genomic library.

  18. Treating psoriasis by targeting its susceptibility gene Rel.

    Science.gov (United States)

    Fan, Tingting; Wang, Shaowen; Yu, Linjiang; Yi, Huqiang; Liu, Ruiling; Geng, Wenwen; Wan, Xiaochun; Ma, Yifan; Cai, Lintao; Chen, Youhai H; Ruan, Qingguo

    2016-04-01

    Psoriasis is a chronic inflammatory disorder of the skin. Accumulating evidence indicates that the Rel gene, a member of the NF-κB family, is a risk factor for the disease. We sought to investigate whether psoriasis can be prevented by directly targeting the Rel gene transcript, i.e., the c-Rel mRNA. Using chemically-modified c-Rel specific siRNA (siRel) and poly(ethylene glycol)-b-poly(l-lysine)-b-poly(l-leucine) (PEG-PLL-PLLeu) micelles, we successfully knocked down the expression of c-Rel, and showed that the expression of cytokine IL-23, a direct target of c-Rel that can drive the development of IL-17-producing T cells, was markedly inhibited. More importantly, treating mice with siRel not only prevented but also ameliorated imiquimod (IMQ)-induced psoriasis. Mechanistic studies showed that siRel treatment down-regulated the expression of multiple inflammatory cytokines. Taken together, these results indicate that the susceptibility gene Rel can be targeted to treat and prevent psoriasis.

  19. A novel gene delivery system targeting cells expressing VEGF receptors

    Institute of Scientific and Technical Information of China (English)

    LIJUNMIN; JINGCHULUO; 等

    1999-01-01

    Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors.GV1,GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex.Using pSV2-β-galactosidase as a reporter gene,it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) and human malignant melanoma cell lines (A375) in vitro.In vivo experiments,exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO,human malignant melanoma A375 and human hepatoma graft in nude mice.This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice.These results are correlated with the relevant receptors(flt-1,flk-1/KDR) expression on the targeted cells and tissues.

  20. Liver-targeted gene therapy: Approaches and challenges.

    Science.gov (United States)

    Aravalli, Rajagopal N; Belcher, John D; Steer, Clifford J

    2015-06-01

    The liver plays a major role in many inherited and acquired genetic disorders. It is also the site for the treatment of certain inborn errors of metabolism that do not directly cause injury to the liver. The advancement of nucleic acid-based therapies for liver maladies has been severely limited because of the myriad untoward side effects and methodological limitations. To address these issues, research efforts in recent years have been intensified toward the development of targeted gene approaches using novel genetic tools, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats as well as various nonviral vectors such as Sleeping Beauty transposons, PiggyBac transposons, and PhiC31 integrase. Although each of these methods uses a distinct mechanism of gene modification, all of them are dependent on the efficient delivery of DNA and RNA molecules into the cell. This review provides an overview of current and emerging therapeutic strategies for liver-targeted gene therapy and gene repair.

  1. Apoptosis as a target for gene therapy in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Gabriel Adrián Rabinovich

    2000-01-01

    Full Text Available Rheumatoid arthritis (RA is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will highlight the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.

  2. Pancreatic Cancer Gene Therapy: From Molecular Targets to Delivery Systems

    Directory of Open Access Journals (Sweden)

    Maria Victoria Maliandi

    2011-01-01

    Full Text Available The continuous identification of molecular changes deregulating critical pathways in pancreatic tumor cells provides us with a large number of novel candidates to engineer gene-targeted approaches for pancreatic cancer treatment. Targets—both protein coding and non-coding—are being exploited in gene therapy to influence the deregulated pathways to facilitate cytotoxicity, enhance the immune response or sensitize to current treatments. Delivery vehicles based on viral or non-viral systems as well as cellular vectors with tumor homing characteristics are a critical part of the design of gene therapy strategies. The different behavior of tumoral versus non-tumoral cells inspires vector engineering with the generation of tumor selective products that can prevent potential toxic-associated effects. In the current review, a detailed analysis of the different targets, the delivery vectors, the preclinical approaches and a descriptive update on the conducted clinical trials are presented. Moreover, future possibilities in pancreatic cancer treatment by gene therapy strategies are discussed.

  3. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous....... This review describes and discusses the current status of the application of gene therapy in relation to SCLC Udgivelsesdato: 2009/4...... DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA...

  4. Construction of RNAi lentiviral vector targeting mouse Islet-1 gene

    Directory of Open Access Journals (Sweden)

    Shen-shen ZHI

    2011-02-01

    Full Text Available Objective To construct and select RNAi lentiviral vectors that can silence mouse Islet-1 gene effectively.Methods Three groups of RNAi-target of mouse Islet-1 gene were designed,and corresponding shRNA oligo(sh1,sh2 and sh3 were synthesized,and then they were respectively inserted to the PLVTHM vector that had been digested by endonuclease.Agarose gel electrophoresis and sequencing were used to select and indentify the positive clones.The positive clones were extracted and then mixed with E.coli to amplify positive clones.The amplified clones were then infected into 293T along with the other 3 helper plasmids to produce lentiviral vector.After the construction of the lentiviral vector,plaque formation test was performed to determine the titer of lentiviral vector.The lentiviral vectors were then infected into C3H10T1/2 cells.The transfect efficiency of the lentiviral vectors was determined with flow cytometry with detection of green fluorescent protein(GFP.Q-PCR was employed to detect the RNAi efficiency of the lentiviral vectors.Results Agarose gel electrophoresis analysis showed that the clones with right gene at the target size were successfully established;gene sequencing showed that the right DNA fragments had been inserted;plaque formation test showed that the titer of the virus solution was 3.87×108TU/ml;the transfect efficiency of the lentiviral vector infected into C3H10T1/2 cells was 90.36%.All the 3 groups of shRNA targets(sh1,sh2 and sh3 showed an inhibitory effect on Islet-1 gene,and the sh1 showed the highest inhibitory effect(76.8%,as compared with that of normal cells(P < 0.05.Conclusion The RNAi lentiviral vector that can effectively silence the mouse Islet-1 gene has been constructed successfully,which may lay a foundation for further investigation of Islet-1 gene.

  5. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting.

    Science.gov (United States)

    Štafa, Anamarija; Miklenić, Marina; Zunar, Bojan; Lisnić, Berislav; Symington, Lorraine S; Svetec, Ivan-Krešimir

    2014-10-01

    Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting.

  6. Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies.

    Directory of Open Access Journals (Sweden)

    Hua-Bing Li

    2013-04-01

    Full Text Available Polycomb bodies are foci of Polycomb proteins in which different Polycomb target genes are thought to co-localize in the nucleus, looping out from their chromosomal context. We have shown previously that insulators, not Polycomb response elements (PREs, mediate associations among Polycomb Group (PcG targets to form Polycomb bodies. Here we use live imaging and 3C interactions to show that transgenes containing PREs and endogenous PcG-regulated genes are targeted by insulator proteins to different nuclear structures depending on their state of activity. When two genes are repressed, they co-localize in Polycomb bodies. When both are active, they are targeted to transcription factories in a fashion dependent on Trithorax and enhancer specificity as well as the insulator protein CTCF. In the absence of CTCF, assembly of Polycomb bodies is essentially reduced to those representing genomic clusters of Polycomb target genes. The critical role of Trithorax suggests that stable association with a specialized transcription factory underlies the cellular memory of the active state.

  7. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Science.gov (United States)

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  8. Specific genetic modifications of domestic animals by gene targeting and animal cloning.

    Science.gov (United States)

    Wang, Bin; Zhou, Jiangfeng

    2003-11-13

    The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.

  9. Production of cloned pigs with targeted attenuation of gene expression.

    Directory of Open Access Journals (Sweden)

    Vilceu Bordignon

    Full Text Available The objective of this study was to demonstrate that RNA interference (RNAi and somatic cell nuclear transfer (SCNT technologies can be used to attenuate the expression of specific genes in tissues of swine, a large animal species. Apolipoprotein E (apoE, a secreted glycoprotein known for its major role in lipid and lipoprotein metabolism and transport, was selected as the target gene for this study. Three synthetic small interfering RNAs (siRNA targeting the porcine apoE mRNA were tested in porcine granulosa cells in primary culture and reduced apoE mRNA abundance ranging from 45-82% compared to control cells. The most effective sequence was selected for cloning into a short hairpin RNA (shRNA expression vector under the control of RNA polymerase III (U6 promoter. Stably transfected fetal porcine fibroblast cells were generated and used to produce embryos with in vitro matured porcine oocytes, which were then transferred into the uterus of surrogate gilts. Seven live and one stillborn piglet were born from three gilts that became pregnant. Integration of the shRNA expression vector into the genome of clone piglets was confirmed by PCR and expression of the GFP transgene linked to the expression vector. Analysis showed that apoE protein levels in the liver and plasma of the clone pigs bearing the shRNA expression vector targeting the apoE mRNA was significantly reduced compared to control pigs cloned from non-transfected fibroblasts of the same cell line. These results demonstrate the feasibility of applying RNAi and SCNT technologies for introducing stable genetic modifications in somatic cells for eventual attenuation of gene expression in vivo in large animal species.

  10. Targeted Gene Capture by Hybridization to Illuminate Ecosystem Functioning.

    Science.gov (United States)

    Ribière, Céline; Beugnot, Réjane; Parisot, Nicolas; Gasc, Cyrielle; Defois, Clémence; Denonfoux, Jérémie; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2016-01-01

    Microbial communities are extremely abundant and diverse on earth surface and play key role in the ecosystem functioning. Thus, although next-generation sequencing (NGS) technologies have greatly improved knowledge on microbial diversity, it is necessary to reduce the biological complexity to better understand the microorganism functions. To achieve this goal, we describe a promising approach, based on the solution hybrid selection (SHS) method for the selective enrichment in a target-specific biomarker from metagenomic and metatranscriptomic samples. The success of this method strongly depends on the determination of sensitive, specific, and explorative probes to assess the complete targeted gene repertoire. Indeed, in this method, RNA probes were used to capture large DNA or RNA fragments harboring biomarkers of interest that potentially allow to link structure and function of communities of interest.

  11. Identification of targetable FGFR gene fusions in diverse cancers.

    Science.gov (United States)

    Wu, Yi-Mi; Su, Fengyun; Kalyana-Sundaram, Shanker; Khazanov, Nickolay; Ateeq, Bushra; Cao, Xuhong; Lonigro, Robert J; Vats, Pankaj; Wang, Rui; Lin, Su-Fang; Cheng, Ann-Joy; Kunju, Lakshmi P; Siddiqui, Javed; Tomlins, Scott A; Wyngaard, Peter; Sadis, Seth; Roychowdhury, Sameek; Hussain, Maha H; Feng, Felix Y; Zalupski, Mark M; Talpaz, Moshe; Pienta, Kenneth J; Rhodes, Daniel R; Robinson, Dan R; Chinnaiyan, Arul M

    2013-06-01

    Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2, including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Because of the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts, which incorporate transcriptome analysis for gene fusions, are poised to identify rare, targetable FGFR fusions across diverse cancer types.

  12. Research progress of gene target therapy for refractory epilepsy

    Directory of Open Access Journals (Sweden)

    Xing-hua TANG

    2014-12-01

    Full Text Available Nowadays, the strategies of gene therapy for the treatment of refractory epilepsy (RE mainly include modulating neurotransmitter systems, neuropeptide Y (NPY and neurotrophic factors. Among them, the hot target spots include γ-aminobutyric acid (GABA and its receptor, N-methyl-D-aspartate (NMDA and its receptor, galanin, NPY and neurotrophic factors. This paper reviews the chief research results, and advantages and disadvantages of studies, and provides evidence for the treatment of refractory epilepsy. doi: 10.3969/j.issn.1672-6731.2014.12.004

  13. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes.

    Science.gov (United States)

    Li, Ting; Huang, Sheng; Zhao, Xuefeng; Wright, David A; Carpenter, Susan; Spalding, Martin H; Weeks, Donald P; Yang, Bing

    2011-08-01

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  14. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Li, T; Huang, S; Zhao, XF; Wright, DA; Carpenter, S; Spalding, MH; Weeks, DP; Yang, B

    2011-08-08

    Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.

  15. [Targeted modification of CCR5 gene in rabbits by TALEN].

    Science.gov (United States)

    Tang, Chengcheng; Zhang, Quanjun; Li, Xiaoping; Fan, Nana; Yang, Yi; Quan, Longquan; Lai, Liangxue

    2014-04-01

    The lack of suitable animal model for HIV-1 infection has become a bottleneck for the development of AIDS vaccines and drugs. Wild-type rabbits can be infected by HIV-1 persistently and HIV-1 can be efficiently replicated resulting in syncytia in rabbit cell line co-expressing human CD4 and CCR5.Therefore, a rabbit highly expressing human CD4 and CCR5 may be an ideal animal model for AIDS disease study. In the present report, by using the efficient gene targeting technology, transcription activator-like effector nuclease (TALEN), we explored the feasibility of generating a HIV-1 model by knocking in human CD4 and CCR5 into rabbit genome. First we constructed two TALEN vectors targeting rabbit CCR5 gene and a vector with homologous arms. TALEN mRNAs and donor DNA were then co-injected into fertilized oocytes. After 3?5 days, 24 embryos were collected and used to conduct mutation analysis with PCR and sequencing. All the 24 embryos were detected with CCR5 knockouts and 5 were human CD4 and CCR5 knockins. Our results laid a foundation for establishing a new animal model for the study of AIDS.

  16. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms

    Directory of Open Access Journals (Sweden)

    Thavanathan J

    2015-04-01

    Full Text Available Jeevan Thavanathan,1 Nay Ming Huang,1 Kwai Lin Thong2 1Low Dimension Material Research Center, Department of Physics, 2Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia Abstract: We have developed a colorimetric biosensor using a dual platform of gold nanoparticles and graphene oxide sheets for the detection of Salmonella enterica. The presence of the invA gene in S. enterica causes a change in color of the biosensor from its original pinkish-red to a light purplish solution. This occurs through the aggregation of the primary gold nanoparticles–conjugated DNA probe onto the surface of the secondary graphene oxide–conjugated DNA probe through DNA hybridization with the targeted DNA sequence. Spectrophotometry analysis showed a shift in wavelength from 525 nm to 600 nm with 1 µM of DNA target. Specificity testing revealed that the biosensor was able to detect various serovars of the S. enterica while no color change was observed with the other bacterial species. Sensitivity testing revealed the limit of detection was at 1 nM of DNA target. This proves the effectiveness of the biosensor in the detection of S. enterica through DNA hybridization. Keywords: biosensor, DNA hybridization, DNA probe, gold nanoparticles, graphene oxide, Salmonella enterica

  17. AAC as a Potential Target Gene to Control Verticillium dahliae

    Directory of Open Access Journals (Sweden)

    Xiaofeng Su

    2017-01-01

    Full Text Available Verticillium dahliae invades the roots of host plants and causes vascular wilt, which seriously diminishes the yield of cotton and other important crops. The protein AAC (ADP, ATP carrier is responsible for transferring ATP from the mitochondria into the cytoplasm. When V. dahliae protoplasts were transformed with short interfering RNAs (siRNAs targeting the VdAAC gene, fungal growth and sporulation were significantly inhibited. To further confirm a role for VdAAC in fungal development, we generated knockout mutants (ΔVdACC. Compared with wild-type V. dahliae (Vd wt, ΔVdAAC was impaired in germination and virulence; these impairments were rescued in the complementary strains (ΔVdAAC-C. Moreover, when an RNAi construct of VdAAC under the control of the 35S promoter was used to transform Nicotiana benthamiana, the expression of VdAAC was downregulated in the transgenic seedlings, and they had elevated resistance against V. dahliae. The results of this study suggest that VdAAC contributes to fungal development, virulence and is a promising candidate gene to control V. dahliae. In addition, RNAi is a highly efficient way to silence fungal genes and provides a novel strategy to improve disease resistance in plants.

  18. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy

    Directory of Open Access Journals (Sweden)

    Jaleh Barar

    2013-02-01

    Full Text Available It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called “tumor microenvironment (TME”, in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  19. Targeted Gene Therapy of Cancer: Second Amendment toward Holistic Therapy.

    Science.gov (United States)

    Barar, Jaleh; Omidi, Yadollah

    2013-01-01

    It seems solid tumors are developing smart organs with specialized cells creating specified bio-territory, the so called "tumor microenvironment (TME)", in which there is reciprocal crosstalk among cancer cells, immune system cells and stromal cells. TME as an intricate milieu also consists of cancer stem cells (CSCs) that can resist against chemotherapies. In solid tumors, metabolism and vascularization appears to be aberrant and tumor interstitial fluid (TIF) functions as physiologic barrier. Thus, chemotherapy, immunotherapy and gene therapy often fail to provide cogent clinical outcomes. It looms that it is the time to accept the fact that initiation of cancer could be generation of another form of life that involves a cluster of thousands of genes, while we have failed to observe all aspects of it. Hence, the current treatment modalities need to be re-visited to cover all key aspects of disease using combination therapy based on the condition of patients. Perhaps personalized cluster of genes need to be simultaneously targeted.

  20. Systematic targeted integration to study Albumin gene control elements.

    Directory of Open Access Journals (Sweden)

    Sanchari Bhattacharyya

    Full Text Available To study transcriptional regulation by distant enhancers, we devised a system of easily modified reporter plasmids for integration into single-copy targeting cassettes in clones of HuH7, a human hepatocellular carcinoma. The plasmid constructs tested transcriptional function of a 35-kb region that contained the rat albumin gene and its upstream flanking region. Expression of integrants was analyzed in two orientations, and compared to transient expression of non-integrated plasmids. Enhancers were studied in their natural positions relative to the promoter and localized by deletion. All constructs were also analyzed by transient transfection assays. In addition to the known albumin gene enhancer (E1 at -10 kb, we demonstrated two new enhancers, E2 at -13, and E4 at +1.2 kb. All three enhancers functioned in both transient assays and integrated constructs. However, chromosomal integration demonstrated several differences from transient expression. For example, analysis of E2 showed that enhancer function within the chromosome required a larger gene region than in transient assays. Another conserved region, E3 at -0.7 kb, functioned as an enhancer in transient assays but inhibited the function of E1 and E2 when chromosomally integrated. The enhancers did not show additive or synergistic behavior,an effect consistent with competition for the promoter or inhibitory interactions among enhancers. Growth arrest by serum starvation strongly stimulated the function of some integrated enhancers, consistent with the expected disruption of enhancer-promoter looping during the cell cycle.

  1. Investigation of gene expression profiles in coronary heart disease and functional analysis of target gene

    Institute of Scientific and Technical Information of China (English)

    YIN HuiJun; MA Xiaoduan; JIANG YueRong; SHI DaZhuo; CHEN KeJi

    2009-01-01

    The research outlined here includes constitution of the differential gene expression profile by means of oligonucleotide gene microarray and functional analysis of the target gene for coronary heart disease (CHD). In a microarray screening experiment, the predominance of inflammation-and immune-related genes is presented in the expression profile of 107 differential genes based on the analysis of gene ontology and gene pathway. IL-8, an inflammatory factor, is identified as one of the genes that were markedly up-regulated in CHD. The plasma level of IL-8 is significantly raised in patients with CHD (n = 30) compared with healthy controls (n = 40), which underscores the clinical relevance of the in vitro finding. The further functional analysis shows that IL-8 affects platelet aggregation percentage, ex-pression of CD62p and platelet aggregation morphology in 12 healthy volunteers to some extent. These findings suggest the relevance of inflammation and immune responses to CHD at the DNA level. Moreover, IL-8 may be involved in the pathogenesis of CHD through the pathway of platelet activation.

  2. Transcription factors and target genes of pre-TCR signaling.

    Science.gov (United States)

    López-Rodríguez, Cristina; Aramburu, Jose; Berga-Bolaños, Rosa

    2015-06-01

    Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.

  3. Il2rg gene-targeted severe combined immunodeficiency pigs.

    Science.gov (United States)

    Suzuki, Shunichi; Iwamoto, Masaki; Saito, Yoriko; Fuchimoto, Daiichiro; Sembon, Shoichiro; Suzuki, Misae; Mikawa, Satoshi; Hashimoto, Michiko; Aoki, Yuki; Najima, Yuho; Takagi, Shinsuke; Suzuki, Nahoko; Suzuki, Emi; Kubo, Masanori; Mimuro, Jun; Kashiwakura, Yuji; Madoiwa, Seiji; Sakata, Yoichi; Perry, Anthony C F; Ishikawa, Fumihiko; Onishi, Akira

    2012-06-14

    A porcine model of severe combined immunodeficiency (SCID) promises to facilitate human cancer studies, the humanization of tissue for xenotransplantation, and the evaluation of stem cells for clinical therapy, but SCID pigs have not been described. We report here the generation and preliminary evaluation of a porcine SCID model. Fibroblasts containing a targeted disruption of the X-linked interleukin-2 receptor gamma chain gene, Il2rg, were used as donors to generate cloned pigs by serial nuclear transfer. Germline transmission of the Il2rg deletion produced healthy Il2rg(+/-) females, while Il2rg(-/Y) males were athymic and exhibited markedly impaired immunoglobulin and T and NK cell production, robustly recapitulating human SCID. Following allogeneic bone marrow transplantation, donor cells stably integrated in Il2rg(-/Y) heterozygotes and reconstituted the Il2rg(-/Y) lymphoid lineage. The SCID pigs described here represent a step toward the comprehensive evaluation of preclinical cellular regenerative strategies.

  4. Rationale for stimulator of interferon genes-targeted cancer immunotherapy.

    Science.gov (United States)

    Rivera Vargas, Thaiz; Benoit-Lizon, Isis; Apetoh, Lionel

    2017-02-17

    The efficacy of checkpoint inhibitor therapy illustrates that cancer immunotherapy, which aims to foster the host immune response against cancer to achieve durable anticancer responses, can be successfully implemented in a routine clinical practice. However, a substantial proportion of patients does not benefit from this treatment, underscoring the need to identify alternative strategies to defeat cancer. Despite the demonstration in the 1990's that the detection of danger signals, including the nucleic acids DNA and RNA, by dendritic cells (DCs) in a cancer setting is essential for eliciting host defence, the molecular sensors responsible for recognising these danger signals and eliciting anticancer immune responses remain incompletely characterised, possibly explaining the disappointing results obtained so far upon the clinical implementation of DC-based cancer vaccines. In 2008, STING (stimulator of interferon genes), was identified as a protein that is indispensable for the recognition of cytosolic DNA. The central role of STING in controlling anticancer immune responses was exemplified by observations that spontaneous and radiation-induced adaptive anticancer immunity was reduced in the absence of STING, illustrating the potential of STING-targeting for cancer immunotherapy. Here, we will discuss the relevance of manipulating the STING signalling pathway for cancer treatment and integrating STING-targeting based strategies into combinatorial therapies to obtain long-lasting anticancer immune responses.

  5. Id-1 gene and gene products as therapeutic targets for treatment of breast cancer and other types of carcinoma

    Science.gov (United States)

    Desprez, Pierre-Yves; Campisi, Judith

    2014-08-19

    A method for treatment of breast cancer and other types of cancer. The method comprises targeting and modulating Id-1 gene expression, if any, for the Id-1 gene, or gene products in breast or other epithelial cancers in a patient by delivering products that modulate Id-1 gene expression. When expressed, Id-1 gene is a prognostic indicator that cancer cells are invasive and metastatic.

  6. Expression at the imprinted dlk1-gtl2 locus is regulated by proneural genes in the developing telencephalon.

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    Full Text Available Imprinting is an epigenetic mechanism that restrains the expression of about 100 genes to one allele depending on its parental origin. Several imprinted genes are implicated in neurodevelopmental brain disorders, such as autism, Angelman, and Prader-Willi syndromes. However, how expression of these imprinted genes is regulated during neural development is poorly understood. Here, using single and double KO animals for the transcription factors Neurogenin2 (Ngn2 and Achaete-scute homolog 1 (Ascl1, we found that the expression of a specific subset of imprinted genes is controlled by these proneural genes. Using in situ hybridization and quantitative PCR, we determined that five imprinted transcripts situated at the Dlk1-Gtl2 locus (Dlk1, Gtl2, Mirg, Rian, Rtl1 are upregulated in the dorsal telencephalon of Ngn2 KO mice. This suggests that Ngn2 influences the expression of the entire Dlk1-Gtl2 locus, independently of the parental origin of the transcripts. Interestingly 14 other imprinted genes situated at other imprinted loci were not affected by the loss of Ngn2. Finally, using Ngn2/Ascl1 double KO mice, we show that the upregulation of genes at the Dlk1-Gtl2 locus in Ngn2 KO animals requires a functional copy of Ascl1. Our data suggest a complex interplay between proneural genes in the developing forebrain that control the level of expression at the imprinted Dlk1-Gtl2 locus (but not of other imprinted genes. This raises the possibility that the transcripts of this selective locus participate in the biological effects of proneural genes in the developing telencephalon.

  7. Gene targeting, genome editing: from Dolly to editors.

    Science.gov (United States)

    Tan, Wenfang; Proudfoot, Chris; Lillico, Simon G; Whitelaw, C Bruce A

    2016-06-01

    One of the most powerful strategies to investigate biology we have as scientists, is the ability to transfer genetic material in a controlled and deliberate manner between organisms. When applied to livestock, applications worthy of commercial venture can be devised. Although initial methods used to generate transgenic livestock resulted in random transgene insertion, the development of SCNT technology enabled homologous recombination gene targeting strategies to be used in livestock. Much has been accomplished using this approach. However, now we have the ability to change a specific base in the genome without leaving any other DNA mark, with no need for a transgene. With the advent of the genome editors this is now possible and like other significant technological leaps, the result is an even greater diversity of possible applications. Indeed, in merely 5 years, these 'molecular scissors' have enabled the production of more than 300 differently edited pigs, cattle, sheep and goats. The advent of genome editors has brought genetic engineering of livestock to a position where industry, the public and politicians are all eager to see real use of genetically engineered livestock to address societal needs. Since the first transgenic livestock reported just over three decades ago the field of livestock biotechnology has come a long way-but the most exciting period is just starting.

  8.   Co-factors necessary for PPAR mediated transactivation of endogenous target genes

    DEFF Research Database (Denmark)

    Grøntved, Lars; Nielsen, Ronni; Stunnenberg, Henk

    of endogenous target gene in different cell types are elusive. To mutually compare the ability of the PPAR subtypes to activate endogenous target genes in a given cell, PPARa, PPARb/d and PPARg2 were HA tagged and rapidly, equally and synchronously expressed using adenoviral delivery. Within a few hours after...... adenoviral delivery the PPARs establish transcriptional active complexes on genomic target loci and launch immediate activation even of silent target genes. Direct comparison of the PPAR subtypes in a given cell line reveals that they selectively occupy genomic target promoters and in correlation show...

  9. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    Directory of Open Access Journals (Sweden)

    Zhou Jiangfeng

    2003-11-01

    Full Text Available Abstract The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.

  10. Comparison of quantitative PCR assays for Escherichia coli targeting ribosomal RNA and single copy genes

    Science.gov (United States)

    Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi-copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxono...

  11. Control of target gene specificity during metamorphosis by the steroid response gene E93.

    Science.gov (United States)

    Mou, Xiaochun; Duncan, Dianne M; Baehrecke, Eric H; Duncan, Ian

    2012-02-21

    Hormonal control of sexual maturation is a common feature in animal development. A particularly dramatic example is the metamorphosis of insects, in which pulses of the steroid hormone ecdysone drive the wholesale transformation of the larva into an adult. The mechanisms responsible for this transformation are not well understood. Work in Drosophila indicates that the larval and adult forms are patterned by the same underlying sets of developmental regulators, but it is not understood how the same regulators pattern two distinct forms. Recent studies indicate that this ability is facilitated by a global change in the responsiveness of target genes during metamorphosis. Here we show that this shift is controlled in part by the ecdysone-induced transcription factor E93. Although long considered a dedicated regulator of larval cell death, we find that E93 is expressed widely in adult cells at the pupal stage and is required for many patterning processes at this time. To understand the role of E93 in adult patterning, we focused on a simple E93-dependent process, the induction of the Dll gene within bract cells of the pupal leg by EGF receptor signaling. In this system, we show that E93 functions to cause Dll to become responsive to EGF receptor signaling. We demonstrate that E93 is both necessary and sufficient for directing this switch. E93 likely controls the responsiveness of many other target genes because it is required broadly for patterning during metamorphosis. The wide conservation of E93 orthologs suggests that similar mechanisms control life-cycle transitions in other organisms, including vertebrates.

  12. Advances of Driver Gene and Targeted Therapy of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Dan ZHANG

    2014-10-01

    Full Text Available Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC. Society of Clinical Oncology (ASCO has showed 11 kinds of diver genes. Here, we review the functional and structural characteristics and the targeted therapy in the 11 kinds of driver gene mutations.

  13. [Advances of driver gene and targeted therapy of non-small cell lung cancer].

    Science.gov (United States)

    Zhang, Dan; Huang, Yan; Wang, Hongyang

    2014-10-20

    Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC). Society of Clinical Oncology (ASCO) has showed 11 kinds of diver genes. Here, we review the functional and structural characteristics and the targeted therapy in the 11 kinds of driver gene mutations.

  14. The latest advances of experimental research on targeted gene therapy for prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Dongliang Pan; Lianchao Jin; Xianghua Zhang

    2013-01-01

    The absence of ef ective therapies for castration-resistant prostate cancer (CRPC) establishes the need to de-velop novel therapeutic modality, such as targeted gene therapy, which is ideal for the treatment of CRPC. But its application has been limited due to lack of favorable gene vector and the reduction of“bystander ef ect”. Consequently, scientists al over the world focus their main experimental research on the fol owing four aspects:targeted gene, vector, transfer means and comprehensive therapy. In this paper, we reviewed the latest advances of experimental research on targeted gene therapy for prostate cancer .

  15. Rapid and Cost-Effective Gene Targeting in Rat Embryonic Stem Cells by TALENs

    Institute of Scientific and Technical Information of China (English)

    Chang Tong; Guanyi Huang; Charles Ashton; Hongping Wu; Hexin Yan; Qi-Long Ying

    2012-01-01

    The rat is the preferred animal model in many areas of biomedical research and drug development.Genetic manipulation in rats has lagged behind that in mice due to the lack of efficient gene targeting tools.Previously,we generated a knockout rat via conventional homologous recombination in rat embryonic stem (ES) cells.Here,we show that efficient gene targeting in rat ES cells can be achieved quickly through transcription activator-like effector nuclease (TALEN)-mediated DNA double-strand breaks.Using the Golden Gate cloning technique,we constructed a pair of TALEN targeting vectors for the gene of interest in 5 days.After gene transfection,the targeted rat ES cell colonies were isolated,screened,and confirmed by PCR without the need of drug selection.Our results suggest that TALEN-mediated gene targeting is a superior means of establishing genetically modified rat ES cell lines with high efficiency and short turnaround time.

  16. Using PCR to Target Misconceptions about Gene Expression

    Directory of Open Access Journals (Sweden)

    Leslie K. Wright

    2013-02-01

    Full Text Available We present a PCR-based laboratory exercise that can be used with first- or second-year biology students to help overcome common misconceptions about gene expression. Biology students typically do not have a clear understanding of the difference between genes (DNA and gene expression (mRNA/protein and often believe that genes exist in an organism or cell only when they are expressed. This laboratory exercise allows students to carry out a PCR-based experiment designed to challenge their misunderstanding of the difference between genes and gene expression. Students first transform E. coli with an inducible GFP gene containing plasmid and observe induced and un-induced colonies. The following exercise creates cognitive dissonance when actual PCR results contradict their initial (incorrect predictions of the presence of the GFP gene in transformed cells. Field testing of this laboratory exercise resulted in learning gains on both knowledge and application questions on concepts related to genes and gene expression.

  17. An approach for the identification of targets specific to bone metastasis using cancer genes interactome and gene ontology analysis.

    Directory of Open Access Journals (Sweden)

    Shikha Vashisht

    Full Text Available Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality. Secondary bone cancer (SBC is a complex disease caused by metastasis of tumor cells from their primary site and is characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC, the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of targets specific to SBC, we constructed a 'Cancer Genes Network', a representative protein interactome of cancer genes. Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis of 'Cancer Genes Network', have broader implications in understanding the role of molecular regulators in mechanisms of cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to secondary bone cancer.

  18. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Andersson, Jens A.; Kristensen, Matilde Bylov;

    2008-01-01

    technique that allows single step cloning of the two required homologous recombination sequences into different sites of a recipient vector. The advantages are: A simple experimental design, free choice of target sequence, few procedures and user convenience. The vectors are intented for Agrobacterium...... with an average efficiency of 84% for gene replacement and 80% for targeted overexpression. Conclusion: The new vectors designed for USER Friendly cloning provided a fast reliable method to construct vectors for targeted gene manipulations in fungi....

  19. Applications of Gene Targeting Technology to Mental Retardation and Developmental Disability Research

    Science.gov (United States)

    Pimenta, Aurea F.; Levitt, Pat

    2005-01-01

    The human and mouse genome projects elucidated the sequence and position map of innumerous genes expressed in the central nervous system (CNS), advancing our ability to manipulate these sequences and create models to investigate regulation of gene expression and function. In this article, we reviewed gene targeting methodologies with emphasis on…

  20. Identification of therapeutic targets for Alzheimer's disease via differentially expressed gene and weighted gene co-expression network analyses.

    Science.gov (United States)

    Jia, Yujie; Nie, Kun; Li, Jing; Liang, Xinyue; Zhang, Xuezhu

    2016-11-01

    In order to investigate the pathogenic targets and associated biological process of Alzheimer's disease in the present study, mRNA expression profiles (GSE28146) and microRNA (miRNA) expression profiles (GSE16759) were downloaded from the Gene Expression Omnibus database. In GSE28146, eight control samples, and Alzheimer's disease samples comprising seven incipient, eight moderate, seven severe Alzheimer's disease samples, were included. The Affy package in R was used for background correction and normalization of the raw microarray data. The differentially expressed genes (DEGs) and differentially expressed miRNAs were identified using the Limma package. In addition, mRNAs were clustered using weighted gene correlation network analysis, and modules found to be significantly associated with the stages of Alzheimer's disease were screened out. The Database for Annotation, Visualization, and Integrated Discovery was used to perform Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. The target genes of the differentially expressed miRNAs were identified using the miRWalk database. Compared with the control samples, 175,59 genes and 90 DEGs were identified in the incipient, moderate and severe Alzheimer's disease samples, respectively. A module, which contained 1,592 genes was found to be closely associated with the stage of Alzheimer's disease and biological processes. In addition, pathways associated with Alzheimer's disease and other neurological diseases were found to be enriched in those genes. A total of 139 overlapped genes were identified between those genes and the DEGs in the three groups. From the miRNA expression profiles, 189 miRNAs were found differentially expressed in the samples from patients with Alzheimer's disease and 1,647 target genes were obtained. In addition, five overlapped genes were identified between those 1,647 target genes and the 139 genes, and these genes may be important pathogenic targets for Alzheimer

  1. PPARgene: A Database of Experimentally Verified and Computationally Predicted PPAR Target Genes.

    Science.gov (United States)

    Fang, Li; Zhang, Man; Li, Yanhui; Liu, Yan; Cui, Qinghua; Wang, Nanping

    2016-01-01

    The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors of the nuclear receptor superfamily. Upon ligand binding, PPARs activate target gene transcription and regulate a variety of important physiological processes such as lipid metabolism, inflammation, and wound healing. Here, we describe the first database of PPAR target genes, PPARgene. Among the 225 experimentally verified PPAR target genes, 83 are for PPARα, 83 are for PPARβ/δ, and 104 are for PPARγ. Detailed information including tissue types, species, and reference PubMed IDs was also provided. In addition, we developed a machine learning method to predict novel PPAR target genes by integrating in silico PPAR-responsive element (PPRE) analysis with high throughput gene expression data. Fivefold cross validation showed that the performance of this prediction method was significantly improved compared to the in silico PPRE analysis method. The prediction tool is also implemented in the PPARgene database.

  2. Identification of novel gene targets and functions of p21-activated kinase 1 during DNA damage by gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Mona Motwani

    Full Text Available P21-activated kinase 1 (PAK1, a serine/threonine protein kinase, modulates many cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, PAK1 also affects gene transcription due to its nuclear localization and association with chromatin. It is now recognized that PAK1 kinase activity and its nuclear translocation are rapidly stimulated by ionizing radiation (IR, and that PAK1 activation is a component of the DNA damage response. Owing to the role of PAK1 in the cell survival, its association with the chromatin, and now, stimulation by ionizing radiation, we hypothesize that PAK1 may be contributing to modulation of genes with roles in cellular processes that might be important in the DNA damage response. The purpose of this study was to identify new PAK1 targets in response to ionizing radiation with putative role in the DNA damage response. We examined the effect of IR on the gene expression patterns in the murine embryonic fibroblasts with or without Pak1 using microarray technology. Differentially expressed transcripts were identified using Gene Spring GX 10.0.2. Pathway, network, functional analyses and gene family classification were carried out using Kyoto Encyclopedia of Genes and Genomes (KEGG, Ingenuity Pathway, Gene Ontology and PANTHER respectively. Selective targets of PAK1 were validated by RT-qPCR. For the first time, we provide a genome-wide analysis of PAK1 and identify its targets with potential roles in the DNA damage response. Gene Ontology analysis identified genes in the IR-stimulated cells that were involved in cell cycle arrest and cell death. Pathway analysis revealed p53 pathway being most influenced by IR responsive, PAK1 targets. Gene family of transcription factors was over represented and gene networks involved in DNA replication, repair and cellular signaling were identified. In brief, this study identifies novel PAK1 dependent IR responsive genes which reveal new

  3. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Kazuo [Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto (Japan); Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Ikeya, Makoto [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Fukuta, Makoto [Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto (Japan); Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Woltjen, Knut [Department of Reprogramming Sciences, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Tamaki, Sakura; Takahara, Naoko; Kato, Tomohisa; Sato, Shingo [Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto (Japan); Otsuka, Takanobu [Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Nagoya City University, Nagoya (Japan); Toguchida, Junya, E-mail: togjun@frontier.kyoto-u.ac.jp [Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto (Japan); Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto (Japan); Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto (Japan)

    2013-03-22

    Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggest its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly

  4. Gene targeting in melanoma therapy: exploiting of surface markers and specific promoters

    Directory of Open Access Journals (Sweden)

    Sverdlov E. D.

    2012-01-01

    Full Text Available One of the problems of gene therapy of melanoma is effective expression of therapeutic gene in tumor cells and their metastases but not in normal cells. In this review, we will consider a two-step approach to a highly specific gene therapy. At the first step, therapeutic genes are delivered specifically to tumor cells using cell surface markers of melanoma cells as targets. At the second step, a specific expression of the therapeutic genes in tumor cells is ensured. Surface markers of melanoma cells were analyzed as potential targets for therapeutic treatment. Criteria for choosing the most promising targets are proposed. The use of specific melanoma promoters allows to further increase the specificity of treatment via transcriptional control of therapeutic gene expression in melanoma cells.

  5. Peptide targeting of adenoviral vectors to augment tumor gene transfer.

    Science.gov (United States)

    Ballard, E N; Trinh, V T; Hogg, R T; Gerard, R D

    2012-07-01

    Adenovirus serotype 5 remains one of the most promising vectors for delivering genetic material to cancer cells for imaging or therapy, but optimization of these agents to selectively promote tumor cell infection is needed to further their clinical development. Peptide sequences that bind to specific cell surface receptors have been inserted into adenoviral capsid proteins to improve tumor targeting, often in the background of mutations designed to ablate normal ligand:receptor interactions and thereby reduce off target effects and toxicities in non-target tissues. Different tumor types also express highly variable complements of cell surface receptors, so a customized targeting strategy using a particular peptide in the context of specific adenoviral mutations may be needed to achieve optimal efficacy. To further investigate peptide targeting strategies in adenoviral vectors, we used a set of peptide motifs originally isolated using phage display technology that evince tumor specificity in vivo. To demonstrate their abilities as targeting motifs, we genetically incorporated these peptides into a surface loop of the fiber capsid protein to construct targeted adenovirus vectors. We then systematically evaluated the ability of these peptide targeted vectors to infect several tumor cell types, both in vitro and in vivo, in a variety of mutational backgrounds designed to reduce CAR and/or HSG-mediated binding. Results from this study support previous observations that peptide insertions in the HI loop of the fiber knob domain are generally ineffective when used in combination with HSG detargeting mutations. The evidence also suggests that this strategy can attenuate other fiber knob interactions, such as CAR-mediated binding, and reduce overall viral infectivity. The insertion of peptides into fiber proved more effective for targeting tumor cell types expressing low levels of CAR receptor, as this strategy can partially compensate for the very low infectivity of wild

  6. Genes involved in angiogenesis and mTOR pathways are frequently mutated in Asian patients with pancreatic neuroendocrine tumors

    Science.gov (United States)

    Chou, Wen-Chi; Lin, Po-Han; Yeh, Yi-Chen; Shyr, Yi-Ming; Fang, Wen-Liang; Wang, Shin-E; Liu, Chun-Yu; Chang, Peter Mu-Hsin; Chen, Ming-Han; Hung, Yi-Ping; Li, Chung-Pin; Chao, Yee; Chen, Ming-Huang

    2016-01-01

    Introduction: To address the issue of limited data on and inconsistent findings for genetic alterations in pancreatic neuroendocrine tumors (pNETs), we analyzed sequences of known pNET-associated genes for their impact on clinical outcomes in a Taiwanese cohort. Methods: Tissue samples from 40 patients with sporadic pNETs were sequenced using a customized sequencing panel that analyzed 43 genes with either an established or potential association with pNETs. Genetic mutations and clinical outcomes were analyzed for potential associations. Results: Thirty-three patients (82.5%) survived for a median 5.9 years (range, 0.3-18.4) of follow up. The median number of mutations per patient was 3 (range, 0-16). The most frequent mutations were in ATRX (28%), MEN1 (28%), ASCL1 (28%), TP53 (20%), mTOR (20%), ARID1A (20%), and VHL (20%). The mutation frequencies in the MEN1 (including MEN1/PSIP1/ARID1A), mTOR (including mTOR/PIK3CA/AKT1/PTEN /TS1/TSC2/ATM), DAXX/ATRX, and angiogenesis (including VHL/ANGPT1/ANGPT2 /HIF1A) pathways were 48%, 48%, 38%, and 45%, respectively. Mutations in ATRX were associated with WHO grade I pNET (vs. grade II or III, p = 0.043), and so were those in genes involved in angiogenesis (p = 0.002). Patients with mutated MEN1 and DAXX/ATRX pathways showed a trend toward better survival, compared to patients with the wild-type genes (p = 0.08 and 0.12, respectively). Conclusion: Genetic profiles of Asian patients with pNETs were distinct from Caucasian patient profiles. Asian patients with pNETs were more frequently mutated for the mTOR and angiogenesis pathways. This could partially explain the better outcome observed for targeted therapy in Asian patients with pNETs. PMID:27994516

  7. Gene-carried hepatoma targeting complex induced high gene transfection efficiency with low toxicity and significant antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhao QQ

    2012-06-01

    Full Text Available Qing-Qing Zhao,1,2 Yu-Lan Hu,1 Yang Zhou,3 Ni Li,1 Min Han,1 Gu-Ping Tang,4 Feng Qiu,2 Yasuhiko Tabata,5 Jian-Qing Gao,11Institute of Pharmaceutics, Zhejiang University, Hangzhou, China; 2Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; 3Institute of Biochemistry, Iowa State University, Ames, IA, USA; 4Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou, China; 5Institute for Frontier Medical Sciences, Kyoto University, Kyoto, JapanBackground: The success of gene transfection is largely dependent on the development of a vehicle or vector that can efficiently deliver a gene to cells with minimal toxicity.Methods: A liver cancer-targeted specific peptide (FQHPSF sequence was successfully synthesized and linked with chitosan-linked polyethylenimine (CP to form a new targeted gene delivery vector called CPT (CP/peptide. The structure of CPT was confirmed by 1H nuclear magnetic resonance spectroscopy and ultraviolet spectrophotometry. The particle size of CPT/DNA complexes was measured using laser diffraction spectrometry and the cytotoxicity of the copolymer was evaluated by methylthiazol tetrazolium method. The transfection efficiency evaluation of the CP copolymer was performed using luciferase activity assay. Cellular internalization of the CP/DNA complex was observed under confocal laser scanning microscopy. The targeting specificity of the polymer coupled to peptide was measured by competitive inhibition transfection study. The liver targeting specificity of the CPT copolymer in vivo was demonstrated by combining the copolymer with a therapeutic gene, interleukin-12, and assessed by its abilities in suppressing the growth of ascites tumor in mouse model.Results: The results showed that the liver cancer-targeted specific peptide was successfully synthesized and linked with CP to form a new targeted gene delivery vector called CPT. The composition of CPT

  8. Flux variability scanning based on enforced objective flux for identifying gene amplification targets

    Directory of Open Access Journals (Sweden)

    Park Jong

    2012-08-01

    Full Text Available Abstract Background In order to reduce time and efforts to develop microbial strains with better capability of producing desired bioproducts, genome-scale metabolic simulations have proven useful in identifying gene knockout and amplification targets. Constraints-based flux analysis has successfully been employed for such simulation, but is limited in its ability to properly describe the complex nature of biological systems. Gene knockout simulations are relatively straightforward to implement, simply by constraining the flux values of the target reaction to zero, but the identification of reliable gene amplification targets is rather difficult. Here, we report a new algorithm which incorporates physiological data into a model to improve the model’s prediction capabilities and to capitalize on the relationships between genes and metabolic fluxes. Results We developed an algorithm, flux variability scanning based on enforced objective flux (FVSEOF with grouping reaction (GR constraints, in an effort to identify gene amplification targets by considering reactions that co-carry flux values based on physiological omics data via “GR constraints”. This method scans changes in the variabilities of metabolic fluxes in response to an artificially enforced objective flux of product formation. The gene amplification targets predicted using this method were validated by comparing the predicted effects with the previous experimental results obtained for the production of shikimic acid and putrescine in Escherichia coli. Moreover, new gene amplification targets for further enhancing putrescine production were validated through experiments involving the overexpression of each identified targeted gene under condition-controlled batch cultivation. Conclusions FVSEOF with GR constraints allows identification of gene amplification targets for metabolic engineering of microbial strains in order to enhance the production of desired bioproducts. The algorithm

  9. Gene targeting using homologous recombination in embryonic stem cells: The future for behavior genetics?

    Directory of Open Access Journals (Sweden)

    Robert eGerlai

    2016-04-01

    Full Text Available Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  10. High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    Ken-ichi T. Suzuki

    2013-03-01

    Recently, gene editing with transcription activator-like effector nucleases (TALENs has been used in the life sciences. TALENs can be easily customized to recognize a specific DNA sequence and efficiently introduce double-strand breaks at the targeted genomic locus. Subsequent non-homologous end-joining repair leads to targeted gene disruption by base insertion, deletion, or both. Here, to readily evaluate the efficacy of TALENs in Xenopus laevis embryos, we performed the targeted gene disruption of tyrosinase (tyr and pax6 genes that are involved in pigmentation and eye formation, respectively. We constructed TALENs targeting tyr and pax6 and injected their mRNAs into fertilized eggs at the one-cell stage. Expectedly, introduction of tyr TALEN mRNA resulted in drastic loss of pigmentation with high efficiency. Similarly, for pax6, TALENs led to deformed eyes in the injected embryos. We confirmed mutations of the target alleles by restriction enzyme digestion and sequence analyses of genomic PCR products. Surprisingly, not only biallelic but also paralogous, gene disruption was observed. Our results demonstrate that targeted gene disruption by TALENs provides a method comparable to antisense morpholinos in analyzing gene function in Xenopus F0 embryos, but also applies beyond embryogenesis to any life stage.

  11. Stable gene replacement in barley by targeted double-strand break induction.

    Science.gov (United States)

    Watanabe, Koichi; Breier, Ulrike; Hensel, Götz; Kumlehn, Jochen; Schubert, Ingo; Reiss, Bernd

    2016-03-01

    Gene targeting is becoming an important tool for precision genome engineering in plants. During gene replacement, a variant of gene targeting, transformed DNA integrates into the genome by homologous recombination (HR) to replace resident sequences. We have analysed gene targeting in barley (Hordeum vulgare) using a model system based on double-strand break (DSB) induction by the meganuclease I-SceI and a transgenic, artificial target locus. In the plants we obtained, the donor construct was inserted at the target locus by homology-directed DNA integration in at least two transformants obtained in a single experiment and was stably inherited as a single Mendelian trait. Both events were produced by one-sided integration. Our data suggest that gene replacement can be achieved in barley with a frequency suitable for routine application. The use of a codon-optimized nuclease and co-transfer of the nuclease gene together with the donor construct are probably the components important for efficient gene targeting. Such an approach, employing the recently developed synthetic nucleases/nickases that allow DSB induction at almost any sequence of a genome of interest, sets the stage for precision genome engineering as a routine tool even for important crops such as barley.

  12. Gene Targeting Using Homologous Recombination in Embryonic Stem Cells: The Future for Behavior Genetics?

    Science.gov (United States)

    Gerlai, Robert

    2016-01-01

    Gene targeting with homologous recombination in embryonic stem cells created a revolution in the analysis of the function of genes in behavioral brain research. The technology allowed unprecedented precision with which one could manipulate genes and study the effect of this manipulation on the central nervous system. With gene targeting, the uncertainty inherent in psychopharmacology regarding whether a particular compound would act only through a specific target was removed. Thus, gene targeting became highly popular. However, with this popularity came the realization that like other methods, gene targeting also suffered from some technical and principal problems. For example, two decades ago, issues about compensatory changes and about genetic linkage were raised. Since then, the technology developed, and its utility has been better delineated. This review will discuss the pros and cons of the technique along with these advancements from the perspective of the neuroscientist user. It will also compare and contrast methods that may represent novel alternatives to the homologous recombination based gene targeting approach, including the TALEN and the CRISPR/Cas9 systems. The goal of the review is not to provide detailed recipes, but to attempt to present a short summary of these approaches a behavioral geneticist or neuroscientist may consider for the analysis of brain function and behavior.

  13. Target gene analyses of 39 amelogenesis imperfecta kindreds.

    Science.gov (United States)

    Chan, Hui-Chen; Estrella, Ninna M R P; Milkovich, Rachel N; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2011-12-01

    Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred.

  14. Characterization of three loci for homologous gene targeting and transgene expression.

    Science.gov (United States)

    Eyquem, Justin; Poirot, Laurent; Galetto, Roman; Scharenberg, Andrew M; Smith, Julianne

    2013-08-01

    Integrative gene transfer is widely used for bioproduction, drug screening, and therapeutic applications but usual viral methods lead to random and multicopy insertions, contribute to unstable transgene expression and can disturb endogenous gene expression. Homologous targeting of an expression cassette using rare-cutting endonucleases is a potential solution; however the number of studied loci remains limited. Furthermore, the behavior and performance of various types of gene cassettes following gene targeting is poorly defined. Here we have evaluated three loci for gene targeting, including one locus compatible with the proposed Safe Harbor criteria for human translational applications. Using optimized conditions for homologous gene targeting, reporter genes under the control of different promoters were efficiently inserted at each locus in both sense and antisense orientations. Sustainable expression was achieved at all three loci without detectable disturbance of flanking gene expression. However, the promoter, the integration locus and the cassette orientation have a strong impact on transgene expression. Finally, single targeted integrations exhibited greatly improved transgene expression stability versus multicopy or random integration. Taken together, our data suggest a potential set of loci for site-specific transgene integration, suitable for a variety of biotechnological applications.

  15. Apoptosis and the target genes of microRNA-21

    Institute of Scientific and Technical Information of China (English)

    Lindsey E. Becker Buscaglia; Yong Li

    2011-01-01

    MicroRNA-21 (miR-21) is frequently up-regulated in cancer and the majodty of its reported targets are tumor suppressors. Through functional suppression, miR-21 is implicated in practically every walk of oncogenic life: the promotion of cell proliferation, invasion and metastasis, genome instability and mutation, inflammation, replicative immortalization, abnormal metabolism, angiogenesis, and evading apoptosis, immune destruction, and growth suppressors. In particular, miR-21 is strongly involved in apoptosis. In this article, we reviewed the experimentally validated targets of miR-21 and found that two thirds are linked to intrinsic and/or extrinsic pathways of cellular apoptosis. This suggests that miR-21 is an oncogene which plays a key role in resisting programmed cell death in cancer cells and that targeting apoptosis is a viable therapeutic option against cancers expressing miR-21.

  16. Identification of Multiple Cryptococcal Fungicidal Drug Targets by Combined Gene Dosing and Drug Affinity Responsive Target Stability Screening

    Directory of Open Access Journals (Sweden)

    Yoon-Dong Park

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic fungus that is responsible for up to half a million cases of meningitis globally, especially in immunocompromised individuals. Common fungistatic drugs, such as fluconazole, are less toxic for patients but have low efficacy for initial therapy of the disease. Effective therapy against the disease is provided by the fungicidal drug amphotericin B; however, due to its high toxicity and the difficulty in administering its intravenous formulation, it is imperative to find new therapies targeting the fungus. The antiparasitic drug bithionol has been recently identified as having potent fungicidal activity. In this study, we used a combined gene dosing and drug affinity responsive target stability (GD-DARTS screen as well as protein modeling to identify a common drug binding site of bithionol within multiple NAD-dependent dehydrogenase drug targets. This combination genetic and proteomic method thus provides a powerful method for identifying novel fungicidal drug targets for further development.

  17. New development and application of ultrasound targeted microbubble destruction in gene therapy and drug delivery.

    Science.gov (United States)

    Chen, Zhi-Yi; Yang, Feng; Lin, Yan; Zhang, Jin-Shan; Qiu, Ri-Xiang; Jiang, Lan; Zhou, Xing-Xing; Yu, Jiang-Xiu

    2013-08-01

    Ultrasound is a common used technique for clinical imaging. In recent years, with the advances in preparation technology of microbubbles and the innovations in ultrasound imaging, ultrasound is no longer confined to detection of tissue perfusion, but extends to specific ultrasound molecular imaging and target therapy gradually. With the development of research, ultrasound molecular imaging and target therapy have made great progresses. Targeted microbubbles for molecular imaging are achieved by binding target molecules, specific antibody or ligand to the surface of microbubbles to obtain specific imaging by attaching to target tissues. Meanwhile, it can also achieve targeting gene therapy or drug delivery by ultrasound targeted microbubble destruction (UTMD) mediating genes or drugs to specific target sites. UTMD has a number of advantages, such as target-specific, highly effective, non-invasivity, relatively low-cost and no radiation, and has broad application prospects, which is regarded as one hot spot in medical studies. We reviewed the new development and application of UTMD in gene therapy and drug delivery in this paper. With further development of technology and research, the gene or drug delivery system and related methods will be widely used in application and researches.

  18. RNA-guided genome editing for target gene mutations in wheat.

    Science.gov (United States)

    Upadhyay, Santosh Kumar; Kumar, Jitesh; Alok, Anshu; Tuli, Rakesh

    2013-12-09

    The clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system has been used as an efficient tool for genome editing. We report the application of CRISPR-Cas-mediated genome editing to wheat (Triticum aestivum), the most important food crop plant with a very large and complex genome. The mutations were targeted in the inositol oxygenase (inox) and phytoene desaturase (pds) genes using cell suspension culture of wheat and in the pds gene in leaves of Nicotiana benthamiana. The expression of chimeric guide RNAs (cgRNA) targeting single and multiple sites resulted in indel mutations in all the tested samples. The expression of Cas9 or sgRNA alone did not cause any mutation. The expression of duplex cgRNA with Cas9 targeting two sites in the same gene resulted in deletion of DNA fragment between the targeted sequences. Multiplexing the cgRNA could target two genes at one time. Target specificity analysis of cgRNA showed that mismatches at the 3' end of the target site abolished the cleavage activity completely. The mismatches at the 5' end reduced cleavage, suggesting that the off target effects can be abolished in vivo by selecting target sites with unique sequences at 3' end. This approach provides a powerful method for genome engineering in plants.

  19. Gene-Specific Demethylation as Targeted Therapy in MDS

    Science.gov (United States)

    2016-07-01

    selected based on the prediction that they 6 would form a triplex structure with the locus being targeted. The second approach utilized a CRISPR ...MsgRNA. This type of screening should allow us to select the most effective and strongest guides to utilize with the inducible Crispr /dCas9 system and

  20. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    NARCIS (Netherlands)

    Rakhshandehroo, M.; Knoch, B.; Müller, M.R.; Kersten, A.H.

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPAR alpha) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPAR alpha serves as a molecular target for hypolip

  1. Systems Pharmacology‐Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes

    Science.gov (United States)

    Fang, J; Cai, C; Wang, Q; Lin, P

    2017-01-01

    Massive cancer genomics data have facilitated the rapid revolution of a novel oncology drug discovery paradigm through targeting clinically relevant driver genes or mutations for the development of precision oncology. Natural products with polypharmacological profiles have been demonstrated as promising agents for the development of novel cancer therapies. In this study, we developed an integrated systems pharmacology framework that facilitated identifying potential natural products that target mutated genes across 15 cancer types or subtypes in the realm of precision medicine. High performance was achieved for our systems pharmacology framework. In case studies, we computationally identified novel anticancer indications for several US Food and Drug Administration‐approved or clinically investigational natural products (e.g., resveratrol, quercetin, genistein, and fisetin) through targeting significantly mutated genes in multiple cancer types. In summary, this study provides a powerful tool for the development of molecularly targeted cancer therapies through targeting the clinically actionable alterations by exploiting the systems pharmacology of natural products. PMID:28294568

  2. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Andersson, Jens A.; Kristensen, Matilde Bylov;

    2008-01-01

    of coding sequences with fluorescent markers such as GFP are essential for this process. Construction of vectors for these experiments depends on the directional cloning of two homologous recombination sequences on each side of a selection marker gene. Results: Here, we present a USER Friendly cloning based...... tumefaciens and protoplast based transformation technologies. The system has been tested by the construction of vectors for targeted replacement of 17 genes and overexpression of 12 genes in Fusarium graminearum. The results show that four fragment vectors can be constructed in a single cloning step...... with an average efficiency of 84% for gene replacement and 80% for targeted overexpression. Conclusion: The new vectors designed for USER Friendly cloning provided a fast reliable method to construct vectors for targeted gene manipulations in fungi....

  3. Gene targeting in embryonic stem cells, II: conditional technologies

    Science.gov (United States)

    Genome modification via transgenesis has allowed researchers to link genotype and phenotype as an alternative approach to the characterization of random mutations through evolution. The synergy of technologies from the fields of embryonic stem (ES) cells, gene knockouts, and protein-mediated recombi...

  4. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes.

    Science.gov (United States)

    McGrath, Patrick T; Xu, Yifan; Ailion, Michael; Garrison, Jennifer L; Butcher, Rebecca A; Bargmann, Cornelia I

    2011-08-17

    Evolution can follow predictable genetic trajectories, indicating that discrete environmental shifts can select for reproducible genetic changes. Conspecific individuals are an important feature of an animal's environment, and a potential source of selective pressures. Here we show that adaptation of two Caenorhabditis species to growth at high density, a feature common to domestic environments, occurs by reproducible genetic changes to pheromone receptor genes. Chemical communication through pheromones that accumulate during high-density growth causes young nematode larvae to enter the long-lived but non-reproductive dauer stage. Two strains of Caenorhabditis elegans grown at high density have independently acquired multigenic resistance to pheromone-induced dauer formation. In each strain, resistance to the pheromone ascaroside C3 results from a deletion that disrupts the adjacent chemoreceptor genes serpentine receptor class g (srg)-36 and -37. Through misexpression experiments, we show that these genes encode redundant G-protein-coupled receptors for ascaroside C3. Multigenic resistance to dauer formation has also arisen in high-density cultures of a different nematode species, Caenorhabditis briggsae, resulting in part from deletion of an srg gene paralogous to srg-36 and srg-37. These results demonstrate rapid remodelling of the chemoreceptor repertoire as an adaptation to specific environments, and indicate that parallel changes to a common genetic substrate can affect life-history traits across species.

  5. Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements

    Directory of Open Access Journals (Sweden)

    Paula Paulo

    2012-07-01

    Full Text Available This work aimed to evaluate whether ETS transcription factors frequently involved in rearrangements in prostate carcinomas (PCa, namely ERG and ETV1, regulate specific or shared target genes. We performed differential expression analysis on nine normal prostate tissues and 50 PCa enriched for different ETS rearrangements using exon-level expression microarrays, followed by in vitro validation using cell line models. We found specific deregulation of 57 genes in ERG-positive PCa and 15 genes in ETV1-positive PCa, whereas deregulation of 27 genes was shared in both tumor subtypes. We further showed that the expression of seven tumor-associated ERG target genes (PLA1A, CACNA1D, ATP8A2, HLA-DMB, PDE3B, TDRD1, and TMBIM1 and two tumor-associated ETV1 target genes (FKBP10 and GLYATL2 was significantly affected by specific ETS silencing in VCaP and LNCaP cell line models, respectively, whereas the expression of three candidate ERG and ETV1 shared targets (GRPR, KCNH8, and TMEM45B was significantly affected by silencing of either ETS. Interestingly, we demonstrate that the expression of TDRD1, the topmost overexpressed gene of our list of ERG-specific candidate targets, is inversely correlated with the methylation levels of a CpG island found at -66 bp of the transcription start site in PCa and that TDRD1 expression is regulated by direct binding of ERG to the CpG island in VCaP cells. We conclude that ETS transcription factors regulate specific and shared target genes and that TDRD1, FKBP10, and GRPR are promising therapeutic targets and can serve as diagnostic markers for molecular subtypes of PCa harboring specific fusion gene rearrangements.

  6. Notch signalling and proneural genes work together to control the neural building blocks for the initial scaffold in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Michelle eWare

    2014-12-01

    Full Text Available The vertebrate embryonic prosencephalon gives rise to the hypothalamus, which plays essential roles in sensory information processing as well as control of physiological homeostasis and behaviour. While patterning of the hypothalamus has received much attention, initial neurogenesis in the developing hypothalamus has mostly been neglected. The first differentiating progenitor cells of the hypothalamus will give rise to neurons that form the nucleus of the tract of the postoptic commissure and the nucleus of the mammillotegmental tract. The formation of these neuronal populations has to be highly controlled both spatially and temporally as these tracts will form part of the ventral longitudinal tract and act as a scaffold for later, follower axons. This review will cumulate and summarise the existing data available describing initial neurogenesis in the vertebrate hypothalamus. It has only recently been proposed that loss of Notch signalling in the developing chick embryo causes an increase in the number of neurons in the hypothalamus, highlighting an early function of the Notch pathway during hypothalamus formation. It is well known that the Notch signalling pathway through the inhibition of proneural genes is a key regulator of neurogenesis in the vertebrate central nervous system. Scarce studies have shown genes such as Ascl1 and Hes5 are expressed in the hypothalamus earlier than when the first mature neurons appear. The timing of the transcriptional repressors of the Notch signalling pathway and proneural activators will be analysed. We will discuss novel targets that start to unravel the mechanisms behind neurogenesis in the hypothalamus. Given the critical role that hypothalamic neural circuitry plays in maintaining homeostasis, it is particularly important to establish the targets downstream of this Notch/proneural network.

  7. Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum).

    Science.gov (United States)

    Yin, Zujun; Li, Chunhe; Han, Xiulan; Shen, Fafu

    2008-05-15

    MicroRNAs (miRNAs) are a class of non-coding RNAs that have important gene regulation roles in various organisms. To date, a total of 1279 plant miRNAs have been deposited in the miRNA miRBase database (Release 10.1). Many of them are conserved during the evolution of land plants suggesting that the well-conserved miRNAs may also retain homologous target interactions. Recently, little is known about the experimental or computational identification of conserved miRNAs and their target genes in tomato. Here, using a computational homology search approach, 21 conserved miRNAs were detected in the Expressed Sequence Tags (EST) and Genomic Survey Sequence (GSS) databases. Following this, 57 potential target genes were predicted by searching the mRNA database. Most of the target mRNAs appeared to be involved in plant growth and development. Our findings verified that the well-conserved tomato miRNAs have retained homologous target interactions amongst divergent plant species. Some miRNAs express diverse combinations in different cell types and have been shown to regulate cell-specific target genes coordinately. We believe that the targeting propensity for genes in different biological processes can be explained largely by their protein connectivity.

  8. Establishment of Smad2 conditional gene targeting mice based on the Cre-LoxP system

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Jiang(周江); CHENG; Xuan(程萱); SUN; Yanxun(孙彦洵); HUANG; Peitang(黄培堂); HUANG; Cuifen(黄翠芬); YANG; Xiao(杨晓)

    2002-01-01

    Smads is a new gene family in transforming growth factor-β(TGF-β) signaling pathway. Smad2 mutated in multiple human tumors and may be a candidate tumor suppressor gene. Targeted disruption of murine Smad2 gene resulted in embryonic lethality at E6.5. To study the function of Smad2 in vertebrate organgenesis and tumorigenesis, we constructed the Smad2 conditional targeting vector in which two LoxP sequences were placed to flank the sequences encoding the C terminal functional domain of Smad2. The validity of the LoxP sites in the targeting construct was tested in E. coli that express the Cre recombinase constitutively. The vector was electroporated into ES cells and 3 targeted ES cell clones were obtained by Southern blot screening. Targeted ES cells were introduced into C57BL/6J blastocysts by microinjection to generate germ-line chimeras. Genotyping analysis showed that 2 progeny among these chimeras carried the Smad2 conditional targeted allele. The establishment of Smad2 conditional gene targeting mouse has laid a solid foundation for producing the tissue specific Smad2 gene knockout mice.

  9. Identification of novel endogenous antisense transcripts by DNA microarray analysis targeting complementary strand of annotated genes

    Directory of Open Access Journals (Sweden)

    Kohama Chihiro

    2009-08-01

    Full Text Available Abstract Background Recent transcriptomic analyses in mammals have uncovered the widespread occurrence of endogenous antisense transcripts, termed natural antisense transcripts (NATs. NATs are transcribed from the opposite strand of the gene locus and are thought to control sense gene expression, but the mechanism of such regulation is as yet unknown. Although several thousand potential sense-antisense pairs have been identified in mammals, examples of functionally characterized NATs remain limited. To identify NAT candidates suitable for further functional analyses, we performed DNA microarray-based NAT screening using mouse adult normal tissues and mammary tumors to target not only the sense orientation but also the complementary strand of the annotated genes. Results First, we designed microarray probes to target the complementary strand of genes for which an antisense counterpart had been identified only in human public cDNA sources, but not in the mouse. We observed a prominent expression signal from 66.1% of 635 target genes, and 58 genes of these showed tissue-specific expression. Expression analyses of selected examples (Acaa1b and Aard confirmed their dynamic transcription in vivo. Although interspecies conservation of NAT expression was previously investigated by the presence of cDNA sources in both species, our results suggest that there are more examples of human-mouse conserved NATs that could not be identified by cDNA sources. We also designed probes to target the complementary strand of well-characterized genes, including oncogenes, and compared the expression of these genes between mammary cancerous tissues and non-pathological tissues. We found that antisense expression of 95 genes of 404 well-annotated genes was markedly altered in tumor tissue compared with that in normal tissue and that 19 of these genes also exhibited changes in sense gene expression. These results highlight the importance of NAT expression in the regulation

  10. Cancer-targeted BikDD gene therapy elicits protective antitumor immunity against lung cancer.

    Science.gov (United States)

    Sher, Yuh-Pyng; Liu, Shih-Jen; Chang, Chun-Mien; Lien, Shu-Pei; Chen, Chien-Hua; Han, Zhenbo; Li, Long-Yuan; Chen, Jin-Shing; Wu, Cheng-Wen; Hung, Mien-Chie

    2011-04-01

    Targeted cancer-specific gene therapy is a promising strategy for treating metastatic lung cancer, which is a leading cause of lung cancer-related deaths. Previously, we developed a cancer-targeted gene therapy expression system with high tumor specificity and strong activity that selectively induced lung cancer cell killing without affecting normal cells in immunocompromised mice. Here, we found this cancer-targeted gene therapy, SV-BikDD, composed of the survivin promoter in the VP16-GAL4-WPRE integrated systemic amplifier system to drive the apoptotic gene BikDD, not only caused cytotoxic effects in cancer cells but also elicited a cancer-specific cytotoxic T lymphocyte response to synergistically increase the therapeutic effect and further develop an effective systemic antitumoral immunity against rechallenges of tumorigenic dose of parental tumor cells inoculated at distant sites in immunocompetent mice. In addition, this cancer-targeted gene therapy does not elicit an immune response against normal tissues, but CMV-BikDD treatment does. The therapeutic vector could also induce proinflammatory cytokines to activate innate immunity and provide some benefits in antitumor gene therapy. Thus, this study provides a promising strategy with benefit of antitumoral immune response worthy of further development in clinical trials for treating lung cancer via cancer-targeted gene therapy.

  11. Gene Regulatory Mechanisms Underlying the Spatial and Temporal Regulation of Target-Dependent Gene Expression in Drosophila Neurons.

    Directory of Open Access Journals (Sweden)

    Anthony J E Berndt

    2015-12-01

    Full Text Available Neuronal differentiation often requires target-derived signals from the cells they innervate. These signals typically activate neural subtype-specific genes, but the gene regulatory mechanisms remain largely unknown. Highly restricted expression of the FMRFa neuropeptide in Drosophila Tv4 neurons requires target-derived BMP signaling and a transcription factor code that includes Apterous. Using integrase transgenesis of enhancer reporters, we functionally dissected the Tv4-enhancer of FMRFa within its native cellular context. We identified two essential but discrete cis-elements, a BMP-response element (BMP-RE that binds BMP-activated pMad, and a homeodomain-response element (HD-RE that binds Apterous. These cis-elements have low activity and must be combined for Tv4-enhancer activity. Such combinatorial activity is often a mechanism for restricting expression to the intersection of cis-element spatiotemporal activities. However, concatemers of the HD-RE and BMP-RE cis-elements were found to independently generate the same spatiotemporal expression as the Tv4-enhancer. Thus, the Tv4-enhancer atypically combines two low-activity cis-elements that confer the same output from distinct inputs. The activation of target-dependent genes is assumed to 'wait' for target contact. We tested this directly, and unexpectedly found that premature BMP activity could not induce early FMRFa expression; also, we show that the BMP-insensitive HD-RE cis-element is activated at the time of target contact. This led us to uncover a role for the nuclear receptor, seven up (svp, as a repressor of FMRFa induction prior to target contact. Svp is normally downregulated immediately prior to target contact, and we found that maintaining Svp expression prevents cis-element activation, whereas reducing svp gene dosage prematurely activates cis-element activity. We conclude that the target-dependent FMRFa gene is repressed prior to target contact, and that target-derived BMP

  12. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice.

    Science.gov (United States)

    Li, Jing; Jiang, Dagang; Zhou, Hai; Li, Feng; Yang, Jiawei; Hong, Laifa; Fu, Xiao; Li, Zhibin; Liu, Zhenlan; Li, Jianming; Zhuang, Chuxiong

    2011-03-03

    Antisense and RNA interference (RNAi)-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice.

  13. Expression of RNA-interference/antisense transgenes by the cognate promoters of target genes is a better gene-silencing strategy to study gene functions in rice.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available Antisense and RNA interference (RNAi-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of target genes is a better gene-silencing approach to discovery gene function in rice.

  14. Peroxisome Proliferator-Activated Receptor Alpha Target Genes

    OpenAIRE

    Maryam Rakhshandehroo; Bianca Knoch; Michael Müller; Sander Kersten

    2010-01-01

    The peroxisome proliferator-activated receptor alpha (PPAR alpha) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPAR alpha serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPAR alpha binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPAR alpha governs biologi...

  15. Expression of androgen receptor target genes in skeletal muscle

    OpenAIRE

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 ) versus w...

  16. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding the...

  17. RYP1 gene as a target for molecular diagnosis of histoplasmosis.

    Science.gov (United States)

    Brilhante, Raimunda Sâmia Nogueira; Guedes, Glaucia Morgana de Melo; Riello, Giovanna Barbosa; Ribeiro, Joyce Fonteles; Alencar, Lucas Pereira; Bandeira, Silviane Praciano; Castelo-Branco, Débora Souza Collares Maia; Oliveira, Jonathas Sales; Freire, Janaína Maria Maia; Mesquita, Jacó Ricarte Lima de; Camargo, Zoilo Pires de; Cordeiro, Rossana de Aguiar; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2016-11-01

    This study analyzed the RYP1 gene as a target for the molecular diagnosis of histoplasmosis. This assay detected fungal DNA in 13/13 blood samples from HIV/AIDS-patients with histoplasmosis. Therefore, the detection of RYP1 gene in whole blood sample is a quick and sensitive test to diagnose histoplasmosis.

  18. Therapeutic brain cancer targeting by gene therapy and immunomodulation : a translational study

    NARCIS (Netherlands)

    Stathopoulos, A.

    2012-01-01

    The hypothesis pertinent to this thesis is that glioma tumours can be therapeutically targeted by gene and/or immunotherapy in order to eliminate or delay tumour recurrence leading to significant morbidity and mortality. In our gene therapeutic approach, described in Chapter 2, we observed that chro

  19. Demystifying the secret mission of enhancers: linking distal regulatory elements to target genes.

    Science.gov (United States)

    Yao, Lijing; Berman, Benjamin P; Farnham, Peggy J

    2015-01-01

    Enhancers are short regulatory sequences bound by sequence-specific transcription factors and play a major role in the spatiotemporal specificity of gene expression patterns in development and disease. While it is now possible to identify enhancer regions genomewide in both cultured cells and primary tissues using epigenomic approaches, it has been more challenging to develop methods to understand the function of individual enhancers because enhancers are located far from the gene(s) that they regulate. However, it is essential to identify target genes of enhancers not only so that we can understand the role of enhancers in disease but also because this information will assist in the development of future therapeutic options. After reviewing models of enhancer function, we discuss recent methods for identifying target genes of enhancers. First, we describe chromatin structure-based approaches for directly mapping interactions between enhancers and promoters. Second, we describe the use of correlation-based approaches to link enhancer state with the activity of nearby promoters and/or gene expression. Third, we describe how to test the function of specific enhancers experimentally by perturbing enhancer-target relationships using high-throughput reporter assays and genome editing. Finally, we conclude by discussing as yet unanswered questions concerning how enhancers function, how target genes can be identified, and how to distinguish direct from indirect changes in gene expression mediated by individual enhancers.

  20. Finding Quantitative Trait Loci Genes with Collaborative Targeted Maximum Likelihood Learning.

    Science.gov (United States)

    Wang, Hui; Rose, Sherri; van der Laan, Mark J

    2011-07-01

    Quantitative trait loci mapping is focused on identifying the positions and effect of genes underlying an an observed trait. We present a collaborative targeted maximum likelihood estimator in a semi-parametric model using a newly proposed 2-part super learning algorithm to find quantitative trait loci genes in listeria data. Results are compared to the parametric composite interval mapping approach.

  1. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer.

    Science.gov (United States)

    Zhou, Xiaoqing; Xin, Jige; Fan, Nana; Zou, Qingjian; Huang, Jiao; Ouyang, Zhen; Zhao, Yu; Zhao, Bentian; Liu, Zhaoming; Lai, Sisi; Yi, Xiaoling; Guo, Lin; Esteban, Miguel A; Zeng, Yangzhi; Yang, Huaqiang; Lai, Liangxue

    2015-03-01

    The domestic pig has been widely used as an important large animal model. Precise and efficient genetic modification in pig provides a great promise in biomedical research. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been successfully used to produce many gene-targeted animals. However, these animals have been generated by co-injection of Cas9 mRNA and single-guide RNA (sgRNA) into one-cell stage embryos, which mostly resulted in mosaicism of the modification. One or two rounds of further breeding should be performed to obtain homozygotes with identical genotype and phenotype. To address this issue, gene-targeted somatic cells can be used as donor for somatic cell nuclear transfer (SCNT) to produce gene-targeted animals with single and identical mutations. In this study, we applied Cas9/sgRNAs to effectively direct gene editing in porcine fetal fibroblasts and then mutant cell colonies were used as donor to generate homozygous gene-targeted pigs through single round of SCNT. As a result, we successfully obtained 15 tyrosinase (TYR) biallelic mutant pigs and 20 PARK2 and PINK1 double-gene knockout (KO) pigs. They were all homozygous and no off-target mutagenesis was detected by comprehensive analysis. TYR (-/-) pigs showed typical albinism and the expression of parkin and PINK1 were depleted in PARK2 (-/-)/PINK1 (-/-) pigs. The results demonstrated that single- or double-gene targeted pigs can be effectively achieved by using the CRISPR/Cas9 system combined with SCNT without mosaic mutation and detectable off-target effects. This gene-editing system provides an efficient, rapid, and less costly manner to generate genetically modified pigs or other large animals.

  2. Transgenic gene knock-outs: functional genomics and therapeutic target selection.

    Science.gov (United States)

    Harris, S; Foord, S M

    2000-11-01

    The completion of the first draft of the human genome presents both a tremendous opportunity and enormous challenge to the pharmaceutical industry since the whole community, with few exceptions, will soon have access to the same pool of candidate gene sequences from which to select future therapeutic targets. The commercial imperative to select and pursue therapeutically relevant genes from within the overall content of the genome will be particularly intense for those gene families that currently represent the chemically tractable or 'drugable' gene targets. As a consequence the emphasis within exploratory research has shifted towards the evaluation and adoption of technology platforms that can add additional value to the gene selection process, either through functional studies or direct/indirect measures of disease alignment e.g., genetics, differential gene expression, proteomics, tissue distribution, comparative species data etc. The selection of biological targets for the development of potential new medicines relies, in part, on the quality of the in vivo biological data that correlates a particular molecular target with the underlying pathophysiology of a disease. Within the pharmaceutical industry, studies employing transgenic animals and, in particular, animals with specific gene deletions are playing an increasingly important role in the therapeutic target gene selection, drug candidate selection and product development phases of the overall drug discovery process. The potential of phenotypic information from gene knock-outs to contribute to a high-throughput target selection/validation strategy has hitherto been limited by the resources required to rapidly generate and characterise a large number of knock-out transgenics in a timely fashion. The offerings of several companies that provide an opportunity to overcome these hurdles, albeit at a cost, are assessed with respect to the strategic business needs of the pharmaceutical industry.

  3. Gene Dosage Analysis in a Clinical Environment: Gene-Targeted Microarrays as the Platform-of-Choice

    Directory of Open Access Journals (Sweden)

    Donald R. Love

    2013-03-01

    Full Text Available The role of gene deletion and duplication in the aetiology of disease has become increasingly evident over the last decade. In addition to the classical deletion/duplication disorders diagnosed using molecular techniques, such as Duchenne Muscular Dystrophy and Charcot-Marie-Tooth Neuropathy Type 1A, the significance of partial or whole gene deletions in the pathogenesis of a large number single-gene disorders is becoming more apparent. A variety of dosage analysis methods are available to the diagnostic laboratory but the widespread application of many of these techniques is limited by the expense of the kits/reagents and restrictive targeting to a particular gene or portion of a gene. These limitations are particularly important in the context of a small diagnostic laboratory with modest sample throughput. We have developed a gene-targeted, custom-designed comparative genomic hybridisation (CGH array that allows twelve clinical samples to be interrogated simultaneously for exonic deletions/duplications within any gene (or panel of genes on the array. We report here on the use of the array in the analysis of a series of clinical samples processed by our laboratory over a twelve-month period. The array has proven itself to be robust, flexible and highly suited to the diagnostic environment.

  4. Application of an Efficient Gene Targeting System Linking Secondary Metabolites to their Biosynthetic Genes in Aspergillus terreus

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Chun-Jun; Knox, Benjamin P.; Sanchez, James F.; Chiang, Yi-Ming; Bruno, Kenneth S.; Wang, Clay C.

    2013-07-19

    Nonribosomal peptides (NRPs) are natural products biosynthesized by NRP synthetases. A kusA-, pyrG- mutant strain of Aspergillusterreus NIH 2624 was developed that greatly facilitated the gene targeting efficiency in this organism. Application of this tool allowed us to link four major types of NRP related secondary metabolites to their responsible genes in A. terreus. In addition, an NRP related melanin synthetase was also identified in this species.

  5. Study on Wusan Granule Anti-tumor Related Target Gene Screened by Cdna Microarray

    Institute of Scientific and Technical Information of China (English)

    YOU Zi-li; SHI Jin-ping; CHEN Hai-hong

    2006-01-01

    To screen Wusan Granule anti-tumor related target gene using cDNA microarray technique, both mRNA from Lewis lung carcinoma tissues treated by Wusan Granule and untreated control are reversibly transcribed to prepare cDNA probes which are labeled by Cy5 and Cy3. Then, the probes are hybridized to the mice cDNA microarray type MGEC-20S. After hybridization, the cDNA microarray is scanned by ScanArray 3 000 scanner and the data is analyzed by ImaGene 3 software to screen the differentially expressed genes. There are 45 differentially expressed genes including 18 known genes and 27 unknown genes between the two groups, and among them, 20 elevated genes and 25 reduced genes are identified. Additionally, the genes related to invasion and metastasis of malignant carcinomas are down-regulated and the genes related to apoptosis are up-regulated. The cDNA microarray technique is a high-throughput approach to screen the Wusan Granule anti-tumor related target genes, which allow us to explore the molecular biological mechanism on a genomic scale.

  6. Simple and Efficient Targeting of Multiple Genes Through CRISPR-Cas9 in Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Mauricio Lopez-Obando

    2016-11-01

    Full Text Available Powerful genome editing technologies are needed for efficient gene function analysis. The CRISPR-Cas9 system has been adapted as an efficient gene-knock-out technology in a variety of species. However, in a number of situations, knocking out or modifying a single gene is not sufficient; this is particularly true for genes belonging to a common family, or for genes showing redundant functions. Like many plants, the model organism Physcomitrella patens has experienced multiple events of polyploidization during evolution that has resulted in a number of families of duplicated genes. Here, we report a robust CRISPR-Cas9 system, based on the codelivery of a CAS9 expressing cassette, multiple sgRNA vectors, and a cassette for transient transformation selection, for gene knock-out in multiple gene families. We demonstrate that CRISPR-Cas9-mediated targeting of five different genes allows the selection of a quintuple mutant, and all possible subcombinations of mutants, in one experiment, with no mutations detected in potential off-target sequences. Furthermore, we confirmed the observation that the presence of repeats in the vicinity of the cutting region favors deletion due to the alternative end joining pathway, for which induced frameshift mutations can be potentially predicted. Because the number of multiple gene families in Physcomitrella is substantial, this tool opens new perspectives to study the role of expanded gene families in the colonization of land by plants.

  7. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases.

    Science.gov (United States)

    Fan, Hueng-Chuen; Chi, Ching-Shiang; Cheng, Shin-Nan; Lee, Hsiu-Fen; Tsai, Jeng-Dau; Lin, Shinn-Zong; Harn, Horng-Jyh

    2015-12-25

    Neurodegenerative diseases (NDs) are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS) disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson's disease (PD), Huntington's disease (HD), and Alzheimer's disease (AD) and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM), and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.

  8. Generating Targeted Gene Knockout Lines in Physcomitrella patens to Study Evolution of Stress-Responsive Mechanisms

    Science.gov (United States)

    Maronova, Monika; Kalyna, Maria

    2016-01-01

    The moss Physcomitrella patens possesses highly efficient homologous recombination allowing targeted gene manipulations and displays many features of the early land plants including high tolerance to abiotic stresses. It is therefore an invaluable model organism for studies of gene functions and comparative studies of evolution of stress responses in plants. Here, we describe a method for generating targeted gene knockout lines in P. patens using a polyethylene glycol-mediated transformation of protoplasts including basic in vitro growth, propagation, and maintenance techniques. PMID:26867627

  9. Targeting of human aFGF gene into silkworm,Bombyx mori L. through homologous recombination

    Institute of Scientific and Technical Information of China (English)

    吴小锋; 曹翠平

    2004-01-01

    The long-arm and short-arm genes of fibroin light chain (L-chain) of silkworm, Bombyx Mori L., and the gene of human acidic fibroblast growth factor were cloned respectively and subsequently inserted into a transfer vector pVL 1392 used as a tool to target the L-chain region of the silkworm genome. Genomic DNA from their offsprings was extracted and the expected targeting was detected using polymerase chain reaction and DNA sequencing, as well as protein analysis. The results showed that positive events occurred and that the FGF gene was integrated into the L-chain locus through homologous recombination.

  10. Targeting of human aFGF gene into silkworm, Bombyx mori L.Through homologous recombination

    Institute of Scientific and Technical Information of China (English)

    吴小锋; 曹翠平

    2004-01-01

    The long-arm and short-arm genes of fibroin light chain (L-chain) of silkworm, Bombyx Mori L., and the gene of human acidic fibroblast growth factor were cloned respectively and subsequently inserted into a transfer vector pVL1392 used as a tool to target the L-chain region of the silkworm genome. Genomic DNA from their offsprings was extracted and the expected targeting was detected using polymerase chain reaction and DNA sequencing, as well as protein analysis. The results showed that positive events occurred and that the FGF gene was integrated into the L-chain locus through homologous recombination.

  11. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    O'Rourke John P

    2011-01-01

    Full Text Available Abstract Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer

  12. Capsid modification of adeno-associated virus and tumor targeting gene therapy

    Institute of Scientific and Technical Information of China (English)

    XU ZengHu; ZHOU XiuMei; SHI WenFang; QIAN QiJun

    2008-01-01

    Targeting is critical for successful tumor gene therapy. The adeno-associated virus (AAV) has aroused wide concern due to its excellent advantages over other viral vectors in gene therapy. AAV has a broad infection spectrum, which also results in poor specificity towards tissues or cells and low transduction efficiency. Therefore, it is imperative to improve target and transduction efficiency in AAV-mediated gene therapy. Up to now, researchers have developed many strategies to modify AAV capsids for improving targeting or retargeting only desired cells. These strategies include not only traditional chemical modification, phage display technology, modification of AAV capsid genome, chimeric vectors and so on, but also many novel strategies involved in marker rescue strategy, direct evolution of capsid proteins, direct display random peptides on AAV capsid, AAVP (AAV-Phage), and etc. This review will summarize the advances of researches on the capsid modification of AAV to target malignant cells.

  13. Expression of androgen receptor target genes in skeletal muscle

    Directory of Open Access Journals (Sweden)

    Kesha Rana

    2014-10-01

    Full Text Available We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (ARΔZF2 versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57 Kip2, Igf2 and calcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all but p57 Kip2 was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  14. Expression of androgen receptor target genes in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    Kesha Rana; Nicole KL Lee; Jeffrey D Zajac; Helen E MacLean

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor(AR)‑regulated genes ininvitroandinvivomodels. The expression of the myogenic regulatory factormyogenin was signiifcantly decreased in skeletal muscle from testosterone‑treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity(ARΔZF2) versus wildtype mice, demonstrating thatmyogenin is repressed by the androgen/AR pathway. The ubiquitin ligaseFbxo32 was repressed by 12h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, andc‑Myc expression was decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR∆ZF2 muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7, p57Kip2, Igf2 andcalcineurin Aa, was increased in AR∆ZF2 muscle, and the expression of all butp57Kip2was also decreased in testosterone‑treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase‑mediated atrophy pathways to preserve muscle mass in adult muscle.

  15. Expression of androgen receptor target genes in skeletal muscle.

    Science.gov (United States)

    Rana, Kesha; Lee, Nicole K L; Zajac, Jeffrey D; MacLean, Helen E

    2014-01-01

    We aimed to determine the mechanisms of the anabolic actions of androgens in skeletal muscle by investigating potential androgen receptor (AR)-regulated genes in in vitro and in vivo models. The expression of the myogenic regulatory factor myogenin was significantly decreased in skeletal muscle from testosterone-treated orchidectomized male mice compared to control orchidectomized males, and was increased in muscle from male AR knockout mice that lacked DNA binding activity (AR(ΔZF2)) versus wildtype mice, demonstrating that myogenin is repressed by the androgen/AR pathway. The ubiquitin ligase Fbxo32 was repressed by 12 h dihydrotestosterone treatment in human skeletal muscle cell myoblasts, and c-Myc expression was decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle, and increased in AR(∆ZF2) muscle. The expression of a group of genes that regulate the transition from myoblast proliferation to differentiation, Tceal7 , p57(Kip2), Igf2 and calcineurin Aa, was increased in AR(∆ZF2) muscle, and the expression of all but p57(Kip2) was also decreased in testosterone-treated orchidectomized male muscle compared to control orchidectomized male muscle. We conclude that in males, androgens act via the AR in part to promote peak muscle mass by maintaining myoblasts in the proliferative state and delaying the transition to differentiation during muscle growth and development, and by suppressing ubiquitin ligase-mediated atrophy pathways to preserve muscle mass in adult muscle.

  16. Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes.

    Science.gov (United States)

    Kato, Lucia; Begum, Nasim A; Burroughs, A Maxwell; Doi, Tomomitsu; Kawai, Jun; Daub, Carsten O; Kawaguchi, Takahisa; Matsuda, Fumihiko; Hayashizaki, Yoshihide; Honjo, Tasuku

    2012-02-14

    Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and class-switch recombination in activated B cells. AID is also known to target nonimmunoglobulin genes and introduce mutations or chromosomal translocations, eventually causing tumors. To identify as-yet-unknown AID targets, we screened early AID-induced DNA breaks by using two independent genome-wide approaches. Along with known AID targets, this screen identified a set of unique genes (SNHG3, MALAT1, BCL7A, and CUX1) and confirmed that these loci accumulated mutations as frequently as Ig locus after AID activation. Moreover, these genes share three important characteristics with the Ig gene: translocations in tumors, repetitive sequences, and the epigenetic modification of chromatin by H3K4 trimethylation in the vicinity of cleavage sites.

  17. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.

    Directory of Open Access Journals (Sweden)

    Chung-Chien Hong

    Full Text Available BACKGROUND: Optimal selection of multiple regulatory genes, known as targets, for deletion to enhance or suppress the activities of downstream genes or metabolites is an important problem in genetic engineering. Such problems become more feasible to address in silico due to the availability of more realistic dynamical system models of gene regulatory and metabolic networks. The goal of the computational problem is to search for a subset of genes to knock out so that the activity of a downstream gene or a metabolite is optimized. METHODOLOGY/PRINCIPAL FINDINGS: Based on discrete dynamical system modeling of gene regulatory networks, an integer programming problem is formulated for the optimal in silico target gene deletion problem. In the first result, the integer programming problem is proved to be NP-hard and equivalent to a nonlinear programming problem. In the second result, a heuristic algorithm, called GKONP, is designed to approximate the optimal solution, involving an approach to prune insignificant terms in the objective function, and the parallel differential evolution algorithm. In the third result, the effectiveness of the GKONP algorithm is demonstrated by applying it to a discrete dynamical system model of the yeast pheromone pathways. The empirical accuracy and time efficiency are assessed in comparison to an optimal, but exhaustive search strategy. SIGNIFICANCE: Although the in silico target gene deletion problem has enormous potential applications in genetic engineering, one must overcome the computational challenge due to its NP-hardness. The presented solution, which has been demonstrated to approximate the optimal solution in a practical amount of time, is among the few that address the computational challenge. In the experiment on the yeast pheromone pathways, the identified best subset of genes for deletion showed advantage over genes that were selected empirically. Once validated in vivo, the optimal target genes are

  18. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes.

    Directory of Open Access Journals (Sweden)

    Candy Kumps

    Full Text Available Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17~92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17~92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17~92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1 target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2 serve as a resource for identifying new molecular targets for treatment.

  19. Targeted cancer gene therapy : the flexibility of adenoviral gene therapy vectors

    NARCIS (Netherlands)

    Rots, MG; Curiel, DT; Gerritsen, WR; Haisma, HJ

    2003-01-01

    Recombinant adenoviral vectors are promising reagents for therapeutic interventions in humans, including gene therapy for biologically complex diseases like cancer and cardiovascular diseases. In this regard, the major advantage of adenoviral vectors is their superior in vivo gene transfer efficienc

  20. Targeting New Candidate Genes by Small Molecules Approaching Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Hueng-Chuen Fan

    2015-12-01

    Full Text Available Neurodegenerative diseases (NDs are among the most feared of the disorders that afflict humankind for the lack of specific diagnostic tests and effective treatments. Understanding the molecular, cellular, biochemical changes of NDs may hold therapeutic promise against debilitating central nerve system (CNS disorders. In the present review, we summarized the clinical presentations and biology backgrounds of NDs, including Parkinson’s disease (PD, Huntington’s disease (HD, and Alzheimer’s disease (AD and explored the role of molecular mechanisms, including dys-regulation of epigenetic control mechanisms, Ataxia-telangiectasia-mutated protein kinase (ATM, and neuroinflammation in the pathogenesis of NDs. Targeting these mechanisms may hold therapeutic promise against these devastating diseases.

  1. Transfection and mutagenesis of target genes in mosquito cells by locked nucleic acid-modified oligonucleotides.

    Science.gov (United States)

    Pakpour, Nazzy; Cheung, Kong Wai; Souvannaseng, Lattha; Concordet, Jean-Paul; Luckhart, Shirley

    2010-12-26

    Plasmodium parasites, the causative agent of malaria, are transmitted through the bites of infected Anopheles mosquitoes resulting in over 250 million new infections each year. Despite decades of research, there is still no vaccine against malaria, highlighting the need for novel control strategies. One innovative approach is the use of genetically modified mosquitoes to effectively control malaria parasite transmission. Deliberate alterations of cell signaling pathways in the mosquito, via targeted mutagenesis, have been found to regulate parasite development (1). From these studies, we can begin to identify potential gene targets for transformation. Targeted mutagenesis has traditionally relied upon the homologous recombination between a target gene and a large DNA molecule. However, the construction and use of such complex DNA molecules for generation of stably transformed cell lines is costly, time consuming and often inefficient. Therefore, a strategy using locked nucleic acid-modified oligonucleotides (LNA-ONs) provides a useful alternative for introducing artificial single nucleotide substitutions into episomal and chromosomal DNA gene targets (reviewed in (2)). LNA-ON-mediated targeted mutagenesis has been used to introduce point mutations into genes of interest in cultured cells of both yeast and mice (3,4). We show here that LNA-ONs can be used to introduce a single nucleotide change in a transfected episomal target that results in a switch from blue fluorescent protein (BFP) expression to green fluorescent protein (GFP) expression in both Anopheles gambiae and Anopheles stephensi cells. This conversion demonstrates for the first time that effective mutagenesis of target genes in mosquito cells can be mediated by LNA-ONs and suggests that this technique may be applicable to mutagenesis of chromosomal targets in vitro and in vivo.

  2. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases.

    Science.gov (United States)

    Kasparek, Petr; Krausova, Michaela; Haneckova, Radka; Kriz, Vitezslav; Zbodakova, Olga; Korinek, Vladimir; Sedlacek, Radislav

    2014-11-03

    Gene targeting in mice mainly employs homologous recombination (HR) in embryonic stem (ES) cells. Although it is a standard way for production of genetically modified mice, the procedure is laborious and time-consuming. This study describes targeting of the mouse Rosa26 locus by transcription activator-like effector nucleases (TALENs). We employed TALEN-assisted HR in zygotes to introduce constructs encoding TurboRFP and TagBFP fluorescent proteins into the first intron of the Rosa26 gene, and in this way generated two transgenic mice. We also demonstrated that these Rosa26-specific TALENs exhibit high targeting efficiency superior to that of zinc-finger nucleases (ZFNs) specific for the same targeting sequence. Moreover, we devised a reporter assay to assess TALENs activity and specificity to improve the quality of TALEN-assisted targeting.

  3. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases.

    Science.gov (United States)

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-03-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

  4. [Melanoma: surface markers as the first point of targeted delivery of therapeutic genes in multilevel gene therapy].

    Science.gov (United States)

    Pleshkan, V V; Zinov'eva, M V; Sverdlov, E D

    2011-01-01

    Melanoma is one of the most malignant tumors, aggressively metastasizing by lymphatic and hematogenous routes. Due to the resistance of melanoma cells to many types of chemotherapy, this disease causes high mortality rate. High hopes are pinned on gene therapeutic approaches to melanoma treatment. At present, one of the main problems of the efficient use of the post-genomic generation therapeutic means is the lack of optimal techniques of delivery of foreign genetic material to the patient's target cells. Surface specific markers of melanoma cells can be considered as promising therapeutic targets. This review describes currently known melanoma specific receptors and its stem cells, as well as contains data on melanoma antigens presented on the cell surface by major histocompatibility complex proteins. The ability of surface proteins to internalize might be successfully used for the development of methods of targeted delivery of gene therapeutic constructs. In conclusion, a concept of multilevel gene therapy and the possible role therein of surface determinants as targets of gene systems delivery to the tumor are discussed.

  5. Fusion genes in solid tumors:an emerging target for cancer diagnosis and treatment

    Institute of Scientific and Technical Information of China (English)

    Brittany C. Parker; Wei Zhang

    2013-01-01

    Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients.

  6. Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway

    Directory of Open Access Journals (Sweden)

    Michelle R. Campbell

    2013-01-01

    Full Text Available Nuclear factor- (erythroid-derived 2 like 2 (NFE2L2, NRF2 is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1, and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.

  7. W::Neo: a novel dual-selection marker for high efficiency gene targeting in Drosophila.

    Directory of Open Access Journals (Sweden)

    Wenke Zhou

    Full Text Available We have recently developed a so-called genomic engineering approach that allows for directed, efficient and versatile modifications of Drosophila genome by combining the homologous recombination (HR-based gene targeting with site-specific DNA integration. In genomic engineering and several similar approaches, a "founder" knock-out line must be generated first through HR-based gene targeting, which can still be a potentially time and resource intensive process. To significantly improve the efficiency and success rate of HR-based gene targeting in Drosophila, we have generated a new dual-selection marker termed W::Neo, which is a direct fusion between proteins of eye color marker White (W and neomycin resistance (Neo. In HR-based gene targeting experiments, mutants carrying W::Neo as the selection marker can be enriched as much as fifty times by taking advantage of the antibiotic selection in Drosophila larvae. We have successfully carried out three independent gene targeting experiments using the W::Neo to generate genomic engineering founder knock-out lines in Drosophila.

  8. Precision genome editing in plants via gene targeting and piggyBac-mediated marker excision.

    Science.gov (United States)

    Nishizawa-Yokoi, Ayako; Endo, Masaki; Ohtsuki, Namie; Saika, Hiroaki; Toki, Seiichi

    2015-01-01

    Precise genome engineering via homologous recombination (HR)-mediated gene targeting (GT) has become an essential tool in molecular breeding as well as in basic plant science. As HR-mediated GT is an extremely rare event, positive-negative selection has been used extensively in flowering plants to isolate cells in which GT has occurred. In order to utilize GT as a methodology for precision mutagenesis, the positive selectable marker gene should be completely eliminated from the GT locus. Here, we introduce targeted point mutations conferring resistance to herbicide into the rice acetolactate synthase (ALS) gene via GT with subsequent marker excision by piggyBac transposition. Almost all regenerated plants expressing piggyBac transposase contained exclusively targeted point mutations without concomitant re-integration of the transposon, resulting in these progeny showing a herbicide bispyribac sodium (BS)-tolerant phenotype. This approach was also applied successfully to the editing of a microRNA targeting site in the rice cleistogamy 1 gene. Therefore, our approach provides a general strategy for the targeted modification of endogenous genes in plants.

  9. Yeast-based assay identifies novel Shh/Gli target genes in vertebrate development

    Directory of Open Access Journals (Sweden)

    Milla Luis A

    2012-01-01

    Full Text Available Abstract Background The increasing number of developmental events and molecular mechanisms associated with the Hedgehog (Hh pathway from Drosophila to vertebrates, suggest that gene regulation is crucial for diverse cellular responses, including target genes not yet described. Although several high-throughput, genome-wide approaches have yielded information at the genomic, transcriptional and proteomic levels, the specificity of Gli binding sites related to direct target gene activation still remain elusive. This study aims to identify novel putative targets of Gli transcription factors through a protein-DNA binding assay using yeast, and validating a subset of targets both in-vitro and in-vivo. Testing in different Hh/Gli gain- and loss-of-function scenarios we here identified known (e.g., ptc1 and novel Hh-regulated genes in zebrafish embryos. Results The combined yeast-based screening and MEME/MAST analysis were able to predict Gli transcription factor binding sites, and position mapping of these sequences upstream or in the first intron of promoters served to identify new putative target genes of Gli regulation. These candidates were validated by qPCR in combination with either the pharmacological Hh/Gli antagonist cyc or the agonist pur in Hh-responsive C3H10T1/2 cells. We also used small-hairpin RNAs against Gli proteins to evaluate targets and confirm specific Gli regulation their expression. Taking advantage of mutants that have been identified affecting different components of the Hh/Gli signaling system in the zebrafish model, we further analyzed specific novel candidates. Studying Hh function with pharmacological inhibition or activation complemented these genetic loss-of-function approaches. We provide evidence that in zebrafish embryos, Hh signaling regulates sfrp2, neo1, and c-myc expression in-vivo. Conclusion A recently described yeast-based screening allowed us to identify new Hh/Gli target genes, functionally important in

  10. Genome-wide discovery of Pax7 target genes during development.

    Science.gov (United States)

    White, Robert B; Ziman, Melanie R

    2008-03-14

    Pax7 plays critical roles in development of brain, spinal cord, neural crest, and skeletal muscle. As a sequence-specific DNA-binding transcription factor, any direct functional role played by Pax7 during development is mediated through target gene selection. Thus, we have sought to identify genes targeted by Pax7 during embryonic development using an unbiased chromatin immunoprecipitation (ChIP) cloning assay to isolate cis-regulatory regions bound by Pax7 in vivo. Sequencing and genomic localization of a library of chromatin-DNA fragments bound by Pax7 has identified 34 candidate Pax7 target genes, with occupancy of a selection confirmed with independent chromatin enrichment tests (ChIP-PCR). To assess the capacity of Pax7 to regulate transcription from these loci, we have cloned alternate transcripts of Pax7 (differing significantly in their DNA binding domain) into expression vectors and transfected cultured cells with these constructs, then analyzed target gene expression levels using RT-PCR. We show that Pax7 directly occupies sites within genes encoding transcription factors Gbx1 and Eya4, the neurogenic cytokine receptor ciliary neurotrophic factor receptor, the neuronal potassium channel Kcnk2, and the signal transduction kinase Camk1d in vivo and regulates the transcriptional state of these genes in cultured cells. This analysis gives us greater insight into the direct functional role played by Pax7 during embryonic development.

  11. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.

    Science.gov (United States)

    Zik, Moriyah; Irish, Vivian F

    2003-01-01

    Identifying the genes regulated by the floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI) is crucial for understanding the molecular mechanisms that lead to petal and stamen formation. We have used microarray analysis to conduct a broad survey of genes whose expression is affected by AP3 and PI activity. DNA microarrays consisting of 9216 Arabidopsis ESTs were screened with probes corresponding to mRNAs from different mutant and transgenic lines that misexpress AP3 and/or PI. The microarray results were further confirmed by RNA gel blot analyses. Our results suggest that AP3 and PI regulate a relatively small number of genes, implying that many genes used in petal and stamen development are not tissue specific and likely have roles in other processes as well. We recovered genes similar to previously identified petal- and stamen-expressed genes as well as genes that were not implicated previously in petal and stamen development. A very low percentage of the genes recovered encoded transcription factors. This finding suggests that AP3 and PI act relatively directly to regulate the genes required for the basic cellular processes responsible for petal and stamen morphogenesis.

  12. Analysis of target genes induced by IL-13 cytotoxin in human glioblastoma cells.

    Science.gov (United States)

    Han, Jing; Yang, Liming; Puri, Raj K

    2005-03-01

    IL-13 cytotoxin comprised of IL-13 and a mutated form of Pseudomonas exotoxin (fusion protein termed IL-13-PE38QQR) has been shown to inhibit protein synthesis leading to necrotic and apoptotic cell death in glioblastoma cells that express high levels of interleukin-13 receptors (IL-13R). To identify target genes of cell death and other cellular genes with IL-13 receptors in glioblastoma cells, we utilized the cDNA microarrays to analyze global gene expression profiles after IL-13 cytotoxin and IL-13 treatment. IL-13 cytotoxin mediated cytotoxicity to U251 cells in a dose-dependent manner. Hierarchical cluster analysis of differentially expressed genes in U251 glioma cells at different time points after IL-13 cytotoxin treatment showed three major groups, each representing a specific expression pattern. Randomly selected differentially expressed genes from each group were confirmed by RT-PCR analysis. Most down-regulated genes belong to cell adhesion, motility, angiogenesis, DNA repair, and metabolic pathways. While up-regulated genes belong to cell cycle arrest, apoptosis, signaling and various metabolic pathways. Unexpectedly, at early time points, both IL-13 and IL-13 cytotoxin induced several genes belonging to different pathways most notably IL-8, DIO2, END1, and ALDH1A3 indicating that these genes are early response genes and their products may be associated with IL-13R. In addition, IL-13 cytotoxin induced IL-13Ralpha2 mRNA expression during the treatment in glioma cells. Our results indicate that novel cellular genes are involved with IL-13 receptors and that IL-13 cytotoxin induced cell death involves various target genes in human glioblastoma cells. On going studies will determine the role of associated genes and their products in the IL-13R functions in glioma cells.

  13. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene

    Directory of Open Access Journals (Sweden)

    Yumei Luo

    2015-01-01

    Full Text Available Recently, the clustered regularly interspaced short palindromic repeats (CRISPR system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction.

  14. Integrative Analysis of CRISPR/Cas9 Target Sites in the Human HBB Gene.

    Science.gov (United States)

    Luo, Yumei; Zhu, Detu; Zhang, Zhizhuo; Chen, Yaoyong; Sun, Xiaofang

    2015-01-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has emerged as a powerful customizable artificial nuclease to facilitate precise genetic correction for tissue regeneration and isogenic disease modeling. However, previous studies reported substantial off-target activities of CRISPR system in human cells, and the enormous putative off-target sites are labor-intensive to be validated experimentally, thus motivating bioinformatics methods for rational design of CRISPR system and prediction of its potential off-target effects. Here, we describe an integrative analytical process to identify specific CRISPR target sites in the human β-globin gene (HBB) and predict their off-target effects. Our method includes off-target analysis in both coding and noncoding regions, which was neglected by previous studies. It was found that the CRISPR target sites in the introns have fewer off-target sites in the coding regions than those in the exons. Remarkably, target sites containing certain transcriptional factor motif have enriched binding sites of relevant transcriptional factor in their off-target sets. We also found that the intron sites have fewer SNPs, which leads to less variation of CRISPR efficiency in different individuals during clinical applications. Our studies provide a standard analytical procedure to select specific CRISPR targets for genetic correction.

  15. Primer and interviews: advances in targeted gene modification. Interview by Julie C. Kiefer.

    Science.gov (United States)

    Caroll, Dana; Zhang, Bo

    2011-12-01

    Gene targeting in mice, first reported 25 years ago, has led to monumental advances in the understanding of basic biology and human disease. The ability to employ a similarly straightforward method for gene manipulation in other experimental organisms would make their already significant contributions all the more powerful. Here, we briefly outline the strengths and weaknesses of reverse genetics techniques in non-murine model organisms, ending with a more detailed description of two that promise to bring targeted gene modification to the masses: zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Dana Caroll, a forefather of zinc finger technology, and Bo Zhang, among the first to introduce TALEN-targeted mutagenesis to zebrafish, discuss their experience with these techniques, and speculate about the future of the field.

  16. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs).

    Science.gov (United States)

    Lei, Yong; Guo, Xiaogang; Liu, Yun; Cao, Yang; Deng, Yi; Chen, Xiongfeng; Cheng, Christopher H K; Dawid, Igor B; Chen, Yonglong; Zhao, Hui

    2012-10-23

    Transcription activator-like effector nucleases (TALENs) are an approach for directed gene disruption and have been proved to be effective in various animal models. Here, we report that TALENs can induce somatic mutations in Xenopus embryos with reliably high efficiency and that such mutations are heritable through germ-line transmission. We modified the Golden Gate method for TALEN assembly to make the product suitable for RNA transcription and microinjection into Xenopus embryos. Eight pairs of TALENs were constructed to target eight Xenopus genes, and all resulted in indel mutations with high efficiencies of up to 95.7% at the targeted loci. Furthermore, mutations induced by TALENs were highly efficiently passed through the germ line to F(1) frogs. Together with simple and reliable PCR-based approaches for detecting TALEN-induced mutations, our results indicate that TALENs are an effective tool for targeted gene editing/knockout in Xenopus.

  17. Identification and Characterization of Genes Involved in Leishmania Pathogenesis: The Potential for Drug Target Selection

    Directory of Open Access Journals (Sweden)

    Robert Duncan

    2011-01-01

    Full Text Available Identifying and characterizing Leishmania donovani genes and the proteins they encode for their role in pathogenesis can reveal the value of this approach for finding new drug targets. Effective drug targets are likely to be proteins differentially expressed or required in the amastigote life cycle stage found in the patient. Several examples and their potential for chemotherapeutic disruption are presented. A pathway nearly ubiquitous in living cells targeted by anticancer drugs, the ubiquitin system, is examined. New findings in ubiquitin and ubiquitin-like modifiers in Leishmania show how disruption of those pathways could point to additional drug targets. The programmed cell death pathway, now recognized among protozoan parasites, is reviewed for some of its components and evidence that suggests they could be targeted for antiparasitic drug therapy. Finally, the endoplasmic reticulum quality control system is involved in secretion of many virulence factors. How disruptions in this pathway reduce virulence as evidence for potential drug targets is presented.

  18. Mapping of HNF4alpha target genes in intestinal epithelial cells

    DEFF Research Database (Denmark)

    Boyd, Mette; Bressendorff, Simon; Moller, Jette;

    2009-01-01

    . The HNF4alpha ChIP-chip data was matched with gene expression and histone H3 acetylation status of the promoters in order to identify HNF4alpha binding to actively transcribed genes with an open chromatin structure. RESULTS: 1,541 genes were identified as potential HNF4alpha targets, many of which have...... not previously been described as being regulated by HNF4alpha. The 1,541 genes contributed significantly to gene ontology (GO) pathways categorized by lipid and amino acid transport and metabolism. An analysis of the homeodomain transcription factor Cdx-2 (CDX2), the disaccharidase trehalase (TREH...... a transcription factor network also including HNF1alpha, all of which are transcription factors involved in intestinal development and gene expression....

  19. Binding Sites of miR-1273 Family on the mRNA of Target Genes

    Directory of Open Access Journals (Sweden)

    Anatoly Ivashchenko

    2014-01-01

    Full Text Available This study examined binding sites of 2,578 miRNAs in the mRNAs of 12,175 human genes using the MirTarget program. It found that the miRNAs of miR-1273 family have between 33 and 1,074 mRNA target genes, with a free hybridization energy of 90% or more of its maximum value. The miR-1273 family consists of miR-1273a, miR-1273c, miR-1273d, miR-1273e, miR-1273f, miR-1273g-3p, miR-1273g-5p, miR-1273h-3p, and miR-1273h-5p. Unique miRNAs (miR-1273e, miR-1273f, and miR-1273g-3p have more than 400 target genes. We established 99 mRNA nucleotide sequences that contain arranged binding sites for the miR-1273 family. High conservation of each miRNA binding site in the mRNA of the target genes was found. The arranged binding sites of the miR-1273 family are located in the 5′UTR, CDS, or 3′UTR of many mRNAs. Five repeating sites containing some of the miR-1273 family’s binding sites were found in the 3′UTR of several target genes. The oligonucleotide sequences of miR-1273 binding sites located in CDSs code for homologous amino acid sequences in the proteins of target genes. The biological role of unique miRNAs was also discussed.

  20. Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use.

    Directory of Open Access Journals (Sweden)

    Joost C M Uitdehaag

    Full Text Available The anti-proliferative activities of all twenty-five targeted kinase inhibitor drugs that are in clinical use were measured in two large assay panels: (1 a panel of proliferation assays of forty-four human cancer cell lines from diverse tumour tissue origins; and (2 a panel of more than 300 kinase enzyme activity assays. This study provides a head-on comparison of all kinase inhibitor drugs in use (status Nov. 2013, and for six of these drugs, the first kinome profiling data in the public domain. Correlation of drug activities with cancer gene mutations revealed novel drug sensitivity markers, suggesting that cancers dependent on mutant CTNNB1 will respond to trametinib and other MEK inhibitors, and cancers dependent on SMAD4 to small molecule EGFR inhibitor drugs. Comparison of cellular targeting efficacies reveals the most targeted inhibitors for EGFR, ABL1 and BRAF(V600E-driven cell growth, and demonstrates that the best targeted agents combine high biochemical potency with good selectivity. For ABL1 inhibitors, we computationally deduce optimized kinase profiles for use in a next generation of drugs. Our study shows the power of combining biochemical and cellular profiling data in the evaluation of kinase inhibitor drug action.

  1. Characterization of Rad51 from apicomplexan parasite Toxoplasma gondii: an implication for inefficient gene targeting.

    Science.gov (United States)

    Achanta, Sita Swati; Varunan, Shalu M; Bhattacharyya, Sunanda; Bhattacharyya, Mrinal Kanti

    2012-01-01

    Repairing double strand breaks (DSBs) is absolutely essential for the survival of obligate intracellular parasite Toxoplasma gondii. Thus, DSB repair mechanisms could be excellent targets for chemotherapeutic interventions. Recent genetic and bioinformatics analyses confirm the presence of both homologous recombination (HR) as well as non homologous end joining (NHEJ) proteins in this lower eukaryote. In order to get mechanistic insights into the HR mediated DSB repair pathway in this parasite, we have characterized the key protein involved in homologous recombination, namely TgRad51, at the biochemical and genetic levels. We have purified recombinant TgRad51 protein to 99% homogeneity and have characterized it biochemically. The ATP hydrolysis activity of TgRad51 shows a higher K(M) and much lower k(cat) compared to bacterial RecA or Rad51 from other related protozoan parasites. Taking yeast as a surrogate model system we have shown that TgRad51 is less efficient in gene conversion mechanism. Further, we have found that TgRad51 mediated gene integration is more prone towards random genetic loci rather than targeted locus. We hypothesize that compromised ATPase activity of TgRad51 is responsible for inefficient gene targeting and poor gene conversion efficiency in this protozoan parasite. With increase in homologous flanking regions almost three fold increments in targeted gene integration is observed, which is similar to the trend found with ScRad51. Our findings not only help us in understanding the reason behind inefficient gene targeting in T. gondii but also could be exploited to facilitate high throughput knockout as well as epitope tagging of Toxoplasma genes.

  2. Characterization of Rad51 from apicomplexan parasite Toxoplasma gondii: an implication for inefficient gene targeting.

    Directory of Open Access Journals (Sweden)

    Sita Swati Achanta

    Full Text Available Repairing double strand breaks (DSBs is absolutely essential for the survival of obligate intracellular parasite Toxoplasma gondii. Thus, DSB repair mechanisms could be excellent targets for chemotherapeutic interventions. Recent genetic and bioinformatics analyses confirm the presence of both homologous recombination (HR as well as non homologous end joining (NHEJ proteins in this lower eukaryote. In order to get mechanistic insights into the HR mediated DSB repair pathway in this parasite, we have characterized the key protein involved in homologous recombination, namely TgRad51, at the biochemical and genetic levels. We have purified recombinant TgRad51 protein to 99% homogeneity and have characterized it biochemically. The ATP hydrolysis activity of TgRad51 shows a higher K(M and much lower k(cat compared to bacterial RecA or Rad51 from other related protozoan parasites. Taking yeast as a surrogate model system we have shown that TgRad51 is less efficient in gene conversion mechanism. Further, we have found that TgRad51 mediated gene integration is more prone towards random genetic loci rather than targeted locus. We hypothesize that compromised ATPase activity of TgRad51 is responsible for inefficient gene targeting and poor gene conversion efficiency in this protozoan parasite. With increase in homologous flanking regions almost three fold increments in targeted gene integration is observed, which is similar to the trend found with ScRad51. Our findings not only help us in understanding the reason behind inefficient gene targeting in T. gondii but also could be exploited to facilitate high throughput knockout as well as epitope tagging of Toxoplasma genes.

  3. Analysis of coding-polymorphisms in NOTCH-related genes reveals NUMBL poly-glutamine repeat to be associated with schizophrenia in Brazilian and Danish subjects

    DEFF Research Database (Denmark)

    Passos Gregorio, Sheila; Gattaz, Wagner F; Tavares, Hildeberto;

    2006-01-01

    Abnormality in neurodevelopment is one of the most robust hypotheses on the etiology of schizophrenia and has found substantial support from brain imaging and genetic studies. Neurodevelopmental processes involve several signaling pathways, including the Notch, but little is known at present...... regarding their possible involvement in schizophrenia. In the present study we investigated the link of non-synonymous variants of five genes of the Notch pathway (NOTCH2, NOTCH3, JAGGED2, ASCL1 and NUMBL) to schizophrenia in a group of 200 Brazilian patients and 200-paired controls. Also, we replicated...

  4. Targeted gene correction using psoralen, chlorambucil and camptothecin conjugates of triplex forming peptide nucleic acid (PNA)

    DEFF Research Database (Denmark)

    Birkedal, Henrik; Nielsen, Peter E

    2011-01-01

    Gene correction activation effects of a small series of triplex forming peptide nucleic acid (PNA) covalently conjugated to the DNA interacting ligands psoralen, chlorambucil and camptothecin targeted proximal to a stop codon mutation in an EGFP reporter gene were studied. A 15-mer homopyrimidine...... interstrand crosslinked adducts with dsDNA dramatically decreased the frequency of targeted repair/correction. The PNA conjugates were also studied in mammalian cell lines upon transfection of PNA bound EGFP reporter vector and scoring repair of the EGFP gene by FACS analysis of functional EGFP expression...... suggest that simple triplex forming PNAs have little effect on proximal gene correctional events whereas PNA conjugates capable of forming DNA adducts and interstrand crosslinks are strong inhibitors. Most interestingly the PNA conjugated to the topoisomerase inhibitor, camptothecin enhanced repair...

  5. NFAT targets signaling molecules to gene promoters in pancreatic β-cells.

    Science.gov (United States)

    Lawrence, Michael C; Borenstein-Auerbach, Nofit; McGlynn, Kathleen; Kunnathodi, Faisal; Shahbazov, Rauf; Syed, Ilham; Kanak, Mazhar; Takita, Morihito; Levy, Marlon F; Naziruddin, Bashoo

    2015-02-01

    Nuclear factor of activated T cells (NFAT) is activated by calcineurin in response to calcium signals derived by metabolic and inflammatory stress to regulate genes in pancreatic islets. Here, we show that NFAT targets MAPKs, histone acetyltransferase p300, and histone deacetylases (HDACs) to gene promoters to differentially regulate insulin and TNF-α genes. NFAT and ERK associated with the insulin gene promoter in response to glucagon-like peptide 1, whereas NFAT formed complexes with p38 MAPK (p38) and Jun N-terminal kinase (JNK) upon promoters of the TNF-α gene in response to IL-1β. Translocation of NFAT and MAPKs to gene promoters was calcineurin/NFAT dependent, and complex stability required MAPK activity. Knocking down NFATc2 expression, eliminating NFAT DNA binding sites, or interfering with NFAT nuclear import prevented association of MAPKs with gene promoters. Inhibiting p38 and JNK activity increased NFAT-ERK association with promoters, which repressed TNF-α and enhanced insulin gene expression. Moreover, inhibiting p38 and JNK induced a switch from NFAT-p38/JNK-histone acetyltransferase p300 to NFAT-ERK-HDAC3 complex formation upon the TNF-α promoter, which resulted in gene repression. Histone acetyltransferase/HDAC exchange was reversed on the insulin gene by p38/JNK inhibition in the presence of glucagon-like peptide 1, which enhanced gene expression. Overall, these data indicate that NFAT directs signaling enzymes to gene promoters in islets, which contribute to protein-DNA complex stability and promoter regulation. Furthermore, the data suggest that TNF-α can be repressed and insulin production can be enhanced by selectively targeting signaling components of NFAT-MAPK transcriptional/signaling complex formation in pancreatic β-cells. These findings have therapeutic potential for suppressing islet inflammation while preserving islet function in diabetes and islet transplantation.

  6. Gene Regulatory Scenarios of Primary 1,25-Dihydroxyvitamin D3 Target Genes in a Human Myeloid Leukemia Cell Line

    Directory of Open Access Journals (Sweden)

    Moray J. Campbell

    2013-10-01

    Full Text Available Genome- and transcriptome-wide data has significantly increased the amount of available information about primary 1,25-dihydroxyvitamin D3 (1,25(OH2D3 target genes in cancer cell models, such as human THP-1 myelomonocytic leukemia cells. In this study, we investigated the genes G0S2, CDKN1A and MYC as master examples of primary vitamin D receptor (VDR targets being involved in the control of cellular proliferation. The chromosomal domains of G0S2 and CDKN1A are 140–170 kb in size and contain one and three VDR binding sites, respectively. This is rather compact compared to the MYC locus that is 15 times larger and accommodates four VDR binding sites. All eight VDR binding sites were studied by chromatin immunoprecipitation in THP-1 cells. Interestingly, the site closest to the transcription start site of the down-regulated MYC gene showed 1,25(OH2D3-dependent reduction of VDR binding and is not associated with open chromatin. Four of the other seven VDR binding regions contain a typical DR3-type VDR binding sequence, three of which are also occupied with VDR in macrophage-like cells. In conclusion, the three examples suggest that each VDR target gene has an individual regulatory scenario. However, some general components of these scenarios may be useful for the development of new therapy regimens.

  7. An efficient strategy for gene targeting and phenotypic assessment in the Plasmodium yoelii rodent malaria model.

    Science.gov (United States)

    Mikolajczak, Sebastian A; Aly, Ahmed S I; Dumpit, Ronald F; Vaughan, Ashley M; Kappe, Stefan H I

    2008-04-01

    In this report, we describe a cloning procedure for gene replacement by double homologous recombination in Plasmodium yoelii, which requires only one digestion and ligation step. This significantly shortens the time required to complete the production of the targeting vector. Furthermore, for more efficient phenotypic evaluation of the gene knockout parasites, we have also introduced a fluorescent protein cassette into the targeting vector. This allows for a more rapid assessment of parasite growth in all of its developmental stages. In addition, the introduction of the fluorescent marker via the replacement strategy confers the stable integration of the marker.

  8. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Dietrich, Nikolaj; Pasini, Diego;

    2006-01-01

    The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find that Pol......The Polycomb group (PcG) proteins form chromatin-modifying complexes that are essential for embryonic development and stem cell renewal and are commonly deregulated in cancer. Here, we identify their target genes using genome-wide location analysis in human embryonic fibroblasts. We find...

  9. Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression

    DEFF Research Database (Denmark)

    Ravnskjær, Kim; Kester, Henri; Liu, Yi;

    2007-01-01

    , but have minimal effects on CRE-dependent transcription. Here, we show that the latent cytoplasmic coactivator TORC2 mediates target gene activation in response to cAMP signaling by associating with CBP/p300 and increasing its recruitment to a subset of CREB target genes. TORC2 is not activated in response...... to stress signals, however; and in its absence, P-CREB is unable to stimulate CRE-dependent transcription, due to a block in CBP recruitment. The effect of TORC2 on CBP/p300 promoter occupancy appears pivotal because a gain of function mutant CREB polypeptide with increased affinity for CBP restored CRE...

  10. Integrated functional, gene expression and genomic analysis for the identification of cancer targets.

    Directory of Open Access Journals (Sweden)

    Elizabeth Iorns

    Full Text Available The majority of new drug approvals for cancer are based on existing therapeutic targets. One approach to the identification of novel targets is to perform high-throughput RNA interference (RNAi cellular viability screens. We describe a novel approach combining RNAi screening in multiple cell lines with gene expression and genomic profiling to identify novel cancer targets. We performed parallel RNAi screens in multiple cancer cell lines to identify genes that are essential for viability in some cell lines but not others, suggesting that these genes constitute key drivers of cellular survival in specific cancer cells. This approach was verified by the identification of PIK3CA, silencing of which was selectively lethal to the MCF7 cell line, which harbours an activating oncogenic PIK3CA mutation. We combined our functional RNAi approach with gene expression and genomic analysis, allowing the identification of several novel kinases, including WEE1, that are essential for viability only in cell lines that have an elevated level of expression of this kinase. Furthermore, we identified a subset of breast tumours that highly express WEE1 suggesting that WEE1 could be a novel therapeutic target in breast cancer. In conclusion, this strategy represents a novel and effective strategy for the identification of functionally important therapeutic targets in cancer.

  11. Enteropeptidase: a gene associated with a starvation human phenotype and a novel target for obesity treatment.

    Directory of Open Access Journals (Sweden)

    Sandrine Braud

    Full Text Available BACKGROUND: Obesity research focuses essentially on gene targets associated with the obese phenotype. None of these targets have yet provided a viable drug therapy. Focusing instead on genes that are involved in energy absorption and that are associated with a "human starvation phenotype", we have identified enteropeptidase (EP, a gene associated with congenital enteropeptidase deficiency, as a novel target for obesity treatment. The advantages of this target are that the gene is expressed exclusively in the brush border of the intestine; it is peripheral and not redundant. METHODOLOGY/PRINCIPAL FINDINGS: Potent and selective EP inhibitors were designed around a boroarginine or borolysine motif. Oral administration of these compounds to mice restricted the bioavailability of dietary energy, and in a long-term treatment it significantly diminished the rate of increase in body weight, despite ad libitum food intake. No adverse reactions of the type seen with lipase inhibitors, such as diarrhea or steatorrhea, were observed. This validates EP as a novel, druggable target for obesity treatment. CONCLUSIONS: In vivo testing of novel boroarginine or borolysine-based EP inhibitors validates a novel approach to the treatment of obesity.

  12. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli.

    Science.gov (United States)

    Alper, Hal; Jin, Yong-Su; Moxley, J F; Stephanopoulos, G

    2005-05-01

    The identification of genetic targets that are effective in bringing about a desired phenotype change is still an open problem. While random gene knockouts have yielded improved strains in certain cases, it is also important to seek the guidance of cell-wide stoichiometric constraints in identifying promising gene knockout targets. To investigate these issues, we undertook a genome-wide stoichiometric flux balance analysis as an aid in discovering putative genes impacting network properties and cellular phenotype. Specifically, we calculated metabolic fluxes such as to optimize growth and then scanned the genome for single and multiple gene knockouts that yield improved product yield while maintaining acceptable overall growth rate. For the particular case of lycopene biosynthesis in Escherichia coli, we identified such targets that we subsequently tested experimentally by constructing the corresponding single, double and triple gene knockouts. While such strains are suggested (by the stoichiometric calculations) to increase precursor availability, this beneficial effect may be further impacted by kinetic and regulatory effects not captured by the stoichiometric model. For the case of lycopene biosynthesis, the so identified knockout targets yielded a triple knockout construct that exhibited a nearly 40% increase over an engineered, high producing parental strain.

  13. Androgen Receptor-Target Genes in African American Prostate Cancer Disparities

    Directory of Open Access Journals (Sweden)

    Bi-Dar Wang

    2013-01-01

    Full Text Available The incidence and mortality rates of prostate cancer (PCa are higher in African American (AA compared to Caucasian American (CA men. To elucidate the molecular mechanisms underlying PCa disparities, we employed an integrative approach combining gene expression profiling and pathway and promoter analyses to investigate differential transcriptomes and deregulated signaling pathways in AA versus CA cancers. A comparison of AA and CA PCa specimens identified 1,188 differentially expressed genes. Interestingly, these transcriptional differences were overrepresented in signaling pathways that converged on the androgen receptor (AR, suggesting that the AR may be a unifying oncogenic theme in AA PCa. Gene promoter analysis revealed that 382 out of 1,188 genes contained cis-acting AR-binding sequences. Chromatin immunoprecipitation confirmed STAT1, RHOA, ITGB5, MAPKAPK2, CSNK2A,1 and PIK3CB genes as novel AR targets in PCa disparities. Moreover, functional screens revealed that androgen-stimulated AR binding and upregulation of RHOA, ITGB5, and PIK3CB genes were associated with increased invasive activity of AA PCa cells, as siRNA-mediated knockdown of each gene caused a loss of androgen-stimulated invasion. In summation, our findings demonstrate that transcriptional changes have preferentially occurred in multiple signaling pathways converging (“transcriptional convergence” on AR signaling, thereby contributing to AR-target gene activation and PCa aggressiveness in AAs.

  14. Multifunctional Virus-Nanoshell Assembly for Targeted Hyperthermia and Viral Gene Therapy for Breast Cancer

    Science.gov (United States)

    2012-06-01

    cancer cells in synergy with gene therapy. We proposed to develop virus- nanoshell assemblies by attaching adeno-associated virus (AAV) to gold... nanoshells (Au NS) through chemical bonds. We have successfully completed majority of tasks 1 and 2 of our Statement of Work. Specifically, we have...therapy, virus, Au nanoshell Multifunctional Virus- Nanoshell Assembly for Targeted Hyperthermia and Viral Gene Therapy for Breast Cancer Dr. Fang Wei

  15. Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

    OpenAIRE

    Zhao, Xinxia; Ni, Wei; Chen, Chuangfu; Sai, Wujiafu; Qiao, Jun; Sheng, Jingliang; Zhang, Hui; Li, Guozhong; Wang, Dawei; Hu, Shengwei

    2016-01-01

    Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding reg...

  16. Validation and target gene screening of hsa-miR-205 in lung squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Huang Wei; Jin Yi; Yuan Yunfeng; Bai Chunxue; Wu Ying; Zhu Hongguang; Lu Shaohua

    2014-01-01

    Background Lung cancers are classified as squamous cell carcinoma (SQ),adenocarcinoma (AC) and small cell lung carcinoma (SCLC).SQ is the major subtype of lung cancer.Currently,there are no targeted therapies for SQ due to lack of understanding its driving oncogenes.In this study,we validated an SQ specific biomarker hsa-miR-205 in Chinese patients with lung cancer and screened its candidate target genes for further functional studies to enrich knowledge in SQ target therapies.Methods Quantitative reverse-transcription PCR (quantitative RT-PCR)was performed on 197 macro-dissected (cancerous cells >75%) surgical lung tissues (45 SQ,44 AC,54 SCLC and 54 adjacent normal tissues) to validate the expression profiles of miR-205.Furthermore,the targets of this microRNA were predicted through the gateway miRecords and mapped to lung cancer-associated pathways using the KEGG (Kyoto Encyclopedia of Genes and Genomes) database.Then quantitative RT-PCR was performed on an independent cohort of 44 snap-frozen surgical lung tissues to concurrently assess the expression profiles of miR-205 and its 52 putative targeted genes.Results MicroRNA-205 yielded high diagnostic accuracy in discriminating SQ from AC with an area under the curve (AUC) of 0.985,and discriminating SQ from SCLC with an AUC of 0.978 in formalin-fixed paraffin-embedded (FFPE)surgical lung tissues.Predicted targets of miR-205 were associated with 52 key members of lung cancer signaling pathways.Ten target genes (ACSL1,AXIN2,CACNA2D2,FOXO3,PPP1R3A,PRKAG3,RUNX1,SMAD4,STK3 and TBL1XR1) were significantly down-regulated in SQ and had a strong negative correlation with miR-205,while one target gene (CDH3) was up-regulated in SQ and exhibited a strong positive correlation with miR-205.Conclusions We confirmed the high diagnostic accuracy of miR-205 in discriminating SQ from AC and SCLC in Chinese patients.Moreover,we identified 11 significant target genes of miR-205 which could be used for further functional studies

  17. Efficient gene targeting in golden Syrian hamsters by the CRISPR/Cas9 system.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Fan

    Full Text Available The golden Syrian hamster is the model of choice or the only rodent model for studying many human diseases. However, the lack of gene targeting tools in hamsters severely limits their use in biomedical research. Here, we report the first successful application of the CRISPR/Cas9 system to efficiently conduct gene targeting in hamsters. We designed five synthetic single-guide RNAs (sgRNAs--three for targeting the coding sequences for different functional domains of the hamster STAT2 protein, one for KCNQ1, and one for PPP1R12C--and demonstrated that the CRISPR/Cas9 system is highly efficient in introducing site-specific mutations in hamster somatic cells. We then developed unique pronuclear (PN and cytoplasmic injection protocols in hamsters and produced STAT2 knockout (KO hamsters by injecting the sgRNA/Cas9, either in the form of plasmid or mRNA, targeting exon 4 of hamster STAT2. Among the produced hamsters, 14.3% and 88.9% harbored germline-transmitted STAT2 mutations from plasmid and mRNA injection, respectively. Notably, 10.4% of the animals produced from mRNA injection were biallelically targeted. This is the first success in conducting site-specific gene targeting in hamsters and can serve as the foundation for developing other genetically engineered hamster models for human disease.

  18. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  19. RNA polymerase V targets transcriptional silencing components to promoters of protein-coding genes.

    Science.gov (United States)

    Zheng, Qi; Rowley, M Jordan; Böhmdorfer, Gudrun; Sandhu, Davinder; Gregory, Brian D; Wierzbicki, Andrzej T

    2013-01-01

    Transcriptional gene silencing controls transposons and other repetitive elements through RNA-directed DNA methylation (RdDM) and heterochromatin formation. A key component of the Arabidopsis RdDM pathway is ARGONAUTE4 (AGO4), which associates with siRNAs to mediate DNA methylation. Here, we show that AGO4 preferentially targets transposable elements embedded within promoters of protein-coding genes. This pattern of AGO4 binding cannot be simply explained by the sequences of AGO4-bound siRNAs; instead, AGO4 binding to specific gene promoters is also mediated by long non-coding RNAs (lncRNAs) produced by RNA polymerase V. lncRNA-mediated AGO4 binding to gene promoters directs asymmetric DNA methylation to these genomic regions and is involved in regulating the expression of targeted genes. Finally, AGO4 binding overlaps sites of DNA methylation affected by the biotic stress response. Based on these findings, we propose that the targets of AGO4-directed RdDM are regulatory units responsible for controlling gene expression under specific environmental conditions.

  20. Targeted gene transfer into rat facial muscles by nanosecond pulsed laser-induced stress waves

    Science.gov (United States)

    Kurita, Akihiro; Matsunobu, Takeshi; Satoh, Yasushi; Ando, Takahiro; Sato, Shunichi; Obara, Minoru; Shiotani, Akihiro

    2011-09-01

    We investigate the feasibility of using nanosecond pulsed laser-induced stress waves (LISWs) for gene transfer into rat facial muscles. LISWs are generated by irradiating a black natural rubber disk placed on the target tissue with nanosecond pulsed laser light from the second harmonics (532 nm) of a Q-switched Nd:YAG laser, which is widely used in head and neck surgery and proven to be safe. After injection of plasmid deoxyribose nucleic acid (DNA) coding for Lac Z into rat facial muscles, pulsed laser is used to irradiate the laser target on the skin surface without incision or exposure of muscles. Lac Z expression is detected by X-gal staining of excised rat facial skin and muscles. Strong Lac Z expression is observed seven days after gene transfer, and sustained for up to 14 days. Gene transfer is achieved in facial muscles several millimeters deep from the surface. Gene expression is localized to the tissue exposed to LISWs. No tissue damage from LISWs is observed. LISW is a promising nonviral target gene transfer method because of its high spatial controllability, easy applicability, and minimal invasiveness. Gene transfer using LISW to produce therapeutic proteins such as growth factors could be used to treat nerve injury and paralysis.

  1. Functional characterization of endogenous siRNA target genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Heikkinen Liisa

    2008-06-01

    Full Text Available Abstract Background Small interfering RNA (siRNA molecules mediate sequence specific silencing in RNA interference (RNAi, a gene regulatory phenomenon observed in almost all organisms. Large scale sequencing of small RNA libraries obtained from C. elegans has revealed that a broad spectrum of siRNAs is endogenously transcribed from genomic sequences. The biological role and molecular diversity of C. elegans endogenous siRNA (endo-siRNA molecules, nonetheless, remain poorly understood. In order to gain insight into their biological function, we annotated two large libraries of endo-siRNA sequences, identified their cognate targets, and performed gene ontology analysis to identify enriched functional categories. Results Systematic trends in categorization of target genes according to the specific length of siRNA sequences were observed: 18- to 22-mer siRNAs were associated with genes required for embryonic development; 23-mers were associated uniquely with post-embryonic development; 24–26-mers were associated with phosphorus metabolism or protein modification. Moreover, we observe that some argonaute related genes associate with siRNAs with multiple reads. Sequence frequency graphs suggest that different lengths of siRNAs share similarities in overall sequence structure: the 5' end begins with G, while the body predominates with U and C. Conclusion These results suggest that the lengths of endogenous siRNA molecules are consequential to their biological functions since the gene ontology categories for their cognate mRNA targets vary depending upon their lengths.

  2. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases.

    Science.gov (United States)

    Suen, Colin M; Mei, Shirley H J; Kugathasan, Lakshmi; Stewart, Duncan J

    2013-10-01

    Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety.

  3. A meta analysis of pancreatic microarray datasets yields new targets as cancer genes and biomarkers.

    Directory of Open Access Journals (Sweden)

    Nalin C W Goonesekere

    Full Text Available The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC, which has a five year survival rate of less than 5%. Improved screening for earlier diagnosis, through the detection of diagnostic and prognostic biomarkers provides the best hope of increasing the rate of curatively resectable carcinomas. Though many serum markers have been reported to be elevated in patients with PC, so far, most of these markers have not been implemented into clinical routine due to low sensitivity or specificity. In this study, we have identified genes that are significantly upregulated in PC, through a meta-analysis of large number of microarray datasets. We demonstrate that the biological functions ascribed to these genes are clearly associated with PC and metastasis, and that that these genes exhibit a strong link to pathways involved with inflammation and the immune response. This investigation has yielded new targets for cancer genes, and potential biomarkers for pancreatic cancer. The candidate list of cancer genes includes protein kinase genes, new members of gene families currently associated with PC, as well as genes not previously linked to PC. In this study, we are also able to move towards developing a signature for hypomethylated genes, which could be useful for early detection of PC. We also show that the significantly upregulated 800+ genes in our analysis can serve as an enriched pool for tissue and serum protein biomarkers in pancreatic cancer.

  4. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Baccarini, Leticia; Martínez-Montañés, Fernando; Rossi, Silvia; Proft, Markus; Portela, Paula

    2015-11-01

    Gene expression regulation by intracellular stimulus-activated protein kinases is essential for cell adaptation to environmental changes. There are three PKA catalytic subunits in Saccharomyces cerevisiae: Tpk1, Tpk2, and Tpk3 and one regulatory subunit: Bcy1. Previously, it has been demonstrated that Tpk1 and Tpk2 are associated with coding regions and promoters of target genes in a carbon source and oxidative stress dependent manner. Here we studied five genes, ALD6, SED1, HSP42, RPS29B, and RPL1B whose expression is regulated by saline stress. We found that PKA catalytic and regulatory subunits are associated with both coding regions and promoters of the analyzed genes in a stress dependent manner. Tpk1 and Tpk2 recruitment was completely abolished in catalytic inactive mutants. BCY1 deletion changed the binding kinetic to chromatin of each Tpk isoform and this strain displayed a deregulated gene expression in response to osmotic stress. In addition, yeast mutants with high PKA activity exhibit sustained association to target genes of chromatin-remodeling complexes such as Snf2-catalytic subunit of the SWI/SNF complex and Arp8-component of INO80 complex, leading to upregulation of gene expression during osmotic stress. Tpk1 accumulation in the nucleus was stimulated upon osmotic stress, while the nuclear localization of Tpk2 and Bcy1 showed no change. We found that each PKA subunit is transported into the nucleus by a different β-karyopherin pathway. Moreover, β-karyopherin mutant strains abolished the chromatin association of Tpk1 or Tpk2, suggesting that nuclear localization of PKA catalytic subunits is required for its association to target genes and properly gene expression.

  5. Transcription factor-microRNA-target gene networks associated with ovarian cancer survival and recurrence.

    Science.gov (United States)

    Delfino, Kristin R; Rodriguez-Zas, Sandra L

    2013-01-01

    The identification of reliable transcriptome biomarkers requires the simultaneous consideration of regulatory and target elements including microRNAs (miRNAs), transcription factors (TFs), and target genes. A novel approach that integrates multivariate survival analysis, feature selection, and regulatory network visualization was used to identify reliable biomarkers of ovarian cancer survival and recurrence. Expression profiles of 799 miRNAs, 17,814 TFs and target genes and cohort clinical records on 272 patients diagnosed with ovarian cancer were simultaneously considered and results were validated on an independent group of 146 patients. Three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2*) were associated with both ovarian cancer survival and recurrence and 27 miRNAs were associated with either one hazard. Two miRNAs (hsa-miR-521 and hsa-miR-497) were cohort-dependent, while 28 were cohort-independent. This study confirmed 19 miRNAs previously associated with ovarian cancer and identified two miRNAs that have previously been associated with other cancer types. In total, the expression of 838 and 734 target genes and 12 and eight TFs were associated (FDR-adjusted P-value cancer survival and recurrence, respectively. Functional analysis highlighted the association between cellular and nucleotide metabolic processes and ovarian cancer. The more direct connections and higher centrality of the miRNAs, TFs and target genes in the survival network studied suggest that network-based approaches to prognosticate or predict ovarian cancer survival may be more effective than those for ovarian cancer recurrence. This study demonstrated the feasibility to infer reliable miRNA-TF-target gene networks associated with survival and recurrence of ovarian cancer based on the simultaneous analysis of co-expression profiles and consideration of the clinical characteristics of the patients.

  6. Transcription factor-microRNA-target gene networks associated with ovarian cancer survival and recurrence.

    Directory of Open Access Journals (Sweden)

    Kristin R Delfino

    Full Text Available The identification of reliable transcriptome biomarkers requires the simultaneous consideration of regulatory and target elements including microRNAs (miRNAs, transcription factors (TFs, and target genes. A novel approach that integrates multivariate survival analysis, feature selection, and regulatory network visualization was used to identify reliable biomarkers of ovarian cancer survival and recurrence. Expression profiles of 799 miRNAs, 17,814 TFs and target genes and cohort clinical records on 272 patients diagnosed with ovarian cancer were simultaneously considered and results were validated on an independent group of 146 patients. Three miRNAs (hsa-miR-16, hsa-miR-22*, and ebv-miR-BHRF1-2* were associated with both ovarian cancer survival and recurrence and 27 miRNAs were associated with either one hazard. Two miRNAs (hsa-miR-521 and hsa-miR-497 were cohort-dependent, while 28 were cohort-independent. This study confirmed 19 miRNAs previously associated with ovarian cancer and identified two miRNAs that have previously been associated with other cancer types. In total, the expression of 838 and 734 target genes and 12 and eight TFs were associated (FDR-adjusted P-value <0.05 with ovarian cancer survival and recurrence, respectively. Functional analysis highlighted the association between cellular and nucleotide metabolic processes and ovarian cancer. The more direct connections and higher centrality of the miRNAs, TFs and target genes in the survival network studied suggest that network-based approaches to prognosticate or predict ovarian cancer survival may be more effective than those for ovarian cancer recurrence. This study demonstrated the feasibility to infer reliable miRNA-TF-target gene networks associated with survival and recurrence of ovarian cancer based on the simultaneous analysis of co-expression profiles and consideration of the clinical characteristics of the patients.

  7. Construction of a mouse model of factor VIII deficiency by gene targeting

    Energy Technology Data Exchange (ETDEWEB)

    Bi, L.; Lawler, A.; Gearhart, J. [Univ. of Pennsylvania School of Medicine, Philadelphia, PA (United States)] [and others

    1994-09-01

    To develop a small animal model of hemophilia A for gene therapy experiments, we set out to construct a mouse model for factor VIII deficiency by gene targeting. First, we screened a mouse liver cDNA library using a human FVIII cDNA probe. We cloned a 2.6 Kb partial mouse factor VIII cDNA which extends from 800 base pairs of the 3{prime} end of exon 14 to the 5{prime} end of exon 26. A mouse genomic library made from strain 129 was then screened to obtain genomic fragments covering the exons desired for homologous recombination. Two genomic clones were obtained, and one covering exon 15 through 22 was used for gene targeting. To make gene targeting constructs, a 5.8 Kb genomic DNA fragment covering exons 15 to 19 of the mouse FVIII gene was subcloned, and the neo expression cassette was inserted into exons 16 and 17 separately by different strategies. These two constructs were named MFVIIIC-16 and MFVIIIC-17. The constructs were linearized and transfected into strain 129 mouse ES cells by electroporation. Factor VIII gene-knockout ES cell lines were selected by G-418 and screened by genomic Southern blots. Eight exon 16 targeted cell lines and five exon 17 targeted cell lines were obtained. Three cell lines from each construct were injected into blastocysts and surgically transferred into foster mothers. Multiple chimeric mice with 70-90% hair color derived from the ES-cell genotype were seen with both constructs. Germ line transmission of the ES-cell genotype has been obtained for the MFVIIIC-16 construct, and multiple hemophilia A carrier females have been identified. Factor VIII-deficient males will be conceived soon.

  8. Fast and sensitive detection of indels induced by precise gene targeting

    DEFF Research Database (Denmark)

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla

    2015-01-01

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect...... and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect...

  9. Silencing of six hydrophobins in Cladosporium fulvum: complexities of simultaneously targeting multiple genes.

    Science.gov (United States)

    Lacroix, Hélène; Spanu, Pietro D

    2009-01-01

    In this study, we have constructed and expressed inverted repeat chimeras from the first exons of the six known hydrophobins of the fungus Cladosporium fulvum, the causal agent of tomato leaf mold. We used quantitative PCR to measure specifically the expression levels of the hydrophobins. The targeted genes are silenced to different degrees, but we also detected clear changes in the expression levels of nontargeted genes. This work highlights the difficulties that are likely to be encountered when attempting to silence more than one gene in a multigene family.

  10. E. coli recA gene improves gene targeted homologous recombination in Mycoplasma hyorhinis.

    Science.gov (United States)

    Ishag, Hassan Z A; Xiong, Qiyan; Liu, Maojun; Feng, Zhixin; Shao, Guoqing

    2017-05-01

    Mycoplasma hyorhinis is an opportunistic pathogen of pigs. Recently, it has been shown to transform cell cultures, increasing the attention of the researchers. Studies on the pathogenesis require specific genetic tool that is not yet available for the pathogen. To address this limitation, we constructed two suicide plasmids pGEMT-tetM/LR and pGEMT-recA-tetM/LR having a tetracycline resistance marker flanked by two hemolysin gene arms. The latter plasmid encodes an E. coli recA, a gene involved in DNA recombination, repair and maintenance of DNA. Using inactivation of the hemolysin gene, which results in a detectable and measurable phenotype, we found that each plasmid can disrupt the hemolysin gene of M. hyorhinis through a double cross-over homologous recombination. However, inclusion of the E. coli recA gene in the construct resulted in 9-fold increase in the frequency of hemolysin gene mutants among the screened tetracycline resistance colonies. The resultant hemolysin mutant strain lacks the ability to lyse mouse bed blood cells (RBC) when tested in vitro (p<0.001). The host-plasmid system described in this study, has applications for the genetic manipulation of this pathogen and potentially other mycoplasmas.

  11. Mining predicted essential genes of Brugia malayi for nematode drug targets.

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    Full Text Available We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

  12. Mining predicted essential genes of Brugia malayi for nematode drug targets.

    Science.gov (United States)

    Kumar, Sanjay; Chaudhary, Kshitiz; Foster, Jeremy M; Novelli, Jacopo F; Zhang, Yinhua; Wang, Shiliang; Spiro, David; Ghedin, Elodie; Carlow, Clotilde K S

    2007-01-01

    We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

  13. Deletion of ku homologs increases gene targeting frequency in Streptomyces avermitilis.

    Science.gov (United States)

    Zhang, Xiaojuan; Chen, Wei; Zhang, Yang; Jiang, Libin; Chen, Zhi; Wen, Ying; Li, Jilun

    2012-06-01

    Streptomyces avermitilis is an industrially important soil bacterium known for production of avermectins, which are antiparasitic agents useful in animal health care, agriculture, and treatment of human infections. ku genes play a key role in the non-homologous end-joining pathway for repair of DNA double strand breaks. We identified homologs of eukaryotic ku70 and ku80 genes, termed ku1 and ku2, in S. avermitilis. Mutants with deletion of ku1, ku2, and both genes were constructed and their phenotypic changes were characterized. Deletion of ku genes had no apparent adverse effects on growth, spore formation, or avermectin production. The ku mutants, in comparison to wild-type strain, were slightly more sensitive to the DNA-damaging agent ethyl methanesulfonate, but not to UV exposure or to bleomycin. Gene targeting frequencies by homologous recombination were higher in the ku mutants than in wild-type strain. We conclude that ku-deleted strains will be useful hosts for efficient gene targeting and will facilitate functional analysis of genes in S. avermitilis and other industrially important bacterial strains.

  14. Targeted sequencing of cancer-related genes in colorectal cancer using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Sae-Won Han

    Full Text Available Recent advance in sequencing technology has enabled comprehensive profiling of genetic alterations in cancer. We have established a targeted sequencing platform using next-generation sequencing (NGS technology for clinical use, which can provide mutation and copy number variation data. NGS was performed with paired-end library enriched with exons of 183 cancer-related genes. Normal and tumor tissue pairs of 60 colorectal adenocarcinomas were used to test feasibility. Somatic mutation and copy number alteration were analyzed. A total of 526 somatic non-synonymous sequence variations were found in 113 genes. Among these, 278 single nucleotide variations were 232 different somatic point mutations. 216 SNV were 79 known single nucleotide polymorphisms in the dbSNP. 32 indels were 28 different indel mutations. Median number of mutated gene per tumor was 4 (range 0-23. Copy number gain (>X2 fold was found in 65 genes in 40 patients, whereas copy number loss (genes in 39 patients. The most frequently altered genes (mutation and/or copy number alteration were APC in 35 patients (58%, TP53 in 34 (57%, and KRAS in 24 (40%. Altered gene list revealed ErbB signaling pathway as the most commonly involved pathway (25 patients, 42%. Targeted sequencing platform using NGS technology is feasible for clinical use and provides comprehensive genetic alteration data.

  15. Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands.

    Science.gov (United States)

    Luo, Yan; Wang, Yongsheng; Liu, Jun; Cui, Chenchen; Wu, Yongyan; Lan, Hui; Chen, Qi; Liu, Xu; Quan, Fusheng; Guo, Zekun; Zhang, Yong

    2016-02-08

    Targeting exogenous genes at milk protein loci via gene-targeting technology is an ideal strategy for producing large quantities of pharmaceutical proteins. Transcription-activator-like effector (TALE) nucleases (TALENs) are an efficient genome-editing tool. However, the off-target effects may lead to unintended gene mutations. In this study, we constructed TALENs and TALE nickases directed against exon 2 of the bovine β-lactoglobulin (BLG) locus. The nickases can induce a site-specific DNA single-strand break, without inducing double-strand break and nonhomologous end joining mediated gene mutation, and lower cell apoptosis rate than TALENs. After co-transfecting the bovine fetal fibroblasts with human serum albumin (HSA) gene-targeting vector and TALE nickase expression vectors, approximately 4.8% (40/835) of the cell clones contained HSA at BLG locus. Unexpectedly, one homozygous gene-targeted cell clone (1/835, 0.1%) was obtained by targeting both alleles of BLG in a single round of transfection. The recombinant protein mimicking the endogenous BLG was highly expressed and correctly folded in the mammary glands of the targeted cows, and the expression level of HSA was significantly increased in the homozygous targeted cows. Results suggested that the combination of TALE nickase-mediated gene targeting and somatic cell nuclear transfer is a feasible and safe approach in producing gene-targeted livestock.

  16. Genes involved in cell adhesion and signaling: a new repertoire of retinoic acid receptor target genes in mouse embryonic fibroblasts.

    Science.gov (United States)

    Al Tanoury, Ziad; Piskunov, Aleksandr; Andriamoratsiresy, Dina; Gaouar, Samia; Lutzing, Régis; Ye, Tao; Jost, Bernard; Keime, Céline; Rochette-Egly, Cécile

    2014-02-01

    Nuclear retinoic acid (RA) receptors (RARα, β and γ) are ligand-dependent transcription factors that regulate the expression of a battery of genes involved in cell differentiation and proliferation. They are also phosphoproteins and we previously showed the importance of their phosphorylation in their transcriptional activity. In the study reported here, we conducted a genome-wide analysis of the genes that are regulated by RARs in mouse embryonic fibroblasts (MEFs) by comparing wild-type MEFs to MEFs lacking the three RARs. We found that in the absence of RA, RARs control the expression of several gene transcripts associated with cell adhesion. Consequently the knockout MEFs are unable to adhere and to spread on substrates and they display a disrupted network of actin filaments, compared with the WT cells. In contrast, in the presence of the ligand, RARs control the expression of other genes involved in signaling and in RA metabolism. Taking advantage of rescue cell lines expressing the RARα or RARγ subtypes (either wild-type or mutated at the N-terminal phosphorylation sites) in the null background, we found that the expression of RA-target genes can be controlled either by a specific single RAR or by a combination of RAR isotypes, depending on the gene. We also selected genes that require the phosphorylation of the receptors for their regulation by RA. Our results increase the repertoire of genes that are regulated by RARs and highlight the complexity and diversity of the transcriptional programs regulated by RARs, depending on the gene.

  17. Epidermal growth factor receptor targeting enhances adenoviral vector based suicide gene therapy of osteosarcoma

    NARCIS (Netherlands)

    Witlox, M.A.; van Beusechem, V.W.; Grill, J.; Haisma, H.J.; Schaap, G.; Bras, J.; Van Diest, P.; De Gast, A.; Curiel, D.T.; Pinedo, H.M.; Gerritsen, W.R.; Wuisman, P.I.

    2002-01-01

    Background Despite improvements in the treatment of osteosarcoma (OS) there are still too many patients who cannot benefit from current treatment modalities. Therefore, new therapeutic approaches are warranted. Here we explore the efficacy of targeted adenoviral based suicide gene therapy. Methods a

  18. Nonviral Gene Targeting at rDNA Locus of Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Youjin Hu

    2013-01-01

    Full Text Available Background. Genetic modification, such as the addition of exogenous genes to the MSC genome, is crucial to their use as cellular vehicles. Due to the risks associated with viral vectors such as insertional mutagenesis, the safer nonviral vectors have drawn a great deal of attention. Methods. VEGF, bFGF, vitamin C, and insulin-transferrin-selenium-X were supplemented in the MSC culture medium. The cells’ proliferation and survival capacity was measured by MTT, determination of the cumulative number of cells, and a colony-forming efficiency assay. The plasmid pHr2-NL was constructed and nucleofected into MSCs. The recombinants were selected using G418 and characterized using PCR and Southern blotting. Results. BFGF is critical to MSC growth and it acted synergistically with vitamin C, VEGF, and ITS-X, causing the cells to expand significantly. The neomycin gene was targeted to the rDNA locus of human MSCs using a nonviral human ribosomal targeting vector. The recombinant MSCs retained multipotential differentiation capacity, typical levels of hMSC surface marker expression, and a normal karyotype, and none were tumorigenic in nude mice. Conclusions. Exogenous genes can be targeted to the rDNA locus of human MSCs while maintaining the characteristics of MSCs. This is the first nonviral gene targeting of hMSCs.

  19. Problem-Solving Test: Conditional Gene Targeting Using the Cre/loxP Recombination System

    Science.gov (United States)

    Szeberényi, József

    2013-01-01

    Terms to be familiar with before you start to solve the test: gene targeting, knock-out mutation, bacteriophage, complementary base-pairing, homologous recombination, deletion, transgenic organisms, promoter, polyadenylation element, transgene, DNA replication, RNA polymerase, Shine-Dalgarno sequence, restriction endonuclease, polymerase chain…

  20. The effect of COMT gene on the target precision of the athlete movement

    Directory of Open Access Journals (Sweden)

    E. V. Mikhailova

    2014-01-01

    Full Text Available The aim of the study was to find correlation between COMT gene alleles and the target precision of the athlete movement. 68 Russian competing athletes involved in boxing and volleyball, participated in the study. We found interrelation between COMT Met allele and a tall stature in the volleyball players.

  1. Interactome of Radiation-Induced microRNA-Predicted Target Genes

    Directory of Open Access Journals (Sweden)

    Tenzin W. Lhakhang

    2012-01-01

    Full Text Available The microRNAs (miRNAs function as global negative regulators of gene expression and have been associated with a multitude of biological processes. The dysfunction of the microRNAome has been linked to various diseases including cancer. Our laboratory recently reported modulation in the expression of miRNA in a variety of cell types exposed to ionizing radiation (IR. To further understand miRNA role in IR-induced stress pathways, we catalogued a set of common miRNAs modulated in various irradiated cell lines and generated a list of predicted target genes. Using advanced bioinformatics tools we identified cellular pathways where miRNA predicted target genes function. The miRNA-targeted genes were found to play key roles in previously identified IR stress pathways such as cell cycle, p53 pathway, TGF-beta pathway, ubiquitin-mediated proteolysis, focal adhesion pathway, MAPK signaling, thyroid cancer pathway, adherens junction, insulin signaling pathway, oocyte meiosis, regulation of actin cytoskeleton, and renal cell carcinoma pathway. Interestingly, we were able to identify novel targeted pathways that have not been identified in cellular radiation response, such as aldosterone-regulated sodium reabsorption, long-term potentiation, and neutrotrophin signaling pathways. Our analysis indicates that the miRNA interactome in irradiated cells provides a platform for comprehensive modeling of the cellular stress response to IR exposure.

  2. Topical liposome targeting of dyes, melanins, genes, and proteins selectively to hair follicles.

    Science.gov (United States)

    Hoffman, R M

    1998-01-01

    For therapeutic and cosmetic modification of hair, we have developed a hair-follicle-selective macromolecule and small molecule targeting system with topical application of phosphatidylcholine-based liposomes. Liposome-entrapped melanins, proteins, genes, and small-molecules have been selectively targeted to the hair follicle and hair shafts of mice. Liposomal delivery of these molecules is time dependent. Negligible amounts of delivered molecules enter the dermis, epidermis, or bloodstream thereby demonstrating selective follicle delivery. Naked molecules are trapped in the stratum corneum and are unable to enter the follicle. The potential of the hair-follicle liposome delivery system for therapeutic use for hair disease as well as for cosmesis has been demonstrated in 3-dimensional histoculture of hair-growing skin and mouse in vivo models. Topical liposome selective delivery to hair follicles has demonstrated the ability to color hair with melanin, the delivery of the active lac-Z gene to hair matrix cells and delivery of proteins as well. Liposome-targeting of molecules to hair follicles has also been achieved in human scalp in histoculture. Liposomes thus have high potential in selective hair follicle targeting of large and small molecules, including genes, opening the field of gene therapy and other molecular therapy of the hair process to restore hair growth, physiologically restore or alter hair pigment, and to prevent or accelerate hair loss.

  3. The feasibility of targeted selective gene therapy of the hair follicle.

    Science.gov (United States)

    Li, L; Hoffman, R M

    1995-07-01

    Loss of hair and hair colour is associated with ageing, and when it involves the scalp hair, it can be distressing to both sexes. Hair loss resulting from cancer chemotherapy is particularly distressing. However, safe, effective therapies directed to hair have only just started to be developed. The hair follicle is a complex skin appendage composed of epidermal and dermal tissue, with specialized keratinocytes, the hair matrix cells, forming the hair shaft. Specific therapy of the hair follicle depends on selective targeting of specific cells of the hair follicle. We have developed the histoculture of intact hair-growing skin on sponge-gel matrices. We have recently found in histocultured skin that liposomes can selectively target hair follicles to deliver both small and large molecules. That liposomes can target the hair follicle for delivery has been confirmed independently. Two decades ago we introduced the technique of entrapping DNA in liposomes for use in gene therapy. In this report we describe the selective targeting of the lacZ reporter gene to the hair follicles in mice after topical application of the gene entrapped in liposomes. These results demonstrate that highly selective, safe gene therapy for the hair process is feasible.

  4. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity

    DEFF Research Database (Denmark)

    Brandt, Julia P; Aziz-Zaman, Sonya; Juozaityte, Vaida;

    2012-01-01

    . We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2). The ETS-5 transcription factor is necessary for the specification of CO(2)-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient...

  5. Targeting human microRNA genes using engineered Tal-effector nucleases (TALENs.

    Directory of Open Access Journals (Sweden)

    Ruozhen Hu

    Full Text Available MicroRNAs (miRNAs have quickly emerged as important regulators of mammalian physiology owing to their precise control over the expression of critical protein coding genes. Despite significant progress in our understanding of how miRNAs function in mice, there remains a fundamental need to be able to target and edit miRNA genes in the human genome. Here, we report a novel approach to disrupting human miRNA genes ex vivo using engineered TAL-effector (TALE proteins to function as nucleases (TALENs that specifically target and disrupt human miRNA genes. We demonstrate that functional TALEN pairs can be designed to enable disruption of miRNA seed regions, or removal of entire hairpin sequences, and use this approach to successfully target several physiologically relevant human miRNAs including miR-155*, miR-155, miR-146a and miR-125b. This technology will allow for a substantially improved capacity to study the regulation and function of miRNAs in human cells, and could be developed into a strategic means by which miRNAs can be targeted therapeutically during human disease.

  6. Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L

    Science.gov (United States)

    The target leaf spot (TLS) is a very important fungal disease in cucumber. In this study, we conducted fine genetic mapping of a recessively inherited resistance gene, cca-2 against TLS with 1,083 F2 plants derived from the resistant cucumber inbred line D31 and the susceptible line D5. Initial mapp...

  7. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    Science.gov (United States)

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer.

  8. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  9. Big genes are big mutagen targets: a connection to cancerous, spherical cells?

    Science.gov (United States)

    Parry, Michele L; Ramsamooj, Michael; Blanck, George

    2015-01-28

    We determined the most commonly mutated genes in five cancer genome atlas (TCGA) datasets. Many of these genes were extraordinarily large, as are many cancer fusion gene partners. And many of these genes had cytoskeletal related functions. We further determined that these genes were distributed into high and low frequency mutation groups largely according to overall rate of gene-occurrence in the high and low mutation frequency groups, as was also the case with common metastasis and tumor suppressor genes. Oncoproteins were selectively mutated in the low mutation frequency groups in colon and lung datasets. Thus, genes that have very large coding regions and may impact the cytoskeleton are more commonly mutated than are common metastasis and tumor suppressor genes in both high and low frequency mutation groups. These analyses raise questions related to cell shape: (i) Are cancer cells often spherical because cytoskeletal-related proteins are large mutagen targets? (ii) Is drug-resistance facilitated by relatively common mutant proteins that lead to round cells, with altered cell physiology or reduced surface to volume ratios that could reduce intra-cellular drug concentrations?

  10. DbMDR: a relational database for multidrug resistance genes as potential drug targets.

    Science.gov (United States)

    Gupta, Sanchita; Mishra, Manoj; Sen, Naresh; Parihar, Rashi; Dwivedi, Gaurav Raj; Khan, Feroz; Sharma, Ashok

    2011-10-01

    DbMDR is non-redundant reference database of multidrug resistance (MDR) genes and their orthologs acting as potential drug targets. Drug resistance is a common phenomenon of pathogens, creating a serious problem of inactivation of drugs and antibiotics resulting in occurrence of diseases. Apart from other factors, the MDR genes present in pathogens are shown to be responsible for multidrug resistance. Much of the unorganized information on MDR genes is scattered across the literature and other web resources. Thus, consolidation of such knowledge about MDR genes into one database will make the drug discovery research more efficient. Mining of text for MDR genes has resulted into a large number of publications but in scattered and unorganized form. This information was compiled into a database, which enables a user not only to look at a particular MDR gene but also to find out putative homologs based on sequence similarity, conserved domains, and motifs in proteins encoded by MDR genes more efficiently. At present, DbMDR database contains 2843 MDR genes characterized experimentally as well as functionally annotated with cross-referencing search support. The DbMDR database (http://203.190.147.116/dbmdr/) is a comprehensive resource for comparative study focused on MDR genes and metabolic pathway efflux pumps and intended to provide a platform for researchers for further research in drug resistance.

  11. Analysis of the siRNA-Mediated Gene Silencing Process Targeting Three Homologous Genes Controlling Soybean Seed Oil Quality.

    Science.gov (United States)

    Lu, Sha; Yin, Xiaoyan; Spollen, William; Zhang, Ning; Xu, Dong; Schoelz, James; Bilyeu, Kristin; Zhang, Zhanyuan J

    2015-01-01

    In the past decade, RNA silencing has gained significant attention because of its success in genomic scale research and also in the genetic improvement of crop plants. However, little is known about the molecular basis of siRNA processing in association with its target transcript. To reveal this process for improving hpRNA-mediated gene silencing in crop plants, the soybean GmFAD3 gene family was chosen as a test model. We analyzed RNAi mutant soybean lines in which three members of the GmFAD3 gene family were silenced. The silencing levels of FAD3A, FAD3B and FAD3C were correlated with the degrees of sequence homology between the inverted repeat of hpRNA and the GmFAD3 transcripts in the RNAi lines. Strikingly, transgenes in two of the three RNAi lines were heavily methylated, leading to a dramatic reduction of hpRNA-derived siRNAs. Small RNAs corresponding to the loop portion of the hairpin transcript were detected while much lower levels of siRNAs were found outside of the target region. siRNAs generated from the 318-bp inverted repeat were found to be diced much more frequently at stem sequences close to the loop and associated with the inferred cleavage sites on the target transcripts, manifesting "hot spots". The top candidate hpRNA-derived siRNA share certain sequence features with mature miRNA. This is the first comprehensive and detailed study revealing the siRNA-mediated gene silencing mechanism in crop plants using gene family GmFAD3 as a test model.

  12. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer.

    Science.gov (United States)

    Vrba, Lukas; Muñoz-Rodríguez, José L; Stampfer, Martha R; Futscher, Bernard W

    2013-01-01

    miRNAs are important regulators of gene expression that are frequently deregulated in cancer, with aberrant DNA methylation being an epigenetic mechanism involved in this process. We previously identified miRNA promoter regions active in normal mammary cell types and here we analyzed which of these promoters are targets of aberrant DNA methylation in human breast cancer cell lines and breast tumor specimens. Using 5-methylcytosine immunoprecipitation coupled to miRNA tiling microarray hybridization, we performed comprehensive evaluation of DNA methylation of miRNA gene promoters in breast cancer. We found almost one third (55/167) of miRNA promoters were targets for aberrant methylation in breast cancer cell lines. Breast tumor specimens displayed DNA methylation of majority of these miRNA promoters, indicating that these changes in DNA methylation might be clinically relevant. Aberrantly methylated miRNA promoters were, similar to protein coding genes, enriched for promoters targeted by polycomb in normal cells. Detailed analysis of selected miRNA promoters revealed decreased expression of miRNA linked to increased promoter methylation for mir-31, mir-130a, let-7a-3/let-7b, mir-155, mir-137 and mir-34b/mir-34c genes. The proportion of miRNA promoters we found aberrantly methylated in breast cancer is several fold larger than that observed for protein coding genes, indicating an important role of DNA methylation in miRNA deregulation in cancer.

  13. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases.

    Science.gov (United States)

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Wang, Ping; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-06-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for each of 10 target genes, mutant F0 mice for each gene were obtained with the mutation rate ranged from 13 to 67% and an average of ∼40% of total healthy newborns with no significant differences between C57BL/6 and FVB/N genetic background. One TALEN pair with single mismatch to their intended target sequence in each side failed to yield any mutation. Furthermore, highly efficient germ-line transmission was obtained, as all the F0 founders tested transmitted the mutations to F1 mice. In addition, we also observed that one bi-allele mutant founder of Lepr gene, encoding Leptin receptor, had similar diabetic phenotype as db/db mouse. Together, our results suggest that TALENs are an effective genetic tool for rapid gene disruption with high efficiency and heritability in mouse with distinct genetic background.

  14. Analysis of Deregulated microRNAs and Their Target Genes in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Simonas Juzėnas

    Full Text Available MicroRNAs (miRNAs are widely studied non-coding RNAs that modulate gene expression. MiRNAs are deregulated in different tumors including gastric cancer (GC and have potential diagnostic and prognostic implications. The aim of our study was to determine miRNA profile in GC tissues, followed by evaluation of deregulated miRNAs in plasma of GC patients. Using available databases and bioinformatics methods we also aimed to evaluate potential target genes of confirmed differentially expressed miRNA and validate these findings in GC tissues.The study included 51 GC patients and 51 controls. Initially, we screened miRNA expression profile in 13 tissue samples of GC and 12 normal gastric tissues with TaqMan low density array (TLDA. In the second stage, differentially expressed miRNAs were validated in a replication cohort using qRT-PCR in tissue and plasma samples. Subsequently, we analyzed potential target genes of deregulated miRNAs using bioinformatics approach, determined their expression in GC tissues and performed correlation analysis with targeting miRNAs.Profiling with TLDA revealed 15 deregulated miRNAs in GC tissues compared to normal gastric mucosa. Replication analysis confirmed that miR-148a-3p, miR-204-5p, miR-223-3p and miR-375 were consistently deregulated in GC tissues. Analysis of GC patients' plasma samples showed significant down-regulation of miR-148a-3p, miR-375 and up-regulation of miR-223-3p compared to healthy subjects. Further, using bioinformatic tools we identified targets of replicated miRNAs and performed disease-associated gene enrichment analysis. Ultimately, we evaluated potential target gene BCL2 and DNMT3B expression by qRT-PCR in GC tissue, which correlated with targeting miRNA expression.Our study revealed miRNA profile in GC tissues and showed that miR-148a-3p, miR-223-3p and miR-375 are deregulated in GC plasma samples, but these circulating miRNAs showed relatively weak diagnostic performance as sole biomarkers

  15. Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin.

    Science.gov (United States)

    Harari, O A; Wickham, T J; Stocker, C J; Kovesdi, I; Segal, D M; Huehns, T Y; Sarraf, C; Haskard, D O

    1999-05-01

    We have aimed at selective gene delivery to vascular endothelial cells (EC) at sites of inflammation, by targeting E-selectin, a surface adhesion molecule that is only expressed by activated EC. An anti-E-selectin mAb, 1.2B6, was complexed with the adenovirus vector AdZ.FLAG (expressing the FLAG peptide) by conjugating it to an anti-FLAG mAb. Gene transduction of cultured EC was increased 20-fold compared with AdZ.FLAG complexed with a control bsAb providing EC were activated by cytokines. The anti-E-selectin-complexed vector transduced 29 +/- 9% of intimal EC in segments of pig aorta cultured with cytokines ex vivo, compared with less than 0.1% transduced with the control construct (P < 0.05). This strategy could be developed to target endothelium in inflammation with genes capable of modifying the inflammatory response.

  16. Dose-dependent regulation of target gene expression and cell proliferation by c-Myc levels.

    Science.gov (United States)

    Schuhmacher, Marino; Eick, Dirk

    2013-01-01

    The proto-oncogene c-myc encodes a basic helix-loop-helix leucine zipper transcription factor (c-Myc). c-Myc plays a crucial role in cell growth and proliferation. Here, we examined how expression of c-Myc target genes and cell proliferation depend on variation of c-Myc protein levels. We show that proliferation rates, the number of cells in S-phase, and cell size increased in a dose-dependent manner in response to increasing c-Myc levels. Likewise, the mRNA levels of c-Myc responsive genes steadily increased with rising c-Myc levels. Strikingly, steady-state mRNA levels of c-Myc target genes did not saturate even at highest c-Myc concentrations. These characteristics predestine c-Myc levels as a cellular rheostat for the control and fine-tuning of cell proliferation and growth rates.

  17. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting.

    Science.gov (United States)

    Chang, Chia-Wei; Lai, Yi-Shin; Westin, Erik; Khodadadi-Jamayran, Alireza; Pawlik, Kevin M; Lamb, Lawrence S; Goldman, Frederick D; Townes, Tim M

    2015-09-08

    Mutations of the Janus family kinase JAK3 gene cause severe combined immunodeficiency (SCID). JAK3 deficiency in humans is characterized by the absence of circulating T cells and natural killer (NK) cells with normal numbers of poorly functioning B cells (T(-)B(+)NK(-)). Using SCID patient-specific induced pluripotent stem cells (iPSCs) and a T cell in vitro differentiation system, we demonstrate a complete block in early T cell development of JAK3-deficient cells. Correction of the JAK3 mutation by CRISPR/Cas9-enhanced gene targeting restores normal T cell development, including the production of mature T cell populations with a broad T cell receptor (TCR) repertoire. Whole-genome sequencing of corrected cells demonstrates no CRISPR/Cas9 off-target modifications. These studies describe an approach for the study of human lymphopoiesis and provide a foundation for gene correction therapy in humans with immunodeficiencies.

  18. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins.

    Science.gov (United States)

    Maeder, Morgan L; Angstman, James F; Richardson, Marcy E; Linder, Samantha J; Cascio, Vincent M; Tsai, Shengdar Q; Ho, Quan H; Sander, Jeffry D; Reyon, Deepak; Bernstein, Bradley E; Costello, Joseph F; Wilkinson, Miles F; Joung, J Keith

    2013-12-01

    Genome-wide studies have defined cell type-specific patterns of DNA methylation that are important for regulating gene expression in both normal development and disease. However, determining the functional significance of specific methylation events remains challenging, owing to the lack of methods for removing such modifications in a targeted manner. Here we describe an approach for efficient targeted demethylation of specific CpGs in human cells using fusions of engineered transcription activator-like effector (TALE) repeat arrays and the TET1 hydroxylase catalytic domain. Using these TALE-TET1 fusions, we demonstrate that modification of critical methylated promoter CpG positions can lead to substantial increases in the expression of endogenous human genes. Our results delineate a strategy for understanding the functional significance of specific CpG methylation marks in the context of endogenous gene loci and validate programmable DNA demethylation reagents with potential utility for research and therapeutic applications.

  19. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Christiane Margue

    Full Text Available The non-coding microRNAs (miRNA have tissue- and disease-specific expression patterns. They down-regulate target mRNAs, which likely impacts on most fundamental cellular processes. Differential expression patterns of miRNAs are currently being exploited for identification of biomarkers for early disease diagnosis, prediction of progression for melanoma and other cancers and as promising drug targets, since they can easily be inhibited or replaced in a given cellular context. Before successfully manipulating miRNAs in clinical settings, their precise expression levels, endogenous functions and thus their target genes have to be determined. MiR-211, a melanocyte lineage-specific small non-coding miRNA, is located in an intron of TRPM1, a target gene of the microphtalmia-associated transcription factor (MITF. By transcriptionally up-regulating TRPM1, MITF, which is critical for both melanocyte differentiation and survival and for melanoma progression, indirectly drives the expression of miR-211. Expression of this miRNA is often reduced in melanoma samples. Here, we investigated functional roles of miR-211 by identifying and studying new target genes. We show that MITF-correlated miR-211 expression levels are mostly but not always reduced in a panel of 11 melanoma cell lines and in primary and metastatic melanoma compared to normal melanocytes and nevi, respectively. MiR-211 itself only marginally impacted on cell invasion and migration, while perturbation of some new miR-211 target genes, such as AP1S2, SOX11, IGFBP5, and SERINC3 significantly increased invasion. These results and the variable expression levels of miR-211 raise serious doubts on the value of miR-211 as a melanoma tumor-suppressing miRNA and/or as a biomarker for melanoma.

  20. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tatiana Flisikowska

    Full Text Available Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM(+ and IgG(+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ∼1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields.

  1. ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation.

    Science.gov (United States)

    de Pater, Sylvia; Pinas, Johan E; Hooykaas, Paul J J; van der Zaal, Bert J

    2013-05-01

    Previously, we showed that ZFN-mediated induction of double-strand breaks (DSBs) at the intended recombination site enhanced the frequency of gene targeting (GT) at an artificial target locus using Agrobacterium-mediated floral dip transformation. Here, we designed zinc finger nucleases (ZFNs) for induction of DSBs in the natural protoporphyrinogen oxidase (PPO) gene, which can be conveniently utilized for GT experiments. Wild-type Arabidopsis plants and plants expressing the ZFNs were transformed via floral dip transformation with a repair T-DNA with an incomplete PPO gene, missing the 5' coding region but containing two mutations rendering the enzyme insensitive to the herbicide butafenacil as well as an extra KpnI site for molecular analysis of GT events. Selection on butafenacil yielded 2 GT events for the wild type with a frequency of 0.8 × 10⁻³ per transformation event and 8 GT events for the ZFNs expressing plant line with a frequency of 3.1 × 10⁻³ per transformation event. Molecular analysis using PCR and Southern blot analysis showed that 9 of the GT events were so-called true GT events, repaired via homologous recombination (HR) at the 5' and the 3' end of the gene. One plant line contained a PPO gene repaired only at the 5' end via HR. Most plant lines contained extra randomly integrated T-DNA copies. Two plant lines did not contain extra T-DNAs, and the repaired PPO genes in these lines were transmitted to the next generation in a Mendelian fashion.

  2. Global Identification of EVI1 Target Genes in Acute Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Carolyn Glass

    Full Text Available The ecotropic virus integration site 1 (EVI1 transcription factor is associated with human myeloid malignancy of poor prognosis and is overexpressed in 8-10% of adult AML and strikingly up to 27% of pediatric MLL-rearranged leukemias. For the first time, we report comprehensive genomewide EVI1 binding and whole transcriptome gene deregulation in leukemic cells using a combination of ChIP-Seq and RNA-Seq expression profiling. We found disruption of terminal myeloid differentiation and cell cycle regulation to be prominent in EVI-induced leukemogenesis. Specifically, we identified EVI1 directly binds to and downregulates the master myeloid differentiation gene Cebpe and several of its downstream gene targets critical for terminal myeloid differentiation. We also found EVI1 binds to and downregulates Serpinb2 as well as numerous genes involved in the Jak-Stat signaling pathway. Finally, we identified decreased expression of several ATP-dependent P2X purinoreceptors genes involved in apoptosis mechanisms. These findings provide a foundation for future study of potential therapeutic gene targets for EVI1-induced leukemia.

  3. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.

    Directory of Open Access Journals (Sweden)

    Tianqiao Song

    2015-12-01

    Full Text Available Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.

  4. Hapten-derivatized nanoparticle targeting and imaging of gene expression by multimodality imaging systems.

    Science.gov (United States)

    Cheng, C-M; Chu, P-Y; Chuang, K-H; Roffler, S R; Kao, C-H; Tseng, W-L; Shiea, J; Chang, W-D; Su, Y-C; Chen, B-M; Wang, Y-M; Cheng, T-L

    2009-01-01

    Non-invasive gene monitoring is important for most gene therapy applications to ensure selective gene transfer to specific cells or tissues. We developed a non-invasive imaging system to assess the location and persistence of gene expression by anchoring an anti-dansyl (DNS) single-chain antibody (DNS receptor) on the cell surface to trap DNS-derivatized imaging probes. DNS hapten was covalently attached to cross-linked iron oxide (CLIO) to form a 39+/-0.5 nm DNS-CLIO nanoparticle imaging probe. DNS-CLIO specifically bound to DNS receptors but not to a control single-chain antibody receptor. DNS-CLIO (100 microM Fe) was non-toxic to both B16/DNS (DNS receptor positive) and B16/phOx (control receptor positive) cells. Magnetic resonance (MR) imaging could detect as few as 10% B16/DNS cells in a mixture in vitro. Importantly, DNS-CLIO specifically bound to a B16/DNS tumor, which markedly reduced signal intensity. Similar results were also shown with DNS quantum dots, which specifically targeted CT26/DNS cells but not control CT26/phOx cells both in vitro and in vivo. These results demonstrate that DNS nanoparticles can systemically monitor the expression of DNS receptor in vivo by feasible imaging systems. This targeting strategy may provide a valuable tool to estimate the efficacy and specificity of different gene delivery systems and optimize gene therapy protocols in the clinic.

  5. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.

    Science.gov (United States)

    Song, Tianqiao; Ma, Zhenchuan; Shen, Danyu; Li, Qi; Li, Wanlin; Su, Liming; Ye, Tingyue; Zhang, Meixiang; Wang, Yuanchao; Dou, Daolong

    2015-12-01

    Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.

  6. Improvement of Hydrodynamics-Based Gene Transfer of Nonviral DNA Targeted to Murine Hepatocytes

    Directory of Open Access Journals (Sweden)

    Shingo Nakamura

    2013-01-01

    Full Text Available The liver is an important organ for supporting the life of an individual. Gene transfer toward this organ has been attempted in many laboratories to date; however, there have been few reports on improved liver-targeted gene delivery by using a nonviral vector. In this study, we examined the effect of various types of gene delivery carriers on enhancing the uptake and gene expression of exogenous DNA in murine hepatocytes when a hydrodynamics-based gene delivery (HGD is performed via tail-vein injection. Mice were singly injected with a large amount of phosphate-buffered saline containing reporter plasmid DNA and/or with a gene delivery carrier. One day after the gene delivery, the animals' livers were dissected and subjected to biochemical, histochemical, and molecular biological analyses. The strongest signal from the reporter plasmid DNA was observed when the DNA was mixed with a polyethylenimine- (PEI- based reagent. Coinjection with pCRTEIL (a loxP-floxed reporter construct and pTR/NCre (a liver-specific Cre expression vector resulted in the liver-specific recombination of pCRTEIL. The combination of PEI with HGD would thus be a valuable tool for liver-specific manipulation to examine the function of a gene of interest in the liver and for creating liver disease models.

  7. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions

    Science.gov (United States)

    Creighton, Chad J.; Nagaraja, Ankur K.; Hanash, Samir M.; Matzuk, Martin M.; Gunaratne, Preethi H.

    2008-01-01

    MicroRNAs are short (∼22 nucleotides) noncoding RNAs that regulate the stability and translation of mRNA targets. A number of computational algorithms have been developed to help predict which microRNAs are likely to regulate which genes. Gene expression profiling of biological systems where microRNAs might be active can yield hundreds of differentially expressed genes. The commonly used public microRNA target prediction databases facilitate gene-by-gene searches. However, integration of microRNA–mRNA target predictions with gene expression data on a large scale using these databases is currently cumbersome and time consuming for many researchers. We have developed a desktop software application which, for a given target prediction database, retrieves all microRNA:mRNA functional pairs represented by an experimentally derived set of genes. Furthermore, for each microRNA, the software computes an enrichment statistic for overrepresentation of predicted targets within the gene set, which could help to implicate roles for specific microRNAs and microRNA-regulated genes in the system under study. Currently, the software supports searching of results from PicTar, TargetScan, and miRanda algorithms. In addition, the software can accept any user-defined set of gene-to-class associations for searching, which can include the results of other target prediction algorithms, as well as gene annotation or gene-to-pathway associations. A search (using our software) of genes transcriptionally regulated in vitro by estrogen in breast cancer uncovered numerous targeting associations for specific microRNAs—above what could be observed in randomly generated gene lists—suggesting a role for microRNAs in mediating the estrogen response. The software and Excel VBA source code are freely available at http://sigterms.sourceforge.net. PMID:18812437

  8. A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions.

    Science.gov (United States)

    Creighton, Chad J; Nagaraja, Ankur K; Hanash, Samir M; Matzuk, Martin M; Gunaratne, Preethi H

    2008-11-01

    MicroRNAs are short (approximately 22 nucleotides) noncoding RNAs that regulate the stability and translation of mRNA targets. A number of computational algorithms have been developed to help predict which microRNAs are likely to regulate which genes. Gene expression profiling of biological systems where microRNAs might be active can yield hundreds of differentially expressed genes. The commonly used public microRNA target prediction databases facilitate gene-by-gene searches. However, integration of microRNA-mRNA target predictions with gene expression data on a large scale using these databases is currently cumbersome and time consuming for many researchers. We have developed a desktop software application which, for a given target prediction database, retrieves all microRNA:mRNA functional pairs represented by an experimentally derived set of genes. Furthermore, for each microRNA, the software computes an enrichment statistic for overrepresentation of predicted targets within the gene set, which could help to implicate roles for specific microRNAs and microRNA-regulated genes in the system under study. Currently, the software supports searching of results from PicTar, TargetScan, and miRanda algorithms. In addition, the software can accept any user-defined set of gene-to-class associations for searching, which can include the results of other target prediction algorithms, as well as gene annotation or gene-to-pathway associations. A search (using our software) of genes transcriptionally regulated in vitro by estrogen in breast cancer uncovered numerous targeting associations for specific microRNAs-above what could be observed in randomly generated gene lists-suggesting a role for microRNAs in mediating the estrogen response. The software and Excel VBA source code are freely available at http://sigterms.sourceforge.net.

  9. Targeting single neuronal networks for gene expression and cell labeling in vivo.

    Science.gov (United States)

    Marshel, James H; Mori, Takuma; Nielsen, Kristina J; Callaway, Edward M

    2010-08-26

    To understand fine-scale structure and function of single mammalian neuronal networks, we developed and validated a strategy to genetically target and trace monosynaptic inputs to a single neuron in vitro and in vivo. The strategy independently targets a neuron and its presynaptic network for specific gene expression and fine-scale labeling, using single-cell electroporation of DNA to target infection and monosynaptic retrograde spread of a genetically modifiable rabies virus. The technique is highly reliable, with transsynaptic labeling occurring in every electroporated neuron infected by the virus. Targeting single neocortical neuronal networks in vivo, we found clusters of both spiny and aspiny neurons surrounding the electroporated neuron in each case, in addition to intricately labeled distal cortical and subcortical inputs. This technique, broadly applicable for probing and manipulating single neuronal networks with single-cell resolution in vivo, may help shed new light on fundamental mechanisms underlying circuit development and information processing by neuronal networks throughout the brain.

  10. Evaluating Transcription Factor Activity Changes by Scoring Unexplained Target Genes in Expression Data

    Science.gov (United States)

    Berchtold, Evi; Csaba, Gergely; Zimmer, Ralf

    2016-01-01

    Several methods predict activity changes of transcription factors (TFs) from a given regulatory network and measured expression data. But available gene regulatory networks are incomplete and contain many condition-dependent regulations that are not relevant for the specific expression measurement. It is not known which combination of active TFs is needed to cause a change in the expression of a target gene. A method to systematically evaluate the inferred activity changes is missing. We present such an evaluation strategy that indicates for how many target genes the observed expression changes can be explained by a given set of active TFs. To overcome the problem that the exact combination of active TFs needed to activate a gene is typically not known, we assume a gene to be explained if there exists any combination for which the predicted active TFs can possibly explain the observed change of the gene. We introduce the i-score (inconsistency score), which quantifies how many genes could not be explained by the set of activity changes of TFs. We observe that, even for these minimal requirements, published methods yield many unexplained target genes, i.e. large i-scores. This holds for all methods and all expression datasets we evaluated. We provide new optimization methods to calculate the best possible (minimal) i-score given the network and measured expression data. The evaluation of this optimized i-score on a large data compendium yields many unexplained target genes for almost every case. This indicates that currently available regulatory networks are still far from being complete. Both the presented Act-SAT and Act-A* methods produce optimal sets of TF activity changes, which can be used to investigate the difficult interplay of expression and network data. A web server and a command line tool to calculate our i-score and to find the active TFs associated with the minimal i-score is available from https://services.bio.ifi.lmu.de/i-score. PMID:27723775

  11. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs.

    Science.gov (United States)

    Saccone, Scott F; Hinrichs, Anthony L; Saccone, Nancy L; Chase, Gary A; Konvicka, Karel; Madden, Pamela A F; Breslau, Naomi; Johnson, Eric O; Hatsukami, Dorothy; Pomerleau, Ovide; Swan, Gary E; Goate, Alison M; Rutter, Joni; Bertelsen, Sarah; Fox, Louis; Fugman, Douglas; Martin, Nicholas G; Montgomery, Grant W; Wang, Jen C; Ballinger, Dennis G; Rice, John P; Bierut, Laura Jean

    2007-01-01

    Nicotine dependence is one of the world's leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the beta3 nicotinic receptor subunit gene (P = 9.4 x 10(-5)). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the alpha5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 x 10(-4)). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies.

  12. Targeting c-Myc-activated genes with a correlation method: Detection of global changes in large gene expression network dynamics

    Science.gov (United States)

    Remondini, D.; O'Connell, B.; Intrator, N.; Sedivy, J. M.; Neretti, N.; Castellani, G. C.; Cooper, L. N.

    2005-01-01

    This work studies the dynamics of a gene expression time series network. The network, which is obtained from the correlation of gene expressions, exhibits global dynamic properties that emerge after a cell state perturbation. The main features of this network appear to be more robust when compared with those obtained with a network obtained from a linear Markov model. In particular, the network properties strongly depend on the exact time sequence relationships between genes and are destroyed by random temporal data shuffling. We discuss in detail the problem of finding targets of the c-myc protooncogene, which encodes a transcriptional regulator whose inappropriate expression has been correlated with a wide array of malignancies. The data used for network construction are a time series of gene expression, collected by microarray analysis of a rat fibroblast cell line expressing a conditional Myc-estrogen receptor oncoprotein. We show that the correlation-based model can establish a clear relationship between network structure and the cascade of c-myc-activated genes. PMID:15867157

  13. Gene targeting in rats using transcription activator-like effector nucleases.

    Science.gov (United States)

    Ménoret, Séverine; Tesson, Laurent; Rémy, Séverine; Usal, Claire; Thépenier, Virginie; Thinard, Reynald; Ouisse, Laure-Hélène; De Cian, Anne; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-15

    The rat is a model of choice to understanding gene function and modeling human diseases. Since recent years, successful engineering technologies using gene-specific nucleases have been developed to gene edit the genome of different species, including the rat. This development has become important for the creation of new rat animals models of human diseases, analyze the role of genes and express recombinant proteins. Transcription activator-like (TALE) nucleases are designed nucleases consist of a DNA binding domain fused to a nuclease domain capable of cleaving the targeted DNA. We describe a detailed protocol for generating knockout rats via microinjection of TALE nucleases into fertilized eggs. This technology is an efficient, cost- and time-effective method for creating new rat models.

  14. Identification and characterization of a novel peptide ligand of Tie2 for targeting gene therapy

    Institute of Scientific and Technical Information of China (English)

    Xianghua Wu; Jianren Gu; Zonghai Li; Ming Yao; Huamao Wang; Sumin Qu; Xianlian Chen; Jinjun Li; Ye Sun; Yuhong Xu

    2008-01-01

    Tyrosine kinase with immunoglobulin and epidermal growth factor homology domain-2 (Tie2) has been considered as a rational target for gene therapy in solid tumors. In order to identify a novel peptide ligand of Tie2 for targeted gene therapy, we screened a phage display peptide library and identified a candidate peptide ligand NSLSNASEFRAPY(designated GA5).Binding assays and Scatchard analysis revealed that GA5 could specifically bind to Tie2 with a dissociation constant of 2.1×10-8M.In addition,we showed that GA5 was internalized into tumor cells highly expressing Tie2.In the biodistribution assay.125I-GA5 was mainly accumniated in SPC-A1 xenograft tumors that express Tie2.Ingene delivery studies,GA5-conjugated polyethylenimine vector could achieve greater transgene transduction than non-targeted vectors both in vitro and in vivo.Tumor growth inhibition was observed in SPC-A1 xenograft-bearing mice that received eight intratumoral injections of GA5 polyethylenimine/p53 complexes in 3 weeks.The difference in tumor volume between the experiment and control groups was significant(P<0.05).Our results showed that GA5 is a potentially efficient targeting element for cancer gene or molecular therapy.

  15. Regeneration of pancreatic islets in vivo by ultrasound-targeted gene therapy.

    Science.gov (United States)

    Chen, S; Shimoda, M; Wang, M-Y; Ding, J; Noguchi, H; Matsumoto, S; Grayburn, P A

    2010-11-01

    This study uses a novel approach to gene therapy in which plasmid DNA is targeted to the pancreas in vivo using ultrasound-targeted microbubble destruction (UTMD) to achieve islet regeneration. Intravenous microbubbles carrying plasmids are destroyed within the pancreatic microcirculation by ultrasound, achieving local gene expression that is further targeted to β-cells by a modified rat insulin promoter (RIP3.1). A series of genes implicated in endocrine development were delivered to rats 2 days after streptozotocin-induced diabetes. The genes, PAX4, Nkx2.2, Nkx6.1, Ngn3 and Mafa, produced α-cell hyperplasia, but no significant improvement in β-cell mass or blood glucose level 30 days after UTMD. In contrast, RIP3.1-NeuroD1 promoted islet regeneration from surviving β-cells, with normalization of glucose, insulin and C-peptide levels at 30 days. In a longer-term experiment, four of six rats had a return of diabetes at 90 days, accompanied by β-cell apoptosis on Tunel staining. Pretreatment with the JNK inhibitor SP600125 successfully blocked β-cell apoptosis and resulted in restoration of β-cell mass and normalization of blood glucose level for up to 90 days. This technique allows in vivo islet regeneration, restoration of β-cell mass and normalization of blood sugar, insulin and C-peptide in rats without viruses.

  16. Zooplankton community analysis in the Changjiang River estuary by single-gene-targeted metagenomics

    Science.gov (United States)

    Cheng, Fangping; Wang, Minxiao; Li, Chaolun; Sun, Song

    2014-07-01

    DNA barcoding provides accurate identification of zooplankton species through all life stages. Single-gene-targeted metagenomic analysis based on DNA barcode databases can facilitate longterm monitoring of zooplankton communities. With the help of the available zooplankton databases, the zooplankton community of the Changjiang (Yangtze) River estuary was studied using a single-gene-targeted metagenomic method to estimate the species richness of this community. A total of 856 mitochondrial cytochrome oxidase subunit 1 (cox1) gene sequences were determined. The environmental barcodes were clustered into 70 molecular operational taxonomic units (MOTUs). Forty-two MOTUs matched barcoded marine organisms with more than 90% similarity and were assigned to either the species (similarity>96%) or genus level (similaritymorphological methods were identified by molecular methods, especially gelatinous zooplankton and merozooplankton that were likely sampled at different life history phases. Zooplankton community structures differed significantly among all of the samples. The MOTU spatial distributions were influenced by the ecological habits of the corresponding species. In conclusion, single-gene-targeted metagenomic analysis is a useful tool for zooplankton studies, with which specimens from all life history stages can be identified quickly and effectively with a comprehensive database.

  17. Using Pharmacogenomic Databases for Discovering Patient-Target Genes and Small Molecule Candidates to Cancer Therapy

    Science.gov (United States)

    Belizário, José E.; Sangiuliano, Beatriz A.; Perez-Sosa, Marcela; Neyra, Jennifer M.; Moreira, Dayson F.

    2016-01-01

    With multiple omics strategies being applied to several cancer genomics projects, researchers have the opportunity to develop a rational planning of targeted cancer therapy. The investigation of such numerous and diverse pharmacogenomic datasets is a complex task. It requires biological knowledge and skills on a set of tools to accurately predict signaling network and clinical outcomes. Herein, we describe Web-based in silico approaches user friendly for exploring integrative studies on cancer biology and pharmacogenomics. We briefly explain how to submit a query to cancer genome databases to predict which genes are significantly altered across several types of cancers using CBioPortal. Moreover, we describe how to identify clinically available drugs and potential small molecules for gene targeting using CellMiner. We also show how to generate a gene signature and compare gene expression profiles to investigate the complex biology behind drug response using Connectivity Map. Furthermore, we discuss on-going challenges, limitations and new directions to integrate molecular, biological and epidemiological information from oncogenomics platforms to create hypothesis-driven projects. Finally, we discuss the use of Patient-Derived Xenografts models (PDXs) for drug profiling in vivo assay. These platforms and approaches are a rational way to predict patient-targeted therapy response and to develop clinically relevant small molecules drugs.

  18. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples.

    Directory of Open Access Journals (Sweden)

    Jonathan A Scolnick

    Full Text Available Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET, for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE tissue RNA in both normal tissue and cancer cells.

  19. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples.

    Science.gov (United States)

    Scolnick, Jonathan A; Dimon, Michelle; Wang, I-Ching; Huelga, Stephanie C; Amorese, Douglas A

    2015-01-01

    Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET), for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue RNA in both normal tissue and cancer cells.

  20. Identification of estrogen target genes during zebrafish embryonic development through transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Ruixin Hao

    Full Text Available Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2 or vehicle from 3 hours to 4 days post fertilization (dpf, harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP. Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database. The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.

  1. Efficient gene targeting mediated by a lentiviral vector-associated meganuclease.

    Science.gov (United States)

    Izmiryan, Araksya; Basmaciogullari, Stéphane; Henry, Adrien; Paques, Frédéric; Danos, Olivier

    2011-09-01

    Gene targeting can be achieved with lentiviral vectors delivering donor sequences along with a nuclease that creates a locus-specific double-strand break (DSB). Therapeutic applications of this system would require an appropriate control of the amount of endonuclease delivered to the target cells, and potentially toxic sustained expression must be avoided. Here, we show that the nuclease can be transferred into cells as a protein associated with a lentiviral vector particle. I-SceI, a prototypic meganuclease from yeast, was incorporated into the virions as a fusion with Vpr, an HIV accessory protein. Integration-deficient lentiviral vectors containing the donor sequences and the I-SceI fusion protein were tested in reporter cells in which targeting events were scored by the repair of a puromycin resistance gene. Molecular analysis of the targeted locus indicated a 2-fold higher frequency of the expected recombination event when the nuclease was delivered as a protein rather than encoded by a separate vector. In both systems, a proportion of clones displayed multiple integrated copies of the donor sequences, either as tandems at the targeted locus or at unrelated loci. These integration patterns were dependent upon the mode of meganuclease delivery, suggesting distinct recombination processes.

  2. Comparison of target labeling methods for use with Affymetrix GeneChips

    Directory of Open Access Journals (Sweden)

    Vernon Suzanne D

    2007-05-01

    Full Text Available Abstract Background Several different commercial one-cycle labeling kits are available for preparation of the target for use with the Affymetrix GeneChip platform. However, there have been no evaluations of these different kits to determine if comparable results were generated. We report on the cRNA target synthesis, labeling efficiency and hybridization results using the One-Cycle Target Labeling Assay™ (Affymetrix, the BioArray RNA Amplification and Labeling System™ (Enzo Life Sciences, and the Superscript RNA Amplification System (Invitrogen Life Technologies. Results The only notable difference between kits was in the yield of cRNA target synthesized during in vitro transcription, where the BioArray assay had to be repeated several times in order to have sufficient target. However, each kit resulted in comparable signal and detection calls when hybridized to the Affymetrix GeneChip. Conclusion These 3 one-cycle labeling kits produce comparable hybridization results. This provides users with several kit options and flexibility when using the Affymetrix system.

  3. A system for the measurement of gene targeting efficiency in human cell lines using an antibiotic resistance-GFP fusion gene.

    Science.gov (United States)

    Konishi, Yuko; Karnan, Sivasundaram; Takahashi, Miyuki; Ota, Akinobu; Damdindorj, Lkhagvasuren; Hosokawa, Yoshitaka; Konishi, Hiroyuki

    2012-09-01

    Gene targeting in a broad range of human somatic cell lines has been hampered by inefficient homologous recombination. To improve this technology and facilitate its widespread application, it is critical to first have a robust and efficient research system for measuring gene targeting efficiency. Here, using a fusion gene consisting of hygromycin B phosphotransferase and 3'-truncated enhanced GFP (HygR-5' EGFP) as a reporter gene, we created a molecular system monitoring the ratio of homologous to random integration (H/R ratio) of targeting vectors into the genome. Cell clones transduced with a reporter vector containing HygR-5' EGFP were efficiently established from two human somatic cell lines. Established HygR-5' EGFP reporter clones retained their capacity to monitor gene targeting efficiency for a longer duration than a conventional reporter system using an unfused 5' EGFP gene. With the HygR-5' EGFP reporter system, we reproduced previous findings of gene targeting frequency being up-regulated by the use of an adeno-associated viral (AAV) backbone, a promoter-trap system, or a longer homology arm in a targeting vector, suggesting that this system accurately monitors H/R ratio. Thus, our HygR-5' EGFP reporter system will assist in the development of an efficient AAV-based gene targeting technology.

  4. Differential Diagnosis of Two Chinese Families with Dyschromatoses by Targeted Gene Sequencing

    Institute of Scientific and Technical Information of China (English)

    Jia-Wei Liu; Asan; Jun Sun; Sergio Vano-Galvan; Feng-Xia Liu; Xiu-Xiu Wei; Dong-Lai Ma

    2016-01-01

    Background: The dyschromatoses are a group of disorders characterized by simultaneous hyperpigmented macules together with hypopigmented macules.Dyschromatosis universalis hereditaria (DUH) and dyschromatosis symmetrica hereditaria are two major types.While clinical and histological presentations are similar in these two diseases, genetic diagnosis is critical in the differential diagnosis of these entities.Methods: Three patients initially diagnosed with DUH were included.The gene test was carried out by targeted gene sequencing.All mutations detected on ADAR1 and ABCB6 genes were analyzed according to the frequency in control database, the mutation types, and the published evidence to determine the pathogenicity.Results: Family pedigree and clinical presentations were reported in 3 patients from two Chinese families.All patients have prominent cutaneous dyschromatoses involving the whole body without systemic complications.Different pathogenic genes in these patients with similar phenotype were identified: One novel mutation on ADAR1 (c.1325C>G) and one recurrent mutation in ABCB6 (c.1270T>C), which successfully distinguished two diseases with the similar phenotype.Conclusion: Targeted gene sequencing is an effective tool for genetic diagnosis in pigmentary skin diseases.

  5. Grainy head and its target genes in epithelial morphogenesis and wound healing.

    Science.gov (United States)

    Wang, Shenqiu; Samakovlis, Christos

    2012-01-01

    The Grainy head (Grh) family of transcription factors is characterized by a unique DNA-binding domain that binds to a conserved consensus sequence. Nematodes and flies have a single grh gene, whereas mice and humans have evolved three genes encoding Grainy head-like (Grhl) factors. We review the biological function of Grh in different animals and the mechanisms modulating its activity. grh and grhl genes play a remarkably conserved role in epithelial organ development and extracellular barrier repair after tissue damage. Recent studies in flies and vertebrates suggest that Grh factors may be primary determinants of cell adhesion and epithelial tissue formation. Grh proteins can dimerize and act as activators or repressors in different developmental contexts. In flies, tissue-specific, alternative splicing generates different Grh isoforms with different DNA-binding specificities and functions. Grh activity is also modulated by receptor tyrosine kinases: it is phosphorylated by extracellular signal regulated kinase, and this phosphorylation is selectively required for epidermal barrier repair. Two mechanisms have been proposed to explain the repressive function of Grh on target gene transcription. First, Grh can target the Polycomb silencing complex to specific response elements. Second, it can directly compete for DNA binding with transcriptional activators. Understanding the molecular mechanisms of gene regulation by Grh factors is likely to elucidate phylogenetically conserved mechanisms of epithelial cell morphogenesis and regeneration upon tissue damage.

  6. Microarray analyses of glucocorticoid and vitamin D3 target genes in differentiating cultured human podocytes.

    Directory of Open Access Journals (Sweden)

    Xiwen Cheng

    Full Text Available Glomerular podocytes are highly differentiated epithelial cells that are key components of the kidney filtration units. Podocyte damage or loss is the hallmark of nephritic diseases characterized by severe proteinuria. Recent studies implicate that hormones including glucocorticoids (ligand for glucocorticoid receptor and vitamin D3 (ligand for vitamin D receptor protect or promote repair of podocytes from injury. In order to elucidate the mechanisms underlying hormone-mediated podocyte-protecting activity from injury, we carried out microarray gene expression studies to identify the target genes and corresponding pathways in response to these hormones during podocyte differentiation. We used immortalized human cultured podocytes (HPCs as a model system and carried out in vitro differentiation assays followed by dexamethasone (Dex or vitamin D3 (VD3 treatment. Upon the induction of differentiation, multiple functional categories including cell cycle, organelle dynamics, mitochondrion, apoptosis and cytoskeleton organization were among the most significantly affected. Interestingly, while Dex and VD3 are capable of protecting podocytes from injury, they only share limited target genes and affected pathways. Compared to VD3 treatment, Dex had a broader and greater impact on gene expression profiles. In-depth analyses of Dex altered genes indicate that Dex crosstalks with a broad spectrum of signaling pathways, of which inflammatory responses, cell migration, angiogenesis, NF-κB and TGFβ pathways are predominantly altered. Together, our study provides new information and identifies several new avenues for future investigation of hormone signaling in podocytes.

  7. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin.

    Science.gov (United States)

    Ortells, M Carmen; Morancho, Beatriz; Drews-Elger, Katherine; Viollet, Benoit; Laderoute, Keith R; López-Rodríguez, Cristina; Aramburu, Jose

    2012-05-01

    Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response. Our results showed that mammalian cells exposed to moderate hypertonicity maintained active mTOR, which was required to sustain their cell size and proliferative capacity. Moreover, mTOR regulated the induction of diverse osmostress response genes, including targets of the tonicity-responsive transcription factor NFAT5 as well as NFAT5-independent genes. Genes sensitive to mTOR-included regulators of stress responses, growth and proliferation. Among them, we identified REDD1 and REDD2, which had been previously characterized as mTOR inhibitors in other stress contexts. We observed that mTOR facilitated transcription-permissive conditions for several osmoresponsive genes by enhancing histone H4 acetylation and the recruitment of RNA polymerase II. Altogether, these results reveal a previously unappreciated role of mTOR in regulating transcriptional mechanisms that control gene expression during cellular stress responses.

  8. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer.

    Science.gov (United States)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-10-03

    Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  9. RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways

    Science.gov (United States)

    Jiang, Lulu; Hindmarch, Charles C. T.; Rogers, Mark; Campbell, Colin; Waterfall, Christy; Coghill, Jane; Mathieson, Peter W.; Welsh, Gavin I.

    2016-01-01

    Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes. PMID:27774996

  10. CD133-targeted gene transfer into long-term repopulating hematopoietic stem cells.

    Science.gov (United States)

    Brendel, Christian; Goebel, Benjamin; Daniela, Abriss; Brugman, Martijn; Kneissl, Sabrina; Schwäble, Joachim; Kaufmann, Kerstin B; Müller-Kuller, Uta; Kunkel, Hana; Chen-Wichmann, Linping; Abel, Tobias; Serve, Hubert; Bystrykh, Leonid; Buchholz, Christian J; Grez, Manuel

    2015-01-01

    Gene therapy for hematological disorders relies on the genetic modification of CD34(+) cells, a heterogeneous cell population containing about 0.01% long-term repopulating cells. Here, we show that the lentiviral vector CD133-LV, which uses a surface marker on human primitive hematopoietic stem cells (HSCs) as entry receptor, transfers genes preferentially into cells with high engraftment capability. Transduction of unstimulated CD34(+) cells with CD133-LV resulted in gene marking of cells with competitive proliferative advantage in vitro and in immunodeficient mice. The CD133-LV-transduced population contained significantly more cells with repopulating capacity than cells transduced with vesicular stomatitis virus (VSV)-LV, a lentiviral vector pseudotyped with the vesicular stomatitis virus G protein. Upon transfer of a barcode library, CD133-LV-transduced cells sustained gene marking in vivo for a prolonged period of time with a 6.7-fold higher recovery of barcodes compared to transduced control cells. Moreover, CD133-LV-transduced cells were capable of repopulating secondary recipients. Lastly, we show that this targeting strategy can be used for transfer of a therapeutic gene into CD34(+) cells obtained from patients suffering of X-linked chronic granulomatous disease. In conclusion, direct gene transfer into CD133(+) cells allows for sustained long-term engraftment of gene corrected cells.

  11. Three-cohort targeted gene screening reveals a non-synonymous TRKA polymorphism associated with schizophrenia

    DEFF Research Database (Denmark)

    van Schijndel, Jessica E; van Loo, Karen M J; van Zweeden, Martine;

    2009-01-01

    Schizophrenia is a complex neurodevelopmental disorder that is thought to be induced by an interaction between predisposing genes and environmental stressors. To identify predisposing genetic factors, we performed a targeted (mostly neurodevelopmental) gene approach involving the screening of 396...... selected non-synonymous single-nucleotide polymorphisms (SNPs) in three independent Caucasian schizophrenia case-control cohorts (USA, Denmark and Norway). A meta-analysis revealed ten non-synonymous SNPs that were nominally associated with schizophrenia, nine of which have not been previously linked...... for schizophrenia....

  12. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius.

    Science.gov (United States)

    Weyda, István; Yang, Lei; Vang, Jesper; Ahring, Birgitte K; Lübeck, Mette; Lübeck, Peter S

    2017-04-01

    In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements.

  13. Analysis of bacterial xylose isomerase gene diversity using gene-targeted metagenomics.

    Science.gov (United States)

    Nurdiani, Dini; Ito, Michihiro; Maruyama, Toru; Terahara, Takeshi; Mori, Tetsushi; Ugawa, Shin; Takeyama, Haruko

    2015-08-01

    Bacterial xylose isomerases (XI) are promising resources for efficient biofuel production from xylose in lignocellulosic biomass. Here, we investigated xylose isomerase gene (xylA) diversity in three soil metagenomes differing in plant vegetation and geographical location, using an amplicon pyrosequencing approach and two newly-designed primer sets. A total of 158,555 reads from three metagenomic DNA replicates for each soil sample were classified into 1127 phylotypes, detected in triplicate and defined by 90% amino acid identity. The phylotype coverage was estimated to be within the range of 84.0-92.7%. The xylA gene phylotypes obtained were phylogenetically distributed across the two known xylA groups. They shared 49-100% identities with their closest-related XI sequences in GenBank. Phylotypes demonstrating analysis, suggesting soil-specific xylA genotypes and taxonomic compositions. The differences among xylA members and their compositions in the soil were strongly correlated with 16S rRNA variation between soil samples, also assessed by amplicon pyrosequencing. This is the first report of xylA diversity in environmental samples assessed by amplicon pyrosequencing. Our data provide information regarding xylA diversity in nature, and can be a basis for the screening of novel xylA genotypes for practical applications.

  14. Inhibition of human esophageal squamous cell carcinomas by targeted silencing of tumor enhancer genes: an overview.

    Science.gov (United States)

    Islamian, Jalil Pirayesh; Mohammadi, Mohsen; Baradaran, Behzad

    2014-06-01

    Esophageal cancer has been reported as the ninth most common malignancy and ranks as the sixth most frequent cause of death worldwide. Esophageal cancer treatment involves surgery, chemotherapy, radiation therapy, or combination therapy. Novel strategies are needed to boost the oncologic outcome. Recent advances in the molecular biology of esophageal cancer have documented the role of genetic alterations in tumorigenesis. Oncogenes serve a pivotal function in tumorigenesis. Targeted therapies are directed at the unique molecular signature of cancer cells for enhanced efficacy with low toxicity. RNA interference (RNAi) technology is a powerful tool for silencing endogenous or exogenous genes in mammalian cells. Related results have shown that targeting oncogenes with siRNAs, specifically the mRNA, effectively reduces tumor cell proliferation and induces apoptotic cell death. This article will briefly review studies on silencing tumor enhancer genes related to the induction of esophageal cancer.

  15. Targeted Correction and Restored Function of the CFTR Gene in Cystic Fibrosis Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Ana M. Crane

    2015-04-01

    Full Text Available Recently developed reprogramming and genome editing technologies make possible the derivation of corrected patient-specific pluripotent stem cell sources—potentially useful for the development of new therapeutic approaches. Starting with skin fibroblasts from patients diagnosed with cystic fibrosis, we derived and characterized induced pluripotent stem cell (iPSC lines. We then utilized zinc-finger nucleases (ZFNs, designed to target the endogenous CFTR gene, to mediate correction of the inherited genetic mutation in these patient-derived lines via homology-directed repair (HDR. We observed an exquisitely sensitive, homology-dependent preference for targeting one CFTR allele versus the other. The corrected cystic fibrosis iPSCs, when induced to differentiate in vitro, expressed the corrected CFTR gene; importantly, CFTR correction resulted in restored expression of the mature CFTR glycoprotein and restoration of CFTR chloride channel function in iPSC-derived epithelial cells.

  16. Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells.

    Science.gov (United States)

    Fair, K; Anderson, M; Bulanova, E; Mi, H; Tropschug, M; Diaz, M O

    2001-05-01

    The PHD fingers of the human MLL and Drosophila trx proteins have strong amino acid sequence conservation but their function is unknown. We have determined that these fingers mediate homodimerization and binding of MLL to Cyp33, a nuclear cyclophilin. These two proteins interact in vitro and in vivo in mammalian cells and colocalize at specific nuclear subdomains. Overexpression of the Cyp33 protein in leukemia cells results in altered expression of HOX genes that are targets for regulation by MLL. These alterations are suppressed by cyclosporine and are not observed in cell lines that express a mutant MLL protein without PHD fingers. These results suggest that binding of Cyp33 to MLL modulates its effects on the expression of target genes.

  17. Glycoengineering of Human Cell Lines Using Zinc Finger Nuclease Gene Targeting

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric Paul; Clausen, Henrik

    2013-01-01

    Lectin affinity chromatography is a powerful technique for isolation of glycoproteins carrying a specific glycan structure of interest. However, the enormous diversity of glycans present on the cell surface, as well as on individual proteins, makes it difficult to isolate an entire glycoproteome...... with one or even a series of lectins. Here we present a technique to generate cell lines with homogenous truncated O-glycans using zinc finger nuclease gene targeting. Because of their simplified O-glycoproteome, the cells have been named SimpleCells. Glycoproteins from SimpleCells can be isolated...... in a single purification step by lectin chromatography performed on a long lectin column. This protocol describes Zinc finger nuclease gene targeting of human cells to simplify the glycoproteome, as well as lectin chromatography and isolation of glycopeptides from total cell lysates of SimpleCells....

  18. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila.

    Science.gov (United States)

    Beumer, Kelly J; Trautman, Jonathan K; Christian, Michelle; Dahlem, Timothy J; Lake, Cathleen M; Hawley, R Scott; Grunwald, David J; Voytas, Daniel F; Carroll, Dana

    2013-10-03

    Zinc-finger nucleases have proven to be successful as reagents for targeted genome manipulation in Drosophila melanogaster and many other organisms. Their utility has been limited, however, by the significant failure rate of new designs, reflecting the complexity of DNA recognition by zinc fingers. Transcription activator-like effector (TALE) DNA-binding domains depend on a simple, one-module-to-one-base-pair recognition code, and they have been very productively incorporated into nucleases (TALENs) for genome engineering. In this report we describe the design of TALENs for a number of different genes in Drosophila, and we explore several parameters of TALEN design. The rate of success with TALENs was substantially greater than for zinc-finger nucleases , and the frequency of mutagenesis was comparable. Knockout mutations were isolated in several genes in which such alleles were not previously available. TALENs are an effective tool for targeted genome manipulation in Drosophila.

  19. Potential clinical insights into microRNAs and their target genes in esophageal carcinoma.

    Science.gov (United States)

    Li, Su Q; Wang, He M; Cao, Xiu F

    2011-12-01

    Esophageal carcinoma (EC) are characterized by dysregulation of microRNAs, which play an important roles as a posttranscriptional regulators in protein synthesis, and are involved in cellular processes, such as proliferation, apoptosis, and differentiation. Recently, altered miRNAs expression has been comprehensively studied in EC by high-throughput technology. Increased understanding of miRNAs target genes and their potential regulatory mechanisms have clarified the miRNAs activities and may provide exciting opportunities for cancer diagnosis and miRNA-based genetherapy. Here, we reviewed the most recently discovered miRNA target genes, with particular emphasis on the deciphering of their possible mechanisms and the potential roles in miRNAs-based tumour therapeutics.

  20. Comparative gene expression analysis of Dtg, a novel target gene of Dpp signaling pathway in the early Drosophila melanogaster embryo.

    Science.gov (United States)

    Hodar, Christian; Zuñiga, Alejandro; Pulgar, Rodrigo; Travisany, Dante; Chacon, Carlos; Pino, Michael; Maass, Alejandro; Cambiazo, Verónica

    2014-02-10

    In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-β superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica.

  1. Cell-type independent MYC target genes reveal a primordial signature involved in biomass accumulation.

    Directory of Open Access Journals (Sweden)

    Hongkai Ji

    Full Text Available The functions of key oncogenic transcription factors independent of context have not been fully delineated despite our richer understanding of the genetic alterations in human cancers. The MYC oncogene, which produces the Myc transcription factor, is frequently altered in human cancer and is a major regulatory hub for many cancers. In this regard, we sought to unravel the primordial signature of Myc function by using high-throughput genomic approaches to identify the cell-type independent core Myc target gene signature. Using a model of human B lymphoma cells bearing inducible MYC, we identified a stringent set of direct Myc target genes via chromatin immunoprecipitation (ChIP, global nuclear run-on assay, and changes in mRNA levels. We also identified direct Myc targets in human embryonic stem cells (ESCs. We further document that a Myc core signature (MCS set of target genes is shared in mouse and human ESCs as well as in four other human cancer cell types. Remarkably, the expression of the MCS correlates with MYC expression in a cell-type independent manner across 8,129 microarray samples, which include 312 cell and tissue types. Furthermore, the expression of the MCS is elevated in vivo in Eμ-Myc transgenic murine lymphoma cells as compared with premalignant or normal B lymphocytes. Expression of the MCS in human B cell lymphomas, acute leukemia, lung cancers or Ewing sarcomas has the highest correlation with MYC expression. Annotation of this gene signature reveals Myc's primordial function in RNA processing, ribosome biogenesis and biomass accumulation as its key roles in cancer and stem cells.

  2. Synthesis of a novel multivalent galactoside with high hepatocyte targeting for gene delivery

    Institute of Scientific and Technical Information of China (English)

    Qing Lin Jiang; Li Hai; Lei Chen; Jiao Lu; Zhi Rong Zhang; Yong Wu

    2008-01-01

    A novel bifunctional glycolipid which carried a cluster of thiogalactosides as the bepatocyte targeting ligand for gene delivery was prepared.Hexa-antennary alcohol 1 was used as the core scaffold to attach a cholesterol molecule by a poly(ethylene glycol)chain,while its remaining branches were linked with five acetylgalactosides,which would be deacetylated later to produce pentaantennary galaetoside.Liposome containing the galactoside showed high affinity and transfection activity in hepatoma cells HepG2.

  3. Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes

    OpenAIRE

    TOTTEN, Daniel C.; Vuong, Mai; LITVINOVA, Oksana V.; Jinwal, Umesh K.; Gulia-Nuss, Monika; Harrell, Robert A.; Beneš, Helen

    2012-01-01

    As the fat body is a critical tissue for mosquito development, metamorphosis, immune and reproductive system function, characterization of regulatory modules targeting gene expression to the female mosquito fat body at distinct life stages is much needed for multiple, varied strategies for controlling vector-borne diseases such as dengue and malaria. The hexameric storage protein, Hexamerin-1.2, of the mosquito, Aedes atropalpus, is female-specific and uniquely expressed in the fat body of fo...

  4. Tbx18 targets dermal condensates for labeling, isolation and gene ablation during embryonic hair follicle formation

    OpenAIRE

    Grisanti, Laura; Clavel, Carlos; Cai, Xiaoqiang; Rezza, Amelie; Tsai, Su-Yi; Sennett, Rachel; Mumau, Melanie; Cai, Chen-Leng; Rendl, Michael

    2012-01-01

    How cell fate decisions of stem and progenitor cells are regulated by their microenvironment or niche is a central question in stem cell and regenerative biology. While functional analysis of hair follicle epithelial stem cells by gene targeting is well-established, the molecular and genetic characterization of the dermal counterpart during embryonic morphogenesis has been lacking due to the absence of cell type-specific drivers. Here we report that T-box transcription factor Tbx18 specifical...

  5. Vitamin D Pathway Status and the Identification of Target Genes in the Mouse Mammary Gland

    Science.gov (United States)

    2014-11-01

    AD_________________ Award Number: W81XWH-11-1-0152 TITLE: Vitamin D Pathway Status and the Identification of Target Genes in the Mouse Mammary...Final Report 3. DATES COVERED 1 Jan 2011 – 31 Nov 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Vitamin D Pathway Status and the...SUPPLEMENTARY NOTES 14. ABSTRACT Mammary gland samples were isolated from wild type, vitamin D receptor knockout (VDRKO) and 1alphahydroxylase

  6. Nanocomplexes for gene therapy of respiratory diseases: Targeting and overcoming the mucus barrier.

    Science.gov (United States)

    Di Gioia, Sante; Trapani, Adriana; Castellani, Stefano; Carbone, Annalucia; Belgiovine, Giuliana; Craparo, Emanuela Fabiola; Puglisi, Giovanni; Cavallaro, Gennara; Trapani, Giuseppe; Conese, Massimo

    2015-10-01

    Gene therapy, i.e. the delivery and expression of therapeutic genes, holds great promise for congenital and acquired respiratory diseases. Non-viral vectors are less toxic and immunogenic than viral vectors, although they are characterized by lower efficiency. However, they have to overcome many barriers, including inflammatory and immune mediators and cells. The respiratory and airway epithelial cells, the main target of these vectors, are coated with a layer of mucus, which hampers the effective reaching of gene therapy vectors carrying either plasmid DNA or small interfering RNA. This barrier is thicker in many lung diseases, such as cystic fibrosis. This review summarizes the most important advancements in the field of non-viral vectors that have been achieved with the use of nanoparticulate (NP) systems, composed either of polymers or lipids, in the lung gene delivery. In particular, different strategies of targeting of respiratory and airway lung cells will be described. Then, we will focus on the two approaches that attempt to overcome the mucus barrier: coating of the nanoparticulate system with poly(ethylene glycol) and treatment with mucolytics. Our conclusions are: 1) Ligand and physical targeting can direct therapeutic gene expression in specific cell types in the respiratory tract; 2) Mucopenetrating NPs are endowed with promising features to be useful in treating respiratory diseases and should be now advanced in pre-clinical trials. Finally, we discuss the development of such polymer- and lipid-based NPs in the context of in vitro and in vivo disease models, such as lung cancer, as well as in clinical trials.

  7. Combining Hi-C data with phylogenetic correlation to predict the target genes of distal regulatory elements in human genome.

    Science.gov (United States)

    Lu, Yulan; Zhou, Yuanpeng; Tian, Weidong

    2013-12-01

    Defining the target genes of distal regulatory elements (DREs), such as enhancer, repressors and insulators, is a challenging task. The recently developed Hi-C technology is designed to capture chromosome conformation structure by high-throughput sequencing, and can be potentially used to determine the target genes of DREs. However, Hi-C data are noisy, making it difficult to directly use Hi-C data to identify DRE-target gene relationships. In this study, we show that DREs-gene pairs that are confirmed by Hi-C data are strongly phylogenetic correlated, and have thus developed a method that combines Hi-C read counts with phylogenetic correlation to predict long-range DRE-target gene relationships. Analysis of predicted DRE-target gene pairs shows that genes regulated by large number of DREs tend to have essential functions, and genes regulated by the same DREs tend to be functionally related and co-expressed. In addition, we show with a couple of examples that the predicted target genes of DREs can help explain the causal roles of disease-associated single-nucleotide polymorphisms located in the DREs. As such, these predictions will be of importance not only for our understanding of the function of DREs but also for elucidating the causal roles of disease-associated noncoding single-nucleotide polymorphisms.

  8. Development of TMTP-1 targeted designer biopolymers for gene delivery to prostate cancer.

    Science.gov (United States)

    McBride, John W; Massey, Ashley S; McCaffrey, J; McCrudden, Cian M; Coulter, Jonathan A; Dunne, Nicholas J; Robson, Tracy; McCarthy, Helen O

    2016-03-16

    Designer biopolymers (DBPs) represent state of the art genetically engineered biomacromolecules designed to condense plasmid DNA, and overcome intra- and extra- cellular barriers to gene delivery. Three DBPs were synthesized, each with the tumor molecular targeting peptide-1 (TMTP-1) motif to specifically target metastases. Each DBP was complexed with a pEGFP-N1 reporter plasmid to permit physiochemical and biological assay analysis. Results indicated that two of the biopolymers (RMHT and RM3GT) effectively condensed pEGFP-N1 into cationic nanoparticles prostate cancer cells. Conversely the anionic RMGT DBP nanoparticles could not transfect PC-3 cells. RMHT and RM3GT nanoparticles were stable in the presence of serum and protected the cargo from degradation. Additionally it was concluded that cell viability could recover post-transfection with these DBPs, which were less toxic than the commercially available transfection reagent Lipofectamine(®) 2000. With both DBPs, a higher transfection efficacy was observed in PC-3 cells than in the moderately metastatic, DU145, and normal, PNT2-C2, cell lines. Blocking of the TMTP-1 receptors inhibited gene transfer indicating internalization via this receptor. In conclusion RMHT and RM3GT are fully functional DBPs that address major obstacles to gene delivery and target metastatic cells expressing the TMTP-1 receptor.

  9. Analysis of the role of homology arms in gene-targeting vectors in human cells.

    Directory of Open Access Journals (Sweden)

    Ayako Ishii

    Full Text Available Random integration of targeting vectors into the genome is the primary obstacle in human somatic cell gene targeting. Non-homologous end-joining (NHEJ, a major pathway for repairing DNA double-strand breaks, is thought to be responsible for most random integration events; however, absence of DNA ligase IV (LIG4, the critical NHEJ ligase, does not significantly reduce random integration frequency of targeting vector in human cells, indicating robust integration events occurring via a LIG4-independent mechanism. To gain insights into the mechanism and robustness of LIG4-independent random integration, we employed various types of targeting vectors to examine their integration frequencies in LIG4-proficient and deficient human cell lines. We find that the integration frequency of targeting vector correlates well with the length of homology arms and with the amount of repetitive DNA sequences, especially SINEs, present in the arms. This correlation was prominent in LIG4-deficient cells, but was also seen in LIG4-proficient cells, thus providing evidence that LIG4-independent random integration occurs frequently even when NHEJ is functionally normal. Our results collectively suggest that random integration frequency of conventional targeting vectors is substantially influenced by homology arms, which typically harbor repetitive DNA sequences that serve to facilitate LIG4-independent random integration in human cells, regardless of the presence or absence of functional NHEJ.

  10. Ets-1 regulates its target genes mainly by DNA methylation in human ovarian cancer.

    Science.gov (United States)

    Wan, S M; Peng, P; Guan, T

    2013-11-01

    Ovarian cancer is the second most common gynaecological cancer worldwide, and its molecular mechanism has not been completely understood. Ets-1 is a member of the Ets transcription family and can play important roles in the regulation of extracellular matrix remodelling, invasion, angiogenesis and drug resistance in several malignancies, including ovarian cancer. In the current study, we downloaded two datasets from Gene Expression Omnibus database and sought to explore the regulation mechanism of Ets-1 in ovarian cancer by computational analysis of gene expression profiles. Microarray analysis identified a total of 548 genes that were regulated by Ets-1 in ovarian cancer. Functional annotation of these genes revealed that Ets-1 may be involved in several biological processes, both physiological and pathological, such as system development, response to stimulus, vascular endothelial growth factor (VEGF) production, morphogenesis, cell proliferation, cell adhesion and signal transduction. Further, DNA methylation analysis of the DEGs found that 26.5% (145) of them were differentially methylated genes in ovarian cancer. Our results provide insight into the mechanism of Ets-1 regulating the transcription of its target genes in the complex and multistep process of ovarian cancer progression.

  11. Targeting gene expression to the female larval fat body of transgenic Aedes aegypti mosquitoes.

    Science.gov (United States)

    Totten, D C; Vuong, M; Litvinova, O V; Jinwal, U K; Gulia-Nuss, M; Harrell, R A; Beneš, H

    2013-02-01

    As the fat body is a critical tissue for mosquito development, metamorphosis, immune and reproductive system function, the characterization of regulatory modules targeting gene expression to the female mosquito fat body at distinct life stages is much needed for multiple, varied strategies for controlling vector-borne diseases such as dengue and malaria. The hexameric storage protein, Hexamerin-1.2, of the mosquito Aedes atropalpus is female-specific and uniquely expressed in the fat body of fourth instar larvae and young adults. We have identified in the Hex-1.2 gene, a short regulatory module that directs female-, tissue-, and stage-specific lacZ reporter gene expression using a heterologous promoter in transgenic lines of the dengue vector Aedes aegypti. Male transgenic larvae and pupae of one line expressed no Escherichia coli β-galactosidase or transgene product; in two other lines reporter gene activity was highly female-biased. All transgenic lines expressed the reporter only in the fat body; however, lacZ mRNA levels were no different in males and females at any stage examined, suggesting that the gene regulatory module drives female-specific expression by post-transcriptional regulation in the heterologous mosquito. This regulatory element from the Hex-1.2 gene thus provides a new molecular tool for transgenic mosquito control as well as functional genetic analysis in aedine mosquitoes.

  12. Macrophages in gene therapy: cellular delivery vehicles and in vivo targets.

    Science.gov (United States)

    Burke, B; Sumner, S; Maitland, N; Lewis, C E

    2002-09-01

    The appearance and activation of macrophages are thought to be rapid events in the development of many pathological lesions, including malignant tumors, atherosclerotic plaques, and arthritic joints. This has prompted recent attempts to use macrophages as novel cellular vehicles for gene therapy, in which macrophages are genetically modified ex vivo and then reintroduced into the body with the hope that a proportion will then home to the diseased site. Here, we critically review the efficacy of various gene transfer methods (viral, bacterial, protozoan, and various chemical and physical methods) in transfecting macrophages in vitro, and the results obtained when transfected macrophages are used as gene delivery vehicles. Finally, we discuss the use of various viral and nonviral methods to transfer genes to macrophages in vivo. As will be seen, definitive evidence for the use of macrophages as gene transfer vehicles has yet to be provided and awaits detailed trafficking studies in vivo. Moreover, although methods for transfecting macrophages have improved considerably in efficiency in recent years, targeting of gene transfer specifically to macrophages in vivo remains a problem. However, possible solutions to this include placing transgenes under the control of macrophage-specific promoters to limit expression to macrophages or stably transfecting CD34(+) precursors of monocytes/macrophages and then differentiating these cells into monocytes/macrophages ex vivo. The latter approach could conceivably lead to the bone marrow precursor cells of patients with inherited genetic disorders being permanently fortified or even replaced with genetically modified cells.

  13. Global identification of genes targeted by DNMT3b for epigenetic silencing in lung cancer.

    Science.gov (United States)

    Teneng, I; Tellez, C S; Picchi, M A; Klinge, D M; Yingling, C M; Snider, A M; Liu, Y; Belinsky, S A

    2015-01-29

    The maintenance cytosine DNA methyltransferase DNMT1 and de novo methyltransferase DNMT3b cooperate to establish aberrant DNA methylation and chromatin complexes to repress gene transcription during cancer development. The expression of DNMT3b was constitutively increased 5-20-fold in hTERT/CDK4-immortalized human bronchial epithelial cells (HBECs) before treatment with low doses of tobacco carcinogens. Overexpression of DNMT3b increased and accelerated carcinogen-induced transformation. Genome-wide profiling of transformed HBECs identified 143 DNMT3b-target genes, many of which were transcriptionally regulated by the polycomb repressive complex 2 (PRC2) complex and silenced through aberrant methylation in non-small-cell lung cancer cell lines. Two genes studied in detail, MAL and OLIG2, were silenced during transformation, initially through enrichment for H3K27me3 and H3K9me2, commonly methylated in lung cancer, and exert tumor suppressor effects in vivo through modulating cancer-related pathways. Re-expression of MAL and OLIG2 to physiological levels dramatically reduced the growth of lung tumor xenografts. Our results identify a key role for DNMT3b in the earliest stages of initiation and provide a comprehensive catalog of genes targeted for silencing by this methyltransferase in non-small-cell lung cancer.

  14. Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells.

    Science.gov (United States)

    Huijbers, Ivo J; Bin Ali, Rahmen; Pritchard, Colin; Cozijnsen, Miranda; Kwon, Min-Chul; Proost, Natalie; Song, Ji-Ying; de Vries, Hilda; Badhai, Jitendra; Sutherland, Kate; Krimpenfort, Paul; Michalak, Ewa M; Jonkers, Jos; Berns, Anton

    2014-02-01

    Human cancers modeled in Genetically Engineered Mouse Models (GEMMs) can provide important mechanistic insights into the molecular basis of tumor development and enable testing of new intervention strategies. The inherent complexity of these models, with often multiple modified tumor suppressor genes and oncogenes, has hampered their use as preclinical models for validating cancer genes and drug targets. In our newly developed approach for the fast generation of tumor cohorts we have overcome this obstacle, as exemplified for three GEMMs; two lung cancer models and one mesothelioma model. Three elements are central for this system; (i) The efficient derivation of authentic Embryonic Stem Cells (ESCs) from established GEMMs, (ii) the routine introduction of transgenes of choice in these GEMM-ESCs by Flp recombinase-mediated integration and (iii) the direct use of the chimeric animals in tumor cohorts. By applying stringent quality controls, the GEMM-ESC approach proofs to be a reliable and effective method to speed up cancer gene assessment and target validation. As proof-of-principle, we demonstrate that MycL1 is a key driver gene in Small Cell Lung Cancer.

  15. SUMOylation modulates the transcriptional activity of androgen receptor in a target gene and pathway selective manner.

    Science.gov (United States)

    Sutinen, Päivi; Malinen, Marjo; Heikkinen, Sami; Palvimo, Jorma J

    2014-07-01

    Androgen receptor (AR) plays an important regulatory role in prostate cancer. AR's transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications, such as SUMOylation. To study the role of AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer cell lines stably expressing wild-type (wt) or doubly SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. Fittingly, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation can modulate the chromatin occupancy of AR on many loci in a fashion that parallels their differential androgen-regulated expression. De novo motif analyses reveal that FOXA1, C/EBP and AP-1 motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates AR's interaction with the chromatin and the receptor's target gene selection.

  16. Fruitless isoforms and target genes specify the sexually dimorphic nervous system underlying Drosophila reproductive behavior.

    Science.gov (United States)

    Nojima, Tetsuya; Neville, Megan C; Goodwin, Stephen F

    2014-01-01

    Courtship is pivotal to successful reproduction throughout the animal kingdom. Sexual differences in the nervous system are thought to underlie courtship behavior. Male courtship behavior in Drosophila is in large part regulated by the gene fruitless (fru). fru has been reported to encode at least three putative BTB-zinc-finger transcription factors predicted to have different DNA-binding specificities. Although a large number of previous studies have demonstrated that fru plays essential roles in male courtship behavior, we know little about the function of Fru isoforms at the molecular level. Our recent study revealed that male-specific Fru isoforms are expressed in highly overlapping subsets of neurons in the male brain and ventral nerve cord. Fru isoforms play both distinct and redundant roles in male courtship behavior. Importantly, we have identified for the first time, by means of the DamID technique, direct Fru transcriptional target genes. Fru target genes overwhelmingly represent genes previously reported to be involved in the nervous system development, such as CadN, lola and pdm2. Our study provides important insight into how the sexually dimorphic neural circuits underlying reproductive behavior are established.

  17. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes.

    Directory of Open Access Journals (Sweden)

    Zaneta Odrowaz

    Full Text Available Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP-seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled.

  18. Oligonucleotide primers for targeted amplification of single-copy nuclear genes in apocritan Hymenoptera.

    Directory of Open Access Journals (Sweden)

    Gerrit Hartig

    Full Text Available BACKGROUND: Published nucleotide sequence data from the mega-diverse insect order Hymenoptera (sawflies, bees, wasps, and ants are taxonomically scattered and still inadequate for reconstructing a well-supported phylogenetic tree for the order. The analysis of comprehensive multiple gene data sets obtained via targeted PCR could provide a cost-effective solution to this problem. However, oligonucleotide primers for PCR amplification of nuclear genes across a wide range of hymenopteran species are still scarce. FINDINGS: Here we present a suite of degenerate oligonucleotide primer pairs for PCR amplification of 154 single-copy nuclear protein-coding genes from Hymenoptera. These primers were inferred from genome sequence data from nine Hymenoptera (seven species of ants, the honeybee, and the parasitoid wasp Nasonia vitripennis. We empirically tested a randomly chosen subset of these primer pairs for amplifying target genes from six Hymenoptera, representing the families Chrysididae, Crabronidae, Gasteruptiidae, Leucospidae, Pompilidae, and Stephanidae. Based on our results, we estimate that these primers are suitable for studying a large number of nuclear genes across a wide range of apocritan Hymenoptera (i.e., all hymenopterans with a wasp-waist and of aculeate Hymenoptera in particular (i.e., apocritan wasps with stingers. CONCLUSIONS: The amplified nucleotide sequences are (a with high probability from single-copy genes, (b easily generated at low financial costs, especially when compared to phylogenomic approaches, (c easily sequenced by means of an additionally provided set of sequencing primers, and (d suitable to address a wide range of phylogenetic questions and to aid rapid species identification via barcoding, as many amplicons contain both exonic and fast-evolving intronic nucleotides.

  19. A novel receptor-targeted gene delivery system for cancer gene therapy

    Institute of Scientific and Technical Information of China (English)

    田培坤; 任圣俊; 任常春; 滕青山; 曲淑敏; 姚明; 顾健人

    1999-01-01

    Some growth factor receptors, such as insulin like growth factor Ⅰ and Ⅱ receptor (IGF Ⅰ R, IGF Ⅱ R) and epidermal growth factor receptor (EGF R), have been proved to be over-expressed in a variety of human cancers derived from different tissue origins. Based on this molecular alteration, a polypeptide conjugate gene delivery system was designed and synthesized. It contains three essential moieties: a ligand oligopeptide (LOP) for receptor recognition, a polycationic polypeptide (PCP) such as protamine (PA) or poly-L-lysine (PL) as a backbone for DNA binding and an endosome-releasing oligopeptide (EROP) such as influenza baenagglutinin oligopeptide (HA20) for endosomolysis. These components are covalently conjugated as LOP-PCP-HA20 or in the form of a mixture of LOP-PCP and HA20-PCP. A 14 amino acid E5 was designed and synthesized as LOP for IGF Ⅰ R and IGF Ⅱ R, and a 16 amino acid GE7 as LOP for EGF R. Both E5 and GE7 systems could form stable complex with the plasmid DNA as E5-PCP/DNA/PCP-HA20 a

  20. Use of designer nucleases for targeted gene and genome editing in plants.

    Science.gov (United States)

    Weeks, Donald P; Spalding, Martin H; Yang, Bing

    2016-02-01

    The ability to efficiently inactivate or replace genes in model organisms allowed a rapid expansion of our understanding of many of the genetic, biochemical, molecular and cellular mechanisms that support life. With the advent of new techniques for manipulating genes and genomes that are applicable not only to single-celled organisms, but also to more complex organisms such as animals and plants, the speed with which scientists and biotechnologists can expand fundamental knowledge and apply that knowledge to improvements in medicine, industry and agriculture is set to expand in an exponential fashion. At the heart of these advancements will be the use of gene editing tools such as zinc finger nucleases, modified meganucleases, hybrid DNA/RNA oligonucleotides, TAL effector nucleases and modified CRISPR/Cas9. Each of these tools has the ability to precisely target one specific DNA sequence within a genome and (except for DNA/RNA oligonucleotides) to create a double-stranded DNA break. DNA repair to such breaks sometimes leads to gene knockouts or gene replacement by homologous recombination if exogenously supplied homologous DNA fragments are made available. Genome rearrangements are also possible to engineer. Creation and use of such genome rearrangements, gene knockouts and gene replacements by the plant science community is gaining significant momentum. To document some of this progress and to explore the technology's longer term potential, this review highlights present and future uses of designer nucleases to greatly expedite research with model plant systems and to engineer genes and genomes in major and minor crop species for enhanced food production.

  1. Improvement of a gene targeting system for genetic manipulation in Penicillium digitatum

    Institute of Scientific and Technical Information of China (English)

    Qian XU; Cong-yi ZHU; Ming-shang WANG; Xue-peng SUN; Hong-ye LI

    2014-01-01

    本文题目:一种高效的柑橘绿霉菌基因敲除体系的构建Improvement of a gene targeting system for genetic manipulation in Penicillium digitatum研究目的:提高柑橘绿霉菌基因敲除效率。创新要点:低效的基因敲除与丝状真菌非同源末端链接(NHEJ)的DNA双链断裂修复途径有关。为提高柑橘绿霉病菌基因敲除效率,本研究利用农杆菌介导的转化体系,获得NHEJ途径中关键因子Ku80的缺失突变体(ΔPdKu80)。研究方法:与野生型菌株相比,以ΔPdKu80作为出发菌株,提高柑橘绿霉病菌PdbrlA和PdmpkA的基因敲除效率(见表1)。重要结论:ΔPdKu80的营养生长、产孢和致病性与野生型菌株基本一致。ΔPdKu80作为出发菌株,能显著提高柑橘绿霉菌的敲除效率。%Penicillium digitatum is the most important pathogen of postharvest citrus. Gene targeting can be done in P. digitatum using homologous recombination via Agrobacterium tumefaciens mediated transformation (ATMT), but the frequencies are often very low. In the present study, we replaced the Ku80 homolog (a gene of the non-homologous end-joining (NHEJ) pathway) with the hygromycin resistance cassette (hph) by ATMT. No significant change in vegetative growth, conidiation, or pathogenicity was observed in Ku80-deficient strain (∆PdKu80) of P. digitatum. However, using∆PdKu80 as a targeting strain, the gene-targeting frequencies for both genes PdbrlA and PdmpkA were significantly increased. These results suggest that Ku80 plays an important role in homologous inte-gration and the created∆PdKu80 strain would be a good candidate for rapid gene function analysis in P. digitatum.

  2. Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus.

    Science.gov (United States)

    Salame, Tomer M; Knop, Doriv; Tal, Dana; Levinson, Dana; Yarden, Oded; Hadar, Yitzhak

    2012-08-01

    Pleurotus ostreatus (the oyster mushroom) and other white rot filamentous basidiomycetes are key players in the global carbon cycle. P. ostreatus is also a commercially important edible fungus with medicinal properties and is important for biotechnological and environmental applications. Efficient gene targeting via homologous recombination (HR) is a fundamental tool for facilitating comprehensive gene function studies. Since the natural HR frequency in Pleurotus transformations is low (2.3%), transformed DNA is predominantly integrated ectopically. To overcome this limitation, a general gene targeting system was developed by producing a P. ostreatus PC9 homokaryon Δku80 strain, using carboxin resistance complemented by the development of a protocol for hygromycin B resistance protoplast-based DNA transformation and homokaryon isolation. The Δku80 strain exhibited exclusive (100%) HR in the integration of transforming DNA, providing a high efficiency of gene targeting. Furthermore, the Δku80 strains produced showed a phenotype similar to that of the wild-type PC9 strain, with similar growth fitness, ligninolytic functionality, and capability of mating with the incompatible strain PC15 to produce a dikaryon which retained its resistance to the corresponding selection and was capable of producing typical fruiting bodies. The applicability of this system is demonstrated by inactivation of the versatile peroxidase (VP) encoded by mnp4. This enzyme is part of the ligninolytic system of P. ostreatus, being one of the nine members of the manganese-peroxidase (MnP) gene family, and is the predominantly expressed VP in Mn(2+)-deficient media. mnp4 inactivation provided a direct proof that mnp4 encodes a key VP responsible for the Mn(2+)-dependent and Mn(2+)-independent peroxidase activity under Mn(2+)-deficient culture conditions.

  3. Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles.

    Directory of Open Access Journals (Sweden)

    Weijia Zhang

    Full Text Available microRNAs (miRNAs play crucial roles in post-transcriptional gene regulation of both plants and mammals, and dysfunctions of miRNAs are often associated with tumorigenesis and development through the effects on their target messenger RNAs (mRNAs. Identifying miRNA functions is critical for understanding cancer mechanisms and determining the efficacy of drugs. Computational methods analyzing high-throughput data offer great assistance in understanding the diverse and complex relationships between miRNAs and mRNAs. However, most of the existing methods do not fully utilise the available knowledge in biology to reduce the uncertainty in the modeling process. Therefore it is desirable to develop a method that can seamlessly integrate existing biological knowledge and high-throughput data into the process of discovering miRNA regulation mechanisms.In this article we present an integrative framework, CIDER (Causal miRNA target Discovery with Expression profile and Regulatory knowledge, to predict miRNA targets. CIDER is able to utilise a variety of gene regulation knowledge, including transcriptional and post-transcriptional knowledge, and to exploit gene expression data for the discovery of miRNA-mRNA regulatory relationships. The benefits of our framework is demonstrated by both simulation study and the analysis of the epithelial-to-mesenchymal transition (EMT and the breast cancer (BRCA datasets. Our results reveal that even a limited amount of either Transcription Factor (TF-miRNA or miRNA-mRNA regulatory knowledge improves the performance of miRNA target prediction, and the combination of the two types of knowledge enhances the improvement further. Another useful property of the framework is that its performance increases monotonically with the increase of regulatory knowledge.

  4. Targeted repression of AXIN2 and MYC gene expression using designer TALEs

    Energy Technology Data Exchange (ETDEWEB)

    Rennoll, Sherri A.; Scott, Samantha A.; Yochum, Gregory S., E-mail: gsy3@psu.edu

    2014-04-18

    Highlights: • We designed TALE–SID fusion proteins to target AXIN2 and MYC. • TALE–SIDs bound the chromosomal AXIN2 and MYC genes and repressed their expression. • TALE–SIDs repress β-catenin{sup S45F}-dependent AXIN2 and MYC transcription. - Abstract: Designer TALEs (dTALEs) are chimeric transcription factors that can be engineered to regulate gene expression in mammalian cells. Whether dTALEs can block gene transcription downstream of signal transduction cascades, however, has yet to be fully explored. Here we tested whether dTALEs can be used to target genes whose expression is controlled by Wnt/β-catenin signaling. TALE DNA binding domains were engineered to recognize sequences adjacent to Wnt responsive enhancer elements (WREs) that control expression of axis inhibition protein 2 (AXIN2) and c-MYC (MYC). These custom DNA binding domains were linked to the mSin3A interaction domain (SID) to generate TALE–SID chimeric repressors. The TALE–SIDs repressed luciferase reporter activity, bound their genomic target sites, and repressed AXIN2 and MYC expression in HEK293 cells. We generated a novel HEK293 cell line to determine whether the TALE–SIDs could function downstream of oncogenic Wnt/β-catenin signaling. Treating these cells with doxycycline and tamoxifen stimulates nuclear accumulation of a stabilized form of β-catenin found in a subset of colorectal cancers. The TALE–SIDs repressed AXIN2 and MYC expression in these cells, which suggests that dTALEs could offer an effective therapeutic strategy for the treatment of colorectal cancer.

  5. Gene targeting and transgene stacking using intra genomic homologous recombination in plants.

    Science.gov (United States)

    Kumar, Sandeep; Barone, Pierluigi; Smith, Michelle

    2016-01-01

    Modern agriculture has created a demand for plant biotechnology products that provide durable resistance to insect pests, tolerance of herbicide applications for weed control, and agronomic traits tailored for specific geographies. These transgenic trait products require a modular and sequential multigene stacking platform that is supported by precise genome engineering technology. Designed nucleases have emerged as potent tools for creating targeted DNA double strand breaks (DSBs). Exogenously supplied donor DNA can repair the targeted DSB by a process known as gene targeting (GT), resulting in a desired modification of the target genome. The potential of GT technology has not been fully realized for trait deployment in agriculture, mainly because of inefficient transformation and plant regeneration systems in a majority of crop plants and genotypes. This challenge of transgene stacking in plants could be overcome by Intra-Genomic Homologous Recombination (IGHR) that converts independently segregating unlinked donor and target transgenic loci into a genetically linked molecular stack. The method requires stable integration of the donor DNA into the plant genome followed by intra-genomic mobilization. IGHR complements conventional breeding with genetic transformation and designed nucleases to provide a flexible transgene stacking and trait deployment platform.

  6. Sequence signatures involved in targeting the male-specific lethal complex to X-chromosomal genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Philip Philge

    2012-03-01

    Full Text Available Abstract Background In Drosophila melanogaster, the dosage-compensation system that equalizes X-linked gene expression between males and females, thereby assuring that an appropriate balance is maintained between the expression of genes on the X chromosome(s and the autosomes, is at least partially mediated by the Male-Specific Lethal (MSL complex. This complex binds to genes with a preference for exons on the male X chromosome with a 3' bias, and it targets most expressed genes on the X chromosome. However, a number of genes are expressed but not targeted by the complex. High affinity sites seem to be responsible for initial recruitment of the complex to the X chromosome, but the targeting to and within individual genes is poorly understood. Results We have extensively examined X chromosome sequence variation within five types of gene features (promoters, 5' UTRs, coding sequences, introns, 3' UTRs and intergenic sequences, and assessed its potential involvement in dosage compensation. Presented results show that: the X chromosome has a distinct sequence composition within its gene features; some of the detected variation correlates with genes targeted by the MSL-complex; the insulator protein BEAF-32 preferentially binds upstream of MSL-bound genes; BEAF-32 and MOF co-localizes in promoters; and that bound genes have a distinct sequence composition that shows a 3' bias within coding sequence. Conclusions Although, many strongly bound genes are close to a high affinity site neither our promoter motif nor our coding sequence signatures show any correlation to HAS. Based on the results presented here, we believe that there are sequences in the promoters and coding sequences of targeted genes that have the potential to direct the secondary spreading of the MSL-complex to nearby genes.

  7. Targeting CTCF to Control Virus Gene Expression: A Common Theme amongst Diverse DNA Viruses.

    Science.gov (United States)

    Pentland, Ieisha; Parish, Joanna L

    2015-07-06

    All viruses target host cell factors for successful life cycle completion. Transcriptional control of DNA viruses by host cell factors is important in the temporal and spatial regulation of virus gene expression. Many of these factors are recruited to enhance virus gene expression and thereby increase virus production, but host cell factors can also restrict virus gene expression and productivity of infection. CCCTC binding factor (CTCF) is a host cell DNA binding protein important for the regulation of genomic chromatin boundaries, transcriptional control and enhancer element usage. CTCF also functions in RNA polymerase II regulation and in doing so can influence co-transcriptional splicing events. Several DNA viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), Epstein-Barr virus (EBV) and human papillomavirus (HPV) utilize CTCF to control virus gene expression and many studies have highlighted a role for CTCF in the persistence of these diverse oncogenic viruses. CTCF can both enhance and repress virus gene expression and in some cases CTCF increases the complexity of alternatively spliced transcripts. This review article will discuss the function of CTCF in the life cycle of DNA viruses in the context of known host cell CTCF functions.

  8. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases.

    Science.gov (United States)

    Roth, Andrew; Kyzar, Evan J; Cachat, Jonathan; Stewart, Adam Michael; Green, Jeremy; Gaikwad, Siddharth; O'Leary, Timothy P; Tabakoff, Boris; Brown, Richard E; Kalueff, Allan V

    2013-01-10

    Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming.

  9. The effects of RNA interference targeting Bactrocera dorsalis ds-Bdrpl19 on the gene expression of rpl19 in non-target insects.

    Science.gov (United States)

    Chen, Aie; Zheng, Weiwei; Zheng, Wenping; Zhang, Hongyu

    2015-04-01

    Double-stranded RNA (dsRNA) designed to target pest genes emerges as a promising strategy for improving pest control. Therefore, it is necessary to assess the effects of dsRNA on non-target insects, such as native enemies and beneficial insects, to determine the environmental safety of such treatments. In this paper, we investigated the effects of dsRNA targeting rpl19 from Bactrocera dorsalis on non-target insects in citrus ecological systems by feeding the dsRNA to Bactrocera minax, Apis mellifera and Diachasmimorpha longicaudata. The results showed that when B. dorsalis were fed rpl19 CDS dsRNA or 3'UTR dsRNA, the expression of rpl19 was dramatically decreased. Feeding the Bdrpl19 CDS dsRNA to adult B. minax and D. longicaudata caused their respective rpl19 genes to be knocked down over 50-70 and 40%, respectively, but it had no effect on the expression of the rpl19 gene in A. mellifera. The Bdrpl19 3'UTR dsRNA did not have any silencing effects on the expression levels of rpl19 in non-target insects. This study provides evidence that dsRNA can impact non-target organisms, but the 3'UTR dsRNA may not have effects in non-target organisms.

  10. Short communication: genetic variability in the predicted microRNA target sites of caprine casein genes.

    Science.gov (United States)

    Zidi, A; Amills, M; Tomás, A; Vidal, O; Ramírez, O; Carrizosa, J; Urrutia, B; Serradilla, J M; Clop, A

    2010-04-01

    The main goal of the current work was to identify single nucleotide polymorphisms (SNP) that might create or disrupt microRNA (miRNA) target sites in the caprine casein genes. The 3' untranslated regions of the goat alpha(S1)-, alpha(S2)-, beta-, and kappa-casein genes (CSN1S1, CSN1S2, CSN2, and CSN3, respectively) were resequenced in 25 individuals of the Murciano-Granadina, Cashmere, Canarian, Saanen, and Sahelian breeds. Five SNP were identified through this strategy: c.175C>T at CSN1S1; c.109T>C, c.139G>C, and c.160T>C at CSN1S2; and c.216C>T at CSN2. Analysis with the Patrocles Finder tool predicted that all of these SNP are located within regions complementary to the seed of diverse miRNA sequences. These in silico results suggest that polymorphism at miRNA target sites might have some effect on casein expression. We explored this issue by genotyping the c.175C>T SNP (CSN1S1) in 85 Murciano-Granadina goats with records for milk CSN1S1 concentrations. This substitution destroys a putative target site for miR-101, a miRNA known to be expressed in the bovine mammary gland. Although TT goats had higher levels (6.25 g/L) of CSN1S1 than their CT (6.05 g/L) and CC (6.04 g/L) counterparts, these differences were not significant. Experimental confirmation of the miRNA target sites predicted in the current work and performance of additional association analyses in other goat populations will be an essential step to find out if polymorphic miRNA target sites constitute an important source of variation in casein expression.

  11. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.

    Science.gov (United States)

    Li, Jin; Stoddard, Thomas J; Demorest, Zachary L; Lavoie, Pierre-Olivier; Luo, Song; Clasen, Benjamin M; Cedrone, Frederic; Ray, Erin E; Coffman, Andrew P; Daulhac, Aurelie; Yabandith, Ann; Retterath, Adam J; Mathis, Luc; Voytas, Daniel F; D'Aoust, Marc-André; Zhang, Feng

    2016-02-01

    Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and β(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two β(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked β(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and β(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products.

  12. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection.

    Directory of Open Access Journals (Sweden)

    Harpinder S Randhawa

    Full Text Available A marker-assisted background selection (MABS-based gene introgression approach in wheat (Triticum aestivum L. was optimized, where 97% or more of a recurrent parent genome (RPG can be recovered in just two backcross (BC generations. A four-step MABS method was developed based on 'Plabsim' computer simulations and wheat genome structure information. During empirical optimization of this method, double recombinants around the target gene were selected in a step-wise fashion during the two BC cycles followed by selection for recurrent parent genotype on non-carrier chromosomes. The average spacing between carrier chromosome markers was <4 cM. For non-carrier chromosome markers that flanked each of the 48 wheat gene-rich regions, this distance was approximately 12 cM. Employed to introgress seedling stripe rust (Puccinia striiformis f. sp. tritici resistance gene Yr15 into the spring wheat cultivar 'Zak', marker analysis of 2,187 backcross-derived progeny resulted in the recovery of a BC(2F(2ratio3 plant with 97% of the recurrent parent genome. In contrast, only 82% of the recurrent parent genome was recovered in phenotypically selected BC(4F(7 plants developed without MABS. Field evaluation results from 17 locations indicated that the MABS-derived line was either equal or superior to the recurrent parent for the tested agronomic characteristics. Based on these results, MABS is recommended as a strategy for rapidly introgressing a targeted gene into a wheat genotype in just two backcross generations while recovering 97% or more of the recurrent parent genotype.

  13. Targeted gene-silencing reveals the functional significance of myocardin signaling in the failing heart.

    Directory of Open Access Journals (Sweden)

    Mario Torrado

    Full Text Available BACKGROUND: Myocardin (MYOCD, a potent transcriptional coactivator of smooth muscle (SM and cardiac genes, is upregulated in failing myocardium in animal models and human end-stage heart failure (HF. However, the molecular and functional consequences of myocd upregulation in HF are still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The goal of the present study was to investigate if targeted inhibition of upregulated expression of myocd could influence failing heart gene expression and function. To this end, we used the doxorubicin (Dox-induced diastolic HF (DHF model in neonatal piglets, in which, as we show, not only myocd but also myocd-dependent SM-marker genes are highly activated in failing left ventricular (LV myocardium. In this model, intra-myocardial delivery of short-hairpin RNAs, designed to target myocd variants expressed in porcine heart, leads on day 2 post-delivery to: (1 a decrease in the activated expression of myocd and myocd-dependent SM-marker genes in failing myocardium to levels seen in healthy control animals, (2 amelioration of impaired diastolic dysfunction, and (3 higher survival rates of DHF piglets. The posterior restoration of elevated myocd expression (on day 7 post-delivery led to overexpression of myocd-dependent SM-marker genes in failing LV-myocardium that was associated with a return to altered diastolic function. CONCLUSIONS/SIGNIFICANCE: These data provide the first evidence that a moderate inhibition (e.g., normalization of the activated MYOCD signaling in the diseased heart may be promising from a therapeutic point of view.

  14. Analysis of essential Arabidopsis nuclear genes encoding plastid-targeted proteins.

    Directory of Open Access Journals (Sweden)

    Linda J Savage

    Full Text Available The Chloroplast 2010 Project (http://www.plastid.msu.edu/ identified and phenotypically characterized homozygous mutants in over three thousand genes, the majority of which encode plastid-targeted proteins. Despite extensive screening by the community, no homozygous mutant alleles were available for several hundred genes, suggesting that these might be enriched for genes of essential function. Attempts were made to generate homozygotes in ~1200 of these lines and 521 of the homozygous viable lines obtained were deposited in the Arabidopsis Biological Resource Center (http://abrc.osu.edu/. Lines that did not yield a homozygote in soil were tested as potentially homozygous lethal due to defects either in seed or seedling development. Mutants were characterized at four stages of development: developing seed, mature seed, at germination, and developing seedlings. To distinguish seed development or seed pigment-defective mutants from seedling development mutants, development of seeds was assayed in siliques from heterozygous plants. Segregating seeds from heterozygous parents were sown on supplemented media in an attempt to rescue homozygous seedlings that could not germinate or survive in soil. Growth of segregating seeds in air and air enriched to 0.3% carbon dioxide was compared to discover mutants potentially impaired in photorespiration or otherwise responsive to CO2 supplementation. Chlorophyll fluorescence measurements identified CO2-responsive mutants with altered photosynthetic parameters. Examples of genes with a viable mutant allele and one or more putative homozygous-lethal alleles were documented. RT-PCR of homozygotes for potentially weak alleles revealed that essential genes may remain undiscovered because of the lack of a true null mutant allele. This work revealed 33 genes with two or more lethal alleles and 73 genes whose essentiality was not confirmed with an independent lethal mutation, although in some cases second leaky alleles

  15. Late multiple organ surge in interferon-regulated target genes characterizes staphylococcal enterotoxin B lethality.

    Directory of Open Access Journals (Sweden)

    Gabriela A Ferreyra

    Full Text Available BACKGROUND: Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB challenge was investigated in six tissues. RESULTS: The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC, spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. CONCLUSION: Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes.

  16. A rapid and efficient method to express target genes in mammalian cells by baculovirus

    Institute of Scientific and Technical Information of China (English)

    Tong Cheng; Chen-Yu Xu; Ying-Bin Wang; Min Chen; Ting Wu; Jun Zhang; Ning-Shao Xia

    2004-01-01

    AIM: To investigate the modification of baculovirus vector and the feasibility of delivering exogenous genes into mammalian cells with the culture supernatant of Spodoptera frugiperta (Sf9) cells infected by recombinant baculoviruses.METHODS: Two recombinant baculoviruses (BacV-CMVEGFPA, BacV-CMV-EGFPB) containing CMV-EGFP expression cassette were constructed. HepG2 cells were directly incubated with the culture supernatant of Sf9 cells infected by recombinant baculoviruses, and reporter gene transfer and expression efficiencies were analyzed by flow cytometry (FCM). The optimal transduction conditions were investigated by FCM assay in HepG2 cells. Gene-transfer and expression efficiencies in HepG2 or CV1 cells by baculovirus vectors were compared with lipofectAMINE, recombinant retrovirus and vaccinia virus expression systems. Twenty different mammalian cell lines were used to investigate the feasibility of delivering exogenous genes into different mammalian cells with the culture supernatant of infected Sf9 cells.RESULTS: CMV promoter could directly express reporter genes in Sf9 cells with a relatively low efficiency. Target cells incubated with the 1:1 diluted culture supernatant (moi=50) for 12 h at 37 ℃ could achieve the highest transduction and expression efficiencies with least impairment to cell viability. Under similar conditions the baculovirus vector could achieve the highest gene-transfer and expression efficiency than lipofectAMINE, recombinant retrovirus and vaccinia virus expression systems. Most mammalian cell lines could be transduced with recombinant baculovirus. In primate adherent culture cells the recombinant baculovirus could arrive the highest infection and expression efficiencies, but it was not very satisfactory in the cell lines from mice and suspended culture cells.CONCLUSION: Mammalian cells incubated with the culture supernatant of infected Sf9 cells could serve as a very convenient way for rapid and efficient expression of foreign

  17. Stem cells’ guided gene therapy of cancer: New frontier in personalized and targeted therapy

    Directory of Open Access Journals (Sweden)

    Mavroudi M

    2014-01-01

    Full Text Available Diagnosis and therapy of cancer remain to be the greatest challenges for all physicians working in clinical oncology and molecular medicine. The grim statistics speak for themselves with reports of 1,638,910 men and women diagnosed with cancer and nearly 577,190 patients passed away due to cancer in the USA in 2012. For practicing clinicians, who treat patients suffering from advanced cancers with contemporary systemic therapies, the main challenge is to attain therapeutic efficacy, while minimizing side effects. Unfortunately, all contemporary systemic therapies cause side effects. In treated patients, these side effects may range from nausea to damaged tissues. In cancer survivors, the iatrogenic outcomes of systemic therapies may include genomic mutations and their consequences. Therefore, there is an urgent need for personalized and targeted therapies. Recently, we reviewed the current status of suicide gene therapy for cancer. Herein, we discuss the novel strategy: genetically engineered stem guided gene therapy. Stem cells have the unique potential for self-renewal and differentiation. This potential is the primary reason for introducing them into medicine to regenerate injured or degenerated organs, as well as to rejuvenate aging tissues. Recent advances in genetic engineering and stem cell research have created the foundations for genetic engineering of stem cells as the vectors for delivery of therapeutic transgenes. Specifically in oncology, the stem cells are genetically engineered to deliver the cell suicide inducing genes selectively to the cancer cells. Expression of the transgenes kills the cancer cells, while leaving healthy cells unaffected. Herein, we present various strategies to bioengineer suicide inducing genes and stem cell vectors. Moreover, we review results of the main preclinical studies and clinical trials. However, the main risk for therapeutic use of stem cells is their cancerous transformation. Therefore, we

  18. Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie.

    Science.gov (United States)

    Parker, Joseph; Struhl, Gary

    2015-10-01

    Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes--a phenomenon we term "nuclear seclusion." Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability.

  19. Bioreducible BPEI-SS-PEG-cNGR polymer as a tumor targeted nonviral gene carrier.

    Science.gov (United States)

    Son, Sejin; Singha, Kaushik; Kim, Won Jong

    2010-08-01

    The work demonstrated development of multifunctional gene carrier which has incorporated reducible moiety, tumor targeting ligands as well as PEG to achieve efficient release of pDNA, enhanced tumor-specificity and long circulation, respectively. In our successful one-pot synthesis of multifunctional polymer, low molecular weight branched polyethylenimine (BPEI) was thiolated with propylene sulfide, and mixed with alpha-Maleimide-omega-N-hydroxysuccinimide ester polyethylene glycol (MAL-PEG-NHS, MW: 5000), and cyclic NGR peptide. The structural elucidation of the cNGR conjugated reducible BPEI containing disulfide bond (BPEI-SS-PEG-cNGR), was done by NMR and GPC study. Complex formation as well as reducible property of the polymer was confirmed by gel retardation assay. In order to achieve efficient tumor targeting, we have used cNGR peptide which is known to bind to CD13 overexpressed in neovasculature endothelial cells. Tumor target-specificity of polymer was established by carrying out competitive inhibition assay with free cNGR peptide. Cellular uptake of polymers was evaluated by confocal laser scanning microscope (CLSM). Finally, addition of free cNGR and buthionine sulfoximine (BSO) reduced transfection efficiency synergistically, which implied that multifunctional polymer-mediated gene transfection took place tumor-specifically and via GSH-dependent pathway.

  20. Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie.

    Directory of Open Access Journals (Sweden)

    Joseph Parker

    2015-10-01

    Full Text Available Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs] and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway. How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes--a phenomenon we term "nuclear seclusion." Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability.

  1. Proliferating cell nuclear antigen (Pcna) as a direct downstream target gene of Hoxc8

    Energy Technology Data Exchange (ETDEWEB)

    Min, Hyehyun; Lee, Ji-Yeon; Bok, Jinwoong; Chung, Hyun Joo [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Kim, Myoung Hee, E-mail: mhkim1@yuhs.ac [Department of Anatomy, Embryology Laboratory, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of)

    2010-02-19

    Hoxc8 is a member of Hox family transcription factors that play crucial roles in spatiotemporal body patterning during embryogenesis. Hox proteins contain a conserved 61 amino acid homeodomain, which is responsible for recognition and binding of the proteins onto Hox-specific DNA binding motifs and regulates expression of their target genes. Previously, using proteome analysis, we identified Proliferating cell nuclear antigen (Pcna) as one of the putative target genes of Hoxc8. Here, we asked whether Hoxc8 regulates Pcna expression by directly binding to the regulatory sequence of Pcna. In mouse embryos at embryonic day 11.5, the expression pattern of Pcna was similar to that of Hoxc8 along the anteroposterior body axis. Moreover, Pcna transcript levels as well as cell proliferation rate were increased by overexpression of Hoxc8 in C3H10T1/2 mouse embryonic fibroblast cells. Characterization of 2.3 kb genomic sequence upstream of Pcna coding region revealed that the upstream sequence contains several Hox core binding sequences and one Hox-Pbx binding sequence. Direct binding of Hoxc8 proteins to the Pcna regulatory sequence was verified by chromatin immunoprecipitation assay. Taken together, our data suggest that Pcna is a direct downstream target of Hoxc8.

  2. Bioinformatic identification of microRNAs and their target genes from Solanum tuberosum expressed sequence tags

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    MicroRNAs (miRNAs) are a class of non-coding RNAs that regulate gene post-transcriptional expression in plants and animals. Low levels of some miRNAs and time- and tissue-specific expression patterns lead to the difficulty for experimental identification of miRNAs. Here we present a bioinformatic approach for expressed sequence tags (ESTs) prediction of novel miRNAs as well as their targets in Solanum tuberosum. We blasted the databases of S. Tuberosum ESTs to search for potential miRNAs, using previously known miRNA sequences from Arabidopsis, rice and other plant species. By analyzing parameters of plant precursors, including secondary structure, stem length and conservation of miRNAs, and following a variety of filtering criteria, a total of 22 potential miRNAs were detected. Using the newly identified miRNA sequences, we were able to further blast the S. Tuberosum mRNA database and detected 75 potential targets of miRNAs in S. Tuberosum. According to the mRNA annotations provided by the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/), most of the miRNA target genes were predicted to encode transcription factors that regulate cell growth and development, signaling, and metabolism.

  3. Gene Transfer from Targeted Liposomes to Specific Lymphoid Cells by Electroporation

    Science.gov (United States)

    Machy, Patrick; Lewis, Florence; McMillan, Lynette; Jonak, Zdenka L.

    1988-11-01

    Large unilamellar liposomes, coated with protein A and encapsulating the gene that confers resistance to mycophenolic acid, were used as a model system to demonstrate gene transfer into specific lymphoid cells. Protein A, which selectively recognizes mouse IgG2a antibodies, was coupled to liposomes to target them specifically to defined cell types coated with IgG2a antibody. Protein A-coated liposomes bound human B lymphoblastoid cells preincubated with a mouse IgG2a anti-HLA monoclonal antibody but failed to adhere to cells challenged with an irrelevant (anti-H-2) antibody of the same isotype or to cells incubated in the absence of antibody. Transfection of target cells bound to protein A-coated liposomes was achieved by electroporation. This step was essential since only electroporated cells survived in a selective medium containing mycophenolic acid. Transfection efficiency with electroporation and targeted liposomes was as efficient as conventional procedures that used unencapsulated plasmids free in solution but, in the latter case, cell selectivity is not possible. This technique provides a methodology for introducing defined biological macromolecules into specific cell types.

  4. Tbx18 targets dermal condensates for labeling, isolation, and gene ablation during embryonic hair follicle formation.

    Science.gov (United States)

    Grisanti, Laura; Clavel, Carlos; Cai, Xiaoqiang; Rezza, Amelie; Tsai, Su-Yi; Sennett, Rachel; Mumau, Melanie; Cai, Chen-Leng; Rendl, Michael

    2013-02-01

    How cell fate decisions of stem and progenitor cells are regulated by their microenvironment or niche is a central question in stem cell and regenerative biology. Although functional analysis of hair follicle epithelial stem cells by gene targeting is well established, the molecular and genetic characterization of the dermal counterpart during embryonic morphogenesis has been lacking because of the absence of cell type-specific drivers. Here, we report that T-box transcription factor Tbx18 specifically marks dermal papilla (DP) precursor cells during embryonic hair follicle morphogenesis. With Tbx18(LacZ), Tbx18(H2BGFP), and Tbx18(Cre) knock-in mouse models, we demonstrate LacZ and H2BGFP (nuclear green fluorescent protein) expression and Cre activity in dermal condensates of nascent first-wave hair follicles at E14.5. As Tbx18 expression becomes more widespread throughout the dermis at later developmental stages, we use tamoxifen-inducible Cre-expressing mice, Tbx18(MerCreMer), to exclusively target DP precursor cells and their progeny. Finally, we ablate Tbx18 in full knockout mice, but find no perturbations in hair follicle formation, suggesting that Tbx18 is dispensable for normal DP function. In summary, our study establishes Tbx18 as a genetic driver to target for the first time embryonic DP precursors for labeling, isolation, and gene ablation that will greatly enhance investigations into their molecular functions during hair follicle morphogenesis.

  5. Oligopeptide complex for targeted non-viral gene delivery to adipocytes

    Science.gov (United States)

    Won, Young-Wook; Adhikary, Partho Protim; Lim, Kwang Suk; Kim, Hyung Jin; Kim, Jang Kyoung; Kim, Yong-Hee

    2014-12-01

    Commercial anti-obesity drugs acting in the gastrointestinal tract or the central nervous system have been shown to have limited efficacy and severe side effects. Anti-obesity drug development is thus focusing on targeting adipocytes that store excess fat. Here, we show that an adipocyte-targeting fusion-oligopeptide gene carrier consisting of an adipocyte-targeting sequence and 9-arginine (ATS-9R) selectively transfects mature adipocytes by binding to prohibitin. Injection of ATS-9R into obese mice confirmed specific binding of ATS-9R to fat vasculature, internalization and gene expression in adipocytes. We also constructed a short-hairpin RNA (shRNA) for silencing fatty-acid-binding protein 4 (shFABP4), a key lipid chaperone in fatty-acid uptake and lipid storage in adipocytes. Treatment of obese mice with ATS-9R/shFABP4 led to metabolic recovery and body-weight reduction (>20%). The ATS-9R/shFABP4 oligopeptide complex could prove to be a safe therapeutic approach to regress and treat obesity as well as obesity-induced metabolic syndromes.

  6. Modeling Human Severe Combined Immunodeficiency and Correction by CRISPR/Cas9-Enhanced Gene Targeting

    Directory of Open Access Journals (Sweden)

    Chia-Wei Chang

    2015-09-01

    Full Text Available Mutations of the Janus family kinase JAK3 gene cause severe combined immunodeficiency (SCID. JAK3 deficiency in humans is characterized by the absence of circulating T cells and natural killer (NK cells with normal numbers of poorly functioning B cells (T–B+NK–. Using SCID patient-specific induced pluripotent stem cells (iPSCs and a T cell in vitro differentiation system, we demonstrate a complete block in early T cell development of JAK3-deficient cells. Correction of the JAK3 mutation by CRISPR/Cas9-enhanced gene targeting restores normal T cell development, including the production of mature T cell populations with a broad T cell receptor (TCR repertoire. Whole-genome sequencing of corrected cells demonstrates no CRISPR/Cas9 off-target modifications. These studies describe an approach for the study of human lymphopoiesis and provide a foundation for gene correction therapy in humans with immunodeficiencies.

  7. Hairpin RNA Targeting Multiple Viral Genes Confers Strong Resistance to Rice Black-Streaked Dwarf Virus

    Directory of Open Access Journals (Sweden)

    Fangquan Wang

    2016-05-01

    Full Text Available Rice black-streaked dwarf virus (RBSDV belongs to the genus Fijivirus in the family of Reoviridae and causes severe yield loss in rice-producing areas in Asia. RNA silencing, as a natural defence mechanism against plant viruses, has been successfully exploited for engineering virus resistance in plants, including rice. In this study, we generated transgenic rice lines harbouring a hairpin RNA (hpRNA construct targeting four RBSDV genes, S1, S2, S6 and S10, encoding the RNA-dependent RNA polymerase, the putative core protein, the RNA silencing suppressor and the outer capsid protein, respectively. Both field nursery and artificial inoculation assays of three generations of the transgenic lines showed that they had strong resistance to RBSDV infection. The RBSDV resistance in the segregating transgenic populations correlated perfectly with the presence of the hpRNA transgene. Furthermore, the hpRNA transgene was expressed in the highly resistant transgenic lines, giving rise to abundant levels of 21–24 nt small interfering RNA (siRNA. By small RNA deep sequencing, the RBSDV-resistant transgenic lines detected siRNAs from all four viral gene sequences in the hpRNA transgene, indicating that the whole chimeric fusion sequence can be efficiently processed by Dicer into siRNAs. Taken together, our results suggest that long hpRNA targeting multiple viral genes can be used to generate stable and durable virus resistance in rice, as well as other plant species.

  8. Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs.

    Directory of Open Access Journals (Sweden)

    Simon Leuchs

    Full Text Available Mutation of the tumor suppressor p53 plays a major role in human carcinogenesis. Here we describe gene-targeted porcine mesenchymal stem cells (MSCs and live pigs carrying a latent TP53(R167H mutant allele, orthologous to oncogenic human mutant TP53(R175H and mouse Trp53(R172H, that can be activated by Cre recombination. MSCs carrying the latent TP53(R167H mutant allele were analyzed in vitro. Homozygous cells were p53 deficient, and on continued culture exhibited more rapid proliferation, anchorage independent growth, and resistance to the apoptosis-inducing chemotherapeutic drug doxorubicin, all characteristic of cellular transformation. Cre mediated recombination activated the latent TP53(R167H allele as predicted, and in homozygous cells expressed mutant p53-R167H protein at a level ten-fold greater than wild-type MSCs, consistent with the elevated levels found in human cancer cells. Gene targeted MSCs were used for nuclear transfer and fifteen viable piglets were produced carrying the latent TP53(R167H mutant allele in heterozygous form. These animals will allow study of p53 deficiency and expression of mutant p53-R167H to model human germline, or spontaneous somatic p53 mutation. This work represents the first inactivation and mutation of the gatekeeper tumor suppressor gene TP53 in a non-rodent mammal.

  9. Stimulation of autophagy by the p53 target gene Sestrin2.

    Science.gov (United States)

    Maiuri, Maria Chiara; Malik, Shoaib Ahmad; Morselli, Eugenia; Kepp, Oliver; Criollo, Alfredo; Mouchel, Pierre-Luc; Carnuccio, Rosa; Kroemer, Guido

    2009-05-15

    The oncosuppressor protein p53 regulates autophagy in a dual fashion. The pool of cytoplasmic p53 protein represses autophagy in a transcription-independent fashion, while the pool of nuclear p53 stimulates autophagy through the transactivation of specific genes. Here we report the discovery that Sestrin2, a novel p53 target gene, is involved in the induction of autophagy. Depletion of Sestrin2 by RNA interference reduced the level of autophagy in a panel of p53-sufficient human cancer cell lines responding to distinct autophagy inducers. In quantitative terms, Sestrin2 depletion was as efficient in preventing autophagy induction as was the depletion of Dram, another p53 target gene. Knockout of either Sestrin2 or Dram reduced autophagy elicited by nutrient depletion, rapamycin, lithium or thapsigargin. Moreover, autophagy induction by nutrient depletion or pharmacological stimuli led to an increase in Sestrin2 expression levels in p53-proficient cells. In strict contrast, the depletion of Sestrin2 or Dram failed to affect autophagy in p53-deficient cells and did not modulate the inhibition of baseline autophagy by a cytoplasmic p53 mutant that was reintroduced into p53-deficient cells. We conclude that Sestrin2 acts as a positive regulator of autophagy in p53-proficient cells.

  10. Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets.

    Science.gov (United States)

    Vinayagam, Arunachalam; Gibson, Travis E; Lee, Ho-Joon; Yilmazel, Bahar; Roesel, Charles; Hu, Yanhui; Kwon, Young; Sharma, Amitabh; Liu, Yang-Yu; Perrimon, Norbert; Barabási, Albert-László

    2016-05-03

    The protein-protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as "indispensable," "neutral," or "dispensable," which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network's control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets.

  11. Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease.

    Science.gov (United States)

    Grizot, Sylvestre; Smith, Julianne; Daboussi, Fayza; Prieto, Jesús; Redondo, Pilar; Merino, Nekane; Villate, Maider; Thomas, Séverine; Lemaire, Laetitia; Montoya, Guillermo; Blanco, Francisco J; Pâques, Frédéric; Duchateau, Philippe

    2009-09-01

    Sequence-specific endonucleases recognizing long target sequences are emerging as powerful tools for genome engineering. These endonucleases could be used to correct deleterious mutations or to inactivate viruses, in a new approach to molecular medicine. However, such applications are highly demanding in terms of safety. Mutations in the human RAG1 gene cause severe combined immunodeficiency (SCID). Using the I-CreI dimeric LAGLIDADG meganuclease as a scaffold, we describe here the engineering of a series of endonucleases cleaving the human RAG1 gene, including obligate heterodimers and single-chain molecules. We show that a novel single-chain design, in which two different monomers are linked to form a single molecule, can induce high levels of recombination while safeguarding more effectively against potential genotoxicity. We provide here the first demonstration that an engineered meganuclease can induce targeted recombination at an endogenous locus in up to 6% of transfected human cells. These properties rank this new generation of endonucleases among the best molecular scissors available for genome surgery strategies, potentially avoiding the deleterious effects of previous gene therapy approaches.

  12. Viral Etiology Relationship between Human Papillomavirus and Human Breast Cancer and Target of Gene Therapy

    Institute of Scientific and Technical Information of China (English)

    YAN Chen; TENG Zhi Ping; CHEN Yun Xin; SHEN Dan Hua; LI Jin Tao; ZENG Yi

    2016-01-01

    ObjectiveTo explore the viral etiology of human breast cancer to determine whether there are novel molecular targets for gene therapy of breast cancer and provide evidence for the research of gene therapy and vaccine development for breast cancer. MethodsPCR was used to screen HPV16 and HPV18 oncogenesE6 andE7 in the SKBR3 cell line andin 76 paraffin embedded breast cancer tissue samples. RNA interference was used to knock down the expression of HPV18E6 andE7 in SKBR3 cells, then the changes in the expression of cell-cycle related proteins, cell viability, colony formation, metastasis, and cell cycle progression were determined. ResultsHPV18 oncogenesE6 andE7 were amplified and sequenced from the SKBR3 cells. Ofthe patient samples, 6.58% and 23.68% were tested to bepositivefor HPV18E6 and HPV18E7. In the cell culture models, the knockdown of HPV18E6 andE7 inhibited the proliferation, metastasis, and cell cycle progression of SKBR3 cell. The knockdown also clearly affected the expression levels of cell cycle related proteins. ConclusionHPV was a contributor to virus causedhuman breast cancer, suggesting that the oncogenes in HPV were potential targets for gene therapy of breast cancer.

  13. Prediction and experimental validation of novel STAT3 target genes in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Young Min Oh

    Full Text Available The comprehensive identification of functional transcription factor binding sites (TFBSs is an important step in understanding complex transcriptional regulatory networks. This study presents a motif-based comparative approach, STAT-Finder, for identifying functional DNA binding sites of STAT3 transcription factor. STAT-Finder combines STAT-Scanner, which was designed to predict functional STAT TFBSs with improved sensitivity, and a motif-based alignment to minimize false positive prediction rates. Using two reference sets containing promoter sequences of known STAT3 target genes, STAT-Finder identified functional STAT3 TFBSs with enhanced prediction efficiency and sensitivity relative to other conventional TFBS prediction tools. In addition, STAT-Finder identified novel STAT3 target genes among a group of genes that are over-expressed in human cancer cells. The binding of STAT3 to the predicted TFBSs was also experimentally confirmed through chromatin immunoprecipitation. Our proposed method provides a systematic approach to the prediction of functional TFBSs that can be applied to other TFs.

  14. GRK5-Knockout Mice Generated by TALEN-Mediated Gene Targeting.

    Science.gov (United States)

    Nanjidsuren, Tsevelmaa; Park, Chae-Won; Sim, Bo-Woong; Kim, Sun-Uk; Chang, Kyu-Tae; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-10-01

    Transcription activator-like effector nucleases (TALENs) are a new type of engineered nuclease that is very effective for directed gene disruption in any genome sequence. We investigated the generation of mice with genetic knockout (KO) of the G protein-coupled receptor kinase (GRK) 5 gene by microinjection of TALEN mRNA. TALEN vectors were designed to target exons 1, 3, and 5 of the mouse GRK5 gene. Flow cytometry showed that the activity of the TALEN mRNAs targeted to exons 1, 3, and 5 was 8.7%, 9.7%, and 12.7%, respectively. The TALEN mRNA for exon 5 was injected into the cytoplasm of 180 one-cell embryos. Of the 53 newborns, three (5.6%) were mutant founders (F0) with mutations. Two clones from F028 showed a 45-bp deletion and F039 showed the same biallelic non-frame-shifting 3-bp deletions. Three clones from F041 were shown to possess a combination of frame-shifting 2-bp deletions. All of the mutations were transmitted through the germline but not to all progenies (37.5%, 37.5%, and 57.1% for the F028, F039, and F041 lines, respectively). The homozygote GRK5-KO mice for 28 and 41 lines created on F3 progenies and the homozygous genotype was confirmed by PCR, T7E1 assay and sequencing.

  15. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family.

    Science.gov (United States)

    Haun, William; Coffman, Andrew; Clasen, Benjamin M; Demorest, Zachary L; Lowy, Anita; Ray, Erin; Retterath, Adam; Stoddard, Thomas; Juillerat, Alexandre; Cedrone, Frederic; Mathis, Luc; Voytas, Daniel F; Zhang, Feng

    2014-09-01

    Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement.

  16. Differential Gene Expression in the Meristem and during Early Fruit Growth of Pisum sativum L. Identifies Potential Targets for Breeding

    Science.gov (United States)

    Smitha Ninan, Annu; Shah, Anish; Song, Jiancheng; Jameson, Paula E.

    2017-01-01

    For successful molecular breeding it is important to identify targets to the gene family level, and in the specific species of interest, in this case Pisum sativum L. The cytokinins have been identified as a key breeding target due to their influence on plant architecture, and on seed size and sink activity. We focused on the cytokinin biosynthetic gene family (the IPTs) and the gene family key to the destruction of cytokinins (the CKXs), as well as other gene families potentially affected by changing cytokinin levels. These included key meristem genes (WUS and BAM1) and the transporter gene families, sucrose transporters (SUTs) and amino acid permeases (AAPs). We used reverse transcription quantitative PCR (RT-qPCR) to monitor gene expression in the vegetative meristem and in pre- and post-fertilisation young pea fruits. PsWUS expression was specific to the shoot apical meristem while PsBAM1 was highly expressed in the shoot apical meristem (SAM) but was also expressed at a low level in the young fruit. Differential expression was shown between genes and within gene families for IPT, CKX, SUT, and AAP. PsCKX7 showed strong gene family member-specific expression in the SAM, and was also expressed in young pea fruits. We suggest that PsCKX7 is a potential target for downregulation via molecular breeding or gene editing. PMID:28212324

  17. Differential Gene Expression in the Meristem and during Early Fruit Growth of Pisum sativum L. Identifies Potential Targets for Breeding

    Directory of Open Access Journals (Sweden)

    Annu Smitha Ninan

    2017-02-01

    Full Text Available For successful molecular breeding it is important to identify targets to the gene family level, and in the specific species of interest, in this case Pisum sativum L. The cytokinins have been identified as a key breeding target due to their influence on plant architecture, and on seed size and sink activity. We focused on the cytokinin biosynthetic gene family (the IPTs and the gene family key to the destruction of cytokinins (the CKXs, as well as other gene families potentially affected by changing cytokinin levels. These included key meristem genes (WUS and BAM1 and the transporter gene families, sucrose transporters (SUTs and amino acid permeases (AAPs. We used reverse transcription quantitative PCR (RT-qPCR to monitor gene expression in the vegetative meristem and in pre- and post-fertilisation young pea fruits. PsWUS expression was specific to the shoot apical meristem while PsBAM1 was highly expressed in the shoot apical meristem (SAM but was also expressed at a low level in the young fruit. Differential expression was shown between genes and within gene families for IPT, CKX, SUT, and AAP. PsCKX7 showed strong gene family member-specific expression in the SAM, and was also expressed in young pea fruits. We suggest that PsCKX7 is a potential target for downregulation via molecular breeding or gene editing.

  18. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.

    Science.gov (United States)

    Sun, Yongwei; Li, Jingying; Xia, Lanqin

    2016-01-01

    Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks by sequence-specific nucleases (SSNs) to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ) or homology-directed repair (HDR). While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes' encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT) that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired "safe" harbor in a predefined manner. The emergence of three programmable SSNs, such as zinc finger nucleases, transcriptional activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential mechanisms underlying HDR events in plant

  19. Viral small interfering RNAs target host genes to mediate disease symptoms in plants.

    Directory of Open Access Journals (Sweden)

    Neil A Smith

    2011-05-01

    Full Text Available The Cucumber mosaic virus (CMV Y-satellite RNA (Y-Sat has a small non-protein-coding RNA genome that induces yellowing symptoms in infected Nicotiana tabacum (tobacco. How this RNA pathogen induces such symptoms has been a longstanding question. We show that the yellowing symptoms are a result of small interfering RNA (siRNA-directed RNA silencing of the chlorophyll biosynthetic gene, CHLI. The CHLI mRNA contains a 22-nucleotide (nt complementary sequence to the Y-Sat genome, and in Y-Sat-infected plants, CHLI expression is dramatically down-regulated. Small RNA sequencing and 5' RACE analyses confirmed that this 22-nt sequence was targeted for mRNA cleavage by Y-Sat-derived siRNAs. Transformation of tobacco with a RNA interference (RNAi vector targeting CHLI induced Y-Sat-like symptoms. In addition, the symptoms of Y-Sat infection can be completely prevented by transforming tobacco with a silencing-resistant variant of the CHLI gene. These results suggest that siRNA-directed silencing of CHLI is solely responsible for the Y-Sat-induced symptoms. Furthermore, we demonstrate that two Nicotiana species, which do not develop yellowing symptoms upon Y-Sat infection, contain a single nucleotide polymorphism within the siRNA-targeted CHLI sequence. This suggests that the previously observed species specificity of Y-Sat-induced symptoms is due to natural sequence variation in the CHLI gene, preventing CHLI silencing in species with a mismatch to the Y-Sat siRNA. Taken together, these findings provide the first demonstration of small RNA-mediated viral disease symptom production and offer an explanation of the species specificity of the viral disease.

  20. Targeted gene delivery to the synovial pannus in antigen-induced arthritis by ultrasound-targeted microbubble destruction in vivo.

    Science.gov (United States)

    Xiang, Xi; Tang, Yuanjiao; Leng, Qianying; Zhang, Lingyan; Qiu, Li

    2016-02-01

    The purpose of this study was to optimize an ultrasound-targeted microbubble destruction (UTMD) technique to improve the in vivo transfection efficiency of the gene encoding enhanced green fluorescent protein (EGFP) in the synovial pannus in an antigen-induced arthritis rabbit model. A mixture of microbubbles and plasmids was locally injected into the knee joints of an antigen-induced arthritis (AIA) rabbits. The plasmid concentrations and ultrasound conditions were varied in the experiments. We also tested local articular and intravenous injections. The rabbits were divided into five groups: (1) ultrasound+microbubbles+plasmid; (2) ultrasound+plasmid; (3) microbubble+plasmid; (4) plasmid only; (5) untreated controls. EGFP expression was observed by fluorescent microscope and immunohistochemical staining in the synovial pannus of each group. The optimal plasmid dosage and ultrasound parameter were determined based on the results of EGFP expression and the present and absent of tissue damage under light microscopy. The irradiation procedure was performed to observe the duration of the EGFP expression in the synovial pannus and other tissues and organs, as well as the damage to the normal cells. The optimal condition was determined to be a 1-MHz ultrasound pulse applied for 5 min with a power output of 2 W/cm(2) and a 20% duty cycle along with 300 μg of plasmid. Under these conditions, the synovial pannus showed significant EGFP expression without significant damage to the surrounding normal tissue. The EGFP expression induced by the local intra-articular injection was significantly more increased than that induced by the intravenous injection. The EGFP expression in the synovial pannus of the ultrasound+microbubbles+plasmid group was significantly higher than that of the other four groups (Parthritis therapy.

  1. A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity.

    Directory of Open Access Journals (Sweden)

    Julia P Brandt

    Full Text Available Many animals possess neurons specialized for the detection of carbon dioxide (CO(2, which acts as a cue to elicit behavioral responses and is also an internally generated product of respiration that regulates animal physiology. In many organisms how such neurons detect CO(2 is poorly understood. We report here a mechanism that endows C. elegans neurons with the ability to detect CO(2. The ETS-5 transcription factor is necessary for the specification of CO(2-sensing BAG neurons. Expression of a single ETS-5 target gene, gcy-9, which encodes a receptor-type guanylate cyclase, is sufficient to bypass a requirement for ets-5 in CO(2-detection and transforms neurons into CO(2-sensing neurons. Because ETS-5 and GCY-9 are members of gene families that are conserved between nematodes and vertebrates, a similar mechanism might act in the specification of CO(2-sensing neurons in other phyla.

  2. Tailor-made TALEN system for highly efficient targeted gene replacement in the rice blast fungus.

    Science.gov (United States)

    Arazoe, Takayuki; Ogawa, Tetsuo; Miyoshi, Kennosuke; Yamato, Tohru; Ohsato, Shuichi; Sakuma, Tetsushi; Yamamoto, Takashi; Arie, Tsutomu; Kuwata, Shigeru

    2015-07-01

    Genetic manipulation is key to unraveling gene functions and creating genetically modified strains of microbial organisms. Recently, engineered nucleases that can generate DNA double-strand breaks (DSBs) at a specific site in the desired locus within genome are utilized in a rapidly developing genome editing technology via DSBs repair. However, the use of engineered nucleases in filamentous fungi has not been validated. In this study, we demonstrated that tailor-made transcriptional activator-like effector nucleases (TALENs) system, Platinum-Fungal TALENs (PtFg TALENs), could improve the efficiency of homologous recombination-mediated targeted gene replacement by up to 100% in the rice blast fungus Pyricularia oryzae. This high-efficiency PtFg TALEN has great potential for basic and applied biological applications in filamentous fungi.

  3. Advanced targeted, cell and gene therapy approaches for pediatric hematological malignancies: results and future perspectives

    Directory of Open Access Journals (Sweden)

    Chiara Francesca Magnani

    2013-04-01

    Full Text Available Despite the survival of pediatric patients affected by hematological malignancies being improved in the last 20 years by chemotherapy and hematopoietic stem cell transplantation (HSCT, a significant amount of patients still relapses. Treatment intensification is limited by toxic side effects and is constrained by the plateau of efficacy, while the pipeline of new chemotherapeutic drugs is running short. Therefore, novel therapeutic strategies are essential and researchers around the world are testing in clinical trials immune and gene therapy approaches as second-line treatments. The aim of this review is to give a glance at these novel promising strategies of advanced medicine in the field of pediatric leukemias. Results from clinical protocols using new targeted smart drugs, immunotherapy and gene therapy are summarized, and important considerations regarding the combination of these novel approaches with standard treatments to promote safe and long-term cure are discussed.

  4. Targeted Gene Replacement in Fungal Pathogens via Agrobacterium tumefaciens- Mediated Transformation

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Frandsen, Mette; Giese, Nanna Henriette

    2012-01-01

    Genome sequence data on fungal pathogens provide the opportunity to carry out a reverse genetics approach to uncover gene function. Efficient methods for targeted genome modifications such as knockout and in locus over-expression are in high demand. Here we describe two efficient single...... on specific structures in the binary vector. The available fungal binary vectors adapted for the USER system are described and protocols are provided for vector design and construction. A general protocol for verification of the resulting gene replacement events in the recipient fungal cells is also given....... The cloning systems described above are relevant for all transformation vector constructs, but here we describe their application for ATMT compatible binary vectors. Protocols are provided for ATMT exemplified by Fusarium graminearum. For large-scale reverse genetic projects, the USER technology...

  5. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua.

    Science.gov (United States)

    Li, Hang; Jiang, Weihua; Zhang, Zan; Xing, Yanru; Li, Fei

    2013-01-01

    The beet armyworm, Spodoptera exigua (Hübner), is a serious pest worldwide that causes significant losses in crops. Unfortunately, genetic resources for the beet armyworm is extremely scarce. To improve these resources we sequenced the transcriptome of S. exigua representing all stages including eggs, 1(st) to 5(th) instar larvae, pupae, male and female adults using the Illumina Solexa platform. We assembled the transcriptome with Trinity that yielded 31,414 contigs. Of these contigs, 18,592 were annotated as protein coding genes by Blast searches against the NCBI nr database. It has been shown that knockdown of important insect genes by dsRNAs or siRNAs is a feasible mechanism to control insect pests. The first key step towards developing an efficient RNAi-mediated pest control technique is to find suitable target genes. To screen for effective target genes in the beet armyworm, we selected nine candidate genes. The sequences of these genes were amplified using the RACE strategy. Then, siRNAs were designed and chemically synthesized. We injected 2 µl siRNA (2 µg/µl) into the 4(th) instar larvae to knock down the respective target genes. The mRNA abundance of target genes decreased to different levels (∼20-94.3%) after injection of siRNAs. Knockdown of eight genes including chitinase7, PGCP, chitinase1, ATPase, tubulin1, arf2, tubulin2 and arf1 caused a significantly high level of mortality compared to the negative control (Ppest control.

  6. Global Transcriptomic Analysis of Targeted Silencing of Two Paralogous ACC Oxidase Genes in Banana

    Science.gov (United States)

    Xia, Yan; Kuan, Chi; Chiu, Chien-Hsiang; Chen, Xiao-Jing; Do, Yi-Yin; Huang, Pung-Ling

    2016-01-01

    Among 18 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase homologous genes existing in the banana genome there are two genes, Mh-ACO1 and Mh-ACO2, that participate in banana fruit ripening. To better understand the physiological functions of Mh-ACO1 and Mh-ACO2, two hairpin-type siRNA expression vectors targeting both the Mh-ACO1 and Mh-ACO2 were constructed and incorporated into the banana genome by Agrobacterium-mediated transformation. The generation of Mh-ACO1 and Mh-ACO2 RNAi transgenic banana plants was confirmed by Southern blot analysis. To gain insights into the functional diversity and complexity between Mh-ACO1 and Mh-ACO2, transcriptome sequencing of banana fruits using the Illumina next-generation sequencer was performed. A total of 32,093,976 reads, assembled into 88,031 unigenes for 123,617 transcripts were obtained. Significantly enriched Gene Oncology (GO) terms and the number of differentially expressed genes (DEGs) with GO annotation were ‘catalytic activity’ (1327, 56.4%), ‘heme binding’ (65, 2.76%), ‘tetrapyrrole binding’ (66, 2.81%), and ‘oxidoreductase activity’ (287, 12.21%). Real-time RT-PCR was further performed with mRNAs from both peel and pulp of banana fruits in Mh-ACO1 and Mh-ACO2 RNAi transgenic plants. The results showed that expression levels of genes related to ethylene signaling in ripening banana fruits were strongly influenced by the expression of genes associated with ethylene biosynthesis. PMID:27681726

  7. Mapping calcium phosphate activated gene networks as a strategy for targeted osteoinduction of human progenitors.

    Science.gov (United States)

    Eyckmans, Jeroen; Roberts, Scott J; Bolander, Johanna; Schrooten, Jan; Chen, Christopher S; Luyten, Frank P

    2013-06-01

    Although calcium phosphate-containing biomaterials are promising scaffolds for bone regenerative strategies, the osteoinductive capacity of such materials is poorly understood. In this study, we investigated whether endogenous mechanisms of in vivo calcium phosphate-driven, ectopic bone formation could be identified and used to induce enhanced differentiation in vitro of the same progenitor population. To accomplish this, human periosteum derived cells (hPDCs) were seeded on hydroxyapatite/collagen scaffolds (calcium phosphate rich matrix or CPRM), or on decalcified scaffolds (calcium phosphate depleted matrix or CPDM), followed by subcutaneous implantation in nude mice to trigger ectopic bone formation. In this system, osteoblast differentiation occurred in CPRM scaffolds, but not in CPDM scaffolds. Gene expression was assessed by human full-genome microarray at 20 h after seeding, and 2, 8 and 18 days after implantation. In both matrices, implantation of the cell constructs triggered a similar gene expression cascade, however, gene expression dynamics progressed faster in CPRM scaffolds than in CPDM scaffolds. The difference in gene expression dynamics was associated with differential activation of hub genes and molecular signaling pathways related to calcium signaling (CREB), inflammation (TNFα, NFkB, and IL6) and bone development (TGFβ, β-catenin, BMP, EGF, and ERK signaling). Starting from this set of pathways, a growth factor cocktail was developed that robustly enhanced osteogenesis in vitro and in vivo. Taken together, our data demonstrate that through the identification and subsequent stimulation of genes, proteins and signaling pathways associated with calcium phosphate mediated osteoinduction, a focused approach to develop targeted differentiation protocols in adult progenitor cells can be achieved.

  8. A folate receptor-targeted lipoplex delivering interleukin-15 gene for colon cancer immunotherapy.

    Science.gov (United States)

    Liang, Xiao; Luo, Min; Wei, Xia-Wei; Ma, Cui-Cui; Yang, Yu-Han; Shao, Bin; Liu, Yan-Tong; Liu, Ting; Ren, Jun; Liu, Li; He, Zhi-Yao; Wei, Yu-Quan

    2016-08-09

    Interleukin-15 has been implicated as a promising cytokine for cancer immunotherapy, while folate receptor α (FRα) has been shown to be a potentially useful target for colon cancer therapy. Herein, we developed F-PLP/pIL15, a FRα-targeted lipoplex loading recombinant interleukin-15 plasmid (pIL15) and studied its antitumor effects in vivo using a CT26 colon cancer mouse model. Compared with control (normal saline) treatment, F-PLP/pIL15 significantly suppressed tumor growth in regard to tumor weight (P targeted delivery of IL15 gene might be associated with its in vivo antitumor effects, which include inducing tumor cell apoptosis, inhibiting tumor proliferation and promoting the activation of immune cells such as T cells and natural killer cells. Furthermore, hematoxylin and eosin staining of vital organs following F-PLP/pIL15 treatment showed no detectable toxicity, thus indicating that intraperitoneal administration may be a viable route of delivery. Overall, these results suggest that F-PLP/pIL15 may serve as a potential targeting preparation for colon cancer therapy.

  9. Peptide-conjugated micelles as a targeting nanocarrier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen Jen, E-mail: wjlin@ntu.edu.tw; Chien, Wei Hsuan [National Taiwan University, School of Pharmacy, Graduate Institute of Pharmaceutical Sciences (China)

    2015-09-15

    The aim of this study was to develop peptide-conjugated micelles possessing epidermal growth factor receptor (EGFR) targeting ability for gene delivery. A sequence-modified dodecylpeptide, GE11(2R), with enhancing EGF receptor binding affinity, was applied in this study as a targeting ligand. The active targeting micelles were composed of poly(d,l-lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) copolymer conjugated with GE11(2R)-peptide. The particle sizes of peptide-free and peptide-conjugated micelles were 277.0 ± 5.1 and 308.7 ± 14.5 nm, respectively. The peptide-conjugated micelles demonstrated the cellular uptake significantly higher than peptide-free micelles in EGFR high-expressed MDA-MB-231 and MDA-MB-468 cells due to GE11(2R)-peptide specificity. Furthermore, the peptide-conjugated micelles were able to encapsulate plasmid DNA and expressed cellular transfection higher than peptide-free micelles in EGFR high-expressed cells. The EGFR-targeting delivery micelles enhanced DNA internalized into cells and achieved higher cellular transfection in EGFR high-expressed cells.

  10. Computational identification of putative miRNAs and their target genes in pathogenic amoeba Naegleria fowleri.

    Science.gov (United States)

    Padmashree, Dyavegowda; Swamy, Narayanaswamy Ramachandra

    2015-01-01

    Naegleria fowleri is a parasitic unicellular free living eukaryotic amoeba. The parasite spreads through contaminated water and causes primary amoebic meningoencephalitis (PAM). Therefore, it is of interest to understand its molecular pathogenesis. Hence, we analyzed the parasite genome for miRNAs (microRNAs) that are non-coding, single stranded RNA molecules. We identified 245 miRNAs using computational methods in N. fowleri, of which five miRNAs are conserved. The predicted miRNA targets were analyzed by using miRanda (software) and further studied the functions by subsequently annotating using AmiGo (a gene ontology web tool).

  11. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.

    Science.gov (United States)

    Zhang, Dandan; Li, Zhenxiang; Li, Jian-Feng

    2016-05-20

    The CRISPR/Cas technology is emerging as a revolutionary genome editing tool in diverse organisms including plants, and has quickly evolved into a suite of versatile tools for sequence-specific gene manipulations beyond genome editing. Here, we review the most recent applications of the CRISPR/Cas toolkit in plants and also discuss key factors for improving CRISPR/Cas performance and strategies for reducing the off-target effects. Novel technical breakthroughs in mammalian research regarding the CRISPR/Cas toolkit will also be incorporated into this review in hope to stimulate prospective users from the plant research community to fully explore the potential of these technologies.

  12. A previously functional tetracycline-regulated transactivator fails to target gene expression to the bone

    Directory of Open Access Journals (Sweden)

    Schmidt Eva

    2011-08-01

    Full Text Available Abstract Background The tetracycline-controlled transactivator system is a powerful tool to control gene expression in vitro and to generate consistent and conditional transgenic in vivo model organisms. It has been widely used to study gene function and to explore pathological mechanisms involved in human diseases. The system permits the regulation of the expression of a target gene, both temporally and quantitatively, by the application of tetracycline or its derivative, doxycycline. In addition, it offers the possibility to restrict gene expression in a spatial fashion by utilizing tissue-specific promoters to drive the transactivator. Findings In this study, we report our problems using a reverse tetracycline-regulated transactivator (rtTA in a transgenic mouse model system for the bone-specific expression of the Hutchinson-Gilford progeria syndrome mutation. Even though prior studies have been successful utilizing the same rtTA, expression analysis of the transactivator revealed insufficient activity for regulating the transgene expression in our system. The absence of transactivator could not be ascribed to differences in genetic background because mice in a mixed genetic background and in congenic mouse lines showed similar results. Conclusions The purpose of this study is to report our negative experience with previously functional transactivator mice, to raise caution in the use of tet-based transgenic mouse lines and to reinforce the need for controls to ensure the stable functionality of generated tetracycline-controlled transactivators over time.

  13. [Comparative study of therapy targeted genes expression in neuroblastoma cell lines].

    Science.gov (United States)

    Lebedev, T D; Spirin, P V; Orlova, N N; Prokofjeva, M M; Prassolov, V S

    2015-01-01

    In this study we evaluated c-kit, VEGFA, and MYC gene expression level in seven neuroblastoma stable cell lines: SK-N-SH, SK-N-BE, SK-N-AS, SH-SY5Y, Kelly, IMR-32, and LAN-1. Expression levels of these genes can serve as diagnostic factors of cancer progression, and proteins encoded by these genes are promising targets for neuroblastoma treatment. SH-SY5Y and SK-N-AS cells have highest MYC expression and the same VEGFA expression, although SH-SY5Y has 10 times higher c-kit expression than SK-N-AS cells. Both IMR-32 and LAN-1 cells have low MYC expression level, but differ in c-kit expression, IMR-32 has significantly higher c-kit expression, than any other neuroblastoma cell line. LAN-1 on the other hand has the highest VEGFA expression. These data suggest that MYC, c-kit, and VEGFA genes can play different roles in development and progression of neuroblastoma depending on other activated molecular mechanisms in malignant cells.

  14. Quantification of functionalised gold nanoparticle-targeted knockdown of gene expression in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Meesbah Jiwaji

    Full Text Available Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell.In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA, single-stranded RNA (ssRNA and single-stranded DNA (ssDNA sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis.We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles.The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein.

  15. Tropism-Modification Strategies for Targeted Gene Delivery Using Adenoviral Vectors

    Directory of Open Access Journals (Sweden)

    Andrew H. Baker

    2010-10-01

    Full Text Available Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX, which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs. These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon, pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies, can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX, or alternatively, through the use of polymer

  16. Nickel-responsive regulation of two novel Helicobacter pylori NikR-targeted genes.

    Science.gov (United States)

    Jones, M D; Ademi, I; Yin, X; Gong, Y; Zamble, D B

    2015-04-01

    Nickel is an essential transition metal for the survival of Helicobacter pylori in the acidic human stomach. The nickel-responsive transcriptional regulator HpNikR is important for maintaining healthy cytosolic nickel concentrations through the regulation of multiple genes, but its complete regulon and role in nickel homeostasis are not well understood. To investigate potential gene targets of HpNikR, ChIP sequencing was performed using H. pylori grown at neutral pH in nickel-supplemented media and this experiment identified HPG27_866 (frpB2) and HPG27_1499 (ceuE). These two genes are annotated to encode a putative iron transporter and a nickel-binding, periplasmic component of an ABC transporter, respectively. In vitro DNA-binding assays revealed that HpNikR binds both gene promoter sequences in a nickel-responsive manner with affinities on the order of ∼10(-7) M. The recognition sites of HpNikR were identified and loosely correlate with the HpNikR pseudo-consensus sequence (TATTATT-N11-AATAATA). Quantitative PCR experiments revealed that HPG27_866 and HPG27_1499 are transcriptionally repressed following growth of H. pylori G27 in nickel-supplemented media, and that this response is dependent on HpNikR. In contrast, iron supplementation results in activation of HPG27_1499, but no impact on the expression of HPG27_866 was observed. Metal analysis of the Δ866 strain revealed that HPG27_866 has an impact on nickel accumulation. These studies demonstrate that HPG27_866 and HPG27_1499 are both direct targets of HpNikR and that HPG27_866 influences nickel uptake in H. pylori.

  17. Sex-Specificity of Mineralocorticoid Target Gene Expression during Renal Development, and Long-Term Consequences

    Science.gov (United States)

    Dumeige, Laurence; Storey, Caroline; Decourtye, Lyvianne; Nehlich, Melanie; Lhadj, Christophe; Viengchareun, Say; Kappeler, Laurent; Lombès, Marc; Martinerie, Laetitia

    2017-01-01

    Sex differences have been identified in various biological processes, including hypertension. The mineralocorticoid signaling pathway is an important contributor to early arterial hypertension, however its sex-specific expression has been scarcely studied, particularly with respect to the kidney. Basal systolic blood pressure (SBP) and heart rate (HR) were measured in adult male and female mice. Renal gene expression studies of major players of mineralocorticoid signaling were performed at different developmental stages in male and female mice using reverse transcription quantitative PCR (RT-qPCR), and were compared to those of the same genes in the lung, another mineralocorticoid epithelial target tissue that regulates ion exchange and electrolyte balance. The role of sex hormones in the regulation of these genes was also investigated in differentiated KC3AC1 renal cells. Additionally, renal expression of the 11 β-hydroxysteroid dehydrogenase type 2 (11βHSD2) protein, a regulator of mineralocorticoid specificity, was measured by immunoblotting and its activity was indirectly assessed in the plasma using liquid-chromatography coupled to mass spectrometry in tandem (LC-MSMS) method. SBP and HR were found to be significantly lower in females compared to males. This was accompanied by a sex- and tissue-specific expression profile throughout renal development of the mineralocorticoid target genes serum and glucocorticoid-regulated kinase 1 (Sgk1) and glucocorticoid-induced leucine zipper protein (Gilz), together with Hsd11b2, Finally, the implication of sex hormones in this sex-specific expression profile was demonstrated in vitro, most notably for Gilz mRNA expression. We demonstrate a tissue-specific, sex-dependent and developmentally-regulated pattern of expression of the mineralocorticoid pathway that could have important implications in physiology and pathology. PMID:28230786

  18. Non-viral gene therapy that targets motor neurons in vivo

    Directory of Open Access Journals (Sweden)

    Mary-Louise eRogers

    2014-10-01

    Full Text Available A major challenge in neurological gene therapy is safe delivery of transgenes to sufficient cell numbers from the circulation or periphery. This is particularly difficult for diseases involving spinal cord motor neurons such as amyotrophic lateral sclerosis (ALS. We have examined the feasibility of non-viral gene delivery to spinal motor neurons from intraperitoneal injections of plasmids carried by ‘immunogene’ nanoparticles targeted for axonal retrograde transport using antibodies. PEGylated polyethylenimine (PEI-PEG12 as DNA carrier was conjugated to an antibody (MLR2 to the neurotrophin receptor p75 (p75NTR. We used a plasmid (pVIVO2 designed for in vivo gene delivery that produces minimal immune responses, has improved nuclear entry into post mitotic cells and also expresses green fluorescent protein (GFP. MLR2-PEI-PEG12 carried pVIVO2 and was specific for mouse motor neurons in mixed cultures containing astrocytes. While only 8% of motor neurons expressed GFP 72 h post transfection in vitro, when the immunogene was given intraperitonealy to neonatal C57BL/6J mice GFP specific motor neuron expression was observed in 25.4% of lumbar, 18.3% of thoracic and 17.0 % of cervical motor neurons, 72 h post transfection. PEI-PEG12 carrying pVIVO2 by itself did not transfect motor neurons in vivo, demonstrating the need for specificity via the p75NTR antibody MLR2. This is the first time that specific transfection of spinal motor neurons has been achieved from peripheral delivery of plasmid DNA as part of a non-viral gene delivery agent. These results stress the specificity and feasibility of immunogene delivery targeted for p75NTR expressing motor neurons, but suggests that further improvements are required to increase the transfection efficiency of motor neurons in vivo.

  19. Split vector systems for ultra-targeted gene delivery: a contrivance to achieve ethical assurance of somatic gene therapy in vivo.

    Science.gov (United States)

    Tolmachov, Oleg E

    2014-08-01

    Tightly controlled spatial localisation of therapeutic gene delivery is essential to maximize the benefits of somatic gene therapy in vivo and to reduce its undesired effects on the 'bystander' cell populations, most importantly germline cells. Indeed, complete ethical assurance of somatic gene therapy can only be achieved with ultra-targeted gene delivery, which excludes the risk of inadvertent germline gene transfer. Thus, it is desired to supplement existing strategies of physical focusing and biological (cell-specific) targeting of gene delivery with an additional principle for the rigid control over spread of gene transfer within the body. In this paper I advance the concept of 'combinatorial' targeting of therapeutic gene transfer in vivo. I hypothesize that it is possible to engineer complex gene delivery vector systems consisting of several components, each one of them capable of independent spread within the human body but incapable of independent facilitation of gene transfer. As the gene delivery augmented by such split vector systems would be reliant on the simultaneous availability of all the vector system components at a predetermined body site, it is envisaged that higher order reaction kinetics required for the assembly of the functional gene transfer configuration would sharpen spatial localisation of gene transfer via curtailing the blurring effect of the vector spread within the body. A particular implementation of such split vector system could be obtained through supplementing a viral therapeutic gene vector with a separate auxiliary vector carrying a non-integrative and non-replicative form of a gene (e.g., mRNA) coding for a cellular receptor of the therapeutic vector component. Gene-transfer-enabling components of the vector system, which would be delivered separately from the vector component loaded with the therapeutic gene cargo, could also be cell-membrane-insertion-proficient receptors, elements of artificial transmembrane channels

  20. MicroRNA-373 functions as an oncogene and targets YOD1 gene in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Luo-Qiao; Zhang, Yue; Yan, Huan; Liu, Kai-Jiang, E-mail: liukaijiang@126.com; Zhang, Shu, E-mail: drzhangshu@126.com

    2015-04-10

    miR-373 was reported to be elevated in several tumors; however, the role of miR-373 in cervical cancer has not been investigated. In this study we aimed to investigate the role of miR-373 in tumorigenicity of cervical cancer cells in vivo and in vitro. The expression of miR-373 was investigated using real-time reverse transcription-polymerase chain reaction assay in 45 cervical specimens and cervical cancer cell lines. The role of miR-373 in tumorigenicity of cervical cancer cells was assessed by cell proliferation, colony formation in vitro as well as tumor growth assays in vivo with the overexpression of miR-373 or gene silencing. The functional target gene of miR-373 in cervical cancer cells was identified using integrated bioinformatics analysis, gene expression arrays, and luciferase assay. We founded that the expression of miR-373 is upregulated in human cervical cancer tissues and cervical carcinoma cell lines when compared to the corresponding noncancerous tissues. Ectopic overexpression of miR-373 in human cervical cancer cells promoted cell growth in vitro and tumorigenicity in vivo, whereas silencing the expression of miR-373 decreased the rate of cell growth. YOD1 was identified as a direct and functional target of miR-373 in cervical cancer cells. Expression levels of miR-373 were inversely correlated with YOD1 levels in human cervical cancer tissues. RNAi-mediated knockdown of YOD1 phenocopied the proliferation-promoting effect of miR-373. Moreover, overexpression of YOD1 abrogated miR-373-induced proliferation of cervical cancer cells. These results demonstrate that miR-373 increases proliferation by directly targeting YOD1, a new potential therapeutic target in cervical cancer. - Highlights: • The expression of miR-373 is upregulated in human cervical cancer tissues. • miR-373 effects as oncogenic miRNA in cervical cancer in vitro and in vivo. • miR-373 increases proliferation of cervical cancer cells by directly targeting YOD1.

  1. Identification of target genes of transcription factor CEBPB in acute promyelocytic leukemia cells induced by all-trans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Lei Yu; Yang-De Zhang; Jun Zhou; De-Ming Yao; Xiang Li

    2013-01-01

    Objective: To indentify target genes of transcription factor CCAAT enhancer-binding proteinβ (CEBPB) in acute promyelocytic leukemia cells induced by all-trans retinoic acid. Methods:A new strategy for high-throughput identification of direct target genes was established by combining chromatin immunoprecipitation (ChIP) with in vitro selection. Then, 106 potential CEBPB binding fragments from the genome of the all-trans retinoic acid (ATRA)-treated NB4 cells were identified. Results: Of them, 82 were mapped in proximity to known or previously predicted genes; 7 were randomly picked up for further confirmation by ChIP-PCR and 3 genes (GALM, ITPR2 and ORM2) were found to be specifically up-regulated in the ATRA-treated NB4 cells, indicating that they might be the down-stream target genes of ATRA. Conclusions: Our results provided new insight into the mechanisms of ATRA-induced granulocytic differentiation.

  2. Targeting of the human coagulation factor IX gene at rDNA locus of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Xionghao Liu

    Full Text Available BACKGROUND: Genetic modification is a prerequisite to realizing the full potential of human embryonic stem cells (hESCs in human genetic research and regenerative medicine. Unfortunately, the random integration methods that have been the primary techniques used keep creating problems, and the primary alternative method, gene targeting, has been effective in manipulating mouse embryonic stem cells (mESCs but poorly in hESCs. METHODOLOGY/PRINCIPAL FINDINGS: Human ribosomal DNA (rDNA repeats are clustered on the short arm of acrocentric chromosomes. They consist of approximately 400 copies of the 45S pre-RNA (rRNA gene per haploid. In the present study, we targeted a physiological gene, human coagulation factor IX, into the rDNA locus of hESCs via homologous recombination. The relative gene targeting efficiency (>50% and homologous recombination frequency (>10(-5 were more than 10-fold higher than those of loci targeted in previous reports. Meanwhile, the targeted clones retained both a normal karyotype and the main characteristics of ES cells. The transgene was found to be stably and ectopically expressed in targeted hESCs. CONCLUSION/SIGNIFICANCE: This is the first targeting of a human physiological gene at a defined locus on the hESC genome. Our findings indicate that the rDNA locus may serve as an ideal harbor for transgenes in hESCs.

  3. Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement

    Science.gov (United States)

    Sun, Yongwei; Li, Jingying; Xia, Lanqin

    2016-01-01

    Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks by sequence-specific nucleases (SSNs) to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ) or homology-directed repair (HDR). While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes’ encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT) that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired “safe” harbor in a predefined manner. The emergence of three programmable SSNs, such as zinc finger nucleases, transcriptional activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential mechanisms underlying HDR events in

  4. Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement

    Directory of Open Access Journals (Sweden)

    Yongwei Sun

    2016-12-01

    Full Text Available Genome editing technologies enable precise modifications of DNA sequences in vivo and offer a great promise for harnessing plant genes in crop improvement. The precise manipulation of plant genomes relies on the induction of DNA double-strand breaks (DSBs by sequence-specific nucleases (SSNs to initiate DNA repair reactions that are based on either non-homologous end joining (NHEJ or homology-directed repair (HDR. While complete knock-outs and loss-of-function mutations generated by NHEJ are very valuable in defining gene functions, their applications in crop improvement are somewhat limited because many agriculturally important traits are conferred by random point mutations or indels at specific loci in either the genes’ encoding or promoter regions. Therefore, genome modification through SSNs-mediated HDR for gene targeting (GT that enables either gene replacement or knock-in will provide an unprecedented ability to facilitate plant breeding by allowing introduction of precise point mutations and new gene functions, or integration of foreign genes at specific and desired ‘safe’ harbor in a predefined manner. The emergence of three programmable SSNs such as zinc finger nucleases (ZFNs, transcriptional activator-like effector nucleases (TALENs, and the clustered regularly interspaced short palindromic repeat (CRISPR/CRISPR-associated protein 9 (Cas9 systems has revolutionized genome modification in plants in a more controlled manner. However, while targeted mutagenesis is becoming routine in plants, the potential of GT technology has not been well realized for traits improvement in crops, mainly due to the fact that NHEJ predominates DNA repair process in somatic cells and competes with the HDR pathway, and thus HDR-mediated GT is a relative rare event in plants. Here, we review recent research findings mainly focusing on development and applications of precise GT in plants using three SSNs systems described above, and the potential

  5. TCDD dysregulation of 13 AHR-target genes in rat liver.

    Science.gov (United States)

    Watson, John D; Prokopec, Stephenie D; Smith, Ashley B; Okey, Allan B; Pohjanvirta, Raimo; Boutros, Paul C

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long-Evans (Turku/AB; L-E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000μg/kg at 19h after TCDD exposure and time points ranging from 1.5 to 384h after exposure to 100μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose-response analysis, none had an ED50 equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10-100 fold higher, in at least one strain (Ahrr (L-E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L-E), Inmt (both), Nfe2l2 (L-E), Nqo1 (L-E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities.

  6. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Science.gov (United States)

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission.

  7. Stanniocalcin-2 is a HIF-1 target gene that promotes cell proliferation in hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Law, Alice Y.S. [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Wong, Chris K.C., E-mail: ckcwong@hkbu.edu.hk [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong)

    2010-02-01

    Stanniocalcin-2 (STC2), the paralog of STC1, has been suggested as a novel target of oxidative stress response to protect cells from apoptosis. The expression of STC2 has been reported to be highly correlated with human cancer development. In this study, we reported that STC2 is a HIF-1 target gene and is involved in the regulation of cell proliferation. STC2 was shown to be up-regulated in different breast and ovarian cancer cells, following exposure to hypoxia. Using ovarian cancer cells (SKOV3), the underlying mechanism of HIF-1 mediated STC2 gene transactivation was characterized. Hypoxia-induced STC2 expression was found to be HIF-1{alpha} dependent and required the recruitment of p300 and HDAC7. Using STC2 promoter deletion constructs and site-directed mutagenesis, two authentic consensus HIF-1 binding sites were identified. Under hypoxic condition, the silencing of STC2 reduced while the overexpression of STC2 increased the levels of phosphorylated retinoblastoma and cyclin D in both SKOV3 and MCF7 cells. The change in cell cycle proteins correlated with the data of the serial cell counts. The results indicated that cell proliferation was reduced in STC2-silenced cells but was increased in STC2-overexpressing hypoxic cells. Solid tumor progression is usually associated with hypoxia. The identification and functional analysis of STC2 up-regulation by hypoxia, a feature of the tumor microenvironment, sheds light on a possible role for STC2 in tumors.

  8. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy.

    Science.gov (United States)

    Chua, Jason P; Reddy, Satya L; Merry, Diane E; Adachi, Hiroaki; Katsuno, Masahisa; Sobue, Gen; Robins, Diane M; Lieberman, Andrew P

    2014-03-01

    Spinobulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract in exon 1 of the androgen receptor (AR) gene. SBMA demonstrates androgen-dependent toxicity due to unfolding and aggregation of the mutant protein. There are currently no disease-modifying therapies, but of increasing interest for therapeutic targeting is autophagy, a highly conserved cellular process mediating protein quality control. We have previously shown that genetic manipulations inhibiting autophagy diminish skeletal muscle atrophy and extend the lifespan of AR113Q knock-in mice. In contrast, manipulations inducing autophagy worsen muscle atrophy, suggesting that chronic, aberrant upregulation of autophagy contributes to pathogenesis. Since the degree to which autophagy is altered in SBMA and the mechanisms responsible for such alterations are incompletely defined, we sought to delineate autophagic status in SBMA using both cellular and mouse models. Here, we confirm that autophagy is induced in cellular and knock-in mouse models of SBMA and show that the transcription factors transcription factor EB (TFEB) and ZKSCAN3 operate in opposing roles to underlie these changes. We demonstrate upregulation of TFEB target genes in skeletal muscle from AR113Q male mice and SBMA patients. Furthermore, we observe a greater response in AR113Q mice to physiological stimulation of autophagy by both nutrient starvation and exercise. Taken together, our results indicate that transcriptional signaling contributes to autophagic dysregulation and provides a mechanistic framework for the pathologic increase of autophagic responsiveness in SBMA.

  9. Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes.

    Science.gov (United States)

    Park, Ki-Eun; Powell, Anne; Sandmaier, Shelley E S; Kim, Chan-Mi; Mileham, Alan; Donovan, David M; Telugu, Bhanu P

    2017-02-14

    The domestic pig is an important "dual purpose" animal model for agricultural and biomedical applications. There is an emerging consensus in the biomedical community for the use of large animal models such as pigs to either serve as an alternative, or complement investigations from the mouse. However, the use of pig has not proven popular due to technical difficulties and time required in generating models with desired genetic modifications. In this regard, the ability to directly modify the genome in the zygote and generate edited animals is highly desirable. This report demonstrates for the first time, the generation of gene targeted animals by direct injection of Cas9 ribonucleoprotein complex and short stretches of DNA sequences into porcine zygotes. The Cas9 protein from Streptococcus pyogenes was pre-complexed with a single guide RNA targeting downstream of the ubiquitously expressed COL1A gene, and co-injected with a single-stranded repair template into porcine zygotes. Using this approach a line of pigs that carry pseudo attP sites within the COL1A locus to enable phiC31 integrase mediated introduction of transgenes has been generated. This new route for genome engineering in pigs via zygote injection should greatly enhance applications in both agriculture and biomedicine.

  10. Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene

    Directory of Open Access Journals (Sweden)

    Lewin Astrid

    2008-12-01

    Full Text Available Abstract Background The free-living amoeba Balamuthia mandrillaris may cause fatal encephalitis both in immunocompromised and in – apparently – immunocompetent humans and other mammalian species. Rapid, specific, sensitive, and reliable detection requiring little pathogen-specific expertise is an absolute prerequisite for a successful therapy and a welcome tool for both experimental and epidemiological research. Results A real-time polymerase chain reaction assay using TaqMan® probes (real-time PCR was established specifically targeting the RNase P gene of B. mandrillaris amoebae. The assay detected at least 2 (down to 0.5 genomes of B. mandrillaris grown in axenic culture. It did not react with DNA from closely related Acanthamoeba (3 species, nor with DNA from Toxoplasma gondii, Leishmania major, Pneumocystis murina, Mycobacterium bovis (BCG, human brain, various mouse organs, or from human and murine cell lines. The assay efficiently detected B. mandrillaris DNA in spiked cell cultures, spiked murine organ homogenates, B. mandrillaris-infected mice, and CNS tissue-DNA preparations from 2 patients with proven cerebral balamuthiasis. This novel primer set was successfully combined with a published set that targets the B. mandrillaris 18S rRNA gene in a duplex real-time PCR assay to ensure maximum specificity and as a precaution against false negative results. Conclusion A real-time PCR assay for B. mandrillaris amoebae is presented, that is highly specific, sensitive, and reliable and thus suited both for diagnosis and for research.

  11. Targeted gene knock-in by CRISPR/Cas ribonucleoproteins in porcine zygotes

    Science.gov (United States)

    Park, Ki-Eun; Powell, Anne; Sandmaier, Shelley E. S.; Kim, Chan-Mi; Mileham, Alan; Donovan, David M.; Telugu, Bhanu P.

    2017-01-01

    The domestic pig is an important “dual purpose” animal model for agricultural and biomedical applications. There is an emerging consensus in the biomedical community for the use of large animal models such as pigs to either serve as an alternative, or complement investigations from the mouse. However, the use of pig has not proven popular due to technical difficulties and time required in generating models with desired genetic modifications. In this regard, the ability to directly modify the genome in the zygote and generate edited animals is highly desirable. This report demonstrates for the first time, the generation of gene targeted animals by direct injection of Cas9 ribonucleoprotein complex and short stretches of DNA sequences into porcine zygotes. The Cas9 protein from Streptococcus pyogenes was pre-complexed with a single guide RNA targeting downstream of the ubiquitously expressed COL1A gene, and co-injected with a single-stranded repair template into porcine zygotes. Using this approach a line of pigs that carry pseudo attP sites within the COL1A locus to enable phiC31 integrase mediated introduction of transgenes has been generated. This new route for genome engineering in pigs via zygote injection should greatly enhance applications in both agriculture and biomedicine. PMID:28195163

  12. Genome-wide detection of genes targeted by non-Ig somatic hypermutation in lymphoma.

    Directory of Open Access Journals (Sweden)

    Yanwen Jiang

    Full Text Available The processes of somatic hypermutation (SHM and class switch recombination introduced by activation-induced cytosine deaminase (AICDA at the Immunoglobulin (Ig loci are key steps for creating a pool of diversified antibodies in germinal center B cells (GCBs. Unfortunately, AICDA can also accidentally introduce mutations at bystander loci, particularly within the 5' regulatory regions of proto-oncogenes relevant to diffuse large B cell lymphomas (DLBCL. Since current methods for genomewide sequencing such as Exon Capture and RNAseq only target mutations in coding regions, to date non-Ig promoter SHMs have been studied only in a handful genes. We designed a novel approach integrating bioinformatics tools with next generation sequencing technology to identify regulatory loci targeted by SHM genome-wide. We observed increased numbers of SHM associated sequence variant hotspots in lymphoma cells as compared to primary normal germinal center B cells. Many of these SHM hotspots map to genes that have not been reported before as mutated, including BACH2, BTG2, CXCR4, CIITA, EBF1, PIM2, and TCL1A, etc., all of which have potential roles in B cell survival, differentiation, and malignant transformation. In addition, using BCL6 and BACH2 as examples, we demonstrated that SHM sites identified in these 5' regulatory regions greatly altered their transcription activities in a reporter assay. Our approach provides a first cost-efficient, genome-wide method to identify regulatory mutations and non-Ig SHM hotspots.

  13. Claudin-1 is a p63 target gene with a crucial role in epithelial development.

    Directory of Open Access Journals (Sweden)

    Teresa Lopardo

    Full Text Available The epidermis of the skin is a self-renewing, stratified epithelium that functions as the interface between the human body and the outer environment, and acts as a barrier to water loss. Components of intercellular junctions, such as Claudins, are critical to maintain tissue integrity and water retention. p63 is a transcription factor essential for proliferation of stem cells and for stratification in epithelia, mutated in human hereditary syndromes characterized by ectodermal dysplasia. Both p63 and Claudin-1 null mice die within few hours from birth due to dehydration from severe skin abnormalities. These observations suggested the possibility that these two genes might be linked in one regulatory pathway with p63 possibly regulating Claudin-1 expression. Here we show that silencing of DeltaNp63 in primary mouse keratinocytes results in a marked down-regulation of Claudin-1 expression (-80%. DeltaNp63alpha binds in vivo to the Claudin-1 promoter and activates both the endogenous Claudin-1 gene and a reporter vector containing a -1.4 Kb promoter fragment of the Claudin-1 gene. Accordingly, Claudin-1 expression was absent in the skin of E15.5 p63 null mice and natural p63 mutant proteins, specifically those found in Ankyloblepharon-Ectodermal dysplasia-Clefting (AEC patients, were indeed altered in their capacity to regulate Claudin-1 transcription. This correlates with deficient Claudin-1 expression in the epidermis of an AEC patient carrying the I537T p63 mutation. Notably, AEC patients display skin fragility similar to what observed in the epidermis of Claudin-1 and p63 null mice. These findings reinforce the hypothesis that these two genes might be linked in a common regulatory pathway and that Claudin-1 may is an important p63 target gene involved in the pathogenesis of ectodermal dysplasias.

  14. Peptide GE11-Polyethylene Glycol-Polyethylenimine for targeted gene delivery in laryngeal cancer.

    Science.gov (United States)

    Ren, Henglei; Zhou, Liang; Liu, Min; Lu, Weiyue; Gao, Chunli

    2015-07-01

    The objective of this study was to evaluate the possibility of using GE11-polyethylene glycol-polyethylenimine (GE11-PEG-PEI) for targeted gene delivery to treat epidermal growth factor receptor (EGFR)-overexpressing laryngeal cancer. This study described the design, characterization, and in vitro and in vivo study of the nanocarrier GE11-PEG-PEI for gene delivery to treat laryngeal cancer. Analysis of the sizes and zeta potentials indicated that the formation of PEGylated complexes was dependent on the N/P ratio, and these complexes were capable of binding plasmid DNA and condensing DNA into small positively charged nanoparticles. The results also revealed that GE11-PEG-PEI had a weaker effect on cell survival in vitro. Gene transfection was performed on human laryngeal cancer Hep-2 cells in vitro and in vivo. Both the in vitro and in vivo results demonstrated that GE11-PEG-PEI had greater transfection efficiency than mPEG-PEI. Compared with mPEG-PEI/pORF-hTRAIL and saline, GE11-PEG-PEI/pORFh-TRAIL significantly (p < 0.05) reduced tumor growth in nude mice with laryngeal cancer. Moreover, the GE11-PEG-PEI/pORF-hTRAIL-treated groups showed more apoptosis than the mPEG-PEI/pORF-hTRAIL-treated groups. Therefore, our results showed that the peptide GE11 conjugated to PEG-PEI delivered significantly more genes to EGFR-overexpressing laryngeal cancer cells in vivo, indicating that GE11-PEG-PEI may be a suitable gene vector for treating EGFR-overexpressing laryngeal cancer.

  15. The Endosymbiotic Bacterium Wolbachia Selectively Kills Male Hosts by Targeting the Masculinizing Gene.

    Directory of Open Access Journals (Sweden)

    Takahiro Fukui

    2015-07-01

    Full Text Available Pathogens are known to manipulate the reproduction and development of their hosts for their own benefit. Wolbachia is an endosymbiotic bacterium that infects a wide range of insect species. Wolbachia is known as an example of a parasite that manipulates the sex of its host's progeny. Infection of Ostrinia moths by Wolbachia causes the production of all-female progeny, however, the mechanism of how Wolbachia accomplishes this male-specific killing is unknown. Here we show for the first time that Wolbachia targets the host masculinizing gene of Ostrinia to accomplish male-killing. We found that Wolbachia-infected O. furnacalis embryos do not express the male-specific splice variant of doublesex, a gene which acts at the downstream end of the sex differentiation cascade, throughout embryonic development. Transcriptome analysis revealed that Wolbachia infection markedly reduces the mRNA level of Masc, a gene that encodes a protein required for both masculinization and dosage compensation in the silkworm Bombyx mori. Detailed bioinformatic analysis also elucidated that dosage compensation of Z-linked genes fails in Wolbachia-infected O. furnacalis embryos, a phenomenon that is extremely similar to that observed in Masc mRNA-depleted male embryos of B. mori. Finally, injection of in vitro transcribed Masc cRNA into Wolbachia-infected embryos rescued male progeny. Our results show that Wolbachia-induced male-killing is caused by a failure of dosage compensation via repression of the host masculinizing gene. Our study also shows a novel strategy by which a pathogen hijacks the host sex determination cascade.

  16. Matrix metalloproteinase gene expressions might be oxidative stress targets in gastric cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Salih Gencer; Anil Cebeci; Meliha Burcu Irmak-Yazicioglu

    2013-01-01

    Objective:Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer.We aimed to analyze the effect of the accumulation of oxidative stress in the gastric cancer MKN-45 and 23132/87 cells following hydrogen peroxide (H2O2) exposure on the expression patterns of MMP-1,MMP-3,MMP-7,MMP-9,MMP-10,MMP-11,MMP-12,MMP-14,MMP-15,MMP-17,MMP-23,MMP-28,and β-catenin genes.Methods:The mRNA transcripts in the cells were determined by RT-PCR.Following H2O2 exposure,oxidative stress in the viable cells was analyzed by 2',7'-dichlorofluorescein diacetate (DCFH-DA).Caffeic acid phenethyl ester (CAPE) was used to eliminate oxidative stress and the consequence of H2O2 exposure and its removal on the expressions of the genes were evaluated by quantitative real-time PCR.Results:The expressions of MMP-1,MMP-7,MMP-14,MMP-15,MMP-17 and β-catenin in MKN-45 cells and only the expression of MMP-15 in 23132/87 cells were increased.Removal of the oxidative stress resulted in decrease in the expressions of MMP genes of which the expressions were increased after H2O2 exposure.β-catenin,a transcription factor for many genes including MMPs,also displayed decreased levels of expression in both of the cell lines following CAPE treatment.Conclusions:Our data suggest that there is a remarkable link between the accumulation of oxidative stress and the increased expressions of MMP genes in the gastric cancer cells and MMPs should be considered as potential targets of therapy in gastric cancers due to its continuous exposure to oxidative stress.

  17. A potential target gene for the host-directed therapy of mycobacterial infection in murine macrophages

    Science.gov (United States)

    Bao, Zhang; Chen, Ran; Zhang, Pei; Lu, Shan; Chen, Xing; Yao, Yake; Jin, Xiaozheng; Sun, Yilan; Zhou, Jianying

    2016-01-01

    Mycobacterium tuberculosis (MTB), one of the major bacterial pathogens for lethal infectious diseases, is capable of surviving within the phagosomes of host alveolar macrophages; therefore, host genetic variations may alter the susceptibility to MTB. In this study, to identify host genes exploited by MTB during infection, genes were non-selectively inactivated using lentivirus-based antisense RNA methods in RAW264.7 macrophages, and the cells that survived virulent MTB infection were then screened. Following DNA sequencing of the surviving cell clones, 26 host genes affecting susceptibility to MTB were identified and their pathways were analyzed by bioinformatics analysis. In total, 9 of these genes were confirmed as positive regulators of collagen α-5(IV) chain (Col4a5) expression, a gene encoding a type IV collagen subunit present on the cell surface. The knockdown of Col4a5 consistently suppressed intracellular mycobacterial viability, promoting the survival of RAW264.7 macrophages following mycobacterial infection. Furthermore, Col4a5 deficiency lowered the pH levels of intracellular vesicles, including endosomes, lysosomes and phagosomes in the RAW264.7 cells. Finally, the knockdown of Col4a5 post-translationally increased microsomal vacuolar-type H+-ATPase activity in macrophages, leading to the acidification of intracellular vesicles. Our findings reveal a novel role for Col4a5 in the regulation of macrophage responses to mycobacterial infection and identify Col4a5 as a potential target for the host-directed anti-mycobacterial therapy. PMID:27432120

  18. The Endosymbiotic Bacterium Wolbachia Selectively Kills Male Hosts by Targeting the Masculinizing Gene.

    Science.gov (United States)

    Fukui, Takahiro; Kawamoto, Munetaka; Shoji, Keisuke; Kiuchi, Takashi; Sugano, Sumio; Shimada, Toru; Suzuki, Yutaka; Katsuma, Susumu

    2015-07-01

    Pathogens are known to manipulate the reproduction and development of their hosts for their own benefit. Wolbachia is an endosymbiotic bacterium that infects a wide range of insect species. Wolbachia is known as an example of a parasite that manipulates the sex of its host's progeny. Infection of Ostrinia moths by Wolbachia causes the production of all-female progeny, however, the mechanism of how Wolbachia accomplishes this male-specific killing is unknown. Here we show for the first time that Wolbachia targets the host masculinizing gene of Ostrinia to accomplish male-killing. We found that Wolbachia-infected O. furnacalis embryos do not express the male-specific splice variant of doublesex, a gene which acts at the downstream end of the sex differentiation cascade, throughout embryonic development. Transcriptome analysis revealed that Wolbachia infection markedly reduces the mRNA level of Masc, a gene that encodes a protein required for both masculinization and dosage compensation in the silkworm Bombyx mori. Detailed bioinformatic analysis also elucidated that dosage compensation of Z-linked genes fails in Wolbachia-infected O. furnacalis embryos, a phenomenon that is extremely similar to that observed in Masc mRNA-depleted male embryos of B. mori. Finally, injection of in vitro transcribed Masc cRNA into Wolbachia-infected embryos rescued male progeny. Our results show that Wolbachia-induced male-killing is caused by a failure of dosage compensation via repression of the host masculinizing gene. Our study also shows a novel strategy by which a pathogen hijacks the host sex determination cascade.

  19. Identification of direct serum-response factor gene targets during Me2SO-induced P19 cardiac cell differentiation.

    Science.gov (United States)

    Zhang, Shu Xing; Garcia-Gras, Eduardo; Wycuff, Diane R; Marriot, Suzanne J; Kadeer, Nijiati; Yu, Wei; Olson, Eric N; Garry, Daniel J; Parmacek, Michael S; Schwartz, Robert J

    2005-05-13

    Serum-response factor (SRF) is an obligatory transcription factor, required for the formation of vertebrate mesoderm leading to the origin of the cardiovascular system. Protein A-TEV-tagged chromatin immunoprecipitation technology was used to collect direct SRF-bound gene targets from pluripotent P19 cells, induced by Me2SO treatment into an enriched cardiac cell population. From 242 sequenced DNA fragments, we identified 188 genomic DNA fragments as potential direct SRF targets that contain CArG boxes and CArG-like boxes. Of the 92 contiguous genes that were identified, a subgroup of 43 SRF targets was then further validated by co-transfection assays with SRF. Expression patterns of representative candidate genes were compared with the LacZ reporter expression activity of the endogenous SRF gene. According to the Unigene data base, 84% of the SRF target candidates were expressed, at least, in the heart. In SRF null embryonic stem cells, 81% of these SRF target candidates were greatly affected by the absence of SRF. Among these SRF-regulated genes, Raf1, Map4k4, and Bicc1 have essential roles in mesoderm formation. The 12 regulated SRF target genes, Mapk10 (JNK3), Txnl2, Azi2, Tera, Sema3a, Lrp4, Actc1, Myl3, Hspg2, Pgm2, Hif3a, and Asb5, have been implicated in cardiovascular formation, and the Ski and Hes6 genes have roles in muscle differentiation. SRF target genes related to cell mitosis and cycle, E2f5, Npm1, Cenpb, Rbbp6, and Scyl1, expressed in the heart tissue were differentially regulated in SRF null ES cells.

  20. Targeted exon sequencing successfully discovers rare causative genes and clarifies the molecular epidemiology of Japanese deafness patients.

    Science.gov (United States)

    Miyagawa, Maiko; Naito, Takehiko; Nishio, Shin-ya; Kamatani, Naoyuki; Usami, Shin-ichi

    2013-01-01

    Target exon resequencing using Massively Parallel DNA Sequencing (MPS) is a new powerful strategy to discover causative genes in rare Mendelian disorders such as deafness. We attempted to identify genomic variations responsible for deafness by massive sequencing of the exons of 112 target candidate genes. By the analysis of 216randomly selected Japanese deafness patients (120 early-onset and 96 late-detected), who had already been evaluated for common genes/mutations by Invader assay and of which 48 had already been diagnosed, we efficiently identified causative mutations and/or mutation candidates in 57 genes. Approximately 86.6% (187/216) of the patients had at least one mutation. Of the 187 patients, in 69 the etiology of the hearing loss was completely explained. To determine which genes have the greatest impact on deafness etiology, the number of mutations was counted, showing that those in GJB2 were exceptionally higher, followed by mutations in SLC26A4, USH2A, GPR98, MYO15A, COL4A5 and CDH23. The present data suggested that targeted exon sequencing of selected genes using the MPS technology followed by the appropriate filtering algorithm will be able to identify rare responsible genes including new candidate genes for individual patients with deafness, and improve molecular diagnosis. In addition, using a large number of patients, the present study clarified the molecular epidemiology of deafness in Japanese. GJB2 is the most prevalent causative gene, and the major (commonly found) gene mutations cause 30-40% of deafness while the remainder of hearing loss is the result of various rare genes/mutations that have been difficult to diagnose by the conventional one-by-one approach. In conclusion, target exon resequencing using MPS technology is a suitable method to discover common and rare causative genes for a highly heterogeneous monogenic disease like hearing loss.

  1. Optimizations of siRNA design for the activation of gene transcription by targeting the TATA-box motif.

    Directory of Open Access Journals (Sweden)

    Miaomiao Fan

    Full Text Available Small interfering RNAs (siRNAs are widely used to repress gene expression by targeting mRNAs. Some reports reveal that siRNAs can also activate or inhibit gene expression through targeting the gene promoters. Our group has found that microRNAs (miRNAs could activate gene transcription via interaction with the TATA-box motif in gene promoters. To investigate whether siRNA targeting the same region could upregulate the promoter activity, we test the activating efficiency of siRNAs targeting the TATA-box motif of 16 genes and perform a systematic analysis to identify the common features of the functional siRNAs for effective activation of gene promoters. Further, we try various modifications to improve the activating efficiency of siRNAs and find that it is quite useful to design the promoter-targeting activating siRNA by following several rules such as (a complementary to the TATA-box-centered region; (b UA usage at the first two bases of the antisense strand; (c twenty-three nucleotides (nts in length; (d 2'-O-Methyl (2'-OMe modification at the 3' terminus of the antisense strand; (e avoiding mismatches at the 3' end of the antisense strand. The optimized activating siRNAs potently enhance the expression of interleukin-2 (IL-2 gene in human and mouse primary CD4+ T cells with a long-time effect. Taken together, our study provides a guideline for rational design the promoter-targeting siRNA to sequence-specifically enhance gene expression.

  2. Predicting human miRNA target genes using a novel evolutionary methodology

    KAUST Repository

    Aigli, Korfiati

    2012-01-01

    The discovery of miRNAs had great impacts on traditional biology. Typically, miRNAs have the potential to bind to the 3\\'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. The experimental identification of their targets has many drawbacks including cost, time and low specificity and these are the reasons why many computational approaches have been developed so far. However, existing computational approaches do not include any advanced feature selection technique and they are facing problems concerning their classification performance and their interpretability. In the present paper, we propose a novel hybrid methodology which combines genetic algorithms and support vector machines in order to locate the optimal feature subset while achieving high classification performance. The proposed methodology was compared with two of the most promising existing methodologies in the problem of predicting human miRNA targets. Our approach outperforms existing methodologies in terms of classification performances while selecting a much smaller feature subset. © 2012 Springer-Verlag.

  3. A Therapeutic Approach to Nasopharyngeal Carcinomas by DNAzymes Targeting EBV LMP-1 Gene

    Directory of Open Access Journals (Sweden)

    Lun-Quan Sun

    2010-09-01

    Full Text Available Epstein-Barr virus (EBV-encoded latent membrane protein 1 (LMP1 has been known to have oncogenic properties during latent infection in nasopharyngeal carcinoma (NPC. Genetic manipulation of LMP1 expression may provide a novel strategy for the treatment of NPC. DNAzymes are synthetic, single-stranded DNA catalysts that can be engineered to bind and cleave the target mRNA of a disease-causing gene. By targeting the LMP1 mRNA, we successfully obtained a phosphorothioate-modified ‘‘10–23’’ DNAzyme namely DZ1, through screening a series of DNAzymes. DZ1 could significantly down-regulate the expression of LMP1 in NPC cells, inhibit cell proliferation, metastasis, promote apoptosis and enhance radiosensitivity of NPC through interfering signal pathways which are abnormally activated by LMP1, including NF-κB, AP-1 and STAT3 signal pathways. Together, interfering LMP1 signaling pathway could be a promising strategy to target the malignant phenotypes of NPC.

  4. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours.

    Science.gov (United States)

    Parker, Brittany C; Engels, Manon; Annala, Matti; Zhang, Wei

    2014-01-01

    The emergence of fibroblast growth factor receptor (FGFR) family fusions across diverse cancers has brought attention to FGFR-derived cancer therapies. The discovery of the first recurrent FGFR fusion in glioblastoma was followed by discoveries of FGFR fusions in bladder, lung, breast, thyroid, oral, and prostate cancers. Drug targeting of FGFR fusions has shown promising results and should soon be translating into clinical trials. FGFR fusions form as a result of various mechanisms – predominantly deletion for FGFR1, translocation for FGFR2, and tandem duplication for FGFR3. The ability to exploit the unique targetability of FGFR fusions proves that FGFR-derived therapies could have a promising future in cancer therapeutics. Drug targeting of fusion genes has proven to be an extremely effective therapeutic approach for cancers such as the recurrent BCR–ABL1 fusion in chronic myeloid leukaemia. The recent discovery of recurrent FGFR family fusions in several cancer types has brought to attention the unique therapeutic potential for FGFR-positive patients. Understanding the diverse mechanisms of FGFR fusion formation and their oncogenic potential will shed light on the impact of FGFR-derived therapy in the future.

  5. TLR5 as an anti-inflammatory target and modifier gene in cystic fibrosis.

    Science.gov (United States)

    Blohmke, Christoph J; Park, Julie; Hirschfeld, Aaron F; Victor, Rachel E; Schneiderman, Julia; Stefanowicz, Dorota; Chilvers, Mark A; Durie, Peter R; Corey, Mary; Zielenski, Julian; Dorfman, Ruslan; Sandford, Andrew J; Daley, Denise; Turvey, Stuart E

    2010-12-15

    New treatments are needed to improve the health of people with cystic fibrosis (CF). Reducing lung-damaging inflammation is likely to be beneficial, but specific anti-inflammatory targets have not been identified. By combining cellular immunology with a population-based genetic modifier study, we examined TLR5 as an anti-inflammatory target and modifier gene in CF. Using two pairs of human CF and control airway epithelial cells, we demonstrated that the TLR5-flagellin interaction is a major mediator of inflammation following exposure to Pseudomonas aeruginosa. To validate TLR5 as an anti-inflammatory target, we analyzed the disease modifying effects of the TLR5 c.1174C>T single nucleotide polymorphism (rs5744168) in a large cohort of CF patients (n = 2219). rs5744168 encodes a premature stop codon and the T allele is associated with a 45.5-76.3% reduction in flagellin responsiveness (p impact of TLR5 on nutritional status, this translational research provides evidence that genetic variation in TLR5 resulting in reduced flagellin responsiveness is associated with improved health indicators in adults with CF.

  6. Pharmacological and genetic modulation of Wnt-targeted Cre-Lox-mediated gene expression in colorectal cancer cells

    OpenAIRE

    Bordonaro, Michael; Lazarova, Darina L.; Sartorelli, Alan C.

    2004-01-01

    Wnt-targeted gene therapy has been proposed as a treatment for human colorectal cancer (CRC). The Cre-Lox system consists of methodology for enhancing targeted expression from tissue-specific or cancer-specific promoters. We analyzed the efficiency of Wnt-specific promoters as drivers of the Cre-mediated activity of a luciferase reporter gene or cell death effector gene in CRC cell lines in the presence and absence of two modulators of Wnt activity, sodium butyrate and lithium chloride. Butyr...

  7. Design of a ribozyme targeting human telomerase reverse transcriptase and cloning of it's gene

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ming Hap; Jin-Yan Luo; Jin Cheng; Quan-Yin Wang; Guang-Xiao Yang

    2003-01-01

    AIM: To design a hammerhead ribozyme targeting humantelomerase reverse transcriptase (hTERT) and clone it's genefor future use in the study of tumor gene therapy.METHODS: Using the software RNAstructure, the secondarystructure of hTERT mRNA was predicted and the cleavagesite of ribozyme was selected. A hammerhead ribozymetargeting this site was designed and bimolecular fold betweenthe ribozyme and hTERT was predicted. The DNA encodingthe ribozyme was synthesized and cloned into pGEMEX-1and the sequence of the ribozyme gene was confirmed byDNA sequencing.RESULTS: Triplet GUC at 1742 of hTERT mRNA was chosenas the cleavage site of the ribozyme. The designed ribozymewas comprised of 22nt catalytic core and 17nt flankingsequence. Computer-aided prediction suggested that theribozyme and hTERT mRNA could cofold into a properconformation. Endonuclease restriction and DNA sequencingconfirmed the correct insertion of the ribozyme gene intothe vector pGEMEX-1.CONCLUSION: This fundamental work of successfuldesigning and cloning of an anti-hTERT hammerheadribozyme has paved the way for further study of inhibitingtumor cell growth by cleaving hTERT mRNA with ribozyme.

  8. MicroRNA-155 targets the SKI gene in human melanoma cell lines.

    Science.gov (United States)

    Levati, Lauretta; Pagani, Elena; Romani, Sveva; Castiglia, Daniele; Piccinni, Eugenia; Covaciu, Claudia; Caporaso, Patrizia; Bondanza, Sergio; Antonetti, Francesca R; Bonmassar, Enzo; Martelli, Fabio; Alvino, Ester; D'Atri, Stefania

    2011-06-01

    The SKI protein is a transcriptional coregulator over-expressed in melanoma. Experimentally induced down-regulation of SKI inhibits melanoma cell growth in vitro and in vivo. MicroRNAs (miRNAs) negatively modulate gene expression and have been implicated in oncogenesis. We previously showed that microRNA-155 (miR-155) is down-regulated in melanoma cells as compared with normal melanocytes and that its ectopic expression impairs proliferation and induces apoptosis. Here, we investigated whether miR-155 could mediate melanoma growth inhibition via SKI gene silencing. Luciferase reporter assays demonstrated that miR-155 interacted with SKI 3'UTR and impaired gene expression. Transfection of melanoma cells with miR-155 reduced SKI levels, while inhibition of endogenous miR-155 up-regulated SKI expression. Specifically designed small interfering RNAs reduced SKI expression and inhibited proliferation. However, melanoma cells over-expressing a 3'UTR-deleted SKI were still susceptible to the antiproliferative effect of miR-155. Our data demonstrate for the first time that SKI is a target of miR-155 in melanoma. However, impairment of SKI expression is not the leading mechanism involved in the growth-suppressive effect of miR-155 found in this malignancy.

  9. Generation of stable mutants and targeted gene deletion strains in Cryptococcus neoformans through electroporation.

    Science.gov (United States)

    Lin, Xiaorong; Chacko, Nadia; Wang, Linqi; Pavuluri, Yashwant

    2015-04-01

    Cryptococcus neoformans is the etiologic agent of cryptococcal meningitis that causes more than half a million deaths worldwide each year. This capsulated basidiomycetous yeast also serves as a model for micropathogenic studies. The ability to make stable mutants, either via ectopic integration or homologous recombination, has been accomplished using biolistic transformation. This technical advance has greatly facilitated the research on the basic biology and pathogenic mechanisms of this pathogen in the past two decades. However, biolistic transformation is costly, and its reproducibility varies widely. Here we found that stable ectopic integration or targeted gene deletion via homologous replacement could be accomplished through electroporative transformation. The stability of the transformants obtained through electroporation and the frequency of homologous replacement is highly dependent on the selective marker. A frequency of homologous recombination among the stable transformants obtained by electroporation is comparable to those obtained by biolistic transformation (∼10%) when dominant drug selection markers are used, which is much higher than what has been previously reported for electroporation when auxotrophic markers were used (0.001% to 0.1%). Furthermore, disruption of the KU80 gene or generation of gene deletion constructs using the split marker strategy, two approaches known to increase homologous replacement among transformants obtained through biolistic transformation, also increase the frequency of homologous replacement among transformants obtained through electroporation. Therefore, electroporation provides a low cost alternative for mutagenesis in Cryptococcus.

  10. BACH1, the master regulator gene: A novel candidate target for cancer therapy.

    Science.gov (United States)

    Davudian, Sadaf; Mansoori, Behzad; Shajari, Neda; Mohammadi, Ali; Baradaran, Behzad

    2016-08-15

    BACH1 (BTB and CNC homology 1, basic leucine zipper transcription factor 1) is a transcriptional factor and a member of cap 'n' collar (CNC) and basic region leucine zipper factor family. In contrast to other bZIP family members, BACH1 appeared as a comparatively specific transcription factor. It acts as transcription regulator and is recognized as a recently hypoxia regulator and functions as an inducible repressor for the HO-1 gene in many human cell types in response to stress oxidative. In regard to studies lately, although, BACH1 has been related to the regulation of oxidative stress and heme oxidation, it has never been linked to invasion and metastasis. Recent studies have showed that BACH1 is involved in bone metastasis of breast cancer by up-regulating vital metastatic genes like CXCR4 and MMP1. This newly discovered aspect of BACH1 gene provides new insight into cancer progression study and stands on its master regulator role in metastasis process, raising the possibility of considering it as a potential target for cancer therapy.

  11. Knockout of Lysosomal Enzyme-Targeting Gene Causes Abnormalities in Mouse Pup Isolation Calls

    Science.gov (United States)

    Barnes, Terra D.; Holy, Timothy E.

    2017-01-01

    Humans lacking a working copy of the GNPTAB gene suffer from the metabolic disease Mucolipidosis type II (MLII). MLII symptoms include mental retardation, skeletal deformities and cartilage defects as well as a speech delay with most subjects unable to utter single words (Otomo et al., 2009; Cathey et al., 2010; Leroy et al., 2012). Here we asked whether mice lacking a copy of Gnptab gene exhibited vocal abnormities. We recorded ultrasonic vocalizations from 5 to 8 day old mice separated from their mother and littermates. Although Gnptab−/− pups emitted a similar number of calls, several features of the calls were different from their wild type littermates. Gnptab−/− mice showed a decrease in the length of calls, an increase in the intra-bout pause duration, significantly fewer pitch jumps with smaller mean size, and an increase in the number of isolated calls. In addition, Gnptab−/− mice vocalizations had less power, particularly in the higher frequencies. Gnptab+/− mouse vocalizations did not appear to be affected. We then attempted to classify these recordings using these features to determine the genotype of the animal. We were able to correctly identify 87% of the recordings as either Gnptab−/− or Gnptab+/+ pup, significantly better than chance, demonstrating that genotype is a strong predictor of vocalization phenotype. These data show that deletion of genes in the lysosomal enzyme targeting pathway affect mouse pup isolation calls.

  12. Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation

    Directory of Open Access Journals (Sweden)

    Nakano Toshitsugu

    2011-01-01

    Full Text Available Abstract Background During ripening, climacteric fruits increase their ethylene level and subsequently undergo various physiological changes, such as softening, pigmentation and development of aroma and flavor. These changes occur simultaneously and are caused by the highly synchronized expression of numerous genes at the onset of ripening. In tomatoes, the MADS-box transcription factor RIN has been regarded as a key regulator responsible for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated controls. However, except for LeACS2, direct targets of RIN have not been clarified, and little is known about the transcriptional cascade for ripening. Results Using immunoprecipitated (IPed DNA fragments recovered by chromatin immunoprecipitation (ChIP with anti-RIN antibody from ripening tomato fruit, we analyzed potential binding sites for RIN (CArG-box sites in the promoters of representative ripening-induced genes by quantitative PCR. Results revealed nearly a 5- to 20-fold enrichment of CArG boxes in the promoters of LeACS2, LeACS4, PG, TBG4, LeEXP1, and LeMAN4 and of RIN itself, indicating direct interaction of RIN with their promoters in vivo. Moreover, sequence analysis and genome mapping of 51 cloned IPed DNAs revealed potential RIN binding sites. Quantitative PCR revealed that four of the potential binding sites were enriched 4- to 17-fold in the IPed DNA pools compared with the controls, indicating direct interaction of RIN with these sites in vivo. Near one of the four CArG boxes we found a gene encoding a protein similar to thioredoxin y1. An increase in the transcript level of this gene was observed with ripening in normal fruit but not in the rin mutant, suggesting that RIN possibly induces its expression. Conclusions The presented results suggest that RIN controls fruit softening and ethylene production by the direct transcriptional regulation of cell-wall-modifying genes and ethylene biosynthesis genes

  13. AID-targeting and hypermutation of non-immunoglobulin genes does not correlate with proximity to immunoglobulin genes in germinal center B cells.

    Science.gov (United States)

    Gramlich, Hillary Selle; Reisbig, Tara; Schatz, David G

    2012-01-01

    Upon activation, B cells divide, form a germinal center, and express the activation induced deaminase (AID), an enzyme that triggers somatic hypermutation of the variable regions of immunoglobulin (Ig) loci. Recent evidence indicates that at least 25% of expressed genes in germinal center B cells are mutated or deaminated by AID. One of the most deaminated genes, c-Myc, frequently appears as a translocation partner with the Ig heavy chain gene (Igh) in mouse plasmacytomas and human Burkitt's lymphomas. This indicates that the two genes or their double-strand break ends come into close proximity at a biologically relevant frequency. However, the proximity of c-Myc and Igh has never been measured in germinal center B cells, where many such translocations are thought to occur. We hypothesized that in germinal center B cells, not only is c-Myc near Igh, but other mutating non-Ig genes are deaminated by AID because they are near Ig genes, the primary targets of AID. We tested this "collateral damage" model using 3D-fluorescence in situ hybridization (3D-FISH) to measure the distance from non-Ig genes to Ig genes in germinal center B cells. We also made mice transgenic for human MYC and measured expression and mutation of the transgenes. We found that there is no correlation between proximity to Ig genes and levels of AID targeting or gene mutation, and that c-Myc was not closer to Igh than were other non-Ig genes. In addition, the human MYC transgenes did not accumulate mutations and were not deaminated by AID. We conclude that proximity to Ig loci is unlikely to be a major determinant of AID targeting or mutation of non-Ig genes, and that the MYC transgenes are either missing important regulatory elements that allow mutation or are unable to mutate because their new nuclear position is not conducive to AID deamination.

  14. AID-targeting and hypermutation of non-immunoglobulin genes does not correlate with proximity to immunoglobulin genes in germinal center B cells.

    Directory of Open Access Journals (Sweden)

    Hillary Selle Gramlich

    Full Text Available Upon activation, B cells divide, form a germinal center, and express the activation induced deaminase (AID, an enzyme that triggers somatic hypermutation of the variable regions of immunoglobulin (Ig loci. Recent evidence indicates that at least 25% of expressed genes in germinal center B cells are mutated or deaminated by AID. One of the most deaminated genes, c-Myc, frequently appears as a translocation partner with the Ig heavy chain gene (Igh in mouse plasmacytomas and human Burkitt's lymphomas. This indicates that the two genes or their double-strand break ends come into close proximity at a biologically relevant frequency. However, the proximity of c-Myc and Igh has never been measured in germinal center B cells, where many such translocations are thought to occur. We hypothesized that in germinal center B cells, not only is c-Myc near Igh, but other mutating non-Ig genes are deaminated by AID because they are near Ig genes, the primary targets of AID. We tested this "collateral damage" model using 3D-fluorescence in situ hybridization (3D-FISH to measure the distance from non-Ig genes to Ig genes in germinal center B cells. We also made mice transgenic for human MYC and measured expression and mutation of the transgenes. We found that there is no correlation between proximity to Ig genes and levels of AID targeting or gene mutation, and that c-Myc was not closer to Igh than were other non-Ig genes. In addition, the human MYC transgenes did not accumulate mutations and were not deaminated by AID. We conclude that proximity to Ig loci is unlikely to be a major determinant of AID targeting or mutation of non-Ig genes, and that the MYC transgenes are either missing important regulatory elements that allow mutation or are unable to mutate because their new nuclear position is not conducive to AID deamination.

  15. A low-copy-number plasmid for retrieval of toxic genes from BACs and generation of conditional targeting constructs.

    Science.gov (United States)

    Na, Giyoun; Wolfe, Andrew; Ko, Chemyong; Youn, Hyesook; Lee, Young-Min; Byun, Sung June; Jeon, Iksoo; Koo, Yongbum

    2013-06-01

    Bacterial Artificial Chromosome (BAC) clones are widely used for retrieving genomic DNA sequences for gene targeting. In this study, low-copy-number plasmids pBAC-FB, pBAC-FC, and pBAC-DE, which carry the F plasmid replicon, were generated from pBACe3.6. pBAC-FB was successfully used to retrieve a sequence of a BAC that was resistant to retrieval by a high-copy-number plasmid via λ Red-mediated recombineering (gap-repair cloning). This plasmid was also used to retrieve two other genes from BAC, indicating its general usability retrieving genes from BAC. The retrieved genes were manipulated in generating targeting vectors for gene knockouts by recombineering. The functionality of the targeting vector was further validated in a targeting experiment with C57BL/6 embryonic stem cells. The low-copy-number plasmid pBAC-FB is a plasmid of choice to retrieve toxic DNA sequences from BACs and to manipulate them to generate gene-targeting constructs by recombineering.

  16. TCDD dysregulation of 13 AHR-target genes in rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Watson, John D., E-mail: john.watson@oicr.on.ca [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Prokopec, Stephenie D., E-mail: stephenie.prokopec@oicr.on.ca [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Smith, Ashley B., E-mail: ashleyblaines@gmail.com [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Okey, Allan B., E-mail: allan.okey@utoronto.ca [Department of Pharmacology and Toxicology, University of Toronto, Toronto (Canada); Pohjanvirta, Raimo, E-mail: raimo.pohjanvirta@helsinki.fi [Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio (Finland); Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki (Finland); Boutros, Paul C., E-mail: paul.boutros@oicr.on.ca [Ontario Institute for Cancer Research, Department of Informatics and Bio-computing Program, Toronto (Canada); Department of Pharmacology and Toxicology, University of Toronto, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 μg/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 μg/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules

  17. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana.

    Science.gov (United States)

    Yu, Xiaofei; Li, Lei; Zola, Jaroslaw; Aluru, Maneesha; Ye, Huaxun; Foudree, Andrew; Guo, Hongqing; Anderson, Sarah; Aluru, Srinivas; Liu, Peng; Rodermel, Steve; Yin, Yanhai

    2011-02-01

    Brassinosteroids (BRs) are important regulators for plant growth and development. BRs signal to control the activities of the BES1 and BZR1 family transcription factors. The transcriptional network through which BES1 and BZR regulate large number of target genes is mostly unknown. By combining chromatin immunoprecipitation coupled with Arabidopsis tiling arrays (ChIP-chip) and gene expression studies, we have identified 1609 putative BES1 target genes, 404 of which are regulated by BRs and/or in gain-of-function bes1-D mutant. BES1 targets contribute to BR responses and interactions with other hormonal or light signaling pathways. Computational modeling of gene expression data using Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) reveals that BES1-targeted transcriptional factors form a gene regulatory network (GRN). Mutants of many genes in the network displayed defects in BR responses. Moreover, we found that BES1 functions to inhibit chloroplast development by repressing the expression of GLK1 and GLK2 transcription factors, confirming a hypothesis generated from the GRN. Our results thus provide a global view of BR regulated gene expression and a GRN that guides future studies in understanding BR-regulated plant growth.

  18. Captured metagenomics: large-scale targeting of genes based on 'sequence capture' reveals functional diversity in soils.

    Science.gov (United States)

    Manoharan, Lokeshwaran; Kushwaha, Sandeep K; Hedlund, Katarina; Ahrén, Dag

    2015-12-01

    Microbial enzyme diversity is a key to understand many ecosystem processes. Whole metagenome sequencing (WMG) obtains information on functional genes, but it is costly and inefficient due to large amount of sequencing that is required. In this study, we have applied a captured metagenomics technique for functional genes in soil microorganisms, as an alternative to WMG. Large-scale targeting of functional genes, coding for enzymes related to organic matter degradation, was applied to two agricultural soil communities through captured metagenomics. Captured metagenomics uses custom-designed, hybridization-based oligonucleotide probes that enrich functional genes of interest in metagenomic libraries where only probe-bound DNA fragments are sequenced. The captured metagenomes were highly enriched with targeted genes while maintaining their target diversity and their taxonomic distribution correlated well with the traditional ribosomal sequencing. The captured metagenomes were highly enriched with genes related to organic matter degradation; at least five times more than similar, publicly available soil WMG projects. This target enrichment technique also preserves the functional representation of the soils, thereby facilitating comparative metagenomics projects. Here, we present the first study that applies the captured metagenomics approach in large scale, and this novel method allows deep investigations of central ecosystem processes by studying functional gene abundances.

  19. A targeted constitutive mutation in the APC tumor suppressor gene underlies mammary but not intestinal tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Claudia Gaspar

    2009-07-01

    Full Text Available Germline mutations in the adenomatous polyposis coli (APC gene are responsible for familial adenomatous polyposis (FAP, an autosomal dominant hereditary predisposition to the development of multiple colorectal adenomas and of a broad spectrum of extra-intestinal tumors. Moreover, somatic APC mutations play a rate-limiting and initiating role in the majority of sporadic colorectal cancers. Notwithstanding its multifunctional nature, the main tumor suppressing activity of the APC gene resides in its ability to regulate Wnt/beta-catenin signaling. Notably, genotype-phenotype correlations have been established at the APC gene between the length and stability of the truncated proteins encoded by different mutant alleles, the corresponding levels of Wnt/beta-catenin signaling activity they encode for, and the incidence and distribution of intestinal and extra-intestinal tumors. Here, we report a novel mouse model, Apc1572T, obtained by targeting a truncated mutation at codon 1572 in the endogenous Apc gene. This hypomorphic mutant allele results in intermediate levels of Wnt/beta-catenin signaling activation when compared with other Apc mutations associated with multifocal intestinal tumors. Notwithstanding the constitutive nature of the mutation, Apc(+/1572T mice have no predisposition to intestinal cancer but develop multifocal mammary adenocarcinomas and subsequent pulmonary metastases in both genders. The histology of the Apc1572T primary mammary tumours is highly heterogeneous with luminal, myoepithelial, and squamous lineages and is reminiscent of metaplastic carcinoma of the breast in humans. The striking phenotype of Apc(+/1572T mice suggests that specific dosages of Wnt/beta-catenin signaling activity differentially affect tissue homeostasis and initiate tumorigenesis in an organ-specific fashion.

  20. Targeted disruption of the CP2 gene, a member of the NTF family of transcription factors.

    Science.gov (United States)

    Ramamurthy, L; Barbour, V; Tuckfield, A; Clouston, D R; Topham, D; Cunningham, J M; Jane, S M

    2001-03-16

    The NTF-like family of transcription factors have been implicated in developmental regulation in organisms as diverse as Drosophila and man. The two mammalian members of this family, CP2 (LBP-1c/LSF) and LBP-1a (NF2d9), are highly related proteins sharing an overall amino acid identity of 72%. CP2, the best characterized of these factors, is a ubiquitously expressed 66-kDa protein that binds the regulatory regions of many diverse genes. Consequently, a role for CP2 has been proposed in globin gene expression, T-cell responses to mitogenic stimulation, and several other cellular processes. To elucidate the in vivo role of CP2, we have generated mice nullizygous for the CP2 allele. These animals were born in a normal Mendelian distribution and displayed no defects in growth, behavior, fertility, or development. Specifically, no perturbation of hematopoietic differentiation, globin gene expression, or immunological responses to T- and B-cell mitogenic stimulation was observed. RNA and protein analysis confirmed that the nullizygous mice expressed no full-length or truncated version of CP2. Electrophoretic mobility shift assays with nuclear extracts from multiple tissues demonstrated loss of CP2 DNA binding activity in the -/- lines. However, a slower migrating complex that was ablated with antiserum to NF2d9, the murine homologue of LBP-1a, was observed with these extracts. Furthermore, we demonstrate that recombinant LBP-1a can bind to known CP2 consensus sites and form protein complexes with previously defined heteromeric partners of CP2. These results suggest that LBP-1a/NF2d9 may compensate for loss of CP2 expression in vivo and that further analysis of the role of the NTF family of proteins requires the targeting of the NF2d9 gene.

  1. Global investigation of the co-evolution of MIRNA genes and microRNA targets during soybean domestication.

    Science.gov (United States)

    Liu, Tengfei; Fang, Chao; Ma, Yanming; Shen, Yanting; Li, Congcong; Li, Qing; Wang, Min; Liu, Shulin; Zhang, Jixiang; Zhou, Zhengkui; Yang, Rui; Wang, Zheng; Tian, Zhixi

    2016-02-01

    Although the selection of coding genes during plant domestication has been well studied, the evolution of MIRNA genes (MIRs) and the interaction between microRNAs (miRNAs) and their targets in this process are poorly understood. Here, we present a genome-wide survey of the selection of MIRs and miRNA targets during soybean domestication and improvement. Our results suggest that, overall, MIRs have higher evolutionary rates than miRNA targets. Nonetheless, they do demonstrate certain similar evolutionary patterns during soybean domestication: MIRs and miRNA targets with high expression and duplication status, and with greater numbers of partners, exhibit lower nucleotide divergence than their counterparts without these characteristics, suggesting that expression level, duplication status, and miRNA-target interaction are essential for evolution of MIRs and miRNA targets. Further investigation revealed that miRNA-target pairs that are subjected to strong purifying selection have greater similarities than those that exhibited genetic diversity. Moreover, mediated by domestication and improvement, the similarities of a large number of miRNA-target pairs in cultivated soybean populations were increased compared to those in wild soybeans, whereas a small number of miRNA-target pairs exhibited decreased similarity, which may be associated with the adoption of particular domestication traits. Taken together, our results shed light on the co-evolution of MIRs and miRNA targets during soybean domestication.

  2. Defective Regulation of MicroRNA Target Genes in Myoblasts from Facioscapulohumeral Dystrophy Patients*

    Science.gov (United States)

    Dmitriev, Petr; Stankevicins, Luiza; Ansseau, Eugenie; Petrov, Andrei; Barat, Ana; Dessen, Philippe; Robert, Thomas; Turki, Ahmed; Lazar, Vladimir; Labourer, Emmanuel; Belayew, Alexandra; Carnac, Gilles; Laoudj-Chenivesse, Dalila; Lipinski, Marc; Vassetzky, Yegor S.

    2013-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression. PMID:24145033

  3. NF-kB activation and its downstream target genes expression after heavy ions exposure

    Science.gov (United States)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a

  4. MK3 controls Polycomb target gene expression via negative feedback on ERK

    Directory of Open Access Journals (Sweden)

    Prickaerts Peggy

    2012-08-01

    Full Text Available Abstract Background Gene-environment interactions are mediated by epigenetic mechanisms. Polycomb Group proteins constitute part of an epigenetic cellular transcriptional memory system that is subject to dynamic modulation during differentiation. Molecular insight in processes that control dynamic chromatin association and dissociation of Polycomb repressive complexes during and beyond development is limited. We recently showed that MK3 interacts with Polycomb repressive complex 1 (PRC1. The functional relevance of this interaction, however, remained poorly understood. MK3 is activated downstream of mitogen- and stress-activated protein kinases (M/SAPKs, all of which fulfill crucial roles during development. We here use activation of the immediate-early response gene ATF3, a bona fide PRC1 target gene, as a model to study how MK3 and its effector kinases MAPK/ERK and SAPK/P38 are involved in regulation of PRC1-dependent ATF3 transcription. Results Our current data show that mitogenic signaling through ERK, P38 and MK3 regulates ATF3 expression by PRC1/chromatin dissociation and epigenetic modulation. Mitogenic stimulation results in transient P38-dependent H3S28 phosphorylation and ERK-driven PRC1/chromatin dissociation at PRC1 targets. H3S28 phosphorylation by itself appears not sufficient to induce PRC1/chromatin dissociation, nor ATF3 transcription, as inhibition of MEK/ERK signaling blocks BMI1/chromatin dissociation and ATF3 expression, despite induced H3S28 phosphorylation. In addition, we establish that concomitant loss of local H3K27me3 promoter marking is not required for ATF3 activation. We identify pERK as a novel signaling-induced binding partner of PRC1, and provide evidence that MK3 controls ATF3 expression in cultured cells via negative regulatory feedback on M/SAPKs. Dramatically increased ectopic wing vein formation in the absence of Drosophila MK in a Drosophila ERK gain-of-function wing vein patterning model, supports the

  5. Modular construction of multifunctional bioresponsive cell-targeted nanoparticles for gene delivery.

    Science.gov (United States)

    Saeed, Aram O; Magnusson, Johannes P; Moradi, Emilia; Soliman, Mahmoud; Wang, Wenxin; Stolnik, Snow; Thurecht, Kristofer J; Howdle, Steven M; Alexander, Cameron

    2011-02-16

    Multifunctional and modular block copolymers prepared from biocompatible monomers and linked by a bioreducible disulfide linkage have been prepared using a combination of ring-opening and atom-transfer radical polymerizations (ATRP). The presence of terminal functionality via ATRP allowed cell-targeting folic acid groups to be attached in a controllable manner, while the block copolymer architecture enabled well-defined nanoparticles to be prepared by a water-oil-water double emulsion procedure to encapsulate DNA with high efficiency. Gene delivery assays in a Calu-3 cell line indicated specific folate-receptor-mediated uptake of the nanoparticles, and triggered release of the DNA payload via cleavage of the disulfide link resulted in enhanced transgene expression compared to nonbioreducible analogues. These materials offer a promising and generic means to deliver a wide variety of therapeutic payloads to cells in a selective and tunable way.

  6. Empathy, target distress, and neurohormone genes interact to predict aggression for others-even without provocation.

    Science.gov (United States)

    Buffone, Anneke E K; Poulin, Michael J

    2014-11-01

    Can empathy for others motivate aggression on their behalf? This research examined potential predictors of empathy-linked aggression including the emotional state of empathy, an empathy target's distress state, and the function of the social anxiety-modulating neuropeptides oxytocin and vasopressin. In Study 1 (N = 69), self-reported empathy combined with threat to a close other and individual differences in genes for the vasopressin receptor (AVPR1a rs3) and oxytocin receptor (OXTR rs53576) to predict self-reported aggression against a person who threatened a close other. In Study 2 (N = 162), induced empathy for a person combined with OXTR variation or with that person's distress and AVPR1a variation led to increased amount of hot sauce assigned to that person's competitor. Empathy uniquely predicts aggression and may do so by way of aspects of the human caregiving system in the form of oxytocin and vasopressin.

  7. p53, SKP2 and DKK3 as MYCN target genes and their potential therapeutic significance

    Directory of Open Access Journals (Sweden)

    Lindi eChen

    2012-11-01

    Full Text Available Neuroblastoma is the most common extracranial solid tumour of childhood. Despite significant advances, it currently still remains one of the most difficult childhood cancers to cure, with less than 40% of patients with high-risk disease being long-term survivors. MYCN is a proto-oncogene implicated to be directly involved in neuroblastoma development. Amplification of MYCN is associated with rapid tumour progression and poor prognosis. Novel therapeutic strategies which can improve the survival rates whilst reducing the toxicity in these patients are therefore required. Here we discuss genes regulated by MYCN in neuroblastoma, with particular reference to p53, SKP2 and DKK3 and strategies that may be employed to target them.

  8. Medium-Chain Acyl-CoA Dehydrogenase Deficiency in Gene-Targeted Mice.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Medium-chain acyl-CoA dehydrogenase (MCAD deficiency is the most common inherited disorder of mitochondrial fatty acid beta-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD by gene targeting in embryonic stem (ES cells. The MCAD mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 degrees C with prior fasting. The sporadic cardiac lesions seen in MCAD mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation.

  9. Mouse Homologue of the Schizophrenia Susceptibility Gene ZNF804A as a Target of Hoxc8

    Directory of Open Access Journals (Sweden)

    Hyun Joo Chung

    2010-01-01

    Full Text Available Using a ChIP-cloning technique, we identified a Zinc finger protein 804a (Zfp804a as one of the putative Hoxc8 downstream target genes. We confirmed binding of Hoxc8 to an intronic region of Zfp804a by ChIP-PCR in F9 cells as well as in mouse embryos. Hoxc8 upregulated Zfp804a mRNA levels and augmented minimal promoter activity in vitro. In E11.5 mouse embryos, Zfp804a and Hoxc8 were coexpressed. Recent genome-wide studies identified Zfp804a (or ZNF804A in humans as a plausible marker for schizophrenia, leading us to hypothesize that this embryogenic regulatory control might also exert influence in development of complex traits such as psychosis.

  10. [A novel method of the genome-wide prediction for the target genes and its application].

    Science.gov (United States)

    Zhang, Jing-Jing; Feng, Jing; Zhu, Ying-Guo; Li, Yang-Sheng

    2006-10-01

    Based on the protein databases of several model species, this study developed a new method of the Genome-wide prediction for the target genes, using Hidden Markov model by Perl programming. The advantages of this method are high throughput, high quality and easy prediction, especially in the case of multi-domains proteins families. By this method, we predicted the PPR and TPR proteins families in whole genome of several model species. There were 536 PPR proteins and 199 TPR proteins in Oryza sativa ssp. japonica, 519 PPR proteins and 177 TPR proteins in Oryza sativa L. ssp. indica, 735 PPR proteins and 292 TPR proteins in Arabidopsis thaliana, 6 PPR proteins and 32 TPR proteins in Cyanidioschyzon merolae. Synechococcus and Thermophilic archaebacterium did not have PPR proteins. By contrast, 10 TPR proteins were found in Synechococcus and 4 TPR proteins were found in Thermophilic archaebacterium. Moreover, of these results, some further bioinformatics analyses were conducted.

  11. Mice with a targeted deletion of the tetranectin gene exhibit a spinal deformity

    DEFF Research Database (Denmark)

    Iba, K; Durkin, M E; Johnsen, L;

    2001-01-01

    and muscle. To test the functional role of tetranectin directly, we have generated mice with a targeted disruption of the gene. We report that the tetranectin-deficient mice exhibit kyphosis, a type of spinal deformity characterized by an increased curvature of the thoracic spine. The kyphotic angles were...... in the morphology of the vertebrae. Histological analysis of the spines of these mice revealed an apparently asymmetric development of the growth plate and of the intervertebral disks of the vertebrae. In the most advanced cases, the growth plates appeared disorganized and irregular, with the disk material...... protruding through the growth plate. Tetranectin-null mice had a normal peak bone mass density and were not more susceptible to ovariectomy-induced osteoporosis than were their littermates as determined by dual-emission X-ray absorptiometry scanning. These results demonstrate that tetranectin plays a role...

  12. Insights into the regulation of human CNV-miRNAs from the view of their target genes

    Directory of Open Access Journals (Sweden)

    Wu Xudong

    2012-12-01

    Full Text Available Abstract Background microRNAs (miRNAs represent a class of small (typically 22 nucleotides in length non-coding RNAs that can degrade their target mRNAs or block their translation. Recent research showed that copy number alterations of miRNAs and their target genes are highly prevalent in cancers; however, the evolutionary and biological functions of naturally existing copy number variable miRNAs (CNV-miRNAs among individuals have not been studied extensively throughout the genome. Results In this study, we comprehensively analyzed the properties of genes regulated by CNV-miRNAs, and found that CNV-miRNAs tend to target a higher average number of genes and prefer to synergistically regulate the same genes; further, the targets of CNV-miRNAs tend to have higher variability of expression within and between populations. Finally, we found the targets of CNV-miRNAs are more likely to be differentially expressed among tissues and developmental stages, and participate in a wide range of cellular responses. Conclusions Our analyses of CNV-miRNAs provide new insights into the impact of copy number variations on miRNA-mediated post-transcriptional networks. The deeper interpretation of patterns of gene expression variation and the functional characterization of CNV-miRNAs will help to broaden the current understanding of the molecular basis of human phenotypic diversity.

  13. The structure-specific endonuclease Ercc1–Xpf is required for targeted gene replacement in embryonic stem cells

    Science.gov (United States)

    Niedernhofer, Laura J.; Essers, Jeroen; Weeda, Geert; Beverloo, Berna; de Wit, Jan; Muijtjens, Manja; Odijk, Hanny; Hoeijmakers, Jan H.J.; Kanaar, Roland

    2001-01-01

    The Ercc1–Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Ercc1–Xpf incises double-stranded DNA at double-strand/single-strand junctions, making it an ideal enzyme for processing DNA structures that contain partially unwound strands. Here we demonstrate that although Ercc1 is dispensable for recombination between sister chromatids, it is essential for targeted gene replacement in mouse embryonic stem cells. Surprisingly, the role of Ercc1–Xpf in gene targeting is distinct from its previously identified role in removing nonhomologous termini from recombination intermediates because it was required irrespective of whether the ends of the DNA targeting constructs were heterologous or homologous to the genomic locus. Our observations have implications for the mechanism of gene targeting in mammalian cells and define a new role for Ercc1–Xpf in mammalian homologous recombination. We propose a model for the mechanism of targeted gene replacement that invokes a role for Ercc1–Xpf in making the recipient genomic locus receptive for gene replacement. PMID:11707424

  14. Mechanisms contributing to differential regulation of PAX3 downstream target genes in normal human epidermal melanocytes versus melanoma cells.

    Science.gov (United States)

    Bartlett, Danielle; Boyle, Glen M; Ziman, Mel; Medic, Sandra

    2015-01-01

    Melanoma is a highly aggressive and drug resistant form of skin cancer. It arises from melanocytes, the pigment producing cells of the skin. The formation of these melanocytes is driven by the transcription factor PAX3 early during embryonic development. As a result of alternative splicing, the PAX3 gene gives rise to eight different transcripts which encode isoforms that have different structures and activate different downstream target genes involved in pathways of cell proliferation, migration, differentiation and survival. Furthermore, post-translational modifications have also been shown to alter the functions of PAX3. We previously identified PAX3 downstream target genes in melanocytes and melanoma cells. Here we assessed the effects of PAX3 down-regulation on this panel of target genes in primary melanocytes versus melanoma cells. We show that PAX3 differentially regulates various downstream target genes involved in cell proliferation in melanoma cells compared to melanocytes. To determine mechanisms behind this differential downstream target gene regulation, we performed immunoprecipitation to assess post-translational modifications of the PAX3 protein as well as RNAseq to determine PAX3 transcript expression profiles in melanocytes compared to melanoma cells. Although PAX3 was found to be post-translationally modified, there was no qualitative difference in phosphorylation and ubiquitination between melanocytes and melanoma cells, while acetylation of PAX3 was reduced in melanoma cells. Additionally, there were differences in PAX3 transcript expression profiles between melanocytes and melanoma cells. In particular the PAX3E transcript, responsible for reducing melanocyte proliferation and increasing apoptosis, was found to be down-regulated in melanoma cells compared to melanocytes. These results suggest that alternate transcript expression profiles activate different downstream target genes leading to the melanoma phenotype.

  15. Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN™.

    Directory of Open Access Journals (Sweden)

    Aurélie Dupuy

    Full Text Available Xeroderma pigmentosum group C (XP-C is a rare human syndrome characterized by hypersensitivity to UV light and a dramatic predisposition to skin neoplasms. XP-C cells are deficient in the nucleotide excision repair (NER pathway, a complex process involved in the recognition and removal of DNA lesions. Several XPC mutations have been described, including a founder mutation in North African patients involving the deletion of a TG dinucleotide (ΔTG located in the middle of exon 9. This deletion leads to the expression of an inactive truncated XPC protein, normally involved in the first step of NER. New approaches used for gene correction are based on the ability of engineered nucleases such as Meganucleases, Zinc-Finger nucleases or TALE nucleases to accurately generate a double strand break at a specific locus and promote correction by homologous recombination through the insertion of an exogenous DNA repair matrix. Here, we describe the targeted correction of the ΔTG mutation in XP-C cells using engineered meganuclease and TALEN™. The methylated status of the XPC locus, known to inhibit both of these nuclease activities, led us to adapt our experimental design to optimize their in vivo efficacies. We show that demethylating treatment as well as the use of TALEN™ insensitive to CpG methylation enable successful correction of the ΔTG mutation. Such genetic correction leads to re-expression of the full-length XPC protein and to the recovery of NER capacity, attested by UV-C resistance of the corrected cells. Overall, we demonstrate that nuclease-based targeted approaches offer reliable and efficient strategies for gene correction.

  16. Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN™.

    Science.gov (United States)

    Dupuy, Aurélie; Valton, Julien; Leduc, Sophie; Armier, Jacques; Galetto, Roman; Gouble, Agnès; Lebuhotel, Céline; Stary, Anne; Pâques, Frédéric; Duchateau, Philippe; Sarasin, Alain; Daboussi, Fayza

    2013-01-01

    Xeroderma pigmentosum group C (XP-C) is a rare human syndrome characterized by hypersensitivity to UV light and a dramatic predisposition to skin neoplasms. XP-C cells are deficient in the nucleotide excision repair (NER) pathway, a complex process involved in the recognition and removal of DNA lesions. Several XPC mutations have been described, including a founder mutation in North African patients involving the deletion of a TG dinucleotide (ΔTG) located in the middle of exon 9. This deletion leads to the expression of an inactive truncated XPC protein, normally involved in the first step of NER. New approaches used for gene correction are based on the ability of engineered nucleases such as Meganucleases, Zinc-Finger nucleases or TALE nucleases to accurately generate a double strand break at a specific locus and promote correction by homologous recombination through the insertion of an exogenous DNA repair matrix. Here, we describe the targeted correction of the ΔTG mutation in XP-C cells using engineered meganuclease and TALEN™. The methylated status of the XPC locus, known to inhibit both of these nuclease activities, led us to adapt our experimental design to optimize their in vivo efficacies. We show that demethylating treatment as well as the use of TALEN™ insensitive to CpG methylation enable successful correction of the ΔTG mutation. Such genetic correction leads to re-expression of the full-length XPC protein and to the recovery of NER capacity, attested by UV-C resistance of the corrected cells. Overall, we demonstrate that nuclease-based targeted approaches offer reliable and efficient strategies for gene correction.

  17. Prediction of effective RNA interference targets and pathway-related genes in lepidopteran insects by RNA sequencing analysis.

    Science.gov (United States)

    Guan, Ruo-Bing; Li, Hai-Chao; Miao, Xue-Xia

    2017-01-06

    When using RNAi to study gene functions in Lepidoptera insects, we discovered that some genes could not be suppressed, instead, their expression levels could be up-regulated by dsRNA. To predict which genes could be easily silenced, we treated the Asian corn borer (Ostrinia furnacalis) with dsGFP and dsMLP. A transcriptome sequence analysis was conducted using the cDNAs 6 h after treatment with dsRNA. The results indicated that 160 genes were up-regulated and 44 genes were down-regulated by the two dsRNAs. Then, 50 co-up-regulated, 25 co-down-regulated and 43 unaffected genes were selected to determine their RNAi responses. All the 25 down-regulated genes were knocked down by their corresponding dsRNA. However, several of the up-regulated and unaffected genes were up-regulated when treated with their corresponding dsRNAs instead of being knocked-down. The genes up-regulated by the dsGFP treatment may be involved in insect immune responses or the RNAi pathway. When the immune-related genes were excluded, only seven genes were induced by dsGFP, including ago-2 and dicer-2. These results not only provide a reference for efficient RNAi targets predication, but also provide some potential RNAi pathway-related genes for further study. This article is protected by copyright. All rights reserved.

  18. Genome-wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Kohei [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Fujiki, Katsunori; Shirahige, Katsuhiko [Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo (Japan); Gomez-Sanchez, Celso E. [Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center, MS (United States); Endocrinology, University of Mississippi Medical Center, MS (United States); Fujita, Toshiro [Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo (Japan); Nangaku, Masaomi [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Nagase, Miki, E-mail: mnagase-tky@umin.ac.jp [Department of Nephrology and Endocrinology, The University of Tokyo, Tokyo (Japan); Department of Anatomy and Life Structure, School of Medicine Juntendo University, Tokyo (Japan)

    2014-02-28

    Highlights: • We define a target gene of MR as that with MR-binding to the adjacent region of DNA. • We use ChIP-seq analysis in combination with microarray. • We, for the first time, explore the genome-wide binding profile of MR. • We reveal 5 genes as the direct target genes of MR in the renal epithelial cell-line. - Abstract: Background and objective: Mineralocorticoid receptor (MR) is a member of nuclear receptor family proteins and contributes to fluid homeostasis in the kidney. Although aldosterone-MR pathway induces several gene expressions in the kidney, it is often unclear whether the gene expressions are accompanied by direct regulations of MR through its binding to the regulatory region of each gene. The purpose of this study is to identify the direct target genes of MR in a murine distal convoluted tubular epithelial cell-line (mDCT). Methods: We analyzed the DNA samples of mDCT cells overexpressing 3xFLAG-hMR after treatment with 10{sup −7} M aldosterone for 1 h by chromatin immunoprecipitation with deep-sequence (ChIP-seq) and mRNA of the cell-line with treatment of 10{sup −7} M aldosterone for 3 h by microarray. Results: 3xFLAG-hMR overexpressed in mDCT cells accumulated in the nucleus in response to 10{sup −9} M aldosterone. Twenty-five genes were indicated as the candidate target genes of MR by ChIP-seq and microarray analyses. Five genes, Sgk1, Fkbp5, Rasl12, Tns1 and Tsc22d3 (Gilz), were validated as the direct target genes of MR by quantitative RT-qPCR and ChIP-qPCR. MR binding regions adjacent to Ctgf and Serpine1 were also validated. Conclusions: We, for the first time, captured the genome-wide distribution of MR in mDCT cells and, furthermore, identified five MR target genes in the cell-line. These results will contribute to further studies on the mechanisms of kidney diseases.

  19. Cellular processing and nuclear targeting of non-viral gene delivery systems

    NARCIS (Netherlands)

    Aa, M.A.E.M. van der

    2005-01-01

    Gene therapy utilizes genetic material in order to cure patients either by DNA vaccines or by replacement of a defective gene with a normal one. For successful gene therapy certain elements are required: gene delivery systems with low toxicity and immunity, with efficient gene transfer and high gene

  20. A comparison of synthetic oligodeoxynucleotides, DNA fragments and AAV-1 for targeted episomal and chromosomal gene repair

    Directory of Open Access Journals (Sweden)

    Leclerc Xavier

    2009-04-01

    Full Text Available Abstract Background Current strategies for gene therapy of inherited diseases consist in adding functional copies of the gene that is defective. An attractive alternative to these approaches would be to correct the endogenous mutated gene in the affected individual. This study presents a quantitative comparison of the repair efficiency using different forms of donor nucleic acids, including synthetic DNA oligonucleotides, double stranded DNA fragments with sizes ranging from 200 to 2200 bp and sequences carried by a recombinant adeno-associated virus (rAAV-1. Evaluation of each gene repair strategy was carried out using two different reporter systems, a mutated eGFP gene or a dual construct with a functional eGFP and an inactive luciferase gene, in several different cell systems. Gene targeting events were scored either following transient co-transfection of reporter plasmids and donor DNAs, or in a system where a reporter construct was stably integrated into the chromosome. Results In both episomal and chromosomal assays, DNA fragments were more efficient at gene repair than oligonucleotides or rAAV-1. Furthermore, the gene targeting frequency could be significantly increased by using DNA repair stimulating drugs such as doxorubicin and phleomycin. Conclusion Our results show that it is possible to obtain repair frequencies of 1% of the transfected cell population under optimized transfection protocols when cells were pretreated with phleomycin using rAAV-1 and dsDNA fragments.

  1. Mobile group II intron based gene targeting in Lactobacillus plantarum WCFS1.

    Science.gov (United States)

    Sasikumar, Ponnusamy; Paul, Eldho; Gomathi, Sivasamy; Abhishek, Albert; Sasikumar, Sundaresan; Selvam, Govindan Sadasivam

    2016-10-01

    The usage of recombinant lactic acid bacteria for delivery of therapeutic proteins to the mucosa has been emerging. In the present study, an attempt was made to engineer a thyA mutant of Lactobacillus plantarum (L. plantarum) using lactococcal group II intron Ll.LtrB for the development of biologically contained recombinant L. plantarum for prevention of calcium oxalate stone disease. The 3 kb Ll.LtrB intron donor cassettes from the source vector pACD4C was PCR amplified, ligated into pSIP series of lactobacillus vector pLp_3050sAmyA, yielding a novel vector pLpACD4C (8.6 kb). The quantitative real-time PCR experiment shows 94-fold increased expression of Ll.LtrB intron and 14-fold increased expression of ltrA gene in recombinant L. plantarum containing pLpACD4C. In order to target the thyA gene, the potential intron RNA binding sites in the thyA gene of L. plantarum was predicted with help of computer algorithm. The insertion location 188|189s of thyA gene (lowest E-0.134) was chosen and the wild type intron Ll.LtrB was PCR modified, yielding a retargeted intron of pLpACDthyA. The retargeted intron was expressed by using induction peptide (sppIP), subsequently the integration of intron in thyA gene was identified by PCR screening and finally ThyA(-) mutant of L. plantarum (ThyA18) was detected. In vitro growth curve result showed that in the absence of thymidine, colony forming units of mutant ThyA18 was decreased, whereas high thymidine concentration (10 μM) supported the growth of the culture until saturation. In conclusion, ThyA(-) mutant of L. plantarum (ThyA18) constructed in this study will be used as a biologically contained recombinant probiotic to deliver oxalate decarboxylase into the lumen for treatment of hyperoxaluria and calcium oxalate stone deposition.

  2. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    2016-05-01

    Full Text Available The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT. By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  3. Pin1 promotes GR transactivation by enhancing recruitment to target genes.

    Science.gov (United States)

    Poolman, Toryn M; Farrow, Stuart N; Matthews, Laura; Loudon, Andrew S; Ray, David W

    2013-10-01

    The glucocorticoid receptor (GR) is a ligand activated transcription factor, serving to regulate both energy metabolism and immune functions. Factors that influence cellular sensitivity to glucocorticoids (GC) are therefore of great interest. The N-terminal of the GR contains numerous potential proline-directed phosphorylation sites, some of which can regulate GR transactivation. Unrestricted proline isomerisation can be inhibited by adjacent serine phosphorylation and requires a prolyl isomerise, Pin1. Pin1 therefore determines the functional outcome of proline-directed kinases acting on the GR, as cis/trans isomers are distinct pools with different interacting proteins. We show that Pin1 mediates GR transactivation, but not GR trans-repression. Two N-terminal GR serines, S203 and S211, are targets for Pin1 potentiation of GR transactivation, establishing a direct link between Pin1 and the GR. We also demonstrate GC-activated co-recruitment of GR and Pin1 to the GILZ gene promoter. The Pin1 effect required both its WW and catalytic domains, and GR recruitment to its GRE was Pin1-dependent. Therefore, Pin1 is a selective regulator of GR transactivation, acting through N-terminal phospho-serine residues to regulate GR recruitment to its target sites in the genome. As Pin1 is dysregulated in disease states, this interaction may contribute to altered GC action in inflammatory conditions.

  4. Mitochondria-Targeted Antioxidant Prevents Cardiac Dysfunction Induced by Tafazzin Gene Knockdown in Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Quan He

    2014-01-01

    Full Text Available Tafazzin, a mitochondrial acyltransferase, plays an important role in cardiolipin side chain remodeling. Previous studies have shown that dysfunction of tafazzin reduces cardiolipin content, impairs mitochondrial function, and causes dilated cardiomyopathy in Barth syndrome. Reactive oxygen species (ROS have been implicated in the development of cardiomyopathy and are also the obligated byproducts of mitochondria. We hypothesized that tafazzin knockdown increases ROS production from mitochondria, and a mitochondria-targeted antioxidant prevents tafazzin knockdown induced mitochondrial and cardiac dysfunction. We employed cardiac myocytes transduced with an adenovirus containing tafazzin shRNA as a model to investigate the effects of the mitochondrial antioxidant, mito-Tempo. Knocking down tafazzin decreased steady state levels of cardiolipin and increased mitochondrial ROS. Treatment of cardiac myocytes with mito-Tempo normalized tafazzin knockdown enhanced mitochondrial ROS production and cellular ATP decline. Mito-Tempo also significantly abrogated tafazzin knockdown induced cardiac hypertrophy, contractile dysfunction, and cell death. We conclude that mitochondria-targeted antioxidant prevents cardiac dysfunction induced by tafazzin gene knockdown in cardiac myocytes and suggest mito-Tempo as a potential therapeutic for Barth syndrome and other dilated cardiomyopathies resulting from mitochondrial oxidative stress.

  5. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy

    Directory of Open Access Journals (Sweden)

    Paul R Albert

    2010-06-01

    Full Text Available Major depression is the most common form of mental illness, and is treated with antidepressant compounds that increase serotonin (5-HT neurotransmission. Increased 5-HT1A autoreceptor levels in the raphe nuclei act as a “brake” to inhibit the 5-HT system, leading to depression and resistance to antidepressants. Several 5-HT1A receptor agonists (buspirone, flesinoxan, ipsapirone that preferentially desensitize 5-HT1A autoreceptors have been tested for augmentation of antidepressant drugs with mixed results. One explanation could be the presence of the C(-1019G 5-HT1A promoter polymorphism that prevents gene repression of the 5-HT1A autoreceptor. Furthermore, down-regulation of 5-HT1A autoreceptor expression, not simply desensitization of receptor signaling, appears to be required to enhance and accelerate antidepressant action. The current review focuses on the transcriptional regulators of 5-HT1A autoreceptor expression, their roles in permitting response to 5-HT1A-targeted treatments and their potential as targets for new antidepressant compounds for treatment-resistant depression.

  6. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins.

    Science.gov (United States)

    Park, Ki-Eun; Park, Chi-Hun; Powell, Anne; Martin, Jessica; Donovan, David M; Telugu, Bhanu P

    2016-05-26

    The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT). By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP) transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  7. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27.

    Science.gov (United States)

    Matsusue, Kimihiko; Kusakabe, Takashi; Noguchi, Takahiro; Takiguchi, Shouichi; Suzuki, Toshimitsu; Yamano, Shigeru; Gonzalez, Frank J

    2008-04-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is induced in leptin-deficient (ob/ob) mouse liver and is critical for the development of hepatic steatosis. The present study shows that fat-specific protein 27 (Fsp27) in ob/ob liver is a direct target gene of PPARgamma and can elevate hepatic triglyceride levels. FSP27 belongs to the CIDE family, composed of CIDE A, CIDE B, and FSP27/CIDE C, all of which contain a conserved CIDE-N domain. FSP27 was recently reported to be a lipid droplet-binding protein and to promote lipid accumulation in adipocytes. The Fsp27 gene was expressed at high levels in ob/ob liver and at markedly lower levels in ob/ob livers lacking PPARgamma. Forced expression of FSP27 by adenovirus in hepatocytes in vitro or in vivo led to increased triglyceride levels. Knockdown by adenovirus expressing FSP27 shRNA resulted in lower accumulation of hepatic triglycerides compared to control adenovirus-infected liver. Taken together, these results indicate that FSP27 is a direct mediator of PPARgamma-dependent hepatic steatosis.

  8. MiR-122 targets the vanin 1 gene to regulate its expression in chickens.

    Science.gov (United States)

    Li, Yanyan; Wang, Xingguo; Yu, Jianfeng; Shao, Fang; Zhang, Yanping; Lu, Xiangyun; Gu, Zhiliang

    2016-05-01

    As the most abundant microRNA (miRNA) in the liver, miR-122 plays important roles in the growth and development of liver, lipid metabolism, and liver diseases. Vanin 1 (VNN1) plays an important role in hepatic lipid metabolism, and VNN1 may serve as a potential therapeutic target for the treatment of metabolic diseases caused by overactivated gluconeogenesis. In our previous RNA-seq study, we found the expression of VNN1 increased significantly when the expression of miR-122 (gga-miR-122-5p) was knocked down in primary chicken hepatocytes. In this study, we verified this result by real-time qRT-PCR, and we also found that the chicken VNN1 was highly expressed in the liver. By bioinformatics analyses, we found the 3'UTR of VNN1 contained sequences completely complementary to the nucleotides 1 to 8 of miR-122. Co-transfection and dual-luciferase reporter assays showed that overexpression of miR-122 decreased the expression of luciferase reporter gene linked to the 3'UTR of chicken VNN1 in the Chinese hamster ovary cells (Pchicken hepatocytes. Overall, this study suggests that miR-122 might play an important role in lipid metabolism in the chicken liver by negatively regulating the expression of the VNN1 gene.

  9. Targeted ablation of the abcc6 gene results in ectopic mineralization of connective tissues.

    Science.gov (United States)

    Klement, John F; Matsuzaki, Yasushi; Jiang, Qiu-Jie; Terlizzi, Joseph; Choi, Hae Young; Fujimoto, Norihiro; Li, Kehua; Pulkkinen, Leena; Birk, David E; Sundberg, John P; Uitto, Jouni

    2005-09-01

    Pseudoxanthoma elasticum (PXE), characterized by connective tissue mineralization of the skin, eyes, and cardiovascular system, is caused by mutations in the ABCC6 gene. ABCC6 encodes multidrug resistance-associated protein 6 (MRP6), which is expressed primarily in the liver and kidneys. Mechanisms producing ectopic mineralization as a result of these mutations remain unclear. To elucidate this complex disease, a transgenic mouse was generated by targeted ablation of the mouse Abcc6 gene. Abcc6 null mice were negative for Mrp6 expression in the liver, and complete necropsies revealed profound mineralization of several tissues, including skin, arterial blood vessels, and retina, while heterozygous animals were indistinguishable from the wild-type mice. Particularly striking was the mineralization of vibrissae, as confirmed by von Kossa and alizarin red stains. Electron microscopy revealed mineralization affecting both elastic structures and collagen fibers. Mineralization of vibrissae was noted as early as 5 weeks of age and was progressive with age in Abcc6(-/-) mice but was not observed in Abcc6(+/-) or Abcc6(+/+) mice up to 2 years of age. A total body computerized tomography scan of Abcc6(-/-) mice revealed mineralization in skin and subcutaneous tissue as well as in the kidneys. These data demonstrate aberrant mineralization of soft tissues in PXE-affected organs, and, consequently, these mice recapitulate features of this complex disease.

  10. Experimental research of RB94 gene transfection into retinoblastoma cells using ultrasound-targeted microbubble destruction.

    Science.gov (United States)

    Zheng, Min-Ming; Zhou, Xi-Yuan; Wang, Li-Ping; Wang, Zhi-Gang

    2012-06-01

    The purpose of this study was to explore the transfection of the recombinant expression plasmid pEGFP-C1/RB94 into human retinoblastoma cells (HXO-Rb44) using ultrasound-targeted microbubble destruction (UTMD). pEGFP-C1/RB94 was transfected into HXO-Rb44 in vitro by UTMD, with liposome as the positive control. After 24 to 72 h, the expression of the reporter gene enhanced green fluorescent protein (EGFP) was observed using fluorescent microscopy and flow cytometry. The cell viability of HXO-Rb44 was measured by a MTT assay. The mRNA and proteins of RB94, caspase-3 and Bax were analyzed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Moreover, the apoptosis rate and cell cycle progression of the cells were detected by flow cytometry. This study demonstrated that UTMD can enhance the transfection efficiency of RB94, which has an obvious impact on the inhibition of the growth process of retinoblastoma cells, suggesting that the combination of UTMD and RB94 compounds might be a useful tool for use in the gene therapy of retinoblastoma.

  11. Small Interference RNA Targeting TLR4 Gene Effectively Attenuates Pulmonary Inflammation in a Rat Model

    Directory of Open Access Journals (Sweden)

    Feixiang Wu

    2012-01-01

    Full Text Available Objective. The present study was to investigate the feasibility of adenovirus-mediated small interference RNA (siRNA targeting Toll-like receptor 4 (TLR4 gene in ameliorating lipopolysaccharide- (LPS- induced acute lung injury (ALI. Methods. In vitro, alveolar macrophages (AMs were treated with Ad-siTLR4 and Ad-EFGP, respectively, for 12 h, 24 h, and 48 h, and then with LPS (100 ng/mL for 2 h, and the function and expression of TLR4 were evaluated. In vivo, rats received intratracheal injection of 300 μL of normal saline (control group, 300 μL of Ad-EGFP (Ad-EGFP group, or 300 μL of Ad-siTLR4 (Ad-siTLR4 group and then were intravenously treated with LPS (50 mg/kg to induce ALI. Results. Ad-siTLR4 treatment significantly reduced TLR4 expression and production of proinflammatory cytokines following LPS treatment both in vitro and in vivo. Significant alleviation of tissue edema, microvascular protein leakage, and neutrophil infiltration was observed in the AdsiTLR4-treated animals. Conclusion. TLR4 plays a critical role in LPS-induced ALI, and transfection of Ad-siTLR4 can effectively downregulate TLR4 expression in vitro and in vivo, accompanied by alleviation of LPS-induced lung injury. These findings suggest that TLR4 may serve as a potential target in the treatment of ALI and RNA interfering targeting TLR4 expression represents a therapeutic strategy.

  12. Next-generation sequencing of the porcine skeletal muscle transcriptome for computational prediction of microRNA gene targets.

    Directory of Open Access Journals (Sweden)

    Tara G McDaneld

    Full Text Available BACKGROUND: MicroRNA are a class of small RNAs that regulate gene expression by inhibiting translation of protein encoding transcripts through targeting of a microRNA-protein complex by base-pairing of the microRNA sequence to cognate recognition sequences in the 3' untranslated region (UTR of the mRNA. Target identification for a given microRNA sequence is generally accomplished by informatics analysis of predicted mRNA sequences present in the genome or in databases of transcript sequence for the tissue of interest. However, gene models for porcine skeletal muscle transcripts in current databases, specifically complete sequence of the 3' UTR, are inadequate for this exercise. METHODOLOGY/PRINCIPAL FINDINGS: To provide data necessary to identify gene targets for microRNA in porcine skeletal muscle, normalized cDNA libraries were sequenced using Roche 454 GS-FLX pyrosequencing and de novo assembly of transcripts enriched in the 3' UTR was performed using the MIRA sequence assembly program. Over 725 million bases of sequence were generated, which assembled into 18,202 contigs. Sequence reads were mapped to a 3' UTR database containing porcine sequences. The 3' UTR that mapped to the database were examined to predict targets for previously identified microRNA that had been separately sequenced from the same porcine muscle sample used to generate the cDNA libraries. For genes with microRNA-targeted 3' UTR, KEGG pathways were computationally determined in order to identify potential functional effects of these microRNA-targeted transcripts. CONCLUSIONS: Through next-generation sequencing of transcripts expressed in skeletal muscle, mapping reads to a 3' UTR database, and prediction of microRNA target sites in the 3' UTR, our results identified genes expressed in porcine skeletal muscle and predicted the microRNA that target these genes. Additionally, identification of pathways regulated by these microRNA-targeted genes provides us with a set of

  13. Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-02-01

    Full Text Available A gene of interest can be efficiently modified using transcription activator-like effector nucleases (TALENs (Christian et al., 2010;Li et al., 2011. However, if a target gene is essential for development, growth and fertility, use of TALENs with high mutagenic activity in F0 frogs could result in developmental disorders or sterility, which would reduce the number of F1 progeny and make F1 phenotypical analysis difficult. We used the 3′ untranslated region of DEADSouth gene (DS-3′ of Xenopus tropicalis to solve this problem, because the addition of the DS-3′ to mRNA is known to induce primordial germ cell (PGC-specific expression and reduce the stability in somatic cells of mRNA in Xenopus laevis. At first, we inserted the X. tropicalis DS-3′ downstream of the EGFP termination codon and confirmed that the EGFP expression was specifically detected in PGCs for three weeks. Therefore, we inserted the DS-3′ downstream of the termination codon of the TALEN coding sequence. The tyrosinase gene was selected as the target gene for TALEN because the bi-allelic mutation of this gene is easily discernible by the albino phenotype. When fertilized eggs were microinjected with TALEN mRNAs fused to the DS-3′, their sperm and oocytes had a high rate (84–100% of target-gene modification in contrast to the lower rate (0–45% of nucleotide alteration observed in somatic cells.

  14. Evaluation of OPEN zinc finger nucleases for direct gene targeting of the ROSA26 locus in mouse embryos.

    Directory of Open Access Journals (Sweden)

    Mario Hermann

    Full Text Available Zinc finger nucleases (ZFNs enable precise genome modification in a variety of organisms and cell types. Commercial ZFNs were reported to enhance gene targeting directly in mouse zygotes, whereas similar approaches using publicly available resources have not yet been described. Here we report precise targeted mutagenesis of the mouse genome using Oligomerized Pool Engineering (OPEN ZFNs. OPEN ZFN can be constructed using publicly available resources and therefore provide an attractive alternative for academic researchers. Two ZFN pairs specific to the mouse genomic locus gt(ROSA26Sor were generated by OPEN selections and used for gene disruption and homology-mediated gene replacement in single cell mouse embryos. One specific ZFN pair facilitated non-homologous end joining (NHEJ-mediated gene disruption when expressed in mouse zygotes. We also observed a single homologous recombination (HR-driven gene replacement event when this ZFN pair was co-injected with a targeting vector. Our experiments demonstrate the feasibility of achieving both gene ablation through NHEJ and gene replacement by HR by using the OPEN ZFN technology directly in mouse zygotes.

  15. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells

    Directory of Open Access Journals (Sweden)

    Carmen eBertoni

    2014-04-01

    Full Text Available The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion.The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD, the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology.

  16. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum.

    Science.gov (United States)

    Gilles, Anna F; Schinko, Johannes B; Averof, Michalis

    2015-08-15

    Gene-editing techniques are revolutionizing the way we conduct genetics in many organisms. The CRISPR/Cas nuclease has emerged as a highly versatile, efficient and affordable tool for targeting chosen sites in the genome. Beyond its applications in established model organisms, CRISPR technology provides a platform for genetic intervention in a wide range of species, limited only by our ability to deliver it to cells and to select mutations efficiently. Here, we test the CRISPR technology in an emerging insect model and pest, the beetle Tribolium castaneum. We use simple assays to test CRISPR/Cas activity, we demonstrate efficient expression of guide RNAs and Cas9 from Tribolium U6 and hsp68 promoters and we test the efficiency of knockout and knock-in approaches in Tribolium. We find that 55-80% of injected individuals carry mutations (indels) generated by non-homologous end joining, including mosaic bi-allelic knockouts; 71-100% carry such mutations in their germ line and transmit them to the next generation. We show that CRISPR-mediated gene knockout of the Tribolium E-cadherin gene causes defects in dorsal closure, which is consistent with RNAi-induced phenotypes. Homology-directed knock-in of marker transgenes was observed in 14% of injected individuals and transmitted to the next generation by 6% of injected individuals. Previous work in Tribolium mapped a large number of transgene insertions associated with developmental phenotypes and enhancer traps. We present an efficient method for re-purposing these insertions, via CRISPR-mediated replacement of these transgenes by new constructs.

  17. Identification of vitamin D3 target genes in human breast cancer tissue.

    Science.gov (United States)

    Sheng, Lei; Anderson, Paul H; Turner, Andrew G; Pishas, Kathleen I; Dhatrak, Deepak J; Gill, Peter G; Morris, Howard A; Callen, David F

    2016-11-01

    Multiple epidemiological studies have shown that high vitamin D3 status is strongly associated with improved breast cancer survival. To determine the molecular pathways influenced by 1 alpha, 25-dihydroxyvitamin D3 (1,25D) in breast epithelial cells we isolated RNA from normal human breast and cancer tissues treated with 1,25D in an ex vivo explant system. RNA-Seq revealed 523 genes that were differentially expressed in breast cancer tissues in response to 1,25D treatment, and 127 genes with altered expression in normal breast tissues. GoSeq KEGG pathway analysis revealed 1,25D down-regulated cellular metabolic pathways and enriched pathways involved with intercellular adhesion. The highly 1,25D up-regulated target genes CLMN, SERPINB1, EFTUD1, and KLK6were selected for further analysis and up-regulation by 1,25D was confirmed by qRT-PCR analysis in breast cancer cell lines and in a subset of human clinical samples from normal and cancer breast tissues. Ketoconazole potentiated 1,25D-mediated induction of CLMN, SERPINB1, and KLK6 mRNA through inhibition of 24-hydroxylase (CYP24A1) activity. Elevated expression levels of CLMN, SERPINB1, and KLK6 are associated with prolonged relapse-free survival for breast cancer patients. The major finding of the present study is that exposure of both normal and malignant breast tissue to 1,25D results in changes in cellular adhesion, metabolic pathways and tumor suppressor-like pathways, which support epidemiological data suggesting that adequate vitamin D3 levels may improve breast cancer outcome.

  18. Heart failure-inducible gene therapy targeting protein phosphatase 1 prevents progressive left ventricular remodeling.

    Directory of Open Access Journals (Sweden)

    Yosuke Miyazaki

    Full Text Available BACKGROUND: The targeting of Ca(2+ cycling has emerged as a potential therapy for the treatment of severe heart failure. These approaches include gene therapy directed at overexpressing sarcoplasmic reticulum (SR Ca(2+ ATPase, or ablation of phospholamban (PLN and associated protein phosphatase 1 (PP1 protein complexes. We previously reported that PP1β, one of the PP1 catalytic subunits, predominantly suppresses Ca(2+ uptake in the SR among the three PP1 isoforms, thereby contributing to Ca(2+ downregulation in failing hearts. In the present study, we investigated whether heart-failure-inducible PP1β-inhibition by adeno-associated viral-9 (AAV9 vector mediated gene therapy is beneficial for preventing disease progression in genetic cardiomyopathic mice. METHODS: We created an adeno-associated virus 9 (AAV9 vector encoding PP1β short-hairpin RNA (shRNA or negative control (NC shRNA. A heart failure inducible gene expression system was employed using the B-type natriuretic protein (BNP promoter conjugated to emerald-green fluorescence protein (EmGFP and the shRNA sequence. AAV9 vectors (AAV9-BNP-EmGFP-PP1βshRNA and AAV9-BNP-EmGFP-NCshRNA were injected into the tail vein (2×10(11 GC/mouse of muscle LIM protein deficient mice (MLPKO, followed by serial analysis of echocardiography, hemodynamic measurement, biochemical and histological analysis at 3 months. RESULTS: In the MLPKO mice, BNP promoter activity was shown to be increased by detecting both EmGFP expression and the induced reduction of PP1β by 25% in the myocardium. Inducible PP1βshRNA delivery preferentially ameliorated left ventricular diastolic function and mitigated adverse ventricular remodeling. PLN phosphorylation was significantly augmented in the AAV9-BNP-EmGFP-PP1βshRNA injected hearts compared with the AAV9-BNP-EmGFP-NCshRNA group. Furthermore, BNP production was reduced, and cardiac interstitial fibrosis was abrogated at 3 months. CONCLUSION: Heart failure

  19. Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes.

    Science.gov (United States)

    Marui, Junichiro;