WorldWideScience

Sample records for aryl hydrocarbon receptor

  1. NEW TRENDS IN ARYL HYDROCARBON RECEPTOR BIOLOGY

    OpenAIRE

    Fernández-Salguero, Pedro M.; Sonia eMulero-Navarro

    2016-01-01

    Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and ...

  2. New Trends in Aryl Hydrocarbon Receptor Biology

    OpenAIRE

    Mulero-navarro, Sonia; Fernandez-Salguero, Pedro M.

    2016-01-01

    Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and ...

  3. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich

    2016-01-01

    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  4. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia

    Directory of Open Access Journals (Sweden)

    Guofeng Xie

    2015-07-01

    Full Text Available For both men and women, colorectal cancer (CRC is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.

  5. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Guofeng, E-mail: gxie@medicine.umaryland.edu; Raufman, Jean-Pierre [Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-07-31

    For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.

  6. Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters

    DEFF Research Database (Denmark)

    Ahmed, Shaaima; Valen, Eivind; Sandelin, Albin Gustav;

    2009-01-01

    Recent studies have shown that activated aryl hydrocarbon receptor (AHR) induced the recruitment of estrogen receptor- (ER ) to AHR-regulated genes and that AHR is recruited to ER -regulated genes. However, these findings were limited to a small number of well-characterized AHR- or ER -responsive...

  7. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Laboratory Medicine, The Affiliated Tenth People' s Hospital, Tongji University, Shanghai 200072 (China); Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Wang, Zhanli [College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014 (China); Liang, Huaping, E-mail: huaping_liang@yahoo.com.cn [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)

    2010-11-05

    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  8. Enantiospecific effects of ketoconazole on aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Aneta Novotna

    Full Text Available Azole antifungal ketoconazole (KET was demonstrated to activate aryl hydrocarbon receptor (AhR. Since clinically used KET is a racemic mixture of two cis-enantiomers (2R,4S-(+-KET and (2S,4R-(--KET, we examined the effects of KET enantiomers on AhR signaling pathway. (+-KET dose-dependently activated AhR in human gene reporter cell line AZ-AHR, and displayed 5-20× higher agonist activity (efficacy, as compared to (--KET; both enantiomers were AhR antagonists with equal potency (IC50. Consistently, (+-KET strongly induced CYP1A1 mRNA and protein in human HepG2 cells, while (--KET exerted less than 10% of (+-KET activity. In primary human hepatocytes, both enantiomers preferentially induced CYP1A2 over CYP1A1 mRNA and protein, and the potency of (+-KET was slightly higher as compared to (--KET. Ligand binding assay with guinea pig liver cytosols revealed that both (+-KET and (--KET are weak ligands of AhR that displaced [3H]-TCDD with comparable potency. Similarly, both enantiomers weakly transformed AhR to DNA-binding form with similar potency, as showed by EMSA, in guinea pig liver cytosolic extracts and nuclear extracts from mouse Hepa-1 cells. We also examined effects of KET on glucocorticoid receptor (GR, a regulator of AhR activity. Both KET enantiomers antagonized GR with similar potency, as revealed by gene reporter assay in AZ-GR cell line and down-regulation of tyrosine aminotransferase mRNA in human hepatocytes. Finally, we demonstrate enantiospecific antifungal activities of KET enantiomers in six Candida spp. strains. In conclusion, the significance of current study is providing the first evidence of enatiospecific effects of cis-enantiomers of ketoconazole on AhR-CYP1A pathway.

  9. 3-methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters

    DEFF Research Database (Denmark)

    Pansoy, Andrea; Ahmed, Shaimaa; Valen, Eivind;

    2010-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated protein that mediates the toxic actions of polycyclic aromatic and halogenated compounds. Identifying genes directly regulated by AHR is important in understanding the pathways regulated by this receptor. Here we used chromatin immunopreci......The aryl hydrocarbon receptor (AHR) is a ligand-activated protein that mediates the toxic actions of polycyclic aromatic and halogenated compounds. Identifying genes directly regulated by AHR is important in understanding the pathways regulated by this receptor. Here we used chromatin...

  10. Oculomotor deficits in aryl hydrocarbon receptor null mouse.

    Directory of Open Access Journals (Sweden)

    Aline Chevallier

    Full Text Available The Aryl hydrocarbon Receptor or AhR, a ligand-activated transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD. Recent studies in Caenorhabditis elegans and Drosophila melanogaster show that the orthologs of the AhR are expressed exclusively in certain types of neurons and are implicated in the development and the homeostasis of the central nervous system. While physiological roles of the AhR were demonstrated in the mammalian heart, liver and gametogenesis, its ontogenic expression and putative neural functions remain elusive. Here, we report that the constitutive absence of the AhR in adult mice (AhR-/- leads to abnormal eye movements in the form of a spontaneous pendular horizontal nystagmus. To determine if the nystagmus is of vestibular, visual, or cerebellar origin, gaze stabilizing reflexes, namely vestibulo-ocular and optokinetic reflexes (VOR and OKR, were investigated. The OKR is less effective in the AhR-/- mice suggesting a deficit in the visuo-motor circuitry, while the VOR is mildly affected. Furthermore, the AhR is expressed in the retinal ganglion cells during the development, however electroretinograms revealed no impairment of retinal cell function. The structure of the cerebellum of the AhR-/- mice is normal which is compatible with the preserved VOR adaptation, a plastic process dependent on cerebellar integrity. Finally, intoxication with TCDD of control adults did not lead to any abnormality of the oculomotor control. These results demonstrate that the absence of the AhR leads to acquired central nervous system deficits in the adults. Given the many common features between both AhR mouse and human infantile nystagmus syndromes, the AhR-/- mice might give insights into the developmental mechanisms which lead to congenital eye disorders.

  11. Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity.

    Science.gov (United States)

    Yoon, Byung-Il; Hirabayashi, Yoko; Kawasaki, Yasushi; Kodama, Yukio; Kaneko, Toyozo; Kanno, Jun; Kim, Dae-Yong; Fujii-Kuriyama, Yoshiaki; Inoue, Tohru

    2002-11-01

    Benzene can induce hematotoxicity and leukemia in humans and mice. Since a review of the literature shows that the CYP2E1 knockout mouse is not known to possess any benzene toxicity, the metabolism of benzene by CYP2E1 in the liver is regarded to be prerequisite for its cytotoxicity and genotoxicity, although the mechanism is not fully understood yet. Because it was found some years ago that benzene was also a substrate for CYP1A1, we investigated the involvement of the aryl hydrocarbon receptor (AhR) in benzene hematotoxicity using AhR wild-type (AhR(+/+)), heterozygous (AhR(+/-)), and homozygous (AhR(-/-)) male mice. Interestingly, following a 2-week inhalation of 300 ppm benzene (a potent dose for leukemogenicity), no hematotoxicity was induced in AhR(-/-) mice. Further, there were no changes in cellularity of peripheral blood and bone marrow (BM), nor in levels of granulocyte-macrophage colony-forming units in BM. This lack of hematotoxicity was associated with the lack of p21 overexpression, which was regularly seen in the wild-type mice following benzene inhalation. Combined treatment with two major benzene metabolites, phenol and hydroquinone, induced hemopoietic toxicity, although it was not known whether this happened due to a surprising lack of expression of CYP2E1 by AhR knockout, or due to a lack of other AhR-mediated CYP enzymes, including 1A1 (i.e., a possible alternative pathway of benzene metabolism). The former possibility, evaluated in the present study, failed to show a significant relationship between AhR and the expression of CYP2E1. Furthermore, a subsequent evaluation of AhR expression after benzene inhalation tended to show higher but less significant expression in the liver, and none in the BM, compared with sham control. Although this study failed to identify the more likely of the above-mentioned two possibilities, the study using AhR knockout mice on benzene inhalation presents the unique possibility that the benzene toxicity may be

  12. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shoko, E-mail: satosho@rs.tus.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Shirakawa, Hitoshi, E-mail: shirakah@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan); Tomita, Shuhei, E-mail: tomita@med.tottori-u.ac.jp [Division of Molecular Pharmacology, Department of Pathophysiological and Therapeutic Science, Yonago 683-8503 (Japan); Tohkin, Masahiro, E-mail: tohkin@phar.nagoya-cu.ac.jp [Department of Medical Safety Science, Graduate School of Pharmaceutical Science, Nagoya City University, Nagoya 267-8603 (Japan); Gonzalez, Frank J., E-mail: gonzalef@mail.nih.gov [Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Komai, Michio, E-mail: mkomai@m.tohoku.ac.jp [Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555 (Japan)

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  13. Smoke carcinogens cause bone loss through the aryl hydrocarbon receptor and induction of CYP1 enzymes

    Science.gov (United States)

    Smoking is a major risk factor for osteoporosis and fracture. Here, we show that smoke toxins and environmental chemicals such as benzo[a]pyrene (BaP), 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD), and 3-methyl cholanthrene, which are well known aryl hydrocarbon receptor (AHR) agonists, induce osteocla...

  14. Aryl hydrocarbon receptor ligand effects in RBL2H3 cells

    DEFF Research Database (Denmark)

    Maaetoft-Udsen, Kristina; Shimoda, Lori M. N.; Frøkiær, Hanne;

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system, but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory...

  15. In vitro function of the aryl hydrocarbon receptor predicts in vivo sensitivity of oviparous vertebrates to dioxin-like compounds

    Science.gov (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investig...

  16. The aryl hydrocarbon receptor:a regulator of Th17 and Treg cell development in disease

    Institute of Scientific and Technical Information of China (English)

    Peggy P Ho; Lawrence Steinman

    2008-01-01

    @@ The aryl hydrocarbon receptor (AhR)was discovered almost 30 years ago as a specific binding site for the halogenated polycyclic aromatic hydrocarbon,2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),an environmental toxin (as reviewed in [1]).Within the last decade,AhR was found to have a basic helixloop-helix and function as a ligand-activated transcription factor.Located in the cytoplasm of most cells,AhR forms a receptor complex with several proteins including the chaperone protein hsp90 (a 90kDa heat shock protein).

  17. Lineage-dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis

    OpenAIRE

    Harrill, Joshua A.; Bethany B Parks; Wauthier, Eliane; Rowlands, J. Craig; Reid, Lola M.; Thomas, Russell S.

    2015-01-01

    Rodent cancer bioassays indicate that the aryl hydrocarbon receptor (AHR) agonist, 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD), causes increases in both hepatocytic and cholangiocytic tumors. Effects of AHR activation have been evaluated on rodent hepatic stem cells (rHpSCs) versus their descendants, hepatoblasts (rHBs), two lineage stages of multipotent, hepatic precursors with overlapping but also distinct phenotypic traits. This was made possible by defining the first successful culture co...

  18. Aryl Hydrocarbon Receptor Activation by TCDD Reduces Inflammation Associated with Crohn's Disease

    OpenAIRE

    Benson, Jenna M.; Shepherd, David M.

    2010-01-01

    Crohn's disease results from a combination of genetic and environmental factors that trigger an inappropriate immune response to commensal gut bacteria. The aryl hydrocarbon receptor (AhR) is well known for its involvement in the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant that affects people primarily through the diet. Recently, TCDD was shown to suppress immune responses by generating regulatory T cells (Tregs). We hypothesized that AhR activation da...

  19. REGULATION OF CENTRAL NERVOUS SYSTEM AUTOIMMUNITY BY THE ARYL HYDROCARBON RECEPTOR

    OpenAIRE

    Quintana, Francisco J.

    2013-01-01

    The ligand-activated transcription factor aryl hydrocarbon receptor controls the activity of several components of the immune system, many of which play an important role in neuroinflammation. This review discusses the role of AhR in T cells and dendritic cells, its relevance for the control of autoimmunity in the central nervous system, and its potential as a therapeutic target for immune mediated disorders.

  20. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes

    OpenAIRE

    Sutter, Carrie Hayes; Yin, Hong; Li, Yunbo; Mammen, Jennifer S.; Bodreddigari, Sridevi; Stevens, Gaylene; Cole, Judith A; Sutter, Thomas R.

    2009-01-01

    Dioxin is an extremely potent carcinogen. In highly exposed people, the most commonly observed toxicity is chloracne, a pathological response of the skin. Most of the effects of dioxin are attributed to its activation of the aryl hydrocarbon receptor (AHR), a transcription factor that binds to the Ah receptor nuclear translocator (ARNT) to regulate the transcription of numerous genes, including CYP1A1 and CYP1B1. In cultures of normal human epidermal keratinocytes dioxin accelerates cell diff...

  1. Estrogen receptor- and aryl hydrocarbon receptor- mediated activities of a coal-tar creosote

    Energy Technology Data Exchange (ETDEWEB)

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R. [Michigan State University, East Lansing, MI (USA). Dept. of Biochemistry

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol- equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyp 1a1-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O- depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal- tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic response in vivo.

  2. Estrogen receptor- and aryl hydrocarbon receptor-mediated activities of a coal-tar creosote

    Energy Technology Data Exchange (ETDEWEB)

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R.

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind to the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol-equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyplal-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O-depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal-tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic responses in vivo.

  3. Anthocyan does not suppress transformation of aryl hydrocarbon receptor induced by dioxin.

    Science.gov (United States)

    Mukai, Rie; Fukuda, Itsuko; Nishiumi, Shin; Hosokawa, Keizo; Kanazawa, Kazuki; Ashida, Hitoshi

    2004-01-01

    Dioxins cause a variety of toxic effects through transformation of a cytosolic aryl hydrocarbon receptor (AhR). We have previously demonstrated that certain natural flavones and flavonols at the dietary levels suppress AhR transformation. In this study, we investigated whether 5 anthocyanidins, 15 anthocyanins, and protocatechuic acid suppress AhR transformation in mouse hepatoma Hepa-1c1c7 cells. All the compounds tested here at 5 microM unexpectedly failed to suppress the transformation induced by 0.1 nM TCDD, indicating that anthocyan does not have a potential to prevent dioxin toxicity.

  4. Specific in vitro toxicity of crude and refined petroleum products. 1. Aryl hydrocarbon receptor-mediated responses

    NARCIS (Netherlands)

    Vrabie, C.M.; Jonker, M.T.O.; Murk, A.J.

    2009-01-01

    The present study is the first in a series reporting on in vitro toxic potencies of oils. The objective was to determine whether 11 crude oils and refined products activate the aryl hydrocarbon receptor (AhR) in a dioxin receptor¿mediated luciferase assay. Cells were exposed for 6 and 24 h to differ

  5. Aryl Hydrocarbon Receptor and Breast Cancer%芳香烃受体与乳腺癌

    Institute of Scientific and Technical Information of China (English)

    胡蕾蕾

    2011-01-01

    The aryl hydrocarbon receptor ( AhR ) is a ligand-activated transcription factor,which mediates the activity of polycyclic aromatic hydrocarbons and is involved in some important biological processes.The AhRin complex with its binding partner aryl hydrocarbon receptor nuclear translocator,mediates the cellular response to xenobiotic compounds such as the environmental pollutant dioxin.Recent researches showed that AhR might promote the development of breast cancer via a variety of approaches and the inhibitory AhR-ER cross-alk may explain why the breast cancer caused by chemical carcinogens is still estrogen receptor-positive.%芳香烃受体(AhR)是一种配体依赖性激活的转录因子,可介导多环芳烃类化合物的毒性反应(包括致毒性),还参与一些重要的生物学过程.AhR与芳香烃受体核转位蛋白结合,促使对异生型物质如环境污染物二口 恶英作出反应.近年来的研究发现,AhR可能通过多种途径在乳腺癌的发生、发展中起作用,其中AhR与雌激素受体的抑制性交互应答可能解释为什么乳腺癌仍为激素敏感性乳腺癌,尤其是化学致癌物为主导的乳腺癌.

  6. The role of endogenous aryl hydrocarbon receptor signaling in cardiovascular physiology.

    Science.gov (United States)

    Zhang, Nan

    2011-04-01

    The aryl hydrocarbon receptor (AHR) is an orphan nuclear receptor with a primary function of mediating xenobiotic metabolism through transcriptional activation of Phase I and Phase II drug-metabolizing enzymes. Although no high-affinity physiological activators of AHR have been discovered, the endogenous signaling of the AHR pathway is believed to play an important role in the development and function of the cardiovascular system, based on the observations on ahr gene-deficient mice. The AHR knockout mice develop cardiac hypertrophy, abnormal vascular structure in multiple organs and altered blood pressure depending on their host environment. In this review, the endogenous role of AHR in cardiovascular physiology, including heart function, vascular development and blood pressure regulation has been summarized and discussed.

  7. Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration.

    Science.gov (United States)

    Andreasen, Eric A; Mathew, Lijoy K; Löhr, Christiane V; Hasson, Rachelle; Tanguay, Robert L

    2007-01-01

    Adult zebra fish completely regenerate their caudal (tail) fin following partial amputation. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits this regenerative process. Proper regulation of transcription, innervation, vascularization, and extracellular matrix (ECM) composition is essential for complete fin regeneration. Previous microarray studies suggest that genes involved in ECM regulation are misexpressed following activation of the aryl hydrocarbon receptor. To investigate whether TCDD blocks regeneration by impairing ECM remodeling, male zebra fish were i.p. injected with 50 ng/g TCDD or vehicle, and caudal fins were amputated. By 3 days postamputation (dpa), the vascular network in the regenerating fin of TCDD-exposed fish was disorganized compared to vehicle-exposed animals. Furthermore, immunohistochemical staining revealed that axonal outgrowth was impacted by TCDD as early as 3 dpa. Histological analysis demonstrated that TCDD exposure leads to an accumulation of collagen at the end of the fin ray just distal to the amputation site by 3 dpa. Mature lepidotrichial-forming cells (fin ray-forming cells) were not observed in the fins of TCDD-treated fish. The capacity to metabolize ECM was also altered by TCDD exposure. Quantitative real-time PCR studies revealed that the aryl hydrocarbon pathway is active and that matrix-remodeling genes are expressed in the regenerate following TCDD exposure.

  8. Molecular interactions of the aryl hydrocarbon receptor and its biological and toxicological relevance for reproduction.

    Science.gov (United States)

    Pocar, P; Fischer, B; Klonisch, T; Hombach-Klonisch, S

    2005-04-01

    The dioxin/aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor responsive to both natural and man-made environmental compounds. AhR and its nuclear partner ARNT are expressed in the female reproductive tract in a variety of species and several indications suggest that the AhR might play a pivotal role in the physiology of reproduction. Furthermore, it appears to be the mediator of most, if not all, the adverse effects on reproduction of a group of highly potent environmental pollutants collectively called aryl hydrocarbons (AHs), including the highly toxic compound 2,3,7,8-tetrachlor-odibenzo-p-dioxin (TCDD). Although a large body of recent literature has implicated AhR in multiple signal transduction pathways, the mechanisms of action resulting in a wide spectrum of effects on female reproduction are largely unknown. Here we summarize the major types of molecular cross-talks that have been identified for the AhR and linked cell signaling pathways and that are relevant for the understanding of the role of this transcription factor in female reproduction.

  9. Specific in vitro toxicity of crude and refined petroleum products. 1. Aryl hydrocarbon receptor-mediated responses.

    NARCIS (Netherlands)

    Vrabie, C.M.; Jonker, M.T.O.; Murk, A.J.

    2009-01-01

    The present study is the first in a series reporting on in vitro toxic potencies of oils. The objective was to determine whether 11 crude oils and refined products activate the aryl hydrocarbon receptor (AhR) in a dioxin receptor–mediated luciferase assay. Cells were exposed for 6 and 24 h to differ

  10. Identification of Cinnabarinic Acid as a Novel Endogenous Aryl Hydrocarbon Receptor Ligand That Drives IL-22 Production

    OpenAIRE

    2014-01-01

    The aryl hydrocarbon receptor (AHR) binds to environmental toxicants including synthetic halogenated aromatic hydrocarbons and is involved in a diverse array of biological processes. Recently, the AHR was shown to control host immunity by affecting the balance between inflammatory T cells that produce IL-17 (Th17) and IL-22 versus regulatory T cells (Treg) involved in tolerance. While environmental AHR ligands can mediate this effect, endogenous ligands are likely to be more relevant in host ...

  11. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia

    DEFF Research Database (Denmark)

    Raitila, A; Georgitsi, M; Karhu, A;

    2007-01-01

    Germline mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene were recently observed in patients with pituitary adenoma predisposition (PAP). Though AIP mutation-positive individuals with prolactin-, mixed growth hormone/prolactin-, and ACTH-producing pituitary adenomas as well...... as non-secreting pituitary adenomas have been reported, most mutation-positive patients have had growth hormone-producing adenomas diagnosed at relatively young age. Pituitary adenomas are also component tumors of some familial endocrine neoplasia syndromes such as multiple endocrine neoplasia type 1....... Here, we have analyzed 32 pituitary adenomas and 79 other tumors of the endocrine system for somatic AIP mutations by direct sequencing. No somatic mutations were identified. However, two out of nine patients with prolactin-producing adenoma were shown to harbor a Finnish founder mutation (Q14X...

  12. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells.

    Science.gov (United States)

    Wang, Kai; Li, Yan; Jiang, Yi-Zhou; Dai, Cai-Feng; Patankar, Manish S; Song, Jia-Sheng; Zheng, Jing

    2013-10-28

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.

  13. A selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits gastric cancer cell growth

    Directory of Open Access Journals (Sweden)

    Yin Xiao-Fei

    2012-05-01

    Full Text Available Abstract Background Aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor associated with gastric carcinogenesis. 3,3'-Diindolylmethane (DIM is a relatively non-toxic selective AhR modulator. This study was to detect the effects of DIM on gastric cancer cell growth. Methods Gastric cancer cell SGC7901 was treated with DIM at different concentrations (0,10,20,30,40,50 μmol/L with or without an AhR antagonist, resveratrol. The expression of AhR and Cytochrome P4501A1 (CYP1A1, a classic target gene of AhR pathway, were detected by RT-PCR and Western blot; cell viability was measured by MTT assay, and the changes in cell cycle and apoptosis were analyzed by flow cytometry. Results RT-PCR and western-blot showed that with the increase of the concentration of DIM, AhR protein gradually decreased and CYP1A1 expression increased, suggesting that DIM activated the AhR pathway and caused the translocation of AhR from cytoplasm to nucleus. MTT assay indicated that the viability of SGC7901 cells was significantly decreased in a concentration- and time-dependent manner after DIM treatment and this could be partially reversed by resveratrol. Flow cytometry analysis showed that DIM arrested cell cycle in G1 phase and induced cell apoptosis. Conclusion Selective aryl hydrocarbon receptor modulator 3,3'-Diindolylmethane inhibits SGC7901 cell proliferation by inducing apoptosis and delaying cell cycle progression. AhR may be a potential therapeutic target for gastric cancer treatment.

  14. Aryl Hydrocarbon Receptor Repressor and TiPARP (ARTD14 Use Similar, but also Distinct Mechanisms to Repress Aryl Hydrocarbon Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Laura MacPherson

    2014-05-01

    Full Text Available The aryl hydrocarbon receptor (AHR regulates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. The AHR repressor (AHRR is an AHR target gene and functions as a ligand-induced repressor of AHR; however, its mechanism of inhibition is controversial. Recently, we reported that TCDD-inducible poly (ADP-ribose polymerase (TiPARP; ARTD14 also acts as a repressor of AHR, representing a new player in the mechanism of AHR action. Here we compared the ability of AHRR- and TiPARP-mediated inhibition of AHR activity. TCDD increased AHRR mRNA levels and recruitment of AHRR to cytochrome P450 1A1 (CYP1A1 in MCF7 cells. Knockdown of TiPARP, but not AHRR, increased TCDD-induced CYP1A1 mRNA and AHR protein levels. Similarly, immortalized TiPARP−/− mouse embryonic fibroblasts (MEFs and AHRR−/− MEFs exhibited enhanced AHR transactivation. However, unlike TiPARP−/− MEFs, AHRR−/− MEFs did not exhibit increased AHR protein levels. Overexpression of TiPARP in AHRR−/− MEFs or AHRRΔ8, the active isoform of AHRR, in TiPARP−/− MEFs reduced TCDD-induced CYP1A1 mRNA levels, suggesting that they independently repress AHR. GFP-AHRRΔ8 and GFP-TiPARP expressed as small diffuse nuclear foci in MCF7 and HuH7 cells. GFP-AHRRΔ8_Δ1-49, which lacks its putative nuclear localization signal, localized to both the nucleus and the cytoplasm, while the GFP-AHRRΔ8_Δ1-100 mutant localized predominantly in large cytoplasmic foci. Neither GFP-AHRRΔ8_Δ1-49 nor GFP-AHRRΔ8_Δ1-100 repressed AHR. Taken together, AHRR and TiPARP repress AHR transactivation by similar, but also different mechanisms.

  15. Blockade of the aryl hydrocarbon receptor pathway triggered by dioxin, polycyclic aromatic hydrocarbons and cigarette smoke by Phellinus linteus.

    Science.gov (United States)

    Mukai, Mai; Kasai, Ayumi; Hiramatsu, Nobuhiko; Hayakawa, Kunihiro; Okamura, Maro; Tagawa, Yasuhiro; Yao, Jian; Nakamura, Tomoyuki; Kitamura, Masanori

    2008-10-01

    Environmental pollutants including halogenated and polycyclic aromatic hydrocarbons activate the aryl hydrocarbon receptor (AhR) and thereby cause a wide range of pathological changes. Development of AhR antagonists will be useful for prevention and treatment of diseases related to AhR activation. Towards this end, we aimed in the present study at seeking for potential inhibitors of the AhR pathway in mycelial extracts using the dioxin responsive element-based sensing via secreted alkaline phosphatase (DRESSA). Through the screening of 13 mycelia, extracts prepared from Phellinus linteus, Cordyceps militaris and Hericium erinaceum inhibited activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin, benzo[a]pyrene or 3-methylcholanthrene. Subsequent studies revealed that only Phellinus linteus suppressed activation of AhR and AhR-dependent gene expression triggered by all of these agonists. Cigarette smoke is known to contain a number of halogenated and polycyclic aromatic hydrocarbons. We found that Phellinus linteus has the potential to block activation of AhR and AhR-dependent gene expression triggered by cigarette smoke. Furthermore, the inhibitory effect of Phellinus linteus on the AhR pathway was independent of; 1) depression of AhR or AhR nuclear translocator, and 2) induction of AhR repressor. We conclude that Phellinus linteus contains potent inhibitor(s) of AhR activation and may be useful for prevention of pathologies associated with aberrant activation of AhR.

  16. Cell specific effects of PCB 126 on aryl hydrocarbone receptors in follicular cells of porcine ovaries

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, A.; Augustowska, K.; Gregoraszczuk, E. [Lab. of Physiology and Toxicology of Reproduction, Dept. of Animal Physiology, Inst. of Zoology, Jagiellonian Univ., Krakow (Poland)

    2004-09-15

    Polychlorinated biphenyles (PCBs) like other endocrine disrupters could interfere with natural hormones by binding to their receptors and thus mimicking the cellular response to them. They are known to possess either estrogenic or antiestrogenic properties. In our previous papers we demonstrated that PCBs are able to disrupt ovarian steroidogenesis. We found that the coplanar PCB 126 caused the decrease in estradiol secretion in whole cultured pig ovarian follicles. PCB 126 congener is structurally related to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since TCDD effects are known to be mediated by aryl hydrocarbone receptors (AhRs), we decided to determine if PCB 126 affects signal transduction pathway activated by these receptors. It has been reported that the functional AhR is present in ovary including oocytes, granulosa and theca cells of rat, mouse, rhesus monkey and human ovary. Moreover, the expression of AhR in the rat ovary appeared to be estrous cycle-dependent, thus suggesting that AhR expression may be regulated by fluctuating hormone levels. This study was designed to investigate the effects of the non-ortho-substituted 3,3',4,4',5-pentachlorobiphenyl (PCB126) on the AhR activation, localization and protein level in pig ovarian follicle cells.

  17. The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis

    Science.gov (United States)

    Solis, Norma V.; Swidergall, Marc; Bruno, Vincent M.; Gaffen, Sarah L.

    2017-01-01

    ABSTRACT Oropharyngeal candidiasis (OPC), caused predominantly by Candida albicans, is a prevalent infection in patients with advanced AIDS, defects in Th17 immunity, and head and neck cancer. A characteristic feature of OPC is fungal invasion of the oral epithelial cells. One mechanism by which C. albicans hyphae can invade oral epithelial cells is by expressing the Als3 and Ssa1 invasins that interact with the epidermal growth factor receptor (EGFR) on epithelial cells and stimulate endocytosis of the organism. However, the signaling pathways that function downstream of EGFR and mediate C. albicans endocytosis are poorly defined. Here, we report that C. albicans infection activates the aryl hydrocarbon receptor (AhR), leading to activation of Src family kinases (SFKs), which in turn phosphorylate EGFR and induce endocytosis of the fungus. Furthermore, treatment of oral epithelial cells with interferon gamma inhibits fungal endocytosis by inducing the synthesis of kynurenines, which cause prolonged activation of AhR and SFKs, thereby interfering with C. albicans-induced EGFR signaling. Treatment of both immunosuppressed and immunocompetent mice with an AhR inhibitor decreases phosphorylation of SFKs and EGFR in the oral mucosa, reduces fungal invasion, and lessens the severity of OPC. Thus, our data indicate that AhR plays a central role in governing the pathogenic interactions of C. albicans with oral epithelial cells during OPC and suggest that this receptor is a potential therapeutic target. PMID:28325761

  18. Malassezia-derived indoles activate the aryl hydrocarbon receptor and inhibit Toll-like receptor-induced maturation in monocyte-derived dendritic cells.

    NARCIS (Netherlands)

    Vlachos, C.; Schulte, B.M.; Magiatis, P.; Adema, G.J.; Gaitanis, G.

    2012-01-01

    Background The aryl hydrocarbon receptor (AhR) is a nuclear receptor and transcriptional regulator with pleiotropic effects. The production of potent AhR ligands by Malassezia yeasts, such as indirubin, indolo[3,2-b]carbazole (ICZ), tryptanthrin and malassezin, has been associated with the pathogene

  19. Polymorphism of the aryl-hydrocarbon receptor gene in intron 10 of human cancers

    Directory of Open Access Journals (Sweden)

    M. Rocas

    2011-11-01

    Full Text Available Polychlorinated dibenzo-p-dioxins (PCDDs and related halogenated aromatic hydrocarbons (e.g., PCDFs, often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR. Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region, previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age. We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.

  20. The androgenic anabolic steroid tetrahydrogestrinone produces dioxin-like effects via the aryl hydrocarbon receptor.

    Science.gov (United States)

    Moon, Hyo Youl; Kim, Sun-Hee; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-10-01

    For a long time, athletes have used androgenic anabolic steroids (AASs) in an inappropriate and veiled manner with the aim of improving exercise performance or for cosmetic purposes. Abuse of AASs triggers adverse effects such as hepatocarcinogenesis, heart attacks, and aggressive behavior. However, AAS-induced toxicity is not completely understood at the molecular level. In the present study, we showed, by performing a dioxin response element (DRE)-luciferase reporter gene assay, that tetrahydrogestrinone (THG), a popular and potent androgen receptor agonist, has dioxin-like effects. In addition, we showed that THG increased cytochrome P-450 1A1 (CYP1A1) mRNA and protein levels, and enzyme activity. The gene encoding CYP1A1 is involved in phase 1 xenobiotic metabolism and a target gene of the aryl hydrocarbon receptor (AhR). Using the AhR antagonist CH-223191, we also examined whether the effects of THG on DRE activation depended on AhR. Our results suggest that synthetic anabolic steroids may have dioxin-like side effects that can disturb endocrine systems and may cause other side effects including cancer through AhR.

  1. Correlation between TCDD acute toxicity and aryl hydrocarbon receptor structure for different mammals.

    Science.gov (United States)

    Wang, Yonghua; Wang, Qiuying; Wu, Bing; Li, Yi; Lu, Guanghua

    2013-03-01

    The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity has large species differences, and TCDD exerts its toxicity by binding into aryl hydrocarbon receptor (AHR). In this study, we applied bioinformatics approaches to quantitatively analyze the correlation between TCDD acute toxicity and AHRs. Seven mammalian AHRs were chosen as target receptors. Low conserved functional domains of AHRs were identified and quantitatively characterized. Linear regression was applied to determine the relationships of different mammalian AHRs and TCDD LD(50) values. The results indicated that ligand binding domain and glutamine-rich domain of mammalian AHRs showed a low degree of conservation. Based on previous literatures, the number of glutamine residues (NOQ) and binding free energy with TCDD were applied to quantitatively represent the differences of glutamine-rich domain and ligand binding domain, respectively. Then, regression equations between studied mammalian AHR structures and TCDD LD(50) were constructed, and high linear correlation was found (R(2)=0.986). This study indicated that mammalian differences of TCDD acute toxicity might be partly determined by the differences of glutamine-rich domain and ligand binding domain of AHR, which provides a potential insight to analyze the species differences of TCDD toxicity.

  2. Pathogenesis of Aryl Hydrocarbon Receptor-Mediated Development of Lymphoma Is Associated with Increased Cyclooxygenase-2 Expression

    OpenAIRE

    Vogel, Christoph F. A.; Li, Wen; Sciullo, Eric; Newman, John; Hammock, Bruce; Reader, J. Rachel; Tuscano, Joseph; Matsumura, Fumio

    2007-01-01

    Epidemiological studies indicate that exposure to environmental pollutants such as pesticides and dioxins leads to the pathogenesis of lymphoma and leukemia. Here, we show that activation of the aryl hydrocarbon receptor (AhR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in loss of the programmed cell death (apoptosis) response in three different lymphoma cell lines, which plays a key role in the development of cancer, especially lymphoma and leukemia. The AhR-mediated inhibition of...

  3. In Silico Identification of an Aryl Hydrocarbon Receptor Antagonist with Biological Activity In Vitro and In Vivo

    OpenAIRE

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is critically involved in several physiologic processes, including cancer progression and multiple immune system activities. We, and others, have hypothesized that AHR modulators represent an important new class of targeted therapeutics. Here, ligand shape–based virtual modeling techniques were used to identify novel AHR ligands on the basis of previously identified chemotypes. Four structurally unique compounds were identified. One lead compound, 2-((2-(5-...

  4. Regulation of mouse small heat shock protein αb-crystallin gene by aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Shuang Liu

    Full Text Available The stress-inducible small heat shock protein (shsp/αB-crystallin gene is expressed highly in the lens and moderately in other tissues. Here we provide evidence that it is a target gene of the aryl hydrocarbon receptor (AhR transcription factor. A sequence (-329/-323, CATGCGA similar to the consensus xenobiotic responsive element (XRE, called here XRE-like, is present in the αBE2 region of αB-crystallin enhancer and can bind AhR in vitro and in vivo. αB-crystallin protein levels were reduced in retina, lens, cornea, heart, skeletal muscle and cultured muscle fibroblasts of AhR(-/- mice; αB-crystallin mRNA levels were reduced in the eye, heart and skeletal muscle of AhR(-/- mice. Increased AhR stimulated αB-crystallin expression in transfection experiments conducted in conjunction with the aryl hydrocarbon receptor nuclear translocator (ARNT and decreased AhR reduced αB-crystallin expression. AhR effect on aB-crystallin promoter activity was cell-dependent in transfection experiments. AhR up-regulated αB-crystallin promoter activity in transfected HeLa, NIH3T3 and COS-7 cells in the absence of exogenously added ligand (TCDD, but had no effect on the αB-crystallin promoter in C(2C(12, CV-1 or Hepa-1 cells with or without TCDD. TCDD enhanced AhR-stimulated αB-crystallin promoter activity in transfected αTN4 cells. AhR could bind to an XRE-like site in the αB-crystallin enhancer in vitro and in vivo. Finally, site-specific mutagenesis experiments showed that the XRE-like motif was necessary for both basal and maximal AhR-induction of αB-crystallin promoter activity. Our data strongly suggest that AhR is a regulator of αB-crystallin gene expression and provide new avenues of research for the mechanism of tissue-specific αB-crystallin gene regulation under normal and physiologically stressed conditions.

  5. Association of aryl hydrocarbon receptor-related gene variants with the severity of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Takashi X. Fujisawa

    2016-11-01

    Full Text Available Exposure to environmental chemicals, such as dioxin, is known to have adverse effects on the homeostasis of gonadal steroids, thereby potentially altering the sexual differentiation of the brain to express autistic traits. Dioxin-like chemicals act on the aryl hydrocarbon receptor (AhR, polymorphisms and mutations of AhR-related gene may exert pathological influences on sexual differentiation of the brain, causing autistic traits. To ascertain the relationship between AhR-related gene polymorphisms and autism susceptibility, we identified genotypes of them in patients and controls and determined whether there are different gene and genotype distributions between both groups. In addition, to clarify the relationships between the polymorphisms and the severity of autism, we compared the two genotypes of AhR-related genes (rs2066853, rs2228099 with the severity of autistic symptoms. Although no statistically significant difference was found between autism spectrum disorder (ASD patients and control individuals for the genotypic distribution of any of the polymorphisms studied herein, a significant difference in the total score of severity was observed in rs2228099 polymorphism, suggesting that the polymorphism modifies the severity of ASD symptoms but not ASD susceptibility. Moreover, we found that a significant difference in the social communication score of severity was observed. These results suggest that the rs2228099 polymorphism is possibly associated with the severity of social communication impairment among the diverse ASD symptoms.

  6. Interaction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Merson, Rebeka R., E-mail: rmerson@ric.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Biology Department, Rhode Island College, 500 Mt. Pleasant Ave., Providence, RI 02908 (United States); Karchner, Sibel I.; Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2009-08-13

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. In some mammalian cell lines, TCDD induces G1 cell cycle arrest, which depends on an interaction between the AHR and the retinoblastoma tumor suppressor (RB). Mammals possess one AHR, whereas fishes possess two or more AHR paralogs that differ in the domains important for AHR-RB interactions in mammals. To test the hypothesis that fish AHR paralogs differ in their ability to interact with RB, we cloned RB cDNA from Atlantic killifish, Fundulus heteroclitus, and studied the interactions of killifish RB protein with killifish AHR1 and AHR2. In coimmunoprecipitation experiments, in vitro-expressed killifish RB coprecipitated with both AHR1 and AHR2. Consistent with these results, both killifish AHR1 and AHR2 interacted with RB in mammalian two-hybrid assays. These results suggest that both fish AHR1 and AHR2 paralogs may have the potential to influence cell proliferation through interactions with RB.

  7. The Aryl Hydrocarbon Receptor Pathway: A Key Component of the microRNA-Mediated AML Signalisome

    Directory of Open Access Journals (Sweden)

    Julia E. Rager

    2012-05-01

    Full Text Available Recent research has spotlighted the role of microRNAs (miRNAs as critical epigenetic regulators of hematopoietic stem cell differentiation and leukemia development. Despite the recent advances in knowledge surrounding epigenetics and leukemia, the mechanisms underlying miRNAs’ influence on leukemia development have yet to be clearly elucidated. Our aim was to identify high ranking biological pathways altered at the gene expression level and under epigenetic control. Specifically, we set out to test the hypothesis that miRNAs dysregulated in acute myeloid leukemia (AML converge on a common pathway that can influence signaling related to hematopoiesis and leukemia development. We identified genes altered in AML patients that are under common regulation of seven key miRNAs. By mapping these genes to a global interaction network, we identified the “AML Signalisome”. The AML Signalisome comprises 53 AML-associated molecules, and is enriched for proteins that play a role in the aryl hydrocarbon receptor (AhR pathway, a major regulator of hematopoiesis. Furthermore, we show biological enrichment for hematopoiesis-related proteins within the AML Signalisome. These findings provide important insight into miRNA-regulated pathways in leukemia, and may help to prioritize targets for disease prevention and treatment.

  8. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology.

    Science.gov (United States)

    Esser, Charlotte; Rannug, Agneta

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is an evolutionarily old transcription factor belonging to the Per-ARNT-Sim-basic helix-loop-helix protein family. AhR translocates into the nucleus upon binding of various small molecules into the pocket of its single-ligand binding domain. AhR binding to both xenobiotic and endogenous ligands results in highly cell-specific transcriptome changes and in changes in cellular functions. We discuss here the role of AhR for immune cells of the barrier organs: skin, gut, and lung. Both adaptive and innate immune cells require AhR signaling at critical checkpoints. We also discuss the current two prevailing views-namely, 1) AhR as a promiscuous sensor for small chemicals and 2) a role for AhR as a balancing factor for cell differentiation and function, which is controlled by levels of endogenous high-affinity ligands. AhR signaling is considered a promising drug and preventive target, particularly for cancer, inflammatory, and autoimmune diseases. Therefore, understanding its biology is of great importance.

  9. Expression of the aryl hydrocarbon receptor pathway and cyclooxygenase-2 in dog tumors.

    Science.gov (United States)

    Giantin, M; Vascellari, M; Lopparelli, R M; Ariani, P; Vercelli, A; Morello, E M; Cristofori, P; Granato, A; Buracco, P; Mutinelli, F; Dacasto, M

    2013-02-01

    In humans, the aryl hydrocarbon receptor (AHR) gene battery constitutes a set of contaminant-responsive genes, which have been recently shown to be involved in the regulation of several patho-physiological conditions, including tumorigenesis. As the domestic dog represents a valuable animal model in comparative oncology, mRNA levels of cytochromes P450 1A1, 1A2 and 1B1 (CYP1A1, 1A2 and 1B1), AHR, AHR nuclear translocator (ARNT), AHR repressor (AHRR, whose partial sequence was here obtained) and cyclooxygenase-2 (COX2) were measured in dog control tissues (liver, skin, mammary gland and bone), in 47 mast cell tumors (MCTs), 32 mammary tumors (MTs), 5 osteosarcoma (OSA) and related surgical margins. Target genes were constitutively expressed in the dog, confirming the available human data. Furthermore, their pattern of expression in tumor biopsies was comparable to that already described in a variety of human cancers; in particular, both AHR and COX2 genes were up-regulated and positively correlated, while CYP1A1 and CYP1A2 mRNAs were generally poorly expressed. This work demonstrated for the first time that target mRNAs are expressed in neoplastic tissues of dogs, thereby increasing the knowledge about dog cancer biology and confirming this species as an useful animal model for comparative studies on human oncology.

  10. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Chia-I Ko

    2014-01-01

    Full Text Available The aryl hydrocarbon receptor (AHR is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  11. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation.

    Science.gov (United States)

    Lehmann, Geniece M; Xi, Xia; Kulkarni, Ajit A; Olsen, Keith C; Pollock, Stephen J; Baglole, Carolyn J; Gupta, Shikha; Casey, Ann E; Huxlin, Krystel R; Sime, Patricia J; Feldon, Steven E; Phipps, Richard P

    2011-04-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR(-/-) fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent.

  12. Decreased Expression of the Aryl Hydrocarbon Receptor in Ocular Behcet’s Disease

    Directory of Open Access Journals (Sweden)

    Chaokui Wang

    2014-01-01

    Full Text Available Recent studies show that the aryl hydrocarbon receptor (AhR is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ and 2-(1′H-indole-3′-carbonyl-thiazole-4-carboxylic acid methyl ester (ITE. In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet’s disease (BD. The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4+T cells in active BD patients and normal controls. Stimulation of purified CD4+T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  13. Decreased expression of the aryl hydrocarbon receptor in ocular Behcet's disease.

    Science.gov (United States)

    Wang, Chaokui; Ye, Zi; Kijlstra, Aize; Zhou, Yan; Yang, Peizeng

    2014-01-01

    Recent studies show that the aryl hydrocarbon receptor (AhR) is involved in immune responses. AhR is activated following interaction with its ligands, such as 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). In this study, we investigated the role of AhR activation by its endogenous ligands in the pathogenesis of ocular Behcet's disease (BD). The expression of AhR was significantly decreased in active BD patients as compared to inactive BD patients and normal controls. Both FICZ and ITE inhibited Th1 and Th17 polarization and induced the expression of IL-22 by PBMCs and by CD4(+)T cells in active BD patients and normal controls. Stimulation of purified CD4(+)T cells with FICZ or ITE caused a decreased expression of RORC, IL-17, IL-23R, and CCR6 and an increased phosphorylation of STAT3 and STAT5. The present study suggests that a decreased AhR expression is associated with disease activity in BD patients. The activation of AhR by either FICZ or ITE was able to inhibit Th1 and Th17 cell polarization. Further studies are needed to investigate whether modulation of AhR might be used in the treatment of BD.

  14. Pluripotency factors and Polycomb Group proteins repress aryl hydrocarbon receptor expression in murine embryonic stem cells.

    Science.gov (United States)

    Ko, Chia-I; Wang, Qin; Fan, Yunxia; Xia, Ying; Puga, Alvaro

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a transcription factor and environmental sensor that regulates expression of genes involved in drug-metabolism and cell cycle regulation. Chromatin immunoprecipitation analyses, Ahr ablation in mice and studies with orthologous genes in invertebrates suggest that AHR may also play a significant role in embryonic development. To address this hypothesis, we studied the regulation of Ahr expression in mouse embryonic stem cells and their differentiated progeny. In ES cells, interactions between OCT3/4, NANOG, SOX2 and Polycomb Group proteins at the Ahr promoter repress AHR expression, which can also be repressed by ectopic expression of reprogramming factors in hepatoma cells. In ES cells, unproductive RNA polymerase II binds at the Ahr transcription start site and drives the synthesis of short abortive transcripts. Activation of Ahr expression during differentiation follows from reversal of repressive marks in Ahr promoter chromatin, release of pluripotency factors and PcG proteins, binding of Sp factors, establishment of histone marks of open chromatin, and engagement of active RNAPII to drive full-length RNA transcript elongation. Our results suggest that reversible Ahr repression in ES cells holds the gene poised for expression and allows for a quick switch to activation during embryonic development.

  15. Aryl hydrocarbon receptor and kynurenine: recent advances in autoimmune disease research

    Directory of Open Access Journals (Sweden)

    Nam Trung Nguyen

    2014-10-01

    Full Text Available Aryl hydrocarbon receptor (AHR is thought to be a crucial factor in the regulation of immune responses. Many AHR-mediated immunoregulatory mechanisms have been discovered, and this knowledge may enhance our understanding of the molecular pathogenesis of autoimmune inflammatory syndromes such as collagen-induced arthritis, experimental autoimmune encephalomyelitis, and experimental colitis. Recent findings have elucidated the critical link between AHR and indoleamine 2,3-dioxigenase (IDO in the development of regulatory T (Treg cells and Th17 cells, which are key factors in a variety of human autoimmune diseases. Induction of IDO and IDO-mediated tryptophan catabolism, together with its downstream products such as kynurenine, is an important immunoregulatory mechanism underlying immunosuppression, tolerance, and immunity. Recent studies revealed that induction of IDO depends on AHR expression. This review summarizes the most current findings regarding the functions of AHR and IDO in immune cells as they relate to the pathogenesis of autoimmune diseases in response to various stimuli. We also discuss the potential link between AHR and IDO/tryptophan metabolites, and the involvement of several novel related factors (such as microRNA in the development of autoimmune diseases. These novel factors represent potential therapeutic targets for the treatment of autoimmune disorders.

  16. Reduction of vitellogenin synthesis by an aryl hydrocarbon receptor agonist in the white sturgeon (Acipenser transmontamus).

    Science.gov (United States)

    Palumbo, Amanda J; Denison, Michael S; Doroshov, Serge I; Tjeerdema, Ronald S

    2009-08-01

    Migrating white sturgeon (Acipenser transmontamus) may be subject to agricultural, municipal, and industrial wastewater effluents that likely contain different classes of endocrine-disrupting contaminants. Concern is mounting about the negative effects of environmental estrogens on fish reproduction; however, in environmental mixtures, the affects from estrogenic compounds may be suppressed by aryl hydrocarbon receptor (AhR) ligands. Indeed, reductions in 17beta-estradiol-induced (0.01 and 1 mg/kg) vitellogenin (VTG) levels were observed in white sturgeon coinjected with beta-naphthoflavone (BNF; 50 mg/kg), a model for contaminants that activate the AhR. Variation in the time of injection was used to attempt to correlate VTG inhibition to ethoxyresorufin-O-deethylase activity. No evidence was found to suggest that the inhibition of VTG is a direct result of enhanced estrogen metabolism by BNF-induced enzymes. Results of the present study are relevant for monitoring programs that measure VTG, because these results show that AhR-active environmental contaminants can repress VTG synthesis, which commonly is used as an indicator of estrogen-mimicking contaminants. Furthermore, suppression of natural estrogen signaling by AhR agonists may have significant effects on fish reproduction.

  17. Anthocyans fail to suppress transformation of aryl hydrocarbon receptor induced by dioxin.

    Science.gov (United States)

    Mukai, Rie; Fukuda, Itsuko; Hosokawa, Keizo; Nishiumi, Shin; Kaneko, Atsushi; Ashida, Hitoshi

    2005-05-01

    Dioxins induce adverse effects through transformation of the cytosolic aryl hydrocarbon receptor (AhR). Our previous study found that flavones and flavonols at dietary levels suppress AhR transformation. In the present study, we investigated whether 20 anthocyans dissolved in trifluoroacetic acid (TFA)-MeOH suppressed AhR transformation in a cell-free system and in Hepa-1c1c7 cells. Although four compounds at 50 muM suppressed 0.1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced AhR transformation and their effects were dose-dependent in the cell-free system, they were ineffective at 0.5 muM, which is close to physiological concentration. Moreover, no anthocyan at 50 muM tested here suppressed 0.1 nM TCDD-induced AhR transformation in Hepa-1c1c7 cells. We also confirmed that protocatechuic acid and related compounds, which are possible metabolites of anthocyans, did not affect the transformation in the cell-free system. It is concluded that anthocyans are not suitable candidates for protection from dioxin toxicity.

  18. Characterization of natural aryl hydrocarbon receptor agonists from cassia seed and rosemary.

    Science.gov (United States)

    Amakura, Yoshiaki; Yoshimura, Morio; Takaoka, Masashi; Toda, Haruka; Tsutsumi, Tomoaki; Matsuda, Rieko; Teshima, Reiko; Nakamura, Masafumi; Handa, Hiroshi; Yoshida, Takashi

    2014-04-17

    Many recent studies have suggested that activation of the aryl hydrocarbon receptor (AhR) reduces immune responses, thus suppressing allergies and autoimmune diseases. In our continuing study on natural AhR agonists in foods, we examined the influence of 37 health food materials on the AhR using a reporter gene assay, and found that aqueous ethanol extracts of cassia seed and rosemary had particularly high AhR activity. To characterize the AhR-activating substances in these samples, the chemical constituents of the respective extracts were identified. From an active ethyl acetate fraction of the cassia seed extract, eight aromatic compounds were isolated. Among these compounds, aurantio-obtusin, an anthraquinone, elicited marked AhR activation. Chromatographic separation of an active ethyl acetate fraction of the rosemary extract gave nine compounds. Among these compounds, cirsimaritin induced AhR activity at 10-10² μM, and nepitrin and homoplantagenin, which are flavone glucosides, showed marked AhR activation at 10-10³ μM.

  19. The emerging role of aryl hydrocarbon receptor in the activation and differentiation of Th17 cells.

    Science.gov (United States)

    Baricza, Eszter; Tamási, Viola; Marton, Nikolett; Buzás, Edit I; Nagy, György

    2016-01-01

    The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor, which plays an essential role in the xenobiotic metabolism in a wide variety of cells. The AHR gene is evolutionarily conserved and it has a central role not only in the differentiation and maturation of many tissues, but also in the toxicological metabolism of the cell by the activation of metabolizing enzymes. Several lines of evidence support that both AHR agonists and antagonists have profound immunological effects; and recently, the AHR has been implicated in antibacterial host defense. According to recent studies, the AHR is essential for the differentiation and activation of T helper 17 (Th17) cells. It is well known that Th17 cells have a central role in the development of inflammation, which is crucial in the defense against pathogens. In addition, Th17 cells play a major role in the pathogenesis of several autoimmune diseases such as rheumatoid arthritis. Therefore, the AHR may provide connection between the environmental chemicals, the immune regulation, and autoimmunity. In the present review, we summarize the role of the AHR in the Th17 cell functions.

  20. Potential therapeutic significance of increased expression of aryl hydrocarbon receptor in human gastric cancer

    Institute of Scientific and Technical Information of China (English)

    TieLi Peng; Jie Chen; Wei Mao; Xin Liu; Yu Tao; Lian-Zhou Chen; Min-Hu Chen

    2009-01-01

    AIM: To determine the functional significance of aryl hydrocarbon receptor (AhR) in gastric carcinogenesis, and to explore the possible role of AhR in gastric cancer (GC) treatment. METHODS: RT-PCR, real-time PCR, and Western blotting were performed to detect AhR expression in 39 GC tissues and five GC cell lines. AhR protein was detected by immunohistochemistry (IHC) in 190 samples: 30 chronic superficial gastritis (CSG), 30 chronic atrophic gastritis (CAG), 30 intestinal metaplasia (IM), 30 atypical hyperplasia (AH), and 70 GC. The AhR agonist tetrachlorodibenzo-para-dioxin (TCDD) was used to treat AGS cells. MTT assay and flow cytometric analysis were performed to measure the viability, cell cycle and apoptosis of AGS cells. RESULTS: AhR expression was significantly increased in GC tissues and GC cell lines. IHC results indicated that the levels of AhR expression gradually increased, with the lowest levels in CSG, followed by CAG, IM, AH and GC. AhR expression and nuclear translocation were significantly higher in GC than in precancerous tissues. TCDD inhibited proliferation of AGS cells via induction of growth arrest at the G1-S phase. CONCLUSION: AhR plays an important role in gastric carcinogenesis. AhR may be a potential therapeutic target for GC treatment.

  1. The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis

    Science.gov (United States)

    Villa, Matteo; Crotta, Stefania; Dingwell, Kevin S.; Hirst, Elizabeth M. A.; Gialitakis, Manolis; Ahlfors, Helena; Smith, James C.; Stockinger, Brigitta; Wack, Andreas

    2016-01-01

    Epithelia function as barriers against environmental insults and express the transcription factor aryl hydrocarbon receptor (AhR). However, AhR function in these tissues is unknown. Here we show that AhR regulates multiciliogenesis in both murine airway epithelia and in Xenopus laevis epidermis. In air-exposed airway epithelia, induction of factors required for multiciliogenesis, including cyclin O (Ccno) and Multicilin (Mcidas), is AhR dependent, and air exposure induces AhR binding to the Ccno promoter. Submersion and hypoxic conditions impede AhR-dependent Ccno induction. This is mediated by the persistence of Notch signalling, as Notch blockade renders multiciliogenesis and Ccno induction by AhR independent from air exposure. In contrast to Ccno induction, air exposure does not induce the canonical AhR target cytochrome P450 1a1 (Cyp1a1). Inversely, exposure to AhR ligands induces Cyp1a1 but not Ccno and impeded ciliogenesis. These data indicate that AhR involvement in detoxification of environmental pollutants may impede its physiological role, resulting in respiratory pathology. PMID:27554288

  2. Impurities contained in antifungal drug ketoconazole are potent activators of human aryl hydrocarbon receptor.

    Science.gov (United States)

    Grycová, Aneta; Dořičáková, Aneta; Dvořák, Zdeněk

    2015-12-03

    Antifungal drug ketoconazole is a mixture of (+)/(-) cis-enantiomers, which also contains several impurities. Ketoconazole was identified as an activator of aryl hydrocarbon receptor AhR by three independent research teams. In the current paper we demonstrate that impurities contained in ketoconazole preparations are strong activators of human AhR and inducers of CYP1A1. Impurity IMP-C had similar potency (EC50), but 10-15 times higher efficacy (magnitude of induction) towards AhR, comparing to (+)-ketoconazole, as revealed by gene reporter assay in AZ-AHR stably transfected cells. Impurities IMP-B and IMP-C, and in lesser extent IMP-E, induced a formation of AhR-DNA complex, as demonstrated by electromobility shift assay EMSA. Impurities IMP-C and IMP-E dose-dependently induced CYP1A1 mRNA after 24 h, and their effects were comparable to those by (+)-ketoconazole. The level of CYP1A1 protein in HepG2 cells was strongly increased by IMP-C after 48h. In conclusion, our data further elucidated molecular effects of ketoconazole towards AhR signaling pathway, with possible implications in ketoconazole role in skin chemoprevention and/or damage, involving AhR.

  3. Aryl hydrocarbon receptor agonists trigger avoidance of novel food in rats.

    Science.gov (United States)

    Mahiout, Selma; Pohjanvirta, Raimo

    2016-12-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxicity of dioxins, but also plays important physiological roles, which are only beginning to unfold. Previous studies have surprisingly unveiled that low doses of the potent AHR agonist TCDD induce a strong and persistent avoidance of novel food items in rats. Here, we further examined the involvement of the AHR in the avoidance response in Sprague-Dawley rats with three established AHR agonists: 6-formylindolo(3,2-b)carbazole (FICZ), β-naphthoflavone (BNF) and benzo[a]pyrene (BaP); with a novel selective AHR modulator (C2); and with an activator of another nuclear receptor, CAR: 2,4,6-tryphenyldioxane-1,3 (TPD). As sensitive indices of AHR or CAR activity, we used Cyp1a1 and Cyp2b1 gene expression, as they are, respectively, the drug-metabolizing enzymes specifically regulated by them. We further attempted to address the roles played by enhanced neophobia and conditioned taste aversion (CTA) in the avoidance behaviour. All AHR agonists triggered practically total avoidance of novel chocolate, but the durations varied. Likewise, acutely subtoxic doses of C2, differing by 25-fold, all elicited a similar outcome. In contrast, TPD did not influence chocolate consumption at all. If rats were initially accustomed to chocolate for 6h after single FICZ or BNF exposure, avoidance was still clearly present two weeks later when chocolate was offered again. Hence, the avoidance response appears to specifically involve the AHR instead of being triggered by induction of intestinal or hepatic nuclear receptor signalling in general. It is also shared by both endogenous and exogenous AHR activators. Moreover, this behavioural change in rats seems to contain elements of both CTA and enhanced neophobia, but further clarification of this is still required.

  4. Exposure to atmospheric particulate matter enhances Th17 polarization through the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Michael van Voorhis

    Full Text Available Lung diseases, including asthma, COPD, and other autoimmune lung pathologies are aggravated by exposure to particulate matter (PM found in air pollution. IL-17 has been shown to exacerbate airway disease in animal models. As PM is known to contain aryl hydrocarbon receptor (AHR ligands and the AHR has recently been shown to play a role in differentiation of Th17 T cells, the aim of this study was to determine whether exposure to PM could impact Th17 polarization in an AHR-dependent manner. This study used both cell culture techniques and in vivo exposure in mice to examine the response of T cells to PM. Initially experiments were conducted with urban dust particles from a standard reference material, and ultimately repeated with freshly collected samples of diesel exhaust and cigarette smoke. The readout for the assays was increased T cell differentiation as indicated by increased generation of IL-17A in culture, and increased populations of IL-17 producing cells by intracellular flow cytometry. The data illustrate that Th17 polarization was significantly enhanced by addition of urban dust in a dose dependent fashion in cultures of wild-type but not AHR(-/- mice. The data further suggest that polycyclic aromatic hydrocarbons played a primary role in this enhancement. There was both an increase of Th17 cell differentiation, and also an increase in the amount of IL-17 secreted by the cells. In summary, this paper identifies a novel mechanism whereby PM can directly act on the AHR in T cells, leading to enhanced Th17 differentiation. Further understanding of the molecular mechanisms responsible for pathologic Th17 differentiation and autoimmunity seen after exposure to pollution will allow direct targeting of proteins involved in AHR activation and function for treatment of PM exposures.

  5. Are styrene oligomers in coastal sediments of an industrial area aryl hydrocarbon-receptor agonists?

    Science.gov (United States)

    Hong, Seongjin; Lee, Junghyun; Lee, Changkeun; Yoon, Seo Joon; Jeon, Seungyeon; Kwon, Bong-Oh; Lee, Jong-Hyeon; Giesy, John P; Khim, Jong Seong

    2016-06-01

    Effect-directed analysis (EDA) was performed to identify the major aryl hydrocarbon receptor (AhR) agonists in sediments collected from a highly industrialized area (Lake Shihwa, Korea). Great AhR-mediated potencies were found in fractions containing aromatic compounds with log Kow values of 5-8, and relatively great concentrations of styrene oligomers (SOs) and polycyclic aromatic hydrocarbons (PAHs) were detected in those fractions. Until now, there was little information on occurrences and toxic relative potencies (RePs) of SOs in coastal environments. In the present study; i) distributions and compositions, ii) AhR binding affinities, and iii) contributions of SOs to total AhR-mediated potencies were determined in coastal sediments. Elevated concentrations of 10 SOs were detected in sediments of inland creeks ranging from 61 to 740 ng g(-1) dry mass (dm), while lesser concentrations were found in inner (mean = 33 ng g(-1) dm) and outer regions (mean = 25 ng g(-1) dm) of the lake. Concentrations of PAHs in sediments were comparable to those of SOs. 2,4-diphenyl-1-butene (SD3) was the predominant SO analogue in sediments. SOs and PAHs were accumulated in sediments near sources, and could not be transported to remote regions due to their hydrophobicity. RePs of 3 SOs could be derived, which were 1000- to 10,000-fold less than that of one representative potent AhR active PAH, benzo[a]pyrene. Although concentrations of SOs in sediments were comparable to those of PAHs, the collective contribution of SOs to total AhR-mediated potencies were rather small (coastal environment.

  6. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  7. Embryonic and Postnatal Expression of Aryl Hydrocarbon Receptor mRNA in Mouse Brain

    Science.gov (United States)

    Kimura, Eiki; Tohyama, Chiharu

    2017-01-01

    Aryl hydrocarbon receptor (AhR), a member of the basic helix-loop-helix-Per-Arnt-Sim transcription factor family, plays a critical role in the developing nervous system of invertebrates and vertebrates. Dioxin, a ubiquitous environmental pollutant, avidly binds to this receptor, and maternal exposure to dioxin has been shown to impair higher brain functions and dendritic morphogenesis, possibly via an AhR-dependent mechanism. However, there is little information on AhR expression in the developing mammalian brain. To address this issue, the present study analyzed AhR mRNA expression in the brains of embryonic, juvenile, and adult mice by reverse transcription (RT)-PCR and in situ hybridization. In early brain development (embryonic day 12.5), AhR transcript was detected in the innermost cortical layer. The mRNA was also expressed in the hippocampus, cerebral cortex, cerebellum, olfactory bulb, and rostral migratory stream on embryonic day 18.5, postnatal days 3, 7, and 14, and in 12-week-old (adult) mice. Hippocampal expression was abundant in the CA1 and CA3 pyramidal and dentate gyrus granule cell layers, where expression level of AhR mRNA in 12-week old is higher than that in 7-day old. These results reveal temporal and spatial patterns of AhR mRNA expression in the mouse brain, providing the information that may contribute to the elucidation of the physiologic and toxicologic significance of AhR in the developing brain. PMID:28223923

  8. Interactions of polybrominated diphenyl ethers with the aryl hydrocarbon receptor pathway.

    Science.gov (United States)

    Peters, A K; Nijmeijer, S; Gradin, K; Backlund, M; Bergman, A; Poellinger, L; Denison, M S; Van den Berg, M

    2006-07-01

    Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that have been in use as additives in various consumer products. Structural similarities of PBDEs with other polyhalogenated aromatic hydrocarbons that show affinity for the aryl hydrocarbon receptor (AhR), such as some polychlorinated biphenyls, raised concerns about their possible dioxin-like properties. We studied the ability of environmentally relevant PBDEs (BDE-47, -99, -100, -153, -154, and -183) and the "planar" congener BDE-77 to bind and/or activate the AhR in stably transfected rodent hepatoma cell lines with an AhR-responsive enhanced green fluorescent protein (AhR-EGFP) reporter gene (H1G1.1c3 mouse and H4G1.1c2 rat hepatoma). 7-Ethoxyresorufin-O-deethylation (EROD) was used as a marker for CYP1A1 activity. Dose- and bromination-specific inhibition of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced responses was measured by their ability to inhibit the induction of AhR-EGFP expression and EROD activity. Individual exposure to these PBDEs did not result in any increase in induction of AhR-EGFP or CYP1A1 activity. The lower brominated PBDEs showed the strongest inhibitory effect on TCDD-induced activities in both cell lines. While the highest brominated PBDE tested, BDE-183, inhibited EROD activity, it did not affect the induction of AhR-EGFP expression. Similar findings were observed after exposing stably transfected human hepatoma (xenobiotic response element [XRE]-HepG2) cells to these PBDEs, resulting in a small but statically significant agonistic effect on XRE-driven luciferase activity. Co-exposure with TCDD resulted again in antagonistic effects, confirming that the inhibitory effect of these PBDEs on TCDD-induced responses was not only due to direct interaction at receptor level but also at DNA-binding level. This antagonism was confirmed for BDE-99 in HepG2 cells transiently transfected with a Gal4-AhR construct and the corresponding Gal4-Luc reporter gene. In addition, a

  9. The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Edmond F O'Donnell

    Full Text Available BACKGROUND: The aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor that mediates the toxicity and biological activity of dioxins and related chemicals. The AhR influences a variety of processes involved in cellular growth and differentiation, and recent studies have suggested that the AhR is a potential target for immune-mediated diseases. METHODOLOGY/PRINCIPAL FINDINGS: During a screen for molecules that activate the AhR, leflunomide, an immunomodulatory drug presently used in the clinic for the treatment of rheumatoid arthritis, was identified as an AhR agonist. We aimed to determine whether any biological activity of leflunomide could be attributed to a previously unappreciated interaction with the AhR. The currently established mechanism of action of leflunomide involves its metabolism to A771726, possibly by cytochrome P450 enzymes, followed by inhibition of de novo pyrimidine biosynthesis by A771726. Our results demonstrate that leflunomide, but not its metabolite A771726, caused nuclear translocation of AhR into the nucleus and increased expression of AhR-responsive reporter genes and endogenous AhR target genes in an AhR-dependent manner. In silico Molecular Docking studies employing AhR ligand binding domain revealed favorable binding energy for leflunomide, but not for A771726. Further, leflunomide, but not A771726, inhibited in vivo epimorphic regeneration in a zebrafish model of tissue regeneration in an AhR-dependent manner. However, suppression of lymphocyte proliferation by leflunomide or A771726 was not dependent on AhR. CONCLUSIONS: These data reveal that leflunomide, an anti-inflammatory drug, is an agonist of the AhR. Our findings link AhR activation by leflunomide to inhibition of fin regeneration in zebrafish. Identification of alternative AhR agonists is a critical step in evaluating the AhR as a therapeutic target for the treatment of immune disorders.

  10. Endogenous ligands of the aryl hydrocarbon receptor regulate lung dendritic cell function.

    Science.gov (United States)

    Thatcher, Thomas H; Williams, Marc A; Pollock, Stephen J; McCarthy, Claire E; Lacy, Shannon H; Phipps, Richard P; Sime, Patricia J

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a transcription factor that has been extensively studied as a regulator of toxicant metabolism. However, recent evidence indicates that the AhR also plays an important role in immunity. We hypothesized that the AhR is a novel, immune regulator of T helper type 2 (Th2) -mediated allergic airway disease. Here, we report that AhR-deficient mice develop increased allergic responses to the model allergen ovalbumin (OVA), which are driven in part by increased dendritic cell (DC) functional activation. AhR knockout (AhR(-/-) ) mice sensitized and challenged with OVA develop an increased inflammatory response in the lung compared with wild-type controls, with greater numbers of inflammatory eosinophils and neutrophils, greater T-cell proliferation, greater production of Th2 cytokines, and higher levels of OVA-specific IgE and IgG1. Lung DCs from AhR(-/-) mice stimulated antigen-specific proliferation and Th2 cytokine production by naive T cells in vitro. Additionally, AhR(-/-) DCs produced higher levels of tumour necrosis factor-α and interleukin-6, which promote Th2 differentiation, and expressed higher cell surface levels of stimulatory MHC Class II and CD86 molecules. Overall, loss of the AhR was associated with enhanced T-cell activation by pulmonary DCs and heightened pro-inflammatory allergic responses. This suggests that endogenous AhR ligands are involved in the normal regulation of Th2-mediated immunity in the lung via a DC-dependent mechanism. Therefore, the AhR may represent an important target for therapeutic intervention in allergic airways inflammation.

  11. Leflunomide Induces Pulmonary and Hepatic CYP1A Enzymes via Aryl Hydrocarbon Receptor.

    Science.gov (United States)

    Patel, Ananddeep; Zhang, Shaojie; Paramahamsa, Maturu; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-12-01

    Emerging evidence indicates that the aryl hydrocarbon receptor (AhR) plays a crucial role in normal physiologic homeostasis. Additionally, aberrant AhR signaling leads to several pathologic states in the lung and liver. Activation of AhR transcriptionally induces phase I (CYP1A) detoxifying enzymes. Although the effects of the classic AhR ligands such as 3-methylcholanthrene and dioxins on phase 1 enzymes are well studied in rodent lung, liver, and other organs, the toxicity profiles limit their use as therapeutic agents in humans. Hence, there is a need to identify and investigate nontoxic AhR ligands not only to understand the AhR biology but also to develop the AhR as a clinically relevant therapeutic target. Leflunomide is a Food and Drug Administration-approved drug in humans that is known to have AhR agonist activity in vitro. Whether it activates AhR and induces phase 1 enzymes in vivo is unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic CYP1A enzymes in C57BL/6J wild-type mice, but not in AhR-null mice. We performed real-time reverse-transcription polymerase chain reaction analyses for CYP1A1/2 mRNA expression, western blot assays for CYP1A1/2 protein expression, and ethoxyresorufinO-deethylase assay for CYP1A1 catalytic activity. Leflunomide increased CYP1A1/A2 mRNA, protein, and enzymatic activities in wild-type mice. In contrast, leflunomide failed to increase pulmonary and hepatic CYP1A enzymes in AhR-null mice. In conclusion, we provide evidence that leflunomide induces pulmonary and hepatic CYP1A enzymes via the AhR.

  12. Correlating gene expression with deformities caused by aryl hydrocarbon receptor agonists in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Bugiak, B.; Weber, L. [Saskatchewan Univ., Saskatoon, SK (Canada)

    2009-07-01

    Exposure to aryl hydrocarbon receptor (AhR) agonists in fish causes lethal disturbances in fish development, but the effects of acute AhR agonist exposure on the cardiovascular system and deformities remain unclear. This study addressed this issue by performing a series of experiments on zebrafish (Danio rerio). The authors hypothesized that genes needed for cardiovascular regulation (PTGS) would exhibit a stronger link to deformities than detoxification enzymes (CYPs). Zebrafish eggs were exposed aqueously until 4 days post-fertilization (dpf) to the AhR agonists benzo(a)pyrene (BaP) or 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) alone and in combination with the putative AhR antagonists resveratrol or alpha-naphthoflavone (ANF). Gene expression was measured using real-time, reverse transcriptase PCR in zebrafish at 5 and 10 dpf. Although the mortalities did not differ considerably among groups at 10 dpf, the deformities increased significantly after BaP-ANF at 5 dpf and after BaP at 10 dpf, but not after TCDD treatment. CYP and PTGS isozymes exhibited small, but statistically significant changes at 5 dpf. By 10 dpf, the expression returned to control values. In general, CYP1A and PTGS-1 expression at 5 dpf were positively correlated with deformities, while all other genes were negatively correlated with deformities. It was concluded that changes in CYP1A, CYP1C2, and PTGS-1 gene expression at 5 dpf are associated with developmental deformities, but additional work is needed to determine which has the most important mechanistic link.

  13. Aryl hydrocarbon receptors in osteoclast lineage cells are a negative regulator of bone mass.

    Directory of Open Access Journals (Sweden)

    Tai-yong Yu

    Full Text Available Aryl hydrocarbon receptors (AhRs play a critical role in various pathological and physiological processes. Although recent research has identified AhRs as a key contributor to bone metabolism following studies in systemic AhR knockout (KO or transgenic mice, the cellular and molecular mechanism(s in this process remain unclear. In this study, we explored the function of AhR in bone metabolism using AhR(RANKΔOc/ΔOc (RANK(Cre/+;AhR(flox/flox mice. We observed enhanced bone mass together with decreased resorption in both male and female 12 and 24-week-old AhR(RANKΔOc/ΔOc mice. Control mice treated with 3-methylcholanthrene (3MC, an AhR agonist, exhibited decreased bone mass and increased bone resorption, whereas AhR(CtskΔOc/ΔOc (Ctsk(Cre/+;AhR(flox/flox mice injected with 3MC appeared to have a normal bone phenotype. In vitro, bone marrow-derived macrophages (BMDMs from AhR(RANKΔOc/ΔOc mice exhibited impaired osteoclastogenesis and repressed differentiation with downregulated expression of B lymphocyte-induced maturation protein 1 (Blimp1, and cytochrome P450 genes Cyp1b1 and Cyp1a2. Collectively, our results not only demonstrated that AhR in osteoclast lineage cells is a physiologically relevant regulator of bone resorption, but also highlighted the need for further studies on the skeletal actions of AhR inhibitors in osteoclast lineage cells commonly associated with bone diseases, especially diseases linked to environmental pollutants known to induce bone loss.

  14. Lactobacillus bulgaricus OLL1181 activates the aryl hydrocarbon receptor pathway and inhibits colitis.

    Science.gov (United States)

    Takamura, Takeyuki; Harama, Daisuke; Fukumoto, Suguru; Nakamura, Yuki; Shimokawa, Naomi; Ishimaru, Kayoko; Ikegami, Shuji; Makino, Seiya; Kitamura, Masanori; Nakao, Atsuhito

    2011-10-01

    Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis.

  15. Dioxin exposure blocks lactation through a direct effect on mammary epithelial cells mediated by the aryl hydrocarbon receptor repressor.

    Science.gov (United States)

    Basham, Kaitlin J; Leonard, Christopher J; Kieffer, Collin; Shelton, Dawne N; McDowell, Maria E; Bhonde, Vasudev R; Looper, Ryan E; Welm, Bryan E

    2015-01-01

    In mammals, lactation is a rich source of nutrients and antibodies for newborn animals. However, millions of mothers each year experience an inability to breastfeed. Exposure to several environmental toxicants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has been strongly implicated in impaired mammary differentiation and lactation. TCDD and related polyhalogenated aromatic hydrocarbons are widespread industrial pollutants that activate the aryl hydrocarbon receptor (AHR). Despite many epidemiological and animal studies, the molecular mechanism through which AHR signaling blocks lactation remains unclear. We employed in vitro models of mammary differentiation to recapitulate lactogenesis in the presence of toxicants. We demonstrate AHR agonists directly block milk production in isolated mammary epithelial cells. Moreover, we define a novel role for the aryl hydrocarbon receptor repressor (AHRR) in mediating this response. Our mechanistic studies suggest AHRR is sufficient to block transcription of the milk gene β-casein. As TCDD is a prevalent environmental pollutant that affects women worldwide, our results have important public health implications for newborn nutrition.

  16. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans.

    Science.gov (United States)

    Vondrácek, Jan; Chramostová, Katerina; Plísková, Martina; Bláha, Ludek; Brack, Werner; Kozubík, Alois; Machala, Miroslav

    2004-09-01

    A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.

  17. Identification of a high-affinity ligand that exhibits complete aryl hydrocarbon receptor antagonism.

    Science.gov (United States)

    Smith, Kayla J; Murray, Iain A; Tanos, Rachel; Tellew, John; Boitano, Anthony E; Bisson, William H; Kolluri, Siva K; Cooke, Michael P; Perdew, Gary H

    2011-07-01

    The biological functions of the aryl hydrocarbon receptor (AHR) can be delineated into dioxin response element (DRE)-dependent or -independent activities. Ligands exhibiting either full or partial agonist activity, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin and α-naphthoflavone, have been demonstrated to potentiate both DRE-dependent and -independent AHR function. In contrast, the recently identified selective AHR modulators (SAhRMs), e.g., 1-allyl-3-(3,4-dimethoxyphenyl)-7-(trifluoromethyl)-1H-indazole (SGA360), bias AHR toward DRE-independent functionality while displaying antagonism with regard to ligand-induced DRE-dependent transcription. Recent studies have expanded the physiological role of AHR to include modulation of hematopoietic progenitor expansion and immunoregulation. It remains to be established whether such physiological roles are mediated through DRE-dependent or -independent pathways. Here, we present evidence for a third class of AHR ligand, "pure" or complete antagonists with the capacity to suppress both DRE-dependent and -independent AHR functions, which may facilitate dissection of physiological AHR function with regard to DRE or non-DRE-mediated signaling. Competitive ligand binding assays together with in silico modeling identify N-(2-(1H-indol-3-yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351) as a high-affinity AHR ligand. DRE-dependent reporter assays, in conjunction with quantitative polymerase chain reaction analysis of AHR targets, reveal GNF351 as a potent AHR antagonist that demonstrates efficacy in the nanomolar range. Furthermore, unlike many currently used AHR antagonists, e.g., α-naphthoflavone, GNF351 is devoid of partial agonist potential. It is noteworthy that in a model of AHR-mediated DRE-independent function, i.e., suppression of cytokine-induced acute-phase gene expression, GNF351 has the capacity to antagonize agonist and SAhRM-mediated suppression of SAA1. Such data indicate that GNF351 is a

  18. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand.

    Directory of Open Access Journals (Sweden)

    Osamu Ichii

    Full Text Available Indoxyl sulfate is a uremic toxin and a ligand of the aryl-hydrocarbon receptor (AhR, a transcriptional regulator. Elevated serum indoxyl sulfate levels may contribute to progressive kidney disease and associated vascular disease. We asked whether indoxyl sulfate injures podocytes in vivo and in vitro. Mice exposed to indoxyl sulfate for 8 w exhibited prominent tubulointerstitial lesions with vascular damage. Indoxyl sulfate-exposed mice with microalbuminuria showed ischemic changes, while more severely affected mice showed increased mesangial matrix, segmental solidification, and mesangiolysis. In normal mouse kidneys, AhR was predominantly localized to the podocyte nuclei. In mice exposed to indoxyl sulfate for 2 h, isolated glomeruli manifested increased Cyp1a1 expression, indicating AhR activation. After 8 w of indoxyl sulfate, podocytes showed foot process effacement, cytoplasmic vacuoles, and a focal granular and wrinkled pattern of podocin and synaptopodin expression. Furthermore, vimentin and AhR expression in the glomerulus was increased in the indoxyl sulfate-exposed glomeruli compared to controls. Glomerular expression of characteristic podocyte mRNAs was decreased, including Actn4, Cd2ap, Myh9, Nphs1, Nphs2, Podxl, Synpo, and Wt1. In vitro, immortalized-mouse podocytes exhibited AhR nuclear translocation beginning 30 min after 1 mM indoxyl sulfate exposure, and there was increased phospho-Rac1/Cdc42 at 2 h. After exposure to indoxyl sulfate for 24 h, mouse podocytes exhibited a pro-inflammatory phenotype, perturbed actin cytoskeleton, decreased expression of podocyte-specific genes, and decreased cell viability. In immortalized human podocytes, indoxyl sulfate treatment caused cell injury, decreased mRNA expression of podocyte-specific proteins, as well as integrins, collagens, cytoskeletal proteins, and bone morphogenetic proteins, and increased cytokine and chemokine expression. We propose that basal levels of AhR activity regulate

  19. Dioxin toxicity in vivo results from an increase in the dioxin-independent transcriptional activity of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Miguel Angel Céspedes

    Full Text Available The Aryl hydrocarbon receptor (Ahr is the nuclear receptor mediating the toxicity of dioxins--widespread and persistent pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its dimerisation partner Ahr nuclear translocator (Arnt and entails an increased transcriptional potency of Ahr, in addition to the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively of a single function.

  20. Activation of the aryl hydrocarbon receptor reduces the number of precursor and effector T cells, but preserves thymic CD4(+)CD25(+)Foxp3(+) regulatory T cells

    NARCIS (Netherlands)

    Schulz, V.J.; Smit, J.J.; Bol-Schoenmakers, M.; van Duursen, M.B.M.; van den Berg, M.; Pieters, R.H.H.

    2012-01-01

    Aryl hydrocarbon receptor (AhR) activation suppresses immune responses, including allergic sensitization, by increasing the percentage of regulatory (Treg) cells. Furthermore, AhR activation is known to affect thymic precursor T cells. However, the effect of AhR activation on intrathymic CD4(+)CD25(

  1. Aryl Hydrocarbon Receptors in the frog Xenopus laevis: Two AHR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    OpenAIRE

    Lavine, Jeremy A.; Rowatt, Ashley J.; Klimova, Tatyana; Whitington, Aric J.; Dengler, Emelyne; Beck, Catherine; Powell, Wade H.

    2005-01-01

    2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent developmental toxicant in most vertebrates. However, frogs are relatively insensitive to TCDD toxicity, especially during early life stages. Toxicity of TCDD and related halogenated aromatic hydrocarbons is mediated by the aryl hydrocarbon receptor (AHR), and specific differences in properties of the AHR signaling pathway can underlie differences in TCDD toxicity in different species. This study investigated the role of AHR in frog TCDD i...

  2. Naturally-Occurring Glucosinolates, Glucoraphanin and Glucoerucin, are Antagonists to Aryl Hydrocarbon Receptor as Their Chemopreventive Potency.

    Science.gov (United States)

    Abdull Razis, Ahmad Faizal; Noor, Noramaliza Mohd

    2015-01-01

    As a cytosolic transcription factor, the aryl hydrocarbon (Ah) receptor is involved in several patho- physiological events leading to immunosuppression and cancer; hence antagonists of the Ah receptor may possess chemoprevention properties. It is known to modulate carcinogen-metabolising enzymes, for instance the CYP1 family of cytochromes P450 and quinone reductase, both important in the biotransformation of many chemical carcinogens via regulating phase I and phase II enzyme systems. Utilising chemically-activated luciferase expression (CALUX) assay it was revealed that intact glucosinolates, glucoraphanin and glucoerucin, isolated from Brassica oleracea L. var. acephala sabellica and Eruca sativa ripe seeds, respectively, are such antagonists. Both glucosinolates were poor ligands for the Ah receptor; however, they effectively antagonised activation of the receptor by the avid ligand benzo[a]pyrene. Indeed, intact glucosinolate glucoraphanin was a more potent antagonist to the receptor than glucoerucin. It can be concluded that both glucosinolates effectively act as antagonists for the Ah receptor, and this may contribute to their established chemoprevention potency.

  3. Antioxidants for Healthy Skin: The Emerging Role of Aryl Hydrocarbon Receptors and Nuclear Factor-Erythroid 2-Related Factor-2

    Science.gov (United States)

    Furue, Masutaka; Uchi, Hiroshi; Mitoma, Chikage; Hashimoto-Hachiya, Akiko; Chiba, Takahito; Ito, Takamichi; Nakahara, Takeshi; Tsuji, Gaku

    2017-01-01

    Skin is the outermost part of the body and is, thus, inevitably exposed to UV rays and environmental pollutants. Oxidative stress by these hazardous factors accelerates skin aging and induces skin inflammation and carcinogenesis. Aryl hydrocarbon receptors (AHRs) are chemical sensors that are abundantly expressed in epidermal keratinocytes and mediate the production of reactive oxygen species. To neutralize or minimize oxidative stress, the keratinocytes also express nuclear factor-erythroid 2-related factor-2 (NRF2), which is a master switch for antioxidant signaling. Notably, there is fine-tuned crosstalk between AHR and NRF2, which mutually increase or decrease their activation states. Many NRF2-mediated antioxidant phytochemicals are capable of up- and downmodulating AHR signaling. The precise mechanisms by which these phytochemicals differentially affect the AHR and NRF2 system remain largely unknown and warrant future investigation. PMID:28273792

  4. Regulation of estrogen sulfotransferase expression by confluence of MCF10A breast epithelial cells: role of the aryl hydrocarbon receptor.

    Science.gov (United States)

    Fu, Jiaqi; Fang, Hailin; Paulsen, Michelle; Ljungman, Mats; Kocarek, Thomas A; Runge-Morris, Melissa

    2011-11-01

    Estrogen sulfotransferase (SULT1E1) catalyzes the sulfonation of estrogens, which limits estrogen mitogenicity. We recently reported that SULT1E1 expression is low in preconfluent MCF10A human breast epithelial cells but increases when the cells become confluent. Pulse-chase labeling experiments with 5-bromouridine demonstrated that the confluence-mediated increase in SULT1E1 expression was due to increased mRNA synthesis. Because aryl hydrocarbon receptor (AhR) activation has been shown to suppress SULT1E1 expression and loss of cell-cell contact has been shown to activate the AhR in other cell types, we tested whether the confluence-associated changes in SULT1E1 expression were mediated by the AhR. Relative to confluent MCF10A cells, preconfluent cells had higher levels of CYP1A1 mRNA and greater activation of an AhR-responsive luciferase reporter, demonstrating that the AhR was active in the preconfluent cells. AhR and aryl hydrocarbon receptor nuclear translocator mRNA and protein levels were also higher in preconfluent than in confluent cultures. Treatment of preconfluent cells with the AhR antagonist, 3'-methoxy-4'-nitroflavone (MNF), or AhR knockdown significantly increased SULT1E1 expression. MCF10A cells stably transfected with a luciferase reporter containing ∼7 kilobases of the SULT1E1 5'-flanking region showed both MNF- and confluence-inducible luciferase expression. Preconfluent cells transiently transfected with the reporter showed both MNF treatment- and AhR knockdown-mediated luciferase induction, but mutation of a computationally predicted dioxin response element (DRE) at nucleotide (nt) -3476 did not attenuate these effects. These results demonstrate that SULT1E1 expression in MCF10A cells is transcriptionally regulated by confluence through a suppressive action of the AhR, which is not mediated through a DRE at nt -3476.

  5. Dose- and time-dependent expression of aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) in PCB-, B[a]P-, and TBT-exposed intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Hwang, Un-Ki; Seo, Jung Soo; Shin, Kyung-Hoon; Lee, Jae-Seong

    2015-02-01

    The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon nuclear translocator (ARNT) genes from the copepod Tigriopus japonicus (Tj) were cloned to examine their potential functions in the invertebrate putative AhR-CYP signaling pathway. The amino acid sequences encoded by the Tj-AhR and Tj-ARNT genes showed high similarity to homologs of Daphnia and Drosophila, ranging from 68% and 70% similarity for the AhR genes to 56% for the ARNT genes. To determine whether Tj-AhR and Tj-ARNT are modulated by environmental pollutants, transcriptional expression of Tj-AhR and Tj-ARNT was analyzed in response to exposure to five concentrations of polychlorinated biphenyl (PCB 126) (control, 10, 50, 100, 500 μg L(-1)), benzo[a]pyrene (B[a]P) (control, 5, 10, 50, 100 μg L(-1)), and tributyltin (TBT) (control, 1, 5, 10, 20 μg L(-1)) 24h after exposure. A time-course experiment (0, 3, 6, 12, 24h) was performed to analyze mRNA expression patterns after exposure to PCB, B[a]P, and TBT. T. japonicus exhibited dose-dependent and time-dependent upregulation of Tj-AhR and Tj-ARNT in response to pollutant exposure, and the degree of expression was dependent on the pollutant, suggesting that pollutants such as PCB, B[a]P, and TBT modulate expression of Tj-AhR and Tj-ARNT genes in the putative AhR-CYP signaling pathway.

  6. Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Hilscherova, K. [Dept. of Environmental Chemistry and Toxicology, Faculty of Science, Masaryk Univ., Brno (Czech Republic); Machala, M. [Veterinary Research Inst. of Veterinary Medicine, Brno (Czech Republic); Kannan, K.; Giesy, J.P. [Dept. of Zoology, National Food Safety and Toxicology Center, Inst. for Environmental Toxicology, Michigan State Univ., East Lansing, MI (United States); Blankenship, A.L. [Dept. of Zoology, National Food Safety and Toxicology Center, Inst. for Environmental Toxicology, Michigan State Univ., East Lansing, MI (United States); ENTRIX Inc., East Lansing, MI (United States)

    2000-07-01

    In vitro cell bioassays are useful techniques for the determination of receptor-mediated activities in environmental samples containing complex mixtures of contaminants. The cell bioassays determine contamination by pollutants that act through specific modes of action. This article presents strategies for the evaluation of aryl hydrocarbon receptor (AhR)- (hereafter referred as dioxin-like) or estrogen receptor (ER)-mediated activities of potential endocrine disrupting compounds (EDCs) in complex environmental mixtures. Extracts from various types of environmental or food matrices can be tested by this technique to evaluate their 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs) or estrogenic equivalents (E{sub 2}-EQs) and to identify contaminated samples that need further investigation using resource-intensive instrumental analyses. Fractionation of sample extracts exhibiting significant activities, and subsequent reanalysis with the bioassays can identify important classes of contaminants that are responsible for the observed activity. Effect-directed chemical analysis is performed only for the active fractions to determine the responsible compounds. Mass-balance estimates of all major compounds contributing to the observed effects can be calculated to determine if all of the activity has been identified, and to assess the potential for interactions such as synergism or antagonism among contaminants present in the complex mixtures. The bioassay approach is an efficient (fast and cost effective) screening system to identify the samples of interest and to provide basic information for further analysis and risk evaluation. (orig.)

  7. Gene-environment interactions in male reproductive health: special reference to the aryl hydrocarbon receptor signaling pathway

    Directory of Open Access Journals (Sweden)

    Leon J S Brokken

    2014-02-01

    Full Text Available Over the last few decades, there have been numerous reports of adverse effects on the reproductive health of wildlife and laboratory animals caused by exposure to endocrine disrupting chemicals (EDCs. The increasing trends in human male reproductive disorders and the mounting evidence for causative environmental factors have therefore sparked growing interest in the health threat posed to humans by EDCs, which are substances in our food, environment and consumer items that interfere with hormone action, biosynthesis or metabolism, resulting in disrupted tissue homeostasis or reproductive function. The mechanisms of EDCs involve a wide array of actions and pathways. Examples include the estrogenic, androgenic, thyroid and retinoid pathways, in which the EDCs may act directly as agonists or antagonists, or indirectly via other nuclear receptors. Dioxins and dioxin-like EDCs exert their biological and toxicological actions through activation of the aryl hydrocarbon-receptor, which besides inducing transcription of detoxifying enzymes also regulates transcriptional activity of other nuclear receptors. There is increasing evidence that genetic predispositions may modify the susceptibility to adverse effects of toxic chemicals. In this review, potential consequences of hereditary predisposition and EDCs are discussed, with a special focus on the currently available publications on interactions between dioxin and androgen signaling.

  8. A novel computational approach for the prediction of networked transcription factors of aryl hydrocarbon-receptor-regulated genes.

    Science.gov (United States)

    Kel, Alexander; Reymann, Susanne; Matys, Volker; Nettesheim, Paul; Wingender, Edgar; Borlak, Jürgen

    2004-12-01

    A novel computational method based on a genetic algorithm was developed to study composite structure of promoters of coexpressed genes. Our method enabled an identification of combinations of multiple transcription factor binding sites regulating the concerted expression of genes. In this article, we study genes whose expression is regulated by a ligand-activated transcription factor, aryl hydrocarbon receptor (AhR), that mediates responses to a variety of toxins. AhR-mediated change in expression of AhR target genes was measured by oligonucleotide microarrays and by reverse transcription-polymerase chain reaction in human and rat hepatocytes. Promoters and long-distance regulatory regions (>10 kb) of AhR-responsive genes were analyzed by the genetic algorithm and a variety of other computational methods. Rules were established on the local oligonucleotide context in the flanks of the AhR binding sites, on the occurrence of clusters of AhR recognition elements, and on the presence in the promoters of specific combinations of multiple binding sites for the transcription factors cooperating in the AhR regulatory network. Our rules were applied to search for yet unknown Ah-receptor target genes. Experimental evidence is presented to demonstrate high fidelity of this novel in silico approach.

  9. Improvement of Chicken Primordial Germ Cell Maintenance In Vitro by Blockade of the Aryl Hydrocarbon Receptor Endogenous Activity.

    Science.gov (United States)

    Pérez Sáez, Juan M; Bussmann, Leonardo E; Barañao, J Lino; Bussmann, Ursula A

    2016-06-01

    Primordial germ cells (PGCs) are the undifferentiated progenitors of gametes. Germline competent PGCs can be developed as a cell-based system for genetic modification in chickens, which provides a valuable tool for transgenic technology with both research and industrial applications. This implies manipulation of PGCs, which, in recent years, encouraged a lot of research focused on the study of PGCs and the way of improving their culture. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that besides mediating toxic responses to environmental contaminants plays pivotal physiological roles in various biological processes. Since a novel compound that acts as an antagonist of this receptor has been reported to promote expansion of hematopoietic stem cells, we conducted the present study with the aim of determining whether addition of an established AHR antagonist to the standard culture medium used nowadays for in vitro chicken PGCs culture improves ex vivo expansion. We have found that addition of α-naphthoflavone in culture medium promotes the amplification of undifferentiated cells and that this effect is exerted by the blockade of AHR action. Our results constitute the first report of the successful use of a readily available AHR antagonist to improve avian PGCs expansion, and they further extend the knowledge of the effects of AHR modulation in undifferentiated cells.

  10. Aryl Hydrocarbon Receptor Activation in Hematopoietic Stem/Progenitor Cells Alters Cell Function and Pathway-Specific Gene Modulation Reflecting Changes in Cellular Trafficking and MigrationS⃞

    OpenAIRE

    Casado, Fanny L.; Singh, Kameshwar P.; Gasiewicz, Thomas A.

    2011-01-01

    The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the Per-ARNT-Sim family of proteins. These proteins sense molecules and stimuli from the cellular/tissue environment and initiate signaling cascades to elicit appropriate cellular responses. Recent literature reports suggest an important function of AhR in hematopoietic stem cell (HSC) biology. However, the molecular mechanisms by which AhR signaling regulates HSC functions are unknown. In previous studies, we and othe...

  11. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma

    OpenAIRE

    Xiao-ming Li; Juan Peng; Wen Gu; Xue-jun Guo

    2016-01-01

    The aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD), a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Further...

  12. The R304X mutation of the Aryl hydrocarbon receptor Interacting Protein gene in familial isolated pituitary adenomas: mutational Hot-Spot or founder effect?

    OpenAIRE

    Occhi, G.; Jaffrain-Rea, M. L.; Trivellin, G.; Albiger, N; Ceccato, F.; De Menis, E.; Angelini, M.; Ferasin, S; Beckers, Albert; F. Mantero; Scaroni, C.

    2010-01-01

    Background: Mutations in the Aryl hydrocarbon receptor Interacting Protein (AIP) gene have been described in about 15% of kindreds with Familial Isolated Pituitary Adenomas (FIPA) and in a minority of early onset sporadic pituitary adenomas (PA). Among the AIP mutations reported so far, the R304X (AIPR304X) represents, together with the "Finnish mutation" Q14X, the most common one. Methods: Three AIPR304X Italian families, including a newly reported kindred, have been genotyped for 12 genetic...

  13. Augmented Growth Hormone Secretion and Stat3 Phosphorylation in an Aryl Hydrocarbon Receptor Interacting Protein (AIP)-Disrupted Somatotroph Cell Line

    OpenAIRE

    Fukuda, Takashi; Tanaka, Tomoko; Hamaguchi, Yuriko; Kawanami, Takako; Nomiyama, Takashi; Yanase, Toshihiko

    2016-01-01

    Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH...

  14. Effect of dioxins on regulation of tyrosine hydroxylase gene expression by aryl hydrocarbon receptor: a neurotoxicology study

    Directory of Open Access Journals (Sweden)

    Akahoshi Eiichi

    2009-06-01

    Full Text Available Abstract Background Dioxins and related compounds are suspected of causing neurological disruption. Epidemiological studies indicated that exposure to these compounds caused neurodevelopmental disturbances such as learning disability and attention deficit hyperactivity disorder, which are thought to be closely related to dopaminergic dysfunction. Although the molecular mechanism of their actions has not been fully investigated, a major participant in the process is aryl hydrocarbon receptor (AhR. This study focused on the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD exposure on the regulation of TH, a rate-limiting enzyme of dopamine synthesis, gene expression by AhR. Methods N2a-Rβ cells were established by transfecting murine neuroblastoma Neuro2a with the rat AhR cDNA. TH expression induced by TCDD was assessed by RT-PCR and Western blotting. Participation of AhR in TCDD-induced TH gene expression was confirmed by suppressing AhR expression using the siRNA method. Catecholamines including dopamine were measured by high-performance liquid chromatography. A reporter gene assay was used to identify regulatory motifs in the promoter region of TH gene. Binding of AhR with the regulatory motif was confirmed by an electrophoretic mobility shift assay (EMSA. Results Induction of TH by TCDD through AhR activation was detected at mRNA and protein levels. Induced TH protein was functional and its expression increased dopamine synthesis. The reporter gene assay and EMSA indicated that AhR directly regulated TH gene expression. Regulatory sequence called aryl hydrocarbon receptor responsive element III (AHRE-III was identified upstream of the TH gene from -285 bp to -167 bp. Under TCDD exposure, an AhR complex was bound to AHRE-III as well as the xenobiotic response element (XRE, though AHRE-III was not identical to XRE, the conventional AhR-binding motif. Conclusion Our results suggest TCDD directly regulate the dopamine system by TH gene

  15. Common commercial and consumer products contain activators of the aryl hydrocarbon (dioxin receptor.

    Directory of Open Access Journals (Sweden)

    Bin Zhao

    Full Text Available Activation of the Ah receptor (AhR by halogenated aromatic hydrocarbons (HAHs, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin, can produce a wide variety of toxic and biological effects. While recent studies have shown that the AhR can bind and be activated by structurally diverse chemicals, how widespread of these AhR agonists are in environmental, biological and synthetic materials remains to be determined. Using AhR-based assays, we demonstrate the presence of potent AhR agonists in a variety of common commercial and consumer items. Solvent extracts of paper, rubber and plastic products contain chemicals that can bind to and stimulate AhR DNA binding and/or AhR-dependent gene expression in hepatic cytosol, cultured cell lines, human epidermis and zebrafish embryos. In contrast to TCDD and other persistent dioxin-like HAHs, activation of AhR-dependent gene expression by these extracts was transient, suggesting that the agonists are metabolically labile. Solvent extracts of rubber products produce AhR-dependent developmental toxicity in zebrafish in vivo, and inhibition of expression of the metabolic enzyme CYP1A, significantly increased their toxic potency. Although the identity of the responsible AhR-active chemicals and their toxicological impact remain to be determined, our data demonstrate that AhR active chemicals are widely distributed in everyday products.

  16. Aryl hydrocarbon receptor-mediated and estrogenic activities of oxygenated polycyclic aromatic hydrocarbons and azaarenes originally identified in extracts of river sediments.

    Science.gov (United States)

    Machala, M; Ciganek, M; Bláha, L; Minksová, K; Vondráck, J

    2001-12-01

    Reproductive dysfunction in wildlife populations can be a result of environmental contaminants binding to aryl hydrocarbon receptor (AhR) or estrogenic receptors. Signaling by both types of receptors can be affected by polycyclic aromatic hydrocarbons (PAHs), which are potential endocrine disruptors. However, our knowledge regarding the effects of oxygenated (oxy)-PAHs and azaarenes on AhR-mediated and estrogenic activities is incomplete. In the present study, we have identified 9-fluorenone, anthrone, anthraquinone, benzanthrone, benz[a]anthracene-7,12-dione, benz[c]acridine, and dibenz[a,h]acridine as prevalent oxy-PAHs and azaarenes found in river sediments. Their concentrations in sediment samples ranged from 2.1 to 165.2 ng g(-1) for oxy-PAHs and up to 27.3 ng g(-1) for azaarenes. Their relative AhR-inducing and estrogenic potencies were quantified in vitro using two cell lines that were stably transfected with a luciferase reporter gene system and expressed as induction equivalency factors (IEFs). The only oxy-PAHs with detectable levels of in vitro AhR-mediated activity were benzanthrone and benz[a]anthracene-7,12-dione. However, their IEFs were approximately three to four orders of magnitude lower than those of benzo[a]pyrene. On the other hand, azaarenes showed a strong AhR-mediated activity, with dibenzo[a,h]acridine being a far more potent inducer of activity than benzo[a]pyrene. Benzanthrone, benz[a]anthracene-7,12-dione, anthraquinone, and benz[a]acridine were weak inducers of in vitro estrogenic activity, with IEFs similar to that of benzo[a]pyrene. Based on concentrations and relative potencies, our results suggest that dibenzo[a,h]acridine can significantly contribute to the overall AhR-mediated activity in river sediments, whereas the remaining compounds do not. No studied compound was found to contribute significantly to estrogen receptor-mediated activity in vitro.

  17. Aryl hydrocarbon receptor nuclear translocator (ARNT) isoforms control lymphoid cancer cell proliferation through differentially regulating tumor suppressor p53 activity.

    Science.gov (United States)

    Gardella, Kacie A; Muro, Israel; Fang, Gloria; Sarkar, Krishnakali; Mendez, Omayra; Wright, Casey W

    2016-03-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is involved in xenobiotic and hypoxic responses, and we previously showed that ARNT also regulates nuclear factor-κB (NF-κB) signaling by altering the DNA binding activity of the RelB subunit. However, our initial study of ARNT-mediated RelB modulation was based on simultaneous suppression of the two ARNT isoforms, isoform 1 and 3, and precluded the examination of their individual functions. We find here that while normal lymphocytes harbor equal levels of isoform 1 and 3, lymphoid malignancies exhibit a shift to higher levels of ARNT isoform 1. These elevated levels of ARNT isoform 1 are critical to the proliferation of these cancerous cells, as suppression of isoform 1 in a human multiple myeloma (MM) cell line, and an anaplastic large cell lymphoma (ALCL) cell line, triggered S-phase cell cycle arrest, spontaneous apoptosis, and sensitized cells to doxorubicin treatment. Furthermore, co-suppression of RelB or p53 with ARNT isoform 1 prevented cell cycle arrest and blocked doxorubicin induced apoptosis. Together our findings reveal that certain blood cancers rely on ARNT isoform 1 to potentiate proliferation by antagonizing RelB and p53-dependent cell cycle arrest and apoptosis. Significantly, our results identify ARNT isoform 1 as a potential target for anticancer therapies.

  18. Methoxychlor inhibits growth and induces atresia through the aryl hydrocarbon receptor pathway in mouse ovarian antral follicles.

    Science.gov (United States)

    Basavarajappa, Mallikarjuna S; Hernández-Ochoa, Isabel; Wang, Wei; Flaws, Jodi A

    2012-08-01

    Methoxychlor (MXC) is an organochlorine pesticide used against pests that attack crops, vegetables, and livestock. MXC inhibits growth and induces atresia (death) of mouse ovarian antral follicles in vitro. Since several studies indicate that many chemicals act through the aryl hydrocarbon receptor (AHR) pathway, the current study tested the hypothesis that MXC binds to the AHR to inhibit growth and induce atresia of antral follicles. The data indicate that MXC binds to AHR. Further, a relatively high dose of MXC (100μg/ml) inhibits growth and induces atresia in both wild-type (WT) and AHR null (AHRKO) follicles, whereas a lower dose of MXC (10μg/ml) inhibits growth and induces atresia in WT, but not in AHRKO follicles. These data indicate that AHR deletion partially protects antral follicles from MXC induced slow growth and atresia. Collectively, these data show that MXC may act through the AHR pathway to inhibit follicle growth and induce atresia in antral follicles of the ovary.

  19. Activation of p53 in Human and Murine Cells by DNA-Damaging Agents Differentially Regulates Aryl Hydrocarbon Receptor Levels.

    Science.gov (United States)

    Panchanathan, Ravichandran; Liu, Hongzhu; Choubey, Divaker

    2015-01-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates multiple cellular processes. The anticancer drug doxorubicin (DOX) can activate AhR-mediated transcription of target genes. Because DOX in cells activates a DNA damage response involving ataxia telangiectasia-mutated (ATM)-mediated activation of p53, we investigated whether the activation of the p53 in cells by DNA-damaging agents such as DOX or bleomycin could regulate the AhR levels. Here we report that activation of p53 by DNA-damaging agents in human cells increased levels of AhR through a posttranscriptional mechanism. Accordingly, fibroblasts from ATM patients, which are defective in p53 activation, expressed reduced constitutive levels of AhR and treatment of cells with bleomycin did not appreciably increase the AhR levels. Further, activation of p53 in cells stimulated the expression of AhR target genes. In murine cells, activation of p53 reduced the levels of AhR messenger RNA and protein and reduced the expression of AhR target genes. Our observations revealed that activation of p53 in human and murine cells differentially regulates AhR levels.

  20. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis

    Science.gov (United States)

    Lamb, Cheri L.; Cholico, Giovan N.; Perkins, Daniel E.; Fewkes, Michael T.; Oxford, Julia Thom; Lujan, Trevor J.; Morrill, Erica E.

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury. PMID:27672655

  1. Toward Understanding the Role of Aryl Hydrocarbon Receptor in the Immune System: Current Progress and Future Trends

    Directory of Open Access Journals (Sweden)

    Hamza Hanieh

    2014-01-01

    Full Text Available The immune system is regulated by distinct signaling pathways that control the development and function of the immune cells. Accumulating evidence suggest that ligation of aryl hydrocarbon receptor (Ahr, an environmentally responsive transcription factor, results in multiple cross talks that are capable of modulating these pathways and their downstream responsive genes. Most of the immune cells respond to such modulation, and many inflammatory response-related genes contain multiple xenobiotic-responsive elements (XREs boxes upstream. Active research efforts have investigated the physiological role of Ahr in inflammation and autoimmunity using different animal models. Recently formed paradigm has shown that activation of Ahr by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or 3,3′-diindolylmethane (DIM prompts the differentiation of CD4+Foxp3+ regulatory T cells (Tregs and inhibits T helper (Th-17 suggesting that Ahr is an innovative therapeutic strategy for autoimmune inflammation. These promising findings generate a basis for future clinical practices in humans. This review addresses the current knowledge on the role of Ahr in different immune cell compartments, with a particular focus on inflammation and autoimmunity.

  2. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    João H Duarte

    Full Text Available The aryl hydrocarbon receptor (AhR has been attributed with anti-inflammatory effects in the development of pathological immune responses leading to experimental autoimmune encephalomyelitis (EAE via the induction of regulatory T cells. In agreement with previously published findings, we find that TCDD administration confers protection from EAE, however, this immuno-modulatory effect was not the consequence of de novo Treg generation, but the inhibition of Th17 cell differentiation. Systemic application of FICZ at the time of immunization also reduced EAE pathology albeit to a lesser degree than TCDD. In vitro Th17 differentiation in the presence of AhR agonists, including TCDD, promoted IL-17 and IL-22 expression, but did not induce Treg differentiation. AhR affinity influenced the amounts of IL-17 and IL-22 protein that was secreted by Th17 cells, but did not seem to affect susceptibility to EAE in vivo. Making use of conditional AhR-deficient mice, we show that the anti-inflammatory effect of TCDD depends on AhR activation in both T cells and dendritic cells, further emphasising the ability of TCDD to interfere with T effector cell differentiation in vivo. The dichotomy between the in vivo and in vitro effects of AhR reveals the complexity of the AhR pathway, which has the capacity of affecting different AhR-expressing cell types involved in mounting immune responses, thus participating in defining their outcome.

  3. Expression of the aryl hydrocarbon receptor contributes to the establishment of intestinal microbial community structure in mice

    Science.gov (United States)

    Murray, Iain A.; Nichols, Robert G.; Zhang, Limin; Patterson, Andrew D.; Perdew, Gary H.

    2016-01-01

    Environmental and genetic factors represent key components in the establishment/maintenance of the intestinal microbiota. The aryl hydrocarbon receptor (AHR) is emerging as a pleiotropic factor, modulating pathways beyond its established role as a xenobiotic sensor. The AHR is known to regulate immune surveillance within the intestine through retention of intraepithelial lymphocytes, functional redistribution of Th17/Treg balance. Consequently, environmental/genetic manipulation of AHR activity likely influences host-microbe homeostasis. Utilizing C57BL6/J Ahr−/+ and Ahr−/− co-housed littermates followed by 18 days of genotypic segregation, we examined the influence of AHR expression upon intestinal microbe composition/functionality and host physiology. 16S sequencing/quantitative PCR (qPCR) revealed significant changes in phyla abundance, particularly Verrucomicrobia together with segmented filamentous bacteria, and an increase in species diversity in Ahr−/− mice following genotypic segregation. Metagenomics/metabolomics indicate microbial composition is associated with functional shifts in bacterial metabolism. Analysis identified Ahr−/−-dependent increases in ileal gene expression, indicating increased inflammatory tone. Transfer of Ahr−/− microbiota to wild-type germ-free mice recapitulated the increase Verrucomicrobia and inflammatory tone, indicating Ahr−/−-microbial dependence. These data suggest a role for the AHR in influencing the community structure of the intestinal microbiota. PMID:27659481

  4. Identification of interacting proteins with aryl hydrocarbon receptor in scallop Chlamys farreri by yeast two hybrid screening.

    Science.gov (United States)

    Cai, Yuefeng; Pan, Luqing; Miao, Jingjing; Liu, Tong

    2016-11-01

    The aryl hydrocarbon receptor (AhR) belongs to the basic-helix-loop helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors. AhR has been known primarily for its role in the regulation of several drug and xenobiotic metabolizing enzymes, as well as the mediation of the toxicity of certain xenobiotics, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Although the AhR is well-studied as a mediator of the toxicity of certain xenobiotics in marine bivalves, the normal physiological function remains unknown. In order to explore the function of the AhR, the bait protein expression plasmid pGBKT7-CfAhR and the cDNA library of gill from Chlamys farreri were constructed. By yeast two hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the CfAhR with receptor for activated protein kinase C 1 (RACK1), thyroid peroxidase-like protein (TPO), Toll-like receptor 4(TLR 4), androglobin-like, store-operated Ca(2+) entry (SocE), ADP/ATP carrier protein, cytochrome b, thioesterase, actin, ferritin subunit 1, poly-ubiquitin, short-chain collagen C4-like and one hypothetical protein in gill cells were identified. This study suggests that the CfAhR played fundamental roles in immune system homeostasis, oxidative stress response, and in grow and development of C. farreri. The elucidation of these protein interactions is of much importance both in understanding the normal physiological function of AhR, and as potential targets for further research on protein function in AhR interactions.

  5. Tissue-specific expression of aryl hydrocarbon receptor and putative developmental regulatory modules in Baltic salmon yolk-sac fry

    Energy Technology Data Exchange (ETDEWEB)

    Vuori, Kristiina A. [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)], E-mail: kristiina.vuori@utu.fi; Nordlund, Eija [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Kallio, Jenny [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland); Salakoski, Tapio [Department of Information Technology, University of Turku, and Turku Centre for Computer Science (TUCS), FI-20014 Turku (Finland); Nikinmaa, Mikko [Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku (Finland)

    2008-04-08

    The aryl hydrocarbon receptor (AhR) is an ancient protein that is conserved in vertebrates and invertebrates, indicating its important function throughout evolution. AhR has been studied largely because of its role in toxicology-gene expression via AhR is induced by many aromatic hydrocarbons in mammals. Recently, however, it has become clear that AhR is involved in various aspects of development such as cell proliferation and differentiation, and cell motility and migration. The mechanisms by which AhR regulates these various functions remain poorly understood. Across-species comparative studies of AhR in invertebrates, non-mammalian vertebrates and mammals may help to reveal the multiple functions of AhR. Here, we have studied AhR during larval development of Baltic salmon (Salmon salar). Our results indicate that AhR protein is expressed in nervous system, liver and muscle tissues. We also present putative regulatory modules and module-matching genes, produced by chromatin immunoprecipitation (ChIP) cloning and in silico analysis, which may be associated with evolutionarily conserved functions of AhR during development. For example, the module NFKB-AHRR-CREB found from salmon ChIP sequences is present in human ULK3 (regulating formation of granule cell axons in mouse and axon outgrowth in Caernohabditis elegans) and SRGAP1 (GTPase-activating protein involved in the Slit/Robo pathway) promoters. We suggest that AhR may have an evolutionarily conserved role in neuronal development and nerve cell targeting, and in Wnt signaling pathway.

  6. Contributions of aryl hydrocarbon receptor genetic variants to the risk of glioma and PAH-DNA adducts.

    Science.gov (United States)

    Gu, Aihua; Ji, Guixiang; Jiang, Tao; Lu, Ailin; You, Yongping; Liu, Ning; Luo, Chengzhang; Yan, Wei; Zhao, Peng

    2012-08-01

    The aryl hydrocarbon receptor (AHR) gene is involved in the response to polycyclic aromatic hydrocarbon (PAH) exposure. To investigate the hypothesis that the genetic variants in the AHR gene might be a causal genetic susceptibility to PAH-DNA adduct formation and glioma risk, we conducted a case-control study of 384 glioma cases and 384 cancer-free controls to explore the association between six common single-nucleotide polymorphisms of the AHR gene and glioma risk. Using PAH-DNA adducts as biomarkers, we then evaluated the association between PAH-DNA adduct levels and glioma risk based on a tissue microarray including 11 controls and 77 glioma patients. We further explored the contributions of the glioma risk-associated AHR polymorphisms to the levels of PAH-DNA adducts in glioma tissues based on 77 glioma patients. We found that PAH-DNA adduct staining existed in normal brain tissues and grades I-IV gliomas, and the staining intensity was significantly associated with the glioma grade. Two AHR polymorphisms (rs2066853 and rs2158041) demonstrated significant association with glioma risk. Intriguingly, we also found statistically significant associations between these two variants and PAH-DNA adduct levels in glioma tissue. These data suggest the contributions of AHR rs2066853 and rs2158041 to glioma risk and the PAH-DNA adduct levels, which shed new light on gene-environment interactions in the etiology of glioma. Further studies with a larger sample size and ethnically diverse populations are required to elucidate the potential biological mechanism for, as well as the impact of, the susceptibility to glioma due to genetic variants of AHR.

  7. Aryl hydrocarbon receptor-independent up-regulation of intracellular calcium concentration by environmental polycyclic aromatic hydrocarbons in human endothelial HMEC-1 cells.

    Science.gov (United States)

    Mayati, Abdullah; Le Ferrec, Eric; Lagadic-Gossmann, Dominique; Fardel, Olivier

    2012-09-01

    Polycyclic aromatic hydrocarbons (PAHs) such as benzo(a)pyrene (B(a)P) constitute a major family of widely-distributed environmental toxic contaminants, known as potent ligands of the aryl hydrocarbon receptor (AhR). B(a)P has been recently shown to trigger an early and transient increase of intracellular calcium concentration ([Ca(2+)](i)), involved in AhR-related up-regulation of target genes by B(a)P. This study was designed to determine whether AhR may play a role in [Ca(2+)](i) induction provoked by B(a)P. We demonstrated that, in addition to B(a)P, various PAHs, including pyrene and benzo(e)pyrene, known to not or only very poorly interact with AhR, similarly up-regulated [Ca(2+)](i) in human endothelial HMEC-1 cells. Moreover, α-naphthoflavone, a flavonoïd antagonist of AhR, was also able to induce [Ca(2+)](i). Knocking-down AhR expression in HMEC-1 cells through transfection of siRNAs, was finally demonstrated to not prevent B(a)P-mediated induction of [Ca(2+)](i), whereas it efficiently counteracted B(a)P-mediated induction of the referent AhR target gene cytochrome P-450 1B1. Taken together, these data demonstrate that environmental PAHs trigger [Ca(2+)](i) induction in an AhR-independent manner.

  8. beta-TrCP inhibition reduces prostate cancer cell growth via upregulation of the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Udi Gluschnaider

    Full Text Available BACKGROUND: Prostate cancer is a common and heterogeneous disease, where androgen receptor (AR signaling plays a pivotal role in development and progression. The initial treatment for advanced prostate cancer is suppression of androgen signaling. Later on, essentially all patients develop an androgen independent stage which does not respond to anti hormonal treatment. Thus, alternative strategies targeting novel molecular mechanisms are required. beta-TrCP is an E3 ligase that targets various substrates essential for many aspects of tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that beta-TrCP depletion suppresses prostate cancer and identify a relevant growth control mechanism. shRNA targeted against beta-TrCP reduced prostate cancer cell growth and cooperated with androgen ablation in vitro and in vivo. We found that beta-TrCP inhibition leads to upregulation of the aryl hydrocarbon receptor (AhR mediating the therapeutic effect. This phenomenon could be ligand independent, as the AhR ligand 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD did not alter prostate cancer cell growth. We detected high AhR expression and activation in basal cells and atrophic epithelial cells of human cancer bearing prostates. AhR expression and activation is also significantly higher in tumor cells compared to benign glandular epithelium. CONCLUSIONS/SIGNIFICANCE: Together these observations suggest that AhR activation may be a cancer counteracting mechanism in the prostate. We maintain that combining beta-TrCP inhibition with androgen ablation could benefit advanced prostate cancer patients.

  9. Omeprazole Attenuates Pulmonary Aryl Hydrocarbon Receptor Activation and Potentiates Hyperoxia-Induced Developmental Lung Injury in Newborn Mice

    Science.gov (United States)

    Shivanna, Binoy; Zhang, Shaojie; Patel, Ananddeep; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in human preterm infants and a similar lung phenotype characterized by alveolar simplification in newborn mice. Omeprazole (OM) is a proton pump inhibitor that is used to treat humans with gastric acid related disorders. OM-mediated aryl hydrocarbon receptor (AhR) activation attenuates acute hyperoxic lung injury (HLI) in adult mice. Whether OM activates pulmonary AhR and protects C57BL/6J newborn mice against hyperoxia-induced developmental lung (alveolar and pulmonary vascular simplification, inflammation, and oxidative stress) injury (HDLI) is unknown. Therefore, we tested the hypothesis that OM will activate pulmonary AhR and mitigate HDLI in newborn mice. Newborn mice were treated daily with i.p. injections of OM at doses of 10 (OM10) or 25 (OM25) mg/kg while being exposed to air or hyperoxia (FiO2 of 85%) for 14 days, following which their lungs were harvested to determine alveolarization, pulmonary vascularization, inflammation, oxidative stress, vascular injury, and AhR activation. To our surprise, hyperoxia-induced alveolar and pulmonary vascular simplification, inflammation, oxidative stress, and vascular injury were augmented in OM25-treated animals. These findings were associated with attenuated pulmonary vascular endothelial growth factor receptor 2 expression and decreased pulmonary AhR activation in the OM25 group. We conclude that contrary to our hypothesis, OM decreases functional activation of pulmonary AhR and potentiates HDLI in newborn mice. These observations are consistent with our previous findings, which suggest that AhR activation plays a protective role in HDLI in newborn mice. PMID:26272953

  10. Polycyclic aromatic hydrocarbons (PAHs) mediate transcriptional activation of the ATP binding cassette transporter ABCB6 gene via the aryl hydrocarbon receptor (AhR).

    Science.gov (United States)

    Chavan, Hemantkumar; Krishnamurthy, Partha

    2012-09-14

    Liver is endowed with a mechanism to induce hepatic cytochromes P450 (CYP450s) in response to therapeutic drugs and environmental contaminants, leading to increased detoxification and elimination of the xenobiotics. Each CYP450 is composed of an apoprotein moiety and a heme prosthetic group, which is required for CYP450 activity. Thus, under conditions of CYP450 induction, there is a coordinate increase in heme biosynthesis to compensate for the increased expression of CYP450s. ABCB6, a mitochondrial ATP binding cassette transporter, which regulates coproporphyrinogen transport from the cytoplasm into the mitochondria to complete heme biosynthesis, represents a previously unrecognized rate-limiting step in heme biosynthesis. However, it is not known if exposure to drugs and environmental contaminants induces ABCB6 expression, to assure an adequate and apparently coordinated supply of heme for the generation of functional cytochrome holoprotein. In the present study, we demonstrate that polycyclic aromatic hydrocarbons (PAHs), the widely distributed environmental toxicants shown to induce porphyrin accumulation causing hepatic porphyria, up-regulate ABCB6 expression in both mice and humans. Using siRNA technology and Abcb6 knock-out mice, we demonstrate that PAH-mediated increase in hepatic porphyrins is compromised in the absence of ABCB6. Moreover, in vivo studies in aryl hydrocarbon receptor (AhR) knock-out mice demonstrate that PAH induction of ABCB6 is mediated by AhR. Promoter activation studies combined with electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrate direct interactions between the AhR binding sites in the ABCB6 promoter and the AhR receptor, implicating drug activation mechanisms for ABCB6 similar to those found in inducible cytochrome P450s. These studies are the first to describe direct transcriptional activation of both mouse and human ABCB6 by xenobiotics.

  11. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect.

  12. Aryl hydrocarbon receptor (AHR-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities

    Directory of Open Access Journals (Sweden)

    Okey Allan B

    2010-04-01

    Full Text Available Abstract Background The major toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD appear to result from dysregulation of mRNA levels mediated by the aryl hydrocarbon receptor (AHR. Dioxin-like chemicals alter expression of numerous genes in liver, but it remains unknown which lie in pathways leading to major toxicities such as hepatotoxicity, wasting and lethality. To identify genes involved in these responses we exploited a rat genetic model. Rats expressing an AHR splice-variant lacking a portion of the transactivation domain are highly resistant to dioxin-induced toxicities. We examined changes in hepatic mRNA abundances 19 hours after TCDD treatment in two dioxin-resistant rat strains/lines and two dioxin-sensitive rat strains/lines. Results Resistant rat strains/lines exhibited fewer transcriptional changes in response to TCDD than did rats with wildtype AHR. However, well-known AHR-regulated and dioxin-inducible genes such as CYP1A1, CYP1A2, and CYP1B1 remained fully responsive to TCDD in all strains/lines. Pathway analysis indicated that the genes which respond differently to TCDD between sensitive and resistant rats are mainly involved in lipid metabolism, cellular membrane function and energy metabolism. These pathways previously have been shown to respond differently to dioxin treatment in dioxin-sensitive versus dioxin-resistant rats at a biochemical level and in the differential phenotype of toxicologic responses. Conclusion The transactivation-domain deletion in dioxin-resistant rats does not abolish global AHR transactivational activity but selectively interferes with expression of subsets of genes that are candidates to mediate or protect from major dioxin toxicities such as hepatotoxicity, wasting and death.

  13. Differential effects of omeprazole and lansoprazole enantiomers on aryl hydrocarbon receptor in human hepatocytes and cell lines.

    Science.gov (United States)

    Novotna, Aneta; Srovnalova, Alzbeta; Svecarova, Michaela; Korhonova, Martina; Bartonkova, Iveta; Dvorak, Zdenek

    2014-01-01

    Proton pump inhibitors omeprazole and lansoprazole contain chiral sulfur atom and they are administered as a racemate, i.e. equimolar mixture of S- and R-enantiomers. The enantiopure drugs esomeprazole and dexlansoprazole have been developed and introduced to clinical practice due to their improved clinical and therapeutic properties. Since omeprazole and lansoprazole are activators of aryl hydrocarbon receptor (AhR) and inducers of CYP1A genes, we examined their enantiospecific effects on AhR-CYP1A pathway in human cancer cells and primary human hepatocytes. We performed gene reporter assays for transcriptional activity of AhR, RT-PCR analyses for CYP1A1/2 mRNAs, western blots for CYP1A1/2 proteins and EROD assay for CYP1A1/2 catalytic activity. Lansoprazole and omeprazole enantiomers displayed differential effects on AhR-CYP1A1/2 pathway. In general, S-enantiomers were stronger activators of AhR and inducers of CYP1A genes as compared to R-enantiomers in lower concentrations, i.e. 1-10 µM for lansoprazole and 10-100 µM for omeprazole. In contrast, R-enantiomers were stronger AhR activators and CYP1A inducers than S-enantiomers in higher concentrations, i.e. 100 µM for lansoprazole and 250 µM for omeprazole. In conclusion, we provide the first evidence of enantiospecific effects of omeprazole and lansoprazole on AhR signaling pathway.

  14. Activation of the aryl hydrocarbon receptor by carbaryl: Computational evidence of the ability of carbaryl to assume a planar conformation.

    Science.gov (United States)

    Casado, Susana; Alonso, Mercedes; Herradón, Bernardo; Tarazona, José V; Navas, José

    2006-12-01

    It has been accepted that aryl hydrocarbon receptor (AhR) ligands are compounds with two or more aromatic rings in a coplanar conformation. Although general agreement exists that carbaryl is able to activate the AhR, it has been proposed that such activation could occur through alternative pathways without ligand binding. This idea was supported by studies showing a planar conformation of carbaryl as unlikely. The objective of the present work was to clarify the process of AhR activation by carbaryl. In rat H4IIE cells permanently transfected with a luciferase gene under the indirect control of AhR, incubation with carbaryl led to an increase of luminescence. Ligand binding to the AhR was studied by means of a cell-free in vitro system in which the activation of AhR can occur only by ligand binding. In this system, exposure to carbaryl also led to activation of AhR. These results were similar to those obtained with the AhR model ligand beta-naphthoflavone, although this compound exhibited higher potency than carbaryl in both assays. By means of computational modeling (molecular mechanics and quantum chemical calculations), the structural characteristics and electrostatic properties of carbaryl were described in detail, and it was observed that the substituent at C-1 and the naphthyl ring were not coplanar. Assuming that carbaryl would interact with the AhR through a hydrogen bond, this interaction was studied computationally using hydrogen fluoride as a model H-bond donor. Under this situation, the stabilization energy of the carbaryl molecule would permit it to adopt a planar conformation. These results are in accordance with the mechanism traditionally accepted for AhR activation: Binding of ligands in a planar conformation.

  15. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).

    Science.gov (United States)

    Cheng, Xingguo; Vispute, Saurabh G; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Fgf21-null mice administered 200μg/kg of TCDD died within 20days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver.

  16. Evaluation of sensitizers found in wastewater from paper recycling areas, and their activation of the aryl hydrocarbon receptor in vitro.

    Science.gov (United States)

    Terasaki, Masanori; Yasuda, Michiko; Shimoi, Kayoko; Jozuka, Kazuhiko; Makino, Masakazu; Shiraishi, Fujio; Nakajima, Daisuke

    2014-09-15

    The in vitro potential of sensitizers and related compounds (SRCs) originating from impurities in waste paper in activating the human aryl hydrocarbon receptor (AhR) α was assessed using yeast reporter gene as well as cytochrome P450 (CYP)1A1 and ethoxyresorufin O-deethylase (EROD) assays. In the yeast assay, eight compounds exhibited agonist activity, and their activity relative to β-naphthoflavone (BNF) ranged from 1.4 × 10(-4) to 8.3 × 10(-2), with the highest activity observed for benzyl 2-naphthyl ether (BNE). In the EROD assay, six compounds caused a more significant induction of CYP1A-dependent activity than did the vehicle control at 50 μM (ppaper recycling area was fractioned using solid-phase extraction (SPE) combined with a C18 disk and florisil cartridge. In gas chromatography-mass spectrometry (GC-MS) analysis, SRCs were detected in the first fraction, at a total concentration of 5.5 μg/L. This fraction also activated AhR, and its activity, expressed as a BNF equivalent value, was 0.42 nM in the yeast assay. The contribution ratio of active compounds accounted for up to 34% and 4.4% observed activity of the fraction and total samples, respectively. To our knowledge, this is the first study to show that paper industry-related compounds, namely aromatic sensitizers, activate AhR by using a yeast assay and HepG2 cells.

  17. Leflunomide induces NAD(P)H quinone dehydrogenase 1 enzyme via the aryl hydrocarbon receptor in neonatal mice.

    Science.gov (United States)

    Shrestha, Amrit Kumar; Patel, Ananddeep; Menon, Renuka T; Jiang, Weiwu; Wang, Lihua; Moorthy, Bhagavatula; Shivanna, Binoy

    2017-03-25

    Aryl hydrocarbon receptor (AhR) has been increasingly recognized to play a crucial role in normal physiological homeostasis. Additionally, disrupted AhR signaling leads to several pathological states in the lung and liver. AhR activation transcriptionally induces detoxifying enzymes such as cytochrome P450 (CYP) 1A and NAD(P)H quinone dehydrogenase 1 (NQO1). The toxicity profiles of the classical AhR ligands such as 3-methylcholanthrene and dioxins limit their use as a therapeutic agent in humans. Hence, there is a need to identify nontoxic AhR ligands to develop AhR as a clinically relevant druggable target. Recently, we demonstrated that leflunomide, a FDA approved drug, used to treat rheumatoid arthritis in humans, induces CYP1A enzymes in adult mice via the AhR. However, the mechanisms by which this drug induces NQO1 in vivo are unknown. Therefore, we tested the hypothesis that leflunomide will induce pulmonary and hepatic NQO1 enzyme in neonatal mice via AhR-dependent mechanism(s). Leflunomide elicited significant induction of pulmonary CYP1A1 and NQO1 expression in neonatal mice. Interestingly, the dose at which leflunomide increased NQO1 was significantly higher than that required to induce CYP1A1 enzyme. Likewise, it also enhanced hepatic CYP1A1, 1A2 and NQO1 expression in WT mice. In contrast, leflunomide failed to induce these enzymes in AhR-null mice. Our results indicate that leflunomide induces pulmonary and hepatic CYP1A and NQO1 enzymes via the AhR in neonatal mice. These findings have important implications to prevent and/or treat disorders such as bronchopulmonary dysplasia in human infants where AhR may play a crucial role in the disease pathogenesis.

  18. Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis.

    Science.gov (United States)

    Li, Jinpeng; Phadnis-Moghe, Ashwini S; Crawford, Robert B; Kaminski, Norbert E

    2017-03-01

    The homeostasis of peripheral B cell compartment requires lifelong B lymphopoiesis from hematopoietic stem cells (HSC). As a result, the B cell repertoire is susceptible to disruptions of hematopoiesis. Increasing evidence, primarily from rodent models, shows that the aryl hydrocarbon receptor (AHR) regulates hematopoiesis. To study the effects of persistent AHR activation on human B cell development, a potent AHR agonist and known environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was utilized. An in vitro B cell development model system was established by co-culturing human cord blood-derived HSCs with irradiated human primary bone marrow stromal cells. Using this in vitro model, we found that TCDD significantly suppressed the total number of hematopoietic stem and progenitor cells (HSPC) in a concentration-dependent manner. Cell death analysis demonstrated that the decrease in cell number was not due to cytotoxicity by TCDD. In addition, TCDD markedly decreased CD34 expression on HSPCs. Structure-activity relationship studies using dioxin congeners demonstrated a correlation between the relative AHR binding affinity and the magnitude of decrease in the number of HSPCs and CD34 expression, suggesting that AHR mediates the observed TCDD-elicited changes in HSPCs. Moreover, a significant reduction in lineage committed B cell-derived from HSCs was observed in the presence of TCDD, indicating impairment of human B cell development. Similar effects of TCDD were observed regardless of the use of stromal cells in cultures indicating a direct effect of TCDD on HSCs. Collectively, we demonstrate that AHR activation by TCDD on human HSCs impairs early stages of human B lymphopoiesis.

  19. Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells.

    Science.gov (United States)

    Wang, C; Ye, Z; Kijlstra, A; Zhou, Y; Yang, P

    2014-08-01

    Aryl hydrocarbon receptor (AhR) is well known for mediating the toxic effects of dioxin-containing pollutants, but has also been shown to be involved in the natural regulation of the immune response. In this study, we investigated the effect of AhR activation by its endogenous ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the differentiation, maturation and function of monocyte-derived DCs in Behçet's disease (BD) patients. In this study, we showed that AhR activation by FICZ and ITE down-regulated the expression of co-stimulatory molecules including human leucocyte antigen D-related (HLA-DR), CD80 and CD86, while it had no effect on the expression of CD83 and CD40 on DCs derived from BD patients and normal controls. Lipopolysaccharide (LPS)-treated dendritic cells (DCs) from active BD patients showed a higher level of interleukin (IL)-1β, IL-6, IL-23 and tumour necrosis factor (TNF)-α production. FICZ or ITE significantly inhibited the production of IL-1β, IL-6, IL-23 and TNF-α, but induced IL-10 production by DCs derived from active BD patients and normal controls. FICZ or ITE-treated DCs significantly inhibited the T helper type 17 (Th17) and Th1 cell response. Activation of AhR either by FICZ or ITE inhibits DC differentiation, maturation and function. Further studies are needed to investigate whether manipulation of the AhR pathway may be used to treat BD or other autoimmune diseases.

  20. Sinomenine induces the generation of intestinal Treg cells and attenuates arthritis via activation of aryl hydrocarbon receptor.

    Science.gov (United States)

    Tong, Bei; Yuan, Xusheng; Dou, Yannong; Wu, Xin; Wang, Yuhui; Xia, Yufeng; Dai, Yue

    2016-10-01

    Sinomenine (SIN), an anti-arthritis drug, has previously been proven to exert immunomodulatory activity in rats by inducing intestinal regulatory T-cells (Treg cells). Here, we assessed the effect of SIN on the generation and function of Treg cells in autoimmune arthritis, and the underlying mechanisms in view of aryl hydrocarbon receptor (AhR). The proportions of Treg cells and IL-17-producing T-cells (Th17 cells) differentiated from naive T-cells were analyzed by flow cytometric analysis. The AhR agonistic effect of SIN was tested by analyzing the activation of downstream signaling pathways and target genes. The dependence of intestinal Treg cell induction and arthritis alleviation by SIN on AhR activation was confirmed in a mouse collagen-induced arthritis (CIA) model. SIN promoted the differentiation and function of intestinal Treg cells in vitro. It induced the expression and activity of AhR target gene, promoted AhR/Hsp90 dissociation and AhR nuclear translocation, induced XRE reporter activity, and facilitated AhR/XRE binding in vitro, displaying the potential to be an agonist of AhR. In CIA mice, SIN induced the generation of intestinal Treg cells, and facilitated the immunosuppressive function of these Treg cells as shown by an adoptive transfer test. In addition, the induction of intestinal Treg cells and the anti-arthritic effect of SIN in CIA mice could be largely diminished by the AhR antagonist resveratrol. SIN attenuates arthritis by promoting the generation and function of Treg cells in an AhR-dependent manner.

  1. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xingguo, E-mail: chengx@stjohns.edu [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Vispute, Saurabh G. [Department of Pharmaceutical Sciences, St. John' s University, 8000 Utopia Parkway, Queens, NY 11439 (United States); Liu, Jie [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States); Cheng, Christine; Kharitonenkov, Alexei [Lilly Research Laboratories, Division of Eli Lilly and Co., Indianapolis, IN 46285 (United States); Klaassen, Curtis D., E-mail: curtisklaassenphd@gmail.com [Department of Internal Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160 (United States)

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  2. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Wenshuo Zhang

    Full Text Available Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR. The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs, however, commenced early in the 20(th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism.

  3. Aryl Hydrocarbon Receptor (AhR Modulates Cockroach Allergen-Induced Immune Responses through Active TGFβ1 Release

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou

    2014-01-01

    Full Text Available Background. Aryl hydrocarbon receptor (AhR, a multifunctional regulator that senses and responds to environmental stimuli, plays a role in normal cell development and immune regulation. Recent evidence supports a significant link between environmental exposure and AhR in the development of allergic diseases. We sought to investigate whether AhR plays a role in mediating cockroach allergen-induced allergic immune responses. Methods. AhR expression in human lung fibroblasts from asthmatic and healthy individuals and in cockroach extract (CRE treated human lung fibroblasts (WI-38 was examined. The role of AhR in modulating CRE induced TGFβ1 production was investigated by using AhR agonist, TCDD, antagonist CH122319, and knockdown of AhR. The role of latent TGFβ1 binding protein-1 (LTBP1 in mediating TCDD induced active TGFβ1 release was also examined. Results. AhR expression was higher in airway fibroblasts from asthmatic subjects as compared to healthy controls. AhR in fibroblasts was activated by TCDD with an increased expression of cyp1a1 and cyp1b1. Increased AhR expression was observed in CRE-treated fibroblasts. Importantly, CRE induced TGFβ1 production in fibroblasts was significantly enhanced by TCDD but inhibited by CH122319. Reduced TGFβ1 production was further confirmed in fibroblasts with AhR knockdown. Moreover, AhR knockdown inhibited CRE induced fibroblast differentiation. Furthermore, TCDD induced active TGFβ1 release was significantly inhibited by LTBP1 knockdown. Conclusion. These results provide evidence for the role of AhR in modulating cockroach allergen-induced immune responses through controlling the active TGFβ1 release, suggesting a possible synergistic effect between exposure to allergens and environmental chemicals on the development of allergic diseases.

  4. Identification of aryl hydrocarbon receptor signaling pathways altered in TCDD-treated red seabream embryos by transcriptome analysis.

    Science.gov (United States)

    Iida, Midori; Fujii, Satoshi; Uchida, Masaya; Nakamura, Hiroshi; Kagami, Yoshihiro; Agusa, Tetsuro; Hirano, Masashi; Bak, Su-Min; Kim, Eun-Young; Iwata, Hisato

    2016-08-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces a broad spectrum of toxic effects including craniofacial malformation and neural damage in fish embryos. These effects are mainly mediated by the aryl hydrocarbon receptor (AHR). However, the mode of action between TCDD-induced AHR activation and adverse outcomes is not yet understood. To provide a comprehensive picture of the AHR signaling pathway in fish embryos exposed to TCDD, red seabream (Pagrus major) embryos were treated with graded concentrations of TCDD (0.3-37nM) in seawater, or with a mixture of TCDD and 500nM CH223191, an AHR-specific antagonist. The transcriptome of red seabream embryos was analyzed using a custom-made microarray with 6000 probes specifically prepared for this species. A Jonckheere-Terpstra test was performed to screen for genes that demonstrated altered mRNA expression levels following TCDD exposure. The signals of 1217 genes (as human homologs) were significantly altered in a TCDD concentration-dependent manner (q-valueTCDD-induced alteration in mRNA expression was alleviated by co-exposure to CH223191, suggesting that the mRNA expression level of these genes was regulated by AHR. To identify TCDD-activated pathways, the microarray data were further subjected to gene set enrichment analysis (GSEA) and functional protein-protein interaction (PPI) network analysis. GSEA demonstrated that the effects of TCDD on sets of genes involved calcium, mitogen-activated protein kinase (MAPK), actin cytoskeleton, chemokine, T cell receptor, melanoma, vascular endothelial growth factor (VEGF), axon guidance, and renal cell carcinoma signaling pathways. These results suggest the hypotheses that TCDD induces immunosuppression via the calcium, MAPK, chemokine, and T cell receptor signaling pathways, neurotoxicity via VEGF signaling, and axon guidance alterations and teratogenicity via the dysregulation of the actin cytoskeleton and melanoma and renal cell carcinoma signaling pathways. Furthermore

  5. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist.

    Directory of Open Access Journals (Sweden)

    Gérald J Prud'homme

    Full Text Available BACKGROUND: Cancer stem cells (CSCs have increased resistance to cancer chemotherapy. They can be enriched as drug-surviving CSCs (D-CSCs by growth with chemotherapeutic drugs, and/or by sorting of cells expressing CSC markers such as aldehyde dehydrogenase-1 (ALDH. CSCs form colonies in agar, mammospheres in low-adherence cultures, and tumors following xenotransplantation in Scid mice. We hypothesized that tranilast, a non-toxic orally active drug with anti-cancer activities, would inhibit breast CSCs. METHODOLOGY/FINDINGS: We examined breast cancer cell lines or D-CSCs generated by growth of these cells with mitoxantrone. Tranilast inhibited colony formation, mammosphere formation and stem cell marker expression. Mitoxantrone-selected cells were enriched for CSCs expressing stem cell markers ALDH, c-kit, Oct-4, and ABCG2, and efficient at forming mammospheres. Tranilast markedly inhibited mammosphere formation by D-CSCs and dissociated formed mammospheres, at pharmacologically relevant concentrations. It was effective against D-CSCs of both HER-2+ and triple-negative cell lines. Tranilast was also effective in vivo, since it prevented lung metastasis in mice injected i.v. with triple-negative (MDA-MB-231 mitoxantrone-selected cells. The molecular targets of tranilast in cancer have been unknown, but here we demonstrate it is an aryl hydrocarbon receptor (AHR agonist and this plays a key role. AHR is a transcription factor activated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, polycyclic aromatic hydrocarbons and other ligands. Tranilast induced translocation of the AHR to the nucleus and stimulated CYP1A1 expression (a marker of AHR activation. It inhibited binding of the AHR to CDK4, which has been linked to cell-cycle arrest. D-CSCs expressed higher levels of the AHR than other cells. Knockdown of the AHR with siRNA, or blockade with an AHR antagonist, entirely abrogated the anti-proliferative and anti-mammosphere activity of tranilast

  6. Activation of aryl hydrocarbon receptor by TCDD prevents diabetes in NOD mice and increases Foxp3+ T cells in pancreatic lymph nodes

    OpenAIRE

    Kerkvliet, Nancy I.; Linda B. Steppan; Vorachek, William; Oda, Shannon; Farrer, David; Wong, Carmen P.; Pham, Duy; Mourich, Dan V.

    2009-01-01

    The ligand-activated transcription factor, aryl hydrocarbon receptor (AHR), is a novel inducer of adaptive Tregs. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), the most potent AHR ligand, induces adaptive CD4+CD25+ Tregs during an acute graft-versus-host (GvH) response and prevents the generation of allospecific cytotoxic T lymphocytes. TCDD also suppresses the induction of experimental autoimmune encephalitis in association with an expanded population of Foxp3+ Tregs. In this study, we show th...

  7. Over-expression of AhR (aryl hydrocarbon receptor induces neural differentiation of Neuro2a cells: neurotoxicology study

    Directory of Open Access Journals (Sweden)

    Ishihara-Sugano Mitsuko

    2006-09-01

    Full Text Available Abstract Background Dioxins and related compounds are suspected of causing neurological disruption in human and experimental animal offspring following perinatal exposure during development and growth. The molecular mechanism(s of the actions in the brain, however, have not been fully investigated. A major participant in the process of the dioxin-toxicity is the dioxin receptor, namely the aryl hydrocarbon receptor (AhR. AhR regulates the transcription of diverse genes through binding to the xenobiotic-responsive element (XRE. Since the AhR has also been detected in various regions of the brain, the AhR may play a key role in the developmental neurotoxicity of dioxins. This study focused on the effect of AhR activation in the developing neuron. Methods The influence of the AhR on the developing neuron was assessed using the Neuro2a-AhR transfectant. The undifferentiated murine neuroblastoma Neuro2a cell line (ATCC was stably transfected with AhR cDNA and the established cell line was named N2a-Rα. The activation of exogenous AhR in N2a-Rα cells was confirmed using RNAi, with si-AhR suppressing the expression of exogenous AhR. The neurological properties of N2a-Rα based on AhR activation were evaluated by immunohistochemical analysis of cytoskeletal molecules and by RT-PCR analysis of mRNA expression of neurotransmitter-production related molecules, such as tyrosine hydroxylase (TH. Results N2a-Rα cells exhibited constant activation of the exogenous AhR. CYP1A1, a typical XRE-regulated gene, mRNA was induced without the application of ligand to the culture medium. N2a-Rα cells exhibited two significant functional features. Morphologically, N2a-Rα cells bore spontaneous neurites exhibiting axon-like properties with the localization of NF-H. In addition, cdc42 expression was increased in comparison to the control cell line. The other is the catecholaminergic neuron-like property. N2a-Rα cells expressed tyrosine hydroxylase (TH mRNA as a

  8. The Aryl-Hydrocarbon Receptor Protein Interaction Network (AHR-PIN as Identified by Tandem Affinity Purification (TAP and Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Dorothy M. Tappenden

    2013-01-01

    Full Text Available The aryl-hydrocarbon receptor (AHR, a ligand activated PAS superfamily transcription factor, mediates most, if not all, of the toxicity induced upon exposure to various dioxins, dibenzofurans, and planar polyhalogenated biphenyls. While AHR-mediated gene regulation plays a central role in the toxic response to dioxin exposure, a comprehensive understanding of AHR biology remains elusive. AHR-mediated signaling starts in the cytoplasm, where the receptor can be found in a complex with the heat shock protein of 90 kDa (Hsp90 and the immunophilin-like protein, aryl-hydrocarbon receptor-interacting protein (AIP. The role these chaperones and other putative interactors of the AHR play in the toxic response is not known. To more comprehensively define the AHR-protein interaction network (AHR-PIN and identify other potential pathways involved in the toxic response, a proteomic approach was undertaken. Using tandem affinity purification (TAP and mass spectrometry we have identified several novel protein interactions with the AHR. These interactions physically link the AHR to proteins involved in the immune and cellular stress responses, gene regulation not mediated directly via the traditional AHR:ARNT heterodimer, and mitochondrial function. This new insight into the AHR signaling network identifies possible secondary signaling pathways involved in xenobiotic-induced toxicity.

  9. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Hukkanen, Renee R.; Lawson, Marie; Martin, Greg [The Dow Chemical Company, Midland, MI 48640 (United States); Gilger, Brian [North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606 (United States); Soldatow, Valerie [University of North Carolina, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599 (United States); LeCluyse, Edward L. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Budinsky, Robert A.; Rowlands, J. Craig [The Dow Chemical Company, Midland, MI 48640 (United States); Thomas, Russell S., E-mail: RThomas@thehamner.org [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States)

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  10. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor

    Science.gov (United States)

    Morales-Hernández, Antonio; González-Rico, Francisco J.; Román, Angel C.; Rico-Leo, Eva; Alvarez-Barrientos, Alberto; Sánchez, Laura; Macia, Ángela; Heras, Sara R.; García-Pérez, José L.; Merino, Jaime M.; Fernández-Salguero, Pedro M.

    2016-01-01

    Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions. PMID:26883630

  11. Controlling viral immuno-inflammatory lesions by modulating aryl hydrocarbon receptor signaling.

    Directory of Open Access Journals (Sweden)

    Tamara Veiga-Parga

    2011-12-01

    Full Text Available Ocular herpes simplex virus infection can cause a blinding CD4⁺ T cell orchestrated immuno-inflammatory lesion in the cornea called Stromal Keratitis (SK. A key to controlling the severity of SK lesions is to suppress the activity of T cells that orchestrate lesions and enhance the representation of regulatory cells that inhibit effector cell function. In this report we show that a single administration of TCDD (2, 3, 7, 8- Tetrachlorodibenzo-p-dioxin, a non-physiological ligand for the AhR receptor, was an effective means of reducing the severity of SK lesions. It acted by causing apoptosis of Foxp3⁻ CD4⁺ T cells but had no effect on Foxp3⁺ CD4⁺ Tregs. TCDD also decreased the proliferation of Foxp3⁻ CD4⁺ T cells. The consequence was an increase in the ratio of Tregs to T effectors which likely accounted for the reduced inflammatory responses. In addition, in vitro studies revealed that TCDD addition to anti-CD3/CD28 stimulated naïve CD4⁺ T cells caused a significant induction of Tregs, but inhibited the differentiation of Th1 and Th17 cells. Since a single TCDD administration given after the disease process had been initiated generated long lasting anti-inflammatory effects, the approach holds promise as a therapeutic means of controlling virus induced inflammatory lesions.

  12. Assessment of the aryl hydrocarbon receptor-mediated activities of polycyclic aromatic hydrocarbons in a human cell-based reporter gene assay.

    Science.gov (United States)

    Vondráček, Jan; Pěnčíková, Kateřina; Neča, Jiří; Ciganek, Miroslav; Grycová, Aneta; Dvořák, Zdeněk; Machala, Miroslav

    2017-01-01

    Activation of the aryl hydrocarbon receptor (AhR)-mediated activity is one of key events in toxicity of polycyclic aromatic hydrocarbons (PAHs). Although various classes of AhR ligands may differentially activate human and rodent AhR, there is presently a lack of data on the human AhR-inducing relative potencies (REPs) of PAHs. Here, we focused on estimation of the AhR-mediated activities of a large set of environmental PAHs in human gene reporter AZ-AhR cell line, with an aim to develop the human AhR-based REP values with potential implications for risk assessment of PAHs. The previously identified weakly active PAHs mostly failed to activate the AhR in human cells. The order for REPs of individual PAHs in human cells largely corresponded with the available data from rodent-based experimental systems; nevertheless, we identified differences up to one order of magnitude in REP values of PAHs between human and rodent cells. Higher REP values were found in human cells for some important environmental contaminants or suspected carcinogens, such as indeno[1,2,3-cd]pyrene, benz[a]anthracene or benzo[b]fluoranthene, while lower REP values were determined for methyl-substituted PAHs. Our results also indicate that a different rate of metabolism for individual PAHs in human vs. rodent cells may affect estimation of REP values in human cell-based assay, and potentially alter toxicity of some compounds, such as benzofluoranthenes, in humans. We applied the AZ-AhR assay to evaluation of the AhR-mediated activity of complex mixtures of organic compounds associated with diesel exhaust particles, and we identified the polar compounds present in these mixtures as being particularly highly active in human cells, as compared with rodent cells. The present data suggest that differences may exist between the AhR-mediated potencies of PAHs in human and rodent cells, and that the AhR-mediated effects of polar PAH derivatives and metabolites in human cell models deserve further

  13. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development

    Energy Technology Data Exchange (ETDEWEB)

    Incardona, John P., E-mail: john.incardona@noaa.gov; Linbo, Tiffany L.; Scholz, Nathaniel L.

    2011-12-15

    Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) were distinct for each. BaP exposure (40 {mu}M) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4-40 {mu}M) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40 {mu}M) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities. -- Highlights: Black-Right-Pointing-Pointer PAH compounds with 5 rings in different arrangements caused differential tissue-specific patterns of CYP1A induction in zebrafish embryos. Black

  14. Reduction in 7,12-dimethylbenz[a]anthracene-induced hepatic cytochrome-P450 1A1 expression following soy consumption in female rats is mediated by degradation of the aryl hydrocarbon receptor

    Science.gov (United States)

    Consumption of a soy diet has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. In this study, the effect of consuming soy protein isolate (SPI) on the aryl hydrocarbon receptor (AhR)-mediated signaling pathway was investigated. Female Sprague-Daw...

  15. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Emelia [Department of Medicine, McGill University, Montreal, Quebec (Canada); Zago, Michela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Sarill, Miles [Department of Medicine, McGill University, Montreal, Quebec (Canada); Rico de Souza, Angela [Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Gomez, Alvin; Matthews, Jason [Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON (Canada); Hamid, Qutayba; Eidelman, David H. [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada); Baglole, Carolyn J., E-mail: Carolyn.baglole@McGill.ca [Department of Medicine, McGill University, Montreal, Quebec (Canada); Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec (Canada)

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  16. A model for aryl hydrocarbon receptor-activated gene expression shows potency and efficacy changes and predicts squelching due to competition for transcription co-activators.

    Directory of Open Access Journals (Sweden)

    Ted W Simon

    Full Text Available A stochastic model of nuclear receptor-mediated transcription was developed based on activation of the aryl hydrocarbon receptor (AHR by 2,3,7,8-tetrachlorodibenzodioxin (TCDD and subsequent binding the activated AHR to xenobiotic response elements (XREs on DNA. The model was based on effects observed in cells lines commonly used as in vitro experimental systems. Following ligand binding, the AHR moves into the cell nucleus and forms a heterodimer with the aryl hydrocarbon nuclear translocator (ARNT. In the model, a requirement for binding to DNA is that a generic coregulatory protein is subsequently bound to the AHR-ARNT dimer. Varying the amount of coregulator available within the nucleus altered both the potency and efficacy of TCDD for inducing for transcription of CYP1A1 mRNA, a commonly used marker for activation of the AHR. Lowering the amount of available cofactor slightly increased the EC50 for the transcriptional response without changing the efficacy or maximal response. Further reduction in the amount of cofactor reduced the efficacy and produced non-monotonic dose-response curves (NMDRCs at higher ligand concentrations. The shapes of these NMDRCs were reminiscent of the phenomenon of squelching. Resource limitations for transcriptional machinery are becoming apparent in eukaryotic cells. Within single cells, nuclear receptor-mediated gene expression appears to be a stochastic process; however, intercellular communication and other aspects of tissue coordination may represent a compensatory process to maintain an organism's ability to respond on a phenotypic level to various stimuli within an inconstant environment.

  17. In Vitro Transformation of Chlorinated Parabens by the Liver S9 Fraction: Kinetics, Metabolite Identification, and Aryl Hydrocarbon Receptor Agonist Activity.

    Science.gov (United States)

    Terasaki, Masanori; Wada, Takeshi; Nagashima, Satoshi; Makino, Masakazu; Yasukawa, Hiro

    2016-01-01

    We investigated the kinetics of in vitro transformation of a dichlorinated propyl paraben (2-propyl 3,5-dichloro-4-hydroxybenzoate; Cl2PP) by the rat liver S9 fraction and assessed the aryl hydrocarbon receptor (AhR) agonist activity of the metabolite products identified in HPLC and GC/MS analysis and by metabolite syntheses. The results indicated that the chlorination of Cl2PP reduced its degradation rate by approximately 40-fold. Two hydroxylated metabolite products showed AhR agonist activity of up to 39% of that of the parent Cl2PP when assessed in a yeast (YCM3) reporter gene assay. The determination of the metabolic properties of paraben bioaccumulation presented here provides further information on the value of risk assessments of chlorinated parabens as a means to ensure human health and environmental safety.

  18. TCDD-Induced Activation of Aryl Hydrocarbon Receptor Inhibits Th17 Polarization and Regulates Non-Eosinophilic Airway Inflammation in Asthma.

    Directory of Open Access Journals (Sweden)

    Xiao-ming Li

    Full Text Available The aryl hydrocarbon receptor (AhR, a transcription factor of the bHLH/PAS family, has recently been demonstrated to regulate T cell differentiation. Whether AhR activation participates in allergic airway inflammation remains unknown. In the current study, using a non-eosinophilic asthma model, we demonstrate that 2, 3, 7, 8-tetrachlorodibenzo-P-dioxin (TCDD, a potent AhR ligand, reduced the airway infiltration of neutrophils, airway hyperresponsiveness and Th17 cytokine expression. Furthermore, stimulation with TCDD promoted Treg differentiation and inhibited Th17 differentiation. However, the maturation of dendritic cells may not be inhibited by AhR activation. This study thus indicates a critical role of TCDD-induced AhR activation in the regulation of non-eosinophilic airway inflammation.

  19. Aryl hydrocarbon receptor (AhR) agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study

    OpenAIRE

    2003-01-01

    Abstract Background Bone marrow stromal cells produce cytokines required for the normal growth and development of all eight hematopoietic cell lineages. Aberrant cytokine production by stromal cells contributes to blood cell dyscrasias. Consequently, factors that alter stromal cell cytokine production may significantly compromise the development of normal blood cells. We have shown that environmental chemicals, such as aromatic hydrocarbon receptor (AhR) agonists, suppress B lymphopoiesis by ...

  20. Transcript variations, phylogenetic tree and chromosomal localization of porcine aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) genes

    Indian Academy of Sciences (India)

    AGNIESZKA SADOWSKA; LUKASZ PAUKSZTO; ANNA NYNCA; IZABELA SZCZERBAL; KARINA ORLOWSKA; SYLWIA SWIGONSKA; MONIKA RUSZKOWSKA; TOMASZ MOLCAN; JAN P. JASTRZEBSKI; GRZEGORZ PANASIEWICZ; RENATA E. CIERESZKO

    2017-03-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor best known for mediating xenobiotic-induced toxicity. AhR requires aryl hydrocarbon receptor nuclear translocator (ARNT) to form an active transcription complex and promote the activation of genes which have dioxin responsive element in their regulatory regions. The present study was performed to determine the complete cDNA sequences of porcine AhR and ARNT genes and their chromosomal localization. Total RNA from porcine livers were used to obtain the sequence of the entire porcine transcriptome by next-generation sequencing (NGS;lllumina HiSeq2500). In addition, both, in silico analysis and fluorescence in situ hybridization (FISH) were used to determine chromosomal localization of porcine AhR and ARNT genes. In silico analysis of nucleotide sequences showed that there were two transcript variants of AhR and ARNT genes in the pig. In addition, computer analysis revealed that AhR gene in the pig is located on chromosome 9 and ARNT on chromosome 4. The results of FISH experiment confirmed the localization of porcine AhR and ARNT genes. In the present study, for the first time, the full cDNAs of AhR and ARNT were demonstrated in the pig.In future, it would be interesting to determine the tissue distribution of AhR and ARNT transcript variants in the pig and to test whether these variants are associated with different biological functions and/or different activation pathways.

  1. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines.

    Science.gov (United States)

    Vorrink, Sabine U; Severson, Paul L; Kulak, Mikhail V; Futscher, Bernard W; Domann, Frederick E

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Exposure to 1% O2 prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity.

  2. Catechins in tea suppress the activity of cytochrome P450 1A1 through the aryl hydrocarbon receptor activation pathway in rat livers.

    Science.gov (United States)

    Fukuda, Itsuko; Nishiumi, Shin; Mukai, Rie; Yoshida, Ken-ichi; Ashida, Hitoshi

    2015-05-01

    Polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) develop various adverse effects through activation of an aryl hydrocarbon receptor (AhR). The suppressive effects of brewed green tea and black tea on 3-methylcholanthrene (MC)-induced AhR activation and its downstream events were examined in the liver of rats. Ad-libitum drinking of green tea and black tea suppressed MC-induced AhR activation and elevation of ethoxyresorufin O-deethylase activity in the liver, whereas the teas themselves did not induce them. Tea showed a suppressive fashion on the expression of cytochrome P450 1A1 (CYP1A1). Tea suppressed the AhR activation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) ex vivo. A part of catechins and theaflavins was present in plasma and liver as conjugated and intact forms. The results of this study suggested that active component(s) of tea are incorporated in the liver and suppress the activity of CYP1As through the AhR activation pathway.

  3. Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2) exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    OpenAIRE

    Manuela Göttel; Ludovic Le Corre; Coralie Dumont; Dieter Schrenk; Marie-Christine Chagnon

    2014-01-01

    The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR) by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα) signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study inve...

  4. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    Science.gov (United States)

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology.

  5. Expression of zebra fish aromatase cyp19a and cyp19b genes in response to the ligands of estrogen receptor and aryl hydrocarbon receptor.

    Science.gov (United States)

    Cheshenko, Ksenia; Brion, Francois; Le Page, Yann; Hinfray, Nathalie; Pakdel, Farzad; Kah, Olivier; Segner, Helmut; Eggen, Rik I L

    2007-04-01

    Many endocrine-disrupting chemicals act via estrogen receptor (ER) or aryl hydrocarbon receptor (AhR). To investigate the interference between ER and AhR, we studied the effects of 17beta-estradiol (E2) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of zebra fish cyp19a (zfcyp19a) and cyp19b (zfcyp19b) genes, encoding aromatase P450, an important steroidogenic enzyme. In vivo (mRNA quantification in exposed zebra fish larvae) and in vitro (activity of zfcyp19-luciferase reporter genes in cell cultures in response to chemicals and zebra fish transcription factors) assays were used. None of the treatments affected zfcyp19a, excluding the slight upregulation by E2 observed in vitro. Strong upregulation of zfcyp19b by E2 in both assays was downregulated by TCDD. This effect could be rescued by the addition of an AhR antagonist. Antiestrogenic effect of TCDD on the zfcyp19b expression in the brain was also observed on the protein level, assessed by immunohistochemistry. TCDD alone did not affect zfcyp19b expression in vivo or promoter activity in the presence of zebra fish AhR2 and AhR nuclear translocator 2b (ARNT2b) in vitro. However, in the presence of zebra fish ERalpha, AhR2, and ARNT2b, TCDD led to a slight upregulation of promoter activity, which was eliminated by either an ER or AhR antagonist. Studies with mutated reporter gene constructs indicated that both mechanisms of TCDD action in vitro were independent of dioxin-responsive elements (DREs) predicted in the promoter. This study shows the usefulness of in vivo zebra fish larvae and in vitro zfcyp19b reporter gene assays for evaluation of estrogenic chemical actions, provides data on the functionality of DREs predicted in zfcyp19 promoters and shows the effects of cross talk between ER and AhR on zfcyp19b expression. The antiestrogenic effect of TCDD demonstrated raises further concerns about the neuroendocrine effects of AhR ligands.

  6. Aryl hydrocarbon receptor-mediated toxic potency of dissolved lipophilic organic contaminants collected from Lincoln Creek, Milwaukee, Wisconsin, USA, to PLHC-1 (Poeciliopsis lucida) fish hepatoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Villeneuve, D.L.; Crunkilton, R.L.; DeVita, W.M. [Univ. of Wisconsin, Stevens Point, WI (United States)

    1997-05-01

    Lincoln Creek is a severely degraded urban stream located in Milwaukee County, Wisconsin, USA. As part of a comprehensive study on effects of urban storm water runoff on the stream biota, an in vitro bioassay with PLHC-1 (Poeciliopsis lucida) fish hepatoma cells was used to assess potential toxic potency of aryl hydrocarbon receptor (AhR)-active compounds, collected by semipermeable membrane devices (SPMDs) exposed to Lincoln Creek water. Dialysates from SPMDs exposed to Lincoln Creek water caused marked cytochrome P4501A induction in PLHC-1. Toxic potency of dialysates, expressed as bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQ) ranged from 1,300 to 6,600 pg TCDD-EQ/g SPMD for 14-d exposures. Dialysates from SPMDs exposed to stream water at base flow had potencies consistently lower than those exposed to storm-flow (high-flow) events that occurred during the same 14-d period. Polychlorinated biphenyls were not detectable in the dialysates. Gas chromatography-mass spectrometry analysis identified polycyclic aromatic hydrocarbons (PAHs) as major contaminants in the dialysates. A log-log correlation of total PAHs and TCDD-EQ yielded an r{sup 2} of 0.802. Empirical evidence suggests that AhR-active PAHs can account for about 20 to 50% of the potency observed.

  7. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark

  8. Transcriptomic assessment of resistance to effects of an aryl hydrocarbon receptor (AHR agonist in embryos of Atlantic killifish (Fundulus heteroclitus from a marine Superfund site

    Directory of Open Access Journals (Sweden)

    Franks Diana G

    2011-05-01

    Full Text Available Abstract Background Populations of Atlantic killifish (Fundulus heteroclitus have evolved resistance to the embryotoxic effects of polychlorinated biphenyls (PCBs and other halogenated and nonhalogenated aromatic hydrocarbons that act through an aryl hydrocarbon receptor (AHR-dependent signaling pathway. The resistance is accompanied by reduced sensitivity to induction of cytochrome P450 1A (CYP1A, a widely used biomarker of aromatic hydrocarbon exposure and effect, but whether the reduced sensitivity is specific to CYP1A or reflects a genome-wide reduction in responsiveness to all AHR-mediated changes in gene expression is unknown. We compared gene expression profiles and the response to 3,3',4,4',5-pentachlorobiphenyl (PCB-126 exposure in embryos (5 and 10 dpf and larvae (15 dpf from F. heteroclitus populations inhabiting the New Bedford Harbor, Massachusetts (NBH Superfund site (PCB-resistant and a reference site, Scorton Creek, Massachusetts (SC; PCB-sensitive. Results Analysis using a 7,000-gene cDNA array revealed striking differences in responsiveness to PCB-126 between the populations; the differences occur at all three stages examined. There was a sizeable set of PCB-responsive genes in the sensitive SC population, a much smaller set of PCB-responsive genes in NBH fish, and few similarities in PCB-responsive genes between the two populations. Most of the array results were confirmed, and additional PCB-regulated genes identified, by RNA-Seq (deep pyrosequencing. Conclusions The results suggest that NBH fish possess a gene regulatory defect that is not specific to one target gene such as CYP1A but rather lies in a regulatory pathway that controls the transcriptional response of multiple genes to PCB exposure. The results are consistent with genome-wide disruption of AHR-dependent signaling in NBH fish.

  9. 芳香烃受体(AHR)在胎盘生成中的作用%Roles of Aryl Hydrocarbon Receptor in the Placenta Development

    Institute of Scientific and Technical Information of China (English)

    陈晓; 赵真; 王凯; 段涛

    2013-01-01

    Placenta is a transcent organ that connects morther and fetus, which is significant in maintaining pregnancy, fetal growth and fetal survival. This review illustrates the roles of aryl hydrocarbon receptor (AHR) in the placenta development, which associates with some disorders of pregnancy, such as misscariage, preeclampsia, fetal growth restriction, etc. Activation of the AHR is involved in the regulation of a couple of physiological processes, including immunoregulation, reproductivity, vascular remodling, etc. AHR is closely associated with proliferation and apoptosis of trophoblast cells and also regulates its cell cycle. AHR plays an important role in angiogenesis and regulation of blood volume, and it involves in normal vascular development in placenta through regulating the balance of angiogenesis promoting factors and angiogenesis inhibiting factors. Meanwhile, AHR may mediate pla-cental angiogenesis and invaded ability of trophoblast cells during placenta development. Abnormol expression of AHR will directly induce the occurance of related pregnancy disease.%胎盘是连接母体与胎儿的重要器官,在维持正常的妊娠过程中发挥着重要的作用.胎盘的结构和功能异常不仅易引发妊娠期高血压和糖尿病等妊娠并发症,还易导致早产、胎儿宫内生长受限(intrauterine growth retardation,IUGR)、流产等不良妊娠结局.芳香烃受体(aryl hydrocarbon receptor,AHR)作为一种配体激活性转录蛋白,参与了生殖调控、免疫功能调节、血管重塑等一系列重要的生理活动.AHR与滋养细胞的增殖和凋亡密切相关,并且具有调节滋养细胞细胞周期的作用.AHR在胎盘血管的生成及血流量的调节中也发挥着重要的作用,它通过调节促血管生成因子与血管生成抑制因子的平衡,参与胎盘血管的正常发育生长;同时AHR还很可能在胎盘的生长发育中介导了胎盘血管的生成以及滋养细胞的侵袭能力;AHR表达异常

  10. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vorrink, Sabine U. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Severson, Paul L. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Kulak, Mikhail V. [Department of Surgery, The University of Iowa, Iowa City, IA (United States); Futscher, Bernard W. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Domann, Frederick E., E-mail: frederick-domann@uiowa.edu [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Department of Surgery, The University of Iowa, Iowa City, IA (United States)

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced AhR function and

  11. 2,3,7,8-Tetrachlorodibenzo-p-dioxin treatment alters eicosanoid levels in several organs of the mouse in an aryl hydrocarbon receptor-dependent fashion

    Energy Technology Data Exchange (ETDEWEB)

    Bui, Peter; Solaimani, Parrisa [Molecular Toxicology Program, University of California, Los Angeles, California 90095 (United States); Dept of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095 (United States); Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095 (United States); Wu, Xiaomeng [Dept of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095 (United States); Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095 (United States); Hankinson, Oliver, E-mail: ohank@mednet.ucla.edu [Molecular Toxicology Program, University of California, Los Angeles, California 90095 (United States); Dept of Pathology and Laboratory Medicine, University of California, Los Angeles, California 90095 (United States); Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095 (United States); Molecular Biology Institute, University of California, Los Angeles, California 90095 (United States)

    2012-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) adversely affects many mammalian organs and tissues. These effects are mediated by the aryl hydrocarbon receptor (AHR). CYP1A1, CYP1A2 and CYP1B1 are upregulated by the liganded AHR. These (and other) cytochromes P450 can metabolize arachidonic acid into a variety of bioactive eicosanoids. Towards investigating a potential role of eicosanoids in TCDD toxicity, arachidonic acid, two other unsaturated long-chain fatty acids, and up to twenty-five eicosanoids were measured in five organs/tissues of male and female wild-type and Ahr null mice treated or untreated with TCDD. TCDD generally increased the levels of the four dihydroxyeicosatrienoic acids (DHETs) and (where measured) 5,6-epoxyeicosatrienoic acid and 18-, 19- and 20-hydroxyeicosatrienoic acids (HETEs) in the serum, liver, spleen and lungs, but not the heart, of both sexes, and increased the levels in the serum, liver and spleen of several metabolites that are usually considered products of lipoxygenase activity, but which may also be generated by cytochromes P450. TCDD also increased the levels of the esterified forms of these eicosanoids in the liver in parallel with the corresponding free forms. The levels of prostanoids were generally not affected by TCDD. The above changes did not occur in Ahr null mice, and are therefore mediated by the AHR. TCDD increased the mRNA levels of Cyp1a1, Cyp1a2, Cyp1b1 and the Pla2g12a form of phospholipase A{sub 2} to varying degrees in the different organs, and these increases correlated with some but not all the changes in eicosanoids levels in the organs, suggesting that other enzymes may also be involved. -- Highlights: ► TCDD treatment increases the levels of many eicosanoids in several mouse organs. ► Products of both the cytochrome P450 and classical lipoxygenase pathways are increased. ► These increases are dependent on the aryl hydrocarbon receptor. ► Cyp1a1, Cyp1a2 and Cyp1b1 appear to be responsible for much but

  12. Involvement of aryl hydrocarbon receptor signaling in the development of small cell lung cancer induced by HPV E6/E7 oncoproteins

    Directory of Open Access Journals (Sweden)

    Rossini Mara

    2011-01-01

    Full Text Available Abstract Background Lung cancers consist of four major types that and for clinical-pathological reasons are often divided into two broad categories: small cell lung cancer (SCLC and non-small cell lung cancer (NSCLC. All major histological types of lung cancer are associated with smoking, although the association is stronger for SCLC and squamous cell carcinoma than adenocarcinoma. To date, epidemiological studies have identified several environmental, genetic, hormonal and viral factors associated with lung cancer risk. It has been estimated that 15-25% of human cancers may have a viral etiology. The human papillomavirus (HPV is a proven cause of most human cervical cancers, and might have a role in other malignancies including vulva, skin, oesophagus, head and neck cancer. HPV has also been speculated to have a role in the pathogenesis of lung cancer. To validate the hypothesis of HPV involvement in small cell lung cancer pathogenesis we performed a gene expression profile of transgenic mouse model of SCLC induced by HPV-16 E6/E7 oncoproteins. Methods Gene expression profile of SCLC has been performed using Agilent whole mouse genome (4 × 44k representing ~ 41000 genes and mouse transcripts. Samples were obtained from two HPV16-E6/E7 transgenic mouse models and from littermate's normal lung. Data analyses were performed using GeneSpring 10 and the functional classification of deregulated genes was performed using Ingenuity Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com. Results Analysis of deregulated genes induced by the expression of E6/E7 oncoproteins supports the hypothesis of a linkage between HPV infection and SCLC development. As a matter of fact, comparison of deregulated genes in our system and those in human SCLC showed that many of them are located in the Aryl Hydrocarbon Receptor Signal transduction pathway. Conclusions In this study, the global gene expression of transgenic mouse model of SCLC induced by HPV-16 E

  13. Identification of aryl hydrocarbon receptor binding targets in mouse hepatic tissue treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Raymond; Celius, Trine [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Forgacs, Agnes L. [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Dere, Edward [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); MacPherson, Laura [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Harper, Patricia [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada); Research Institute, The Hospital for Sick Children, Toronto, Ontario (Canada); Zacharewski, Timothy [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI (United States); Center for Integrative Toxicology, Michigan State University, East Lansing, MI (United States); Matthews, Jason, E-mail: jason.matthews@utoronto.ca [Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario (Canada)

    2011-11-15

    Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed an over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched with

  14. Quercetin-6-C-β-D-glucopyranoside, natural analog of quercetin exhibits anti-prostate cancer activity by inhibiting Akt-mTOR pathway via aryl hydrocarbon receptor.

    Science.gov (United States)

    Hamidullah; Kumar, Rajeev; Saini, Karan Singh; Kumar, Amit; Kumar, Sudhir; Ramakrishna, E; Maurya, Rakesh; Konwar, Rituraj; Chattopadhyay, Naibedya

    2015-12-01

    Pre-clinical studies suggest mitigating effect of dietary flavonoid quercetin against cancer and other diseases. However, quercetin suffers from poor metabolic stability, which appears to offset its pharmacological efficacy. Recently, we isolated quercetin-6-C-β-D-glucopyranoside (QCG) from Ulmus wallichiana planchon that has greater stability profile over quercetin. In the present study, the cytotoxic and apoptotic effects of QCG on prostate cancer cells were assessed. QCG inhibited prostate cancer cell proliferation by arresting cells at G0/G1 phase of cell cycle and induces apoptosis as evident from cytochrome c release, cleavage of caspase 3 and poly (ADP-ribose) polymerase. Mechanistic studies revealed that QCG inhibited reactive oxygen species (ROS) generation and Akt/mTOR cell survival pathways. Aryl hydrocarbon receptor (AhR) was a critical mediator of QCG action as knockdown of AhR attenuated QCG-induced cell cycle arrest, apoptosis and inhibition of Akt/mTOR pathway in prostate cancer cells. Taken together, our results suggest that QCG exhibits anti-cancer activity against prostate cancer cells via AhR-mediated down regulation of Akt/mTOR pathway in PC-3 cells.

  15. Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier.

    Science.gov (United States)

    Wang, Xueqian; Hawkins, Brian T; Miller, David S

    2011-02-01

    Many widespread and persistent organic pollutants, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), activate the aryl hydrocarbon receptor (AhR), causing it to translocate to the cell nucleus, where it transactivates target genes. AhR's ability to target the blood-brain barrier is essentially unexplored. We show here that exposing isolated rat brain capillaries to 0.05-0.5 nM TCDD roughly doubled transport activity and protein expression of P-glycoprotein, an ATP-driven drug efflux pump and a critical determinant of drug entry into the CNS. These effects were abolished by actinomycin D or cycloheximide or by the AhR antagonists resveratrol and α-naphthoflavone. Brain capillaries from TCDD-dosed rats (1-5 μg/kg, i.p.) exhibited increased transport activity and protein expression of 3 xenobiotic efflux pumps, P-glycoprotein, multidrug resistance-associated protein 2, and breast cancer resistance polypeptide, as well as expression of Cyp1a1 and Cyp1b1, both AhR target genes. Consistent with increased P-glycoprotein expression in capillaries from TCDD-dosed rats, in situ brain perfusion indicated significantly reduced brain accumulation of verapamil, a P-glycoprotein substrate. These findings suggest a new paradigm for the field of environmental toxicology: toxicants acting through AhR to target xenobiotic efflux transporters at the blood-brain barrier and thus reduce brain accumulation of CNS-acting therapeutic drugs.

  16. Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification.

    Directory of Open Access Journals (Sweden)

    Boris A Kuzin

    Full Text Available Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.

  17. An Aryl Hydrocarbon Receptor from the Salamander Ambystoma mexicanum Exhibits Low Sensitivity to 2,3,7,8-Tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Shoots, Jenny; Fraccalvieri, Domenico; Franks, Diana G; Denison, Michael S; Hahn, Mark E; Bonati, Laura; Powell, Wade H

    2015-06-02

    Structural features of the aryl hydrocarbon receptor (AHR) can underlie species- and population-specific differences in its affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These differences often explain variations in TCDD toxicity. Frogs are relatively insensitive to dioxin, and Xenopus AHRs bind TCDD with low affinity. Weak TCDD binding results from the combination of three residues in the ligand-binding domain: A354 and A370, and N325. Here we sought to determine whether this mechanism of weak TCDD binding is shared by other amphibian AHRs. We isolated an AHR cDNA from the Mexican axolotl (Ambystoma mexicanum). The encoded polypeptide contains identical residues at positions that confer low TCDD affinity to X. laevis AHRs (A364, A380, and N335), and homology modeling predicts they protrude into the binding cavity. Axolotl AHR bound one-tenth the TCDD of mouse AHR in velocity sedimentation analysis, and in transactivation assays, the EC50 for TCDD was 23 nM, similar to X. laevis AHR1β (27 nM) and greater than AHR containing the mouse ligand-binding domain (0.08 nM). Sequence, modeled structure, and function indicate that axolotl AHR binds TCDD weakly, predicting that A. mexicanum lacks sensitivity toTCDD toxicity. We hypothesize that this characteristic of axolotl and Xenopus AHRs arose in a common ancestor of the Caudata and Anura.

  18. The Tryptophan-Derived Endogenous Aryl Hydrocarbon Receptor Ligand 6-Formylindolo[3,2-b]Carbazole Is a Nanomolar UVA Photosensitizer in Epidermal Keratinocytes.

    Science.gov (United States)

    Park, Sophia L; Justiniano, Rebecca; Williams, Joshua D; Cabello, Christopher M; Qiao, Shuxi; Wondrak, Georg T

    2015-06-01

    Endogenous UVA chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high-affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar-simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, endoplasmic reticulum stress, and oxidative stress response gene expression observed only upon FICZ/UVA cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (Fpg)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin.

  19. Aryl hydrocarbon receptor (AhR agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study

    Directory of Open Access Journals (Sweden)

    Schlezinger Jennifer J

    2003-12-01

    Full Text Available Abstract Background Bone marrow stromal cells produce cytokines required for the normal growth and development of all eight hematopoietic cell lineages. Aberrant cytokine production by stromal cells contributes to blood cell dyscrasias. Consequently, factors that alter stromal cell cytokine production may significantly compromise the development of normal blood cells. We have shown that environmental chemicals, such as aromatic hydrocarbon receptor (AhR agonists, suppress B lymphopoiesis by modulating bone marrow stromal cell function. Here, we extend these studies to evaluate the potential for two prototypic AhR agonists, 7,12-dimethylbenz [a]anthracene (DMBA and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, to alter stromal cell cytokine responses. Methods Bone marrow stromal cells were treated with AhR agonists and bacterial lipopolysaccharide (LPS to mimic innate inflammatory cytokine responses and to study the effects of AhR ligands on those responses. Steady state cytokine RNA levels were screened by RNAse protection assays (RPA and quantified by real-time PCR. Cytokine (IL-6 protein production was measured by ELISA. NF-κB EMSAs were used to study IL-6 transcriptional regulation. Results RPAs indicated that AhR+ bone marrow stromal cells consistently up-regulated genes encoding IL-6 and LIF in response to LPS, presumably through activation of Toll-like receptor 4. Pre-treatment with low doses of DMBA or TCDD selectively abrogated IL-6 gene induction but had no effect on LIF mRNA. Real-time-PCR indicated a significant inhibition of IL-6 mRNA by AhR ligands within 1 hour of LPS challenge which was reflected in a profound down-regulation of IL-6 protein induction, with DMBA and TCDD suppressing IL-6 levels as much as 65% and 88%, respectively. This potent inhibitory effect persisted for at least 72 hours. EMSAs measuring NF-κB binding to IL-6 promoter sequences, an event known to induce IL-6 transcription, indicated a significant decrease in

  20. Aryl hydrocarbon receptor knockout rats are insensitive to the pathological effects of repeated oral exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Harrill, Joshua A; Layko, Debra; Nyska, Abraham; Hukkanen, Renee R; Manno, Rosa Anna; Grassetti, Andrea; Lawson, Marie; Martin, Greg; Budinsky, Robert A; Rowlands, J Craig; Thomas, Russell S

    2016-06-01

    Sustained activation of the aryl hydrocarbon receptor (AHR) is believed to be the initial key event in AHR receptor-mediated tumorigenesis in the rat liver. The role of AHR in mediating pathological changes in the liver prior to tumor formation was investigated in a 4-week, repeated-dose study using adult female wild-type (WT) and AHR knockout (AHR-KO) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Beginning at 8 weeks of age, AHR-KO and WT rats were dosed by oral gavage with varying concentrations of TCDD (0, 3, 22, 100, 300 and 1000 ng kg(-1)  day(-1) ). Lung, liver and thymus histopathology, hematology, serum chemistry and the distribution of TCDD in liver and adipose tissue were examined. Treatment-related increases in the severity of liver and thymus pathology were observed in WT, but not AHR-KO rats. In the liver, these included hepatocellular hypertrophy, bile duct hyperplasia, multinucleated hepatocytes and inflammatory cell foci. A loss of cellularity in the thymic cortex and thymic atrophy was observed. Treatment-related changes in serum chemistry parameters were also observed in WT, but not AHR-KO rats. Finally, dose-dependent accumulation of TCDD was observed primarily in the liver of WT rats and primarily in the adipose tissue of AHR-KO rats. The results suggest that AHR activation is the initial key event underlying the progression of histological effects leading to liver tumorigenesis following TCDD treatment. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture.

    Science.gov (United States)

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark

  2. Interaction of aryl hydrocarbon receptor and NF-κB subunit RelB in breast cancer is associated with interleukin-8 overexpression.

    Science.gov (United States)

    Vogel, Christoph Franz Adam; Li, Wen; Wu, Dalei; Miller, Jamie K; Sweeney, Colleen; Lazennec, Gwendal; Fujisawa, Yasuko; Matsumura, Fumio

    2011-08-01

    The aryl hydrocarbon receptor (AhR) has been best known for its role in mediating the toxicity of dioxin. Here we show that AhR overexpression is found among estrogen receptor (ER)α-negative human breast tumors and that its overexpression is positively correlated to that of the NF-κB subunit RelB and Interleukin (IL)-8. Increased DNA binding activity of the AhR and RelB is coupled to IL-8 overexpression in primary breast cancer tissue, which was also supported by in situ hybridization. Activation of AhR in vitro by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced IL-8 expression in MDA-MB 436 and MCF-7 cells in an AhR and RelB dependent manner. Consistently, downregulation of RelB or AhR by small interfering RNAs (siRNA) decreased the level of IL-8 but increased expression of ERα in vitro in MCF-7 cells. Our results strongly suggest that RelB and AhR have a critical role in the regulation of IL-8 and reveal a supportive role of RelB and AhR in the anti-apoptotic response in human breast cancer cells. AhR and RelB may present a novel therapeutic target for inflammatory driven breast carcinogenesis and tumor progression. Overexpression of pro-survival factors AhR and RelB may explain the process of the development of environmentally-induced type of breast cancers.

  3. Augmented Growth Hormone Secretion and Stat3 Phosphorylation in an Aryl Hydrocarbon Receptor Interacting Protein (AIP)-Disrupted Somatotroph Cell Line

    Science.gov (United States)

    Hamaguchi, Yuriko; Kawanami, Takako; Nomiyama, Takashi; Yanase, Toshihiko

    2016-01-01

    Aryl hydrocarbon receptor interacting protein (AIP) is thought to be a tumor suppressor gene, as indicated by a mutational analysis of pituitary somatotroph adenomas. However, the physiological significance of AIP inactivation in somatotroph cells remains unclear. Using CRISPR/Cas9, we identified a GH3 cell clone (termed GH3-FTY) in which Aip was genetically disrupted, and subsequently investigated its character with respect to growth hormone (Gh) synthesis and proliferation. Compared with GH3, GH3-FTY cells showed remarkably increased Gh production and a slight increase in cell proliferation. Gh-induced Stat3 phosphorylation is known to be a mechanism of Gh oversecretion in GH3. Interestingly, phosphorylated-Stat3 expression in GH3-FTY cells was increased more compared with GH3 cells, suggesting a stronger drive for this mechanism in GH3-FTY. The phenotypes of GH3-FTY concerning Gh overproduction, cell proliferation, and increased Stat3 phosphorylation were significantly reversed by the exogenous expression of Aip. GH3-FTY cells were less sensitive to somatostatin than GH3 cells in the suppression of cell proliferation, which might be associated with the reduced expression of somatostatin receptor type 2. GH3-FTY xenografts in BALB/c nude mice (GH3-FTY mice) formed more mitotic somatotroph tumors than GH3 xenografts (GH3 mice), as also evidenced by increased Ki67 scores. GH3-FTY mice were also much larger and had significantly higher plasma Gh levels than GH3 mice. Furthermore, GH3-FTY mice showed relative insulin resistance compared with GH3 mice. In conclusion, we established a somatotroph cell line, GH3-FTY, which possessed prominent Gh secretion and mitotic features associated with the disruption of Aip. PMID:27706259

  4. Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo[a]pyrene (BaP).

    Science.gov (United States)

    Yu, Richard Man Kit; Ng, Patrick Kwok Shing; Tan, Tianfeng; Chu, Daniel Ling Ho; Wu, Rudolf Shiu Sun; Kong, Richard Yuen Chong

    2008-11-21

    Fish in polluted coastal habitats commonly suffer simultaneous exposure to both hypoxia and xenobiotics. Although the adaptive molecular responses to each stress have been described, little is known about the interaction between the signaling pathways mediating these responses. Previous studies in mammalian hepatoma cell lines have shown that hypoxia-inducible factor (HIF)- and/or aryl hydrocarbon receptor (AhR)-activated gene expression is suppressed following co-exposure to hypoxia and the hallmark AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, whether similar crosstalk exists in the non-tumor liver tissues of fish and whether other non-TCDD ligands also play the same inhibitory role in this crosstalk remain unknown. Here, the in vivo hepatic mRNA expression profiles of multiple hypoxia- and AhR-responsive genes (later gene expression=mRNA expression of the gene) were examined in the orange-spotted grouper (Epinephelus coioides) upon single and combined exposures to hypoxia and benzo[a]pyrene (BaP). Combined exposure enhanced hypoxia-induced gene expression but did not significantly alter BaP-induced gene expression. Protein carbonyl content was markedly elevated in fish subjected to combined exposure, indicating accumulation of reactive oxygen species (ROS). Application of diethyldithiocarbamate (DDC) to hypoxia-treated grouper liver explants similarly exaggerated hypoxia-induced gene expression as in the combined stress tissues in vivo. These observations suggest that ROS derived from the combined hypoxia and BaP stress have a role in enhancing hypoxia-induced gene expression.

  5. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DNA damage in rats.

    Science.gov (United States)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies.

  6. Diphenylarsinic acid, a chemical warfare-related neurotoxicant, promotes liver carcinogenesis via activation of aryl hydrocarbon receptor signaling and consequent induction of oxidative DAN damage in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Min; Yamada, Takanori; Yamano, Shotaro; Kato, Minoru; Kakehashi, Anna; Fujioka, Masaki; Tago, Yoshiyuki; Kitano, Mistuaki; Wanibuchi, Hideki, E-mail: wani@med.osaka-cu.ac.jp

    2013-11-15

    Diphenylarsinic acid (DPAA), a chemical warfare-related neurotoxic organic arsenical, is present in the groundwater and soil in some regions of Japan due to illegal dumping after World War II. Inorganic arsenic is carcinogenic in humans and its organic arsenic metabolites are carcinogenic in animal studies, raising serious concerns about the carcinogenicity of DPAA. However, the carcinogenic potential of DPAA has not yet been evaluated. In the present study we found that DPAA significantly enhanced the development of diethylnitrosamine-induced preneoplastic lesions in the liver in a medium-term rat liver carcinogenesis assay. Evaluation of the expression of cytochrome P450 (CYP) enzymes in the liver revealed that DPAA induced the expression of CYP1B1, but not any other CYP1, CYP2, or CYP3 enzymes, suggesting that CYP1B1 might be the enzyme responsible for the metabolic activation of DPAA. We also found increased oxidative DNA damage, possibly due to elevated CYP1B1 expression. Induction of CYP1B1 has generally been linked with the activation of AhR, and we found that DPAA activates the aryl hydrocarbon receptor (AhR). Importantly, the promotion effect of DPAA was observed only at a dose that activated the AhR, suggesting that activation of AhR and consequent induction of AhR target genes and oxidative DNA damage plays a vital role in the promotion effects of DPAA. The present study provides, for the first time, evidence regarding the carcinogenicity of DPAA and indicates the necessity of comprehensive evaluation of its carcinogenic potential using long-term carcinogenicity studies. - Highlights: • DPAA, an environmental neurotoxicant, promotes liver carcinogenesis in rats. • DPAA is an activator of AhR signaling pathway. • DPAA promoted oxidative DNA damage in rat livers. • AhR target gene CYP 1B1 might be involved in the metabolism of DPAA.

  7. Long-term p-nitrophenol exposure can disturb liver metabolic cytochrome P450 genes together with aryl hydrocarbon receptor in Japanese quail.

    Science.gov (United States)

    Ahmed, Eman; Nagaoka, Kentaro; Fayez, Mostafa; Samir, Haney; Watanabe, Gen

    2015-08-01

    P-Nitrophenol is a major metabolite of some organophosphorus compounds. It is considered to be one of nitrophenol derivatives of diesel exhaust particles that induce substantial hazards impacts on human and animal health. P-Nitrophenol (PNP) is a persistent organic pollutant. Consequently, bioaccumulation of PNP potentiates toxicity. The objectives of the current study were to assess the potential hepatic toxicity and pathway associated with long-term exposure to PNP. Japanese quails were orally administered different doses of PNP for 75 days. Liver and plasma samples were collected at days 45 (45D), days 60 (60D) and days 75 (75D). Liver histological changes and plasma corticosterone levels were assessed. Basal mRNA level of cytochromes P450 (CYP 450) (CYP1A4, 1A5, 1B1), heme oxygenase (HO-1), and aryl hydrocarbon receptor 1 (AhR1), from the liver of exposed birds and primary hepatocytes cultured for 24 hr with PNP, were analyzed using quantitative real-time PCR. The results revealed various histopathological changes in the liver, such as lymphocytes aggregation and hepatocytes degeneration. Significant increases in corticosterone levels were reported. After 60-days of in vivo exposure, the birds exhibited an overexpression in the liver CYP1A4, 1B1, AhR1, and HO-1. Furthermore, with continuous PNP administration, an overall downregulation of the tested genes was observed. In vitro, although a significant overexpression of CYP1A4, 1B1, and HO-1 was observed, CYP1A5 was downregulated. In conclusion, PNP can interfere with the liver CYP 450 enzymes and modulate HO-1 expression in the in vitro and in vivo experiments. Hence, it could have serious deleterious effects on humans, livestock, and wild animals.

  8. Modulation of aryl hydrocarbon receptor target genes in circulating lymphocytes from dairy cows bred in a dioxin-like PCB contaminated area

    Energy Technology Data Exchange (ETDEWEB)

    Girolami, Flavia, E-mail: flavia.girolami@unito.it [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Spalenza, Veronica, E-mail: veronica.spalenza@unito.it [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Carletti, Monica, E-mail: monica.carletti@unito.it [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Sacchi, Paola, E-mail: paola.sacchi@unito.it [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Rasero, Roberto, E-mail: roberto.rasero@unito.it [Department of Animal Production, Epidemiology and Ecology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy); Nebbia, Carlo, E-mail: carlo.nebbia@unito.it [Department of Animal Pathology, University of Turin, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2013-04-15

    Animal productions (i.e. fish, eggs, milk and dairy products) represent the major source of exposure to dioxins, furans, and dioxin-like (DL) polychlorobiphenyls for humans. The negative effects of these highly toxic and persistent pollutants are mediated by the activation of the aryl hydrocarbon receptor (AHR) that elicits the transcriptional induction of several genes, including those involved in xenobiotic metabolism. Previously we demonstrated the presence and functioning of the AHR signaling pathway in primary cultures of bovine blood lymphocytes. The aim of the present study was to investigate by real time PCR the expression and the inducibility of selected target genes (i.e. AHR, AHR nuclear translocator (ARNT), AHR repressor, CYP1A1 and CYP1B1) in uncultured cells from dairy cows naturally exposed to DL-compounds. The study was carried out on two groups of animals bred in a highly polluted area and characterized by a different degree of contamination, as assessed by bulk milk TEQ values, and a control group reared in an industry free area. Bovine lymphocytes expressed only AHR, ARNT and CYP1B1 genes to a detectable level; moreover, only CYP1B1 expression appeared to be correlated to TEQ values, being higher in the most contaminated group, and decreasing along with animal decontamination. Finally, lymphocytes from exposed cows displayed a lower inducibility of both CYP1A1 and CYP1B1 after the in vitro treatment with a specific AHR ligand. In conclusion, our results indicate that DL-compound contaminated cows may display significant changes in AHR-target gene expression of circulating lymphocytes. - Highlights: ► The expression of AHR-target genes in blood bovine lymphocytes was evaluated. ► The lymphocyte CYP1B1 expression appears to be related to bulk milk TEQ values. ► Blood lymphocytes from dairy cows might represent a matrix for dioxin biomonitoring.

  9. piRNA-associated proteins and retrotransposons are differentially expressed in murine testis and ovary of aryl hydrocarbon receptor deficient mice

    Science.gov (United States)

    Rico-Leo, Eva M.; Moreno-Marín, Nuria; González-Rico, Francisco J.; Barrasa, Eva; Ortega-Ferrusola, Cristina; Martín-Muñoz, Patricia; Sánchez-Guardado, Luis O.; Llano, Elena; Alvarez-Barrientos, Alberto; Infante-Campos, Ascensión; Catalina-Fernández, Inmaculada; Hidalgo-Sánchez, Matías; de Rooij, Dirk G.; Pendás, Alberto M.; Peña, Fernando J.; Merino, Jaime M.

    2016-01-01

    Previous studies suggested that the aryl hydrocarbon receptor (AhR) contributes to mice reproduction and fertility. However, the mechanisms involved remain mostly unknown. Retrotransposon silencing by Piwi-interacting RNAs (piRNAs) is essential for germ cell maturation and, remarkably, AhR has been identified as a regulator of murine B1-SINE retrotransposons. Here, using littermate AhR+/+ and AhR−/− mice, we report that AhR regulates the general course of spermatogenesis and oogenesis by a mechanism likely to be associated with piRNA-associated proteins, piRNAs and retrotransposons. piRNA-associated proteins MVH and Miwi are upregulated in leptotene to pachytene spermatocytes with a more precocious timing in AhR−/− than in AhR+/+ testes. piRNAs and transcripts from B1-SINE, LINE-1 and IAP retrotransposons increased at these meiotic stages in AhR-null testes. Moreover, B1-SINE transcripts colocalize with MVH and Miwi in leptonema and pachynema spermatocytes. Unexpectedly, AhR−/− males have increased sperm counts, higher sperm functionality and enhanced fertility than AhR+/+ mice. In contrast, piRNA-associated proteins and B1-SINE and IAP-derived transcripts are reduced in adult AhR−/− ovaries. Accordingly, AhR-null female mice have lower numbers of follicles when compared with AhR+/+ mice. Thus, AhR deficiency differentially affects testis and ovary development possibly by a process involving piRNA-associated proteins, piRNAs and transposable elements. PMID:28003471

  10. The Aryl Hydrocarbon Receptor Antagonist StemRegenin1 Improves In Vitro Generation of Highly Functional Natural Killer Cells from CD34(+) Hematopoietic Stem and Progenitor Cells.

    Science.gov (United States)

    Roeven, Mieke W H; Thordardottir, Soley; Kohela, Arwa; Maas, Frans; Preijers, Frank; Jansen, Joop H; Blijlevens, Nicole M; Cany, Jeannette; Schaap, Nicolaas; Dolstra, Harry

    2015-12-15

    Early natural killer (NK)-cell repopulation after allogeneic stem cell transplantation (allo-SCT) has been associated with reduced relapse rates without an increased risk of graft-versus-host disease, indicating that donor NK cells have specific antileukemic activity. Therefore, adoptive transfer of donor NK cells is an attractive strategy to reduce relapse rates after allo-SCT. Since NK cells of donor origin will not be rejected, multiple NK-cell infusions could be administered in this setting. However, isolation of high numbers of functional NK cells from transplant donors is challenging. Hence, we developed a cytokine-based ex vivo culture protocol to generate high numbers of functional NK cells from granulocyte colony-stimulating factor (G-CSF)-mobilized CD34(+) hematopoietic stem and progenitor cells (HSPCs). In this study, we demonstrate that addition of aryl hydrocarbon receptor antagonist StemRegenin1 (SR1) to our culture protocol potently enhances expansion of CD34(+) HSPCs and induces expression of NK-cell-associated transcription factors promoting NK-cell differentiation. As a result, high numbers of NK cells with an active phenotype can be generated using this culture protocol. These SR1-generated NK cells exert efficient cytolytic activity and interferon-γ production toward acute myeloid leukemia and multiple myeloma cells. Importantly, we observed that NK-cell proliferation and function are not inhibited by cyclosporin A, an immunosuppressive drug often used after allo-SCT. These findings demonstrate that SR1 can be exploited to generate high numbers of functional NK cells from G-CSF-mobilized CD34(+) HSPCs, providing great promise for effective NK-cell-based immunotherapy after allo-SCT.

  11. The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy

    Directory of Open Access Journals (Sweden)

    M. L. Perepechaeva

    2014-01-01

    Full Text Available The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD. The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor and Nrf2 (nuclear factor erythroid 2-related factor 2, which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1.

  12. An aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress the Th17 response in allergic rhinitis patients.

    Science.gov (United States)

    Wei, Ping; Hu, Guo-Hua; Kang, Hou-Yong; Yao, Hong-Bing; Kou, Wei; Liu, Hong; Zhang, Cheng; Hong, Su-Ling

    2014-05-01

    A predominant Th17 population is a marker of allergic rhinitis (AR). The aryl hydrocarbon receptor (AhR) exhibits strong immunomodulation potential via regulation of the differentiation of T lymphocytes and dendritic cells (DCs) after activation by its ligand, such as 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). The aim of this study was to analyze the effect of AhR on Th17 differentiation by investigating the action of ITE on DCs and CD4(+) T cells from patients with AR. In all, 26 AR patients and 12 healthy controls were included in this study. The expression of interleukin (IL)-1β, IL-6, IL-10, and IL-17 in the culture supernatant and the presence of Th17 cells in CD4(+) T cells and DC-CD4(+) T-cell co-culture system were measured before and after treatment with ITE. We show that ITE significantly induced cell secretion of IL-10 and inhibited IL-1β and IL-6 production in DCs, and promoted IL-10 production and suppressed IL-17 expression in CD4(+) T cells in vitro. It also suppressed the expansion of Th17 cells in vitro. Our work demonstrates that ITE acts on DCs and CD4(+) T cells to inhibit the Th17 response that suppresses AR; the AhR-DC-Th17 axis may be an important pathway in the treatment of AR. ITE, a nontoxic AhR ligand, attenuated the Th17 response; thus, it appears to be a promising therapeutic candidate for suppressing the inflammatory responses associated with AR.

  13. Tetrandrine ameliorates collagen-induced arthritis in mice by restoring the balance between Th17 and Treg cells via the aryl hydrocarbon receptor.

    Science.gov (United States)

    Yuan, Xusheng; Tong, Bei; Dou, Yannong; Wu, Xin; Wei, Zhifeng; Dai, Yue

    2016-02-01

    Tetrandrine is an alkaloid constituent of the root of Stephania tetrandra S. Moore. The long-term clinical uses of tetrandrine for treatments of rheumatalgia and arthralgia as well as the inhibition of rat adjuvant-induced arthritis imply that tetrandrine may have therapeutic potential in rheumatoid arthritis (RA). Here, we explored its anti-RA mechanism in collagen-induced arthritis (CIA) in relation to the balance between T helper (Th) 17 cells and regulatory T (Treg) cells. DBA/1 mice were immunized with chicken type II collagen and were orally administered tetrandrine for 14 consecutive days. Then, the mice were sacrificed, their joints were removed for histological analysis, and spleens and mesenteric lymph nodes (MLNs) were removed to examine the Th17 and Treg cells. Tetrandrine markedly alleviated the severity of arthritis, reduced the serum levels of pro-inflammatory cytokines, and restored the Th17/Treg balance, as demonstrated by the serum levels of their related cytokines (IL-17 and IL-10) and the proportion of each cell type. Tetrandrine inhibited Th17 cell differentiation and induced Treg cell differentiation in vitro . Notably, aryl hydrocarbon receptor (AhR) was proven to play a crucial role in tetrandrine-mediated T cell differentiation. The correlation between AhR activation, regulation of Th17/Treg and amelioration of arthritis by tetrandrine was verified in the CIA mice. Moreover, tetrandrine might be a ligand of AhR because it facilitated the expression of the AhR target gene cytochrome P450 1A1 (CYP1A1) and the activation of its downstream signaling pathways. Taken together, tetrandrine exerts its anti-arthritis efficacy by restoring Th17/Treg balance via AhR.

  14. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene.

    Science.gov (United States)

    Beckers, Albert; Aaltonen, Lauri A; Daly, Adrian F; Karhu, Auli

    2013-04-01

    Pituitary adenomas are one of the most frequent intracranial tumors and occur with a prevalence of approximately 1:1000 in the developed world. Pituitary adenomas have a serious disease burden, and their management involves neurosurgery, biological therapies, and radiotherapy. Early diagnosis of pituitary tumors while they are smaller may help increase cure rates. Few genetic predictors of pituitary adenoma development exist. Recent years have seen two separate, complimentary advances in inherited pituitary tumor research. The clinical condition of familial isolated pituitary adenomas (FIPA) has been described, which encompasses the familial occurrence of isolated pituitary adenomas outside of the setting of syndromic conditions like multiple endocrine neoplasia type 1 and Carney complex. FIPA families comprise approximately 2% of pituitary adenomas and represent a clinical entity with homogeneous or heterogeneous pituitary adenoma types occurring within the same kindred. The aryl hydrocarbon receptor interacting protein (AIP) gene has been identified as causing a pituitary adenoma predisposition of variable penetrance that accounts for 20% of FIPA families. Germline AIP mutations have been shown to associate with the occurrence of large pituitary adenomas that occur at a young age, predominantly in children/adolescents and young adults. AIP mutations are usually associated with somatotropinomas, but prolactinomas, nonfunctioning pituitary adenomas, Cushing disease, and other infrequent clinical adenoma types can also occur. Gigantism is a particular feature of AIP mutations and occurs in more than one third of affected somatotropinoma patients. Study of pituitary adenoma patients with AIP mutations has demonstrated that these cases raise clinical challenges to successful treatment. Extensive research on the biology of AIP and new advances in mouse Aip knockout models demonstrate multiple pathways by which AIP may contribute to tumorigenesis. This review assesses

  15. 2,3,7,8-Tetrachlorodibenzo-p-dioxin treatment alters eicosanoid levels in several organs of the mouse in an aryl hydrocarbon receptor-dependent fashion.

    Science.gov (United States)

    Bui, Peter; Solaimani, Parrisa; Wu, Xiaomeng; Hankinson, Oliver

    2012-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) adversely affects many mammalian organs and tissues. These effects are mediated by the aryl hydrocarbon receptor (AHR). CYP1A1, CYP1A2 and CYP1B1 are upregulated by the liganded AHR. These (and other) cytochromes P450 can metabolize arachidonic acid into a variety of bioactive eicosanoids. Towards investigating a potential role of eicosanoids in TCDD toxicity, arachidonic acid, two other unsaturated long-chain fatty acids, and up to twenty-five eicosanoids were measured in five organs/tissues of male and female wild-type and Ahr null mice treated or untreated with TCDD. TCDD generally increased the levels of the four dihydroxyeicosatrienoic acids (DHETs) and (where measured) 5,6-epoxyeicosatrienoic acid and 18-, 19- and 20-hydroxyeicosatrienoic acids (HETEs) in the serum, liver, spleen and lungs, but not the heart, of both sexes, and increased the levels in the serum, liver and spleen of several metabolites that are usually considered products of lipoxygenase activity, but which may also be generated by cytochromes P450. TCDD also increased the levels of the esterified forms of these eicosanoids in the liver in parallel with the corresponding free forms. The levels of prostanoids were generally not affected by TCDD. The above changes did not occur in Ahr null mice, and are therefore mediated by the AHR. TCDD increased the mRNA levels of Cyp1a1, Cyp1a2, Cyp1b1 and the Pla2g12a form of phospholipase A(2) to varying degrees in the different organs, and these increases correlated with some but not all the changes in eicosanoids levels in the organs, suggesting that other enzymes may also be involved.

  16. Aryl hydrocarbon Receptor is Necessary to Protect Fetal Human Pulmonary Microvascular Endothelial Cells against Hyperoxic Injury: Mechanistic Roles of Antioxidant Enzymes and RelB

    Science.gov (United States)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly (ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. PMID:25831079

  17. Skatole (3-Methylindole Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes.

    Directory of Open Access Journals (Sweden)

    Martin Krøyer Rasmussen

    Full Text Available Skatole (3-methylindole is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR regulated genes, such as cytochrome P450 1A1 (CYP1A1, in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway.

  18. Activation of aryl hydrocarbon receptor (AhR leads to reciprocal epigenetic regulation of FoxP3 and IL-17 expression and amelioration of experimental colitis.

    Directory of Open Access Journals (Sweden)

    Narendra P Singh

    Full Text Available BACKGROUND: Aryl hydrocarbon receptor (AhR, a transcription factor of the bHLH/PAS family, is well characterized to regulate the biochemical and toxic effects of environmental chemicals. More recently, AhR activation has been shown to regulate the differentiation of Foxp3(+ Tregs as well as Th17 cells. However, the precise mechanisms are unclear. In the current study, we investigated the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AhR ligand, on epigenetic regulation leading to altered Treg/Th17 differentiation, and consequent suppression of colitis. METHODOLOGY/PRINCIPAL FINDINGS: Dextran sodium sulphate (DSS administration induced acute colitis in C57BL/6 mice, as shown by significant weight loss, shortening of colon, mucosal ulceration, and increased presence of CXCR3(+ T cells as well as inflammatory cytokines. Interestingly, a single dose of TCDD (25 µg/kg body weight was able to attenuate all of the clinical and inflammatory markers of colitis. Analysis of T cells in the lamina propria (LP and mesenteric lymph nodes (MLN, during colitis, revealed decreased presence of Tregs and increased induction of Th17 cells, which was reversed following TCDD treatment. Activation of T cells from AhR(+/+ but not AhR (-/- mice, in the presence of TCDD, promoted increased differentiation of Tregs while inhibiting Th17 cells. Analysis of MLN or LP cells during colitis revealed increased methylation of CpG islands of Foxp3 and demethylation of IL-17 promoters, which was reversed following TCDD treatment. CONCLUSIONS/SIGNIFICANCE: These studies demonstrate for the first time that AhR activation promotes epigenetic regulation thereby influencing reciprocal differentiation of Tregs and Th17 cells, and amelioration of inflammation.

  19. Epigenetic Determinants of CYP1A1 Induction by the Aryl Hydrocarbon Receptor Agonist 3,3',4,4',5-Pentachlorobiphenyl (PCB 126

    Directory of Open Access Journals (Sweden)

    Sabine U. Vorrink

    2014-08-01

    Full Text Available Many enzymes involved in xenobiotic metabolism, including cytochrome P450 (CYP 1A1, are regulated by the aryl hydrocarbon receptor (AhR. 3,3',4,4',5-Penta chlorobiphenyl (PCB 126 is a potent ligand for AhR and can thus induce the expression of CYP1A1. Interestingly, we observed that human carcinoma cell lines derived from different types of epithelial cells displayed divergent degrees of CYP1A1 induction after exposure to PCB 126. Since epigenetic mechanisms are known to be involved in cell type-specific gene expression, we sought to assess the epigenetic determinants of CYP1A1 induction in these carcinoma cell lines. In contrast to HepG2 hepatocarcinoma cells, HeLa cervical carcinoma cells showed significantly lower levels of CYP1A1 mRNA expression following PCB 126 exposure. Our results show that the two cell lines maintained differences in the chromatin architecture along the CYP1A1 promoter region. Furthermore, treatment with the epigenetic modifiers, trichostatin A (TSA and 5-aza-2'-deoxycytidine (5-Aza-dC, significantly increased the expression of CYP1A1 after PCB 126 treatment in HeLa cells. However, we did not observe apparent differences in methylation levels or specific location of CpG DNA methylation between the two cell lines in the analyzed CYP1A1 promoter region. Taken together, our findings suggest that the differences in CYP1A1 expression between HepG2 and HeLa cells are due to differences in the chromatin architecture of the CYP1A1 promoter and thus establish a role of epigenetic regulation in cell-specific CYP1A1 expression.

  20. A mechanism-based mathematical model of aryl hydrocarbon receptor-mediated CYP1A induction in rats using beta-naphthoflavone as a tool compound.

    Science.gov (United States)

    Chen, Emile P; Chen, Liangfu; Ji, Yan; Tai, Guoying; Wen, Yuan H; Ellens, Harma

    2010-12-01

    β-Naphthoflavone (BNF) is a synthetic flavone that selectively and potently induces CYP1A enzymes via aryl hydrocarbon receptor activation. Mechanism-based mathematical models of CYP1A enzyme induction were developed to predict the time course of enzyme induction and quantitatively evaluate the interrelationship between BNF plasma concentrations, hepatic CYP1A1 and CYP1A2 mRNA levels, and CYP1A enzyme activity in rats in vivo. Male Sprague-Dawley rats received a continuous intravenous infusion of vehicle or 1.5 or 6 mg · kg(-1) · h(-1) BNF for 6 h, with blood and liver sampling. Plasma BNF concentrations were determined by liquid chromatography-tandem mass spectrometry. Hepatic mRNA levels of CYP1A1 and CYP1A2 were determined by TaqMan. Ethoxyresorufin O-deethylation was used to measure the increase in CYP1A enzyme activity as a result of induction. The induction of hepatic CYP1A1/CYP1A2 mRNA and CYP1A activity occurred within 2 h after BNF administration. This caused a rapid increase in metabolic clearance of BNF, resulting in plasma concentrations declining during the infusion. Overall, the enzyme induction models developed in this study adequately captured the time course of BNF pharmacokinetics, CYP1A1/CYP1A2 mRNA levels, and increases in CYP1A enzyme activity data for both dose groups simultaneously. The model-predicted degradation half-life of CYP1A enzyme activity is comparable with previously reported values. The present results also confirm a previous in vitro finding that CYP1A1 is the predominant contributor to CYP1A induction. These physiologically based models provide a basis for predicting drug-induced toxicity in humans from in vitro and preclinical data and can be a valuable tool in drug development.

  1. Activation of aryl hydrocarbon receptor promotes invasion of clear cell renal cell carcinoma and is associated with poor prognosis and cigarette smoke.

    Science.gov (United States)

    Ishida, Masaru; Mikami, Shuji; Shinojima, Toshiaki; Kosaka, Takeo; Mizuno, Ryuichi; Kikuchi, Eiji; Miyajima, Akira; Okada, Yasunori; Oya, Mototsugu

    2015-07-15

    Although exposure to environmental pollutants is one of the risk factors for renal cell carcinoma (RCC), its relationship with carcinogenesis and the progression of RCC remains unknown. The present study was designed to elucidate the role of the aryl hydrocarbon receptor (AhR), a major mediator of carcinogenesis caused by environmental pollutants, in the progression of RCC. The expression of AhR was investigated in 120 patients with RCC using immunohistochemistry, and its relationship with clinicopathological parameters and prognoses was statistically analyzed. RCC cell lines were exposed to indirubin or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), AhR ligands, to activate the AhR pathway, or were transfected with small interfering RNA (siRNA) for AhR. The expression of the AhR target genes CYP1A1 and CYP1B1, matrix metalloproteinases (MMPs), and invasion through Matrigel(TM) were then examined. AhR was predominantly expressed in the nuclei of high-grade clear cell RCC (ccRCC) and tumor-infiltrating lymphocytes (TILs), and its expression levels in cancer cells and TILs correlated with the pathological tumor stage and histological grade. A multivariate Cox analysis revealed that the strong expression of AhR in cancer cells was a significant and independent predictor of disease-specific survival. AhR ligands up-regulated the expression of AhR and CYPs and promoted invasion by up-regulating MMPs. Furthermore, siRNA for AhR down-regulated CYPs, and inhibited cancer cell invasion together with the down-regulation of MMPs. These results suggest that AhR regulates the invasion of ccRCC and may be involved in tumor immunity. Therefore, inhibiting the activation of AhR may represent a potentially attractive therapeutic target for ccRCC patients.

  2. Activation of the aryl hydrocarbon receptor pathway enhances cancer cell invasion by upregulating the MMP expression and is associated with poor prognosis in upper urinary tract urothelial cancer.

    Science.gov (United States)

    Ishida, Masaru; Mikami, Shuji; Kikuchi, Eiji; Kosaka, Takeo; Miyajima, Akira; Nakagawa, Ken; Mukai, Makio; Okada, Yasunori; Oya, Mototsugu

    2010-02-01

    Aryl hydrocarbon receptor (AhR) and the activation of the AhR pathway are involved in xenobiotic-induced toxicity and carcinogenesis. Although xenobiotics, such as cigarette smoke, contribute to the development of urothelial carcinoma (UC), the relationship between AhR and UC is unclear. In the present study, we investigated AhR expression in 209 patients with upper urinary tract UC. The nuclear expression of AhR was significantly associated with histological grade, pathological T stage, lymphovascular invasion and lymph node involvement. A multivariate Cox analysis revealed that nuclear AhR expression was a significant and independent predictor for disease-specific survival (hazard ratio = 2.469, P = 0.013). To determine whether the AhR pathway can be activated in the T24 UC cell line, we examined the expression of cytochrome P450 (CYP) 1A1 and CYP1B1, which are target genes of the AhR pathway, following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a ligand of AhR. TCDD treatment upregulated the expression levels of AhR, CYP1A1 and CYP1B1. TCDD enhanced T24 cell invasion associated with the upregulation of matrix metalloproteinase (MMP)-1 and MMP-9. Furthermore, targeting AhR messenger RNA (mRNA) expression in T24 cells with small interfering RNA (siRNA) downregulated the mRNA expression of AhR, CYP1A1, CYP1B1, MMP-1, MMP-2 and MMP-9; furthermore, the cells transfected with siRNA for AhR showed decreased invasion activity in comparison with the cells transfected with a non-targeting siRNA. Our results therefore suggest that AhR plays a role in the invasiveness of UC cells and can serve as a marker for the prognosis of upper urinary tract UC.

  3. Engraftment and lineage potential of adult hematopoietic stem and progenitor cells is compromised following short-term culture in the presence of an aryl hydrocarbon receptor antagonist.

    Science.gov (United States)

    Gu, Angel; Torres-Coronado, Monica; Tran, Chy-Anh; Vu, Hieu; Epps, Elizabeth W; Chung, Janet; Gonzalez, Nancy; Blanchard, Suzette; DiGiusto, David L

    2014-08-01

    Hematopoietic stem cell gene therapy for HIV/AIDS is a promising alternative to lifelong antiretroviral therapy. One of the limitations of this approach is the number and quality of stem cells available for transplant following in vitro manipulations associated with stem cell isolation and genetic modification. The development of methods to increase the number of autologous, gene-modified stem cells available for transplantation would overcome this barrier. Hematopoietic stem and progenitor cells (HSPC) from adult growth factor-mobilized peripheral blood were cultured in the presence of an aryl hydrocarbon receptor antagonist (AhRA) previously shown to expand HSPC from umbilical cord blood. Qualitative and quantitative assessment of the hematopoietic potential of minimally cultured (MC-HSPC) or expanded HSPC (Exp-HSPC) was performed using an immunodeficient mouse model of transplantation. Our results demonstrate robust, multilineage engraftment of both MC-HSPC and Exp-HSPC although estimates of expansion based on stem cell phenotype were not supported by a corresponding increase in in vivo engrafting units. Bone marrow of animals transplanted with either MC-HSPC or Exp-HSPC contained secondary engrafting cells verifying the presence of primitive stem cells in both populations. However, the frequency of in vivo engrafting units among the more primitive CD34+/CD90+ HSPC population was significantly lower in Exp-HSPC compared with MC-HSPC. Exp-HSPC also produced fewer lymphoid progeny and more myeloid progeny than MC-HSPC. These results reveal that in vitro culture of adult HSPC in AhRA maintains but does not increase the number of in vivo engrafting cells and that HSPC expanded in vitro contain defects in lymphopoiesis as assessed in this model system. Further investigation is required before implementation of this approach in the clinical setting.

  4. Predicting the sensitivity of fishes to dioxin-like compounds: possible role of the aryl hydrocarbon receptor (AhR) ligand binding domain.

    Science.gov (United States)

    Doering, Jon A; Giesy, John P; Wiseman, Steve; Hecker, Markus

    2013-03-01

    Dioxin-like compounds are chronically toxic to most vertebrates. However, dramatic differences in sensitivity to these chemicals exist both within and among vertebrate classes. A recent study found that in birds, critical amino acid residues in the aryl hydrocarbon receptor (AhR) ligand binding domain are predictive of sensitivity to dioxin-like compounds in a range of species. It is currently unclear whether similar predictive relationships exist for fishes, a group of animals at risk of exposure to dioxin-like compounds. Effects of dioxin-like compounds are mediated through the AhR in fishes and birds. However, AhR dynamics are more complex among fishes. Fishes possess AhRs that can be grouped within at least three distinct clades (AhR1, AhR2, AhR3) with each clade possibly containing multiple isoforms. AhR2 has been shown to be the active form in most teleosts, with AhR1 not binding dioxin-like compounds. The role of AhR3 in dioxin-like toxicity has not been established to date and this clade is only known to be expressed in some cartilaginous fishes. Furthermore, multiple mechanisms of sensitivity to dioxin-like compounds that are not relevant in birds could exist among fishes. Although, at this time, deficiencies exist for the development of such a predictive relationship for application to fishes, successfully establishing such relationships would offer a substantial improvement in assessment of risks of dioxin-like compounds for this class of vertebrates. Elucidation of such relationships would provide a mechanistic foundation for extrapolation among species to allow the identification of the most sensitive fishes, with the ultimate goal of the prediction of risk posed to endangered species that are not easily studied.

  5. T-bet over-expression regulates aryl hydrocarbon receptor-mediated T helper type 17 differentiation through an interferon (IFN)γ-independent pathway.

    Science.gov (United States)

    Yokosawa, M; Kondo, Y; Tahara, M; Iizuka-Koga, M; Segawa, S; Kaneko, S; Tsuboi, H; Yoh, K; Takahashi, S; Matsumoto, I; Sumida, T

    2017-04-01

    Various transcription factors are also known to enhance or suppress T helper type 17 (Th17) differentiation. We have shown previously that the development of collagen-induced arthritis was suppressed in T-bet transgenic (T-bet Tg) mice, and T-bet seemed to suppress Th17 differentiation through an interferon (IFN)-γ-independent pathway, although the precise mechanism remains to be clarified. The present study was designed to investigate further the mechanisms involved in the regulation of Th17 differentiation by T-bet over-expression, and we found the new relationship between T-bet and aryl hydrocarbon receptor (AHR). Both T-bet Tg mice and IFN-γ(-/-) -over-expressing T-bet (T-bet Tg/IFN-γ(-/-) ) mice showed inhibition of retinoic acid-related orphan receptor (ROR)γt expression and IL-17 production by CD4(+) T cells cultured under conditions that promote Th-17 differentiation, and decreased IL-6 receptor (IL-6R) expression and signal transducer and activator of transcription-3 (STAT-3) phosphorylation in CD4(+) T cells. The mRNA expression of ahr and rorc were suppressed in CD4(+) T cells cultured under Th-17 conditions from T-bet Tg mice and T-bet Tg/IFN-γ(-/-) mice. CD4(+) T cells of wild-type (WT) and IFN-γ(-/-) mice transduced with T-bet-expressing retrovirus also showed inhibition of IL-17 production, whereas T-bet transduction had no effect on IL-6R expression and STAT-3 phosphorylation. Interestingly, the mRNA expression of ahr and rorc were suppressed in CD4(+) T cells with T-bet transduction cultured under Th17 conditions. The enhancement of interleukin (IL)-17 production from CD4(+) T cells by the addition of AHR ligand with Th17 conditions was cancelled by T-bet over-expression. Our findings suggest that T-bet over-expression-induced suppression of Th17 differentiation is mediated through IFN-γ-independent AHR suppression.

  6. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  7. Aryl hydrocarbon receptor mediated activities in road dust from a metropolitan area, Hanoi-Vietnam: contribution of polycyclic aromatic hydrocarbons (PAHs) and human risk assessment.

    Science.gov (United States)

    Tuyen, Le Huu; Tue, Nguyen Minh; Suzuki, Go; Misaki, Kentaro; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke

    2014-09-01

    Dioxin-Responsive Chemical-Activated LUciferase gene eXpression assay (DR-CALUX) was applied to assess the total toxic activity of the mixture of PAHs and related compounds as well as dioxin-related compounds in road dust from urban areas of Hanoi, Vietnam. Road dust from Hanoi contained significantly higher DR-CALUX activities (3 to 39, mean 20 ng CALUX-TEQ/g dw) than those from a rural site (2 to 13, mean 5 ng CALUX-TEQ/g dw). The total concentrations of 24 major PAHs (Σ24PAHs) in urban road dust (0.1 to 5.5, mean 2.5 μg/g dw) were also 6 times higher than those in rural road dust (0.08 to 1.5, mean 0.4 μg/g dw). Diagnostic ratios of PAHs indicated vehicular engine combustion as the major PAH emission source in both sites. PAHs accounted for 0.8 to 60% (mean 10%) and 2 to 76% (mean 20%) of the measured CALUX-TEQs in road dust for Hanoi the rural site, respectively. Benzo[b]-/benzo[k]fluoranthenes were the major TEQ contributors among PAHs, whereas DRCs contributed hydrocarbon receptor agonists in road dust. Significant PAH concentrations in urban dust indicated high mutagenic and carcinogenic potencies. Estimated results of incremental life time cancer risk (ILCR) indicated that Vietnamese populations, especially those in urban areas such as Hanoi, are potentially exposed to high cancer risk via both dust ingestion and dermal contact. This is the first study on the exposure risk of AhR agonists, including PAHs and DRCs, in urban road dust from a developing country using a combined bio-chemical analytical approach.

  8. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Andrysík, Zdeněk; Vondráček, Jan; Marvanová, Soňa; Ciganek, Miroslav; Neča, Jiří; Pěnčíková, Kateřina; Mahadevan, Brinda; Topinka, Jan; Baird, William M; Kozubík, Alois; Machala, Miroslav

    2011-09-01

    Many of the toxic and carcinogenic effects of urban air pollution have been linked to polycyclic aromatic hydrocarbons (PAHs) adsorbed to airborne particulate matter (PM). The carcinogenic properties of PAHs in complex organic mixtures derived from PM have been chiefly attributed to their mutagenicity. Nevertheless, PAHs are also potent activators of the aryl hydrocarbon receptor (AhR), which may contribute to their nongenotoxic effects, including tumor promotion. As the genotoxicity of carcinogenic PAHs in complex mixtures derived from urban PM is often inhibited by other mixture constituents, the AhR-mediated activity of urban PM extracts might significantly contribute to the carcinogenic activity of such mixtures. In the present study, we used an organic extract of the urban dust standard reference material, SRM1649a, as a model mixture to study a range of toxic effects related to DNA damage and AhR activation. Both the organic extract and its neutral aromatic fraction formed a low number of DNA adducts per nucleotide in the liver epithelial WB-F344 cells model, without inducing DNA damage response, such as tumor suppressor p53 activation and apoptosis. In contrast, we found that this extract, as well as its neutral and polar fractions, were potent inducers of a range of AhR-mediated responses, including induction of the AhR-mediated transcription, such as cytochrome P450 1A1/1B1 expression, and the AhR-dependent cell proliferation. Importantly, these toxic events occurred at doses one order of magnitude lower than DNA damage. The AhR-mediated activity of the neutral fraction was linked to PAHs and their derivatives, as polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls were only minor contributors to the overall AhR-mediated activity. Taken together, our data suggest that more attention should be paid to the AhR-dependent nongenotoxic events elicited by urban PM constituents, especially PAHs and their derivatives.

  9. New insights to the role of aryl hydrocarbon receptor in bone phenotype and in dioxin-induced modulation of bone microarchitecture and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Herlin, Maria, E-mail: maria.herlin@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Finnilä, Mikko A.J., E-mail: mikko.finnila@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Zioupos, Peter, E-mail: p.zioupos@cranfield.ac.uk [Biomechanics Laboratories, Department of Engineering and Applied Science, Cranfield University, Shrivenham SN6 8LA (United Kingdom); Aula, Antti, E-mail: antti.aula@gmail.com [Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere (Finland); Department of Biomedical Engineering, Tampere University of Technology, Tampere (Finland); Risteli, Juha, E-mail: juha.risteli@ppshp.fi [Department of Clinical Chemistry, Oulu University Hospital, Oulu (Finland); Miettinen, Hanna M., E-mail: hanna.miettinen@crl.com [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Jämsä, Timo, E-mail: timo.jamsa@oulu.fi [Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Department of Diagnostic Radiology, Oulu University Hospital, Oulu (Finland); Tuukkanen, Juha, E-mail: juha.tuukkanen@oulu.fi [Department of Anatomy and Cell Biology, Institute of Biomedicine, University of Oulu, Oulu (Finland); Korkalainen, Merja, E-mail: merja.korkalainen@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Håkansson, Helen, E-mail: Helen.Hakansson@ki.se [Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Viluksela, Matti, E-mail: matti.viluksela@thl.fi [Department of Environmental Health, National Institute for Health and Welfare, Kuopio (Finland); Department of Environmental Science, University of Eastern Finland, Kuopio (Finland)

    2013-11-15

    Bone is a target for high affinity aryl hydrocarbon receptor (AHR) ligands, such as dioxins. Although bone morphology, mineral density and strength are sensitive endpoints of dioxin toxicity, less is known about effects on bone microarchitecture and material properties. This study characterizes TCDD-induced modulations of bone tissue, and the role of AHR in dioxin-induced bone toxicity and for normal bone phenotype. Six AHR-knockout (Ahr{sup −/−}) and wild-type (Ahr{sup +/+}) mice of both genders were exposed to TCDD weekly for 10 weeks, at a total dose of 200 μg/kg bw. Bones were examined with micro-computed tomography, nanoindentation and biomechanical testing. Serum levels of bone remodeling markers were analyzed, and the expression of genes related to osteogenic differentiation was profiled using PCR array. In Ahr{sup +/+} mice, TCDD-exposure resulted in harder bone matrix, thinner and more porous cortical bone, and a more compact trabecular bone compartment. Bone remodeling markers and altered expression of a number of osteogenesis related genes indicated imbalanced bone remodeling. Untreated Ahr{sup −/−} mice displayed a slightly modified bone phenotype as compared with untreated Ahr{sup +/+} mice, while TCDD exposure caused only a few changes in bones of Ahr{sup −/−} mice. Part of the effects of both TCDD-exposure and AHR-deficiency were gender dependent. In conclusion, exposure of adult mice to TCDD resulted in harder bone matrix, thinner cortical bone, mechanically weaker bones and most notably, increased trabecular bone volume fraction in Ahr{sup +/+} mice. AHR is involved in bone development of a normal bone phenotype, and is crucial for manifestation of TCDD-induced bone alterations. - Highlights: • TCDD disrupts bone remodeling resulting in altered cortical and trabecular bone. • In trabecular bone an anabolic effect is observed. • Cortical bone is thinner, more porous, harder, stiffer and mechanically weaker. • AHR ablation

  10. 芳香烃受体在女性生殖中的作用%Function of Aryl Hydrocarbon Receptor in the Female Reproduction

    Institute of Scientific and Technical Information of China (English)

    郝克红; 王凯; 周倩; 段涛

    2012-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. Upon binding to its ligands, AhR regulates expression of the AhR battery of target genes and mediates a variety of biological processes. AhR regulates the follicular growth, synthesization and secretion of ovarian hormones and ovulation. The signal pathway of AhR is also related with menstrual cycle and may change the proliferation and secretion of endometrium through regulating the signal system of estrogen. The expression of AhR in placenta is the highest, and mainly expresses in trophoblast cells and vascular endothelial cells, thus, AhR maybe affect placental fuction through influencing transport and metabolize of glucose. The mice which are knoched out AhR gene could not maintain implantation of embryos and development of fetus normally, in addition, normal pregnancy and lactation may not be maintained after implantation with decreased number of newborn mice, low alive rate of 2-week-old mice and high mortality after ablactation.%芳香烃受体(AhR)是一种配体激活的转录因子,通过与其配体结合,启动下游靶基因转录,发挥相应的生物学效应.AhR可调控雌(女)性哺乳动物卵泡的生长、卵巢激素的合成、分泌及排卵;AhR信号通路与月经周期亦相关,可能通过调控雌激素信号系统改变子宫内膜的增殖和分泌.AhR在胎盘的表达水平最高,且主要分布于胎盘滋养层细胞和胎盘血管内皮细胞,其可能通过影响葡萄糖的转运和代谢系统影响胎盘功能.AhR基因敲除小鼠不能正常维持胚胎的植入和胎仔的发育,另外,即使胚胎着床后也不能维持正常妊娠和哺乳,且同胎出生仔数减少、出生后2周幼仔存活率低、断奶后死亡率高.

  11. Aryl hydrocarbon receptor is necessary to protect fetal human pulmonary microvascular endothelial cells against hyperoxic injury: Mechanistic roles of antioxidant enzymes and RelB

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaojie; Patel, Ananddeep; Chu, Chun; Jiang, Weiwu; Wang, Lihua; Welty, Stephen E.; Moorthy, Bhagavatula; Shivanna, Binoy, E-mail: shivanna@bcm.edu

    2015-07-15

    Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells. - Highlights: • AhR deficiency potentiates oxygen toxicity in human fetal lung cells. • Deficient AhR signaling increases hyperoxia-induced cell death. • AhR deficiency increases hyperoxia-induced ROS generation and inflammation. • Anti-oxidant enzyme levels are attenuated in AhR-deficient lung cells

  12. Tissue specificity of aryl hydrocarbon receptor (AhR) mediated responses and relative sensitivity of white sturgeon (Acipenser transmontanus) to an AhR agonist.

    Science.gov (United States)

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Tendler, Brett J; Giesy, John P; Hecker, Markus

    2012-06-15

    Sturgeons are endangered in some parts of the world. Due to their benthic nature and longevity sturgeon are at greater risk of exposure to bioaccumulative contaminants such as dioxin-like compounds that are associated with sediments. Despite their endangered status, little research has been conducted to characterize the relative responsiveness of sturgeon to dioxin-like compounds. In an attempt to study the biological effects and possible associated risks of exposure to dioxin-like compounds in sturgeon, the molecular and biochemical responses of white sturgeon (Acipenser transmontanus) to a model aryl hydrocarbon receptor (AhR) agonist, β-naphthoflavone (βNF) were investigated. White sturgeon were injected intraperitoneally with one of three doses of βNF (0, 50, or 500mg/kg, bw). Rainbow trout (Oncorhynchus mykiss) were used as a reference species since their responses have been well characterized in the past. Three days following injection with βNF, fish were euthanized and livers, gills, and intestines collected for biochemical and molecular analyses. White sturgeon exposed to βNF had significantly greater ethoxyresorufin O-deethylase (EROD) activity in liver (up to 37-fold), gill (up to 41-fold), and intestine (up to 36-fold) than did unexposed controls. Rainbow trout injected with βNF exhibited EROD activity that was significantly greater in liver (88-fold), than that of controls, but was undetectable in gills or intestine. Abundance of CYP1A transcript displayed a comparable pattern of tissue-specific induction with intestine (up to 189-fold), gills (up to 53-fold), and liver (up to 21-fold). Methoxyresorufin O-deethylase (MROD) and pentoxyresorufin O-deethylase (PROD) activities were undetectable in unexposed white sturgeon tissues while exposed tissues displayed MROD activity that was only moderately greater than the activity that could be detected. Differential inducibility among liver, gill, and intestine following exposure to an AhR agonist is

  13. Aryl hydrocarbon receptor pathway activation enhances gastric cancer cell invasiveness likely through a c-Jun-dependent induction of matrix metalloproteinase-9

    Directory of Open Access Journals (Sweden)

    Song Xin

    2009-04-01

    Full Text Available Abstract Background Abberant aryl hydrocarbon receptor (AhR expression and AhR pathway activation are involved in gastric carcinogenesis. However, the relationship between AhR pathway activation and gastric cancer progression is still unclear. In present study, we used 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD, a classic and most potent ligand of AhR, to activate AhR pathway and investigated the effect of AhR pathway activation on human gastric cancer AGS cell invasion and explored the corresponding mechanism. Results To determine whether AhR pathway can be activated in AGS cells, we examined the expression of CYP1A1, a classic target gene of AhR pathway, following TCDD exposure. RT-PCR and western blot analysis showed that both CYP1A1 mRNA and protein expression were increased in a dose-dependent manner following TCDD treatment and AhR antagonist resveratrol (RSV could reverse this TCDD-induced CYP1A1 expression. To determine whether TCDD treatment of AGS cells results in an induction of MMP-9 expression, we detected MMP-9 mRNA using RT-PCR and detected MMP-9 enzymatic activity using gelatin zymography. The results showed that both MMP-9 mRNA expression and enzymatic activity were gradually increased with the concentration increase of TCDD in media and these changes could be reversed by RSV treatment in a dose-dependent manner. To examine whether AhR activation-induced MMP-9 expression and activity in AGS cells results in increased migration and invasion, we performed wound healing migration assay and transwell migration and invasion assay. After TCDD treatment, the migration distance and the migration and invasion abilities of AGS cells were increased with a dose-dependent manner. To demonstrate AhR activation-induced MMP-9 expression is mediated by c-Jun, siRNA transfection was performed to silence c-Jun mRNA in AGS cells. The results showed that MMP-9 mRNA expression and activity in untreated control AGS cells were very weak; After TCDD

  14. Aryl hydrocarbon receptor (AhR-mediated perturbations in gene expression during early stages of CD4+ T-cell differentiation

    Directory of Open Access Journals (Sweden)

    Diana eRohlman

    2012-08-01

    Full Text Available Activation of the aryl hydrocarbon receptor (AhR by its prototypic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, mediates potent suppression of T-cell dependent immune responses. The suppressive effects of TCDD occur early during CD4+ T-cell differentiation in the absence of effects on proliferation and have recently been associated with the induction of AhR-dependent regulatory T-cells (Treg. Since AhR functions as a ligand-activated transcription factor, changes in gene expression induced by TCDD during the early stages of CD4+ T-cell differentiation are likely to reflect fundamental mechanisms of AhR action. A custom panel of genes associated with T-cell differentiation was used to query changes in gene expression induced by exposure to 1 nM TCDD. CD4+ T-cells from AhR+/+ and AhR-/- mice were cultured with cytokines known to polarize the differentiation of T-cells to various effector lineages. Treatment with TCDD induced expression of Cyp1a1, Cyp1b1 and Ahrr in CD4+ T-cells from AhR+/+ mice under all culture conditions, validating the presence and activation of AhR in these cells. The highest levels of AhR activation occurred under Th17 conditions at 24 hours and Tr1 conditions at 48 hours. Unexpectedly, expression levels of most genes associated with early T-cell differentiation were unaltered by AhR activation, including lineage-specific genes that drive CD4+ T-cell polarization. The major exception was AhR-dependent up-regulation of Il22 that was seen under all culture conditions. Independent of TCDD, AhR down-regulated the expression of Il17a and Rorc based on increased expression of these genes in AhR-deficient cells across culture conditions. These findings are consistent with a role for AhR in down-regulation of inflammatory immune responses and implicate IL-22 as a potential contributor to the immunosuppressive effects of TCDD.

  15. Itraconazole cis-diastereoisomers activate aryl hydrocarbon receptor AhR and pregnane X receptor PXR and induce CYP1A1 in human cell lines and human hepatocytes.

    Science.gov (United States)

    Stepankova, Martina; Pastorkova, Barbora; Bachleda, Petr; Dvorak, Zdenek

    2017-04-05

    Triazole antimycotic itraconazole contains in its structure three chiral centres; therefore, it forms eight stereoisomers. Commercial preparations of itraconazole are a mixture of four cis-diastereoisomers. There is much evidence that efficacy, adverse effects, and toxicity of chiral drugs may be stereospecific. Therefore, we have prepared 4 pure cis-diastereoisomers of itraconazole and investigated their effects on transcriptional activities of xenoreceptors aryl hydrocarbon receptor AhR and pregnane X receptor PXR. Gene reporter assays showed that itraconazole dose-dependently activated both AhR and PXR, and the activation of AhR but not of PXR was enantiospecific. Itraconazole diastereoisomers transformed AhR and PXR into their DNA-binding forms, as demonstrated by electromobility shift assays. Cytochrome P450 CYP1A1 mRNA and protein were induced by itraconazole diastereoisomers in human hepatoma cells HepG2, human skin cells HaCaT, and in primary human hepatocytes. The expression of CYP3A4 in human intestinal LS180 cells was not influenced by itraconazole, but we observed downregulation of CYP3A4 in human hepatocytes. Collectively, we show that itraconazole is a dual activator of AhR and PXR, with differential effects on the target genes for xenoreceptors. The enantiospecific pattern was observed only in gene reporter assays for AhR. The data presented here might be of toxicological and clinical importance.

  16. Endocrine disrupting potentials of Bisphenol A, Bisphenol A dimethacrylate, 4-n-Nonyl-phenol and 4-Octylphenol assessed in cell model systems for effects on the estrogen-, androgen-, aryl hydrocarbon-receptor and aromatase activity

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, Eva Cecilie; Long, Manhai; Hofmeister, Marlene V;

    used as surfactants. We have investigated the effect in vitro of these four plasticizers in four cell culture model systems.The estrogenic potencies were analyzed using the stable ERE-luciferase transfected cell line MVLN measuring the relative estrogen receptor (ER) transactivated luciferase units...... in the conversion of androgens to estrogens in an array of cells, were assessed in the human choriocarcinoma JEG-3 cells using the classical [3H]2O assay. Trans-activation of the Aryl hydrocarbon receptor (AhR) was determined in the mouse hepatoma Hepa1.12cR cell line, stable transfected by an AhR-CALUX construct...... determining RLU. All four compounds elicited a response in each of the four bioassays. Thus, our in vitro data clearly indicates that the four tested plasticizers have ED potentials and that such effects can be mediated via several cellular pathway systems including the estrogen- and the androgen hormones...

  17. Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2 exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    Manuela Göttel

    2014-01-01

    Full Text Available The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study investigated TCDD's impact on the transcriptional cross-talk between AhR and ERα and its modulation by 17β-estradiol (E2 in the human hepatoma cell line HepG2, which is AhR-responsive but ERα-negative. Transient transfection assays with co-transfection of hERα and supplementation of receptor antagonists showed anti-estrogenic action of TCDD via down-regulation of E2-induced ERα signaling. In contrast, enhancement of AhR signaling dependent on ERα was observed providing evidence for increased cytochrome P450 (CYP induction to promote E2 metabolism. However, relative mRNA levels of major E2-metabolizing CYP1A1 and 1B1 and the main E2-detoxifying catechol-O-methyltransferase were not affected by the co-treatments. This study provides new evidence of a TCDD-activated AhR-mediated molecular AhR/ERα cross-talk mechanism at transcriptional level via indirect inhibition of ERα and enhanced transcriptional activity of AhR in HepG2 cells.

  18. Induction of hepatic carbonyl reductase/20{beta}-hydroxysteroid dehydrogenase mRNA in rainbow trout downstream from sewage treatment works-Possible roles of aryl hydrocarbon receptor agonists and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, E., E-mail: eva.albertsson@zool.gu.se [Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Goeteborg (Sweden); Larsson, D.G.J. [Department of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Foerlin, L. [Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Goeteborg (Sweden)

    2010-05-05

    Carbonyl reductase/20{beta}-hydroxysteroid dehydrogenase (CR/20{beta}-HSD) serves both as a key enzyme in the gonadal synthesis of maturing-inducing hormone in salmonids, and as an enzyme protecting against certain reactive oxygen species. We have previously shown that mRNA of the hepatic CR/20{beta}-HSD B isoform is increased in rainbow trout caged downstream from a Swedish sewage treatment plant. Here, we report an increase of both the A as well as B form in fish kept downstream from a second sewage treatment plant. The two mRNAs were also induced in fish hepatoma cells in vitro after exposure to effluent extract. This indicates that the effects observed in vivo could be a direct effect on the liver, i.e. the mRNA induction does not require a signal from any other organ. When fish were exposed in vivo to several effluents treated with more advanced methods (ozone, moving bed biofilm reactor or membrane bioreactor) the expression of hepatic mRNA CR/20{beta}-HSD A and B was significantly reduced. Their abundance did not parallel the reduction of estrogen-responsive transcripts, in agreement with our previous observations that ethinylestradiol is not a potent inducer. Treatment with norethisterone, methyltestosterone or hydrocortisone in vivo did not induce the hepatic CR/20{beta}-HSD A and B mRNA expression. In contrast, both isoforms were markedly induced by the aryl hydrocarbon receptor agonist {beta}-naphthoflavone as well as by the pro-oxidant herbicide paraquat. We hypothesize that the induction of CR/20{beta}-HSD A and B by sewage effluents could be due to anthropogenic contaminants stimulating the aryl hydrocarbon receptor and/or causing oxidative stress.

  19. Absence of aryl hydrocarbon hydroxylase (AHH) in three marine bivalves

    Energy Technology Data Exchange (ETDEWEB)

    Vandermeulen, J.H. (Bedford Inst. of Oceanography, Dartmouth, Nova Scotia); Penrose, W.R.

    1978-05-01

    Bivalves exposed to short-term (4 d) and long-term (6 yr) oil pollution were assayed for aryl hydrocarbon hydroxylase (AHH) and N-demethylase activity. Short-term induction studies were carried out on Mya arenaria, Mytilus edulis, and Ostrea edulis incubated in aqueous extracts of Kuwait crude oil or Bunker C (fuel) oil. For the chronic-induction studies Mya arenaria and Mytilus edulis were collected from oiled clam beds (Arrow Bunker C) in Chedabucto Bay, Nova Scotia. None of the bivalves showed any basal or petroleum-hydrocarbon-induced aryl hydrocarbon hydroxylase or N-demethylase activity, as shown by their inability to metabolize benzopyrene or imipramine. In contrast, oil-free control trout and trout taken from a polluted lake readily metabolized both these compounds. The inability of these bivalves to degrade petroleum aromatic hydrocarbons and the tendency of these compounds to accumulate in their tissues present an opportunity for transfer of unaltered hydrocarbons into the food chain.

  20. Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN.

    Science.gov (United States)

    Ernst, Jana; Jann, Johann-Christoph; Biemann, Ronald; Koch, Holger M; Fischer, Bernd

    2014-09-01

    Environmental contaminants binding to transcription factors, such as the aryl hydrocarbon receptor (AhR) and the alpha and gamma peroxisome proliferator-activated receptors (PPARs), contribute to adverse effects on the reproductive system. Expressing both the AhR and PPARs, the human granulosa cell line KGN offers the opportunity to investigate the regulatory mechanisms involved in receptor crosstalk, independent of overriding hormonal control. The aim of the present study was to investigate the impact of two environmental contaminants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an AhR ligand) and di-(2-ethylhexyl) phthalate (DEHP, a PPAR ligand), on gonadotrophin sensitivity and estrogen synthesis in KGN cells. Accumulation of the DEHP metabolite mono-(2-ethylhexyl) phthalate (MEHP) in DEHP-exposed cells was measured by high-performance liquid chromatography mass spectrometry, thereby demonstrating DEHP metabolism to MEHP by KGN cells. By employing TCDD ( an AhR agonist), rosiglitazone (a PPARgamma agonist) or bezafibrate (a PPARalpha agonist), the presence of a functional AhR and PPAR cascade was confirmed in KGN cells. Cytotoxicity testing revealed no effect on KGN cell proliferation for the concentrations of TCDD and DEHP used in the current study. FSH-stimulated cells were exposed to TCDD, DEHP or a mix of both and estradiol synthesis was measured by enzyme-linked immunosorbent assay and gene expression by quantitative RT-PCR. Exposure decreased estradiol synthesis (TCDD, DEHP, mix) and reduced the mRNA expression of CYP19 aromatase (DEHP, mix) and FSHR (DEHP). DEHP induced the expression of the alpha and gamma PPARs and AhR, an effect which was inhibited by selective PPAR antagonists. Studies in the human granulosa cell line KGN show that the action of endocrine-disrupting chemicals may be due to a direct activation of AhR, for example by TCDD, and by a transactivation via PPARs, for example by DEHP, inducing subsequent transcriptional changes with a broad

  1. Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Mark P Labrecque

    Full Text Available The activated AHR/ARNT complex (AHRC regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Importantly, evidence has shown that TCDD represses estrogen receptor (ER target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3',4'-dimethoxy-α-naphthoflavone (DiMNF to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.

  2. Dioxin-induced retardation of development through a reduction in the expression of pituitary hormones and possible involvement of an aryl hydrocarbon receptor in this defect: A comparative study using two strains of mice with different sensitivities to dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tomoki; Taura, Junki; Hattori, Yukiko; Ishii, Yuji; Yamada, Hideyuki, E-mail: hyamada@phar.kyushu-u.ac.jp

    2014-08-01

    We have previously revealed that treating pregnant rats with 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) reduces the expression of gonadotropins and growth hormone (GH) in the fetal and neonatal pituitary. A change in gonadotropin expression impairs the testicular expression of steroidogenic proteins in perinatal pups, and imprint defects in sexual behavior after reaching maturity. In this study, we examined whether TCDD also affects the expression of gonadotropin and GH in mice using C57BL/6J and DBA/2J strains which express the aryl hydrocarbon receptor (Ahr) exhibiting a different affinity for TCDD. When pregnant C57BL/6J mice at gestational day (GD) 12 were given oral TCDD (0.2–20 μg/kg), all doses significantly attenuated the pituitary expression of gonadotropin mRNAs in fetuses at GD18. On the other hand, in DBA/2J mice, a much higher dose of TCDD (20 μg/kg) was needed to produce a significant attenuation. Such reduction in the C57BL/6J strain continued until at least postnatal day (PND) 4. In agreement with this, TCDD reduced the testicular expression of steroidogenic proteins in C57BL/6J neonates at PND2 and 4, although the same did not occur in the fetal testis and ovary. Furthermore, TCDD reduced the perinatal expression of GH, litter size and the body weight of newborn pups only in the C57BL/6J strain. These results suggest that 1) also in mice, maternal exposure to TCDD attenuates gonadotropin-regulated steroidogenesis and GH expression leading to the impairment of pup development and sexual immaturity; and 2) Ahr activation during the late fetal and early postnatal stages is required for these defects. - Highlights: • The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on mouse growth was studied. • TCDD reduced the levels of luteinizing hormone and growth hormone in perinatal pups. • Maternal exposure to TCDD also attenuated testicular steroidogenesis in pups. • The above effects of TCDD were more pronounced in C57BL/6J than in DBA/2J

  3. Aryl hydrocarbon receptor regulates CYP1B1 but not ABCB1 and ABCG2 in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure.

    Science.gov (United States)

    Jacob, Aude; Potin, Sophie; Chapy, Hélène; Crete, Dominique; Glacial, Fabienne; Ganeshamoorthy, Kayathiri; Couraud, Pierre-Olivier; Scherrmann, Jean-Michel; Declèves, Xavier

    2015-07-10

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor activated by a variety of widespread persistent environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). It can transactivate the expression of several target genes. Recently AhR transcripts were detected in isolated human brain microvessels and in the hCMEC/D3 human cerebral microvascular endothelial cell line, an in vitro model of the human cerebral endothelium. To date AhR implication in the co-regulation of ABCB1, ABCG2 and CYP1B1 at human cerebral endothelium has not been addressed. Here we investigated whether AhR could co-regulate ABCB1, ABCG2 and CYP1B1 expressions in the hCMEC/D3 cell line. Exposure to TCDD induced a concentration-dependent increase in CYP1B1 expression. We demonstrated AhR involvement in the TCDD-mediated increase in CYP1B1 expression by using small interfering RNA against AhR. Western blotting analysis also revealed an increase in CYP1B1 protein expression following TCDD exposure in hCMEC/D3. Regarding ABCB1 and ABCG2, exposure to TCDD had no effect on their protein expressions and functional activities. In conclusion our data indicated a differential modulation of CYP1B1 and ABCB1/ABCG2 expressions in hCMEC/D3 cells following TCDD exposure.

  4. 2,3,7,8-Tetrachlorodibenzo-p-dioxin activates the aryl hydrocarbon receptor and alters sex steroid hormone secretion without affecting growth of mouse antral follicles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Karman, Bethany N., E-mail: bklement@illinois.edu; Basavarajappa, Mallikarjuna S., E-mail: mbshivapur@gmail.com; Craig, Zelieann R., E-mail: zelieann@illinois.edu; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2012-05-15

    The persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an ovarian toxicant. These studies were designed to characterize the actions of TCDD on steroidogenesis and growth of intact mouse antral follicles in vitro. Specifically, these studies tested the hypothesis that TCDD exposure leads to decreased sex hormone production/secretion by antral follicles as well as decreased growth of antral follicles in vitro. Since TCDD acts through binding to the aryl hydrocarbon receptor (AHR), and the AHR has been identified as an important factor in ovarian function, we also conducted experiments to confirm the presence and activation of the AHR in our tissue culture system. To do so, we exposed mouse antral follicles for 96 h to a series of TCDD doses previously shown to have effects on ovarian tissues and cells in culture, which also encompass environmentally relevant and pharmacological exposures (0.1–100 nM), to determine a dose response for TCDD in our culture system for growth, hormone production, and expression of the Ahr and Cyp1b1. The results indicate that TCDD decreases progesterone, androstenedione, testosterone, and estradiol levels in a non-monotonic dose response manner without altering growth of antral follicles. The addition of pregnenolone substrate (10 μM) restores hormone levels to control levels. Additionally, Cyp1b1 levels were increased by 3–4 fold regardless of the dose of TCDD exposure, evidence of AHR activation. Overall, these data indicate that TCDD may act prior to pregnenolone formation and through AHR transcriptional control of Cyp1b1, leading to decreased hormone levels without affecting growth of antral follicles. -- Highlights: ►TCDD disrupts sex steroid hormone levels, but not growth of antral follicles. ►Pregnenolone co-treatment by-passes TCDD-induced steroid hormone disruption. ►TCDD affects steroid hormone levels through an AHR pathway in antral follicles.

  5. Dioxin-induced retardation of development through a reduction in the expression of pituitary hormones and possible involvement of an aryl hydrocarbon receptor in this defect: a comparative study using two strains of mice with different sensitivities to dioxin.

    Science.gov (United States)

    Takeda, Tomoki; Taura, Junki; Hattori, Yukiko; Ishii, Yuji; Yamada, Hideyuki

    2014-08-01

    We have previously revealed that treating pregnant rats with 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) reduces the expression of gonadotropins and growth hormone (GH) in the fetal and neonatal pituitary. A change in gonadotropin expression impairs the testicular expression of steroidogenic proteins in perinatal pups, and imprint defects in sexual behavior after reaching maturity. In this study, we examined whether TCDD also affects the expression of gonadotropin and GH in mice using C57BL/6J and DBA/2J strains which express the aryl hydrocarbon receptor (Ahr) exhibiting a different affinity for TCDD. When pregnant C57BL/6J mice at gestational day (GD) 12 were given oral TCDD (0.2-20 μg/kg), all doses significantly attenuated the pituitary expression of gonadotropin mRNAs in fetuses at GD18. On the other hand, in DBA/2J mice, a much higher dose of TCDD (20 μg/kg) was needed to produce a significant attenuation. Such reduction in the C57BL/6J strain continued until at least postnatal day (PND) 4. In agreement with this, TCDD reduced the testicular expression of steroidogenic proteins in C57BL/6J neonates at PND2 and 4, although the same did not occur in the fetal testis and ovary. Furthermore, TCDD reduced the perinatal expression of GH, litter size and the body weight of newborn pups only in the C57BL/6J strain. These results suggest that 1) also in mice, maternal exposure to TCDD attenuates gonadotropin-regulated steroidogenesis and GH expression leading to the impairment of pup development and sexual immaturity; and 2) Ahr activation during the late fetal and early postnatal stages is required for these defects.

  6. Assays of polychlorinated biphenyl congeners and co-contaminated heavy metals in the transgenic Arabidopsis plants carrying the recombinant guinea pig aryl hydrocarbon receptor-mediated β-glucuronidase reporter gene expression system.

    Science.gov (United States)

    Shimazu, Sayuri; Ohta, Masaya; Ohkawa, Hideo; Ashida, Hitoshi

    2012-01-01

    The transgenic Arabidopsis plant XgD2V11-6 carrying the recombinant guinea pig (g) aryl hydrocarbon receptor (AhR)-mediated β-glucuronidase (GUS) reporter gene expression system was examined for assay of polychlorinated biphenyl (PCB) congeners and co-contaminated heavy metals. When the transgenic Arabidopsis plants were treated with PCB126 (toxic equivalency factor; TEF: 0.1) and PCB169 (TEF: 0.03), the GUS activity of the whole plants was increased significantly. After treatment with PCB80 (TEF: 0), the GUS activity was nearly the same level as that treated with 0.1% dimethylsulfoxide (DMSO) as a vehicle control. After exposure to a 1:1 mixture of PCB126 and PCB169, the GUS activity was increased additively. However, after exposure to a mixture of PCB126 and PCB80, the GUS activity was lower than that of the treatment with PCB126 alone. Thus, PCB80 seemed to be an antagonist towards AhR. When the transgenic plants were treated with each of the heavy metals Fe, Cu, Zn, Cd and Pb together with PCB126, Cd and Pb increased the PCB126-induced GUS activity. On the other hand, Fe, Cu and Zn did not affect the PCB126-induced GUS activity. In the presence of the biosurfactant mannosylerythritol lipid-B (MEL-B) and the carrier protein bovine serum albumin (BSA), the PCB126-induced GUS activity was increased, but the Cd-assisted PCB126-induced GUS activity was not affected. Thus, MEL-B and BSA seemed to increase uptake and transport of PCB126, respectively.

  7. The inhibition effect of 2,3,7,8-tetrachlorinated dibenzo-p-dioxin-induced aryl hydrocarbon receptor activation in human hepatoma cells with the treatment of cadmium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chao, How-Ran [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Emerging Compounds Research Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Tsou, Tsui-Chun [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Chen, Hung-Ta [Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, Eddy Essen; Tsai, Feng-Yuan [Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan (China); Lin, Ding-Yan [Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan (China); Chen, Fu-An [Graduate Institute of Pharmaceutical Science, Department of Pharmacy, Tajen University, Yan-Pu, Pingtung 907, Taiwan (China); Wang, Ya-Fen, E-mail: yfwang@cycu.edu.tw [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan (China); R and D Center of Membrane Technology, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-10-15

    Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), considered as endocrine disruptors, tend to accumulate in fatty tissues. Dioxin-responsive element chemical activated luciferase gene expression assay (DRE-luciferase assay) has been recognized as a semi-quantitative method for screening dioxins for its fast and low-cost as compared with HRGC/HRMS. However, some problems with the bioassay, including specificity, detection variation resulted from different cleanup strategies, and uncertainty of false-negative or false-positive results, remain to be overcome. Cadmium is a prevalent environmental contaminant around the world. This study was aimed to examine the effects of cadmium on the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced activation of aryl hydrocarbon receptor (AhR)-mediated gene expression in human hepatoma cells (Huh7-DRE-Luc cells and Huh7 cells). Ethoxyresorufin-O-deethylase (EROD) and DRE-luciferase assay were employed to determine the enzyme activity of cytochrome P450 1A1 (CYP1A1) and activation of AhR, respectively. The results showed that Cd{sup 2+} levels significantly inhibited the induction of TCDD-induced CYP1A1 and DRE luciferase activation in hepatoma cells. The 50% inhibited concentrations (IC{sub 50}) of CdCl{sub 2} were 0.414 {mu}M (95% confidence interval (C.I.): 0.230-0.602 {mu}M) in Huh7-DRE-Luc cells and 23.2 {mu}M (95% C.I.: 21.7-25.4 {mu}M) in Huh7 cells. Accordingly, prevention of interference with non-dioxin-like compounds in a DRE-luciferase assay is of great importance in an extensive cleanup procedure.

  8. Omeprazole Induces NAD(P)H Quinone Oxidoreductase 1 via Aryl Hydrocarbon Receptor-Independent Mechanisms: Role of the Transcription Factor Nuclear Factor Erythroid 2–Related Factor 2

    Science.gov (United States)

    Zhang, Shaojie; Patel, Ananddeep; Moorthy, Bhagavatula; Shivanna, Binoy

    2015-01-01

    Activation of the aryl hydrocarbon receptor (AhR) transcriptionally induces phase I (cytochrome P450 (CYP) 1A1) and phase II (NAD(P)H quinone oxidoreductase 1 (NQO1) detoxifying enzymes. The effects of the classical and nonclassical AhR ligands on phase I and II enzymes are well studied in human hepatocytes. Additionally, we observed that the proton pump inhibitor, omeprazole (OM), transcriptionally induces CYP1A1 in the human adenocarcinoma cell line, H441 cells via AhR. Whether OM activates AhR and induces the phase II enzyme, NAD(P)H quinone oxidoreductase 1 (NQO1), in fetal primary human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce NQO1 in HPMEC via the AhR. The concentrations of OM used in our experiments did not result in cytotoxicity. OM activated AhR as evident by increased CYP1A1 mRNA expression. However, contrary to our hypothesis, OM increased NQO1 mRNA and protein via an AhR-independent mechanism as AhR knockdown failed to abrogate OM-mediated increase in NQO1 expression. Interestingly, OM activated Nrf2 as evident by increased phosphoNrf2 (S40) expression in OM-treated compared to vehicle-treated cells. Furthermore, Nrf2 knockdown abrogated OM-mediated increase in NQO1 expression. In conclusion, we provide evidence that OM induces NQO1 via AhR-independent, but Nrf2-dependent mechanisms. PMID:26441083

  9. Effect of PCB 126 on aryl hydrocarbon receptor 1 (AHR1) and AHR1 nuclear translocator 1 (ARNT1) mRNA expression and CYP1 monooxygenase activity in chicken (Gallus domesticus) ovarian follicles.

    Science.gov (United States)

    Wójcik, Dagmara; Antos, Piotr A; Katarzyńska, Dorota; Hrabia, Anna; Sechman, Andrzej

    2015-12-03

    The aim of the experiment was to study the in vitro effect of 3,3',4,4',5-pentachlorobiphenyl (PCB 126; a coplanar PCB congener) on aryl hydrocarbon receptor (AHR1) and AHR1 nuclear translocator (ARNT1) mRNA expression and the activity of CYP1 family monooxygenases in chicken ovarian follicles. White (1-4 mm) and yellowish (4-8 mm) prehierarchical follicles as well as fragments of the theca and granulosa layers of the 3 largest preovulatory follicles (F3-F1) were incubated in a medium supplemented with 0 (control group), 1, 10 or 100 nM PCB 126. The incubation was carried out for 6 h or 24 h for determination of mRNA expression of AHR1 and ARNT1 genes (real-time qPCR) and CYP1 monooxygenase activity (EROD and MROD fluorometric assays), respectively. It was found that chicken ovarian follicles express mRNA of AHR1 and ARNT1 genes. A modulatory effect of PCB 126 on AHR1 and ARNT1 expression depended not only on the biphenyl concentration but also on the follicular layer and the maturational state of the follicle. EROD and MROD activities appeared predominantly in the granulosa layer of the yellow preovulatory follicles. PCB 126 induced these activities in a dose-dependent manner in all ovarian follicles. The obtained results suggest that ovarian follicles, especially the granulosa layer, are involved in the detoxification process of PCBs in the laying hen. Taking this finding into consideration it can be suggested that the granulosa layer of the yellow hierarchical follicles plays a key role in the protective mechanism which reduces the amount of transferred dioxin-like compounds into the yolk of the oocyte.

  10. Benzimidazoisoquinolines: a new class of rapidly metabolized aryl hydrocarbon receptor (AhR ligands that induce AhR-dependent Tregs and prevent murine graft-versus-host disease.

    Directory of Open Access Journals (Sweden)

    Sumit Punj

    Full Text Available The aryl hydrocarbon receptor (AhR is a ligand-activated transcription factor that plays multiple roles in regulation of immune and inflammatory responses. The ability of certain AhR ligands to induce regulatory T cells (Tregs has generated interest in developing AhR ligands for therapeutic treatment of immune-mediated diseases. To this end, we designed a screen for novel Treg-inducing compounds based on our understanding of the mechanisms of Treg induction by the well-characterized immunosuppressive AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. We screened a ChemBridge small molecule library and identified 10-chloro-7H-benzimidazo[2,1-a]benzo[de]Iso-quinolin-7-one (10-Cl-BBQ as a potent AhR ligand that was rapidly metabolized and not cytotoxic to proliferating T cells. Like TCDD,10-Cl-BBQ altered donor CD4(+ T cell differentiation during the early stages of a graft versus host (GVH response resulting in expression of high levels of CD25, CTLA-4 and ICOS, as well as several genes associated with Treg function. The Treg phenotype required AhR expression in the donor CD4(+ T cells. Foxp3 was not expressed in the AhR-induced Tregs implicating AhR as an independent transcription factor for Treg induction. Structure-activity studies showed that unsubstituted BBQ as well as 4, 11-dichloro-BBQ were capable of inducing AhR-Tregs. Other substitutions reduced activation of AhR. Daily treatment with 10-Cl-BBQ during the GVH response prevented development of GVH disease in an AhR-dependent manner with no overt toxicity. Together, our data provide strong support for development of select BBQs that activate the AhR to induce Tregs for treatment of immune-mediated diseases.

  11. Fetal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin transactivates aryl hydrocarbon receptor-responsive element III in the tyrosine hydroxylase immunoreactive neurons of the mouse midbrain.

    Science.gov (United States)

    Tanida, Takashi; Tasaka, Ken; Akahoshi, Eiichi; Ishihara-Sugano, Mitsuko; Saito, Michiko; Kawata, Shigehisa; Danjo, Megumi; Tokumoto, Junko; Mantani, Youhei; Nagahara, Daichi; Tabuchi, Yoshiaki; Yokoyama, Toshifumi; Kitagawa, Hiroshi; Kawata, Mitsuhiro; Hoshi, Nobuhiko

    2014-02-01

    Fetal exposure to dioxins and related compounds is known to disrupt normal development of the midbrain dopaminergic system, which regulates behavior, cognition and emotion. The toxicity of these chemicals is mediated mainly by aryl hydrocarbon receptor (AhR) signaling. Previously, we identified a novel binding motif of AhR, the AhR-responsive element III (AHRE-III), in vitro. This motif is located upstream from the gene encoding tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis. To provide in vivo evidence, we investigated whether 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) could regulate AHRE-III transcriptional activity in midbrain dopaminergic neurons. We produced transgenic mice with inserted constructs of the AHRE-III enhancers, TH gene promoter and the c-myc-tagged luciferase gene. Single oral administrations of TCDD (0-2000 ng kg⁻¹ body weight) to the transgenic dams markedly enhanced TH-immunoreactive (ir) intensity in the A9, A10 and A8 areas of their offspring at 3 days and 8 weeks of age. The offspring of dams treated with 200 ng kg⁻¹ TCDD exhibited significant increases in the numbers of TH- and double (TH and c-myc)-ir neurons in area A9 compared with controls at 8 weeks. These results show that fetal exposure to TCDD upregulates TH expression and increases TH-ir neurons in the midbrain. Moreover, the results suggest that TCDD directly transactivates the TH promoter via the AhR-AHRE-III-mediated pathway in area A9. Fetal exposure to TCDD caused stable upregulation of TH via the AhR-AHRE-III signaling pathway and overgrowth of TH-ir neurons in the midbrain, implying possible involvement in the etiology of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD).

  12. Aryl hydrocarbon receptor-dependent upregulation of Cyp1b1 by TCDD and diesel exhaust particles in rat brain microvessels

    Directory of Open Access Journals (Sweden)

    Jacob Aude

    2011-08-01

    Full Text Available Abstract Background AhR activates the transcription of several target genes including CYP1B1. Recently, we showed CYP1B1 as the major cytochrome P450 (CYP enzyme expressed in human brain microvessels. Here, we studied the effect of AhR activation by environmental pollutants on the expression of Cyp1b1 in rat brain microvessels. Methods Expression of AhR and Cyp1b1 was detected in isolated rat brain microvessels. AhR was immunovisualised in brain microvessel endothelial cells. The effect of AhR ligands on Cyp1b1 expression was studied using isolated brain microvessels after ex vivo and/or in vivo exposure to TCDD, heavy hydrocarbons containing diesel exhaust particles (DEP or Δ9-tetrahydrocannabinol (Δ9-THC. Results After ex vivo exposure to TCDD (a highly potent AhR ligand for 3 h, Cyp1b1 expression was significantly increased by 2.3-fold in brain microvessels. A single i.p. dose of TCDD also increased Cyp1b1 transcripts (22-fold and Cyp1b1 protein (2-fold in rat brain microvessels at 72 h after TCDD. Likewise, DEP treatment (in vivo and ex vivo strongly induced Cyp1b1 protein in brain microvessels. DEP-mediated Cyp1b1 induction was inhibited by actinomycin D, cycloheximide, or by an AhR antagonist. In contrast, a sub-chronic in vivo treatment with Δ9-THC once daily for 7 seven days had no effect on Cyp1b1 expression Conclusions Our results show that TCDD and DEP strongly induced Cyp1b1 in rat brain microvessels, likely through AhR activation.

  13. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Maayah, Zaid H. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Ghebeh, Hazem [Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Alhaider, Abdulqader A. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451 (Saudi Arabia); El-Kadi, Ayman O.S. [Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton (Canada); Soshilov, Anatoly A.; Denison, Michael S. [Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616 (United States); Ansari, Mushtaq Ahmad [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Korashy, Hesham M., E-mail: hkorashy@ksu.edu.sa [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  14. Craniofacial form is altered by chronic adult exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD in Han/Wistar and Long–Evans rats with different aryl hydrocarbon receptor (AhR structures

    Directory of Open Access Journals (Sweden)

    Sabrina B. Sholts

    2015-01-01

    Full Text Available Mammalian bone has shown a variety of responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD exposure in experimental and wildlife studies. Although many responses have been well characterized in the postcranial skeleton, dioxin-induced effects on the cranium are largely unknown. In this study, we investigated the effects of chronic adult exposure to TCDD on cranial size and shape in dioxin-resistant Han/Wistar (H/W and dioxin-sensitive Long–Evans (L–E rat strains. Three-dimensional landmark configurations for the face, vault, and base of the cranium were recorded and analyzed using geometric morphometrics (GM and dose–response modeling. The strongest effects were shown by L–E and H/W rats with daily exposures of 100 and 1000 ng TCDD/kg bw/day, respectively, resulting in significant reductions in centroid size (CS in all three cranial modules for both strains except for the vault in H/W rats. Consistent with previous evidence of intraspecific variation in TCDD resistance, the benchmark doses (CEDs for cranial size reduction in L–E rats were roughly 10-fold lower than those for H/W rats. For both strains, the face showed the greatest size reduction from the highest doses of TCDD (i.e., 3.6 and 6.3% decreases in H/W and L–E rats, respectively, most likely related to dose-dependent reductions in limb bone size and body weight gain. However, intrinsic morphological differences between strains were also observed: although the control groups of H/W and L–E rats had vaults and bases of comparable size, the face was 6.4% larger in L–E rats. Thus, although H/W rats possess an altered aryl hydrocarbon receptor (AhR that appears to mediate and provides some resistance to TCDD exposure, their smaller reductions in facial size may also relate to strain-specific patterns of cranial development and growth. Future research will be aimed at understanding how ontogenetic factors may modulate toxic effects of prenatal and lactational exposure on

  15. Altered thyroxin and retinoid metabolic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin in aryl hydrocarbon receptor-null mice

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Noriko; Yonemoto, Junzo [National Institute for Environmental Studies, Endocrine Disruptors and Dioxin Research Project, Tsukuba (Japan); Miyabara, Yuichi [Shinshu University, Research and Education Center for Inlandwater Environment, Nagano (Japan); Fujii-Kuriyama, Yoshiaki [University of Tsukuba, Center for Tsukuba Advanced Research Alliance, Tsukuba (Japan); Tohyama, Chiharu [National Institute for Environmental Studies, Environmental Health Sciences Division, Tsukuba (Japan)

    2005-05-01

    To determine whether the disruption of thyroid hormone and retinoid homeostasis that occurs after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can be mediated by the arylhydrocarbon receptor (AhR), pregnant AhR-heterozygous (AhR+/-) mice were administered a single oral dose of 10 {mu}g kg{sup -1} TCDD at gestation day 12.5. Serum and liver were collected on postnatal day 21 from vehicle-treated control or TCDD-treated AhR+/- and AhR-null (AhR-/-) mouse pups. Whereas TCDD exposure resulted in a marked reduction of total thyroxin (TT4) and free T4 (FT4) levels in the serum of AhR+/- mice, TCDD had no effects on AhR-/- mice. Gene expression of UDP-glucuronosyltransferase (UGT)1A6, cytochrome P450 (CYP)1A1, and CYP1A2 in the liver was induced markedly by TCDD in AhR+/- but not AhR-/- mice. Induction of CYP1A1 in response to TCDD was confirmed by immunohistochemical evidence in that CYP1A1 protein was conspicuously localized in the cytoplasm of hepatocytes in the centrilobular region. Levels of retinyl palmitate were greatly reduced in the liver of TCDD-exposed AhR+/- mice, but not in vehicle-treated AhR+/- mice. No effects of TCDD on retinoid levels in the liver were found in AhR-/- mice. We conclude that disruption of thyroid hormone and retinoid homeostasis is mediated entirely via AhR. Induction of UGT1A6 is thought to be responsible at least partly for reduced serum thyroid hormone levels in TCDD-exposed mice. (orig.)

  16. Increased cytochrome P450 and aryl hydrocarbon receptor in bronchial epithelium of heavy smokers with non-small cell lung carcinoma carries a poor prognosis.

    Science.gov (United States)

    Oyama, Tsunehiro; Sugio, Kenji; Uramoto, Hidetaka; Iwata, Teruo; Onitsuka, Takamitsu; Isse, Toyohi; Nozoe, Tadahiro; Kagawa, Norio; Yasumoto, Kosei; Kawamoto, Toshihiro

    2007-05-01

    Smoking induces mutations via the formation of DNA-adducts in the bronchial and alveolar epithelium and contributes to the development of lung cancer. Benz(a)pyrene and nitrosamine, typical carcinogens in cigarette smoke, undergo metabolic activation by the phase I enzymes, such as cytochrome P450 (CYP) 1A1, CYP2A6 and CYP2E1. The transcriptional regulation of these phase I enzymes is regulated by arylhydrocarbon receptor (AH-R) which binds many well-known carcinogens. To identify a cause and effect relationship, the expression of cytochrome CYP and AH-R in the bronchial epithelium was correlated with the history of cigarette smoking in patients with non-small cell lung carcinoma (NSCLC). Although CYP3A+ cells were absent in the bronchial epithelium of all patients, there were many CYP2E1+ cells in heavy (>1000 cigarette/day x year) smokers (38.5%). In contra-distinction, there was significantly less number of CYP2E1+ cells in light (less than 1000 cigarette/day x year) smokers (15.6%) or non-smokers (10.0%). Similarly, there were more CYP1A1+ (19.2%) and CYP2A6+ cells in heavy (65.4%) smokers as compared to non-smokers. The number of AH-R+ cells was also significantly higher in cases with p53 mutation (62.5%) than those without (12.2%) mutation. Since in patients with early NSCLC, CYP positivity showed a close correlation with a poor survival (p less than 0.01), expression of CYP in bronchial epithelium has a prognostic potential.

  17. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.

    Science.gov (United States)

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Giesy, John P; Hecker, Markus

    2014-05-01

    Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following

  18. TCDD Protects the Mouse Kidneys against Ischemia-reperfusion Injury by Activating the Aryl Hydrocarbon Receptor%TCDD激活芳香烃受体减轻小鼠肾脏缺血再灌注损伤

    Institute of Scientific and Technical Information of China (English)

    蔡兰军; 余道武; 高义; 杨超; 周鸿敏; 陈忠华

    2013-01-01

    Objective To investigate the protective effects of 2 ,3 ,7 ,8-tetrachlorodibenzo-p-dioxin (TCDD) on ischemia-reperfusion injury (IRI) of the kidneys in mice and the possible mechanism. Methods Kidney IRI models were established in C57BL/6 (H-2b) mice. Animals were divided into TCDD-treated group (0. 5 μg TCDD intraperitoneally given to a mouse 24 h before operation) ,PBS control group (200 μL PBS intraperitoneally administered to a mouse 24 h before operation) ,sham group and normal group. The life time of the animals was recorded ,and the kidney function [blood urea nitrogen (BUN ) and serum creatinine (Scr)]measured. Morphologic changes of the IRI kidney were evaluated by light microscopy. The effect of TCDD on the differentiation of naive T cells into regulatory T cells (Treg cells) was observed invitro. The phenotype of T cells in the peripheral blood or spleens of IRI models was measured by flow cytometry. Results The life time was significantly prolonged and the kidney function improved in the TCDD-treated group as compared with those in the PBS control group (P<0. 05 ). The pathological changes of the kidney in TCDD-treated group were significantly alleviated when compared with those in PBS con -trol group. TCDD selectively expanded the subgroup of CD4+ CD25+ Foxp3+ regulatory T cells invitro (P<0. 05 ) ,as well as Treg cells in the peripheral blood and spleens of IRI models in vivo (P<0. 05). Conclusion Activation of the arly hydrocarbon receptor (AHR) by TCDD could obviously improve the kidney function of IRI models ,which may be associated with the expansion of the Treg cell subgroup.%目的 论证2,3,7,8-四氯联苯对二恶英(2,3,7,8-tetrachlorodibenzo-p-dioxin,TCDD)激活芳香烃受体(aryl hydrocarbon receptor,AHR)在小鼠肾脏缺血再灌注损伤(ischemia-reperfusion injury,IRI)中的保护作用并探讨其机制.方法 建立C57BL/6小鼠肾脏缺血再灌注损伤模型,设TCDD治疗组(术前24 h腹腔注射TCDD 0.5 μg /

  19. Changes of aryl hydrocarbon receptor in cardiac hypertrophy induced by high glucose in vitro%芳香烃受体在体外高糖环境诱导心肌肥大过程中的表达

    Institute of Scientific and Technical Information of China (English)

    唐雪娇; 肖骅; 张磊; 魏潇; 雷建明; 郭静文

    2016-01-01

    AIM:To investigate the changes of aryl hydrocarbon receptor (AhR) in the process of cardiomyo-cyte hypertrophy induced by high glucose , and to explore its potential mechanisms .METHODS: The rat cardiomyocytes (H9c2 cells) were divided into normal glucose group , high glucose group, DMSO group and resveratrol (an AhR antago-nist) group.The content and distribution of AhR were observed with immunofluorescence staining .The myocardial cells were stained with rhodamine-labeled phalloidin to visualize cytoskeleton , and the cell surface area were determined after im-aging by fluorescence microscopy .The generation of reactive oxygen species ( ROS) in the cardiomyocytes was measured u-sing a fluorescent probe DCFH-DA.The mRNA expression of AhR , CYP1A1, atrial natriuretic peptide ( ANP) and brain natriuretic peptide ( BNP) were evaluated by real-time quantitative PCR ( RT-qPCR).The protein levels of AhR, CYP1A1, ANP and BNP were assessed by Western blot .RESULTS:AhR was constitutively presented in the cytosol un-der normal-glucose condition and was translocated to the nuclei under high-glucose condition .High glucose induced cardiac hypertrophy , and increased ROS generation .Significant reductions in the cell size and ROS generation were observed after treated with resveratrol.The expression of AhR, CYP1A1, ANP and BNP at mRNA and protein levels in high glucose group was increased as compared with normal glucose group and resveratrol group , and the above-mentioned indexes signifi-cantly decreased in resveratrol group as compared with DMSO group .CONCLUSION: High glucose-induced cardiac hy-pertrophy increases AhR expression , which may be involved in the maintenance of glucose homeostasis in the cardiomyo-cytes.AhR translocation to the nucleus induced by high glucose results in the increases in CYP 1A1 expression and ROS generation, which may be an important mechanism of high glucose-induced cardiomyocyte hypertrophy .%目的:观察高糖环境诱导心肌细胞肥

  20. Aryl Hydrocarbon Receptor:Its Structure,Polymorphism and Related Toxicological Problem%芳香烃受体的结构和多态性及相关的毒理学问题

    Institute of Scientific and Technical Information of China (English)

    张东升; 沈建华; 顾祖维

    2001-01-01

    @@ 卤代芳烃(halogenated aromatic hydrocarbons, HAHs)杂环胺(heterocyclic amines, HCA),多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是几类严重威胁人类健康和生态环境的环境污染物。

  1. Aryl biphenyl-3-ylmethylpiperazines as 5-HT7 receptor antagonists.

    Science.gov (United States)

    Kim, Jeeyeon; Kim, Youngjae; Tae, Jinsung; Yeom, Miyoung; Moon, Bongjin; Huang, Xi-Ping; Roth, Bryan L; Lee, Kangho; Rhim, Hyewhon; Choo, Il Han; Chong, Youhoon; Keum, Gyochang; Nam, Ghilsoo; Choo, Hyunah

    2013-11-01

    The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.

  2. Inhibitory effect and its mechanism of ITE,an endogenous aryl hydrocarbon receptor (AhR) ligand,on the proliferation of human placental trophoblast cells%芳香烃受体(AhR)内源性配体ITE对胎盘滋养层细胞的增殖抑制作用及其机制

    Institute of Scientific and Technical Information of China (English)

    郝克红; 王凯; 陈晓; 段涛

    2014-01-01

    目的 研究芳香烃受体(aryl hydrocarbon receptor,AhR)的内源性配体2-(1'H-吲哚3'-羰基)噻唑-4-羧酸甲酯(ITE)对胎盘滋养层细胞增殖的影响及其机制.方法 用免疫组织化学及Western blot检测AhR在早期绒毛和晚期胎盘组织中的表达,利用人胎盘滋养层细胞系JEG-3和JAR作为细胞模型研究ITE对胎盘滋养层细胞增殖的影响.结果 AhR主要分布于人胎盘合体滋养层细胞的胞质中,并且晚期胎盘组织中AhR蛋白的表达水平高于早期绒毛组织(P<0.05).AhR蛋白质在JEG-3中表达较高,而在JAR中几乎检测不到.ITE可诱导JEG-3细胞中AhR下游靶基因细胞色素P4501A1(CYP1 A1) mRNA的表达,该诱导作用具有剂量和时间依赖性.同时,ITE使JEG-3细胞滞留于细胞周期的S期,进而抑制细胞的增殖.结论 ITE通过激活AhR信号通路抑制胎盘滋养层细胞的增殖,该抑制作用主要通过调节细胞周期的改变来实现.

  3. Effects of exposure to air pollution and smoking on the placental aryl hydrocarbon hydroxylase (AHH) activity

    Energy Technology Data Exchange (ETDEWEB)

    Hincal, F.

    Aryl hydrocarbon hydroxylase (AHH) activities were determined in placental tissues of 152 nonsmoker or exsmoker women who live in Ankara and 125 nonsmoker women who live in areas surrounding Ankara. Levels of AHH were also determined in the placentas of 52 cigarette smokers. The mean AHH activity in the Ankara group was 11.17 +/- 5.41; in the control group, 6.44 +/- 5.48; and for smokers, 45.68 +/- 53.36, which indicates significant differences (p < .001). There was a strong correlation (r = 0.89) between the AHH activities of individuals who live in Ankara and smoke content of the air. Placental AHH activity did not show any relation to the age, nutritional and dietary habits, factors of indoor pollution, duration of pregnancy, nor did the weight, length and Apgar score of the babies.

  4. Influence of some anti-inflammatory drugs on the activity of aryl hydrocarbon hydroxylase and the cytochrome P450 content

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, M.H.; Sheweita, S.A.; Abdel-Moneam, N.M. (Alexandria Univ. (Egypt))

    1990-06-01

    The metabolism of benzo({alpha})pyrene is mediated by the mixed function oxidase system including the cytochrome P450-dependent aryl hydrocarbon hydroxylase. The data of the present study revealed the ability of various commonly used anti-inflammatory drugs to alter the activity of this enzyme system, where all the tested drugs, namely phenyl butazone, ketoprofen, piroxicam, and acetaminophen, caused an increase in both the activity of aryl hydrocarbon hydroxylase and the cytochrome P450 content whether administered as a single dose or as a repeated dose for 6 consecutive days. The percentage of change for all drugs except phenyl butazone was proportional to the duration of drug administration. On the other hand, pyrazole which is chemically related to phenyl butazone, had no significant effect when administered as a single dose but caused a decrease in both studied parameters when administered as a repeated dose for 6 consecutive days. The mechanisms by which these commonly used drugs modify the aryl hydrocarbon hydroxylase activity and the cytochrome p450 content are discussed in the text.

  5. Expression of aryl hydrocarbon receptor 1 (AHR1), AHR1 nuclear translocator 1 (ARNT1) and CYP1 family monooxygenase mRNAs and their activity in chicken ovarian follicles following in vitro exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

    Science.gov (United States)

    Antos, Piotr A; Błachuta, Małgorzata; Hrabia, Anna; Grzegorzewska, Agnieszka K; Sechman, Andrzej

    2015-09-02

    The aim of this in vitro study was to determine the effect of TCDD and luteinizing hormone (LH) on mRNA expression of aryl hydrocarbon receptor 1 (AHR1), AHR1 nuclear translocator 1 (ARNT1), and the CYP1 family monooxygenases (CYP1A4, CYP1A5, CYP1B1), and to assess the basal and TCDD-induced activity of these enzymes in chicken ovarian follicles. White (WF) and yellowish (YF) prehierarchical follicles and fragments of the theca (TL) and granulosa (GL) layers of the 3 largest preovulatory follicles (F3-F1) were exposed to TCDD (10nM), ovine LH (oLH; 10ng/mL) or a combination of TCDD (10nM) and oLH (10ng/mL), and increasing doses of TCDD (0.01-100nM). AHR1 and ARNT1 mRNA transcripts were found in all examined follicles. The effect of TCDD and oLH on AHR1 and ARNT1 mRNA expression depended on the maturational state of the follicle. CYP1A4 was predominantly expressed in the GL of the F3-F1 follicles; in comparison with the WF, a higher level of CYP1A5 mRNA was found both in the GL and TL of F3-F1 follicles. Alternatively, the highest level of CYP1B1 mRNA was noticed in the WF follicles. In different developmental stages of the follicle TCDD and oLH induced a different CYP1 isoform. TCDD increased EROD and MROD activities in all the investigated ovarian follicles. In conclusion, AHR1 and ARNT1 mRNA expression indicate that the chicken ovary is a target tissue for dioxin and dioxin-like compounds. The expression of CYP1-family genes and TCDD-inducible EROD and MROD activities in ovarian follicles suggest the possibility of xenobiotic detoxification in the chicken ovary.

  6. Comparative effects of indole and aminoacetonitrile derivatives on dimethylnitrosamine-demethylase and aryl hydrocarbon hydroxylase activities.

    Science.gov (United States)

    Arcos, J C; Myers, S C; Neuburger, B J; Argus, M F

    1980-04-01

    The effect of in vivo administration of indole and five 3-indolyl derivatives including L-tryptophan, as well as of aminoacetonitrile and 3 of its derivatives, were studied on the carcinogen-metabolizing hepatic mixed-function oxidases dimethylnitrosamine (DMN)-demethylase I and II and aryl hydrocarbon hydroxylase (AHH). Indole, 3-indolylmethanol, 3-indolyl-acetonitrile, 3-indolylacetone and L-tryptophan induce AHH activity from 3- to 6-fold of the control level, whereas beta-3-indolylethanol has no effect; the latter compound produces a 21% decrease of the endoplasmic reticulum content in the tissue. Only L-tryptophan induces DMN-demethylase I and only L-tryptophan and 3-indolylmethanol induce DMN-demethylase II, representing a doubling of enzyme activity in all 3 instances. Aminoacetonitrile is a potent repressor of DMN-demethylase I. Substitutions on the amino group bring about strong decrease or abolishment of mixed-function oxidase repressor activity; thus, iminodiacetonitrile has only about 1/5th the repressor activity of the parent compound, whereas nitrilotriacetonitrile and dimethylaminoacetonitrile appear to be inactive. Aminoacetonitrile and its derivatives studied have no effect on DMN-demethylase II and AHH activities. The mixed-function oxidase-modifying effects of the indole compounds and of aminoacetonitrile and its derivatives illustrate the potential complexity of effects of dietary constituents on the carcinogenic responses.

  7. Studies on Aryl-Substituted Phenylalanines: Synthesis, Activity, and Different Binding Modes at AMPA Receptors

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Frydenvang, Karla Andrea; Pickering, Darryl S;

    2016-01-01

    A series of racemic aryl-substituted phenylalanines was synthesized and evaluated in vitro at recombinant rat GluA1−3, at GluK1−3, and at native AMPA receptors. The individual enantiomers of two target compounds, (RS)-2-amino-3-(3,4-dichloro-5-(5-hydroxypyridin-3-yl)phenyl)- propanoic acid (37...

  8. Effectiveness of a Prudhoe Bay crude oil and its aliphatic, aromatic and heterocyclic fractions in inducing mortality and aryl hydrocarbon hydroxylase in chick embryo in ovo

    Energy Technology Data Exchange (ETDEWEB)

    Walters, P.; Khan, S.; O' Brien, P.J.O.; Rahimtula, A.T.; Payne, J.F.

    1987-08-01

    Prudhoe Bay crude oil (PBCO) and its aliphatic, aromatic and heterocyclic fractions were tested on the developing chick embryo for (i) embryotoxicity (ii) their ability to induce hepatic and renal cytochrome P450 levels as well as hepatic, renal and pulmonary aryl hydrocarbon hydroxylase activities. On the basis of its concentration in PBCO, the aromatic fraction was responsible for most of the embryotoxicity as well as for the enzyme inducing ability. The NOS fraction constituted less than 7% (w/v) of PbCO but, on a weight equivalent basis, was roughly as potent as the aromatic fraction in causing embryotoxicity and in inducing cytochrome P450 levels and aryl hydrocarbon hydroxylase. The aliphatic fraction was found to be essentially inactive. The results are consistent with the concept that elevation of aryl hydrocarbon hydroxylase levels by certain components of PBCO may lead to increased embroyotoxicity.

  9. Relationship between aryl hydrocarbon receptor interacting protein gene expression and clinical characteristics in human pituitary somatotrophinomas%人垂体生长激素腺瘤临床生化特征与芳香烃基受体相互作用蛋白基因表达的相关性

    Institute of Scientific and Technical Information of China (English)

    雷琢玮; 陈娟; 谢蕊繁; 李朝曦; 淦超; 徐钰; 叶飞; 孙玉洁; 韩晓

    2015-01-01

    Objective To investigate the expression of aryl Hydrocarbon Receptor Interacting protein (AIP) gene mutations and relationship with clinical biochemical characteristics in human somatotropinomas.Methods From October 2009 to September 2012,96 acromegaly or gigantism patients were diagnosed in a single pituitary center,with consistent treatment and follow-up.Genomic DNA from tumor tissues was extracted and sequenced.Clinical data were retrospectively analyzed.Results Overall,55 patients (57.3%) had one or more single base substitutions inAIP gene from their tumor tissues.Thirteen point mutations were detected in total,and 5 novel ones (c.609C > G,c.646-38C > T,c.646-35C > T,c.646-34A > T and c.692C > T) were firstly reported according to the National Center for Biotechnology Information (NCBI) single nucleotide polymorphism (SNP) database.Somatic AIPmut group showed characteristics as younger onset age (P < 0.05),larger tumor diameter (P < 0.05),higher invasiveness and aggressiveness (P < 0.05),and more prevalence in recurrent tumors (P < 0.05),than the negative group.Conclusion Somatic AIP gene mutation screen may be clinically crucial for the substantial treatment and outcome prejudgement,as well as the follow-up duration and frequency.The treatment strategy for AIPmut patients remains stressful; in the meanwhile,the role of AIP gene in the pathogenesis of somatotropinomas await more investigation.%目的 探讨芳香烃基受体相互作用蛋白(AIP)基因在国人垂体生长激素腺瘤中的体细胞突变与临床生化特征相关性.方法 收集96例垂体生长激素腺瘤患者的肿瘤标本进行检测,分析临床随访资料.结果 在对55例(57.3%)肿瘤标本中测序发现13个突变位点,其中,c.609C >G,c.646-38C>T,c.646-35C>T,c.646-34A>T和c.692C>T 5种类型尚未在国家生物技术信息中心(NCBI)单核苷酸多态性(SNP)数据库中报道过,为新发现AIP基因突变位点.AIP基因突变与患者起

  10. Embryotoxicity, teratogenicity, and aryl hydrocarbon hydroxylase activity in Forster's terns on Green Bay, Lake Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, D.J.; Rattner, B.A.; Sileo, L.; Docherty, D.; Kubiak, T.J.

    1987-02-01

    Known reproductive problems, including congenital malformations and poor hatching success, exist for the state endangered Forster's tern (Sterna forsteri) in Green Bay, Wisconsin. Twenty Forster's tern eggs were collected from separate nests at (i) a natural colony with documented reproductive problems, situated at Green Bay, Lake Michigan, and (ii) an inland colony at Lake Poygan (control) where reproduction was documented as normal. Eggs from the two locations were placed in the same laboratory incubator and candled throughout incubation. Hatching success of Green Bay eggs was 52% of that for controls. Several early embryonic deaths occurred, but most mortality occurred close to the time of hatching. Liver microsomal aryl hydrocarbon hydroxylase activity was elevated approximately threefold in Green Bay hatchlings compared to controls. Green Bay terns that hatched weighed less than controls, had an increased liver to body weight ratio, and had a shorter femur length. Two Green Bay embryos that failed to hatch had anomalies, one with a crossed beak and one with poor ossification of the foot. One Green Bay hatchling had an abnormally ossified ilium. These effects were observed in eggs where there were measurable levels of aryl hydrocarbon hydroxylase inducers including polychlorinated biphenyls and polychlorinated dibenzo-p-dioxins.

  11. 2-Aryl(pyrrolidin-4-yl)acetic acids are potent agonists of sphingosine-1-phosphate (S1P) receptors.

    Science.gov (United States)

    Yan, Lin; Budhu, Richard; Huo, Pei; Lynch, Christopher L; Hale, Jeffrey J; Mills, Sander G; Hajdu, Richard; Keohane, Carol A; Rosenbach, Mark J; Milligan, James A; Shei, Gan-Ju; Chrebet, Gary; Bergstrom, James; Card, Deborah; Mandala, Suzanne M

    2006-07-01

    A series of 2-aryl(pyrrolidin-4-yl)acetic acids were synthesized and their biological activities were evaluated as agonists of S1P receptors. These analogs were able to induce lowering of lymphocyte counts in the peripheral blood of mice and were found to have good overall pharmacokinetic properties in rat.

  12. Discovery of aryl ureas and aryl amides as potent and selective histamine H3 receptor antagonists for the treatment of obesity (part I).

    Science.gov (United States)

    Gao, Zhongli; Hurst, William J; Guillot, Etienne; Czechtizky, Werngard; Lukasczyk, Ulrike; Nagorny, Raisa; Pruniaux, Marie-Pierre; Schwink, Lothar; Sanchez, Juan Antonio; Stengelin, Siegfried; Tang, Lei; Winkler, Irvin; Hendrix, James A; George, Pascal G

    2013-06-01

    A series of structurally novel aryl ureas was derived from optimization of the HTS lead as selective histamine H3 receptor (H3R) antagonists. The SAR was explored and the data obtained set up the starting point and foundation for further optimization. The most potent tool compounds, as exemplified by compounds 2l, 5b, 5d, and 5e, displayed antagonism potencies in the subnanomolar range in in vitro human-H3R FLIPR assays and rhesus monkey H3R binding assays.

  13. Effect of highly bioaccumulated polychlorinated biphenyl congeners on estrogen and androgen receptor activity

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, E.C.; Andersen, H. R.; Rasmussen, T.H.;

    2001-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous environmental persistent contaminants giving rise to potential health hazard. Some PCBs exert dioxin-like activities mediated through the aryl hydrocarbon receptor. Although reports on interaction with other nuclear receptors are sparce, some...

  14. Environmental polycyclic aromatic hydrocarbons affect androgen receptor activation in vitro

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Hnida, Christina; Larsen, John Christian

    2000-01-01

    Nine structurally different polycyclic aromatic hydrocarbons (PAHs) were tested for their ability to either agonize or antagonize the human androgen receptor (hAR) in a sensitive reporter gene assay based on CHO cells transiently cotransfected with a hAR vector and an MMTV-LUC vector. Benz...

  15. Novel 3-Oxazolidinedione-6-aryl-pyridinones as Potent, Selective, and Orally Active EP3 Receptor Antagonists.

    Science.gov (United States)

    Jin, Jian; Morales-Ramos, Angel; Eidam, Patrick; Mecom, John; Li, Yue; Brooks, Carl; Hilfiker, Mark; Zhang, David; Wang, Ning; Shi, Dongchuan; Tseng, Pei-San; Wheless, Karen; Budzik, Brian; Evans, Karen; Jaworski, Jon-Paul; Jugus, Jack; Leon, Lisa; Wu, Charlene; Pullen, Mark; Karamshi, Bhumika; Rao, Parvathi; Ward, Emma; Laping, Nicholas; Evans, Christopher; Leach, Colin; Holt, Dennis; Su, Xin; Morrow, Dwight; Fries, Harvey; Thorneloe, Kevin; Edwards, Richard

    2010-10-14

    High-throughput screening and subsequent optimization led to the discovery of novel 3-oxazolidinedione-6-aryl-pyridinones exemplified by compound 2 as potent and selective EP3 antagonists with excellent pharmacokinetic properties. Compound 2 was orally active and showed robust in vivo activities in overactive bladder models. To address potential bioactivation liabilities of compound 2, further optimization resulted in compounds 9 and 10, which maintained excellent potency, selectivity, and pharmacokinetic properties and showed no bioactivation liability in glutathione trapping studies. These highly potent, selective, and orally active EP3 antagonists are excellent tool compounds for investigating and validating potential therapeutic benefits from selectively inhibiting the EP3 receptor.

  16. Detection of Interaction of Binding Affinity of Aromatic Hydrocarbon Receptor to the Specific DNA by Exonuclease Protection Mediated PCR Assay

    Institute of Scientific and Technical Information of China (English)

    SUN Xi; XU Shunqing

    2005-01-01

    A novel exonuclease protection mediated PCR assay (EPM-PCR) to detect the interaction of protein and DNA at a dioxin-responsive enhancer (DRE) upstream of the CYP1A1 gene in rat hepatic cytosol was established. A double-stranded DNA fragment containing two binding sites was designed and incubated with the aryl hydrocarbon receptor (AhR) transformed by 2,3,7,8-tet rachlorodibenzo p dioxin (TCDD) to generate TCDD: AhR: DNA complex which could protect receptor-binding DNA against exonuclease Ⅲ (Exo Ⅲ) digestion. With ExoⅢ treatment, free DNAs were digested and receptor-bound DNAs remained that could be amplified by PCR. By agarose gel electrophoreses a clear band (285bp) was detected using TCDD-treated sample, while nothing with control samples. To detect transformed AhR-DRE complex, 2 fmol DNAs and 3 ug cytosol proteins were found to be sufficient in the experiment. Compared with gel retardation assay, this new method is more sensitive for monitoring the Ah receptor-enhancer interaction without radioactive pollution.

  17. Computer-aided design of negative allosteric modulators of metabotropic glutamate receptor 5 (mGluR5): Comparative molecular field analysis of aryl ether derivatives.

    Science.gov (United States)

    Selvam, Chelliah; Thilagavathi, Ramasamy; Narasimhan, Balasubramanian; Kumar, Pradeep; Jordan, Brian C; Ranganna, Kasturi

    2016-02-15

    The metabotropic glutamate receptors (mGlu receptors) have emerged as attractive targets for number of neurological and psychiatric disorders. Recently, mGluR5 negative allosteric modulators (NAMs) have gained considerable attention in pharmacological research. Comparative molecular field analysis (CoMFA) was performed on 73 analogs of aryl ether which were reported as mGluR5 NAMs. The study produced a statistically significant model with high correlation coefficient and good predictive abilities.

  18. Comparative Analyses of Aryl Hydrocarbon Receptor Structure, Function, and Evolution in Marine Mammals

    Science.gov (United States)

    2007-02-01

    Contaminants and Aquatic Mammals: A Biomarker to Assess Species Differences in Susceptibility to Dioxin -like Chemicals, Woods Hole Oceanographic...harbor seal (Phoca vitulina): a biomarker of dioxin susceptibility? Aquat Toxicol 58:57-73. Kim, E.Y., M.E. Hahn, H. Iwata, S. Tanabe and N. Miyazaki...seal (Phoca vitulina): a biomarker of dioxin susceptibility? Aquat Toxicol 58:57-73. Kim, E.Y., M.E. Hahn, H. Iwata, S. Tanabe and N. Miyazaki. 2002

  19. Association between polymorphisms in the aryl hydrocarbon receptor repressor gene and disseminated testicular germ cell cancer

    DEFF Research Database (Denmark)

    Brokken, Leon J S; Lundberg-Giwercman, Yvonne; Rajpert-De Meyts, Ewa

    2013-01-01

    In the Western world, testicular germ cell cancer (TGCC) is the most common malignancy of young men. The malignant transformation of germ cells is thought to be caused by developmental and hormonal disturbances, probably related to environmental and lifestyle factors because of rapidly increasing...

  20. Reconciling Experiment and Theory in the Use of Aryl-Extended Calix[4]pyrrole Receptors for the Experimental Quantification of Chloride–π Interactions in Solution

    Directory of Open Access Journals (Sweden)

    Antonio Bauzá

    2015-04-01

    Full Text Available In this manuscript we consider from a theoretical point of view the recently reported experimental quantification of anion–π interactions (the attractive force between electron deficient aromatic rings and anions in solution using aryl extended calix[4]pyrrole receptors as model systems. Experimentally, two series of calix[4]pyrrole receptors functionalized, respectively, with two and four aryl rings at the meso positions, were used to assess the strength of chloride–π interactions in acetonitrile solution. As a result of these studies the contribution of each individual chloride–π interaction was quantified to be very small (<1 kcal/mol. This result is in contrast with the values derived from most theoretical calculations. Herein we report a theoretical study using high-level density functional theory (DFT calculations that provides a plausible explanation for the observed disagreement between theory and experiment. The study reveals the existence of molecular interactions between solvent molecules and the aromatic walls of the receptors that strongly modulate the chloride–π interaction. In addition, the obtained theoretical results also suggest that the chloride-calix[4]pyrrole complex used as reference to dissect experimentally the contribution of the chloride–π interactions to the total binding energy for both the two and four-wall aryl-extended calix[4]pyrrole model systems is probably not ideal.

  1. Receptor Model Source Apportionment of Nonmethane Hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    V. Mugica

    2002-01-01

    Full Text Available With the purpose of estimating the source contributions of nonmethane hydrocarbons (NMHC to the atmosphere at three different sites in the Mexico City Metropolitan Area, 92 ambient air samples were measured from February 23 to March 22 of 1997. Light- and heavy-duty vehicular profiles were determined to differentiate the NMHC contribution of diesel and gasoline to the atmosphere. Food cooking source profiles were also determined for chemical mass balance receptor model application. Initial source contribution estimates were carried out to determine the adequate combination of source profiles and fitting species. Ambient samples of NMHC were apportioned to motor vehicle exhaust, gasoline vapor, handling and distribution of liquefied petroleum gas (LP gas, asphalt operations, painting operations, landfills, and food cooking. Both gasoline and diesel motor vehicle exhaust were the major NMHC contributors for all sites and times, with a percentage of up to 75%. The average motor vehicle exhaust contributions increased during the day. In contrast, LP gas contribution was higher during the morning than in the afternoon. Apportionment for the most abundant individual NMHC showed that the vehicular source is the major contributor to acetylene, ethylene, pentanes, n-hexane, toluene, and xylenes, while handling and distribution of LP gas was the major source contributor to propane and butanes. Comparison between CMB estimates of NMHC and the emission inventory showed a good agreement for vehicles, handling and distribution of LP gas, and painting operations; nevertheless, emissions from diesel exhaust and asphalt operations showed differences, and the results suggest that these emissions could be underestimated.

  2. Aryl‐hydrocarbon receptor activity modulates prolactin expression in the pituitary

    Energy Technology Data Exchange (ETDEWEB)

    Moran, Tyler B.; Brannick, Katherine E.; Raetzman, Lori T., E-mail: raetzman@life.illinois.edu

    2012-11-15

    Pituitary tumors account for 15% of intracranial neoplasms, however the extent to which environmental toxicants contribute to the proliferation and hormone expression of pituitary cells is unknown. Aryl-hydrocarbon receptor (AhR) interacting protein (AIP) loss of function mutations cause somatotrope and lactotrope adenomas in humans. AIP sequesters AhR and inhibits its transcriptional function. Because of the link between AIP and pituitary tumors, we hypothesize that exposure to dioxins, potent exogenous ligands for AhR that are persistent in the environment, may predispose to pituitary dysfunction through activation of AhR. In the present study, we examined the effect of AhR activation on proliferation and endogenous pituitary hormone expression in the GH3 rat somatolactotrope tumor cell line and the effect of loss of AhR action in knockout mice. GH3 cells respond to nM doses of the reversible AhR agonist β-naphthoflavone with a robust induction of Cyp1a1. Although mRNA levels of the anti-proliferative signaling cytokine TGFbeta1 are suppressed upon β-naphthoflavone treatment, we did not observe an alteration in cell proliferation. AhR activation with β-naphthoflavone suppresses Ahr expression and impairs expression of prolactin (PRL), but not growth hormone (GH) mRNA in GH3 cells. In mice, loss of Ahr similarly leads to a reduction in Prl mRNA at P3, while Gh is unaffected. Additionally, there is a significant reduction in pituitary hormones Lhb and Fshb in the absence of Ahr. Overall, these results demonstrate that AhR is important for pituitary hormone expression and suggest that environmental dioxins can exert endocrine disrupting effects at the pituitary. -- Highlights: ► AhR signaling suppresses Prl mRNA expression. ► AhR signaling does not influence pituitary proliferation in culture. ► AhR is necessary for Prl, Lhb and Fshb expression at postnatal day 3.

  3. Synthesis and structure-activity relationships of N-aryl-piperidine derivatives as potent (partial) agonists for human histamine H3 receptor.

    Science.gov (United States)

    Ishikawa, Makoto; Furuuchi, Takeshi; Yamauchi, Miki; Yokoyama, Fumikazu; Kakui, Nobukazu; Sato, Yasuo

    2010-07-15

    4-((1H-imidazol-4-yl)methyl)-1-aryl-piperazine and piperidine derivatives were designed and synthesized as candidate human histamine type 3 agonists. The piperazine derivatives were found to have low (or no) affinity for human histamine H3 receptor, whereas the piperidine derivatives showed moderate to high affinity, and their agonistic activity was greatly influenced by substituents on the aromatic ring. Among the piperidine-containing compounds, 17d and 17h were potent human histamine H3 receptor agonists with high selectivity over the closely related human H4 receptor. Our results indicate that appropriate conformational restriction, that is, by the piperidine spacer moiety, favors specific binding to the human histamine H3 receptor.

  4. N-Aryl-oxazolidin-2-imine Muscle Selective Androgen Receptor Modulators Enhance Potency through Pharmacophore Reorientation

    Energy Technology Data Exchange (ETDEWEB)

    Nirschl, Alexandra A.; Zou, Yan; Krystek, Jr., Stanley R.; Sutton, James C.; Simpkins, Ligaya M.; Lupisella, John A.; Kuhns, Joyce E.; Seethala, Ramakrishna; Golla, Rajasree; Sleph, Paul G.; Beehler, Blake C.; Grover, Gary J.; Egan, Donald; Fura, Aberra; Vyas, Viral P.; Li, Yi-Xin; Sack, John S.; Kish, Kevin F.; An, Yongmi; Bryson, James A.; Gougoutas, Jack Z.; DiMarco, John; Zahler, Robert; Ostrowski, Jacek; Hamann, Lawrence G.; (BMS)

    2010-11-09

    A novel selective androgen receptor modulator (SARM) scaffold was discovered as a byproduct obtained during synthesis of our earlier series of imidazolidin-2-ones. The resulting oxazolidin-2-imines are among the most potent SARMs known, with many analogues exhibiting sub-nM in vitro potency in binding and functional assays. Despite the potential for hydrolytic instability at gut pH, compounds of the present class showed good oral bioavailability and were highly active in a standard rodent pharmacological model.

  5. Structure-activity relationship study on N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides, a class of 5-HT7 receptor agents. 2.

    Science.gov (United States)

    Leopoldo, Marcello; Lacivita, Enza; Contino, Marialessandra; Colabufo, Nicola A; Berardi, Francesco; Perrone, Roberto

    2007-08-23

    Here we report the synthesis of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinealkylamides 16-29 that were designed to elucidate both structure-affinity and -activity relationships for the 5-HT7 receptor, by targeting the substituent in 2-position of the aryl linked to the piperazine ring. The affinities of 16-29 for 5-HT7, 5-HT1A, 5-HT2A, and D2 receptors were assessed by radioligand binding assays. The intrinsic activities at the 5-HT7 receptor of the most potent compounds were determined. A series of substituents covering a wide range of electronic, steric, and polar properties was evaluated, revealing a key role on 5-HT7 receptor affinity and intrinsic activity. Certain lipophilic substituents (SCH3, CH(CH3)2, N(CH3)2, CH3, Ph) led to high-affinity agonists, whereas OH and NHCH3 substituents switched intrinsic activity toward antagonism. 4-[2-(1-Methylethyl)phenyl]-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (19), 4-(2-diphenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (21), and 4-(2-dimethylaminophenyl)-N-(1,2,3,4-tetrahydronaphthalen-1-yl)-1-piperazinehexanamide (22) were identified as potent 5-HT7 receptor agonists (Ki = 0.13-1.1 nM, EC50 = 0.90-1.77 microM), showing selectivity over 5-HT1A, 5-HT2A, and D2 receptors.

  6. Discovery of aryl ureas and aryl amides as potent and selective histamine H3 receptor antagonists for the treatment of obesity (part II).

    Science.gov (United States)

    Gao, Zhongli; Hurst, William J; Guillot, Etienne; Czechtizky, Werngard; Lukasczyk, Ulrike; Nagorny, Raisa; Pruniaux, Marie-Pierre; Schwink, Lothar; Sanchez, Juan Antonio; Stengelin, Siegfried; Tang, Lei; Winkler, Irvin; Hendrix, James A; George, Pascal G

    2013-06-01

    A novel series of histamine H3 receptor (H3R) antagonists was derived from an arylurea lead series (1) via bioisosteric replacement of the urea functionality by an amide linkage. The arylamide series was optimized through SAR studies by a broad variation of substituents in the left-hand side benzoyl residue (analogs 2a-2ag) or replacement of the benzoyl moiety by heteroarylcarbonyl residues (analogs 5a-5n). Compounds 2p and 2q were identified within the series as potent and selective H3R antagonists/inverse agonists with acceptable overall profile. Compound 2q was orally active in food intake inhibition in diet-induced obese (DIO) mice. Compound 2q represents a novel H3R antagonist template with improved in vitro potency and oral efficacy and has its merits as a new lead for further optimization.

  7. Ah receptor agonist activity in frequently consumed food items

    NARCIS (Netherlands)

    Waard, de W.J.; Aarts, J.M.M.J.G.; Peijnenburg, A.A.C.M.; Kok, de T.M.C.M.; Schooten, van F.J.; Hoogenboom, L.A.P.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) receives much attention for its role in the toxicity of dioxins and dioxin-like polychlorinated biphenyls. However, many other compounds have also been reported to bind and activate AhR, of which natural food components are of special interest from a human health

  8. Influence of TCDD and natural Ah receptor agonists on benzo[a]pyrene-DNA adduct formation in the Caco-2 human colon cell line

    NARCIS (Netherlands)

    Waard, de W.J.; Kok, de T.M.C.M.; Maas, L.M.; Peijnenburg, A.A.C.M.; Hoogenboom, L.A.P.; Aarts, H.J.M.; Schooten, van F.J.

    2008-01-01

    Several compounds originating from cruciferous vegetables and citrus fruits bind to and activate the aryl hydrocarbon receptor (AhR). This receptor plays an important role in the toxicity of the known tumour promoter and potent AhR-agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, vegetab

  9. Interactions between polymorphisms in the aryl hydrocarbon receptor signalling pathway and exposure to persistent organochlorine pollutants affect human semen quality

    DEFF Research Database (Denmark)

    Brokken, L J S; Lundberg, P J; Spanò, M;

    2014-01-01

    variants significantly modified the association between serum levels of both p,p'-DDE and CB-153 and inhibin B levels, sperm chromatin integrity, and seminal zinc levels. In the total cohort, interactions between AHRR variants and serum levels of CB-153 were associated with sperm chromatin integrity...

  10. Genetic basis for evolved tolerance to dioxin-like pollutants in wild Atlantic killifish: more than the aryl hydrocarbon receptor

    Science.gov (United States)

    Atlantic killifish (Fundulus heteroclitus) resident to some US urban and industrialized estuaries demonstrate recently evolved and extreme tolerance to toxic dioxin-like compounds (DLCs). Here we provide an unusually comprehensive accounting (69%) through Quantitative Trait Locu...

  11. Direct assessment of cumulative aryl hydrocarbon receptor agonist activity in sera from experimentally exposed mice and environmentally exposed humans

    DEFF Research Database (Denmark)

    Schlezinger, Jennifer J; Bernard, Pamela L; Haas, Amelia;

    2010-01-01

    readouts to provide a broader context for estimating human risk than that obtained with serum extraction and gas chromatography/mass spectroscopy (GC/MS)-based assays alone. METHODS: AhR agonist activity was quantified in sera from dioxin-treated mice, commercial human sources, and polychlorinated biphenyl...

  12. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Li, Zhanguo [Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People' s Hospital, No. 11 Xizhimen South Street, Beijing 100044 (China); Yuan, Huihui, E-mail: huihui_yuan@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China); Zhao, Wenming, E-mail: zhao-wenming@163.com [Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069 (China)

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  13. DDE and PCB 153 independently induce aryl hydrocarbon receptor (AhR) expression in peripheral blood mononuclear cells.

    Science.gov (United States)

    Gaspar-Ramírez, Octavio; Pérez-Vázquez, Francisco J; Salgado-Bustamante, Mariana; González-Amaro, Roberto; Hernandez-Castro, Berenice; Pérez-Maldonado, Ivan N

    2015-01-01

    Recent studies have demonstrated that compounds inducing pro-inflammatory cytokines enhance AhR expression. The aim of this study was 2-fold: (1) to determine if two pro-inflammatory compounds, dichlorodiphenyldichloroethylene (DDE) and 2,2',4,4',5,5'-hexa-chlorobiphenyl (PCB 153), independently affect AhR gene expression in peripheral blood mononuclear cells (PBMC); and (2) if affected, to determine whether the mechanism involved was due to AhR activation or to a pro-inflammatory effect of the chemicals. PBMC isolated from healthy individuals were incubated in the presence of DDE (10 µg/ml) and PCB 153 (20 ng/ml) over time and AhR and CYP1A1 expression was assessed with a real-time PCR technique. The results indicated there was over-expression of the AhR mRNA in PBMC when the cells were treated with DDE and PCB 153. No changes in expression levels of CYP1A1 mRNA were found. Importantly, when the cells were exposed to DDE and PCB 153 in the presence of an antagonist of tumor necrosis factor (TNF)-α, the over-expression of AhR was abolished; as expected, the expression of CYP1A1 was unaffected. In conclusion, these studies demonstrated for the first time an increment of AhR expression "in vitro" in PBMC treated with two pro-inflammatory environmental pollutants, DDE and PCB153. Moreover, the over-expression of AhR was dependent of TNFα induced by DDE and PCB 153 and was independent of AhR activation.

  14. Synthesis and evaluation of aryl-naloxamide opiate analgesics targeting truncated exon 11-associated μ opioid receptor (MOR-1) splice variants.

    Science.gov (United States)

    Majumdar, Susruta; Subrath, Joan; Le Rouzic, Valerie; Polikar, Lisa; Burgman, Maxim; Nagakura, Kuni; Ocampo, Julie; Haselton, Nathan; Pasternak, Anna R; Grinnell, Steven; Pan, Ying-Xian; Pasternak, Gavril W

    2012-07-26

    3-Iodobenzoylnaltrexamide 1 (IBNtxA) is a potent analgesic acting through a novel receptor target that lack many side-effects of traditional opiates composed, in part, of exon 11-associated truncated six transmembrane domain MOR-1 (6TM/E11) splice variants. To better understand the SAR of this drug target, a number of 4,5-epoxymorphinan analogues were synthesized. Results show the importance of a free 3-phenolic group, a phenyl ring at the 6 position, an iodine at the 3'or 4' position of the phenyl ring, and an N-allyl or c-propylmethyl group to maintain high 6TM/E11 affinity and activity. 3-Iodobenzoylnaloxamide 15 (IBNalA) with a N-allyl group displayed lower δ opioid receptor affinity than its naltrexamine analogue, was 10-fold more potent an analgesic than morphine, elicited no respiratory depression or physical dependence, and only limited inhibition of gastrointestinal transit. Thus, the aryl-naloxamide scaffold can generate a potent analgesic acting through the 6TM/E11 sites with advantageous side-effect profile and greater selectivity.

  15. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits

    NARCIS (Netherlands)

    Jeuken, A.; Keser, B.J.G.; Khan, E.; Brouwer, A.; Koeman, J.H.; Denison, M.S.

    2003-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by a structurally diverse range of synthetic and natural chemicals, and it mediates the toxic and biological effects of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

  16. 七种染料对鲤鱼肝微粒体芳烃羟化酶的诱导%THE INDUCTION OF ARYL HYDROCARBON HYDROXYLASE(AHH)OF CARP(CYPRINUS CARPIO) LIVER MICROSOME BY SEVEN DYES

    Institute of Scientific and Technical Information of China (English)

    徐楠; 王春霞; 莫争; 呼世斌

    2001-01-01

    The aryl hydrocarbon hydroxylase(AHH)activity of carp(Cyprinus Carpio)liver microsome induced by seven dyes was examined.The all tested dyes induced AHH activity to different extent.The AHH activity increased according to the increase of the dye concentration.The intense of AHH activity induced by seven dyes was as following order:acid red B>acid complex blue RRN>weak acid brilliant red B>reactive brilliant red K-2BP>reactive brilliant red K-2G,acid mordant red S-80>disperse red E-4B.The intense of AHH activity was related to the toxicity of the chemicals.%以鲤鱼肝微粒体为实验体系,研究了七种染料化合物对其芳烃羟化酶(AHH)的诱导,发现七种染料都可以诱导AHH的活性,随染料浓度增大AHH的活性升高.七种染料对AHH活性诱导能力大小为:酸性红B>派拉丁蓝RRN>普拉红B>活性艳红K-2BP>活性艳红K-2G,媒介大红S-80>分散红E-4B,与其毒性大小相关.

  17. Rats fed soy protein isolate (SPI) have impaired hepatic CYP1A1 induction by polycyclic aromatic hydrocarbons as a result of interference with aryl hydrocarbon receptor signaling

    Science.gov (United States)

    Consumption of soy diet has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. Previously, we have demonstrated that female Sprague-Dawley rats fed purified AIN-93G diets with soy protein isolate (SPI) as the sole protein source had reduced CYP1A1 ...

  18. Development of a Single-Chain Peptide Agonist of the Relaxin-3 Receptor Using Hydrocarbon Stapling.

    Science.gov (United States)

    Hojo, Keiko; Hossain, Mohammed Akhter; Tailhades, Julien; Shabanpoor, Fazel; Wong, Lilian L L; Ong-Pålsson, Emma E K; Kastman, Hanna E; Ma, Sherie; Gundlach, Andrew L; Rosengren, K Johan; Wade, John D; Bathgate, Ross A D

    2016-08-25

    Structure-activity studies of the insulin superfamily member, relaxin-3, have shown that its G protein-coupled receptor (RXFP3) binding site is contained within its central B-chain α-helix and this helical structure is essential for receptor activation. We sought to develop a single B-chain mimetic that retained agonist activity. This was achieved by use of solid phase peptide synthesis together with on-resin ruthenium-catalyzed ring closure metathesis of a pair of judiciously placed i,i+4 α-methyl, α-alkenyl amino acids. The resulting hydrocarbon stapled peptide was shown by solution NMR spectroscopy to mimic the native helical conformation of relaxin-3 and to possess potent RXFP3 receptor binding and activation. Alternative stapling procedures were unsuccessful, highlighting the critical need to carefully consider both the peptide sequence and stapling methodology for optimal outcomes. Our result is the first successful minimization of an insulin-like peptide to a single-chain α-helical peptide agonist which will facilitate study of the function of relaxin-3.

  19. Synthesis of Conformationally Constrained Aryl- or Heteroarylpiperazinyl Derivatives of Selected Imides as 5-HT1A Receptor Ligands

    Directory of Open Access Journals (Sweden)

    Bożena Kuran

    2006-08-01

    Full Text Available The preparation of a number of cyclic imide 5-HT1A receptor ligandderivatives has been described. Their structures were conformationally constrained byintroducing rigid linkers containing unsaturated bonds or aromatic benzene rings. Thesecompounds are expected to possess anxiolytic and antidepressant activity.

  20. Synthesis of conformationally constrained aryl- or heteroarylpiperazinyl derivatives of selected imides as 5-HT1A receptor ligands.

    Science.gov (United States)

    Kossakowski, Jerzy; Krawiecka, Mariola; Kuran, Bozena

    2006-08-23

    The preparation of a number of cyclic imide 5-HT(1A) receptor ligand derivatives has been described. Their structures were conformationally constrained by introducing rigid linkers containing unsaturated bonds or aromatic benzene rings. These compounds are expected to possess anxiolytic and antidepressant activity.

  1. Selective antagonists at group I metabotropic glutamate receptors: synthesis and molecular pharmacology of 4-aryl-3-isoxazolol amino acids

    DEFF Research Database (Denmark)

    Kromann, Hasse; Sløk, Frank A; Stensbøl, Tine B

    2002-01-01

    Homologation of (S)-glutamic acid (Glu, 1) and Glu analogues has previously provided ligands with activity at metabotropic Glu receptors (mGluRs). The homologue of ibotenic acid (7), 2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid (HIBO, 8), and the 4-phenyl derivative of 8, compound 9a, are bot...

  2. Gene expression profiling in Caco-2 human colon cells exposed to TCDD, benzo[a]pyrene, and natural Ah receptor agonists from cruciferous vegetables and citrus fruits

    NARCIS (Netherlands)

    Waard, de W.J.; Aarts, J.M.M.J.G.; Peijnenburg, A.A.C.M.; Baykus, H.; Talsma, E.F.; Punt, A.; Kok, de T.M.C.M.; Schooten, van F.J.; Hoogenboom, L.A.P.

    2008-01-01

    Cruciferous vegetables and citrus fruits are reported to possess health-beneficial properties, but also have been shown to contain natural aryl hydrocarbon receptor (AhR) agonists (NAhRAs). Binding to the AhR is widely assumed to activate the main pathway by which dioxins, like 2,3,7,8-tetrachlorodi

  3. Parsing pyrogenic polycyclic aromatic hydrocarbons: forensic chemistry, receptor models, and source control policy.

    Science.gov (United States)

    O'Reilly, Kirk T; Pietari, Jaana; Boehm, Paul D

    2014-04-01

    A realistic understanding of contaminant sources is required to set appropriate control policy. Forensic chemical methods can be powerful tools in source characterization and identification, but they require a multiple-lines-of-evidence approach. Atmospheric receptor models, such as the US Environmental Protection Agency (USEPA)'s chemical mass balance (CMB), are increasingly being used to evaluate sources of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in sediments. This paper describes the assumptions underlying receptor models and discusses challenges in complying with these assumptions in practice. Given the variability within, and the similarity among, pyrogenic PAH source types, model outputs are sensitive to specific inputs, and parsing among some source types may not be possible. Although still useful for identifying potential sources, the technical specialist applying these methods must describe both the results and their inherent uncertainties in a way that is understandable to nontechnical policy makers. The authors present an example case study concerning an investigation of a class of parking-lot sealers as a significant source of PAHs in urban sediment. Principal component analysis is used to evaluate published CMB model inputs and outputs. Targeted analyses of 2 areas where bans have been implemented are included. The results do not support the claim that parking-lot sealers are a significant source of PAHs in urban sediments.

  4. N-(3-Fluoro-4-(4-(2-methoxy or 2,3-dichlorophenyl) piperazine-1-yl)-butyl)-aryl carboxamides as Selective Dopamine D3 Receptor Ligands: Critical Role of the Carboxamide Linker for D3 Receptor Selectivity

    Science.gov (United States)

    Banala, Ashwini K.; Levy, Benjamin A.; Khatri, Sameer S.; Furman, Cheryse A.; Roof, Rebecca A.; Mishra, Yogesh; Griffin, Suzy A.; Sibley, David R.; Luedtke, Robert R.; Newman, Amy Hauck

    2011-01-01

    N-(3-fluoro-4-(4-(2,3-dichloro- or 2-methoxyphenyl)piperazine-1-yl)-butyl)-aryl carboxamides were prepared and evaluated for binding and function at dopamine D3 (D3R) and D2 receptors (D2R). In this series, we discovered some of the most D3R selective compounds reported to date, (e.g. 8d and 8j >1000-fold D3R-selective over D2R.) In addition, chimeric receptor studies further identified the second extracellular (E2) loop as an important contributor to D3R binding selectivity. Further, compounds lacking the carbonyl group in the amide linker were synthesized and while these amine-linked analogues bound with similar affinities to the amides at D2R, this modification dramatically reduced binding affinities at D3R by >100-fold (e.g. D3RKi for 15b = 393 v. for 8j = 2.6 nM) resulting in compounds with significantly reduced D3R selectivity. This study supports a pivotal role for the D3R E2 loop and the carbonyl group in the 4-phenylpiperazine class of compounds and further reveals a point of separation between structure-activity relationships at D3R and D2R. PMID:21495689

  5. Design, Synthesis and Biological Evaluation of 2-Aroyl-3-aryl-6,7-dihydro-5H-furo[3,2-g]chromen Derivatives as a Novel Series of Estrogen Receptor Modulators

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-hui; WANG Yan; ZHU Yu-ying; LIU Si-jie; HAN Jian; ZHOU Yi-fan; LI Da-wei; KOIRALA Diwa; HU Chun

    2011-01-01

    Based on the principles of the bioisosterism, combination of the active substructures of selective estrogen receptor modulators which are currently therapeutic agents available for the prevention and treatment of various estrogen dependent diseases, and structural optimization, a novel series of 2-aroyl-3-aryl-6,7-dihydro-5H-furo[3,2-g]chromen derivatives was designed as potent selective estrogen receptor modulators via molecular docking. The target compoundshave been synthesized, and characterized by IR, proton NMR, ESI-MS, elemental analysis and evaluated for their antitumor activity against human osteosarcoma U2OS-EGFP-4FI2G cell line. Some target compounds showed good inhibition effects on U2OS-EGFP-4F 12G cell line and the preliminary structure-activity relationships were discussed.

  6. A Theoretical Study of the Relationships between Electronic Structure and CB1 and CB2 Cannabinoid Receptor Binding Affinity in a Group of 1-Aryl-5-(1-H-pyrrol-1-yl-1-H-pyrazole-3-carboxamides

    Directory of Open Access Journals (Sweden)

    Francisco Salgado-Valdés

    2014-01-01

    Full Text Available We report the results of a search for model-based relationships between hCB1 and hCB2 receptor binding affinity and molecular structure for a group of 1-aryl-5-(1-H-pyrrol-1-yl-1-H-pyrazole-3-carboxamides. The wave functions and local atomic reactivity indices were obtained at the B3LYP/6-31G(d,p levels of theory with full geometry optimization. Interaction pharmacophores were generated for both receptors. The main conclusions of this work are as follows. (1 We obtained statistically significant equations relating the variation of hCB1 and hCB2 receptor binding affinities with the variation of definite sets of local atomic reactivity indices. (2 The interaction of the molecules with the hCB1 and hCB2 receptors seems to be highly complex and mainly orbital controlled. (3 The interaction mechanisms seem to be different for each type of receptor. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  7. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    OpenAIRE

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2004-01-01

    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl ...

  8. Peripheral arylation of subporphyrazines.

    Science.gov (United States)

    Higashino, Tomohiro; Rodríguez-Morgade, M Salomé; Osuka, Atsuhiro; Torres, Tomás

    2013-07-29

    Peripherally hexaarylated subporphyrazines (SubPzs) have been prepared through a Pd-catalyzed, CuTC-mediated coupling of a hexaethylsulfanylated subporphyrazine with arylboronic acids. The introduced aryl substituents strongly influence the electronic properties of the subporphyrazine through effective conjugative interaction. Aryl rings endowed with π-electron-donating groups at the para positions produce a remarkable perturbation of the electron density of the SubPz macrocycle. This is reflected through significant redshifts of the SubPz CT and Q-bands, together with increase of the molar absorptivity of the former, with respect to those exhibited by the hexaphenyl-SubPz 2 a. Moreover, the trend in the first SubPz reduction potentials correlates with the Hammett constants (σp ) corresponding to the para substituents of the aryl. The domed, extended SubPz π-system self-assembles in the solid state to form a dimeric capsule that houses a solvent molecule.

  9. Receptor modeling of C2─C7 hydrocarbon sources at an urban background site in Zurich, Switzerland: changes between 1993─1994 and 2005─2006

    Directory of Open Access Journals (Sweden)

    S. Reimann

    2008-05-01

    Full Text Available Hourly measurements of 13 volatile hydrocarbons (C2–C7 were performed at an urban background site in Zurich (Switzerland in the years 1993–1994 and again in 2005–2006. For the separation of the volatile organic compounds by gas-chromatography (GC, an identical chromatographic column was used in both campaigns. Changes in hydrocarbon profiles and source strengths were recovered by positive matrix factorization (PMF. Eight and six factors could be related to hydrocarbon sources in 1993–1994 and in 2005–2006, respectively. The modeled source profiles were verified by hydrocarbon profiles reported in the literature. The source strengths were validated by independent measurements, such as inorganic trace gases (NOx, CO, SO2, methane (CH4, oxidized hydrocarbons (OVOCs and meteorological data (temperature, wind speed etc.. Our analysis suggests that the contribution of most hydrocarbon sources (i.e. road traffic, solvents use and wood burning decreased by a factor of about two to three between the early 1990s and 2005–2006. On the other hand, hydrocarbon losses from natural gas leakage remained at relatively constant levels (−20%. The estimated emission trends are in line with the results from different receptor-based approaches reported for other European cities. Their differences to national emission inventories are discussed.

  10. Advanced hybrid fluoropolymers from the cycloaddition of aryl trifluorovinyl ethers

    Science.gov (United States)

    Ligon, S. Clark, Jr.

    This dissertation discusses the synthesis of aryl trifluorovinyl ethers and their cycloaddition polymerization to give perfluorocyclobutyl (PFCB) polymers. To explore the stereochemistry of these polymers, simple monomfunctional aryl trifluorovinyl ethers were dimerized and the resultant cis and trans isomers were separated. Differences in structure help to improve understanding of the amorphous nature of the bulk PFCB polymeric material. To apply this knowledge, crown ether containing perfluorocyclobutyl (PFCB) polymers were synthesized for use in lithium ion battery applications. While poor solubility has hindered further development of these materials, slight modifications to structure may provide a solution. Also described is a fluorinated aryl vinyl ether and its attempted copolymerization with chlorotrifluoroethylene. While this copolymerization did not yield the desired materials, novel semifluorinated phenol precursors have been utilized in reactions with carboxylic acids to give polyesters and most recently with phosgene like species to give polycarbonates. Next, PFCB polymers were post functionalized with fluoroalkyl tethers to improve oleophobicity and hydrophobicity without decreasing thermal stability or optical clarity. In addition, various silica nanostructures were functionalized with aryl trifluorovinyl ethers. This includes the reaction of aryl silanes to give trifluorovinyl ether functional POSS and their polymerization to provide PFCB hybrid materials. Silane coupling agents were also used to functionalize colloidal silica and fumed silica nanoparticles. These procedures allow excellent dispersion of the silica nanoparticles throughout the fluoropolymer matrix. Finally, the reaction of aryl trifluorovinyl ether with nonfluorinated alkenes and alkynes was explored. In these reactions, the fluorinated olefin adds with the hydrocarbon olefin to give semifluorinated cyclobutanes (SFCB) and with the alkyne to give semifluorinated cyclobutene. The

  11. Efficacy of hybrid tetrahydrobenzo[d]thiazole based aryl piperazines D-264 and D-301 at D2 and D3 receptors

    Science.gov (United States)

    Zhen, Juan; Antonio, Tamara; Jacob, Joanna C.; Grandy, David K.

    2016-01-01

    In elucidating the role of pharmacodynamic efficacy at D3 receptors in therapeutic effectiveness of dopamine receptor agonists, the influence of study system must be understood. Here two compounds with D3 over D2 selectivity developed in our earlier work, D-264 and D-301, are compared in dopamine receptor-mediated G-protein activation in striatal regions of wild-type and D2 receptor knockout mice and in CHO cells expressing D2 or D3 receptors. In caudate-putamen of D2 knockout mice, D-301 was ~ 3-fold more efficacious than D-264 in activating G-proteins as assessed by [35S]GTP S binding; in nucleus accumbens, D-301 stimulated G-protein activation whereas D-264 did not. In contrast, the two ligands exerted similar efficacy in both regions of wild-type mice, suggesting both ligands activate D2 receptors with similar efficacy. In D2 and D3 receptor-expressing CHO cells, D-264 and D-301 appeared to act in the [35S]GTP S assay as full agonists because they produced maximal stimulation equal to dopamine. Competition for [3H]spiperone binding was then performed to determine Ki/EC50 ratios as an index of receptor reserve for each ligand. Action of D-301, but not D-264, showed receptor reserve in D3 but not in D2 receptor-expressing cells, whereas dopamine showed receptor reserve in both cell lines. G o1 is highly expressed in brain and is important in D2 -like receptor-G protein coupling. Transfection of G o1 in D3- but not D2-expressing CHO cells led to receptor reserve for D-264 without altering receptor expression levels. D-301 and dopamine exhibited receptor reserve in D3-expressing cells both with and without transfection of G o1. Altogether, these results indicate that D-301 has greater intrinsic efficacy to activate D3 receptors than D-264, whereas the two compounds act on D2 receptors with similar intrinsic efficacy. These findings also suggest caution in interpreting Emax values from functional assays in receptor-transfected cell models without accounting for

  12. An unusual case of an ACTH-secreting macroadenoma with a germline variant in the aryl hydrocarbon receptor-interacting protein (AIP) gene

    DEFF Research Database (Denmark)

    Dinesen, Pia T; Dal, Jakob; Gabrovska, Plamena;

    2015-01-01

    was diagnosed with a large pituitary tumor by magnetic resonance imaging (MRI). His visual fields were intact and he exhibited no features of CD. Owing to an exuberant response to synacthen, an overnight dexamethasone suppression test was performed revealing inadequate suppression of plasma cortisol (419 nmol...... test demonstrated high basal and stimulated cortisol levels; an overnight dexamethasone suppression test showed no suppression (791 nmol/l) and elevated plasma ACTH levels (135 ng/l). A transcranial operation was performed followed by radiotherapy. Two months after radiotherapy, he developed secondary...... growth rather than symptoms of hypersecretion. The particular AIP gene variant identified in our patient is shared by four other reported cases of CD. Future studies are needed to assess whether the reported AIP gene variant is more than just coincidental. LEARNING POINTS: CD is occasionally dominated...

  13. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons.

    Science.gov (United States)

    Szychowski, Konrad A; Wnuk, Agnieszka; Kajta, Małgorzata; Wójtowicz, Anna K

    2016-11-01

    Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed paradoxical effect of TCS action, which caused the decrease in activity and protein expression of Cyp1a1 and the increase in protein level of AhR. Therefore, we determined the effects of TCS on the production of ROS. Our results revealed that TCS increased the production of ROS and that this effect of TCS was reversed by 10µM N-acetyl-L-cysteine (NAC), the ROS scavenger. To confirm an involvement of ROS in TCS-induced neurotoxicity we measured AhR, Cyp1a1, and Cyp1b1 mRNA expression levels in cells co-treated with TCS and NAC. In the presence of NAC, TCS enhanced mRNA expression of the cytochromes and AhR at 3 and 6h, respectively. We postulate that TCS exhibits primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling are mediated by TCS-induced ROS production, whereas secondary effects of TCS are due to transcriptional activity of AhR and estrogenic properties of TCS.

  14. Direct N9-arylation of purines with aryl halides

    DEFF Research Database (Denmark)

    Larsen, Anders Foller; Ulven, Trond

    2014-01-01

    An efficient method for N-arylation of purines is reported. The N-arylation is catalysed by Cu(i) and 4,7-bis(2-hydroxyethylamino)-1,10-phenanthroline (BHPhen) in aqueous DMF or ethanol. The reaction generally proceeds with high selectivity for the N(9)-position....

  15. Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells

    OpenAIRE

    Singh, Kameshwar P.; Wyman, Amber; Casado, Fanny L.; Garrett, Russell W.; Gasiewicz, Thomas A.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) mediates the carcinogenicity of a family of environmental contaminants, the most potent being 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increased incidence of lymphoma and leukemia in humans is associated with TCDD exposure. Although AhR activation by TCDD has profound effects on the immune system, precise cellular and molecular mechanisms have yet to be determined. These studies tested the hypothesis that alteration of marrow populations following treatm...

  16. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Alam, Mohammed S., E-mail: m.s.alam@bham.ac.uk [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Yin, Jianxin; Stark, Christopher; Jang, Eunhwa [Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Harrison, Roy M., E-mail: r.m.harrison@bham.ac.uk [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Shamy, Magdy; Khoder, Mamdouh I.; Shabbaj, Ibrahim I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia)

    2015-02-15

    Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion. - Highlights: • Measurements of 14 PAH compounds in vapour and particulate phases at three sites. • Comparison of concentrations across Jeddah and Middle Eastern regions. • Application of positive matrix factorisation to identify possible sources.

  17. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR γ methylation in offspring, grand-offspring mice.

    Directory of Open Access Journals (Sweden)

    Zhonghai Yan

    Full Text Available RATIONALE: Greater levels of prenatal exposure to polycyclic aromatic hydrocarbon (PAH have been associated with childhood obesity in epidemiological studies. However, the underlying mechanisms are unclear. OBJECTIVES: We hypothesized that prenatal PAH over-exposure during gestation would lead to weight gain and increased fat mass in offspring and grand-offspring mice. Further, we hypothesized that altered adipose gene expression and DNA methylation in genes important to adipocyte differentiation would be affected. MATERIALS AND METHODS: Pregnant dams were exposed to a nebulized PAH mixture versus negative control aerosol 5 days a week, for 3 weeks. Body weight was recorded from postnatal day (PND 21 through PND60. Body composition, adipose cell size, gene expression of peroxisome proliferator-activated receptor (PPAR γ, CCAAT/enhancer-binding proteins (C/EBP α, cyclooxygenase (Cox-2, fatty acid synthase (FAS and adiponectin, and DNA methylation of PPAR γ, were assayed in both the offspring and grand-offspring adipose tissue. FINDINGS: Offspring of dams exposed to greater PAH during gestation had increased weight, fat mass, as well as higher gene expression of PPAR γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA methylation of PPAR γ. Similar differences in phenotype and DNA methylation extended through the grand-offspring mice. CONCLUSIONS: Greater prenatal PAH exposure was associated with increased weight, fat mass, adipose gene expression and epigenetic changes in progeny.

  18. Stapled Peptides with γ-Methylated Hydrocarbon Chains for the Estrogen Receptor/Coactivator Interaction.

    Science.gov (United States)

    Speltz, Thomas E; Fanning, Sean W; Mayne, Christopher G; Fowler, Colin; Tajkhorshid, Emad; Greene, Geoffrey L; Moore, Terry W

    2016-03-18

    "Stapled" peptides are typically designed to replace two non-interacting residues with a constraining, olefinic staple. To mimic interacting leucine and isoleucine residues, we have created new amino acids that incorporate a methyl group in the γ-position of the stapling amino acid S5. We have incorporated them into a sequence derived from steroid receptor coactivator 2, which interacts with estrogen receptor α. The best peptide (IC50 =89 nm) replaces isoleucine 689 with an S-γ-methyl stapled amino acid, and has significantly higher affinity than unsubstituted peptides (390 and 760 nm). Through X-ray crystallography and molecular dynamics studies, we show that the conformation taken up by the S-γ-methyl peptide minimizes the syn-pentane interactions between the α- and γ-methyl groups.

  19. 1,2,4-Triazolo[1,5-a]quinoxaline as a versatile tool for the design of selective human A3 adenosine receptor antagonists: synthesis, biological evaluation, and molecular modeling studies of 2-(hetero)aryl- and 2-carboxy-substituted derivatives.

    Science.gov (United States)

    Catarzi, Daniela; Colotta, Vittoria; Varano, Flavia; Lenzi, Ombretta; Filacchioni, Guido; Trincavelli, Letizia; Martini, Claudia; Montopoli, Christian; Moro, Stefano

    2005-12-15

    A number of 4-oxo-substituted 1,2,4-triazolo[1,5-a]quinoxaline derivatives bearing at position-2 the claimed (hetero)aryl moiety (compounds 1-15) but also a carboxylate group (16-28, 32-36) or a hydrogen atom (29-31) were designed as human A3 (hA3) adenosine receptor (AR) antagonists. This study produced some interesting compounds and among them the 2-(4-methoxyphenyl)-1,2,4-triazolo[1,5-a]quinoxalin-4-one (8), which can be considered one of the most potent and selective hA3 adenosine receptor antagonists reported till now. Moreover, as a new finding, replacement of the classical 2-(hetero)aryl moiety with a 2-carboxylate function (compounds 16-28 and 32-36) maintained good hA3 AR binding activity but, most importantly and interestingly, produced a large increase in hA3 versus hA1 selectivity. A receptor-based SAR analysis provided new interesting insights about the steric and electrostatic requirements that are important for the anchoring of these derivatives at the hA3 receptor recognition site, thus highlighting the versatility of the triazoloquinoxaline scaffold for obtaining potent and selective hA3 AR antagonists.

  20. Temporal variability of Polycyclic Aromatic Hydrocarbons in a receptor site of Puebla -Tlaxcala Valley.

    Science.gov (United States)

    Padilla Barrera, Zuhelen; Torres Jardón, Ricardo; Gerardo Ruiz, Luis; Castro, Telma

    2015-04-01

    The Puebla-Tlaxcala Valley is a region with high population scattered over two states, where emissions from combustion of a variety of materials and fuels represent a major problem in the deterioration of air quality. Polycyclic aromatic hydrocarbons (PAHs) are a class of semi-volatile organic compounds that are formed during combustion. PAH are present in large amounts in the particulate matter comes from the combustion and no combustion. The particle-bound PAHs are formed by accumulation and condensation mechanisms in the particle. In its condensed form are mainly associated with fine particles (< 0.10 um). The major emission sources of PAHs are open burning, industrial boilers and emission from cars and trucks. Emission rates of PAHs vary significantly depending on vehicle use: fuel type, engine type and catalytic converter, and once emitted into the atmosphere, particulate PAHs may undergo transformation by photo-oxidation. The measurements were made with a photoelectric aerosol sensor (PAS 2000 CE) and a diffusion charger (DC 2000 CE), the first determines the concentration of PAHs, while the second determines the active surface of particles. The use of these two sensors in parallel is a useful tool to identify quantitatively the greatest source of emission, describe the physical and chemical characteristics of the particles. Correlations between PAHs with the active surface (DC), NOy and CO, together with an analysis of weather atmospheric transport to approximate the possible origin of these particles. The coefficient PAHs / DC associated with the backward trajectory analysis is a tool to identify potential areas of emission. The correlation between PAHs and NOx reflects emissions associated with diesel combustion, while the correlation between PAHs and CO, combustion of gasoline. Concentration patterns were recorded over 24 hours in both PAHs and DC. The average concentration of PAHs was 4.9 ng/m3 and the maximum of 81.9 ng/m3 , while the average active

  1. Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: A comparison of receptor models.

    Science.gov (United States)

    Teixeira, Elba Calesso; Agudelo-Castañeda, Dayana Milena; Mattiuzi, Camila Dalla Porta

    2015-12-15

    The aim of this study was to evaluate the contribution of the main emission sources of PAHs associated with PM2.5, in an urban area of the Rio Grande do Sul state. Source apportionment was conducted using both the US EPA Positive Matrix Factorization (PMF) model and the Chemical Mass Balance (CMB) model. The two models were compared to analyze the source contributions similarities and differences, their advantages and disadvantages. PM2.5 samples were collected continuously over 24h using a stacked filter unit at 3 sampling sites of the urban area of the Rio Grande do Sul state every 15days between 2006 and 2008. Both models identified the main emission sources of PAHs in PM2.5: vehicle fleet (diesel and gasoline), coal combustion, wood burning, and dust. Results indicated similar source contribution amongst the sampling sites, as expected because of the proximity amongst the sampling sites, which are under the influence of the same pollutants emitting sources. Moreover, differences were observed in obtained sources contributions for the same data set of each sampling site. The PMF model attributed a slightly greater amount of PAHs to the gasoline and diesel sources, while diesel contributed more in the CMB results. The results were comparable with previous works of the region and in accordance with the characteristics of the study area. Comparison between these receptor models, which contain different physical constraints, is important for understanding better PAH emissions sources in order to reduce air pollution.

  2. Hydrocarbon pneumonia

    Science.gov (United States)

    Pneumonia - hydrocarbon ... Coughing Fever Shortness of breath Smell of a hydrocarbon product on the breath Stupor (decreased level of ... Most children who drink or inhale hydrocarbon products and develop ... hydrocarbons may lead to rapid respiratory failure and death.

  3. Design of α7 nicotinic acetylcholine receptor ligands using the (het)Aryl-1,2,3-triazole core: Synthesis, in vitro evaluation and SAR studies.

    Science.gov (United States)

    Ouach, Aziz; Pin, Frederic; Bertrand, Emilie; Vercouillie, Johnny; Gulhan, Zuhal; Mothes, Céline; Deloye, Jean-Bernard; Guilloteau, Denis; Suzenet, Franck; Chalon, Sylvie; Routier, Sylvain

    2016-01-01

    We report here the synthesis of a large library of 1,2,3-triazole derivatives which were in vitro tested as α7 nAchR ligands. The SAR study revealed that several crucial factors are involved in the affinity of these compounds for α7 nAchR such as a (R) quinuclidine configuration and a mono C-3 quinuclidine substitution. The triazole ring was substituted by a phenyl ring bearing small OMe/CH2F groups or fluorine atom and by several heterocycles such as thiophenes, furanes, benzothiophenes or benzofuranes. Among the 30 derivatives tested, the two derivatives 10 and 39 with Ki in the nanomolar range were identified (2.3 and 3 nM respectively). They exhibited a strict selectivity toward the α4β2 nicotinic receptor (up to 1 μM) but interacted with the 5HT3 receptors with Ki around 3 nM. Synthesis, SAR studies and a full description of the derivatives are reported.

  4. Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia.

    Science.gov (United States)

    Kakimoto, Kensaku; Nagayoshi, Haruna; Konishi, Yoshimasa; Kajimura, Keiji; Ohura, Takeshi; Hayakawa, Kazuichi; Toriba, Akira

    2014-09-01

    This study estimates atmospheric concentrations of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) and polycyclic aromatic hydrocarbons (PAHs) in East Asia using a Gas Chromatograph with High Resolution Mass Spectrometer (GC-HRMS). ClPAHs are ubiquitously generated from PAHs through substitution, and some ClPAHs show higher aryl hydrocarbon receptor (AhR)-mediated activities than their parent PAHs. Atmospheric particles were collected using a high-volume air sampler equipped with a quartz-fiber filter. We determined the ClPAH concentrations of atmospheric particles collected in Japan (Sapporo, Sagamihara, Kanazawa, and Kitakyushu), Korea (Busan), and China (Beijing). The concentrations of ClPAHs were highest in the winter Beijing sample, where the total mean concentration was approximately 15-70 times higher than in the winter samples from Japan and Korea. The concentrations of Σ19ClPAHs and Σ9PAHs were significantly correlated in the Kanazawa and the Busan samples. This indicates that within those cities ClPAHs and PAHs share the same origin, implying direct chlorination of parent PAHs. Toxic equivalent concentrations (TEQs) of the total ClPAHs and PAHs were lowest in Kanazawa in the summer, reaching 1.18 and 2610fg-TEQm(-3) respectively, and highest in Beijing in the winter, reaching 627 and 4240000fg-TEQm(-3) respectively.

  5. Synthesis of Novel 3-Aryl Isoindolinone Derivatives

    Institute of Scientific and Technical Information of China (English)

    HU Chen-ming; ZHENG Lian-you; PEI Ya-zhong; BAI Xu

    2013-01-01

    A library of novel 3-aryl isoindolinone derivatives with aromatic amino acid derivative fragments was designed and synthesized.Two synthetic routes were employed to construct 3-aryl isoindolinone ring system for different amino acid derivatives.

  6. Aryl hydrocarbon hydroxylase represents CYP1B1, and not CYP1A1, in human freshly isolated white cells: trimodal distribution of Japanese population according to induction of CYP1B1 mRNA by environmental dioxins.

    Science.gov (United States)

    Toide, Kenji; Yamazaki, Hiroshi; Nagashima, Rikako; Itoh, Keisuke; Iwano, Shunsuke; Takahashi, Yoshiki; Watanabe, Shaw; Kamataki, Tetsuya

    2003-03-01

    The expression level of mRNAs for cytochrome P450 (CYP) 1A1 and 1B1 in freshly prepared white cells from 72 subjects exposed to dioxins at waste incinerators was investigated. The amounts of CYP1B1 mRNA ranged from 0.16 to 671 molecules/10(7) molecules of 18S rRNA, whereas the amounts of CYP1A1 mRNA were dioxins. The inducibility of CYP1B1 mRNA in leukocytes, defined as the ratio of CYP1B1 mRNA to the plasma concentration of dioxins, varied among the subjects. It was found that the subjects showed trimodal distribution according to inducibility: 39 (54.2%), 25 (34.7%), and 8 (11.1%) of 72 subjects were judged as poor, intermediate, and high responders to environmental dioxins, respectively. The amounts of CYP1B1 mRNA in leukocytes of the intermediate and high responders were highly correlated with the plasma concentrations of dioxins (P dioxins is involved in aromatic hydrocarbon hydroxylase activities in human lymphocytes.

  7. Room-Temperature Palladium-Catalyzed Direct 2-Arylation of Benzoxazoles with Aryl and Heteroaryl Bromides†

    Science.gov (United States)

    Gao, Feng; Kim, Byeong-Seon; Walsh, Patrick J.

    2014-01-01

    An efficient room-temperature palladium-catalyzed direct 2-arylation of benzoxazoles with aryl bromides is presented. The Pd(OAc)2/NiXantphos-based catalyst enables the introduction of various aryl and heteroaryl groups, via a deprotonative cross-coupling process (DCCP) in good to excellent yields (75–99%). PMID:25078988

  8. NahY, a Catabolic Plasmid-Encoded Receptor Required for Chemotaxis of Pseudomonas putida to the Aromatic Hydrocarbon Naphthalene

    OpenAIRE

    1999-01-01

    Pseudomonas putida G7 exhibits chemotaxis to naphthalene, but the molecular basis for this was not known. A new gene, nahY, was found to be cotranscribed with meta cleavage pathway genes on the NAH7 catabolic plasmid for naphthalene degradation. The nahY gene encodes a 538-amino-acid protein with a membrane topology and a C-terminal region that resemble those of chemotaxis transducer proteins. A P. putida G7 nahY mutant grew on naphthalene but was not chemotactic to this aromatic hydrocarbon....

  9. Docosahexaenoic acid regulates gene expression in HUVEC cells treated with polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Gdula-Argasińska, Joanna; Czepiel, Jacek; Totoń-Żurańska, Justyna; Jurczyszyn, Artur; Perucki, William; Wołkow, Paweł

    2015-07-16

    The molecular mechanism of inflammation and carcinogenesis induced by exposure of polycyclic aromatic hydrocarbons (PAHs) is not clearly understood. Our study was undertaken due to the strong pro-carcinogenic potential and reactivity of PAH-metabolites, as well as the susceptibility of polyunsaturated fatty acids to oxidation. The aim of this study was to evaluate the pro- or anti-inflammatory impact of n-3 docosahexaenoic acid on human primary umbilical vein endothelial cells (HUVEC) exposed to polycyclic aromatic hydrocarbons. We analysed the influence of docosahexaenoic acid (DHA) and/or PAHs supplementation on the fatty acid profile of cell membranes, on cyclooxygenase-2 (COX-2), aryl hydrocarbon receptor (AHR), and glutathione S transferase Mu1 (GSTM1) protein expression as well as on the prostaglandin synthase 2 (PTGS2), AHR, GSTM1, PLA2G4A, and cytochrome P450 CYP1A1 gene expression. We observed that COX-2 and AHR protein expression was increased while GSTM1 expression was decreased in cells exposed to DHA and PAHs. Docosahexaenoic acid down-regulated CYP1A1 and up-regulated the AHR and PTGS2 genes. Our findings suggested that DHA contributes significantly to alleviate the harmful effects caused by PAHs in endothelial cells. Moreover, these results suggest that a diet rich in n-3 fatty acids is helpful to reduce the harmful effects of PAHs exposure on human living in heavily polluted areas.

  10. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    OpenAIRE

    2015-01-01

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to i...

  11. Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01

    We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

  12. BRCA-1 promoter hypermethylation and silencing induced by the aromatic hydrocarbon receptor-ligand TCDD are prevented by resveratrol in MCF-7 cells.

    Science.gov (United States)

    Papoutsis, Andreas J; Borg, Jamie L; Selmin, Ornella I; Romagnolo, Donato F

    2012-10-01

    Epigenetic mechanisms may contribute to reduced expression of the tumor suppressor gene BRCA-1 in sporadic breast cancers. Through environmental exposure and diet, humans are exposed to xenobiotics and food compounds that bind the aromatic hydrocarbon receptor (AhR). AhR-ligands include the dioxin-like and tumor promoter 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD). The activated AhR regulates transcription through binding to xenobiotic response elements (XREs=GCGTG) and interactions with transcription cofactors. Previously, we reported on the presence of several XREs in the proximal BRCA-1 promoter and that the expression of endogenous AhR was required for silencing of BRCA-1 expression by TCDD. Here, we document that in estrogen receptor-α-positive and BRCA-1 wild-type MCF-7 breast cancer cells, the treatment with TCDD attenuated 17β-estradiol-dependent stimulation of BRCA-1 protein and induced hypermethylation of a CpG island spanning the BRCA-1 transcriptional start site of exon-1a. Additionally, we found that TCDD enhanced the association of the AhR; DNA methyl transferase (DNMT)1, DNMT3a and DNMT3b; methyl binding protein (MBD)2; and trimethylated H3K9 (H3K9me3) with the BRCA-1 promoter. Conversely, the phytoalexin resveratrol, selected as a prototype dietary AhR antagonist, antagonized at physiologically relevant doses (1 μmol/L) the TCDD-induced repression of BRCA-1 protein, BRCA-1 promoter methylation and the recruitment of the AhR, MBD2, H3K9me3 and DNMTs (1, 3a and 3b). Taken together, these observations provide mechanistic evidence for AhR agonists in the establishment of BRCA-1 promoter hypermethylation and the basis for the development of prevention strategies based on AhR antagonists.

  13. Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model

    Science.gov (United States)

    Chen, Pengfei; Li, Chaoliu; Kang, Shichang; Yan, Fangping; Zhang, Qianggong; Ji, Zhengming; Tripathee, Lekhendra; Rupakheti, Dipesh; Rupakheti, Maheswar; Qu, Bin; Sillanpää, Mika

    2016-12-01

    Indo-Gangetic Plain (IGP) is one of the most polluted regions in the world. Despite numbers of studies conducted at urban site, few data are available at rural area. In this study, characteristics of 15 particle-bound priority polycyclic aromatic hydrocarbons (PAHs) of total suspended particles (TSPs) collected at a typical rural area (Lumbini) of IGP from April 2013 to March 2014 were reported. The results showed that annual average TSP and PAH concentrations were 209 ± 123 μg/m3 and 94.8 ± 54.6 ng/m3, respectively, which were similar to those of large cities such as Agra and Delhi in the upwind adjacent regions. Clear seasonal variation of TSP and PAH concentrations was observed, with the highest average concentration occurring in winter followed by the pre-monsoon, post-monsoon, and monsoon seasons, reflecting combined influence of source strength and monsoon circulation on PAH concentrations of Lumbini. Positive matrix factorization analysis showed that biomass combustion (50.6%) and vehicular emissions (30.4%) were first two sources of PAHs, followed by coal combustion (11.6%) and air-soil exchange (7.4%), in line with that of diagnostic molecular ratios results. Because of extensive agro-residue burning, intensive forest fires, and conducive weather conditions, contribution of biomass burning during non-monsoon season (55.7%) was higher than that of monsoon season (42.1%). The total BaP equivalent concentration (BaPeq) of particulate PAHs ranged between 2.51 and 47.3 ng/m3, was 2-40 times higher than the WHO guideline (1 ng/m3), implying local residents were at risk for adverse health effects.

  14. Baicalin Protects Mice from Aristolochic Acid I-Induced Kidney Injury by Induction of CYP1A through the Aromatic Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2015-07-01

    Full Text Available Exposure to aristolochic acid I (AAI can lead to aristolochic acid nephropathy (AAN, Balkan endemic nephropathy (BEN and urothelial cancer. The induction of hepatic CYP1A, especially CYP1A2, was considered to detoxify AAI so as to reduce its nephrotoxicity. We previously found that baicalin had the strong ability to induce CYP1A2 expression; therefore in this study, we examined the effects of baicalin on AAI toxicity, metabolism and disposition, as well as investigated the underlying mechanisms. Our toxicological studies showed that baicalin reduced the levels of blood urea nitrogen (BUN and creatinine (CRE in AAI-treated mice and attenuated renal injury induced by AAI. Pharmacokinetic analysis demonstrated that baicalin markedly decreased AUC of AAI in plasma and the content of AAI in liver and kidney. CYP1A induction assays showed that baicalin exposure significantly increased the hepatic expression of CYP1A1/2, which was completely abolished by inhibitors of the Aromatic hydrocarbon receptor (AhR, 3ʹ,4ʹ-dimethoxyflavone and resveratrol, in vitro and in vivo, respectively. Moreover, the luciferase assays revealed that baicalin significantly increased the luciferase activity of the reporter gene incorporated with the Xenobiotic response elements recognized by AhR. In summary, baicalin significantly reduced the disposition of AAI and ameliorated AAI-induced kidney toxicity through AhR-dependent CYP1A1/2 induction in the liver.

  15. The Effect of Aromatic Hydrocarbon Receptor on the Phenotype of the Hepa 1c1c7 Murine Hepatoma Cells in the Absence of Dioxin

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2007-01-01

    Full Text Available The aromatic hydrocarbon receptor (AhR mediates biological responses to certain exogenous ligands, such as the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, and has also been demonstrated to modulate the cell cycle and differentiated state of several cell lines independently of exogenous ligands. In this study, we used DNA micorarray analysis to elucidate the profile of genes responsive to the expression of unliganded AhR by re-introducing AhR into an AhR-deficient mouse derivative (c19 of the mouse hepatoma cell line Hepa1c1c7. 22 gene products were up-regulated and 8 were down-regulated two-fold or more in c19 cells infected with a retroviral vector expressing mouse AhR. Surprisingly, expression of genes involved in cell proliferation or differentiation were not affected by introduction of AhR. AhR also did not restore expression of the albumin gene in c19 cells. Introduction of AhR into c12, a similar AhRdefective mouse hepatoma cell line, also did not restore albumin expression, and furthermore, did not lead to changes in cellular morphology or cell cycle parameters. These observations fail to support the notion that unliganded AhR regulates proliferation and differentiation of liver-derived cells.

  16. Palladium-catalysed ortho arylation of acetanilides

    Indian Academy of Sciences (India)

    Guo-zhen zhang; Cheng-Qun Chen; Xin-Hua Feng; Guo-Sheng Huang

    2010-03-01

    The palladium-catalysed direct arylation of acetanilides by using C-H activation methodology has been demonstrated. Several acetanilides were coupled with aryl iodides in the presence of 10 mol% of Pd(OAc)2, 1.0 equiv of Cu(OTf)2, and 0.6 equiv of Ag2O to afford the corresponding products in moderate to excellent yields. The results showed that the amount of Ag2O was important for this protocol.

  17. CuI-catalyzed Synthesis of Aryl Thiocyanates from Aryl Iodides

    Institute of Scientific and Technical Information of China (English)

    Ye Feng WANG; Yuan ZHOU; Jia Rui WANG; Lei LIU; Qing Xiang GUO

    2006-01-01

    An operationally simple and inexpensive catalyst system was developed for the cross coupling of potassium thiocyanate with aryl iodides by using CuI as catalyst, 1, 10-phenanthroline as ligand, and tetraethylammonium iodide as activator. The procedure is applicable for the synthesis of diverse aryl thiocyanates without any exotic, poisonous reagents.

  18. One-pot, two-step, microwave-assisted palladium-catalyzed conversion of aryl alcohols to aryl fluorides via aryl nonaflates.

    Science.gov (United States)

    Wannberg, Johan; Wallinder, Charlotta; Ünlüsoy, Meltem; Sköld, Christian; Larhed, Mats

    2013-04-19

    A convenient procedure for converting aryl alcohols to aryl fluorides via aryl nonafluorobutylsulfonates (ArONf) is presented. Moderate to good one-pot, two-step yields were achieved by this nonaflation and microwave-assisted, palladium-catalyzed fluorination sequence. The reductive elimination step was investigated by DFT calculations to compare fluorination with chlorination, proving a larger thermodynamic driving force for the aryl fluoride product. Finally, a key aryl fluoride intermediate for the synthesis of a potent HCV NS3 protease inhibitor was smoothly prepared with the novel protocol.

  19. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer.

    Science.gov (United States)

    Moorthy, Bhagavatula; Chu, Chun; Carlin, Danielle J

    2015-05-01

    Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.

  20. Activation of Aryl Hydrocarbon Receptor Suppresses Acute Rejection in Allogeneic Cardiac Transplantation%激活芳香烃受体抑制同种异体小鼠心脏移植物急性排斥反应

    Institute of Scientific and Technical Information of China (English)

    蔡兰军; 余道武; 高义; 杨超; 周鸿敏; 陈忠华

    2013-01-01

    目的:验证在小鼠心脏移植中,2,3,7,8-四氯二苯二氧芑(TCDD)激活芳香烃受体(AHR)是否可以诱导调节性T细胞(Treg)扩增以及减轻急性排斥反应.方法:建立小鼠心脏移植模型,给予TCDD,观察对排斥反应及移植物生存期的影响.体外实验评估TCDD对Treg细胞比例的影响.检测受者体内Treg细胞比例及白细胞介素(白介素)-10表达水平.结果:TCDD激活AHR明显减轻心脏移植物内急性排斥反应,延长移植物存活时间[MST=(23.5±7.7)d].体外实验中TCDD明显提升CD4+ CD25+ Foxp3+调节性T细胞比例[TCDD组(15.3士2.6)%;PBS组(4.7士2.4)%,P<0.01)],而受者体内脾脏和移植物内Treg细胞比例相比对照组也明显升高(P<0.05).同时,TCDD明显提升了受者体内白介素-10的表达水平.结论:术前单次给予TCDD激活AHR可以明显抑制小鼠同种心脏移植物急性排斥反应,其机制可能与扩增Treg亚群有关.

  1. Study on relationship of rats lung carcinoma induced by dioxin and mediation of aryl hydrocarbon receptor%二(噁)(口英)致大鼠肺癌与芳香烃受体介导关系的研究

    Institute of Scientific and Technical Information of China (English)

    肖和龙; 吕嘉春; 刘小琦; 宾晓农; 谭敏; 黄莉

    2006-01-01

    目的 用致癌物四氧二苯二氧杂环已二烯(二(噁)(口英),TCDD)和苯并(a)芘(B(a)P)联合诱导构建大鼠肺癌的模型,探讨芳香烃受体(AhR)介导TCDD致肺癌的发生机制.方法 选Wistar大鼠80只,随机分为ABCD 4组分别代表施以TCDD、TCDD+B(a)P、B(a)P染毒的处理组和未施任何染毒处理的对照组,各组在第1.5、3、4.5和6个月,分批系列宰杀,观察肺部癌变情况.结果 结果表明,TCDD染毒组在101 d时出现首例肺癌,累计TCDD用量865.94 ng,致癌率为15%,TCDD+B(a)P联合染毒组在81 d时出现首例肺癌,TCDD累计用量622.34 ng,B(a)P累计用量为26.83 mg;致癌率30%,B(a)P染毒C组在161 d时,出现首例肺癌,B(a)P累计用量为87.58 mg,致癌率为5%;对照组未出现肺癌.4组之间比较,差异有统计学意义(P<0.05).结论 TCDD和B(a)P成功地诱发了大鼠肺癌,证实了TCDD既是致癌剂又是促癌剂.

  2. Camel Milk Modulates the Expression of Aryl Hydrocarbon Receptor-Regulated Genes, Cyp1a1, Nqo1, and Gsta1, in Murine hepatoma Hepa 1c1c7 Cells

    Directory of Open Access Journals (Sweden)

    Hesham M. Korashy

    2012-01-01

    Full Text Available There is a traditional belief in the Middle East that camel milk may aid in prevention and treatment of numerous cases of cancer yet, the exact mechanism was not investigated. Therefore, we examined the ability of camel milk to modulate the expression of a well-known cancer-activating gene, Cytochrome P450 1a1 (Cyp1a1, and cancer-protective genes, NAD(PH:quinone oxidoreductase 1 (Nqo1 and glutathione S-transferase a1 (Gsta1, in murine hepatoma Hepa 1c1c7 cell line. Our results showed that camel milk significantly inhibited the induction of Cyp1a1 gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, the most potent Cyp1a1 inducer and known carcinogenic chemical, at mRNA, protein, and activity levels in a concentration-dependent manner. In addition, camel milk significantly decreased the xenobiotic responsive element (XRE-dependent luciferase activity, suggesting a transcriptional mechanism is involved. Furthermore, this inhibitory effect of camel milk was associated with a proportional increase in heme oxygenase 1. On the other hand, camel milk significantly induced Nqo1 and Gsta1 mRNA expression level in a concentration-dependent fashion. The RNA synthesis inhibitor, actinomycin D, completely blocked the induction of Nqo1 mRNA by camel milk suggesting the requirement of de novo RNA synthesis through a transcriptional mechanism. In conclusion, camel milk modulates the expression of Cyp1a1, Nqo1, and Gsta1 at the transcriptional and posttranscriptional levels.

  3. Temporal variability of Polycyclic Aromatic Hydrocarbons (PAHs) in a receptor site of the Puebla-Tlaxcala Valley

    Science.gov (United States)

    Padilla, Z. V.; Torres, R.; Ruiz Suarez, L.; Molina, L. T.

    2013-05-01

    This contribution documents the presence and possible origin of PAHs, their temporal concentration patterns and correlations with other air pollutants in the so-called Puebla-Tlaxcala valley. This valley is located to the east of the Mexico City Metropolitan Area and is a very populated region which suffers of air pollution problems. Emission sources of PAHs include open burning, industrial boilers, automobiles and trucks, but vehicle emissions vary significantly depending on the use of: fuel, engine type and catalytic converter. An important emission source in the Puebla-Tlaxcala region is wood burning for cooking. Therefore, it is expected to have contributions of PAHS from this type of sources. PAHs measurements were performed in an air pollution semi-rural receptor site (Chipilo) southwest the City of Puebla, using an aerosol photoelectric sensor (PAS 2000 CE) to measure the concentration of PAHs and a diffuser charger (DC 2000 CE) to evaluate the active surface (DC) of the particles. The measuring period included March and April of 2012 during the ozne season in central Mexico. The use of these two sensors in parallel has been identified as a fingerprint technique to identify different types of particles from several combustion processes and is a useful tool to identify quantitatively the major source of emissions, as well as to describe thephysical and chemical characteristics of the particles. Correlations between PAHs and DC, with NOx and CO, together with an analysis of atmospheric transport may approximate the possible origin of these particles. The coefficient PAHs / DC associated with backward trajectory analysis represents a tool to identify potential areas of emission. The correlation between PAHs and NOx emissions reflects association with diesel combustion, while the correlation between PAHs and CO, the combustion of gasoline. The results show that vehicle emissions are the major source of PAHs with an associated increase in the concentration of

  4. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  5. Palladium catalyzed C3-arylation of 4-hydroxy-2-pyridones.

    Science.gov (United States)

    Anagnostaki, Elissavet E; Fotiadou, Anna D; Demertzidou, Vera; Zografos, Alexandros L

    2014-07-01

    The direct arylation of N-substituted-4-hydroxy-2-pyridones with aryl boronic acids has been achieved under palladium catalysis. The mild reaction conditions applied in this method and the use of a conventional catalytic system offer an attractive protocol for the efficient synthesis of a variety of 3-arylated products.

  6. Aryl Radical Geometry Determines Nanographene Formation on Au(111)

    NARCIS (Netherlands)

    Jacobse, Peter H.; van den Hoogenband, Adrianus; Moret, Marc Etienne; Klein Gebbink, Robertus J M; Swart, Ingmar

    2016-01-01

    The Ullmann coupling has been used extensively as a synthetic tool for the formation of C−C bonds on surfaces. Thus far, most syntheses made use of aryl bromides or aryl iodides. We investigated the applicability of an aryl chloride in the bottom-up assembly of graphene nanoribbons. Specifically, th

  7. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women

    OpenAIRE

    Kobayashi, Sumitaka; Sata, Fumihiro; Sasaki, Seiko; Ban, Susumu; Miyashita, Chihiro; Okada, Emiko; Limpar, Mariko; Yoshioka, Eiji; Kajiwara, Jumboku; TODAKA, Takashi; Saijo, Yasuaki; Kishi, Reiko

    2013-01-01

    Dioxins are metabolized by cytochrome P450, family 1 (CYP1) via the aromatic hydrocarbon receptor (AHR). We determined whether different blood dioxin concentrations are associated with polymorphisms in AHR (dbSNP ID: rs2066853), AHR repressor (AHRR; rs2292596), CYP1 subfamily A polypeptide 1 (CYP1A1; rs4646903 and rs1048963), CYP1 subfamily A polypeptide 2 (CYP1A2; rs762551), and CYP1 subfamily B polypeptide 1 (CYP1B1; rs1056836) in pregnant Japanese women. These six polymorphisms were detect...

  8. Apparatus for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2013-03-19

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  9. Highly Selective Colorimetric Recognition of Copper Ions Based on N-Aryl Coumarin Methyl Ketone Thiosemicarbazone Receptors%N-芳基香豆素甲基酮缩氨基硫脲对Cu2+的选择性比色识别

    Institute of Scientific and Technical Information of China (English)

    魏太保; 李军舰; 林奇; 姚虹; 郭英; 白翠冰; 谢永强; 张有明

    2012-01-01

    设计合成了2种新型N-芳基香豆素甲基酮缩氨基硫脲受体分子S1和S2,利用紫外-可见(UV-Vis)吸收光谱考察了其对Fe3+,Hg2+,Ag+,Ca2+,Cu2+,Zn2+,Pb2+,Cd2+,Ni2+,Cr3+和Mg2+等阳离子的识别作用.结果表明,当加入Cu2+时,溶液颜色立刻由无色变为黄色,而加入其它阳离子则无变化,从而实现了对Cu2+的裸眼检测,具有专一选择性比色识别效果.通过计算可知,受体分子S2对Cu2+的络合常数大于S1,且主客体间形成1∶1的配合物.受体分子S2对Cu2+的检出限为2.0×10-7mol/L,稳定常数Ks=1.02×105 L/mol.另外,在EDTA存在时,配合物可以释放出Cu2+,与EDTA结合,表现出对Cu2+的“off-on”模式.%Two new A'-aryl coumarin methyl ketone thiosemicarbazone receptors were designed and synthesized. The binding properties of the receptors with cations such as Fe 3+ , Hg 2+ , Ag+ , Ca 2+ , Cu 2+, Zn 2+ , Pb 2+ , Cd2+, Ni2+, Cr3+ and Mg2+ in DMSO were investigated by UV-Vis spectroscopy. A clear color change from colorless to yellow was observed upon the addition of Cu 2+ to the solution of the two receptors in DMSO by naked-eyes and a single selectivity colorimetric recognition. The results showed that the two receptors had a better selectivity for Cu2+, but exhibited no evident binding with others cations. The data showed that the two receptors had different binding abilities with Cu2+. The UV-Vis data indicated that a 1 : 1 stoichiometry complex was formed between the receptor and Cu 2+. The detection limit of the sensor S2 toward Cu 2+ is 2. 0×l0~ mol/L and an association constant Ks of 1. 02×105 L/mol was measured. The sensing of Cu2+ by this sensor was found to be reversible, with the Cu2+-induced color being lost upon the addition of EDTA. The process of titrating sensor S2 with Cu2+ is reversible, and compound S2 could be used as an off-on switch chemosensor.

  10. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates

    Science.gov (United States)

    Ackerman, Laura K. G.; Lovell, Matthew M.; Weix, Daniel J.

    2015-08-01

    The advent of transition-metal catalysed strategies for forming new carbon-carbon bonds has revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules. In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation of two distinct catalysts--multimetallic catalysis--can be used instead. Many important reactions rely on multimetallic catalysis, such as the Wacker oxidation of olefins and the Sonogashira coupling of alkynes with aryl halides, but this approach has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing oxidative addition. Here, we demonstrate that cooperativity between two group 10 metal catalysts--(bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium--enables a general cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles). Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple carbon-hydrogen bonds that is required for direct arylation methods. Selectivity can be achieved without an excess of either substrate and originates from the orthogonal reactivity of the two catalysts and the relative stability of the two arylmetal intermediates. While (1,3-bis(diphenylphosphino)propane)palladium reacts preferentially with aryl triflates to afford a persistent intermediate, (bipyridine)nickel reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5 per cent cross-coupled product in isolation, together they are able to achieve a yield of up to 94 per cent. Our results reveal a new method for the synthesis of biaryls, heteroaryls, and dienes, as well as a general mechanism for the selective transfer of ligands between two metal catalysts. We anticipate that this

  11. Induction of c-Jun by air particulate matter (PM₁₀) of Mexico city: Participation of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M

    2015-08-01

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10.

  12. Sub-chronically exposing mice to a polycyclic aromatic hydrocarbon increases lipid accumulation in their livers.

    Science.gov (United States)

    Jin, Yuanxiang; Miao, Wenyu; Lin, Xiaojian; Wu, Tao; Shen, Hangjie; Chen, Shan; Li, Yanhong; Pan, Qiaoqiao; Fu, Zhengwei

    2014-09-01

    The potential for exposing humans and wildlife to environmental polycyclic aromatic hydrocarbons (PAHs) has increased. Risk assessments describing how PAHs disturb lipid metabolism and induce hepatotoxicity have only received limited attention. In the present study, seven-week-old male ICR mice received intraperitoneal injections of 0, 0.01, 0.1 or 1mg/kg body weight 3-methylcholanthrene (3MC) per week for 10 weeks. A high-fat diet was provided during the exposure. Histopathological lipid accumulation and lipid metabolism-related genes were measured. We observed that sub-chronic 3MC exposure significantly increased lipid droplet and triacylglycerol (TG) levels in the livers. A low dose of 3MC activated the aryl hydrocarbon receptor, which negatively regulated lipid synthesis in the livers. The primary genes including acetyl-CoA carboxylase (Acc), fatty acid synthase (Fas) and stearoyl-CoA desaturase 1 (Scd1) decreased significantly when compared with those in the control group, indicating that de novo fatty acid synthesis in the hepatocytes was significantly inhibited by the sub-chronic 3MC exposure. However, the free fatty acid (FFA) synthesis in the adipose tissue was greatly enhanced by up-regulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulatory element binding protein-1c (SREBP1C) and target genes including Acc, Fas and Scd1. The synthesized FFA was released into the blood and then transported into the liver by the up-regulation of Fat and Fatp2, which resulted in the gradual accumulation of lipids in the liver. In conclusion, histological examinations and molecular level analyses highlighted the development of lipid accumulation and confirmed that 3MC significantly impaired lipid metabolism in mice.

  13. C(aryl-O Bond Formation from Aryl Methanesulfonates via Consecutive Deprotection and SNAr Reactions with Aryl Halides in an Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2007-04-01

    Full Text Available An efficient K3PO4-mediated synthesis of unsymmetrical diaryl ethers using the ionic liquid [Bmim]BF4 (1-butyl-3-methylimidazolium tetrafluoroborate as solvent has been developed. The procedure involves consecutive deprotection of aryl methane-sulfonates and a nucleophilic aromatic substitution (SNAr with activated aryl halides.

  14. Copper-catalysed N-arylation of arylsulfonamides with aryl bromides and aryl iodides using KF/Al2O3

    Indian Academy of Sciences (India)

    Rahman Hosseinzadeh; Mahmood Tajbakhsh; Maryam Mohadjerani; Mohammad Alikarami

    2010-03-01

    An efficient synthesis of -arylsulfonamides with a variety of aryl bromides, aryl iodides and heteroaryl bromides using KF/Al2O3 as a suitable base, CuI as an inexpensive catalyst and ,'-dimethylethylenediamine (,'-DMEDA) as an effective ligand is described.

  15. Hypoxia-inducible factor-1α increased the expression of peroxisome proliferator activated receptor α in lung cancer cell A549

    Institute of Scientific and Technical Information of China (English)

    张惠兰; 张珍祥; 徐永健

    2004-01-01

    @@ Hypoxia plays a fundamental role in many pathologic processes. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric basic helix-loop-helix-per-aryl hydrocarbon receptor ARNT-sim (PAS) domain protein, consisting of α and β subunits and is precisely regulated by cellular oxygen levels.1 The peroxisome proliferator-activated receptors (PPARs) are family nuclear hormone-binding proteins with increasing diverse functions as transcriptional regulators, owning three subtypes (α, β, and γ).2 PPARα plays a critical physiological role as lipid sensors and regulators of proliferation.3 Hypoxia can elicit up-regulation of PPAR-α expression.4 Herein, we report the results of an investigation on the correlation of HIF-1α and PPARα.

  16. Synthesis of β-arylated alkylamides via Pd-catalyzed one-pot installation of a directing group and C(sp3)–H arylation

    Science.gov (United States)

    Zhang, Yi; Cao, Xiaoji; Wan, Jie-Ping

    2016-01-01

    Summary The synthesis of β-arylated alkylamides via alkyl C–H bond arylation has been realized by means of direct one-pot reactions of acyl chlorides, aryl iodides and 8-aminoquinoline. Depending on the structure of the starting materials, both single and double β-arylated alkylamides could be accessed. PMID:27340500

  17. Antibacterial sesquiterpene aryl esters from Armillaria mellea.

    Science.gov (United States)

    Donnelly, D M; Abe, F; Coveney, D; Fukuda, N; O'Reilly, J; Polonsky, J; Prangé, T

    1985-01-01

    Investigation of the mycelial extract of Armillaria mellea led to the isolation of the known melleolide (2a) and two new sesquiterpene aryl eters, 4-O-methylmelleolide (2b) and judeol (1c). Their structures were deduced from spectral data and that of (2b) confirmed by X-ray analysis. The new esters (1c) and (2b) showed strong antibacterial activity against gram-positive bacteria.

  18. Carbonate polymers containing ethenyl aryl moieties

    OpenAIRE

    1993-01-01

    There are disclosed carbonate polymers having ethenyl aryl moieties. Such carbonate polymers are prepared from one or more multi-hydric compounds and have an average degree of polymerization of at least about 1 based on multi-hydric compound. These polymers, including blends thereof, can be easily processed and shaped into various forms and structures according to the known techniques. During or subsequent to the processing, the polymers can be crosslinked, by exposure to heat or radiation, f...

  19. Fluoroalkylation of aryl ether perfluorocyclobutyl polymers

    OpenAIRE

    Ligon, Clark; Ameduri, Bruno; Boutevin, Bernard; Smith, Dennis

    2008-01-01

    International audience; Post functionalization of aryl ether perfluorocyclobutyl (PFCB) polymers with fluoroalkyl side chains was accomplished with Umemoto's FITS reagents. The fluoroalkylated PFCB polymers (20 % functionalized) showed increases in both hydrophobicity and oleophobicity. Static contact angle for hexadecane was increased after fluoroalkylation from 0° to greater than 30° for the two PFCB polymers tested. Increased oil repellency makes these materials potential candidates for va...

  20. Identification and analysis of novel flavonoid agonists and antagonists for the AH and estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, B.; Nagy, S.; Rogers, J.; Denison, M. [Dept. of Environmental Toxicology, Univ. of California, Davis (United States); Nantz, M.; Kurth, M.; Springsteel, M. [Dept. of Chemistry, Univ. of California, Davis (United States)

    2004-09-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxicological effects in a diverse range of species, tissues, and cell types. The most studied effect is induction of gene expression, and, the majority of AhR responsive genes, such as cytochrome P4501A1 (CYP1A1), utilize AhR dependent mechanism of action. While halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic hydrocarbons (PAHs) are the prototypical ligands of the Ah receptor, it has recently identified that the AhR is activated by a structurally diverse array of hydrophobic natural and synthetic chemicals. Given the structural diversity in AhR ligands, the physiochemical characteristics for high and low affinity ligands seems to be established. Environmental contaminants that can disrupt the endocrine homeostasis of an organism have also gained widespread attention in recent years and numerous chemicals have been identified as having either hormone or anti-hormone properties. However, like the AhR, the structural diversity and characteristics of endocrine disrupters that exert their action via nuclear receptors also seems to be depended on the estrogen receptor (ER). The flavonoids are a diverse family of chemicals commonly found in fruits and vegetables. Members of this family exert cytostatic, apoptotic, anti-inflammatory and anti-angiogenic activities. In addition, several flavonoids are potent modulators of both the expression and activities of specific cytochrome P450 genes/proteins and somel others have estrogenic and antiestrogenic activity. Accordingly flavonoids have attracted attention as possible chemoprotective or chemotherapeutic agents. We have previously developed and analyzed a novel chemical library of flavonoids which contained {proportional_to}200 compounds. The ability of these compounds to activate and/or inhibit AhR- and ER- dependent gene expression was examined by using our recently developed AhR- and ER

  1. Discovery and SAR of a novel series of non-MPEP site mGlu₅ PAMs based on an aryl glycine sulfonamide scaffold.

    Science.gov (United States)

    Rodriguez, Alice L; Zhou, Ya; Williams, Richard; Weaver, C David; Vinson, Paige N; Dawson, Eric S; Steckler, Thomas; Lavreysen, Hilde; Mackie, Claire; Bartolomé, José M; Macdonald, Gregor J; Daniels, J Scott; Niswender, Colleen M; Jones, Carrie K; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R

    2012-12-15

    Herein we report the discovery and SAR of a novel series of non-MPEP site metabotropic glutamate receptor 5 (mGlu(5)) positive allosteric modulators (PAMs) based on an aryl glycine sulfonamide scaffold. This series represents a rare non-MPEP site mGlu(5) PAM chemotype.

  2. Palladium-Catalyzed alpha-Arylation of Tetramic Acids

    DEFF Research Database (Denmark)

    Storgaard, Morten; Dorwald, F. Z.; Peschke, B.;

    2009-01-01

    A mild, racemization-free, palladium-Catalyzed alpha-arylation of tetramic acids (2,4-pyrrolidinediones) has been developed. Various amino acid-derived tetramic acids were cleanly arylated by treatment with 2 mol % of Pd(OAc)(2), 4 mol % of a sterically demanding biaryl phosphine, 2.3 equiv of K2CO...

  3. Selective copper catalysed aromatic N-arylation in water

    DEFF Research Database (Denmark)

    Engel-Andreasen, Jens; Shimpukade, Bharat; Ulven, Trond.

    2013-01-01

    4,7-Dipyrrolidinyl-1,10-phenanthroline (DPPhen) was identified as an efficient ligand for copper catalyzed selective arom. N-arylation in water. N-Arylation of indoles, imidazoles and purines proceeds with moderate to excellent yields and complete selectivity over aliph. amines. Aq. medium and th...

  4. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  5. N-Arylation of azaheterocycles with aryl and heteroaryl halides catalyzed by iminodiacetic acid resin-chelated copper complex

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Iminodiacetic acid resin-chelated copper(Ⅱ) complex is effective in cross-coupling reactions between azaheterocycles and aryl or heteroaryl halides,providing N-arylated products in good to excellent yields.The copper catalyst is air stable and can be readily recovered and reused with minimal loss of activity for three runs.

  6. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, Andrew [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Department of Statistics, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Siddens, Lisbeth K. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Krueger, Sharon K. [Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Tilton, Susan C.; Waters, Katrina M. [Superfund Research Center, Oregon State University (United States); Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Williams, David E., E-mail: david.williams@oregonstate.edu [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Linus Pauling Institute, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States); Baird, William M. [Department of Environmental and Molecular Toxicology, Oregon State University (United States); Superfund Research Center, Oregon State University (United States); Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331 (United States)

    2013-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log{sub 2} fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights. - Highlights: ► Tested a model to predict PAH mixture-mediated changes in Cyp1b1 expression ► Quantitative predictions in agreement with microarrays for Cyp1b1 induction ► Unexpected difference in expression between DBC and other treatments predicted ► Model predictions

  7. Structurally Distinct Polycyclic Aromatic Hydrocarbons Induce Differential Transcriptional Responses in Developing Zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Goodale, Britton; Tilton, Susan C.; Corvi, Margaret M.; Wilson, Glenn V.; Janszen, Derek B.; Anderson, Kim A.; Waters, Katrina M.; Tanguay, Robert

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC-MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures.

  8. C- versus O-Arylation of an Enol-Lactone Using Potassium tert-butoxide

    Directory of Open Access Journals (Sweden)

    El Moktar Essassi

    2003-05-01

    Full Text Available Abstract: The use of potassium tert-butoxide as the base in arylation reactions of an enollactone with a series of benzyl halides was explored. Our work demonstrates that the ratio of C-arylation to O-arylation varies with the substitution pattern of the aryl halide.

  9. Titanium dioxide nanoparticles provide protection against polycyclic aromatic hydrocarbon BaP and chrysene-induced perturbation of DNA repair machinery: A computational biology approach.

    Science.gov (United States)

    Dhasmana, Anupam; Jamal, Qazi Mohd Sajid; Gupta, Richa; Siddiqui, Mohd Haris; Kesari, Kavindra Kumar; Wadhwa, Gulshan; Khan, Saif; Haque, Shafiul; Lohani, Mohtashim

    2016-07-01

    We examined the interaction of polycyclic hydrocarbons (PAHs) like benzo-α-pyrene (BaP), chrysene, and their metabolites 7,8-dihydro-7,8-dihydroxybenzo(a)pyrene,9,10-oxide (BPDE) and chrysene 1,2-diol-3,4-epoxide-2 (CDE), with the enzymes involved in DNA repair. We investigated interaction of 120 enzymes with PAHs and screened out 40 probable targets among DNA repair enzymes, on the basis of higher binding energy than positive control. Out of which, 20 enzymes lose their function in the presence of BaP, chrysene, and their metabolites, which may fetter DNA repair pathways resulting in damage accumulation and finally leading to cancer formation. We propose the use of nanoparticles as a guardian against the PAH's induced toxicity. PAHs enter the cell via aryl hydrocarbon receptor (AHR). TiO2 NP showed a much higher docking score with AHR (12,074) as compared with BaP and chrysene with AHR (4,600 and 4,186, respectively), indicating a preferential binding of TiO2 NP with the AHR. Further, docking of BaP and chrysene with the TiO2 NP bound AHR complex revealed their strong adsorption on TiO2 NP itself, and not on their original binding site (at AHR). TiO2 NPs thereby prevent the entry of PAHs into the cell via AHR and hence protect cells against the deleterious effects induced by PAHs.

  10. Pd-catalyzed carbonylative α-arylation of aryl bromides: scope and mechanistic studies.

    Science.gov (United States)

    Nielsen, Dennis U; Lescot, Camille; Gøgsig, Thomas M; Lindhardt, Anders T; Skrydstrup, Troels

    2013-12-23

    Reaction conditions for the three-component synthesis of aryl 1,3-diketones are reported applying the palladium-catalyzed carbonylative α-arylation of ketones with aryl bromides. The optimal conditions were found by using a catalytic system derived from [Pd(dba)2] (dba=dibenzylideneacetone) as the palladium source and 1,3-bis(diphenylphosphino)propane (DPPP) as the bidentate ligand. These transformations were run in the two-chamber reactor, COware, applying only 1.5 equivalents of carbon monoxide generated from the CO-releasing compound, 9-methylfluorene-9-carbonyl chloride (COgen). The methodology proved adaptable to a wide variety of aryl and heteroaryl bromides leading to a diverse range of aryl 1,3-diketones. A mechanistic investigation of this transformation relying on 31P and 13C NMR spectroscopy was undertaken to determine the possible catalytic pathway. Our results revealed that the combination of [Pd(dba)2] and DPPP was only reactive towards 4-bromoanisole in the presence of the sodium enolate of propiophenone suggesting that a [Pd(dppp)(enolate)] anion was initially generated before the oxidative-addition step. Subsequent CO insertion into an [Pd(Ar)(dppp)(enolate)] species provided the 1,3-diketone. These results indicate that a catalytic cycle, different from the classical carbonylation mechanism proposed by Heck, is operating. To investigate the effect of the dba ligand, the Pd0 precursor, [Pd(η3-1-PhC3H4)(η5-C5H5)], was examined. In the presence of DPPP, and in contrast to [Pd(dba)2], its oxidative addition with 4-bromoanisole occurred smoothly providing the [PdBr(Ar)(dppp)] complex. After treatment with CO, the acyl complex [Pd(CO)Br(Ar)(dppp)] was generated, however, its treatment with the sodium enolate led exclusively to the acylated enol in high yield. Nevertheless, the carbonylative α-arylation of 4-bromoanisole with either catalytic or stoichiometric [Pd(η3-1-PhC3H4)(η5-C5H5)] over a short reaction time, led to the 1,3-diketone product

  11. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nai; TIAN ZuoJi; LENG YingYing; WANG HuiTong; SONG FuQing; MENG JianHua

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2)branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4)phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hydrocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclusions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydrocarbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram.And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion,saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  12. Raman characteristics of hydrocarbon and hydrocarbon inclusions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Raman spectrograms of hydrocarbon standard samples show that: (1) the Raman spectrogram of normal paraffin has very strong peaks of methyl and methylene (from 2700 cm-1 to 2970 cm-1); (2) branch methyl has the particular peak of 748 cm-1±; (3) six cyclic has the particular peak of 804 cm-1±; (4) phenyl has two particular peaks of 988 cm-1± and 3058 cm-1± and the 988 cm-1± peak is stronger than the 3058 cm-1± peak; and (5) hexene has three alkenyl spectrum peaks of 1294 cm-1±, 1635 cm-1± and 2996 cm-1±, with the 1635 cm-1± peak being the strongest, showing that the number of carbon in hy-drocarbon does not affect its Raman spectrogram, and the hydrocarbon molecular structure and base groups affect its Raman spectrogram, the same hydrocarbons (such as normal paraffin) have the same Raman spectrogram; the types (such as CH4, C2H6, C3H8) and the content of hydrocarbon in oil inclu-sions are not estimated by their characteristic Raman peaks. According to the Raman spectrograms of hydrocarbon compositions, the Raman spectrogram of hydrocarbon inclusion can be divided into five types: saturated hydrocarbon Raman spectrogram, fluoresce Raman spectrogram, saturated hydro-carbon bitumen Raman spectrogram, bitumen Raman spectrogram, and ethane Raman spectrogram. And according to the characteristics of Raman spectrogram, hydrocarbon inclusions can be divided into five types: saturated hydrocarbon inclusion, less saturated hydrocarbon (oil or gas) inclusion, saturated hydrocarbon bitumen inclusion, bitumen inclusion, and methane water inclusion.

  13. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  14. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The unexpected influence of aryl substituents in N-aryl-3-oxobutanamides on the behavior of their multicomponent reactions with 5-amino-3-methylisoxazole and salicylaldehyde

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Tkachenko

    2014-12-01

    Full Text Available The switchable three-component reactions of 5-amino-3-methylisoxazole, salicylaldehyde and N-aryl-3-oxobutanamides under different conditions were studied and discussed. The unexpected influence of the aryl substituent in N-aryl-3-oxobutanamides on the behavior of the reaction was discovered. The key influence of ultrasonication and Lewis acid catalysts led to an established protocol to selectively obtain two or three types of heterocyclic scaffolds depending on the substituent in the N-aryl moiety.

  16. Copper/N,N-Dimethylglycine Catalyzed Goldberg Reactions Between Aryl Bromides and Amides, Aryl Iodides and Secondary Acyclic Amides

    Directory of Open Access Journals (Sweden)

    Liqin Jiang

    2014-08-01

    Full Text Available An efficient and general copper-catalyzed Goldberg reaction at 90–110 °C between aryl bromides and amides providing the desired products in good to excellent yields has been developed using N,N-dimethylglycine as the ligand. The reaction is tolerant toward a wide range of amides and a variety of functional group substituted aryl bromides. In addition, hindered, unreactive aromatic and aliphatic secondary acyclic amides, known to be poor nucleophiles, are efficiently coupled with aryl iodides through this simple and cheap copper/N,N-dimethylglycine catalytic system.

  17. Homocoupling of Aryl Bromides Catalyzed by Nickel Chloride in Pyridine

    Institute of Scientific and Technical Information of China (English)

    TAO, Xiao-Chun; ZHOU, Wei; ZHANG, Yue-Ping; DAI, Chun-ya; SHEN, Dong; HUANG, Mei

    2006-01-01

    Pyridine was used as a solvent for homocoupling of aryl bromides catalyzed by nickel chloride/triarylphosphine in the presence of zinc and recycled easily. Triphenylphosphine was the best ligand for nickel in this coupling reaction.

  18. Synthesis of aryl phosphates based on pyrimidine and triazine scaffolds.

    Science.gov (United States)

    Courme, Caroline; Gresh, Nohad; Vidal, Michel; Lenoir, Christine; Garbay, Christiane; Florent, Jean-Claude; Bertounesque, Emmanuel

    2010-01-01

    The syntheses of the triazinyl-based bis-aryl phosphates 2 and 3, and of the aminopyrimidyl-based aryl phosphate 4 are described. Each compound contains a diaryl ether-phosphate structural motif. The synthetic route to bis-aryl phosphates 2 and 3 consisted in two nucleophilic substitution reactions with amines from cyanuric chloride, followed by a Suzuki coupling with the resulting 2,4-diamino-6-chloro-1,3,5-triazine derivative 12 to introduce the diaryl ether functionality. Aryl phosphate 4 was obtained via condensation of aryl guanidine 34 with aryloxyphenyl butenone 31. These de novo-designed aryl phosphates were evaluated as potential inhibitors of the Grb2-SH2 domain using an ELISA assay. The water-soluble sodium salt 26 of 3 gave an IC(50) value in the high micromolar range. Molecular modeling studies were subsequently performed upon modifying the 1,3,5-trisubstituted triazine scaffold of 3. Non-phosphate derivatives encompassing cyclopropane, pyrrole, keto-acid, and IZD fragments were thus step-wise designed and their Grb2-SH2 complexes were modeled by molecular dynamics. Some derivatives gave rise to an enriched pattern of H-bonds and cation-pi interactions with Grb2-SH2.

  19. A convenient catalyst system for microwave accelerated cross-coupling of a range of aryl boronic acids with aryl chlorides

    Directory of Open Access Journals (Sweden)

    Milton Edward J

    2007-05-01

    Full Text Available Abstract A convenient microwave accelerated cross-coupling procedure between aryl chlorides with a range of boronic acids has been developed. An explanation for the low reactivity of highly fluorinated boronic acids in Suzuki coupling is provided.

  20. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women.

    Science.gov (United States)

    Kobayashi, Sumitaka; Sata, Fumihiro; Sasaki, Seiko; Ban, Susumu; Miyashita, Chihiro; Okada, Emiko; Limpar, Mariko; Yoshioka, Eiji; Kajiwara, Jumboku; Todaka, Takashi; Saijo, Yasuaki; Kishi, Reiko

    2013-06-07

    Dioxins are metabolized by cytochrome P450, family 1 (CYP1) via the aromatic hydrocarbon receptor (AHR). We determined whether different blood dioxin concentrations are associated with polymorphisms in AHR (dbSNP ID: rs2066853), AHR repressor (AHRR; rs2292596), CYP1 subfamily A polypeptide 1 (CYP1A1; rs4646903 and rs1048963), CYP1 subfamily A polypeptide 2 (CYP1A2; rs762551), and CYP1 subfamily B polypeptide 1 (CYP1B1; rs1056836) in pregnant Japanese women. These six polymorphisms were detected in 421 healthy pregnant Japanese women. Differences in dioxin exposure concentrations in maternal blood among the genotypes were investigated. Comparisons among the GG, GA, and AA genotypes of AHR showed a significant difference (genotype model: P=0.016 for the mono-ortho polychlorinated biphenyl concentrations and toxicity equivalence quantities [TEQs]). Second, we found a significant association with the dominant genotype model ([TT+TC] vs. CC: P=0.048 for the polychlorinated dibenzo-p-dioxin TEQs; P=0.035 for polychlorinated dibenzofuran TEQs) of CYP1A1 (rs4646903). No significant differences were found among blood dioxin concentrations and polymorphisms in AHRR, CYP1A1 (rs1048963), CYP1A2, and CYP1B1. Thus, polymorphisms in AHR and CYP1A1 (rs4646903) were associated with maternal dioxin concentrations. However, differences in blood dioxin concentrations were relatively low.

  1. Receptor- and reactive intermediate-mediated mechanisms of teratogenesis.

    Science.gov (United States)

    Wells, Peter G; Lee, Crystal J J; McCallum, Gordon P; Perstin, Julia; Harper, Patricia A

    2010-01-01

    Drugs and environmental chemicals can adversely alter the development of the fetus at critical periods during pregnancy, resulting in death, or in structural and functional birth defects in the surviving offspring. This process of teratogenesis may not be evident until a decade or more after birth. Postnatal functional abnormalities include deficits in brain function, a variety of metabolic diseases, and cancer. Due to the high degree of fetal cellular division and differentiation, and to differences from the adult in many biochemical pathways, the fetus is highly susceptible to teratogens, typically at low exposure levels that do not harm the mother. Insights into the mechanisms of teratogenesis come primarily from animal models and in vitro systems, and involve either receptor-mediated or reactive intermediate-mediated processes. Receptor-mediated mechanisms involving the reversible binding of xenobiotic substrates to a specific receptor are exemplified herein by the interaction of the environmental chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or "dioxin") with the cytosolic aryl hydrocarbon receptor (AHR), which translocates to the nucleus and, in association with other proteins, binds to AH-responsive elements (AHREs) in numerous genes, initiating changes in gene transcription that can perturb development. Alternatively, many xenobiotics are bioactivated by fetal enzymes like the cytochromes P450 (CYPs) and prostaglandin H synthases (PHSs) to highly unstable electrophilic or free radical reactive intermediates. Electrophilic reactive intermediates can covalently (irreversibly) bind to and alter the function of essential cellular macromolecules (proteins, DNA), causing developmental anomalies. Free radical reactive intermediates can enhance the formation of reactive oxygen species (ROS), resulting in oxidative damage to cellular macromolecules and/or altered signal transduction. The teratogenicity of reactive intermediates is determined to a large extent

  2. PAH-CALUX, an optimized bioassay for AhR-mediated hazard identification of polycyclic aromatic hydrocarbons (PAHs) as individual compounds and in complex mixtures.

    Science.gov (United States)

    Pieterse, B; Felzel, E; Winter, R; van der Burg, B; Brouwer, A

    2013-10-15

    Polycyclic aromatic hydrocarbons (PAHs) represent a class of ubiquitously occurring environmental compounds that are implicated in a wide range of toxicological effects. Routine measurement of PAH contamination generally involves chemical analytical analysis of a selected group of representatives, for example, EPA-16, which may result in underestimation of the PAH-related toxicity of a sample. Many high molecular weight PAHs are known ligands of the aryl hydrocarbon receptor (AhR), a nuclear receptor that mediates toxic effects related to these compounds. Making use of this property we developed a PAH CALUX assay, a mammalian, H4IIe- cell-based reporter assay for the hazard identification of total PAH mixtures. The PAH CALUX reporter cell line allows for specific, rapid (4 h exposure time) and reliable quantification of AhR-induced luciferase induction relative to benzo[a]pyrene (BaP), which is used as a positive reference PAH congener. Full dose response relationships with inductions over 100-fold were reached within only 2 h of exposure to BaP. The PAH CALUX is highly sensitive, that is, using a 4 h exposure time, a limit of detection (LOD) of 5.2 × 10(-11) M BaP was achieved, and highly accurate, that is, a repeatability of 5.9% and a reproducibility of 6.6% were established. Screening of a selection of PAHs that were prioritized by the European Union and/or the U.S. Environmental Protection Agency showed that the PAH CALUX bioassay has a high predictability, particularly for carcinogenic PAHs. Experiments with synthetic mixtures and reference materials containing complex PAH mixtures show the suitability of the assay for these types of applications. Moreover, the presented results suggest that application of the PAH CALUX will result in a lower risk of underestimation of the toxicity of a sample than chemical analytical approaches that focus on a limited set of prioritized compounds.

  3. Microwave-Promoted Rapid Synthesis of 1-Aryl-1, 2, 3-Triazoles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Aryl azides and a-keto phosphorus ylides were reacted within 4~10 minutes with silica gel support, under microwave irridiation to afford corresponding l-aryl-l, 2, 3-triazoles in moderate to good yields.

  4. Synthesis and fungicidal activity of aryl carbamic acid-5-aryl-2-furanmethyl ester.

    Science.gov (United States)

    Li, Ying; Li, Bao-Ju; Ling, Yun; Miao, Hong-Jian; Shi, Yan-Xia; Yang, Xin-Ling

    2010-03-10

    Chitin, a major structural component of insect cuticle and fungus cell wall but absent in plants and vertebrates, is regarded as a safe and selective target for pest control agents. Chitin synthesis inhibitors (CSIs) have been well-known as insect growth regulators (IGRs) but rarely found as fungicides in agriculture. To find novel CSIs with good activity, benzoylphenylurea, a typical kind of CSIs, was chosen as the lead compound and 26 novel aryl carbamic acid-5-aryl-2-furanmethyl esters were designed by converting the urea linkages of benzoylphenylureas to carbamic acid esters and changing the aniline parts into furanmethyl groups. The title compounds were synthesized and their structures confirmed by IR, (1)H NMR, and elemental analysis. Preliminary insecticidal and fungicidal bioassays were carried out. The results indicated that the title compounds had no insecticidal effect on Culex pipiens pallens and Plutella xylostella Linnaeus , but most compounds exhibited good fungicidal activities against Corynespora cassiicola , Thanatephorus cucumeris , Botrytis cinerea , and Fusarium oxysporum . In particular, compounds V-4, V-6, V-7, and V-8 showed better activities against the four strains than those of the commercialized fungicides. The morphologic result suggested that compound V-21 had disturbed the cell wall formation of C. cassiicola. The results indicated that modification on the urea linkage of benzoylphenylurea was an effective way to discover new candidates for fungicides.

  5. Increased sensitivity of estrogen receptor alpha overexpressing antral follicles to methoxychlor and its metabolites.

    Science.gov (United States)

    Paulose, Tessie; Hernández-Ochoa, Isabel; Basavarajappa, Mallikarjuna S; Peretz, Jackye; Flaws, Jodi A

    2011-04-01

    Methoxychlor (MXC), an organochlorine pesticide, and its metabolites, mono-hydroxy MXC (MOH) and bis-hydroxy MXC (HPTE) are known ovarian toxicants and can cause inhibition of antral follicle growth. Since these chemicals bind to estrogen receptor alpha (ESR1), we hypothesized that ovaries overexpressing ESR1 (ESR1 OE) would be more susceptible to toxicity induced by MXC and its metabolites because the chemicals can bind to more ESR1 in the antral follicles. We cultured antral follicles from controls and ESR1 OE mouse ovaries with either the vehicle dimethylsulfoxide (DMSO), MXC, MOH, or HPTE. The data show that at 96 h, the cultured antral follicles from ESR1 OE antral follicles are more susceptible to toxicity induced by MXC, MOH, and HPTE because low doses of these chemicals cause follicle growth inhibition in ESR1 OE mice but not in control mice. On comparing gene expression levels of nuclear receptors in the cultured antral follicles of ESR1 OE and control follicles, we found differential messenger RNA (mRNA) expression of Esr1, estrogen receptor beta (Esr2), androgen receptor (Ar), progesterone receptor (Pr), and aryl hydrocarbon receptor (Ahr) between the genotypes. We also analyzed mRNA levels of Cyp3a41a, the enzyme metabolizing MOH and HPTE, in the cultured follicles and found that Cyp3a41a was significantly lower in DMSO-treated ESR1 OE follicles compared with controls. In ESR1 OE livers, we found that Cyp3a41a levels were significantly lower compared with control livers. Collectively, these data suggest that MXC and its metabolites cause differential gene expression in ESR1 OE mice compared with controls. The results also suggest that the increased sensitivity of ESR1 OE mouse ovaries to toxicity induced by MXC and its metabolites is due to low clearance of the metabolites by the liver and ovary.

  6. Ruthenium(II)-Catalyzed C-C Arylations and Alkylations: Decarbamoylative C-C Functionalizations.

    Science.gov (United States)

    Moselage, Marc; Li, Jie; Kramm, Frederik; Ackermann, Lutz

    2017-04-05

    Ruthenium(II)biscarboxylate catalysis enabled selective C-C functionalizations by means of decarbamoylative C-C arylations. The versatility of the ruthenium(II) catalysis was reflected by widely applicable C-C arylations and C-C alkylations of aryl amides, as well as acids with modifiable pyrazoles, through facile organometallic C-C activation.

  7. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling

    KAUST Repository

    Fan, Lulu

    2016-09-23

    A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C−O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.

  8. Mechanisms and origins of switchable chemoselectivity of Ni-catalyzed C(aryl)-O and C(acyl)-O activation of aryl esters with phosphine ligands.

    Science.gov (United States)

    Hong, Xin; Liang, Yong; Houk, K N

    2014-02-05

    Many experiments have shown that nickel with monodentate phosphine ligands favors the C(aryl)-O activation over the C(acyl)-O activation for aryl esters. However, Itami and co-workers recently discovered that nickel with bidentate phosphine ligands can selectively activate the C(acyl)-O bond of aryl esters of aromatic carboxylic acids. The chemoselectivity with bidentate phosphine ligands can be switched back to C(aryl)-O activation when aryl pivalates are employed. To understand the mechanisms and origins of this switchable chemoselectivity, density functional theory (DFT) calculations have been conducted. For aryl esters, nickel with bidentate phosphine ligands cleaves C(acyl)-O and C(aryl)-O bonds via three-centered transition states. The C(acyl)-O activation is more favorable due to the lower bond dissociation energy (BDE) of C(acyl)-O bond, which translates into a lower transition-state distortion energy. However, when monodentate phosphine ligands are used, a vacant coordination site on nickel creates an extra Ni-O bond in the five-centered C(aryl)-O cleavage transition state. The additional interaction energy between the catalyst and substrate makes C(aryl)-O activation favorable. In the case of aryl pivalates, nickel with bidentate phosphine ligands still favors the C(acyl)-O activation over the C(aryl)-O activation at the cleavage step. However, the subsequent decarbonylation generates a very unstable tBu-Ni(II) intermediate, and this unfavorable step greatly increases the overall barrier for generating the C(acyl)-O activation products. Instead, the subsequent C-H activation of azoles and C-C coupling in the C(aryl)-O activation pathway are much easier, leading to the observed C(aryl)-O activation products.

  9. Differential modulation of expression of nuclear receptor mediated genes by tris(2-butoxyethyl) phosphate (TBOEP) on early life stages of zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiyuan, E-mail: zhiyuan_nju@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Yu, Yijun, E-mail: yjun.yu@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Tang, Song [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Liu, Hongling, E-mail: hlliu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Su, Guanyong; Xie, Yuwei [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Giesy, John P. [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hecker, Markus [School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3 (Canada); Yu, Hongxia [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023 (China)

    2015-12-15

    Highlights: • Effects of TBOEP on expression of genes of several nuclear hormone receptors and their relationship with adverse effect pathways in zebrafish. • TBOEP was neither an agonist nor antagonist of AR or AhR as determined by use of in vitro mammalian cell-based receptor transactivation assays. • Modulation of ER- and MR-dependent pathways allowed for development of feasible receptor-mediated, critical mechanisms of toxic action. - Abstract: As one substitute for phased-out brominated flame retardants (BFRs), tris(2-butoxyethyl) phosphate (TBOEP) is frequently detected in aquatic organisms. However, knowledge about endocrine disrupting mechanisms associated with nuclear receptors caused by TBOEP remained restricted to results from in vitro studies with mammalian cells. In the study, results of which are presented here, embryos/larvae of zebrafish (Danio rerio) were exposed to 0.02, 0.1 or 0.5 μM TBOEP to investigate expression of genes under control of several nuclear hormone receptors (estrogen receptors (ERs), androgen receptor (AR), thyroid hormone receptor alpha (TRα), mineralocorticoid receptor (MR), glucocorticoid receptor (GR), aryl hydrocarbon (AhR), peroxisome proliferator-activated receptor alpha (PPARα), and pregnane × receptor (P × R)) pathways at 120 hpf. Exposure to 0.5 μM TBOEP significantly (p < 0.05, one-way analysis of variance) up-regulated expression of estrogen receptors (ERs, er1, er2a, and er2b) genes and ER-associated genes (vtg4, vtg5, pgr, ncor, and ncoa3), indicating TBOEP modulates the ER pathway. In contrast, expression of most genes (mr, 11βhsd, ube2i,and adrb2b) associated with the mineralocorticoid receptor (MR) pathway were significantly down-regulated. Furthermore, in vitro mammalian cell-based (MDA-kb2 and H4IIE-luc) receptor transactivation assays, were also conducted to investigate possible agonistic or antagonistic effects on AR- and AhR-mediated pathways. In mammalian cells, none of these pathways were

  10. Transcriptomic evaluation of the American oyster, Crassostrea virginica, deployed during the Deepwater Horizon oil spill: Evidence of an active hydrocarbon response pathway.

    Science.gov (United States)

    Jenny, Matthew J; Walton, William C; Payton, Samantha L; Powers, John M; Findlay, Robert H; O'Shields, Britton; Diggins, Kirsten; Pinkerton, Mark; Porter, Danielle; Crane, Daniel M; Tapley, Jeffrey; Cunningham, Charles

    2016-09-01

    Estuarine organisms were impacted by the Deepwater Horizon oil spill which released ∼5 million barrels of crude oil into the Gulf of Mexico in the spring and summer of 2010. Crassostrea virginica, the American oyster, is a keystone species in these coastal estuaries and is routinely used for environmental monitoring purposes. However, very little is known about their cellular and molecular responses to hydrocarbon exposure. In response to the spill, a monitoring program was initiated by deploying hatchery-reared oysters at three sites along the Alabama and Mississippi coast (Grand Bay, MS, Fort Morgan, AL, and Orange Beach, AL). Oysters were deployed for 2-month periods at five different time points from May 2010 to May 2011. Gill and digestive gland tissues were harvested for gene expression analysis and determination of aliphatic and polycyclic aromatic hydrocarbon (PAH) concentrations. To facilitate identification of stress response genes that may be involved in the hydrocarbon response, a nearly complete transcriptome was assembled using Roche 454 and Illumina high-throughput sequencing from RNA samples obtained from the gill and digestive gland tissues of deployed oysters. This effort resulted in the assembly and annotation of 27,227 transcripts comprised of a large assortment of stress response genes, including members of the aryl hydrocarbon receptor (AHR) pathway, Phase I and II biotransformation enzymes, antioxidant enzymes and xenobiotic transporters. From this assembly several potential biomarkers of hydrocarbon exposure were chosen for expression profiling, including the AHR, two cytochrome P450 1A genes (CYP1A-like 1 and CYP1A-like 2), Cu/Zn superoxide dismutase (CuZnSOD), glutathione S-transferase theta (GST theta) and multidrug resistance protein 3 (MRP3). Higher expression levels of GST theta and MRP3 were observed in gill tissues from all three sites during the summer to early fall 2010 deployments. Linear regression analysis indicated a

  11. Functions of Danggui Buxue Tang, a Chinese Herbal Decoction Containing Astragali Radix and Angelicae Sinensis Radix, in Uterus and Liver are Both Estrogen Receptor-Dependent and -Independent

    Directory of Open Access Journals (Sweden)

    Oliver Zierau

    2014-01-01

    Full Text Available Danggui Buxue Tang (DBT, a herbal decoction containing Astragali Radix (AR and Angelicae Sinensis Radix (ASR, has been used in treating menopausal irregularity in women for more than 800 years in China. Pharmacological results showed that DBT exhibited significant estrogenic properties in vitro, which therefore suggested that DBT could activate the nuclear estrogen receptors. Here, we assessed the estrogenic properties of DBT in an ovariectomized in vivo rat model: DBT was applied to the ovariectomized rats for 3 days. The application of DBT did not alter the weight of uterus and liver, as well as the transcript expression of the proliferation markers including the estrogen receptors α and β. However, DBT stimulated the transcript expression of the estrogen responsive genes. In addition, the inductive role of DBT on the expression of members of the aryl hydrocarbon receptor family in uterus and liver of ovariectomized rats was confirmed. These responses of DBT however were clearly distinct from the response pattern detectable here for 17β-estradiol. Therefore, DBT exhibited weak, but significant, estrogenic properties in vivo; however, some of its activities were independent of the estrogen receptor. Thus, DBT could be an exciting Chinese herbal decoction for an alternative treatment of hormone replacement therapy for women in menopause without subsequent estrogenic side effects.

  12. Aryl diazonium salts new coupling agents and surface science

    CERN Document Server

    Chehimi, Mohamed Mehdi

    2012-01-01

    Diazonium compounds are employed as a new class of coupling agents to link polymers, biomacromolecules, and other species (e. g. metallic nanoparticles) to the surface of materials. The resulting high performance materials show improved chemical and physical properties and find widespread applications. The advantage of aryl diazonium salts compared to other surface modifiers lies in their ease of preparation, rapid (electro)reduction, large choice of reactive functional groups, and strong aryl-surface covalent bonding.This unique book summarizes the current knowledge of the surface and

  13. DBU-Promoted Trifluoromethylation of Aryl Iodides with Difluoromethyltriphenylphosphonium Bromide

    Institute of Scientific and Technical Information of China (English)

    Yun Wei; Liuying Yu; Jinhong Lin; Xing Zheng; Jichang Xiao

    2016-01-01

    DBU-promoted trifluoromethylation of aryl iodides with difluoromethyltriphenylphosphonium bromide (DFPB) in the presence of copper source is described.In this transformation,DBU not only acts as base to deprotonate the difluoromethyl group in DFPB to generate difluoromethylene phosphonium ylide Ph3P+CF2,but also converts the difluorocarbene generated from ylide Ph3P+CF2 into trifluoromethyl anion,finally resulting in the trifluoromethylation of aryl iodides.The reactions proceeded smoothly to afford expected products in moderate to good yields.

  14. Role of hydrogen bonding in ligand interaction with the N-methyl-D-aspartate receptor ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Leeson, P.D.; Carling, R.W.; James, K.; Smith, J.D.; Moore, K.W.; Wong, E.H.; Baker, R. (Merck Sharp Laboratory, Harlow, Essex (England))

    1990-05-01

    Displacement of (3H)MK-801 (dizocilpine, 1) binding to rat brain membranes has been used to evaluate the affinities of novel dibenzocycloalkenimines related to 1 for the ion channel binding site (also known as the phencyclidine or PCP receptor) on the N-methyl-D-aspartate (NMDA) subtype of excitory amino acid receptor. In common with many other agents having actions in the central nervous system, these compounds contain a hydrophobic aromatic moiety and a basic nitrogen atom. The conformational rigidity of these ligands provides a unique opportunity to evaluate the importance of specific geometrical properties that influence active-site recognition, in particular the role of the nitrogen atom in hydrogen-bonding interactions. The relative affinities (IC50s) of hydrocarbon-substituted analogues of 1 and ring homologated cyclooctenimines illustrate the importance of size-limited hydrophobic binding of both aryl rings and of the quaternary C-5 methyl group. Analysis of the binding of a series of the 10 available structurally rigid dibenzoazabicyclo(x.y.z)alkanes, by using molecular modeling techniques, uncovered a highly significant correlation between affinity and a proposed ligand-active site hydrogen bonding vector (r = 0.950, p less than 0.001). These results are used to generate a pharmacophore of the MK-801 recognition site/PCP receptor, which accounts for the binding of all of the known ligands.

  15. Pseudoephedrine-Directed Asymmetric α-Arylation of α-Amino Acid Derivatives.

    Science.gov (United States)

    Atkinson, Rachel C; Fernández-Nieto, Fernando; Mas Roselló, Josep; Clayden, Jonathan

    2015-07-27

    Available α-amino acids undergo arylation at their α position in an enantioselective manner on treatment with base of N'-aryl urea derivatives ligated to pseudoephedrine as a chiral auxiliary. In situ silylation and enolization induces diastereoselective migration of the N'-aryl group to the α position of the amino acid, followed by ring closure to a hydantoin with concomitant explulsion of the recyclable auxiliary. The hydrolysis of the hydantoin products provides derivatives of quaternary amino acids. The arylation avoids the use of heavy-metal additives, and is successful with a range of amino acids and with aryl rings of varying electronic character.

  16. Pd-NHC-Catalyzed Alkynylation of General Aryl Sulfides with Alkynyl Grignard Reagents.

    Science.gov (United States)

    Baralle, Alexandre; Yorimitsu, Hideki; Osuka, Atsuhiro

    2016-07-25

    Cross-coupling reactions of unactivated aryl sulfides with alkynylmagnesium chloride have been invented to afford 1-aryl-1-alkynes with the aid of a palladium/N-heterocyclic carbene complex. This reaction has by far the widest scope of all transformations utilizing aryl sulfides and alkynes, while known cross-coupling alkynylations of aryl-sulfur electrophiles require activated azaaryl sulfides, thiolactams, or arenesulfonyl chlorides. The alkynylation of aryl sulfides is compatible with typical protecting functional groups. The alkynylation is applied to the synthesis of benzofuran-based fluorescent molecules by taking advantage of characteristic organosulfur chemistry.

  17. Derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide as new antibacterial agents: synthesis and bioactivity

    Institute of Scientific and Technical Information of China (English)

    Wen-yuan YU; Li-xia YANG; Jian-shu XIE; Ling ZHOU; Xue-yuan JIANG; De-xu ZHU; Mutsumi MURAMATSU; Ming-wei WANG

    2008-01-01

    Aim: The aim of the present study was to design, synthesize, and evaluate novel antibacterial agents, derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide. Methods: A total of 44 derivatives of aryl-4-guanidin-omethylbenzoate (series A) and N-aryl-4-guanidinomethylbenzamide (series B) were synthesized and their antibacterial activities were assessed in vitro against a variety of Gram-positive and Gram-negative bacteria by an agar dilution method. Results: Twelve compounds showed potent bactericidal effects against a panel of Gram-positive germs, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), vancomycin-intermediate Sta-phylococcus aureus (VISA), and methicillin-resistant coagulase-negative staphy-lococci (MRCNS), with minimum inhibitory concentrations (MIC) ranging be-tween 0.5 and 8 μg/mL, which were comparable to the MIC values of several marketed antibiotics. They exhibited weak or no activity on the Gram-negative bacteria tested. In addition, these compounds displayed high inhibitory activities towards oligopeptidase B of bacterial origin. Conclusion: In comparison with the previ-ously reported MIC values of several known antibiotics, the derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide showed com-parable in vitro bactericidal activities against VRE and VISA as linezolid. Their growth inhibitory effects on MRSA were similar to vancomycin, but were less potent than linezolid and vancomycin against MRCNS. This class of compounds may have the potential to be developed into narrow spectrum antibacterial agents against certain drug-resistant strains of bacteria.

  18. Pd-NHC-Catalyzed Direct Arylation of 1,4-Disubstituted 1,2,3-Triazoles with Aryl Halides

    Institute of Scientific and Technical Information of China (English)

    何涛; 王敏; 李品华; 王磊

    2012-01-01

    A highly efficient method for the synthesis of unsymmetrical multi-substituted 1,2,3-triazoles via a direct Pd-NHC system catalyzed C(5)-arylation of 1,4-disubstituted triazoles, which are readily accessible via "click" chemistry has been developed. It is important to note that C--H bond functionalizations of 1,2,3-triazoles with a variety of differently substituted aryl iodides and bromides as electrophiles can be conveniently achieved through this catalytic system at significantly milder reaction temperatures of 100 ℃ under air.

  19. Oxygenated Derivatives of Hydrocarbons

    Science.gov (United States)

    For the book entitled “Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology”, this chapter presents a comprehensive review of the occurrence, structure and function of oxygenated derivatives of hydrocarbons. The book chapter focuses on the occurrence, structural identification and functi...

  20. Hydrocarbon Spectral Database

    Science.gov (United States)

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  1. Plant hydrocarbon recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Dzadzic, P.M.; Price, M.C.; Shih, C.J.; Weil, T.A.

    1982-01-26

    A process for production and recovery of hydrocarbons from hydrocarbon-containing whole plants in a form suitable for use as chemical feedstocks or as hydrocarbon energy sources which process comprises: (A) pulverizing by grinding or chopping hydrocarbon-containing whole plants selected from the group consisting of euphorbiaceae, apocynaceae, asclepiadaceae, compositae, cactaceae and pinaceae families to a suitable particle size, (B) drying and preheating said particles in a reducing atmosphere under positive pressure (C) passing said particles through a thermal conversion zone containing a reducing atmosphere and with a residence time of 1 second to about 30 minutes at a temperature within the range of from about 200* C. To about 1000* C., (D) separately recovering the condensable vapors as liquids and the noncondensable gases in a condition suitable for use as chemical feedstocks or as hydrocarbon fuels.

  2. Plasma devices for hydrocarbon reformation

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Plasma devices for hydrocarbon reformation are provided. Methods of using the devices for hydrocarbon reformation are also provided. The devices can include a liquid container to receive a hydrocarbon source, and a plasma torch configured to be submerged in the liquid. The plasma plume from the plasma torch can cause reformation of the hydrocarbon. The device can use a variety of plasma torches that can be arranged in a variety of positions in the liquid container. The devices can be used for the reformation of gaseous hydrocarbons and/or liquid hydrocarbons. The reformation can produce methane, lower hydrocarbons, higher hydrocarbons, hydrogen gas, water, carbon dioxide, carbon monoxide, or a combination thereof.

  3. Amberlyst-15 catalyzed synthesis of alkyl/aryl/heterocyclic phosphonates

    Institute of Scientific and Technical Information of China (English)

    U.M. Rao Kunda; V.N. Reddy Mudumala; C.S. Reddy Gangireddy; B.R. Nemallapudi; K.N. Sandip; S.R. Cirandur

    2011-01-01

    A novel and efficient procedure for the synthesis of alkyl phosphonates through one pot condensation of alkyl halide and tri-alkyl/aryl phosphite in the presence of Amberlyst-15 as catalyst under solvent free conditions was applied. It demonstrated several advantages such as good yields of products, simple operation, convenient separation and inexpensive catalyst.

  4. Rh-Catalyzed arylation of fluorinated ketones with arylboronic acids.

    Science.gov (United States)

    Dobson, Luca S; Pattison, Graham

    2016-09-25

    The Rh-catalyzed arylation of fluorinated ketones with boronic acids is reported. This efficient process allows access to fluorinated alcohols in high yields under mild conditions. Competition experiments suggest that difluoromethyl ketones are more reactive than trifluoromethyl ketones in this process, despite their decreased electronic activation, an effect we postulate to be steric in origin.

  5. Oxidative electrochemical aryl C-C coupling of spiropyrans

    NARCIS (Netherlands)

    Ivashenko, Oleksii; van Herpt, Jochem T.; Rudolf, Petra; Feringa, Ben L.; Browne, Wesley R.

    2013-01-01

    The isolation and definitive assignment of the species formed upon electrochemical oxidation of nitro-spiropyran (SP) is reported. The oxidative aryl C-C coupling at the indoline moiety of the SP radical cation to form covalent dimers of the ring-closed SP form is demonstrated. The coupling is block

  6. Aminoarenethiolate-Copper(I)-Catalyzed Amination of Aryl Bromides

    NARCIS (Netherlands)

    Jerphagnon, Thomas; Klink, Gerard P.M. van; Vries, Johannes G. de; Koten, Gerard van

    2005-01-01

    Aminoarenethiolate-copper(I) complexes are known to be efficient catalysts for carbon-carbon bond formation. Here, we show the first examples that these thiolate-copper(I) complexes are efficient for carbon-nitrogen bond formation reactions as well. N-Arylation of benzylamine and imidazole with brom

  7. Kinetic Resolution of Aryl Alkenylcarbinols Catalyzed by Fc-PIP

    Institute of Scientific and Technical Information of China (English)

    胡斌; 孟萌; 姜山山; 邓卫平

    2012-01-01

    An effective kinetic resolution of a variety of aryl alkenylcarbinols catalyzed by nonenzymatic acyl transfer catalyst Fe-PIP was developed, affording corresponding unreacted alcohols in good to excellent ee value up to 99% and with selectivity factors up to 24.

  8. Synthesis and properties of poly(sulfone-arylate) copolymers

    NARCIS (Netherlands)

    Stephen, Ranimol; Gibon, Cécile M.; Weber, Martin; Gaymans, Reinoud J.

    2009-01-01

    Poly(sulfone-arylate) was synthesized in a reaction between dihydroxy polysulfone prepolymers and either diphenyl terephthalate or terephthaloyl chloride. The dihydroxy polysulfone prepolymers had molecular weights of 2000 and 4000 g/mol. The polymerization with diphenyl terephthalate was carried ou

  9. Structurally distinct polycyclic aromatic hydrocarbons induce differential transcriptional responses in developing zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Goodale, Britton C. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Tilton, Susan C. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Corvi, Margaret M.; Wilson, Glenn R. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Janszen, Derek B. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Anderson, Kim A. [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States); Waters, Katrina M. [Computational Biology and Bioinformatics, Pacific Northwest National Laboratory (United States); Tanguay, Robert L., E-mail: tanguay.robert@oregonstate.edu [Department of Environmental and Molecular Toxicology, The Environmental Health Sciences Center, Oregon State University, Corvallis, OR (United States)

    2013-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment as components of fossil fuels and by-products of combustion. These multi-ring chemicals differentially activate the aryl hydrocarbon receptor (AHR) in a structurally dependent manner, and induce toxicity via both AHR-dependent and -independent mechanisms. PAH exposure is known to induce developmental malformations in zebrafish embryos, and recent studies have shown cardiac toxicity induced by compounds with low AHR affinity. Unraveling the potentially diverse molecular mechanisms of PAH toxicity is essential for understanding the hazard posed by complex PAH mixtures present in the environment. We analyzed transcriptional responses to PAH exposure in zebrafish embryos exposed to benz(a)anthracene (BAA), dibenzothiophene (DBT) and pyrene (PYR) at concentrations that induced developmental malformations by 120 h post-fertilization (hpf). Whole genome microarray analysis of mRNA expression at 24 and 48 hpf identified genes that were differentially regulated over time and in response to the three PAH structures. PAH body burdens were analyzed at both time points using GC–MS, and demonstrated differences in PAH uptake into the embryos. This was important for discerning dose-related differences from those that represented unique molecular mechanisms. While BAA misregulated the least number of transcripts, it caused strong induction of cyp1a and other genes known to be downstream of the AHR, which were not induced by the other two PAHs. Analysis of functional roles of misregulated genes and their predicted regulatory transcription factors also distinguished the BAA response from regulatory networks disrupted by DBT and PYR exposure. These results indicate that systems approaches can be used to classify the toxicity of PAHs based on the networks perturbed following exposure, and may provide a path for unraveling the toxicity of complex PAH mixtures. - Highlights: • Defined global mRNA expression

  10. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells.

    Science.gov (United States)

    Zhao, Xiao-Dan; Dong, Ni; Man, Hong-Tao; Fu, Zhong-Lin; Zhang, Mei-Hong; Kou, Shuang; Ma, Shi-Liang

    2013-09-01

    Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway.

  11. Biomonitoring of non-dioxin-like polychlorinated biphenyls in transgenic Arabidopsis using the mammalian pregnane X receptor system: a role of pectin in pollutant uptake.

    Directory of Open Access Journals (Sweden)

    Lieming Bao

    Full Text Available Polychlorinated biphenyls (PCBs are persistent organic pollutants damaging to human health and the environment. Techniques to indicate PCB contamination in planta are of great interest to phytoremediation. Monitoring of dioxin-like PCBs in transgenic plants carrying the mammalian aryl hydrocarbon receptor (AHR has been reported previously. Herein, we report the biomonitoring of non-dioxin-like PCBs (NDL-PCBs using the mammalian pregnane X receptor (PXR. In the transgenic Arabidopsis designated NDL-PCB Reporter, the EGFP-GUS reporter gene was driven by a promoter containing 18 repeats of the xenobiotic response elements, while PXR and its binding partner retinoid X receptor (RXR were coexpressed. Results showed that, in live cells, the expression of reporter gene was insensitive to endogenous lignans, carotenoids and flavonoids, but responded to all tested NDL-PCBs in a dose- and time- dependent manner. Two types of putative PCB metabolites, hydroxy- PCBs and methoxy- PCBs, displayed different activation properties. The vascular tissues seemed unable to transport NDL-PCBs, whereas mutation in QUASIMODO1 encoding a 1,4-galacturonosyltransferase led to reduced PCB accumulation in Arabidopsis, revealing a role for pectin in the control of PCB translocation. Taken together, the reporter system may serve as a useful tool to biomonitor the uptake and metabolism of NDL-PCBs in plants.

  12. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells.

    Science.gov (United States)

    Ghotbaddini, Maryam; Powell, Joann B

    2015-07-06

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  13. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maryam Ghotbaddini

    2015-07-01

    Full Text Available The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR. TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models.

  14. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    Rev, 54 (1990) 305-315. 12 Fedorak P M & Westlake D W S, Microbial degradation of aromatics and saturates in Prudhoe Bay crude oil as determined by glass capillary gas chromatography, Can J Microbiol, (1981) 432-443. 13 Atlas R M, Microbial... degradation of petroleum hydrocarbons: An environmental perspective, Microbiol Rev, 45 (1981) 180-209. 14 Atlas R M, Microbial hydrocarbon degradation- Bioremediation of oil spills, J Chem Tech Biotechnol, 52 (1991) 149-156 15 Venkateswaran K, Iwabuchi T...

  15. Palladium-catalyzed direct arylation and cyclization of o-iodobiaryls to a library of tetraphenylenes

    Science.gov (United States)

    Zhu, Chendan; Zhao, Yue; Wang, Di; Sun, Wei-Yin; Shi, Zhuangzhi

    2016-09-01

    Aryl–aryl bond formation constitutes one of the most important subjects in organic synthesis. The recent developments in direct arylation reactions forming aryl–aryl bond have emerged as very attractive alternatives to traditional cross-coupling reactions. Here, we describe a general palladium-catalyzed direct arylation and cyclization of o-iodobiaryls to build a library of tetraphenylenes. This transformation represents one of the very few examples of C-H activation process that involves simultaneous formation of two aryl–aryl bonds. Oxygen plays a vital role by ensuring high reactivity, with air as the promoter furnished the best results. We anticipate this ligand-free and aerobic catalytic system will simplify the synthesis of tetraphenylenes as many of the reported methods involve use of preformed organometallic reagents and will lead to the discovery of highly efficient new direct arylation process.

  16. Cul/8-Hydroxyquinalidine Promoted N-Arylation of Indole and Azoles

    Institute of Scientific and Technical Information of China (English)

    杨新业; 邢辉; 张烨; 赖宜生; 张奕华; 蒋咏文; 马大为

    2012-01-01

    An efficient catalytic system of CuI/8-hydroxyquinalidine was developed for the coupling of aryl iodides and indole as well as some azoles. The reaction could be carried out at 90 ~C under the condition of relatively low cata- lyst loading, affording various N-arylindoles and N-aryl azoles in good yields. The functionalized and hindered aryl iodides were suitable substrates for this transformation.

  17. Nickel-catalyzed cross-coupling of aryl phosphates with arylboronic acids.

    Science.gov (United States)

    Chen, Hu; Huang, Zhongbin; Hu, Xiaoming; Tang, Guo; Xu, Pengxiang; Zhao, Yufen; Cheng, Chien-Hong

    2011-04-01

    The Suzuki-Miyaura cross-coupling of aryl phosphates using Ni(PCy(3))(2)Cl(2) as an inexpensive, bench-stable catalyst is described. Broad substrate scope and high efficiency are demonstrated by the syntheses of more than 40 biaryls and by constructing complex organic molecules. The poor reactivity of aryl phosphates relative to aryl halides is successfully employed to construct polyarenes by selective cross-coupling using Pd and Ni catalysts.

  18. Menthone aryl acid hydrazones: a new class of anticonvulsants.

    Science.gov (United States)

    Jain, Jainendra; Kumar, Y; Sinha, Reema; Kumar, Rajeev; Stables, James

    2011-01-01

    A series of ten compounds (Compounds J(1)-J(10)) of (±) 3-menthone aryl acid hydrazone was synthesized and characterized by thin layer chromatography and spectral analysis. Synthesized compounds were evaluated for anticonvulsant activity after intraperitoneal (i.p) administration to mice by maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) induced seizure method and minimal clonic seizure test. Minimal motor impairment was also determined for these compounds. Results obtained showed that four compounds out of ten afforded significant protection in the minimal clonic seizure screen at 6 Hz. Compound J(6), 4-Chloro-N-(2-isopropyl-5-methylcyclohexylidene) benzohydrazide was found to be the most active compound with MES ED(50) of 16.1 mg/kg and protective index (pI) of greater than 20, indicating that (±) 3-menthone aryl acid hydrazone possesses better and safer anticonvulsant properties than other reported menthone derivatives viz. menthone Schiff bases, menthone semicarbazides and thiosemicarbazides.

  19. Palladium-catalyzed α-arylation of benzylic phosphine oxides.

    Science.gov (United States)

    Montel, Sonia; Jia, Tiezheng; Walsh, Patrick J

    2014-01-03

    A novel approach to prepare diarylmethyl phosphine oxides from benzyl phosphine oxides via deprotonative cross-coupling processes (DCCP) is reported. The optimization of the reaction was guided by High-Throughput Experimentation (HTE) techniques. The Pd(OAc)2/Xantphos-based catalyst enabled the reaction between benzyl diphenyl or dicyclohexyl phosphine oxide derivatives and aryl bromides in good to excellent yields (51-91%).

  20. Palladium- (and nickel-) catalyzed vinylation of aryl halides†

    OpenAIRE

    DENMARK, SCOTT E.; Butler, Christopher R.

    2008-01-01

    Functionalized styrenes are extremely useful building blocks for organic synthesis and for functional polymers. One of the most general syntheses of styrenes involves the combination of an aryl halide with a vinyl organometallic reagent under catalysis by palladium or nickel complexes. This Feature Article provides the first comprehensive summary of the vinylation methods currently available along with a critical comparison of the efficiency, cost and scope of the methods.

  1. Antileishmanial, antimicrobial and antifungal activities of some new aryl azomethines.

    Science.gov (United States)

    Al-Kahraman, Yasser M S A; Madkour, Hassan M F; Ali, Dildar; Yasinzai, Masoom

    2010-01-28

    A series of eighteen azomethines has been synthesized by the reaction of appropriate primary aromatic amines with aryl and/or heteroaryl carboxaldehydes. The synthesized azomethines have been evaluated for their in vitro antileishmanial, antibacterial and antifungal activities. The results revealed some antifungal activity of most of the synthesized compounds, whereas the antileishmaniasis activity results highlighted that all synthesized azomethines inhibited parasite growth and most of them showed highly potent action towards Leishmania major promastigotes. No remarkable bactericidal activities were observed.

  2. Synthesis and characterization of 5-heteroarylsulfanyl-4-aryl-1,2,3-selena/thiadiazoles

    Indian Academy of Sciences (India)

    Ramaiyan Manikannan; Masilamani Shanmugaraja; Seetharaman Manojveer; Shanmugam Muthusubramanian

    2012-03-01

    Synthesis and spectral characterization of 2-methyl-5-[(4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl]-1,3,4-thiadiazoles, 5-[4-aryl-1,2,3-selenadiazol-5-yl]sulfanyl-1-phenyl-1-1,2,3,4-tetraazoles, 4-aryl-5-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]-1,2,3-thiadiazole and 5-[4-aryl-1,2,3-thiadiazol-5-yl]sulfanyl-1-phenyl-1-1,2,3,4-tetraazole have been reported.

  3. Synthesis of novel aryl(heteroaryl)sulfonyl ureas of possible biological interest.

    Science.gov (United States)

    Saczewski, Franciszek; Kuchnio, Anna; Samsel, Monika; Łobocka, Marta; Kiedrowska, Agnieszka; Lisewska, Karolina; Saczewski, Jarosław; Gdaniec, Maria; Bednarski, Patrick J

    2010-02-26

    The course of reaction of aryl and heteroaryl sulfonamides with diphenylcarbonate (DPC) and 4-dimethylaminopyridine (DMAP) was found to depend on the pKa of the sulfonamide used. Aryl sulfonamides with pKa approximately 10 gave 4-dimethylamino-pyridinium arylsulfonyl-carbamoylides, while the more acidic heteroaryl sulfonamides (pKa approximately 8) furnished 4-dimethylaminopyridinium heteroarylsulfonyl carbamates. Both the carbamoylides and carbamate salts reacted with aliphatic and aromatic amines with the formation of appropriate aryl(heteroaryl)sulfonyl ureas, and therefore, can be regarded as safe and stable substitutes of the hazardous and difficult to handle aryl(heteroaryl)sulfonyl isocyanates.

  4. Synthesis of Novel Aryl(heteroarylsulfonyl Ureas of Possible Biological Interest

    Directory of Open Access Journals (Sweden)

    Maria Gdaniec

    2010-02-01

    Full Text Available The course of reaction of aryl and heteroaryl sulfonamides with diphenylcarbonate (DPC and 4-dimethylaminopyridine (DMAP was found to depend on the pKa of the sulfonamide used. Aryl sulfonamides with pKa ~ 10 gave 4-dimethylamino-pyridinium arylsulfonyl-carbamoylides, while the more acidic heteroaryl sulfonamides (pKa ~ 8 furnished 4-dimethylaminopyridinium heteroarylsulfonyl carbamates. Both the carbamoylides and carbamate salts reacted with aliphatic and aromatic amines with the formation of appropriate aryl(heteroarylsulfonyl ureas, and therefore, can be regarded as safe and stable substitutes of the hazardous and difficult to handle aryl(heteroarylsulfonyl isocyanates.

  5. Omeprazole and lansoprazole enantiomers induce CYP3A4 in human hepatocytes and cell lines via glucocorticoid receptor and pregnane X receptor axis.

    Science.gov (United States)

    Novotna, Aneta; Dvorak, Zdenek

    2014-01-01

    Benzimidazole drugs lansoprazole and omeprazole are used for treatment of various gastrointestinal pathologies. Both compounds cause drug-drug interactions because they activate aryl hydrocarbon receptor and induce CYP1A genes. In the current paper, we examined the effects of lansoprazole and omeprazole enantiomers on the expression of key drug-metabolizing enzyme CYP3A4 in human hepatocytes and human cancer cell lines. Lansoprazole enantiomers, but not omeprazole, were equipotent inducers of CYP3A4 mRNA in HepG2 cells. All forms (S-, R-, rac-) of lansoprazole and omeprazole induced CYP3A4 mRNA and protein in human hepatocytes. The quantitative profiles of CYP3A4 induction by individual forms of lansoprazole and omeprazole exerted enantiospecific patterns. Lansoprazole dose-dependently activated pregnane X receptor PXR in gene reporter assays, and slightly modulated rifampicin-inducible PXR activity, with similar potency for each enantiomer. Omeprazole dose-dependently activated PXR and inhibited rifampicin-inducible PXR activity. The effects of S-omeprazole were much stronger as compared to those of R-omeprazole. All forms of lansoprazole, but not omeprazole, slightly activated glucocorticoid receptor and augmented dexamethasone-induced GR transcriptional activity. Omeprazole and lansoprazole influenced basal and ligand inducible expression of tyrosine aminotransferase, a GR-target gene, in HepG2 cells and human hepatocytes. Overall, we demonstrate here that omeprazole and lansoprazole enantiomers induce CYP3A4 in HepG2 cells and human hepatocytes. The induction comprises differential interactions of omeprazole and lansoprazole with transcriptional regulators PXR and GR, and some of the effects were enantiospecific. The data presented here might be of toxicological and clinical importance, since the effects occurred in therapeutically relevant concentrations.

  6. Effects of tris(1,3-dichloro-2-propyl) phosphate and triphenyl phosphate on receptor-associated mRNA expression in zebrafish embryos/larvae

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunsheng, E-mail: liuchunshengidid@126.com [State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing (China); Wang, Qiangwei [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Liang, Kang; Liu, Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhou, Bingsheng [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Zhang, Xiaowei; Liu, Hongling [State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing (China); Giesy, John P. [Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3 (Canada); Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B3 (Canada); Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong (China); Yu, Hongxia, E-mail: yuhx@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, Nanjing (China)

    2013-03-15

    Highlights: ► TDCPP or TPP exposure caused developmental toxicity. ► Receptor-centered PCR array was developed. ► TDCPP or TPP exposure altered mRNA expression in receptor-centered network. -- Abstract: Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP) are frequently detected in biota, including fish. However, knowledge of the toxicological and molecular effects of these currently used flame retardants is limited. In the present study, an in vivo screening approach was developed to evaluate effects of TDCPP and TPP on developmental endpoints and receptor-associated expression of mRNA in zebrafish embryos/larvae. Exposure to TDCPP or TPP resulted in significantly smaller rates of hatching and survival, in dose- and time-dependent manners. The median lethal concentration (LC{sub 50}) was 7.0 mg/L for TDCPP and 29.6 mg/L for TPP at 120 hour post-fertilization (hpf). Real-time PCR revealed alterations in expression of mRNAs involved in aryl hydrocarbon receptors (AhRs)-, peroxisome proliferator-activated receptor alpha (PPARα)-, estrogenic receptors (ERs)-, thyroid hormone receptor alpha (TRα)-, glucocorticoid receptor (GR)-, and mineralocorticoid receptor (MR)-centered gene networks. Exposure to positive control chemicals significantly altered abundances of mRNA in corresponding receptor-centered gene networks, a result that suggests that it is feasible to use zebrafish embryos/larvae to evaluate effects of chemicals on mRNA expression in these gene networks. Exposure to TDCPP altered transcriptional profiles in all six receptor-centered gene networks, thus exerting multiple toxic effects. TPP was easily metabolized and its potency to change expression of mRNA involved in receptor-centered gene networks was weaker than that of TDCPP. The PPARα- and TRα-centered gene networks might be the primary pathways affected by TPP. Taken together, these results demonstrated that TDCPP and TPP could alter mRNA expression of genes involved in

  7. Tuning surface hydrophilicity/hydrophobicity of hydrocarbon proton exchange membranes (PEMs).

    Science.gov (United States)

    He, Chenfeng; Mighri, Frej; Guiver, Michael D; Kaliaguine, Serge

    2016-03-15

    The effect of annealing on the surface hydrophilicity of various representative classes of hydrocarbon-based proton exchange membranes (PEMs) is investigated. In all cases, a more hydrophilic membrane surface develops after annealing at elevated temperatures. The annealing time also had some influence, but in different ways depending on the class of PEM. Longer annealing times resulted in more hydrophilic membrane surfaces for copolymerized sulfonated poly(ether ether ketone) (SPEEK-HQ), while the opposite behavior occurred in sulfonated poly(aryl ether ether ketone) (Ph-SPEEK), sulfonated poly(aryl ether ether ketone ketone) (Ph-m-SPEEKK) and sulfonated poly (aryl ether ether nitrile) (SPAEEN-B). Increased surface hydrophilicity upon annealing results from ionic cluster decomposition, according to the "Eisenberg-Hird-Moore model" (EHM). The increased surface hydrophilicity is supported by contact angle (CA) measurements, and the cluster decomposition is auxiliarily supported by probing the level of atomic sulfur (sulfonic acid) within different surface depths using angle-dependent XPS as well as ATR-FTIR. Membrane acidification leads to more hydrophilic surfaces by elimination of the hydrogen bonding that occurs between strongly-bound residual solvent (dimethylacetamide, DMAc) and PEM sulfonic acid groups. The study of physicochemical tuning of surface hydrophilicity/hydrophobicity of PEMs by annealing and acidification provides insights for improving membrane electrode assembly (MEA) fabrication in fuel cell (FC).

  8. Quantitative Hydrocarbon Surface Analysis

    Science.gov (United States)

    Douglas, Vonnie M.

    2000-01-01

    The elimination of ozone depleting substances, such as carbon tetrachloride, has resulted in the use of new analytical techniques for cleanliness verification and contamination sampling. The last remaining application at Rocketdyne which required a replacement technique was the quantitative analysis of hydrocarbons by infrared spectrometry. This application, which previously utilized carbon tetrachloride, was successfully modified using the SOC-400, a compact portable FTIR manufactured by Surface Optics Corporation. This instrument can quantitatively measure and identify hydrocarbons from solvent flush of hardware as well as directly analyze the surface of metallic components without the use of ozone depleting chemicals. Several sampling accessories are utilized to perform analysis for various applications.

  9. Discovery of a Novel Series of Orally Bioavailable and CNS Penetrant Glucagon-like Peptide-1 Receptor (GLP-1R) Noncompetitive Antagonists Based on a 1,3-Disubstituted-7-aryl-5,5-bis(trifluoromethyl)-5,8-dihydropyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione Core.

    Science.gov (United States)

    Nance, Kellie D; Days, Emily L; Weaver, C David; Coldren, Anastasia; Farmer, Tiffany D; Cho, Hyekyung P; Niswender, Colleen M; Blobaum, Anna L; Niswender, Kevin D; Lindsley, Craig W

    2017-02-23

    A duplexed, functional multiaddition high throughput screen and subsequent optimization effort identified the first orally bioavailable and CNS penetrant glucagon-like peptide-1 receptor (GLP-1R) noncompetitive antagonist. Antagonist 5d not only blocked exendin-4-stimulated insulin release in islets but also lowered insulin levels while increasing blood glucose in vivo.

  10. Synthesis of N-(4-aryl-1-piperazinylbutyl)-substituted 7,8-benzo-1,3-diazaspiro[4,5]decane-2,4-dione derivatives with potential anxiolytic activity.

    Science.gov (United States)

    Kossakowski, J; Zawadowski, T; Turło, J; Kleps, J

    1998-02-01

    Continuing our studies connected with the design of new anxiolytics we have now synthesized a series of new compounds, derivatives of 7,8-benzo-1,3-diazaspiro[4,5]decane-2,4-dione bearing a 4-aryl-1-piperazinylbutyl group attached to the imide nitrogen. One single compound was submitted to the 5-HT1A receptor binding assay and found to display the expected--though rather weak--receptorial affinity.

  11. Ammonium Chloride Promoted Palladium-Catalyzed Ullmann Coupling of Aryl Bromide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 梁云; 刘文杰; 唐石; 谢叶香

    2004-01-01

    In water, ammonium chloride was found to promote palladium-catalyzed Ullmann coupling reactions of aryl bromides. In the presence of Pd/C, zinc, NH4Cl, and water, coupling of various aryl bromides was carried out smoothly to afford the corresponding homocoupling products in moderate yields.

  12. Catalytic membrane-installed microchannel reactors for one-second allylic arylation.

    Science.gov (United States)

    Yamada, Yoichi M A; Watanabe, Toshihiro; Torii, Kaoru; Uozumi, Yasuhiro

    2009-10-07

    A variety of catalytic membranes of palladium-complexes with linear polymer ligands were prepared inside a microchannel reactor via coordinative and ionic molecular convolution to provide catalytic membrane-installed microdevices, which were applied to the instantaneous allylic arylation reaction of allylic esters and aryl boron reagents under microflow conditions to afford the corresponding coupling products within 1 second of residence time.

  13. Unusual selectivity-determining factors in the phosphine-free Heck arylation of allyl ethers

    DEFF Research Database (Denmark)

    Ambrogio, I.; Fabrizi, G.; Cacchi, S.

    2008-01-01

    The Heck reaction of aryl iodides and bromides with allyl ethers has been investigated. Using phosphinefree Pd(OAc)(2) in DNIF at 90 degrees C in the presence of Bu4NOAc, the reaction gave cinnamyl derivatives, usually in good to high yields, with a wide range of aryl halides. The reaction tolera...

  14. Oxidative addition of aryl chlorides to monoligated palladium(0): A DFT-SCRF study

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Norrby, Per-Ola

    2007-01-01

    Oxidative addition of aryl chlorides to palladium has been investigated by hybrid density functional theory methods (B3LYP), including a continuum model describing the solvent implicitly. A series of para-substituted aryl chlorides were studied to see the influence of electronic effects on the re...

  15. Modular approach to novel chiral aryl-ferrocenyl phosphines by Suzuki cross-coupling

    DEFF Research Database (Denmark)

    Jensen, Jakob Feldthusen; Søtofte, Inger; Sorensen, H.O.;

    2002-01-01

    Two novel planar chiral and atropisomeric P,N and P,O aryl-ferrocenyl ligand systems have been developed. The strategy is short and involves a new synthetic approach to aryl-ferrocenyl compounds via a Suzuki cross-coupling procedure. The modular design can easily give access to variety of chiral ...

  16. Synthesis of 3-cyano-4-aryl-5-ethoxycarbonyl-6-methyl-3,4-dihydropyridine-2-thiones

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, A.A.; Liepin' sh, E.E.; Pelcher, Yu.E.; Kalme, Z.A.; Dipan, I.V.; Dubur, G.Ya.

    1985-12-01

    The condensation of ethyl arylidenacetoacetate with cyanothioacetamide and of arylidenecyanothioacetamides with ethyl acetoacetate or of arylidenecyanothioacetamides with ethyl ..beta..-aminocrotonate gave 3-cyano-4-aryl-5-ethoxycarbonyl-6-methyl-3,4-dihydropyridine-2-thiones. PMR spectroscopy showed that the 3-cyano-4-aryl-3,4-dihydro-pyridine-2-thiones are formed as a mixture of cis and trans isomers.

  17. Unprecedentedly mild direct Pd-catalyzed arylation of oxazolo[4,5-b]pyridine

    DEFF Research Database (Denmark)

    Zhuravlev, Fedor

    2006-01-01

    Pd-catalyzed C-2 arylation of oxazolo[4,5-b]pyridine proceeds efficiently at 30 degrees C and tolerates a variety of aryl halides, including derivatized amino acids for which no racemization was observed during the reaction. Experimental evidence for facile deprotonation of oxazolo[4,5-b]pyridine...

  18. Optrode for sensing hydrocarbons

    Science.gov (United States)

    Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.

    1987-01-01

    A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.

  19. Apparatus and methods for hydrocarbon extraction

    Science.gov (United States)

    Bohnert, George W.; Verhulst, Galen G.

    2016-04-26

    Systems and methods for hydrocarbon extraction from hydrocarbon-containing material. Such systems and methods relate to extracting hydrocarbon from hydrocarbon-containing material employing a non-aqueous extractant. Additionally, such systems and methods relate to recovering and reusing non-aqueous extractant employed for extracting hydrocarbon from hydrocarbon-containing material.

  20. Characterization and expression analysis of AH receptors in aquatic mammals and birds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Young [Ehime Prefectural Institute of Public Health and Environmental Science, Matsuyama (Japan); Yasui, Tomoko; Hisato, Iwata; Shinsuke, Tanabe [Ehime Univ., Matsuyama (Japan)

    2004-09-15

    The magnitude of the risk that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related planar halogenated aromatic hydrocarbons (PHAHs) pose to the health of aquatic birds and mammals is uncertain, because of the lack of direct information on the sensitivity and toxicity to these chemicals. Exposure to PHAHs is speculated to produce toxicity through changes in the expression of genes involved in the control of cell growth and differentiation. These changes are initiated by the binding to the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor. The AHR and its dimerization partner ARNT belong to the basic-helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcriptional regulation proteins. The bHLH domain was involved in protein-DNA and protein-protein interactions, and the PAS domain forms a secondary dimerization surface for heteromeric interactions between AHR and ARNT. Although the presence and basic function of AHR are known to be conserved in most vertebrates, only a limited number of studies on the structure and functional diversity of AHR in aquatic mammals and birds have been reported, in spite of their high exposure to dioxins and other related chemicals. To understand the molecular mechanism of susceptibility to dioxin exposure and toxic effects that PHAHs pose in wild animals, we investigated the molecular and functional characterization of AHRs from aquatic mammals and birds. Initially, the AHR cDNAs from the livers of Baikal seal (Pusa sibirica), black-footed albatross (Diomedea nigripes) and common cormorant (Phalacrocorax carbo) were cloned and sequenced. We also clarified the tissue-specific expression pattern of AHR mRNA and the relationships among PHAHs, AHR and CYP expression levels in the liver of Baikal seals and common cormorants.

  1. Catalytic arylation methods from the academic lab to industrial processes

    CERN Document Server

    Burke, Anthony J

    2014-01-01

    A current view of the challenging field of catalytic arylation reactions. Clearly structured, the chapters in this one-stop resource are arranged according to the reaction type, and focus on novel, efficient and sustainable processes, rather than the well-known and established cross-coupling methods.The entire contents are written by two authors with academic and industrial expertise to ensure consistent coverage of the latest developments in the field, as well as industrial applications, such as C-H activation, iron and gold-catalyzed coupling reactions, cycloadditions or novel methodologies

  2. Antileishmanial, Antimicrobial and Antifungal Activities of Some New Aryl Azomethines

    Directory of Open Access Journals (Sweden)

    Masoom Yasinzai

    2010-01-01

    Full Text Available A series of eighteen azomethines has been synthesized by the reaction of appropriate primary aromatic amines with aryl and/or heteroaryl carboxaldehydes. The synthesized azomethines have been evaluated for their in vitro antileishmanial, antibacterial and antifungal activities. The results revealed some antifungal activity of most of the synthesized compounds, whereas the antileishmaniasis activity results highlighted that all synthesized azomethines inhibited parasite growth and most of them showed highly potent action towards Leishmania major promastigotes. No remarkable bactericidal activities were observed.

  3. Microbial degradation of petroleum hydrocarbons.

    Science.gov (United States)

    Varjani, Sunita J

    2017-01-01

    Petroleum hydrocarbon pollutants are recalcitrant compounds and are classified as priority pollutants. Cleaning up of these pollutants from environment is a real world problem. Bioremediation has become a major method employed in restoration of petroleum hydrocarbon polluted environments that makes use of natural microbial biodegradation activity. Petroleum hydrocarbons utilizing microorganisms are ubiquitously distributed in environment. They naturally biodegrade pollutants and thereby remove them from the environment. Removal of petroleum hydrocarbon pollutants from environment by applying oleophilic microorganisms (individual isolate/consortium of microorganisms) is ecofriendly and economic. Microbial biodegradation of petroleum hydrocarbon pollutants employs the enzyme catalytic activities of microorganisms to enhance the rate of pollutants degradation. This article provides an overview about bioremediation for petroleum hydrocarbon pollutants. It also includes explanation about hydrocarbon metabolism in microorganisms with a special focus on new insights obtained during past couple of years.

  4. Room temperature N-arylation of amino acids and peptides using copper(I) and β-diketone.

    Science.gov (United States)

    Sharma, Krishna K; Sharma, Swagat; Kudwal, Anurag; Jain, Rahul

    2015-04-28

    A mild and efficient method for the N-arylation of zwitterionic amino acids, amino acid esters and peptides is described. The procedure provides the first room temperature synthesis of N-arylated amino acids and peptides using CuI as a catalyst, diketone as a ligand, and aryl iodides as coupling partners. The method is equally applicable for using relatively inexpensive aryl bromides as coupling partners at 80 °C. Using this procedure, electronically and sterically diverse aryl halides, containing reactive functional groups were efficiently coupled in good to excellent yields.

  5. Membrane separation of hydrocarbons

    Science.gov (United States)

    Chang, Y. Alice; Kulkarni, Sudhir S.; Funk, Edward W.

    1986-01-01

    Mixtures of heavy oils and light hydrocarbons may be separated by passing the mixture through a polymeric membrane. The membrane which is utilized to effect the separation comprises a polymer which is capable of maintaining its integrity in the presence of hydrocarbon compounds and which has been modified by being subjected to the action of a sulfonating agent. Sulfonating agents which may be employed will include fuming sulfuric acid, chlorosulfonic acid, sulfur trioxide, etc., the surface or bulk modified polymer will contain a degree of sulfonation ranging from about 15 to about 50%. The separation process is effected at temperatures ranging from about ambient to about 100.degree. C. and pressures ranging from about 50 to about 1000 psig.

  6. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  7. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  8. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  9. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  10. Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments.

    Science.gov (United States)

    Witter, Amy E; Nguyen, Minh H

    2016-02-01

    Recent studies indicate that PAH transformation products such as ketone or quinone-substituted PAHs (OPAHs) are potent aryl hydrocarbon receptor (AhR) activators that elicit toxicological effects independent of those observed for PAHs. Here, we measured eight OPAHs, two sulfur-containing (SPAH), one oxygen-containing (DBF), and one nitrogen-containing (CARB) heterocyclic PAHs (i.e. ΣONS-PAHs = OPAH8 + SPAH + DBF + CARB) in 35 stream sediments collected from a small (∼1303 km(2)) urban watershed located in south-central Pennsylvania, USA. Combined ΣONS-PAH concentrations ranged from 59 to 1897 μg kg(-1) (mean = 568 μg kg(-1); median = 425 μg kg(-1)) and were 2.4 times higher in urban versus rural areas, suggesting that activities taking place on urban land serve as a source of ΣONS-PAHs to sediments. To evaluate urban land use metrics that might explain these data, Spearman rank correlation analyses was used to evaluate the degree of association between ΣONS-PAH concentrations and urban land-use/land-cover metrics along an urban-rural transect at two spatial scales (500-m and 1000-m upstream). Combined ΣONS-PAH concentrations showed highly significant (p PAHs originate from similar sources as PAHs. To evaluate OPAH sources, a subset of ΣONS-PAHs for which reference assemblages exist, an average OPAH fractional assemblage for urban sediments was derived using agglomerative hierarchal cluster (AHC) analysis, and compared to published OPAH source profiles. Urban sediments from the Condoguinet Creek (n = 21) showed highly significant correlations with urban particulate matter (X(2) = 0.05, r = 0.91, p = 0.0047), suggesting that urban particulate matter is an important OPAH source to sediments in this watershed. Results suggest the inclusion of ΣONS-PAH measurements adds value to traditional PAH analyses, and may help elucidate and refine pollutant source identification in urban watersheds.

  11. Regioselective synthesis and biological studies of novel 1-aryl-3, 5-bis (het) aryl pyrazole derivatives as potential antiproliferative agents.

    Science.gov (United States)

    Ananda, Hanumappa; Sharath Kumar, Kothanahally S; Nishana, Mayilaadumveettil; Hegde, Mahesh; Srivastava, Mrinal; Byregowda, Raghava; Choudhary, Bibha; Raghavan, Sathees C; Rangappa, Kanchugarakoppal S

    2017-02-01

    Pyrazole moiety represents an important category of heterocyclic compound in pharmaceutical and medicinal chemistry. The novel 1-aryl-3, 5-bis (het) aryl pyrazole derivatives were synthesized with complementary regioselectivity. The chemical structures were confirmed by IR, (1)H NMR, (13)C NMR, and mass spectral analysis. The chemical entities were screened in various cancer cell lines to assess their cell viability activity. Results showed that the compound 3-(1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl) pyridine (5d) possessed maximum cytotoxic effect against breast cancer and leukemic cells. The cytotoxicity was confirmed by live-dead cell assay and cell cycle analysis. Mitochondrial membrane potential, Annexin V-FITC staining, DNA fragmentation, Hoechst staining, and western blot assays revealed the ability of compound 5d to induce cell death by activating apoptosis in cancer cells. Thus, the present study demonstrates that compound 5d could be an attractive chemical entity for the development of small molecule inhibitors for treatment of leukemia and breast cancer.

  12. One-pot synthesis of aryl sulfones from organometallic reagents and iodonium salts.

    Science.gov (United States)

    Margraf, Natalie; Manolikakes, Georg

    2015-03-06

    A transition-metal-free arylation of lithium, magnesium, and zinc sulfinates with diaryliodonium salts is described. The sulfinic acid salts were prepared from the reaction of the corresponding organometallic reagents and sulfur dioxide. Combination of the three single steps (preparation of the organometallic compound, sulfinate formation, and arylation) leads to a one-pot sequence for the synthesis of aryl sulfones from simple starting materials. The chemoselectivity of unsymmetrical diaryliodonium salts has been investigated. Potential and limitations of this method will be discussed.

  13. An advantageous route to oxcarbazepine (trileptal) based on palladium-catalyzed arylations free of transmetallating agents.

    Science.gov (United States)

    Carril, Mónica; SanMartin, Raul; Churruca, Fátima; Tellitu, Imanol; Domínguez, Esther

    2005-10-27

    [reaction: see text] A new route to oxcarbazepine (Trileptal), the most widely prescribed antiepileptic drug, starting from commercially available 2'-aminoacetophenone and 1,2-dibromobenzene, is reported. The sequentially accomplished key steps are palladium-catalyzed intermolecular alpha-arylation of ketone enolates and intramolecular N-arylation reactions. After several experiments to establish the best conditions for both arylation processes, the target oxcarbazepine is obtained in a satisfactory overall yield, minimizing the number of steps and employing scalable catalytic procedures developed in partially aqueous media.

  14. Well-Defined Copper(I) Fluoroalkoxide Complexes for Trifluoroethoxylation of Aryl and Heteroaryl Bromides

    KAUST Repository

    Huang, Ronglu

    2015-03-17

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copper(I) fluoroalkoxide complexes bearing dinitrogen ligands were synthesized and the structure and reactivity of the complexes toward trifluoroethoxylation, pentafluoropropoxylation, and tetrafluoropropoxylation of aryl and heteroaryl bromides were investigated. Efficiency drive: A series of copper(I) fluoroalkoxide complexes bearing N,N ligands have been prepared and structurally characterized. These well-defined complexes serve as efficient reagents for the fluoroalkoxylation of aryl and heteroaryl bromides to produce a wide range of trifluoroethyl, pentafluoropropyl, and tetrafluoropropyl (hetero)aryl ethers in good to excellent yields.

  15. Microwave-assisted synthesis of α-aryl malonates: Key intermediates for the

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ibrahim

    2016-11-01

    Full Text Available We disclose a new microwave-assisted protocol for the effective α-arylation of diethyl malonate. The coupling of aryl halides with diethyl malonate proceeds smoothly in short reaction time in the presence of a catalytic amount of Cu(OTf2, 2-picolinic acid and Cs2CO3 in toluene using microwave irradiation. The resulting α-aryl malonates are then used as key intermediates for synthesis of variety of heterocyclic compounds, including benzodiazepines, isoquinolines and pyrrolopyridine scaffolds.

  16. Toxaphene-induced mouse liver tumorigenesis is mediated by the constitutive androstane receptor.

    Science.gov (United States)

    Wang, Zemin; Li, Xilin; Wu, Qiangen; Lamb, James C; Klaunig, James E

    2017-02-20

    Toxaphene was shown to increase liver tumor incidence in B6C3F1 mice following chronic dietary exposure. Preliminary evidence supported a role for the constitutive androstane receptor (CAR) in the mode of action of toxaphene-induced mouse liver tumors. However, these results could not rule out a role for the pregnane X receptor (PXR) in liver tumor formation. To define further the nuclear receptors involved in this study, we utilized CAR, PXR and PXR/CAR knockout mice (CAR(-/-) , PXR(-/-) and PXR(-/-) /CAR(-/-) ) along with the wild-type C57BL/6. In this study CAR-responsive genes Cyp3a11 and Cyp2b10 were induced in the liver of C57BL/6 (wild-type) mice by toxaphene (30-570-fold) (at the carcinogenic dose 320 ppm) and phenobarbital (positive control) (16-420-fold) following 14 days' dietary treatment. In contrast, in CAR(-/-) mice, no induction of these genes was seen following treatment with either chemical. Cyp3a11 and Cyp2b10 were also induced in PXR(-/-) mice with toxaphene and phenobarbital but were not changed in treated PXR(-/-) /CAR(-/-) mice. Similarly, induction of liver pentoxyresorufin-O-deethylase (CAR activation) activity by toxaphene and phenobarbital was absent in CAR(-/-) and PXR(-/-) /CAR(-/-) mice treated with phenobarbital or toxaphene. Ethoxyresorufin-O-deethylase (EROD, represents aryl hydrocarbon receptor activation) activity in CAR(-/-) mice treated with toxaphene or phenobarbital was increased compared with untreated control, but lower overall in activity in comparison to the wild-type mouse. Liver EROD activity was also induced by both phenobarbital and toxaphene in the PXR(-/-) mice but not in the PXR(-/-) /CAR(-/-) mice. Toxaphene treatment increased 7-benzyloxyquinoline activity (a marker for PXR activation) in a similar pattern to that seen with pentoxyresorufin-O-deethylase. These observations indicate that EROD and PXR activation are evidence, as expected, of secondary overlap to primary CAR receptor activation. Together, these

  17. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Isales, Gregory M.; Hipszer, Rachel A.; Raftery, Tara D. [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States); Chen, Albert; Stapleton, Heather M. [Division of Environmental Sciences and Policy, Nicholas School of the Environment, Duke University, Durham, NC (United States); Volz, David C., E-mail: volz@mailbox.sc.edu [Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC (United States)

    2015-04-15

    Highlights: • Triphenyl phosphate-induced toxicity in zebrafish embryos is enhanced in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate uptake or metabolism within zebrafish embryos is not altered in the presence of a retinoic acid receptor antagonist. • Triphenyl phosphate decreases expression of cytochrome P450 26a1 in zebrafish embryos. • Triphenyl phosphate inhibits retinoic acid-induced activation of human retinoic acid receptors. - Abstract: Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-induced developmental toxicity in zebrafish. We first revealed that static exposure of zebrafish from 5–72 h post-fertilization (hpf) to TPP in the presence of non-toxic concentrations of an RAR antagonist (BMS493) significantly enhanced TPP-induced toxicity (relative to TPP alone), even though identical non-toxic BMS493 concentrations mitigated retinoic acid (RA)-induced toxicity. BMS493-mediated enhancement of TPP toxicity was not a result of differential TPP uptake or metabolism, as internal embryonic doses of TPP and diphenyl phosphate (DPP) – a primary TPP metabolite – were not different in the presence or absence of BMS493. Using real-time PCR, we then quantified the relative change in expression of cytochrome P450 26a1 (cyp26a1) – a major target gene for RA-induced RAR activation in zebrafish – and found that RA and TPP exposure resulted in a ∼5-fold increase and decrease in cyp26a1 expression, respectively, relative to vehicle-exposed embryos. To address whether TPP may

  18. Death receptor and mitochondria-mediated hepatocyte apoptosis underlies liver dysfunction in rats exposed to organic pollutants from drinking water.

    Science.gov (United States)

    Yang, Guanghong; Zhou, Zhiwei; Cen, Yanli; Gui, Xiaolin; Zeng, Qibing; Ao, Yunxia; Li, Qian; Wang, Shiran; Li, Jun; Zhang, Aihua

    2015-01-01

    Persistent organic pollutants in drinking water impose a substantial risk to the health of human beings, but the evidence for liver toxic effect and the underlying mechanism is scarce. This study aimed to examine the liver toxicity and elucidate the molecular mechanism of organic pollutants in drinking water in normal human liver cell line L02 cells and rats. The data showed that organic extraction from drinking water remarkably impaired rat liver function, evident from the increase in the serum level of alanine aminotransferase, aspartate aminotransferase, and cholinesterase, and decrease in the serum level of total protein and albumin. Organic extraction dose-dependently induced apoptotic cell death in rat liver and L02 cells. Administration of rats with organic extraction promoted death receptor signaling pathway through the increase in gene and protein expression level of Fas and FasL. Treatment of rats with organic extraction also induced mitochondria-mediated apoptosis via increasing the expression level of proapoptotic protein, Bax, but decreasing the expression level of antiapoptotic protein, Bcl-2, resulting in an upregulation of cytochrome c and activation of caspase cascade at both transcriptional and post-transcriptional levels. Moreover, organic extraction enhanced rat liver glutathione S-transferases activity and reactive oxygen species generation, and upregulated aryl hydrocarbon receptor and glutathione S-transferase A1 at both transcriptional and translational levels. Collectively, the results indicate that organic extraction from drinking water impairs liver function, with the involvement of death receptor and mitochondria-mediated apoptosis in rats. The results provide evidence and molecular mechanisms for organic pollutants in drinking water-induced liver dysfunction, which may help prevent and treat organic extraction-induced liver injury.

  19. The constitutively active Ah receptor (CA-Ahr) mouse as a potential model for dioxin exposure--effects in vital organs.

    Science.gov (United States)

    Brunnberg, Sara; Andersson, Patrik; Lindstam, Maria; Paulson, Ivar; Poellinger, Lorenz; Hanberg, Annika

    2006-07-25

    The dioxin/aryl hydrocarbon receptor (AhR) mediates most, if not all, toxic effects of dioxins and functions as a ligand-activated transcription factor regulating transcription of a battery of genes. In order to study the mechanisms behind the toxicity of ligands of the Ah receptor we have created a transgenic mouse model expressing a constitutively active Ah receptor (CA-AhR). The mutant Ah receptor is expressed and functionally active in all organs studied. The purpose of the present study was to characterize histopathologically, the phenotype of the CA-AhR with regard to the liver, kidney, lung, heart, spleen and thymus of male and female transgenic CA-AhR mice. Moreover, cell-specific activity of the CA-AhR using up-regulation of the AhR target gene CYP1A1 as a marker, was also examined. The relative weight of liver, kidney and heart were increased while relative thymus weight was decreased. Furthermore, slight morphological lesions of the liver, kidney and spleen was seen. Expression of CYP1A1 was found in cells corresponding to endothelial cells in all of the organs studied. In some tissues additional cell types, such as hepatocytes, renal tubuli cell and Clara cells expressed CYP1A1. Both the effects on organ weights and the cellular expression of CYP1A1 in CA-AhR mice correspond well to observations in TCDD-exposed mice. In conclusion, this characterization further support that the CA-AhR mouse is a useful model for life-long continuous low-level activity of the AhR, i.e. the dioxin exposure situation of humans of the general population.

  20. Identification of ah receptor agonists in soil of E-waste recycling sites from Taizhou area in China.

    Science.gov (United States)

    Shen, Chaofeng; Huang, Shengbiao; Wang, Zijian; Qiao, Min; Tang, Xianjin; Yu, Chunna; Shi, Dezhi; Zhu, Youfeng; Shi, Jiyan; Chen, Xincai; Setty, Karen; Chen, Yingxu

    2008-01-01

    In recent years, increasing concern has surrounded the consequences of improper electric and electronic waste (e-waste) disposal. In order to mitigate or remediate the potentially severe toxic effects of e-waste recycling on the environment, organisms, and humans, many contaminated sites must first be well-characterized. In this study, soil samples were taken from Taizhou city, one of the largest e-waste disposal centers in China, which was involved in recycling for nearly 30 years. The extracts of the samples were assayed for aryl hydrocarbon receptor (AhR)-mediated ethoxyresorufin-O-deethylase (EROD) induction in the rat hepatoma cell line H4IIE. Some of the target AhR agonists, including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs), were instrumentally analyzed as well. The cause-effect relationship and dose-response relationship between the chemical concentrations of AhR agonists and observed EROD activity were examined. The results showed that soil extracts could induce AhR activity significantly, and the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents (TEQcal) were perfectly correlated to bioassay-derived TCDD equivalents (TEQbio; R = 0.96, P electric power devices and open burning of electric wires and printed circuit boards may be the main sources of these dioxin-like compounds. This study suggests that the combination of in vitro bioassay and chemical analysis is useful to screen, identify, and prioritize AhR agonists in soil from e-waste recycling areas.

  1. Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers

    Directory of Open Access Journals (Sweden)

    Li Chen

    2010-10-01

    Full Text Available Aryl polyphosphonates (ArPPN have been demonstrated to function in wide applications as flame retardants for different polymer materials, including thermosets, polycarbonate, polyesters and polyamides, particularly due to their satisfactory thermal stability compared to aliphatic flame retardants, and to their desirable flow behavior observed during the processing of polymeric materials. This paper provides a brief overview of the main developments in ArPPN and their derivatives for flame-retarding polymeric materials, primarily based on the authors’ research work and the literature published over the last two decades. The synthetic chemistry of these compounds is discussed along with their thermal stabilities and flame-retardant properties. The possible mechanisms of ArPPN and their derivatives containing hetero elements, which exhibit a synergistic effect with phosphorus, are also discussed.

  2. Synthesis of N-benzoyl-N'-aryl selenoureas under PTC

    Institute of Scientific and Technical Information of China (English)

    WANG Hai; LIN Qi; ZHANG You-ming; WEI Tai-bao

    2004-01-01

    Recently many syntheses of selenium-containing compounds have been reported and studied, in which compounds selenoureas are used as the precursors for the syntheses of selenium-nitrogen heterocyclic compounds and their activities have received increasing attentions.Herein, we report the facile preparation of N-benzoyl-N'-aryl selenourea derivatives using potassium selenocyanate.In this typical procedure, Benzoyl chloride 1 was treated with potassium selenocyanate in CH2C12 under the condition of solid-liquid phase transfer catalysis using polyethylene glycal-400 as the catalyst to give the corresponding benzoyl isoselenocyanate 2. This compound did not need to be isolated and reacted with aromatic amine affording the N-benzoyl-N'-aryl selenourea derivatives 3.The reaction is described as:All the experiments were carried out under the condition of solid-liquid phase transfer catalysis using polyethylene glycal-400 as the catalyst and room temperature. And the structure was determined by IR, 1H NMR and 13C NMR. Selected data for N-benzoyl-N'-(4-fluoro)-selenourea:IR(KBr) 3426, 3274, 1672,1234,1155(C=Se); 1HMR(500MHz, DMSO) δ 12.85 (1H,S),11.86(1H,S), 7.27(2H,d,J=2.15), 7.98(2H,s,J=l.15), 7.30(2H,d,J=2.05), 7.56(2H.t,J=6.50),7.67(1H,t,J=6.20); 13C NMR(500MHz, DMSO)δ 181,168(C=Se),135,133, 132,115, 128.3, 128.8,161, 129.

  3. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei

    2011-01-01

    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  4. Recent Advancements and Biological Activities of Aryl Propionic Acid Derivatives: (A Review

    Directory of Open Access Journals (Sweden)

    Harshita Dhall

    2016-08-01

    Full Text Available The aryl propionic acid derivatives belong to an important class of NSAIDs (Non Steroidal Anti-inflammatory Drugs. Ibuprofen, chemically called 2-(4-isobutyl phenyl propionic acid, is a well known NSAID. Aryl propionic acid derivatives possesses a wide range of biological activities including anti-bacterial, anti-convulsant, anti-cancer, analgesic and anti-inflammatory activities. Apart from very potent compounds in the field of analgesics and antipyrectics as Ibuprofen, Oxaprozin, Ketoprofen, Fenoprofen; aryl propionic acid derivatives plays important role to treat other ailments also. Through this review, an attempt has been made to emphasize on recent work done and recent advancements in arena of aryl propionic acid derivatives in view of medicinal chemistry.

  5. A Direct Transformation of Aryl Aldehydes to Benzyl Iodides Via Reductive Iodination

    Energy Technology Data Exchange (ETDEWEB)

    Ruso, Jayaraman Sembian; Rajendiran, Nagappan; Kumaran, Rajendran Senthil [Univ. of Madras, Chennai (India)

    2014-02-15

    A facile transformation of aryl aldehydes to benzyl iodides through one-pot reductive iodination is reported. This protocol displays remarkable functional group tolerance and the title compound was obtained in good to excellent yield.

  6. Synthesis and application of chiral N,N′-dialkylated cyclohexanediamine for asymmetric hydrogenation of aryl ketones

    Institute of Scientific and Technical Information of China (English)

    Meng Lin Ma; Chuan Hong Ren; Ya Jing Lv; Hua Chen; Xian Jun Li

    2011-01-01

    Chiral N,N′-dialkylated cyclohexanediamine derived ligands have been synthesized and used in the asymmetric hydrogenation of aryl ketones. Optically active alcohols with up to 90% enantiomeric excess were obtained in high yields.

  7. Triazoloquinazolinediones as novel high affinity ligands for the benzodiazepine site of GABA(A) receptors

    DEFF Research Database (Denmark)

    Nilsson, Jakob; Gidlöf, Ritha; Nielsen, Elsebet Østergaard

    2011-01-01

    Based on a pharmacophore model of the benzodiazepine-binding site of GABA(A) receptors, a series of 2-aryl-2,6-dihydro[1,2,4]triazolo[4,3-c]quinazoline-3,5-diones (structure type I) were designed, synthesized, and identified as high-affinity ligands of the binding site. For several compounds, K...

  8. An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides

    KAUST Repository

    Weng, Zhiqiang

    2012-12-12

    A series of copper(I) trifluoromethyl thiolate complexes have been synthesized from the reaction of CuF2 with Me3SiCF 3 and S8 (see scheme; Cu red, F green, N blue, S yellow). These air-stable complexes serve as reagents for the efficient conversion of a wide range of aryl halides into the corresponding aryl trifluoromethyl thioethers in excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Photoinduced C-C Cross-Coupling of Aryl Chlorides and Inert Arenes

    Directory of Open Access Journals (Sweden)

    Lele Wang

    2016-01-01

    Full Text Available Here we report a facile, efficient, and catalyst-free method to realize C-C cross-coupling of aryl chlorides and inert arenes under UV light irradiation. The aryl radical upon homolytic cleavage of C-Cl bond initiated the nucleophilic substitution reaction with inert arenes to give biaryl products. This mild reaction mode can also be applied to other synthetic reactions, such as the construction of C-N bonds and trifluoromethylated compounds.

  10. Thermophysical Properties of Hydrocarbon Mixtures

    Science.gov (United States)

    SRD 4 NIST Thermophysical Properties of Hydrocarbon Mixtures (PC database for purchase)   Interactive computer program for predicting thermodynamic and transport properties of pure fluids and fluid mixtures containing up to 20 components. The components are selected from a database of 196 components, mostly hydrocarbons.

  11. Synthesis of Stable Diarylpalladium(II) Complexes: Detailed Study of the Aryl-Aryl Bond-Forming Reductive Elimination.

    Science.gov (United States)

    Gensch, Tobias; Richter, Nils; Theumer, Gabriele; Kataeva, Olga; Knölker, Hans-Joachim

    2016-08-01

    The synthesis of diarylpalladium(II) complexes by twofold aryl C-H bond activation was developed. These intermediates of oxidative cyclization reactions are stabilized by chelation with acetyl groups while still maintaining sufficient reactivity to study their reductive elimination. Four distinct triggers were found for the reductive elimination of these complexes to dibenzofurans and carbazoles. Thermal elimination occurs at very high temperatures, whereas ligand-promoted and oxidatively induced reductive eliminations proceed readily at room temperature. Under these conditions, no isomerization occurs. In contrast, weak Brønsted acids, such as acetic acid, lead to a sequence of proto-demetalation, isomerization to a κ(3) -diarylpalladium(II) complex, and reductive elimination to non-symmetrical cyclization products.

  12. An Efficient and General Method for Formylation of Aryl Bromides with CO2 and Poly(methylhydrosiloxane).

    Science.gov (United States)

    Yu, Bo; Yang, Zhenzhen; Zhao, Yanfei; Hao, Leiduan; Zhang, Hongye; Gao, Xiang; Han, Buxing; Liu, Zhimin

    2016-01-18

    The formylation of aryl halides with CO2 to generate aryl aldehydes is challenging. Herein, we report a novel synthesis of aryl aldehydes by formylation of aryl bromides with CO2 and a waste silane, poly(methylhydrosiloxane) (PMHS). It has been discovered that a simple combination of 1,3-bis(diphenyphosphino)propane (DPPP)-chelated Pd catalyst, Pd(DPPP)Cl2 , with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is able to effectively catalyze the reaction, leading to aryl aldehydes in moderate to excellent yields, and without any by-products in most cases. Moreover, this route could be extended to the formylation of aryl iodides with high efficiency. This approach is simple, less costly, and environmentally friendly, and also widens the applications of CO2 to form value-added chemicals by the construction of new C-C bonds.

  13. The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction

    Science.gov (United States)

    Tajti, Ádám; Ádám, Anna; Csontos, István; Karaghiosoff, Konstantin; Czugler, Mátyás; Ábrányi-Balogh, Péter

    2017-01-01

    Summary A family of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides was synthesized by the microwave-assisted solvent-free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two α-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N–H···O=P intermolecular hydrogen bridges pair.

  14. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids.

    Science.gov (United States)

    Chu, Lingling; Lipshultz, Jeffrey M; MacMillan, David W C

    2015-06-26

    The direct decarboxylative arylation of α-oxo acids has been achieved by synergistic visible-light-mediated photoredox and nickel catalysis. This method offers rapid entry to aryl and alkyl ketone architectures from simple α-oxo acid precursors via an acyl radical intermediate. Significant substrate scope is observed with respect to both the oxo acid and arene coupling partners. This mild decarboxylative arylation can also be utilized to efficiently access medicinal agents, as demonstrated by the rapid synthesis of fenofibrate.

  15. Microwave-assisted cyclizations promoted by polyphosphoric acid esters: a general method for 1-aryl-2-iminoazacycloalkanes

    Science.gov (United States)

    Díaz, Jimena E; Mollo, María C

    2016-01-01

    Summary The first general procedure for the synthesis of 5 to 7-membered 1-aryl-2-iminoazacycloalkanes is presented, by microwave-assisted ring closure of ω-arylaminonitriles promoted by polyphosphoric acid (PPA) esters. 1-Aryl-2-iminopyrrolidines were easily prepared from the acyclic precursors employing a chloroformic solution of ethyl polyphosphate (PPE). The use of trimethylsilyl polyphosphate (PPSE) in solvent-free conditions allowed for the synthesis of 1-aryl-2-iminopiperidines and hitherto unreported 1-aryl-2-iminoazepanes. The cyclization reaction involves good to high yields and short reaction times, and represents a novel application of PPA esters in heterocyclic synthesis. PMID:27829907

  16. Microwave-assisted cyclizations promoted by polyphosphoric acid esters: a general method for 1-aryl-2-iminoazacycloalkanes

    Directory of Open Access Journals (Sweden)

    Jimena E. Díaz

    2016-09-01

    Full Text Available The first general procedure for the synthesis of 5 to 7-membered 1-aryl-2-iminoazacycloalkanes is presented, by microwave-assisted ring closure of ω-arylaminonitriles promoted by polyphosphoric acid (PPA esters. 1-Aryl-2-iminopyrrolidines were easily prepared from the acyclic precursors employing a chloroformic solution of ethyl polyphosphate (PPE. The use of trimethylsilyl polyphosphate (PPSE in solvent-free conditions allowed for the synthesis of 1-aryl-2-iminopiperidines and hitherto unreported 1-aryl-2-iminoazepanes. The cyclization reaction involves good to high yields and short reaction times, and represents a novel application of PPA esters in heterocyclic synthesis.

  17. Oviposition and flight orientation response of Aedes aegypti to certain aromatic aryl hydrazono esters.

    Science.gov (United States)

    Guha, Lopamudra; Seenivasagan, T; Bandyopadhyay, Prabal; Iqbal, S Thanvir; Sathe, Manisha; Sharma, Pratibha; Parashar, B D; Kaushik, M P

    2012-09-01

    Aedes aegypti is a day-biting, highly anthropophilic mosquito and a potential vector of dengue and chikungunya in India. A. aegypti is a container breeder, generally oviposit in the stored and fresh water bodies, and discarded containers near residential areas that provide suitable habitats for oviposition by gravid females. The diurnal activity and endophilic nature of these mosquitoes have increased the frequency of contact with human being. Assured blood meal from human host in an infested area leads to increased disease occurrence. Gravid mosquitoes can potentially be lured to attractant-treated traps and could subsequently be killed with insecticides or growth regulators. In this direction, oviposition by A. aegypti females to aryl hydrazono esters (AHE)-treated bowls at 10 ppm concentration was tested in dual choice experiment, and their orientation response to these ester compounds was studied in Y-tube olfactometer. Among the esters tested, AHE-2, AHE-11 and AHE-12 elicited increased egg deposition with oviposition activity indices (OAI) of +0.39, +0.24 and +0.48, respectively, compared to control; in contrast, AHE-8, AHE-9 and AHE-10 showed negative oviposition response with OAI of -0.46, -0.35 and -0.29, respectively, at 10 mg/L. In the Y-tube olfactometer bioassay, AHE-2 attracted 60 % females compared to control, while to the odour of AHE-11 and AHE-12, about 70 % of the females were trapped in treated chambers. In contrast, only 27-30 % of gravid females entered the chamber releasing AHE-8, AHE-9 and AHE-10 odour plumes, while 70 % entered control chamber, evincing a possible non-preference of treatment odours as well as interference with olfactory receptors. These compounds have the potential for application as oviposition stimulants or deterrents for surveillance and control of mosquito population using ovitraps.

  18. Metal-free arylation of ethyl acetoacetate with hypervalent diaryliodonium salts: an immediate access to diverse 3-aryl-4(1H)-quinolones.

    Science.gov (United States)

    Monastyrskyi, Andrii; Namelikonda, Niranjan K; Manetsch, Roman

    2015-03-06

    A clean arylation protocol of ethyl acetoacetate was developed using hypervalent diaryliodonium salts under mild and metal-free conditions. The scope of the reaction, using symmetric and unsymmetric iodonium salts with varying sterics and electronics, was examined. Further, this method has been applied for the synthesis of antimalarial compound ELQ-300, which is currently in preclinical development.

  19. Quinolinesulfonamides of aryloxy-/arylthio-ethyl piperidines: influence of an arylether fragment on 5-HT1A/5-HT7 receptor selectivity.

    Science.gov (United States)

    Grychowska, Katarzyna; Marciniec, Krzysztof; Canale, Vittorio; Szymiec, Michał; Glanowski, Grzegorz; Satała, Grzegorz; Maślankiewicz, Andrzej; Pawłowski, Maciej; Bojarski, Andrzej J; Zajdel, Paweł

    2013-03-01

    The solid-phase synthesis of a new series of 19 biomimetics of long-chain arylpiperazines, namely flexible quinoline sulfonamides of aryl(heteroaryl)oxy-/heteroarylthio-ethyl 4-aminomethylpiperidines, is reported. Various structural modifications applied followed by biological evaluation for 5-HT1A, 5-HT6, and 5-HT7 receptors gave further support of a possible replacement of arylpiperazine with aryloxy-/arylthio-ethyl derivatives of alicyclic amines and control of receptor selectivity upon diversification in the aryl(heteroaryl)oxy-/heteroarylthio-ethyl fragment.

  20. Hydrocarbon Leak Detection Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT is proposing the development of a sensor to detect the presence of hydrocarbons in turbopump Inter-Propellant Seals (IPS). The purpose of the IPS is to prevent...

  1. Interaction Potential of the Multitargeted Receptor Tyrosine Kinase Inhibitor Dovitinib with Drug Transporters and Drug Metabolising Enzymes Assessed in Vitro

    Directory of Open Access Journals (Sweden)

    Johanna Weiss

    2014-12-01

    Full Text Available Dovitinib (TKI-258 is under development for the treatment of diverse cancer entities. No published information on its pharmacokinetic drug interaction potential is available. Thus, we assessed its interaction with important drug metabolising enzymes and drug transporters and its efficacy in multidrug resistant cells in vitro. P-glycoprotein (P-gp, MDR1, ABCB1 inhibition was evaluated by calcein assay, inhibition of breast cancer resistance protein (BCRP, ABCG2 by pheophorbide A efflux, and inhibition of organic anion transporting polypeptides (OATPs by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 3A4, 2C19, and 2D6 was assessed by using commercial kits. Induction of transporters and enzymes was quantified by real-time RT-PCR. Possible aryl hydrocarbon receptor (AhR activating properties were assessed by a reporter gene assay. Substrate characteristics were evaluated by growth inhibition assays in cells over-expressing P-gp or BCRP. Dovitinib weakly inhibited CYP2C19, CYP3A4, P-gp and OATPs. The strongest inhibition was observed for BCRP (IC50 = 10.3 ± 4.5 μM. Among the genes investigated, dovitinib only induced mRNA expression of CYP1A1, CYP1A2, ABCC3 (coding for multidrug resistance-associated protein 3, and ABCG2 and suppressed mRNA expression of some transporters and drug metabolising enzymes. AhR reporter gene assay demonstrated that dovitinib is an activator of this nuclear receptor. Dovitinib retained its efficacy in cell lines over-expressing P-gp or BCRP. Our analysis indicates that dovitinib will most likely retain its efficacy in tumours over-expressing P-gp or BCRP and gives first evidence that dovitinib might act as a perpetrator drug in pharmacokinetic drug–drug interactions.

  2. The constitutively active Ah receptor (CA-AhR) mouse as a model for dioxin exposure - effects in reproductive organs.

    Science.gov (United States)

    Brunnberg, Sara; Andersson, Patrik; Poellinger, Lorenz; Hanberg, Annika

    2011-12-01

    The dioxin/aryl hydrocarbon receptor (AhR) mediates most toxic effects of dioxins. In utero/lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) impairs fetal/neonatal development and the developing male reproductive tract are among the most sensitive tissues. TCDD causes antiestrogenic responses in rodent mammary gland and uterus and in human breast cancer cell lines in the presence of estrogen. Also, more recently an estrogen-like effect of TCDD/AhR has been suggested in the absence of estrogen. A transgenic mouse expressing a constitutively active AhR (CA-AhR) was developed as a model mimicking a situation of constant exposure to AhR agonists. Male and female reproductive tissues of CA-AhR mice were characterized for some of the effects commonly seen after dioxin exposure. Sexually mature CA-AhR female mice showed decreased uterus weight, while an uterotrophic assay in immature CA-AhR mice resulted in increased uterus weight. In immature mice, both TCDD-exposure and CA-AhR increased the expression of the estrogen receptor target gene Cathepsin D. When co-treated with 17β-estradiol no increase in Cathepsin D levels occurred in either TCDD-exposed or CA-AhR mice. In sexually mature male CA-AhR mice the weights of testis and ventral prostate were decreased and the epididymal sperm reserve was reduced. The results of the present study are in accordance with previous studies on dioxin-exposed rodents in that an activated AhR (here CA-AhR) leads to antiestrogenic effects in the presence of estrogen, but to estrogenic effects in the absence of estrogen. These results suggest the CA-AhR mouse model as a useful tool for studies of continuous low activity of the AhR from early development, resembling the human exposure situation.

  3. Regioselective synthesis of C3 alkylated and arylated benzothiophenes

    Science.gov (United States)

    Shrives, Harry J.; Fernández-Salas, José A.; Hedtke, Christin; Pulis, Alexander P.; Procter, David J.

    2017-03-01

    Benzothiophenes are heterocyclic constituents of important molecules relevant to society, including those with the potential to meet modern medical challenges. The construction of molecules would be vastly more efficient if carbon-hydrogen bonds, found in all organic molecules, can be directly converted into carbon-carbon bonds. In the case of elaborating benzothiophenes, functionalization of carbon-hydrogen bonds at carbon-number 3 (C3) is markedly more demanding than at C2 due to issues of regioselectivity (C3 versus C2), and the requirement of high temperatures, precious metals and the installation of superfluous directing groups. Herein, we demonstrate that synthetically unexplored but readily accessible benzothiophene S-oxides serve as novel precursors for C3-functionalized benzothiophenes. Employing an interrupted Pummerer reaction to capture and then deliver phenol and silane coupling partners, we have discovered a directing group-free method that delivers C3-arylated and -alkylated benzothiophenes with complete regioselectivity, under metal-free and mild conditions.

  4. Rat brain aryl acylamidase: further characterization of multiple forms.

    Science.gov (United States)

    Hsu, L L; Halaris, A E; Freedman, D X

    1982-01-01

    1. Two fractions of aryl acylamidase (EC 3.5.1.13) were further separated from rat brain extracts at pH 7.5 by ammonium sulfate precipitation and Bio-Gel chromatography. 2. 1,2,3,4-Tetrahydro-beta-carboline competitively inhibited (67%) fraction-1 but slightly inhibited (13%) fraction-2. Tetrahydroharman, 6-hydroxy-tetrahydroharman and harminic acid slightly inhibited both fractions. Harmalol inhibited fraction-1 but enhanced fraction-2. 6-Methoxy-harman, 6-methoxy-harmalan and harmaline enhanced both fractions. 3. Pargyline did not affect either fraction. Methiothepin, cyproheptadine and chlorimipramine inhibited fraction-1 but stimulated fraction-2. 4. Neostigmine moderately (30%) inhibited AAA-2 but did not have any significant effect on AAA-1. 5. These results indicate that the beta-carboline compounds might play a role in regulating activity of AAA-1 and 2 in brain. 6. Both fractions might be related to serotonergic neurons but only AAA-2 might be associated with acetylcholinesterase.

  5. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  6. Bioassay of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Van Kirk, E.A.

    1980-08-01

    A positive relationship was found between the photodynamic activity of 24 polycyclic aromatic hydrocarbons versus published results on the mutagenicity, carcinogenicity, and initiation of unscheduled DNA synthesis. Metabolic activation of benzo(a)pyrene resulted in detection of increased mutagenesis in Paramecium tetraurelia as found also in the Ames Salmonella assay. The utility of P. tetraurelia as a biological detector of hazardous polycyclic aromatic hydrocarbons is discussed.

  7. Aliphatic hydrocarbons of the fungi.

    Science.gov (United States)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  8. Evaluation of hydrocarbon potential

    Energy Technology Data Exchange (ETDEWEB)

    Cashman, P.H.; Trexler, J.H. Jr. [Univ. of Nevada, Reno, NV (United States)

    1992-09-30

    Task 8 is responsible for assessing the hydrocarbon potential of the Yucca Mountain vincinity. Our main focus is source rock stratigraphy in the NTS area in southern Nevada. (In addition, Trexler continues to work on a parallel study of source rock stratigraphy in the oil-producing region of east central Nevada, but this work is not funded by Task 8.) As a supplement to the stratigraphic studies, we are studying the geometry and kinematics of deformation at NTS, particularly as these pertain to reconstructing Paleozoic stratigraphy and to predicting the nature of the Late Paleozoic rocks under Yucca Mountain. Our stratigraphic studies continue to support the interpretation that rocks mapped as the {open_quotes}Eleana Formation{close_quotes} are in fact parts of two different Mississippian units. We have made significant progress in determining the basin histories of both units. These place important constraints on regional paleogeographic and tectonic reconstructions. In addition to continued work on the Eleana, we plan to look at the overlying Tippipah Limestone. Preliminary TOC and maturation data indicate that this may be another potential source rock.

  9. HYDROCARBONS RESERVES IN VENEZUELA

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Cruz, D.J.

    2007-07-01

    Venezuela is an important player in the energy world, because of its hydrocarbons reserves. The process for calculating oil and associated gas reserves is described bearing in mind that 90% of the gas reserves of Venezuela are associated to oil. Likewise, an analysis is made of the oil reserves figures from 1975 to 2003. Reference is also made to inconsistencies found by international experts and the explanations offered in this respect by the Ministry of Energy and Petroleum (MENPET) and Petroleos de Venezuela (PDVSA) regarding the changes that took place in the 1980s. In turn, Hubbert's Law is explained to determine peak production of conventional oil that a reservoir or field will reach, as well as its relationship with remaining reserves. Emphasis is placed on the interest of the United Nations on this topic. The reserves of associated gas are presented along with their relationship with the different crude oils that are produced and with injected gas, as well as with respect to the possible changes that would take place in the latter if oil reserves are revised. Some recommendations are submitted so that the MENPET starts preparing the pertinent policies ruling reserves. (auth)

  10. Cu(OAc)2/Pyrimidines-Catalyzed Cross-coupling Reactions of Aryl Iodides and Activated Aryl Bromides with Alkynes under Aerobic, Solvent-free and Palladium-free Conditions

    Institute of Scientific and Technical Information of China (English)

    XIE Ye-Xiang; DENG Chen-Liang; PI Shao-Feng; LI Jin-Heng; YIN Du-Lin

    2006-01-01

    Excellent results have been achieved in the Cu(OAc)2-catalyzed Sonogashira cross-couplings of aryl iodides and activated aryl bromides utilizing TBAF (tetrabutylammonium fluoride) as the base and 4,6-dimethoxypyrimidin-2-amine as the ligand. It is noteworthy that the reaction is conducted under aerobic, solvent-free and palladium-free conditions.

  11. Phosphine-Free Palladium-Catalyzed Direct C-3 Arylation of 2-Phenylimidazo[1,2-a]pyridine Using Silver(I Carboxylate

    Directory of Open Access Journals (Sweden)

    Sridevi Kona

    2013-01-01

    Full Text Available Phosphine-free palladium-catalyzed direct arylation of 2-phenyl-imidazo[1,2-a]pyridine has been developed with the concept of using silver(I carboxylate. This protocol efficiently catalyzes the C-H arylation of 2-phenyl-imidazo[1,2-a]pyridine with aryl iodides to afford the corresponding 2-phenyl-3-aryl-imidazo[1,2-a]pyridines in moderate to-good yields.

  12. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    Science.gov (United States)

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology.

  13. Palladium-catalyzed α-arylation of zinc enolates of esters: reaction conditions and substrate scope.

    Science.gov (United States)

    Hama, Takuo; Ge, Shaozhong; Hartwig, John F

    2013-09-06

    The intermolecular α-arylation of esters by palladium-catalyzed coupling of aryl bromides with zinc enolates of esters is reported. Reactions of three different types of zinc enolates have been developed. α-Arylation of esters occurs in high yields with isolated Reformatsky reagents, with Reformatsky reagents generated from α-bromo esters and activated zinc, and with zinc enolates generated by quenching alkali metal enolates of esters with zinc chloride. The use of zinc enolates, instead of alkali metal enolates, greatly expands the scope of the arylation of esters. The reactions occur at room temperature or at 70 °C with bromoarenes containing cyano, nitro, ester, keto, fluoro, enolizable hydrogen, hydroxyl, or amino functionality and with bromopyridines. The scope of esters encompasses acyclic acetates, propionates, and isobutyrates, α-alkoxyesters, and lactones. The arylation of zinc enolates of esters was conducted with catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) or the highly reactive dimeric Pd(I) complex {[P(t-Bu)3]PdBr}2.

  14. Mechanistic Aspects of Aryl-Halide Oxidative Addition, Coordination Chemistry, and Ring-Walking by Palladium.

    Science.gov (United States)

    Zenkina, Olena V; Gidron, Ori; Shimon, Linda J W; Iron, Mark A; van der Boom, Milko E

    2015-11-01

    This contribution describes the reactivity of a zero-valent palladium phosphine complex with substrates that contain both an aryl halide moiety and an unsaturated carbon-carbon bond. Although η(2) -coordination of the metal center to a C=C or C≡C unit is kinetically favored, aryl halide bond activation is favored thermodynamically. These quantitative transformations proceed under mild reaction conditions in solution or in the solid state. Kinetic measurements indicate that formation of η(2) -coordination complexes are not nonproductive side-equilibria, but observable (and in several cases even isolated) intermediates en route to aryl halide bond cleavage. At the same time, DFT calculations show that the reaction with palladium may proceed through a dissociation-oxidative addition mechanism rather than through a haptotropic intramolecular process (i.e., ring walking). Furthermore, the transition state involves coordination of a third phosphine to the palladium center, which is lost during the oxidative addition as the C-halide bond is being broken. Interestingly, selective activation of aryl halides has been demonstrated by adding reactive aryl halides to the η(2) -coordination complexes. The product distribution can be controlled by the concentration of the reactants and/or the presence of excess phosphine.

  15. Palladium-catalyzed aryl amination-heck cyclization cascade: A one-flask approach to 3-substituted Indoles

    DEFF Research Database (Denmark)

    Jensen, Thomas; Pedersen, Henrik; Bang-Andersen, B.;

    2008-01-01

    Two for the price of one: A Pd/dppf-based catalyst provides access to the title compounds from 1,2-dihalogenated aromatic compounds and allylic amines in a single reaction flask. The initial aryl amination step occurs with excellent selectivity for the aryl iodide to ensure the formation of a sin...

  16. Efficient N-Arylation and N-Alkenylation of the Five DNA/RNANucleobases

    DEFF Research Database (Denmark)

    Jacobsen, Mikkel Fog; Knudsen, Martin M.; Gothelf, Kurt Vesterager

    2006-01-01

    -substituted pyrimidin-2(1H)-one served as both a cytosine and a uracil precursor and was N-arylated and N-alkenylated in high yields. Adenine was efficiently and selectively N-arylated and N-alkenylated at the N9 position by employing a bis-Boc-protected adenine derivative, while a bis-Boc-protected 2-amino-6...

  17. Synthesis and Biological Activities of 3-(2-Furyl)-4-aryl- 1, 2, 4-triazole-5-thiones

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of novel compounds 3-(2-furyl)-4-aryl-l, 2, 4-triazole-5-thiones have been synthesized. All the compounds were characterized by spectral data and elemental analysis. The preliminary biological test showed that some of them exhibited excellent plant-growth regulative acl ivities.

  18. Dramatic Substituent Effect on the CCL-catalyzed Kinetic Resolution of 1-Aryl-2,3-allenols

    Institute of Scientific and Technical Information of China (English)

    XU, Dai-Wang(徐代旺); LI, Zu-Yi(李祖义); MA, Sheng-Ming(麻生明)

    2004-01-01

    Optically active 1-aryl-2,3-allenols were obtained via CCL-mediated kinetic resolution of the racemic allenols. The substitution pattern of the aromatic ring, regarding to both the type of the substituent and its position on the aromatic ring, was found to be critical for the kinetic resolution of 1-aryl-2,3-allenols.

  19. Copper-Catalyzed N-Arylation of Amides Using (S-N-Methylpyrrolidine-2-carboxylate as the Ligand

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ma

    2010-03-01

    Full Text Available (S-N-methylpyrrolidine-2-carboxylate, a derivative of natural L-proline, was found to be an efficient ligand for the copper-catalyzed Goldberg-type N-arylation of amides with aryl halides under mild conditions. A variety of N-arylamides were synthesized in good to high yields.

  20. Synthesis of radiolabelled aryl azides from diazonium salts: experimental and computational results permit the identification of the preferred mechanism.

    Science.gov (United States)

    Joshi, Sameer M; de Cózar, Abel; Gómez-Vallejo, Vanessa; Koziorowski, Jacek; Llop, Jordi; Cossío, Fernando P

    2015-05-28

    Experimental and computational studies on the formation of aryl azides from the corresponding diazonium salts support a stepwise mechanism via acyclic zwitterionic intermediates. The low energy barriers associated with both transition structures are compatible with very fast and efficient processes, thus making this method suitable for the chemical synthesis of radiolabelled aryl azides.

  1. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Directory of Open Access Journals (Sweden)

    Aiichiro Nagaki

    2011-08-01

    Full Text Available The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  2. Dithiocarbamate promoted practical synthesis of N-Aryl-2-aminobenzazoles: Synthesis of novel Aurora-A kinase inhibitor

    Indian Academy of Sciences (India)

    Naresh Kumar Katari; M Venkatanarayana; Kummari Srinivas

    2015-03-01

    Various N-aryl-2-aminobenzoxazoles and N-aryl-2-aminobenzothiazoles were synthesized from o-aminophenol and o-aminothiophenol, respectively, mediated by dithiocarbamate in one step. The salient features of this method include mild reaction condition, high yield and large scale synthesis. Application of this methodology has been demonstrated by synthesizing potent Aurora kinase-A inhibitors.

  3. PCB126 induces deformities during pectoral fin development in little skate

    Science.gov (United States)

    Polychlorinated biphenyls (PCBs) are ubiquitous legacy chemicals found throughout the environment, which can accumulate in humans, domestic animals, and wildlife. Some PCBs are agonists of the aryl hydrocarbon receptor (AHR) and are potent teratogens in bony fish. Leucoraja erina...

  4. Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid

    2010-01-01

    Carbonaceous materials play an important role in space. Polycyclic Aromatic Hydrocarbons (PAHs) are a ubiquitous component of the carbonaceous materials. PAHs are the best-known candidates to account for the IR emission bands. They are also thought to be among the carriers of the diffuse interstellar absorption bands (DIBs). PAH ionization states reflect the ionization balance of the medium while PAH size, composition, and structure reflect the energetic and chemical history of the medium. A major challenge is to reproduce in the laboratory the physical conditions that exist in the emission and absorption interstellar zones. The harsh physical conditions of the ISM -low temperature, collisionless, strong UV radiation fields- are simulated in the laboratory by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion. PAH ions and radicals are formed from the neutral precursors in an isolated environment at low temperature and probed with high-sensitivity cavity ringdown spectroscopy in the NUV-NIR range. Carbon nanoparticles are also formed during the short residence time of the precursors in the plasma and are characterized with time-offlight mass spectrometry. These experiments provide unique information on the spectra of large carbonaceous molecules and ions in the gas phase that can now be directly compared to interstellar and circumstellar observations (IR emission bands, DIBs, extinction curve). These findings also hold great potential for understanding the formation process of interstellar carbonaceous grains. We will review recent progress in the experimental and theoretical studies of PAHs, compare the laboratory data with astronomical observations and discuss the global implications.

  5. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids.

    Science.gov (United States)

    Schöner, Tim A; Gassel, Sören; Osawa, Ayako; Tobias, Nicholas J; Okuno, Yukari; Sakakibara, Yui; Shindo, Kazutoshi; Sandmann, Gerhard; Bode, Helge B

    2016-02-02

    Bacterial pigments of the aryl polyene type are structurally similar to the well-known carotenoids with respect to their polyene systems. Their biosynthetic gene cluster is widespread in taxonomically distant bacteria, and four classes of such pigments have been found. Here we report the structure elucidation of the aryl polyene/dialkylresorcinol hybrid pigments of Variovorax paradoxus B4 by HPLC-UV-MS, MALDI-MS and NMR. Furthermore, we show for the first time that this pigment class protects the bacterium from reactive oxygen species, similarly to what is known for carotenoids. An analysis of the distribution of biosynthetic genes for aryl polyenes and carotenoids in bacterial genomes is presented; it shows a complementary distribution of these protective pigments in bacteria.

  6. A General Palladium-Catalyzed Hiyama Cross-Coupling Reaction of Aryl and Heteroaryl Chlorides.

    Science.gov (United States)

    Yuen, On Ying; So, Chau Ming; Man, Ho Wing; Kwong, Fuk Yee

    2016-05-01

    A general palladium-catalyzed Hiyama cross-coupling reaction of aryl and heteroaryl chlorides with aryl and heteroaryl trialkoxysilanes by a Pd(OAc)2 /L2 catalytic system is presented. A newly developed water addition protocol can dramatically improve the product yields. The conjugation of the Pd/L2 system and the water addition protocol can efficiently catalyze a broad range of electron-rich, -neutral, -deficient, and sterically hindered aryl chlorides and heteroaryl chlorides with excellent yields within three hours and the catalyst loading can be down to 0.05 mol % Pd for the first time. Hiyama coupling of heteroaryl chlorides with heteroaryl silanes is also reported for the first time. The reaction can be easily scaled up 200 times (100 mmol) without any degasification and purification of reactants; this facilitates the practical application in routine synthesis.

  7. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salman, Fadheela; Plant, Nick, E-mail: N.Plant@Surrey.ac.uk

    2012-08-15

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  8. Synthesis of a TREN in which the aryl substituents are part of a 45 atom macrocycle.

    Science.gov (United States)

    Cain, Matthew F; Forrest, William P; Peryshkov, Dmitry V; Schrock, Richard R; Müller, Peter

    2013-10-16

    A substituted TREN has been prepared in which the aryl groups in (ArylNHCH2CH2)3N are substituted at the 3- and 5-positions with a total of six OCH2(CH2)nCH═CH2 groups (n = 1, 2, 3). Molybdenum nitride complexes, [(ArylNCH2CH2)3N]Mo(N), have been isolated as adducts that contain B(C6F5)3 bound to the nitride. Two of these [(ArylNCH2CH2)3N]Mo(NB(C6F5)3) complexes (n = 1 and 3) were crystallographically characterized. After removal of the borane from [(ArylNCH2CH2)3N]Mo(NB(C6F5)3) with PMe3, ring-closing olefin metathesis (RCM) was employed to join the aryl rings with OCH2(CH2)nCH═CH(CH2)nCH2O links (n = 1-3) between them. RCM worked best with a W(O)(CHCMe3)(Me2Pyr)(OHMT)(PMe2Ph) catalyst (OHMT = hexamethylterphenoxide, Me2Pyr = 2,5-dimethylpyrrolide) and n = 3. The macrocyclic ligand was removed from the metal through hydrolysis and isolated in 70-75% yields relative to the borane adducts. Crystallographic characterization showed that the macrocyclic TREN ligand in which n = 3 contains three cis double bonds. Hydrogenation produced a TREN in which the three links are saturated, i.e., O(CH2)10O.

  9. CuI/Proline-catalyzed N-Arylation of Nitrogen Heterocycles

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ma's CuI/proline procedure for the catalytic cross coupling between nitrogen heterocycles and aryl halides was markedly improved. The key finding was that K3PO4 was a much better base than K2CO3 for the reaction. With this new reaction condition the cross coupling with aryl iodides could be accomplished in 1,4-dioxane instead of DMSO. This reactin also could be carried out in DMF. Furthermore, the coupling yields under the new conditions are usually higher than in Ma's original methods.

  10. Amination Reactions of Aryl Halides with Nitrogen-Containing Reagents Catalyzed by Cul in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    YAN,Jin-Can; ZHOU,Li; WANG,Lei

    2008-01-01

    CuI-catalyzed coupling reactions of aryl iodides and electron-deficient aryl bromides with nitrogen-containing reagents, such as imidazole, benzimidazole, aliphatic primary and secondary amines, aniline, primary and secondary amides, in ionic liquid were developed. The reaction conditions involved the use of[Bmim][BF4] as the solvent,potassium phosphate as the base, and CuI as the catalyst. The CuI and[Bmim][BF4] could be recovered and recycled for five consecutive trials without significant loss of their activity.

  11. Asymmetric synthesis of quaternary aryl amino acid derivatives via a three-component aryne coupling reaction

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Jones

    2011-11-01

    Full Text Available A method was developed for the synthesis of α-alkyl, α-aryl-bislactim ethers in good to excellent yields and high diastereoselectivities, consisting of a facile one-pot procedure in which the aryl group is introduced by means of a nucleophilic addition to benzyne and the alkyl group by alkylation of a resultant benzylic anion. Hydrolysis of the sterically less hindered adducts gave the corresponding quaternary amino acids with no racemization, whereas hydrolytic ring opening gave the corresponding valine dipeptides from bulkier bislactims.

  12. Synthesis and antifungal activity of novel (1-aryl-2-heterocyclyl)ethylideneaminooxymethyl-substituted dioxolanes

    Energy Technology Data Exchange (ETDEWEB)

    Baji, H.; Flammang, M.; Kimny, T.; Gasquez, F.; Compagnon, P.L.; Delcourt, A. [Dijon Univ., 21 (France)

    1995-12-31

    A novel series of (1-aryl-2-heterocyclyl)ethylideneaminooxymethyl -substituted dioxolanes IIIa-n were synthesized by condensation of substituted 1,3-dioxolan-4-ylmethyl p-toluenesulfonates 4 with 1-(hydroxyimino)-1-aryl-2-heterocyclylethanes 5. Compounds IIIa-n were found to have effective in vitro antifungal activity when evaluated against the pathogenic fungi Candida albicans, Aspergillus flavus and Fusarium solani with MIC (minimum inhibitory concentration) values of 10 {mu}g-ml{sup -1} for IIIa-I and 5 {mu}g-ml{sup -1} for IIIm,n. (authors). 24 refs., 4 figs., 5 tabs.

  13. Lead optimization of the VU0486321 series of mGlu1 PAMs. Part 1: SAR of modifications to the central aryl core.

    Science.gov (United States)

    Garcia-Barrantes, Pedro M; Cho, Hyekyung P; Blobaum, Anna L; Niswender, Colleen M; Conn, P Jeffrey; Lindsley, Craig W

    2015-11-15

    This Letter describes the lead optimization of the VU0486321 series of mGlu1 positive allosteric modulators (PAMs). While first generation PAMs from Roche were reported in the late 1990s, little effort has focused on the development of mGlu1 PAMs since. New genetic data linking loss-of-function mutant mGlu1 receptors to schizophrenia, bipolar disorder and other neuropsychiatric disorders has rekindled interest in the target, but the ideal in vivo probe, for example, with good PK, brain penetration and low plasma protein binding, for robust target validation has been lacking. Here we describe the first modifications to the central aryl core of the VU0486321 series, where robust SAR was noted. Moreover, structural variants were identified that imparted selectivity (up to >793-fold) versus mGlu4.

  14. Enrichment of light hydrocarbon mixture

    Science.gov (United States)

    Yang; Dali; Devlin, David; Barbero, Robert S.; Carrera, Martin E.; Colling, Craig W.

    2010-08-10

    Light hydrocarbon enrichment is accomplished using a vertically oriented distillation column having a plurality of vertically oriented, nonselective micro/mesoporous hollow fibers. Vapor having, for example, both propylene and propane is sent upward through the distillation column in between the hollow fibers. Vapor exits neat the top of the column and is condensed to form a liquid phase that is directed back downward through the lumen of the hollow fibers. As vapor continues to ascend and liquid continues to countercurrently descend, the liquid at the bottom of the column becomes enriched in a higher boiling point, light hydrocarbon (propane, for example) and the vapor at the top becomes enriched in a lower boiling point light hydrocarbon (propylene, for example). The hollow fiber becomes wetted with liquid during the process.

  15. Cuticular Hydrocarbon Pheromones for Social Behavior and Their Coding in the Ant Antenna.

    Science.gov (United States)

    Sharma, Kavita R; Enzmann, Brittany L; Schmidt, Yvonne; Moore, Dani; Jones, Graeme R; Parker, Jane; Berger, Shelley L; Reinberg, Danny; Zwiebel, Laurence J; Breit, Bernhard; Liebig, Jürgen; Ray, Anandasankar

    2015-08-25

    The sophisticated organization of eusocial insect societies is largely based on the regulation of complex behaviors by hydrocarbon pheromones present on the cuticle. We used electrophysiology to investigate the detection of cuticular hydrocarbons (CHCs) by female-specific olfactory sensilla basiconica on the antenna of Camponotus floridanus ants through the utilization of one of the largest family of odorant receptors characterized so far in insects. These sensilla, each of which contains multiple olfactory receptor neurons, are differentially sensitive to CHCs and allow them to be classified into three broad groups that collectively detect every hydrocarbon tested, including queen and worker-enriched CHCs. This broad-spectrum sensitivity is conserved in a related species, Camponotus laevigatus, allowing these ants to detect CHCs from both nestmates and non-nestmates. Behavioral assays demonstrate that these ants are excellent at discriminating CHCs detected by the antenna, including enantiomers of a candidate queen pheromone that regulates the reproductive division of labor.

  16. High Pressure Preignition Chemistry of Hydrocarbons and Hydrocarbon Mixtures

    Science.gov (United States)

    2007-11-02

    and hydrocarbon blends in our various combustion systems, with emphasis on the effects of elevated pressure using our pressurized flow reactor ( PFR ...facility. Detailed experimental data were generated from the PFR for use in associated kinetic modeling work. We continued to develop and extend both

  17. Total Petroleum Hydrocarbons (TPH): ToxFAQs

    Science.gov (United States)

    ... state: This map displays locations where Total Petroleum Hydrocarbons (TPH) is known to be present. On This ... get more information? ToxFAQs TM for Total Petroleum Hydrocarbons (TPH) ( Hidrocarburos Totales de Petróleo (TPH) ) August 1999 ...

  18. Mechanistic investigation into cross-linking reactions in low rank coal: formation and pyrolysis of aryl esters

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Kiddern, M.K.; Skeen, J.D. [Oak Ridge National Lab. Oak Ridge, TN (USA). Chemical Sciences Division

    2003-07-01

    In this study, the sealed tube pyrolysis of mixtures of m-phenylphenol and benzoic acid have been investigated at 400{sup o}C to determine if cross-linking reactions can occur, and to determine the low temperature pyrolysis pathways of aryl esters, which are not known. Initial studies show that condensation reactions occur between carboxylic acids and phenols to form aryl esters at temperatures as low as 200{sup o}C. With a 3:1 ratio of m-phenylphenol to benzoic acid, yields of m-phenylphenyl benzoate were as high as 50% at 400{sup o}C. At short reaction times, the dominant products were the aryl ester and benzene, formed by the acid catalyzed decarboxylation of benzoic acid, but at longer times, other arylated products grew in indicating that radical reactions were occurring. These products appear to arise from the induced decomposition of benzoic anhydride to form phenyl radicals. The thermal stability of aryl esters was investigated through the pyrolysis of phenyl benzoate at 400{sup o}C. As predicted, the aryl ester appeared to be thermally stable but hydrolytically unstable. In general, formation of aryl esters could act as a low temperature cross-link in low rank coals. 19 refs., 3 figs., 1 tab.

  19. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  20. Synthesis of a Crushed Fullerene C60H24 through Sixfold Palladium-Catalyzed Arylation.

    Science.gov (United States)

    Dorel, Ruth; de Mendoza, Paula; Calleja, Pilar; Pascual, Sergio; González-Cantalapiedra, Esther; Cabello, Noemí; Echavarren, Antonio M

    2016-07-01

    The synthesis of a new C3v -symmetric crushed fullerene C60H24 (5) has been accomplished in three steps from truxene through sixfold palladium-catalyzed intramolecular arylation of a syn-trialkylated truxene precursor. Laser irradiation of 5 induces cyclodehydrogenation processes that result in the formation of C60, as detected by LDI-MS.

  1. Synthesis of a Crushed Fullerene C60H24 through Sixfold Palladium‐Catalyzed Arylation

    Science.gov (United States)

    Dorel, Ruth; de Mendoza, Paula; Calleja, Pilar; Pascual, Sergio; González‐Cantalapiedra, Esther; Cabello, Noemí

    2016-01-01

    The synthesis of a new C 3v‐symmetric crushed fullerene C60H24 (5) has been accomplished in three steps from truxene through sixfold palladium‐catalyzed intramolecular arylation of a syn‐trialkylated truxene precursor. Laser irradiation of 5 induces cyclodehydrogenation processes that result in the formation of C60, as detected by LDI‐MS. PMID:27774038

  2. N-Unsubstituted and N-Arylated Fulleropyrrolidines: New Useful Building Blocks for C60 Functionalization

    Institute of Scientific and Technical Information of China (English)

    TONG,Chen-Hua; WU,Zong-Quan; HOU,Jun-Li; LI,Zhan-Ting

    2006-01-01

    Two series of stable and soluble fulleropyrrolidines have been prepared from the reactions of C60, glycine or its N-arylated derivatives and aliphatic aldehydes or ketones in refluxing toluene or chlorobenzene. The new C60 derivatives represent new useful building blocks for further preparation of more funcionalized C60 derivatives.

  3. Restricted utility of aryl isoprenoids as indicators of photic zone anoxia

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.; Schouten, S.; Kohnen, M.E.L.

    1996-01-01

    In a North Sea oil, the carotenoid derivatives -carotene, -isorenieratane, and isorenieratane were identified, together with a series of aryl isoprenoids with a 2,3,6-trimethyl substitution pattern for the aromatic ring. The 13C values of -carotene and -isorenieratane are similar, whereas isoreniera

  4. A General and Efficient CuBr2-Catalyzed N-Arylation of Secondary Acyclic Amides

    Institute of Scientific and Technical Information of China (English)

    王满刚; 于华; 尤心稳; 吴军; 商志才

    2012-01-01

    A general and efficient Cu(II)-catalyzed cross-coupling method is reported for the preparation of acyclic tertiary amides. Generally moderate to excellent yields and functional group tolerance were obtained with secondary acyclic amides and aryl halides as substrates in toluene.

  5. Arylation of Acrylamide and Acrylonitrile with Arenediazonium Salts Catalyzed by Palladium Acetate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Arylation of acrylamide and acrylonitrile were carried out with various arenediazonium tetrafluoroborates in the presence of a catalytic amount of Pd(OAc)2 in ethanol and a variety of substituted (E)-cinnamamides and (E)-cinnamonitriles were obtained in high yields under mild reaction conditions.

  6. Dynamic Rheological Characterization of A Thermotropic Liquid Crystalline Poly (aryl ether ketone)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The rheometrics ARES rheometer was applied to determining the rheological behavior of a thermotropic liquid crystalline poly (aryl ether ketone). The viscosity of the material decreases with increasing temperature, reaching a minimum in the nematic state, then slightly increases with further raising the temperature in the biphase.

  7. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols

    NARCIS (Netherlands)

    Ferreira, P.; Medina, M.; Guillén, F.; Martínez, M.J.; Berkel, van W.J.H.; Martínez, A.T.

    2005-01-01

    Spectral and catalytic properties of the flavoenzyme AAO (aryl-alcohol oxidase) from Pleurotus eryngii were investigated using recombinant enzyme. Unlike most flavoprotein oxidases, AAO does not thermodynamically stabilize a flavin semiquinone radical and forms no sulphite adduct. AAO catalyses the

  8. A Convenient Synthesis of 2-Aryl-3-per(poly)fluoroacylindoles

    Institute of Scientific and Technical Information of China (English)

    LIU,Jin-Tao(刘金涛); L(U),He-Jun(吕贺军)

    2002-01-01

    2-Aryl-3-per(poly) fluoroacylindoles were synthesized in good yields by the 1,3-dipolar cycloddition reaction of C-aryi-Nphenylnitrones with fluorine-containing olefins and the subsequent rearrangement of the adducts. An ionic mechanism was proposed for the formtion of the titled compounds.

  9. An Efficient Synthesis of Cyclopeptides Bridged with Aliphafic-aryl Ether Bond

    Institute of Scientific and Technical Information of China (English)

    Zhe LIU; Gui Jei TIAN; De Xin WANG

    2005-01-01

    Based on the pseudo-dilution effect (PDE) on solid support, three cyclopeptides with an aliphatic-aryl ether bond as the bridge were synthesized via SN2 reaction between bromoacetylated at N-terminal and the phenol -OH group in C-terminal Tyr residue. All the products were obtained in good overall yields and characterized by related analytic data.

  10. A nordehydroabietyl amide-containing chiral diene for rhodium-catalysed asymmetric arylation to nitroolefins.

    Science.gov (United States)

    Li, Ruikun; Wen, Zhongqing; Wu, Na

    2016-11-29

    A highly enantioselective rhodium catalysed asymmetric arylation (RCAA) of nitroolefins with arylboronic acids is presented using a newly developed, C1-symmetric, non-covalent interacted, phellandrene derived, nordehydroabietyl amide-containing chiral diene under mild conditions. Stereoelectronic effects were studied, suggesting an activation of the bound substrate through the secondary amide as a hydrogen-bond donor.

  11. Brønsted acid-surfactant (BAS catalysed cyclotrimerization of aryl methyl ketone

    Directory of Open Access Journals (Sweden)

    Kiran Phatangare

    2012-07-01

    Full Text Available A brønsted acid-surfactant catalysed and simple, mild, metal catalyst free and chemo-selective method has been developed for synthesis of 1, 3, 5-triaryl benzenes from aryl methyl ketones. The advantages of this protocol subsume green and sustainable reaction medium, mild reaction conditions, easy product recovery and its good yields.

  12. An Efficient Solid-State Synthesis of N-Aryl-2-phenyldiazenecarboxamides

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new and efficient solid-state reaction using K3Fe(CN)6/KOH to oxidize diaryl semicarbazides for preparing azo compounds has been reported. Nine N-aryl-2-phenyl-diazenecarboxamides have been synthesized in excellent yields with simple instrument.

  13. Palladium-catalyzed Coupling between Aryl Halides and Trimethylsilylacetylene Assisted by Dimethylaminotrimethyltin

    Institute of Scientific and Technical Information of China (English)

    Cai Liangzhen; Yang Dujuan; Sun Zhonghua; Tao Xiaochun; Cai Lisheng; Pike Victor W

    2011-01-01

    Palladium-catalyzed coupling between aryl halides, especially less reactive ones or N-heteroaryls, and trimethylsilylacetylene in the presence of dimethylaminotrimethyltin generated the coupled products in high yields. The reaction does not need CuI and base as auxiliary agents.

  14. Trapping Reactive Intermediates by Mechanochemistry: Elusive Aryl N-Thiocarbamoylbenzotriazoles as Bench-Stable Reagents.

    Science.gov (United States)

    Štrukil, Vjekoslav; Gracin, Davor; Magdysyuk, Oxana V; Dinnebier, Robert E; Friščić, Tomislav

    2015-07-13

    Monitoring of mechanochemical thiocarbamoylation by in situ Raman spectroscopy revealed the formation of aryl N-thiocarbamoylbenzotriazoles, reactive intermediates deemed unisolable in solution. The first-time isolation and structural characterization of these elusive molecules demonstrates the ability of mechanochemistry to access otherwise unobtainable intermediates and offers a new range of masked isothiocyanate reagents.

  15. Direct synthesis of diaryl sulfides by copper-catalyzed coupling of aryl halides with aminothiourea

    Institute of Scientific and Technical Information of China (English)

    Xiang Mei Wu; Wei Ya Hu

    2012-01-01

    An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthesized in good to excellent yields up to 94% with the advantage of avoiding foul-smelling thiols.

  16. Suzuki-Miyaura cross-coupling of potassium dioxolanylethyltrifluoroborate and aryl/heteroaryl chlorides.

    Science.gov (United States)

    Fleury-Brégeot, Nicolas; Oehlrich, Daniel; Rombouts, Frederik; Molander, Gary A

    2013-04-01

    A robust and efficient protocol for the introduction of the dioxolanylethyl moiety onto various aryl and heteroaryl halides has been developed, providing cross-coupling yields up to 93%. Copper-catalyzed borylation of 2-(2-bromoethyl)-1,3-dioxolane with bis(pinacolato)diboron followed by treatment with potassium bifluoride provides the key organotrifluoroborate reagent.

  17. Palladium-catalyzed Substitution of Ketone or Aldehyde Bearing Aryl Triflates by Amines or Amides

    Institute of Scientific and Technical Information of China (English)

    TAO Xiaochun; DAI Chunya; CAO Xiongjie; CAI Lisheng; PIKE Victor W

    2009-01-01

    Various aryl triflates, bearing ketone or aldehyde groups, were evaluated for palladium-mediated introduction of an amino group at the triflate position in the presence of various phosphine ligands. BINAP was best for secondary amines, MOP-type ligand for primary or small secondary amines and Xantphos for primary or cyclic secondary amides. No ligand was found effective for acyclic secondary amides.

  18. Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, S.F.; Byrd, J.C.; Basbaum, C.; Kim, Y.S. (Veterans Administration Medical Center, San Francisco, CA (USA))

    1989-11-15

    Specific inhibitors of the glycosylation of O-glycosidically linked glycoproteins have not previously been described. When tested for their effects on mucin glycosylation in a mucin-producing colon cancer cell line, LS174T, benzyl-, phenyl-, and p-nitrophenyl-N-acetyl-alpha-galactosaminide inhibited the formation of fully glycosylated mucin in a dose-dependent manner. Free aryl-oligosaccharides were found in the medium of treated cells labeled with ({sup 3}H)glucosamine, ({sup 3}H)galactose, ({sup 3}H)fucose, ({sup 3}H)mannosamine, or phenyl-alpha-(6-{sup 3}H) N-acetylgalactosamine. UDP-Gal:GalNAc-beta 1,3-galactosyltransferase was inhibited by aryl-N-acetyl-alpha-galactosaminides but not by a number of other aryl-glycosides. Treatment with these inhibitors also causes reversible morphologic changes including formation of intercellular cysts. Aryl-N-acetyl-alpha-galactosaminides can be useful for the structural and functional studies of mucin macromolecules and other O-linked glycoproteins.

  19. Mild Pd-catalyzed aminocarbonylation of (hetero)aryl bromides with a palladacycle precatalyst.

    Science.gov (United States)

    Friis, Stig D; Skrydstrup, Troels; Buchwald, Stephen L

    2014-08-15

    A palladacyclic precatalyst is employed to cleanly generate a highly active XantPhos-ligated Pd-catalyst. Its use in low temperature aminocarbonylations of (hetero)aryl bromides provides access to a range of challenging products in good to excellent yields with low catalyst loading and only a slight excess of CO. Some products are unattainable by traditional carbonylative coupling.

  20. Rhodium-catalysed arylative annulation of 1,4-enynes with arylboronic acids.

    Science.gov (United States)

    Matsuda, Takanori; Watanuki, Shoichi

    2015-01-21

    The rhodium(I)-catalysed arylative annulation of 1,4-enynes with arylboronic acids was investigated. The reaction was found to proceed via an addition-1,4-rhodium migration-addition sequence, affording the corresponding 1,1-disubstituted 3-(arylmethylene)indanes.