Sample records for aryl hydrazide linkers

  1. The Use of Aryl Hydrazide Linkers for the Solid Phase Synthesis of Chemically Modified Peptides

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Y; Mitchell, A R; Camarero, J A


    Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.

  2. A Photolabile Linker for the Solid-Phase Synthesis of Peptide Hydrazides and Heterocycles

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Komnatnyy, Vitaly V.; Nielsen, Thomas Eiland


    A photolabile hydrazine linker for the solid-phase synthesis of peptide hydrazides and hydrazine-derived heterocycles is presented. The developed protocols enable the efficient synthesis of structurally diverse peptide hydrazides derived from the standard amino adds, including those with side-cha......-chain protected residues at the C-terminal of the resulting peptide hydrazide, and are useful for the synthesis of dihydropyrano[2,3-c]pyrazoles. The linker is compatible with most commonly used coupling reagents and protecting groups for solid-phase peptide synthesis....

  3. Synthesis and Antibacterial Activities of N-[(1-Aryl-3-phenyl-pyrazol-4-yl)methylene]-2-(halo-o-hydroxyphenyl)hydrazide Derivatives

    Institute of Scientific and Technical Information of China (English)

    LIU Ya; LU Bo-wei; LU Jun-rui; XIN Chun-wei; LI Jian-fa; MU Jiang-bei; BAO Xiu-rong


    A series of novel N-[(1-aryl-3-phenyl-pyrazol-4-yl)methylene]-2-(halo-o-hydroxyphenyl)hydrazide derivatives was synthesized and the antibacterial activity of each of them was evaluated.The supposed reaction mechanism of acquiring compounds 3a—3d is that catalytic activity is enhanced by the electron-donating groups of the first phenyl ring while decreased by electron-withdrawing groups of that ring.The result of preliminary bioassay shows that the lowest minimal inhibitory concentration(MIC) of the title compounds against Escherichia coli is 2 μg/mL.MIC values against Monilia albican and Staphlococcus aureus are as low as 4 μg/mL.They will be a series of potential antibacterial compounds against fungi and gram-negative bacteria.

  4. A Traceless Aryl-Triazene Linker for DNA-Directed Chemistry

    DEFF Research Database (Denmark)

    Hejesen, Christian; Pedersen, Lars Kolster; Gothelf, Kurt Vesterager


    DNA-directed synthesis of encoded combinatorial libraries of small organic compounds most often involves transfer of organic building blocks from one DNA strand to another. This requires cleavable linkers to enable cleavage of the link to the original DNA strand from which the building block...... is transferred. Relatively few cleavable linkers are available for DNA-directed synthesis and most often they leave an amino group at the organic molecule. Here we have extended the application of 10 aryltriazenes as traceless linkers for DNA-directed synthesis. After reaction of one building block...

  5. Synthesis, Spectral Characterization and Biocidal Studies of Copper(II Complexes of Chromen-2-one-3-carboxy Hydrazide and 2-(Chromen-3'-onyl-5-(aryl-1,3,4-oxadiazole Derivatives

    Directory of Open Access Journals (Sweden)

    Glory Mathew


    Full Text Available Copper(II complexes of chromen-2-one-3-carboxyhydrazide and 2-(chromen-3'-onyl-5-(aryl-1,3,4-oxadiazole derivatives have been synthesized. The structural features have been determined from their microanalytical, magnetic susceptibility, molar conductance, IR, UV Vis, 1H NMR and ESR spectral data. All the Cu(II complexes exhibit the composition Cu(Ln2X2; where L1= chromen-2-one-3-carboxy hydrazide, L2 = 2-(chromen-3'-onyl-5-(2ʺ-hydroxy phenyl-1,3,4-oxadiazole, L3 = 2-(chromen-3'-onyl-5-(4ʺ-nitrophenyl-1,3,4 -oxadiazole and L4 = 2-(chromen-3'-onyl-5-(4ʺ-chlorophenyl-1,3,4-oxadiazole; X = Cl-, Br-, NO3-, CH3COO-, ClO4- and CNS-. The N, O donor ligands act as a bidentate ligand in all the complexes. Distorted octahedral geometry for all the Cu(II complexes is proposed. Molecular modeling studies have been made for the rapid structure building, geometry optimization and molecular display. These complexes show the conductance values, supporting their non-electrolytic nature. The monomeric nature of the complexes was confirmed from their magnetic susceptibility values. These complexes have been screened for their antimicrobial activities against some bacterial species like S.aureus, E.coli, Pseudomonas aeruginosa and few fungal strains C.albicans and Cryptococcus neoformans.

  6. Synthesis and QSAR Study of (4-Oxo-3-aryl-3,4-dihydro-quinazolin-2-ylsulfanyl-propionic Acid arylidene/aryl-ethylidene-hydrazides via Microwave Assisted Solvent Free Reations

    Directory of Open Access Journals (Sweden)

    M. B. Deshmukh


    Full Text Available In the present work, s-alkylated derivatives of thio-quinazolinone were obtained using Methyl 2-chloro propionate via a solvent-free microwave-assisted method. The alkylated thio quinazolinones were further sequentially condensed with hydrazine hydrate and different aromatic aldehydes to get the hydrazides, which were studied for QSAR. The synthesized compounds were subjected to a prediction of biological activities. A software application (PASS was used for this purpose. . The relationship between structure and different biological activities was studied and the different derivatives were recommended for the screening of some specific activities like anti-tuberculosic, anti-mycobacterial & HDL cholesterol increasing activities.

  7. A Fmoc-compatible Method for the Solid-Phase Synthesis of Peptide C-Terminal (alpha)-Thioesters based on the Safety-Catch Hydrazine Linker

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A; Hackel, B J; de Yoreo, J J; Mitchell, A R


    C-terminal peptide thioesters are key intermediates for the synthesis/semisynthesis of proteins and for the production of cyclic peptides by native chemical ligation. They can be synthetically prepared by solid-phase peptide synthesis (SPPS) methods or biosynthetically by protein splicing techniques. Until recently, the chemical synthesis of C-terminal a-thioester peptides by SPPS was largely restricted to the Boc/Benzyl methodology because of the poor stability of the thioester bond to the basic conditions employed for the deprotection of the N{sup {alpha}}-Fmoc group. In the present work, we describe a new method for the SPPS of C-terminal thioesters by Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazide linker, which is totally stable to the Fmoc-SPPS conditions. Once the peptide synthesis has been completed, activation of the linker can be achieved by mild oxidation. This step transforms the hydrazide group into a highly reactive diazene intermediate which can react with different H-AA-SEt to yield the corresponding {alpha}-thioester peptide in good yields. This method has been successfully used for the generation of different thioester peptides, circular peptides and a fully functional SH3 protein domain.

  8. N-(3-Fluoro-4-(4-(2-methoxy or 2,3-dichlorophenyl) piperazine-1-yl)-butyl)-aryl carboxamides as Selective Dopamine D3 Receptor Ligands: Critical Role of the Carboxamide Linker for D3 Receptor Selectivity (United States)

    Banala, Ashwini K.; Levy, Benjamin A.; Khatri, Sameer S.; Furman, Cheryse A.; Roof, Rebecca A.; Mishra, Yogesh; Griffin, Suzy A.; Sibley, David R.; Luedtke, Robert R.; Newman, Amy Hauck


    N-(3-fluoro-4-(4-(2,3-dichloro- or 2-methoxyphenyl)piperazine-1-yl)-butyl)-aryl carboxamides were prepared and evaluated for binding and function at dopamine D3 (D3R) and D2 receptors (D2R). In this series, we discovered some of the most D3R selective compounds reported to date, (e.g. 8d and 8j >1000-fold D3R-selective over D2R.) In addition, chimeric receptor studies further identified the second extracellular (E2) loop as an important contributor to D3R binding selectivity. Further, compounds lacking the carbonyl group in the amide linker were synthesized and while these amine-linked analogues bound with similar affinities to the amides at D2R, this modification dramatically reduced binding affinities at D3R by >100-fold (e.g. D3RKi for 15b = 393 v. for 8j = 2.6 nM) resulting in compounds with significantly reduced D3R selectivity. This study supports a pivotal role for the D3R E2 loop and the carbonyl group in the 4-phenylpiperazine class of compounds and further reveals a point of separation between structure-activity relationships at D3R and D2R. PMID:21495689

  9. A new highly versatile handle for chemistry on a solid support: the pipecolic linker. (United States)

    Zajdel, Paweł; Nomezine, Gaël; Masurier, Nicolas; Amblard, Muriel; Pawłowski, Maciej; Martinez, Jean; Subra, Gilles


    The design, synthesis, and potential application of the pipecolic linker is presented. This new versatile handle can immobilize primary, secondary, and aromatic amines, as well as alcohols, phenols, and hydrazides, on a solid support. Compared with other linkers, the anchoring step is easy and efficient. The release of final products from the resin proceeds upon acidic treatment with high purities. The pipecolic linker offers the promise of being using in peptide chemistry to produce peptides modified at the N and C terminus, peptidomimetics, as well as small organic molecules.

  10. Preparation of Peptide p-Nitroanilides using an Aryl Hydrazine Solid Support

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y; Welsh, K; Mitchell, A R; Camarero, J A


    Peptide p-nitroanilides are useful compounds for studying protease activity, however the poor nucleophilicity of p-nitroaniline makes their preparation difficult. We describe a new efficient approach for the Fmoc-based synthesis of peptide p-nitroanilides using an aryl hydrazine resin. Mild oxidation of the peptide hydrazide resin yields a highly reactive acyl diazene, which efficiently reacts with weak nucleophiles. We have prepared several peptide p-nitroanilides, including substrates for the Lethal Factor protease from B. anthracis.

  11. Synthesis and antituberculosis activity of indole-pyridine derived hydrazides, hydrazide-hydrazones, and thiosemicarbazones. (United States)

    Velezheva, Valeriya; Brennan, Patrick; Ivanov, Pavel; Kornienko, Albert; Lyubimov, Sergey; Kazarian, Konstantin; Nikonenko, Boris; Majorov, Konstantin; Apt, Alexander


    We describe the design, synthesis, and in vitro antimycobacterial activity of a series of novel simple hybrid hydrazides and hydrazide-hydrazones combining indole and pyridine nuclei. The compounds are derivatives of 1-acetylindoxyl or substituted indole-3-carboxaldehydes tethered via a hydrazine group by simple C-N or double C=N bonds with 3- and 4-pyridines, 1-oxide 3- and 4-pyridine carbohydrazides. The most active of 15 compounds showed MICs values against an INH-sensitive strain of Mycobacterium tuberculosis H37Rv equal to that of INH (0.05-2 μg/mL). Five compounds demonstrated appreciable activity against the INH-resistant M. tuberculosis CN-40 clinical isolate (MICs: 2-5 μg/mL), providing justification for further in vivo studies.

  12. Current ADC Linker Chemistry. (United States)

    Jain, Nareshkumar; Smith, Sean W; Ghone, Sanjeevani; Tomczuk, Bruce


    The list of ADCs in the clinic continues to grow, bolstered by the success of first two marketed ADCs: ADCETRIS® and Kadcyla®. Currently, there are 40 ADCs in various phases of clinical development. However, only 34 of these have published their structures. Of the 34 disclosed structures, 24 of them use a linkage to the thiol of cysteines on the monoclonal antibody. The remaining 10 candidates utilize chemistry to surface lysines of the antibody. Due to the inherent heterogeneity of conjugation to the multiple lysines or cysteines found in mAbs, significant research efforts are now being directed toward the production of discrete, homogeneous ADC products, via site-specific conjugation. These site-specific conjugations may involve genetic engineering of the mAb to introduce discrete, available cysteines or non-natural amino acids with an orthogonally-reactive functional group handle such as an aldehyde, ketone, azido, or alkynyl tag. These site-specific approaches not only increase the homogeneity of ADCs but also enable novel bio-orthogonal chemistries that utilize reactive moieties other than thiol or amine. This broadens the diversity of linkers that can be utilized which will lead to better linker design in future generations of ADCs.

  13. Structure Activity Relationship of Brevenal Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Allan Goodman


    Full Text Available Brevenal is a ladder frame polyether produced by the dinoflagellate Karenia brevis. This organism is also responsible for the production of the neurotoxic compounds known as brevetoxins. Ingestion or inhalation of the brevetoxins leads to adverse effects such as gastrointestinal maladies and bronchoconstriction. Brevenal shows antagonistic behavior to the brevetoxins and shows beneficial attributes when administered alone. For example, in an asthmatic sheep model, brevenal has been shown to increase tracheal mucosal velocity, an attribute which has led to its development as a potential treatment for Cystic Fibrosis. The mechanism of action of brevenal is poorly understood and the exact binding site has not been elucidated. In an attempt to further understand the mechanism of action of brevenal and potentially develop a second generation drug candidate, a series of brevenal derivatives were prepared through modification of the aldehyde moiety. These derivatives include aliphatic, aromatic and heteroaromatic hydrazide derivatives. The brevenal derivatives were tested using in vitro synaptosome binding assays to determine the ability of the compounds to displace brevetoxin and brevenal from their native receptors. A sheep inhalation model was used to determine if instillation of the brevenal derivatives resulted in bronchoconstriction. Only small modifications were tolerated, with larger moieties leading to loss of affinity for the brevenal receptor and bronchoconstriction in the sheep model.

  14. Inactivation of myeloperoxidase by benzoic acid hydrazide. (United States)

    Huang, Jiansheng; Smith, Forrest; Panizzi, Jennifer R; Goodwin, Douglas C; Panizzi, Peter


    Myeloperoxidase (MPO) is expressed by myeloid cells for the purpose of catalyzing the formation of hypochlorous acid, from chloride ions and reaction with a hydrogen peroxide-charged heme covalently bound to the enzyme. Most peroxidase enzymes both plant and mammalian are inhibited by benzoic acid hydrazide (BAH)-containing compounds, but the mechanism underlying MPO inhibition by BAH compounds is largely unknown. Recently, we reported MPO inhibition by BAH and 4-(trifluoromethyl)-BAH was due to hydrolysis of the ester bond between MPO heavy chain glutamate 242 ((HC)Glu(242)) residue and the heme pyrrole A ring, freeing the heme linked light chain MPO subunit from the larger remaining heavy chain portion. Here we probed the structure and function relationship behind this ester bond cleavage using a panel of BAH analogs to gain insight into the constraints imposed by the MPO active site and channel leading to the buried protoporphyrin IX ring. In addition, we show evidence that destruction of the heme ring does not occur by tracking the heme prosthetic group and provide evidence that the mechanism of hydrolysis follows a potential attack of the (HC)Glu(242) carbonyl leading to a rearrangement causing the release of the vinyl-sulfonium linkage between (HC)Met(243) and the pyrrole A ring.

  15. Fusion Protein Linkers: Property, Design and Functionality


    Chen, Xiaoying; Zaro, Jennica; Shen, Wei-Chiang


    As an indispensable component of recombinant fusion proteins, linkers have shown increasing importance in the construction of stable, bioactive fusion proteins. This review covers the current knowledge of fusion protein linkers and summarizes examples for their design and application. The general properties of linkers derived from naturally-occurring multi-domain proteins can be considered as the foundation in linker design. Empirical linkers designed by researchers are generally classified i...

  16. Synthesis and Biological Activity of Novel Amino Acid-(N'-Benzoyl Hydrazide and Amino Acid-(N'-Nicotinoyl Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Sherine N. Khattab


    Full Text Available The coupling reaction of benzoic acid and nicotinic acid hydrazides with N- protected L-amino acids including valine, leucine, phenylalanine, glutamic acid and tyrosine is reported. The target compounds, N-Boc-amino acid-(N`-benzoyl- and N- Boc-amino acid-(N`-nicotinoyl hydrazides 5a-5e and 6a-6e were prepared in very high yields and purity using N-[(dimethylamino-1H-1,2,3-triazolo[4,5-b]pyridin-1-yl- methylene]-N-methyl-methanaminium hexafluorophosphate N-oxide (HATU as coupling reagent. The antimicrobial activity of the Cu and Cd complexes of the designed compounds was tested. The products were deprotected affording the corresponding amino acid-(N`-benzoyl hydrazide hydrochloride salts (7a-7e and amino acid-(N`- nicotinoyl hydrazide hydrochloride salts (8a-8e. These compounds and their Cu and Cd complexes were also tested for their antimicrobial activity. Several compounds showed comparable activity to that of ampicillin against S. aureus and E. coli.

  17. Bis-isatin hydrazones with novel linkers: Synthesis and biological evaluation as cytotoxic agents. (United States)

    Ibrahim, Hany S; Abou-Seri, Sahar M; Ismail, Nasser S M; Elaasser, Mahmoud M; Aly, Mohamed H; Abdel-Aziz, Hatem A


    Many bis-isatins and isatins with hydrazide extension were reported to have a potential anti-proliferative effects against different cancer cell lines and cancer targets. In this study, four series of bis-isatins with hydrazide linkers were synthesized. These compounds were investigated for their antitumor activity by assessing their cytotoxic potency against HepG2, MCF-7 and HCT-116 cancer cell lines. Compound 21c possessed significant cytotoxic activity against MCF-7 (IC50 = 1.84 μM) and HCT-116 (IC50 = 3.31 μM) that surpasses the activity of doxorubicin against both cell lines (MCF-7; IC50 = 2.57 μM and HCT-116; IC50 = 3.70 μM). Cell cycle analysis and annexin V-FITC staining of MCF-7 cells treated with 21c suggested that the cytotoxic effect of the compound could be attributed to its pro-apoptotic activity.

  18. Peripheral arylation of subporphyrazines. (United States)

    Higashino, Tomohiro; Rodríguez-Morgade, M Salomé; Osuka, Atsuhiro; Torres, Tomás


    Peripherally hexaarylated subporphyrazines (SubPzs) have been prepared through a Pd-catalyzed, CuTC-mediated coupling of a hexaethylsulfanylated subporphyrazine with arylboronic acids. The introduced aryl substituents strongly influence the electronic properties of the subporphyrazine through effective conjugative interaction. Aryl rings endowed with π-electron-donating groups at the para positions produce a remarkable perturbation of the electron density of the SubPz macrocycle. This is reflected through significant redshifts of the SubPz CT and Q-bands, together with increase of the molar absorptivity of the former, with respect to those exhibited by the hexaphenyl-SubPz 2 a. Moreover, the trend in the first SubPz reduction potentials correlates with the Hammett constants (σp ) corresponding to the para substituents of the aryl. The domed, extended SubPz π-system self-assembles in the solid state to form a dimeric capsule that houses a solvent molecule.

  19. Reaction parameters for the synthesis of N,N-dimethyl fatty hydrazides from oil. (United States)

    Ahmad, Norashikin; Azizul Hasan, Zafarizal Aldrin; Hassan, Hazimah Abu; Ahmad, Mansor; Zin Wan Yunus, Wan Md


    Hydrazide derivatives have been synthesized from methyl esters, hydrazones and vegetable oils. They are important due to their diverse applications in pharmaceutical products, detergents as well as in oil and gas industries. The chemical synthesis of fatty hydrazides is well-established; however, only a few publications described the synthesis of fatty hydrazide derivatives, particularly, when produced from refined, bleached and deodorized palm olein. Here, the synthesis and characterization of N,N-dimethyl fatty hydrazides are reported. The N,N-dimethyl fatty hydrazides was successfully synthesized from fatty hydrazides and dimethyl sulfate in the presence of potassium hydroxide with the molar ratio of 1:1:1, 6 hours reaction time and 80℃ reaction temperature in ethanol. The product yield and purity were 22% and 89%, respectively. The fatty hydrazides used were synthesized from refined, bleached and deodorized palm olein with hydrazine monohydrate at pH 12 by enzymatic route. Fourier transform infrared, gas chromatography and nuclear magnetic resonance (NMR) spectroscopy techniques were used to determine the chemical composition of N,N-dimethyl fatty hydrazides. Proton NMR confirmed the product obtained were N,N-dimethyl fatty hydrazides.

  20. Iodine-catalyzed thiolation of electron-rich aromatics using sulfonyl hydrazides as sulfenylation reagents. (United States)

    Zhao, Xia; Li, Tianjiao; Zhang, Lipeng; Lu, Kui


    Iodine-catalyzed thiolation of electron-rich aromatics, including substituted anisole, thioanisole, phenol, toluene, and naphthalene, using sulfonyl hydrazides as sulfenylation reagents was carried out. Sulfonothioates, the products of decomposition of sulfonyl hydrazides in the presence of iodine, are proposed as the major sulfenylation species in this transformation.

  1. Direct N9-arylation of purines with aryl halides

    DEFF Research Database (Denmark)

    Larsen, Anders Foller; Ulven, Trond


    An efficient method for N-arylation of purines is reported. The N-arylation is catalysed by Cu(i) and 4,7-bis(2-hydroxyethylamino)-1,10-phenanthroline (BHPhen) in aqueous DMF or ethanol. The reaction generally proceeds with high selectivity for the N(9)-position....

  2. TMSOTf-catalyzed intramolecular seleno-arylation of tethered alkenes: A novel method for the solid-phase synthesis of dihydrocoumarins and coumarins

    Institute of Scientific and Technical Information of China (English)

    E Tang; Wen Li; Zhang Yong Gao; Xi Gu


    TMSOTf-catalyzed intramolecular seleno-arylation of tethered alkenes was performed using polystyrene-supported succinimidyl seleaide as the selenium source.This catalytic process provides an efficient method for the regioselective synthesis of dihydrocoumarins possessing a seleno-functionality,followed by traceless cleavage of selenium linker to provide dihydrocoumarins and coumarins in good yields and purities.

  3. Synthesis and Herbicidal Activity of New Hydrazide and Hydrazonoyl Derivatives

    Directory of Open Access Journals (Sweden)

    František Šeršeň


    Full Text Available Three new hydrazide and five new hydrazonoyl derivatives were synthesized. The chemical structures of these compounds were confirmed by 1H-NMR, IR spectroscopy and elemental analysis. The prepared compounds were tested for their activity to inhibit photosynthetic electron transport in spinach chloroplasts and growth of the green algae Chlorella vulgaris. IC50 values of these compounds varied in wide range, from a strong to no inhibitory effect. EPR spectroscopy showed that the active compounds interfered with intermediates Z•/D•, which are localized on the donor side of photosystem II. Fluorescence spectroscopy suggested that the mechanism of inhibitory action of the prepared compounds possibly involves interactions with aromatic amino acids present in photosynthetic proteins.

  4. Physico-chemical studies of some aminobenzoic acid hydrazide complexes

    Directory of Open Access Journals (Sweden)



    Full Text Available The stability constants and related thermodynamic functions characterizing the formation of divalent Ni, Cu, Zn, Cd and Hg complexes with o- and p-aminobenzoic acid hydrazide were determined potentiometrically at different temperatures. The formations of the complexes are endothermic processes. The formed bonds are mainly electrostatic. Conductometric titration was carried out to determine the stoichiometry and stability of the formed complexes. The structures of complexes were characterized by their IR, 1H-NMR and 13C-NMR spectra, as well as X-ray diffractograms. The coordination process takes place through the carbonyl group and the terminal hydrazinic amino group. The thermal stability of the complexes was followed in the temperature range 20–600ºC.

  5. Hydroquinone–pyrrole dyads with varied linkers

    Directory of Open Access Journals (Sweden)

    Hao Huang


    Full Text Available A series of pyrroles functionalized in the 3-position with p-dimethoxybenzene via various linkers (CH2, CH2CH2, CH=CH, C≡C has been synthesized. Their electronic properties have been deduced from 1H NMR, 13C NMR, and UV–vis spectra to detect possible interactions between the two aromatic subunits. The extent of conjugation between the subunits is largely controlled by the nature of the linker, with the largest conjugation found with the trans-ethene linker and the weakest with the aliphatic linkers. DFT calculations revealed substantial changes in the HOMO–LUMO gap that correlated with the extent of conjugation found experimentally. The results of this work are expected to open up for use of the investigated compounds as components of redox-active materials in sustainable, organic electrical energy storage devices.

  6. Structure and Functions of Linker Histones. (United States)

    Lyubitelev, A V; Nikitin, D V; Shaytan, A K; Studitsky, V M; Kirpichnikov, M P


    Linker histones such as variants H1, H5, and other similar proteins play an important role in regulation of chromatin structure and dynamics. However, interactions of linker histones with DNA and proteins, as well as specific functions of their different variants, are poorly studied. This is because they acquire tertiary structure only when interacting with a nucleosome, and because of limitations of currently available methods. However, deeper investigation of linker histones and their interactions with other proteins will address a number of important questions - from structure of compacted chromatin to regulation of early embryogenesis. In this review, structures of histone H1 variants and its interaction with chromatin DNA are considered. A possible functional significance of different H1 variants, a role of these proteins in maintaining interphase chromatin structure, and interactions of linker histones with other cellular proteins are also discussed.

  7. General Reagent Free Route to pH Responsive Polyacryloyl Hydrazide Capped Metal Nanogels for Synergistic Anticancer Therapeutics. (United States)

    Ujjwal, Rewati Raman; Purohit, Mahaveer Prasad; Patnaik, Satyakam; Ojha, Umaprasana


    Herewith, we report a facile synthesis of pH responsive polyacryloyl hydrazide (PAH) capped silver (Ag) or gold (Au) nanogels for anticancer therapeutic applications. A cost-effective instant synthesis of PAH-Ag or PAH-Au nanoparticles (NPs) possessing controllable particle diameter and narrow size distribution was accomplished by adding AgNO3 or AuCl to the aqueous solution of PAH under ambient conditions without using any additional reagent. PAH possessing carbonyl hydrazide pendant functionality served as both reducing and capping agent to produce and stabilize the NPs. The stability analysis by UV-vis, dynamic light scattering, and transmission electron microscopy techniques suggested that these NPs may be stored in a refrigerator for at least up to 2 weeks with negligible change in conformation. The average hydrodynamic size of PAH-Ag NPs synthesized using 0.2 mmol/L AgNO3 changed from 122 to 226 nm on changing the pH of the medium from 5.4 to 7.4, which is a characteristic property of pH responsive nanogel. Camptothecin (CPT) with adequate loading efficiency (6.3%) was encapsulated in the PAH-Ag nanogels. Under pH 5.4 conditions, these nanogels released 78% of the originally loaded CPT over a period of 70 h. The antiproliferative potential of PAH-Ag-CPT nanogels (at [CPT]=0.6 μg/mL) against MCF-7 breast adeno-carcinoma cells were ∼350% higher compared to that of the free CPT as evidenced by high cellular internalization of these nanogels. Induction of apoptosis in MCF-7 breast adeno-carcinoma cells by PAH-Ag-CPT nanogels was evidenced by accumulation of late apoptotic cell population. Drug along with the PAH-Ag NPs were also encapsulated in a pH responsive hydrogel through in situ gelation at room temperature using acrylic acid as the cross-linker. The resulting hydrogel released quantitative amounts of both drug and PAH-Ag NPs over a period of 16 h. The simplicity of synthesis and ease of drug loading with efficient release render these NPs a viable

  8. Initial conformation of kinesin's neck linker

    CERN Document Server

    Geng, Yi-Zhao; Liu, Shu-Xia; Yan, Shiwei


    How ATP binding initiates the docking process of kinesin's neck linker is a key question in understanding kinesin mechanism. It is believed that the formation of an extra turn structure by the first three amino acids of neck linker (LYS325, THR326, ILE327 in 2KIN) is crucial for initiating the docking process. But the initial conformation of neck linker (specially the three amino acids of the extra turn) and the neck linker docking initiation mechanism remain unclear. By using molecular dynamics method, we investigate the initial conformation of kinesin's neck linker in the docking process. We find that, in the initial state of NL docking process, NL still has interactions with {\\beta}0 and forms a conformation similar to the "cover-neck bundle" structure proposed by Hwang et al. [Structure 2008, 16(1): 62-71]. From this initial structure, the docking of the "cover-neck bundle" structure can be achieved. The motor head provides a forward force on the initial cover-neck bundle structure through ATP-induced rot...

  9. Synthesis of Novel 3-Aryl Isoindolinone Derivatives

    Institute of Scientific and Technical Information of China (English)

    HU Chen-ming; ZHENG Lian-you; PEI Ya-zhong; BAI Xu


    A library of novel 3-aryl isoindolinone derivatives with aromatic amino acid derivative fragments was designed and synthesized.Two synthetic routes were employed to construct 3-aryl isoindolinone ring system for different amino acid derivatives.

  10. Improved hydrogen desorption from lithium hydrazide by alkali metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang, E-mail: [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Miyaoka, Hiroki [Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)


    Highlights: •LiH can dramatically improve the hydrogen desorption properties of LiNHNH{sub 2}. •KH doping had positive effect in promoting the hydrogen desorption properties of LiNHNH{sub 2}–LiH mixture. •The reaction mechanism between LiNHNH{sub 2} and LiH was studied and discussed. -- Abstract: Lithium hydrazide (LiNHNH{sub 2}), which is a white solid with 8.0 mass% of theoretical hydrogen content, was synthesized from a reaction between anhydrous hydrazine and n-butyllithium in diethyl ether. The thermodynamic properties of this compound and its detailed decomposition pathways had been investigated in our previous work. However, a number of undesired gaseous products such as hydrazine (N{sub 2}H{sub 4}) and ammonia (NH{sub 3}) were generated during the thermal decomposition of LiNHNH{sub 2}. In this work, alkali metal hydride was used to suppress the impurities in the desorbed hydrogen and improved the hydrogen desorption properties. The reaction mechanism between LiNHNH{sub 2} and LiH was also studied and discussed in this paper.

  11. Hydrazide functionalized core-shell magnetic nanocomposites for highly specific enrichment of N-glycopeptides. (United States)

    Liu, Liting; Yu, Meng; Zhang, Ying; Wang, Changchun; Lu, Haojie


    In view of the biological significance of glycosylation for human health, profiling of glycoproteome from complex biological samples is highly inclined toward the discovery of disease biomarkers and clinical diagnosis. Nevertheless, because of the existence of glycopeptides at relatively low abundances compared with nonglycosylated peptides and glycan microheterogeneity, glycopeptides need to be highly selectively enriched from complex biological samples for mass spectrometry analysis. Herein, a new type of hydrazide functionalized core-shell magnetic nanocomposite has been synthesized for highly specific enrichment of N-glycopeptides. The nanocomposites with both the magnetic core and the polymer shell hanging high density of hydrazide groups were prepared by first functionalization of the magnetic core with polymethacrylic acid by reflux precipitation polymerization to obtain the Fe3O4@poly(methacrylic acid) (Fe3O4@PMAA) and then modification of the surface of Fe3O4@PMAA with adipic acid dihydrazide (ADH) to obtain Fe3O4@poly(methacrylic hydrazide) (Fe3O4@PMAH). The abundant hydrazide groups toward highly specific enrichment of glycopeptides and the magnetic core make it suitable for large-scale, high-throughput, and automated sample processing. In addition, the hydrophilic polymer surface can provide low nonspecific adsorption of other peptides. Compared to commercially available hydrazide resin, Fe3O4@PMAH improved more than 5 times the signal-to-noise ratio of standard glycopeptides. Finally, this nanocomposite was applied in the profiling of N-glycoproteome from the colorectal cancer patient serum. In total, 175 unique glycopeptides and 181 glycosylation sites corresponding to 63 unique glycoproteins were identified in three repeated experiments, with the specificities of the enriched glycopeptides and corresponding glycoproteins of 69.6% and 80.9%, respectively. Because of all these attractive features, we believe that this novel hydrazide functionalized

  12. N-Aryl Arenedicarboximides as Tunable Panchromatic Dyes for Molecular Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhi Cao


    Full Text Available Three organic dyes designed as molecular dyads were prepared that feature a common naphthalimide acceptor and N-aryl donors. One of these incorporated an additional cyanoacrylic acid linker and conjugated thiophene bridge inserted between donor and acceptor groups. Electrochemical and photochemical characterizations have been carried out on nanocrystalline TiO2 dye-sensitized solar cells which were fabricated with these dyes as the sensitizing component. HOMO and LUMO energies were also calculated using TDDFT methods and validated by the cyclic voltammetry method. A key finding from this study indicates that computational methods can provide energy values in close agreement to experimental for the N-aryl-naphthalimide system. Relative to HOMO/LUMO energy levels of N719, the dyes based on naphthalimide chromophore are promising candidates for metal-free DSSCs.

  13. Selenium dioxide catalysed oxidation of acetic acid hydrazide by bromate in aqueous hydrochloric acid medium

    Indian Academy of Sciences (India)

    R S Yalgudre; G S Gokavi


    Selenium dioxide catalysed acetic acid hydrazide oxidation by bromate was studied in hydrochloric acid medium. The order in oxidant concentration, substrate and catalyst were found to be unity. Increasing hydrogen ion concentration increases the rate of the reaction due to protonation equilibria of the oxidant. The mechanism of the reaction involves prior complex formation between the catalyst and substrate, hydrazide, followed by its oxidation by diprotonated bromate in a slow step. Acetic acid was found to be the oxidation product. Other kinetic data like effect of solvent polarity and ionic strength on the reaction support the proposed mechanism.

  14. Octanoic Hydrazide-Linked Chitooligosaccharides-2,5-Anhydro-d-Mannofuranose

    Directory of Open Access Journals (Sweden)

    Amani Moussa


    Full Text Available Chitooligosaccharide with one 2,5-anhydro-d-mannofuranose unit at the reducing end (COSamf was prepared by nitrous acid depolymerization of chitosan. The reducing-end functionalization of COSamf by reductive amination with octanoic hydrazide in the presence of NaBH3CN was achieved in high yield. The chemical structure of the targeted octanoic hydrazide-linked COSamf was fully characterized by NMR spectroscopy and MALDI-TOF mass spectrometry. This synthesis opens the way to a new generation of COSamf derivatives with potential amphiphilic properties.

  15. Synthesis, Characterization and Thermal Analysis of New Cu(II) Complexes with Hydrazide Ligands


    Saber Rajaei; Shahriare Ghammamy; Kheyrollah Mehrani; Hajar Sahebalzamani


    A number of new complexes have been synthesized by reaction of novel ligands acetic acid(4-methyl-benzylidene)hydrazide (L1) and acetic acid(naphthalen-1-ylmethylene)hydrazide (L2) with copper(II) nitrate. These new compounds were characterized by elemental analysis, TG, DTA, IR spectroscopy, UV spectral techniques. The changes observed between the FT-IR and UV-Vis spectra of the ligands and of the complexes allowed us to establish the coordination mode of the metal in complexes. The results ...

  16. Synthesis and larvicidal and adult topical activity of some hydrazide-hydrazone derivatives against Aedes aegypti (United States)

    A series of novel hydrazide-hydrazone derivatives were synthesized and evaluated for their larvicidal and adult topical activity against Aedes aegypti. The proposed structures of all the synthesized compounds were confirmed using elemental analysis, UV, IR, 1H-NMR, 13C-NMR and mass spectroscopy. Com...

  17. Generation of N-Heterocycles via Tandem Reactions of N '-(2-Alkynylbenzylidene)hydrazides. (United States)

    Qiu, Guanyinsheng; Wu, Jie


    As a powerful synthon, N '-(2-alkynylbenzylidene)hydrazides have been utilized efficiently for the construction of N-heterocycles. Since N '-(2-alkynylbenzylidene)hydrazides can easily undergo intramolecular 6-endo cyclization promoted by silver triflate or electrophiles, the resulting isoquinolinium-2-yl amides can proceed through subsequent transformations including [3 + 2] cycloaddition, nucleophilic addition, and [3 + 3] cycloaddition. Several unexpected rearrangements via radical processes were observed in some cases, which afforded nitrogen-containing heterocycles with molecular complexity. Reactive partners including internal alkynes, arynes, ketenimines, ketenes, allenoates, and activated alkenes reacted through [3 + 2] cycloaddition and subsequent aromatization, leading to diverse H-pyrazolo[5,1-a]isoquinolines with high efficiency. Nucleophilic addition to the in situ generated isoquinolinium-2-yl amide followed by aromatization also produced H-pyrazolo[5,1-a]isoquinoline derivatives when terminal alkynes, carbonyls, enamines, and activated methylene compounds were used as nucleophiles. Isoquinoline derivatives were obtained when indoles or phosphites were employed as nucleophiles in the reactions of N '-(2-alkynylbenzylidene)hydrazides. A tandem 6-endo cyclization and [3 + 3] cycloaddition of cyclopropane-1,1-dicarboxylates with N '-(2-alkynylbenzylidene)hydrazides was observed as well. Small libraries of these compounds were constructed. Biological evaluation suggested that some compounds showed promising activities for inhibition of CDC25B, TC-PTP, HCT-116, and PTP1B.

  18. Optimization of reaction conditions for enzymatic synthesis of palm fatty hydrazides using response surface methodology. (United States)

    Tuan Noor Maznee, T I; Hazimah, A H; Wan Zin, W Y


    Optimization of the enzymatic synthesis of palm fatty hydrazide by the response surface methodology (RSM) was conducted using the Design-Expert 6 software. The palm fatty hydrazide was synthesized from refined, bleached and deodorized palm olein (RBDPOo) and neutralized hydrazine monohydrate in the presence of Rhizomucor miehei lipase, Lipozyme RMIM, an immobilized lipase in n-hexane. The reaction conditions such as the percentage of enzyme, reaction temperature, stirring speed and reaction time were selected as independent variables or studied factors, while the amount of crude palm fatty hydrazide obtained was selected as a dependent variable or response. The study was conducted using a central composite design (CCD) at five coded levels and the experimental data were analyzed using a quadratic model. The analysis of variance (ANOVA) indicates that the model was significant at 95% confidence level with Prob>F of 0.0033, where the regression coefficient value, R² was 0.8415 and lack-of-fit of 0.0984. A percentage of enzyme of 6%, a reaction temperature of 40°C, a stirring speed of 350 rpm and a reaction time of 18 h were found to be the optimum conditions for the conversion of RBDPOo into palm fatty hydrazide.

  19. Petasis Three-Component Coupling Reactions of Hydrazides for the Synthesis of Oxadiazolones and Oxazolidinones

    DEFF Research Database (Denmark)

    Le Quement, Sebastian Thordal; Flagstad, Thomas; Mikkelsen, Remi Jacob Thomsen;


    An application of readily available hydrazides in the Petasis 3-component coupling reaction is presented. An investigation of the substrate scope was performed to establish a general, synthetically useful protocol for the formation of hydrazido alcohols, which were selectively converted to oxazol...

  20. Determination of maleic hydrazide residues in garlic bulbs by HPLC. (United States)

    Mamani Moreno, Claudia; Stadler, Teodoro; da Silva, Antônio Alberto; Barbosa, Luiz C A; de Queiroz, Maria Eliana L R


    In recent years, the release of information about the preventative and curative properties of garlic on different diseases and their benefits to human health has led to an increase in the consumption of garlic. To meet the requirements of international markets and reach competitiveness and profitability, farmers seek to extend the offer period of fresh garlic by increasing post-harvest life. As a result, the use of maleic hydrazide (1,2-dihydropyridazine-3,6-dione) [MH], a plant growth regulator, has been widespread in various garlic growing regions of the world. The present work was undertaken to develop and validate a new analytical procedure based on MH extraction from garlic previously frozen by liquid nitrogen and submitted to low temperature clean-up. The applicability of the method by analysis of garlic samples from a commercial plantation was also demonstrated. The influence of certain factors on the performance of the analytical methodology were studied and optimized. The approach is an efficient extraction, clean-up and determination alternative for MH residue-quantification due to its specificity and sensitivity. The use of liquid nitrogen during the sample preparation prevents the degradation of the analyte due to oxidation reactions, a major limiting factor. Moreover, the method provides good linearity (r(2): 0.999), good intermediate precision (coefficient of variation (CV): 8.39%), and extracts were not affected by the matrix effect. Under optimized conditions, the limit of detection (LOD) (0.33 mg kg(-1)) was well below the maximum residue level (MRL) set internationally for garlic (15 mg kg(-1)), with excellent rates of recovery (over 95%), good repeatability and acceptable accuracy (CV averaged 5.74%), since garlic is a complex matrix. The analytical performance of the methodology presented was compared with other techniques already reported, with highly satisfactory results, lower LOD and higher recoveries rates. In addition, the extraction

  1. Room-Temperature Palladium-Catalyzed Direct 2-Arylation of Benzoxazoles with Aryl and Heteroaryl Bromides† (United States)

    Gao, Feng; Kim, Byeong-Seon; Walsh, Patrick J.


    An efficient room-temperature palladium-catalyzed direct 2-arylation of benzoxazoles with aryl bromides is presented. The Pd(OAc)2/NiXantphos-based catalyst enables the introduction of various aryl and heteroaryl groups, via a deprotonative cross-coupling process (DCCP) in good to excellent yields (75–99%). PMID:25078988

  2. Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution

    Directory of Open Access Journals (Sweden)

    Xiangyu Guan, Song Qin, Fangqing Zhao, Xiaowen Zhang, Xuexi Tang


    Full Text Available Cyanobacteria are the oldest life form making important contributions to global CO2 fixation on the Earth. Phycobilisomes (PBSs are the major light harvesting systems of most cyanobacteria species. Recent availability of the whole genome database of cyanobacteria provides us a global and further view on the complex structural PBSs. A PBSs linker family is crucial in structure and function of major light-harvesting PBSs complexes. Linker polypeptides are considered to have the same ancestor with other phycobiliproteins (PBPs, and might have been diverged and evolved under particularly selective forces together. In this paper, a total of 192 putative linkers including 167 putative PBSs-associated linker genes and 25 Ferredoxin-NADP oxidoreductase (FNR genes were detected through whole genome analysis of all 25 cyanobacterial genomes (20 finished and 5 in draft state. We compared the PBSs linker family of cyanobacteria in terms of gene structure, chromosome location, conservation domain, and polymorphic variants, and discussed the features and functions of the PBSs linker family. Most of PBSs-associated linkers in PBSs linker family are assembled into gene clusters with PBPs. A phylogenetic analysis based on protein data demonstrates a possibility of six classes of the linker family in cyanobacteria. Emergence, divergence, and disappearance of PBSs linkers among cyanobacterial species were due to speciation, gene duplication, gene transfer, or gene loss, and acclimation to various environmental selective pressures especially light.

  3. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels (United States)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike


    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  4. Detection of Protein Carbonyls by Means of Biotin Hydrazide-Streptavidin Affinity Methods. (United States)

    Hensley, Kenneth


    Oxidative posttranslational protein modifications occur as a normal process of cell biology and to a greater extent during pathogenic conditions. The detection and quantitation of protein oxidation has posed a continuing challenge to bioanalytical chemists because of the following reasons: The products of oxidative protein damage are chemically diverse; protein oxidation generally occurs at low background levels; and the complexity of biological samples introduces high background noise when standard techniques such as immunolabeling are applied to "dirty" tissue extracts containing endogenous immunoglobulins or small molecular weight, chemically reactive compounds has been developed which circumvents these difficulties by incorporating a biotin label at sites of protein carbonylation. Biotin hydrazide-labeled proteins are detectable using standard streptavidin-coupled detection techniques such as peroxidase-catalyzed chemiluminescence of immunoblots. Advantages of the biotin hydrazide-labeling technique are its sensitivity and its lack of reliance upon antibodies that inevitably suffer from nonspecific background noise and contaminating endogenous immunoglobulins.

  5. Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks. (United States)

    Kascholke, Christian; Loth, Tina; Kohn-Polster, Caroline; Möller, Stephanie; Bellstedt, Peter; Schulz-Siegmund, Michaela; Schnabelrauch, Matthias; Hacker, Michael C


    Biomimetic hydrogels are advanced biomaterials that have been developed following different synthetic routes. Covalent postfabrication functionalization is a promising strategy to achieve efficient matrix modification decoupled of general material properties. To this end, dual-functional macromers were synthesized by free radical polymerization of maleic anhydride with diacetone acrylamide (N-(1,1-dimethyl-3-oxobutyl)acrylamide) and pentaerythritol diacrylate monostearate. Amphiphilic oligomers (Mn 40%). Efficient hydrazide/hydrazine immobilization depending on solution pH, hydrogel ketone content as well as ligand concentration for bioconjugation was shown and reversibility of hydrazone formation was indicated by physiologically relevant hydrazide release over 7 days. Proof-of-concept experiments with hydrazido-functionalized hyaluronan demonstrated potential for covalent aECM immobilization. The presented dual-functional macromers have perspective as reactive hydrogel building blocks for various biomedical applications.


    Directory of Open Access Journals (Sweden)

    Anees Pangal


    Full Text Available A new series of Schiff’s bases, SB1, SB2 and SB3 were synthesized from 3-acetylcoumarin and different acid hydrazides. The 3-acetyl coumarin was synthesized starting from salicylaldehyde and ethylacetoacetate. The structures of the synthesized compounds have been established on the basis of physical and spectral data. They shows a prominent absorption of -(C=N- in FTIR. A survey of existing literature revealed that there are no reports describing the synthesis of such hydrazones.

  7. Targeting Antibodies to Carbon Nanotube Field Effect Transistors by Pyrene Hydrazide Modification of Heavy Chain Carbohydrates

    Directory of Open Access Journals (Sweden)

    Steingrimur Stefansson


    Full Text Available Many carbon nanotube field-effect transistor (CNT-FET studies have used immobilized antibodies as the ligand binding moiety. However, antibodies are not optimal for CNT-FET detection due to their large size and charge. Their size can prevent ligands from reaching within the Debye length of the CNTs and a layer of charged antibodies on the circuits can drown out any ligand signal. In an attempt to minimize the antibody footprint on CNT-FETs, we examined whether pyrene hydrazide modification of antibody carbohydrates could reduce the concentration required to functionalize CNT circuits. The carbohydrates are almost exclusively on the antibody Fc region and this site-specific modification could mediate uniform antibody orientation on the CNTs. We compared the hydrazide modification of anti-E. coli O157:H7 polyclonal antibodies to pyrenebutanoic acid succinimidyl ester-coated CNTs and carbodiimide-mediated antibody CNT attachment. Our results show that the pyrene hydrazide modification was superior to those methods with respect to bacteria detection and less than 1 nM labeled antibody was required to functionalize the circuits.

  8. Ordered cleavage of myeloperoxidase ester bonds releases active site heme leading to inactivation of myeloperoxidase by benzoic acid hydrazide analogs. (United States)

    Huang, Jiansheng; Smith, Forrest; Panizzi, Peter


    Myeloperoxidase (MPO) catalyzes the breakdown of hydrogen peroxide and the formation of the potent oxidant hypochlorous acid. We present the application of the fluorogenic peroxidase substrate 10-acetyl-3,7-dihydroxyphenoxazine (ADHP) in steady-state and transient kinetic studies of MPO function. Using initial kinetic parameters for the MPO system, we characterized under the same conditions a number of gold standards for MPO inhibition, namely 4-amino benzoic acid hydrazide (4-ABAH), isoniazid and NaN3 before expanding our focus to isomers of 4-ABAH and benzoic acid hydrazide analogs. We determined that in the presence of hydrogen peroxide that 4-ABAH and its isomer 2-ABAH are both slow-tight binding inhibitors of MPO requiring at least two steps, whereas NaN3 and isoniazid-based inhibition has a single observable step. We also determined that MPO inhibition by benzoic acid hydrazide and 4-(trifluoromethyl) benzoic acid hydrazide was due to hydrolysis of the ester bond between MPO heavy chain Glu 242 residue and the heme pyrrole A ring, freeing the light chain and heme b fragment from the larger remaining MPO heavy chain. This new mechanism would essentially indicate that the benzoic acid hydrazide analogs impart inhibition through initial ejection of the heme catalytic moiety without prior loss of the active site iron.

  9. Palladium-catalysed ortho arylation of acetanilides

    Indian Academy of Sciences (India)

    Guo-zhen zhang; Cheng-Qun Chen; Xin-Hua Feng; Guo-Sheng Huang


    The palladium-catalysed direct arylation of acetanilides by using C-H activation methodology has been demonstrated. Several acetanilides were coupled with aryl iodides in the presence of 10 mol% of Pd(OAc)2, 1.0 equiv of Cu(OTf)2, and 0.6 equiv of Ag2O to afford the corresponding products in moderate to excellent yields. The results showed that the amount of Ag2O was important for this protocol.

  10. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities (United States)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat


    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  11. CuI-catalyzed Synthesis of Aryl Thiocyanates from Aryl Iodides

    Institute of Scientific and Technical Information of China (English)

    Ye Feng WANG; Yuan ZHOU; Jia Rui WANG; Lei LIU; Qing Xiang GUO


    An operationally simple and inexpensive catalyst system was developed for the cross coupling of potassium thiocyanate with aryl iodides by using CuI as catalyst, 1, 10-phenanthroline as ligand, and tetraethylammonium iodide as activator. The procedure is applicable for the synthesis of diverse aryl thiocyanates without any exotic, poisonous reagents.

  12. Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker

    Directory of Open Access Journals (Sweden)

    Yunlong Si


    Full Text Available Galectin-8 (Gal-8 plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay.

  13. Transition Metal Complexes of 5-bromo Salicylaldehyde-2-furoic acid hydrazide; Synthesis and Characterisation

    Directory of Open Access Journals (Sweden)



    Full Text Available A series of transition metal complexes of the ligand 5-bromo salicylaldehyde-2-furoic acid hydrazide have been prepared using Ti(III, Mn(III, V(III, Co(III, Fe(III, Ru(III and Rh(III. The complexes have been characterized by elemental analyses, melting points, molar conductance, magnetic susceptibility measurement, electronic and infra red spectral studies. Based on these studies octahedral structures have been proposed for these complexes. The ligand has behaved in dibasic tridentate manner. The I.R. spectra of the complexes revealed non-participation of furan ring oxygen in coordination with the metal ions.

  14. Two-dimensional gel electrophoretic detection of protein carbonyls derivatized with biotin-hydrazide. (United States)

    Wu, Jinzi; Luo, Xiaoting; Jing, Siqun; Yan, Liang-Jun


    Protein carbonyls are protein oxidation products that are often used to measure the magnitude of protein oxidative damage induced by reactive oxygen or reactive nitrogen species. Protein carbonyls have been found to be elevated during aging and in age-related diseases such as stroke, diabetes, and neurodegenerative diseases. In the present article, we provide detailed protocols for detection of mitochondrial protein carbonyls labeled with biotin-hydrazide followed by 2-dimensional isoelectric focusing (IEF)/SDS-PAGE and Western blotting probed with horse-radish peroxidase-conjugated streptavidin. The presented procedures can also be modified for detection of carbonylation of non-mitochondrial proteins.

  15. Oligonuclear gallium nitrogen cage compounds: molecular intermediates on the way from gallium hydrazides to gallium nitride. (United States)

    Uhl, Werner; Abel, Thomas; Hagemeier, Elke; Hepp, Alexander; Layh, Marcus; Rezaeirad, Babak; Luftmann, Heinrich


    Gallium hydrazides are potentially applicable as facile starting compounds for the generation of GaN by thermolysis. The decomposition pathways are, however, complicated and depend strongly on the substituents attached to the gallium atoms and the hydrazido groups. This paper describes some systematic investigations into the thermolysis of the gallium hydrazine adduct Bu(t)(3)Ga←NH(2)-NHMe (1a) and the dimeric gallium hydrazides [R(2)Ga(N(2)H(2)R')](2) (2b, R = Bu(t), R' = Bu(t); 2c, R = Pr(i), R' = Ph; 2d, R = Me, R' = Bu(t)) which have four- or five-membered heterocycles in their molecular cores. Heating of the adduct 1a to 170 °C gave the heterocyclic compound Bu(t)(2)Ga(μ-NH(2))[μ-N(Me)-N(=CH(2))]GaBu(t)(2) (3) by cleavage of N-N bonds and rearrangement. 3 was further converted at 400 °C into the tetrameric gallium cyanide (Bu(t)(2)GaCN)(4) (4). The thermolysis of the hydrazide (Bu(t)(2)Ga)(2)(NH-NHBu(t))(2) (2b) at temperatures between 270 and 420 °C resulted in cleavage of all N-N bonds and the formation of an octanuclear gallium imide, (Bu(t)GaNH)(8) (6). The trimeric dialkylgallium amide (Bu(t)(2)GaNH(2))(3) (5) was isolated as an intermediate. Thermolysis of the hydrazides (Pr(i)(2)Ga)(2)(NH-NHPh)(NH(2)-NPh) (2c) and (Me(2)Ga)(2)(NH-NHBu(t))(2) (2d) proceeded in contrast with retention of the N-N bonds and afforded a variety of novel gallium hydrazido cage compounds with four gallium atoms and up to four hydrazido groups in a single molecule: (Pr(i)Ga)(4)(NH-NPh)(3)NH (7), (MeGa)(4)(NH-NBu(t))(4) (8), (MeGa)(4)(NH-NBu(t))(3)NBu(t) (9), and (MeGa)(4)(NHNBu(t))(3)NH (10). Partial hydrolysis gave reproducibly the unique octanuclear mixed hydrazido oxo compound (MeGa)(8)(NHNBu(t))(4)O(4) (11).

  16. Synthesis and characterization of copper complexes of Schiff base derived from isatin and salicylic hydrazide

    Energy Technology Data Exchange (ETDEWEB)

    Lekshmy, R. K., E-mail:, E-mail:; Thara, G. S., E-mail:, E-mail: [Department of Chemistry, University College, Thiruvananthapuram- 695 034, Kerala (India)


    A series of novel metal complexes of Schiff base have been prepared by the interaction of Cu(II) with isatin salicylic hydrazide. All the new compounds were characterized by elemental analysis, conductance measurement, magnetic moment determination, IR, UV, NMR, Mass and EPR spectral studies, thermal studies and microbial activities. The results indicate that the ligand acts as a tridentate chelating ligand coordinating through nitrogen and oxygen atoms. The ligand and complexes show inactive against Escherichia coli and active against Staphylococcus aureus and B.substilis. By analyzing the results of spectral, thermal and elemental analysis square planar geometry is proposed for all the complexes.

  17. Microwave accelerated synthesis of isoxazole hydrazide inhibitors of the system xc- transporter: Initial homology model. (United States)

    Matti, Afnan A; Mirzaei, Joseph; Rudolph, John; Smith, Stephen A; Newell, Jayme L; Patel, Sarjubhai A; Braden, Michael R; Bridges, Richard J; Natale, Nicholas R


    Microwave accelerated reaction system (MARS) technology provided a good method to obtain selective and open isoxazole ligands that bind to and inhibit the Sxc- antiporter. The MARS provided numerous advantages, including: shorter time, better yield and higher purity of the product. Of the newly synthesized series of isoxazoles the salicyl hydrazide 6 exhibited the highest level of inhibitory activity in the transport assay. A homology model has been developed to summarize the SAR results to date, and provide a working hypothesis for future studies.

  18. A Facile and Efficient Synthesis of Arylsulfonates and Arylsulfonyl Hydrazides under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    ZHAO,Na; WANG,Yu-Lu; WANG,Jin-Ye


    @@ Organosulfur compounds are useful materials and most of them have pharmacological properties. The sulfonic esters are important intermediates in organic synthesis and used as acaricides and thermal recording materials. The sulfonyl hydrazides are valuable as inhibitors, agrochemical fungicides, insecticides and photographic images. Some methods have been reported for preparing these compounds to date. Usually, these reactions were carried out in organic solvent[1,2]such as pyridine and DMF. Even up-to date solid-phase synthesis requires solvent. What's more, they have other drawbacks including long reaction time, producing much wastes and by-products, tedious experimental procedure.

  19. Teratologic assessment of maleic hydrazide and daminozide, and formulations of ethoxyquin, thiabendazole and naled in rats. (United States)

    Khera, K S; Whalen, C; Trivett, G; Angers, G


    Teratogenicity studies were conducted in rats treated orally from days 6-15 of gestation with single daily doses of 400-1600 mg/kg of maleic hydrazide, 300-1000 mg/kg daminozide, 125-500 mg/kg ethoxyquin or thiabendazole, or 25-100 mg/kg naled. Dams were killed on the 22nd day of gestation, and fetuses were evaluated by routine teratologic methods. No adverse effect was related to any treatment other than an increased incidence of anomalous fetuses at the highest dose (500 mg/kg) of thiabendazole.

  20. One-pot, two-step, microwave-assisted palladium-catalyzed conversion of aryl alcohols to aryl fluorides via aryl nonaflates. (United States)

    Wannberg, Johan; Wallinder, Charlotta; Ünlüsoy, Meltem; Sköld, Christian; Larhed, Mats


    A convenient procedure for converting aryl alcohols to aryl fluorides via aryl nonafluorobutylsulfonates (ArONf) is presented. Moderate to good one-pot, two-step yields were achieved by this nonaflation and microwave-assisted, palladium-catalyzed fluorination sequence. The reductive elimination step was investigated by DFT calculations to compare fluorination with chlorination, proving a larger thermodynamic driving force for the aryl fluoride product. Finally, a key aryl fluoride intermediate for the synthesis of a potent HCV NS3 protease inhibitor was smoothly prepared with the novel protocol.

  1. Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae. (United States)

    Wang, Ji-Ping; Fondufe-Mittendorf, Yvonne; Xi, Liqun; Tsai, Guei-Feng; Segal, Eran; Widom, Jonathan


    The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, approximately 10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat ( approximately 10 bp), obeying the forms 10n+5 bp (integer n). This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast.

  2. Preferentially quantized linker DNA lengths in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Ji-Ping Wang

    Full Text Available The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, approximately 10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat ( approximately 10 bp, obeying the forms 10n+5 bp (integer n. This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast.

  3. Photocleavable linker for the patterning of bioactive molecules (United States)

    Wegner, Seraphine V.; Sentürk, Oya I.; Spatz, Joachim P.


    Herein, we report the use of a versatile photocleavable nitrobenzyl linker to micropattern a wide variety of bioactive molecules and photorelease them on demand. On one end, the linker has an NHS group that can be coupled with any amine, such as peptides, proteins or amine-linkers, and on the other end an alkyne for convenient attachment to materials with an azide functional group. This linker was conjugated with NTA-amine or the cell adhesion peptide cRGD to enable straightforward patterning of His6-tagged proteins or cells, respectively, on PEGylated glass surfaces. This approach provides a practical way to control the presentation of a wide variety of bioactive molecules with high spatial and temporal resolution. The extent of photocleavage can also be controlled to tune the biomolecule density and degree of cell attachment to the surface.

  4. Linker histones in hormonal gene regulation. (United States)

    Vicent, G P; Wright, R H G; Beato, M


    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  5. Linkers Having a Crucial Role in Antibody–Drug Conjugates


    Jun Lu; Feng Jiang; Aiping Lu; Ge Zhang


    Antibody–drug conjugates (ADCs) comprised of a desirable monoclonal antibody, an active cytotoxic drug and an appropriate linker are considered to be an innovative therapeutic approach for targeted treatment of various types of tumors and cancers, enhancing the therapeutic parameter of the cytotoxic drug and reducing the possibility of systemic cytotoxicity. An appropriate linker between the antibody and the cytotoxic drug provides a specific bridge, and thus helps the antibody to selectively...

  6. Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based Schiff bases. (United States)

    Rahim, Fazal; Ullah, Hayat; Taha, Muhammad; Wadood, Abdul; Javed, Muhammad Tariq; Rehman, Wajid; Nawaz, Mohsan; Ashraf, Muhammad; Ali, Muhammad; Sajid, Muhammad; Ali, Farman; Khan, Muhammad Naseem; Khan, Khalid Mohammed


    To discover multifunctional agents for the treatment of Alzheimer's disease, a series of hydrazide based Schiff bases were designed and synthesized based on multitarget-directed strategy. We have synthesized twenty-eight analogs of hydrazide based Schiff bases, characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase and butyrylcholinesterase inhibition. All compounds showed varied degree of acetylcholinesterase and butyrylcholinesterase inhibition when compared with standard Eserine. Among the series, compounds 10, 3 and 24 having IC50 values 4.12±0.01, 8.12±0.01 and 8.41±0.06μM respectively showed potent acetylcholinesterase inhibition when compared with Eserine (IC50=0.85±0.0001μM). Three compounds 13, 24 and 3 having IC50 values 6.51±0.01, 9.22±0.07 and 37.82±0.14μM respectively showed potent butyrylcholinesterase inhibition by comparing with eserine (IC50=0.04±0.0001μM). The remaining compounds also exhibited moderate to weak inhibitory potential. Structure activity relationship has been established. Through molecular docking studies the binding interaction was confirmed.

  7. Biological effect of maleic acid hydrazide on Yellow Nutsedge (Cyperus esculentus L.

    Directory of Open Access Journals (Sweden)

    Bohren, Christian


    Full Text Available Yellow Nutsedge (Cyperus esculentus L. belongs to the family of Cyperaceae. It propagates exclusively with tubers in the ground. Its abundance has strongly increased in Switzerland in the last two decades. Main reasons for this increase are changing land use and production systems, a difficult herbicide control and a low awareness level among the farmers. The actual invasion is enhanced by unintended dislocation of tubers by machines or crops/crop waste, lack of knowledge of infested fields and missing supporting measures. An obligation to announce infested fields and to control Yellow Nutsedge is currently discussed in Switzerland. Such an obligation would help contractors and buyers of crops to reduce unintended dislocation of tubers. Cleaning up infested plots is quickly expensive and complex. Maleic acid hydrazide is actually used for preventing potato tubers to germinate in stock. We tested Fazor (maleic acid hydrazide and Asulox (asulam for its efficacy on preventing germination of Yellow Nutsedge tubers. The results of our pot trial in the greenhouse are clear. The expected efficiency was not observed. Furthermore the complexity of problems with this species in agriculture is discussed and some ideas for a control strategy are given in this paper.

  8. Meiotic changes in Vicia faba L. subsequent to treatments of hydrazine hydrate and maleic hydrazide

    Directory of Open Access Journals (Sweden)

    Shaheen Husain


    Full Text Available Assessing the impact of mutagens for creating variations in crops like faba bean (Vicia faba L. is an important criterion in the contemporary world where food insecurity and malnutrition is alarming at the doors of various nations. Impact of two chemical mutagens viz. hydrazine hydrate (HZ and maleic hydrazide (MH on the two varieties (NDF-1 and HB-405 of Vicia faba were analysed in terms of meiotic behavior and pollen sterility. Since there are not enough data about the effect of these mutagens on the chromosomal behaviors of Vicia faba, this study presents the role of hydrazine hydrate and maleic hydrazide as well as various types of chromosomal aberrations in crop improvement. The lower concentration of mutagens showed less pollen sterility compared to the higher concentrations. Manipulation of plant structural component to induce desirable alternations provides valuable material for the breeders and could be used favorably for increasing mutation rate and obtaining a desirable spectrum of mutation in faba beans based on preliminary studies of cell division.

  9. Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety

    Directory of Open Access Journals (Sweden)

    Murat Bingul


    Full Text Available Identification of the novel (E-N′-((2-chloro-7-methoxyquinolin-3-ylmethylene-3-(phenylthiopropanehydrazide scaffold 18 has led to the development of a new series of biologically active hydrazide compounds. The parent compound 18 and new quinoline derivatives 19–26 were prepared from the corresponding quinoline hydrazones and substituted carboxylic acids using EDC-mediated peptide coupling reactions. Further modification of the parent compound 18 was achieved by replacement of the quinoline moiety with other aromatic systems. All the newly synthesized compounds were evaluated for their anti-cancer activity against the SH-SY5Y and Kelly neuroblastoma cell lines, as well as the MDA-MB-231 and MCF-7 breast adenocarcinoma cell lines. Analogues 19 and 22 significantly reduced the cell viability of neuroblastoma cancer cells with micromolar potency and significant selectivity over normal cells. The quinoline hydrazide 22 also induced G1 cell cycle arrest, as well as upregulation of the p27kip1 cell cycle regulating protein.

  10. Biological processes for the production of aryl sulfates

    DEFF Research Database (Denmark)


    The present invention generally relates to the field of biotechnology as it applies to the production of aryl sulfates using polypeptides or recombinant cells comprising said polypeptides. More particularly, the present invention pertains to polypeptides having aryl sulfotransferase activity......, recombinant host cells expressing same and processes for the production of aryl sulfates employing these polypeptides or recombinant host cells....

  11. Palladium catalyzed C3-arylation of 4-hydroxy-2-pyridones. (United States)

    Anagnostaki, Elissavet E; Fotiadou, Anna D; Demertzidou, Vera; Zografos, Alexandros L


    The direct arylation of N-substituted-4-hydroxy-2-pyridones with aryl boronic acids has been achieved under palladium catalysis. The mild reaction conditions applied in this method and the use of a conventional catalytic system offer an attractive protocol for the efficient synthesis of a variety of 3-arylated products.

  12. Aryl Radical Geometry Determines Nanographene Formation on Au(111)

    NARCIS (Netherlands)

    Jacobse, Peter H.; van den Hoogenband, Adrianus; Moret, Marc Etienne; Klein Gebbink, Robertus J M; Swart, Ingmar


    The Ullmann coupling has been used extensively as a synthetic tool for the formation of C−C bonds on surfaces. Thus far, most syntheses made use of aryl bromides or aryl iodides. We investigated the applicability of an aryl chloride in the bottom-up assembly of graphene nanoribbons. Specifically, th

  13. The Rearrangement of 2-Benzothiazolylthioacetyl Hydrazide in Synthesis of s-Triazolo[3,4-b]benzothiazole-3-thiol

    Institute of Scientific and Technical Information of China (English)


    The rearrangement reaction of 2-benzothiazolylthioacetyl hydrazide 1 with potassium hydroxide and carbon disulfide in ethanol to produce s-triazolo[3,4-b]benzothiazole-3-thiol 3 was described.3 also can be obtained from 2-benzothiazolylhydazine 2 and the two methods for getting 3 were compared.Mannich reaction of compounds 3 was reported too.

  14. Microwave assisted synthesis of some novel Flurbiprofen hydrazide- hydrazones as anti-HCV NS5B and anticancer agents

    Directory of Open Access Journals (Sweden)

    Sevil Aydın


    Full Text Available The synthesis of a new series of flurbiprofen hydrazide-hydrazones using microwave assisted reactions is described. Substituted aldehydes were condensed with flurbiprofen hydrazide by microwave irradiation to corresponding hydrazones. Synthesis of N’-[(4-bromothiophen-2-ylmethylidene]-2-(2-fluorobiphenyl-4-yl propanehydrazide (3o employing microwave assisted process resulted in higher yields, in faster time and with less chemical waste compared to traditional techniques. (2-fluorobiphenyl-4-yl-N’-(phenylmethylidenepropanehydrazide (3p andN’-[(2-chloro-6-fluorophenyl methylidene]-2-(2-fluorobiphenyl-4-ylpropanehydrazide (3s inhibited the growth of a leukemia cancercell line HL-60 (TB by 66.37% and an ovarian cancer cell line OVCAR-4 by 77.34% (singledose, 10μM, respectively at the National Cancer Institute (NCI, but had no significant ef-fect on a panel of sixty human tumor cell lines. Flurbiprofen hydrazide-hydrazones were weak inhibitors of hepatitis C virus NS5B polymerase activity with N’-[(5-ethylfuran-2-ylmethylidene]-2-(2-fluorobiphenyl-4-ylpropanehydrazide (3m being the most active of this series. Binding mode investigations of compound 3m suggested that allosteric pocket (AP-B may be the potential binding site for flurbiprofen hydrazones and these results will alsoassist in further derivatization of 3m using the green chemistry approach and improve the potency of S-flurbiprofen hydrazide hydrazones

  15. Oriented antibody immobilization to polystyrene macrocarriers for immunoassay modified with hydrazide derivatives of poly(methacrylic acid

    Directory of Open Access Journals (Sweden)

    Vinokurova Ludmila G


    Full Text Available Abstract Background Hydrophobic polystyrene is the most common material for solid phase immunoassay. Proteins are immobilized on polystyrene by passive adsorption, which often causes considerable denaturation. Biological macromolecules were found to better retain their functional activity when immobilized on hydrophilic materials. Polyacrylamide is a common material for solid-phase carriers of biological macromolecules, including immunoreagents used in affinity chromatography. New macroformats for immunoassay modified with activated polyacrylamide derivatives seem to be promising. Results New polymeric matrices for immunoassay in the form of 0.63-cm balls which contain hydrazide functional groups on hydrophilic polymer spacer arms at their surface shell are synthesized by modification of aldehyde-containing polystyrene balls with hydrazide derivatives of poly(methacrylic acid. The beads contain up to 0.31 μmol/cm2 active hydrazide groups accessible for covalent reaction with periodate-oxidized antibodies. The matrices obtained allow carrying out the oriented antibody immobilization, which increases the functional activity of immunosorbents. Conclusions An efficient site-directed antibody immobilization on a macrosupport is realized. The polymer hydrophilic spacer arms are the most convenient and effective tools for oriented antibody coupling with molded materials. The suggested scheme can be used for the modification of any other solid supports containing electrophilic groups reacting with hydrazides.

  16. Inhibition of HBV targeted ribonuclease enhanced by introduction of linker

    Institute of Scientific and Technical Information of China (English)

    Wei-Dong Gong; Jun Liu; Jin Ding; Ya Zhao; Ying-Hui Li; Cai-Fang Xue


    AIM: To construct human eosinophil-derived neurotoxin (hEDN) and HBV core protein (HBVc) eukaryotic fusion expression vector with a linker (Gly4 Ser)3 between them to optimize the molecule folding, which will be used to inhibit HBV replication in vitro.METHODS: Previously constructed pcDNA3. 1(-)/TR was used as a template. Linker sequence was synthesized and annealed to form dslinker, and cloned into pcDNA3.1(-)/TR to produce plasmid pcDNA3.1(-)/HBc-linker. Then the hEDN fragment was PCR amplified and inserted into pcDNA3.1(-)/HBc-linker to form pcDNA3.1(-)/TNL in which the effector molecule and the target molecule were separated by a linker sequence. pcDNA3.1(-)/TNL expression was identified by indirect immunofluorescence staining. Radioimmunoassay was used to analyse anti-HBV activity of pcDNA3.1(-)/TNL.Meanwhile, metabolism of cells was evaluated by NTT colorimetry.RESULTS: hEDN and HBVc eukaryotic fusion expression vector with a linker (Gly4Ser)3 between them was successfully constructed. pcDNA3.1(-)/TNL was expressed in HepG2.2.15 cells efficiently. A significant decrease of HBsAg concentration from pcDNA3.1(-)/TNL transfectant was observed compared to pcDNA3. 1(-)/TR (P=0.036, P<0.05).MTT assay suggested that there were no significant differences between groups (P=0.08, P>0.05).CONCLUSION: Linker introduction enhances the inhibitory effect of HBV targeted ribonuclease significantly.

  17. Cartilage and bone malformations in the head of zebrafish (Danio rerio) embryos following exposure to disulfiram and acetic acid hydrazide

    Energy Technology Data Exchange (ETDEWEB)

    Strecker, Ruben, E-mail: [Aquatic Ecology and Toxicology Section, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Weigt, Stefan, E-mail: [Institute of Toxicology, Merck KGaA, 64293 Darmstadt (Germany); Braunbeck, Thomas, E-mail: [Aquatic Ecology and Toxicology Section, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany)


    In order to investigate teratogenic effects, especially on cartilage and bone formation, zebrafish embryos were exposed for 144 h to the dithiocarbamate pesticide disulfiram (20–320 μg/L) and acetic acid hydrazide (0.375–12 g/L), a degradation product of isoniazid. After fixation and full-mount staining, disulfiram could be shown to induce strong cartilage malformations after exposure to ≥ 80 μg/L, whereas acetic acid hydrazide caused cartilage alterations only from 1.5 g/L. Undulating notochords occurred after exposure to disulfiram even at the lowest test concentration of 20 μg/L, whereas at the two lowest concentrations of acetic acid hydrazide (0.375 and 0.75 g/L) mainly fractures of the notochord were observed. Concentrations of acetic acid hydrazide ≥ 1.5 g/L resulted in undulated notochords similar to disulfiram. Cartilages and ossifications of the cranium, including the cleithrum, were individually analyzed assessing the severity of malformation and the degree of ossification in a semi-quantitative approach. Cartilages of the neurocranium such as the ethmoid plate proved to be more stable than cartilages of the pharyngeal skeleton such as Meckel's cartilage. Hence, ossification proved significantly more susceptible than cartilage. The alterations induced in the notochord as well as in the cranium might well be of ecological relevance, since notochord malformation is likely to result in impaired swimming and cranial malformation might compromise regular food uptake. - Highlights: ► Disulfiram and acetic acid hydrazide as notochord, cartilage and bone teratogens ► Zebrafish embryos to model effects on single cartilages and bones in the head ► LC50 calculation and head length measurements after six days post-fertilization ► Lethality, head length and teratogenic effects are dose-dependent. ► Cartilages of the neurocranium are the most stable elements in the head.

  18. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates (United States)

    Ackerman, Laura K. G.; Lovell, Matthew M.; Weix, Daniel J.


    The advent of transition-metal catalysed strategies for forming new carbon-carbon bonds has revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules. In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation of two distinct catalysts--multimetallic catalysis--can be used instead. Many important reactions rely on multimetallic catalysis, such as the Wacker oxidation of olefins and the Sonogashira coupling of alkynes with aryl halides, but this approach has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing oxidative addition. Here, we demonstrate that cooperativity between two group 10 metal catalysts--(bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium--enables a general cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles). Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple carbon-hydrogen bonds that is required for direct arylation methods. Selectivity can be achieved without an excess of either substrate and originates from the orthogonal reactivity of the two catalysts and the relative stability of the two arylmetal intermediates. While (1,3-bis(diphenylphosphino)propane)palladium reacts preferentially with aryl triflates to afford a persistent intermediate, (bipyridine)nickel reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5 per cent cross-coupled product in isolation, together they are able to achieve a yield of up to 94 per cent. Our results reveal a new method for the synthesis of biaryls, heteroaryls, and dienes, as well as a general mechanism for the selective transfer of ligands between two metal catalysts. We anticipate that this

  19. Preparation and in vivo evaluation of novel linkers for {sup 211}At labeling of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Talanov, Vladimir S. [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Yordanov, Alexander T. [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Garmestani, Kayhan [Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Milenic, Diane E. [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Arora, Hans C. [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Plascjak, Paul S. [Department of Nuclear Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Eckelman, William C. [Department of Nuclear Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Waldmann, Thomas A. [Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Brechbiel, Martin W. [Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)]. E-mail:


    The syntheses, radiolabeling, antibody conjugation and in vivo evaluation of new linkers for {sup 211}At labeling of monoclonal antibodies are described. Syntheses of the N-succinimidyl esters and labeling with {sup 211}At to form succinimidyl 4-methoxymethyl-3-[{sup 211}At]astatobenzoate (9) and succinimidyl 4-methylthiomethyl-3-[{sup 211}At]astatobenzoate (11) from the corresponding bromo-aryl esters is reported. Previously reported succinimidyl N-{l_brace}4-[{sup 211}At]astatophenethyl{r_brace}succinamate (SAPS) is employed as a standard of in vivo stability. Each agent is conjugated with Herceptin in parallel with their respective {sup 125}I analogue, succinimidyl 4-methoxymethyl-3-[{sup 125}I]iodobenzoate (10), succinimidyl 4-methylthiomethyl-3-[{sup 125}I]iodobenzoate (12) and succinimidyl N-{l_brace}4-[{sup 125}I]iodophenethyl{r_brace}succinamate (SIPS), respectively, for comparative assessment in LS-174T xenograft-bearing mice. With 9 and 11, inclusion of an electron pair donor in the ortho position does not appear to provide in vivo stability comparable to SAPS. Variables in radiolabeling chemistry of these three agents with {sup 211}At are notable. Sequential elimination of acetic acid and oxidizing agent, N-chlorosuccinimide (NCS), from the {sup 211}At radiolabeling protocol for forming SAPS improves yield, product purity and consistency. NCS appears to be critical for the radiolabeling of 6 with {sup 211}At. Formation of 11, however, is found to require the absence of NCS. Elimination of acetic acid is found to have no effect on radiolabeling efficiency or yield for either of these reactions.

  20. Construction of multiform scFv antibodies using linker peptide

    Institute of Scientific and Technical Information of China (English)

    Shihua Wang; Cengjie Zheng; Ying Liu; Huirong Zheng; Zonghua Wang


    Multiform single chain variable fragments (acFvs) including different length linker scFvs and bispecific seFv were constructed. The linker lengths of 0, 3, 5, 8, 12, and 15 amino acids between VH and VL of antideoxynivalenol (anti-DON) scFv were used to analyze the affinities of scFvs. The affinity constants of these scFvs increased when the linker was lower than 12 amino acids. The affinity constant would not change when the linker was longer than 12 amino acids. Fusion gene of anti-DON seFv and antizearalenone (anti-ZEN) scFv was also constructed through eormection by a short peptide tinker DNA to express a bispecific scFv. The affinity constants assay showed that the two scFvs of fusion bispecific scFv remained their own affinity compared to their parental scFvs. Competitive direct enzyme linked immunosorbent assay was used to detect DON and ZEN in contaminated wheat (Triticum aestivum L.) samples, and the results indicated that this bispecifie acFv was applicable in DON and ZEN detection. This work confirmed that bispecific scFv could be successfully obtained, and might also have an application in diagnosing fungal infection, and breeding transgertic plants.

  1. C(aryl-O Bond Formation from Aryl Methanesulfonates via Consecutive Deprotection and SNAr Reactions with Aryl Halides in an Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Yang Chen


    Full Text Available An efficient K3PO4-mediated synthesis of unsymmetrical diaryl ethers using the ionic liquid [Bmim]BF4 (1-butyl-3-methylimidazolium tetrafluoroborate as solvent has been developed. The procedure involves consecutive deprotection of aryl methane-sulfonates and a nucleophilic aromatic substitution (SNAr with activated aryl halides.

  2. Copper-catalysed N-arylation of arylsulfonamides with aryl bromides and aryl iodides using KF/Al2O3

    Indian Academy of Sciences (India)

    Rahman Hosseinzadeh; Mahmood Tajbakhsh; Maryam Mohadjerani; Mohammad Alikarami


    An efficient synthesis of -arylsulfonamides with a variety of aryl bromides, aryl iodides and heteroaryl bromides using KF/Al2O3 as a suitable base, CuI as an inexpensive catalyst and ,'-dimethylethylenediamine (,'-DMEDA) as an effective ligand is described.

  3. Effects of modifications of the linker in a series of phenylpropanoic acid derivatives: Synthesis, evaluation as PPARalpha/gamma dual agonists, and X-ray crystallographic studies. (United States)

    Casimiro-Garcia, Agustin; Bigge, Christopher F; Davis, Jo Ann; Padalino, Teresa; Pulaski, James; Ohren, Jeffrey F; McConnell, Patrick; Kane, Christopher D; Royer, Lori J; Stevens, Kimberly A; Auerbach, Bruce J; Collard, Wendy T; McGregor, Christine; Fakhoury, Stephen A; Schaum, Robert P; Zhou, Hairong


    A new series of alpha-aryl or alpha-heteroarylphenyl propanoic acid derivatives was synthesized that incorporate acetylene-, ethylene-, propyl-, or nitrogen-derived linkers as a replacement of the commonly used ether moiety that joins the central phenyl ring with the lipophilic tail. The effect of these modifications in the binding and activation of PPARalpha and PPARgamma was first evaluated in vitro. Compounds possessing suitable profiles were then evaluated in the ob/ob mouse model of type 2 diabetes. The propylene derivative 40 and the propyl derivative 53 demonstrated robust plasma glucose lowering activity in this model. Compound 53 was also evaluated in male Zucker diabetic fatty rats and was found to achieve normalization of glucose, triglycerides, and insulin levels. An X-ray crystal structure of the complex of 53 with the PPARgamma-ligand-binding domain was obtained and discussed in this report.

  4. Complexation of two non-fully hydrogen bonded aromatic hydrazide heptamers toward n-octyl-α-L-glucopyranoside in chloroform

    Institute of Scientific and Technical Information of China (English)


    Two aromatic hydrazide haptamers have been prepared,with both consisting of two hydrogen bonded folded segments. Compared to their fully hydrogen bonded analogues,the flexibility of their backbones increases due to lack of one or two intramolecular hydrogen bonds at the middle aromatic unit. (2D) 1H NMR,circular dichroism and fluorescent studies revealed that both oligomers moderately complex n-octyl-α-L-glucopyranoside in chloroform.

  5. Synthesis of β-arylated alkylamides via Pd-catalyzed one-pot installation of a directing group and C(sp3)–H arylation (United States)

    Zhang, Yi; Cao, Xiaoji; Wan, Jie-Ping


    Summary The synthesis of β-arylated alkylamides via alkyl C–H bond arylation has been realized by means of direct one-pot reactions of acyl chlorides, aryl iodides and 8-aminoquinoline. Depending on the structure of the starting materials, both single and double β-arylated alkylamides could be accessed. PMID:27340500

  6. Antibacterial sesquiterpene aryl esters from Armillaria mellea. (United States)

    Donnelly, D M; Abe, F; Coveney, D; Fukuda, N; O'Reilly, J; Polonsky, J; Prangé, T


    Investigation of the mycelial extract of Armillaria mellea led to the isolation of the known melleolide (2a) and two new sesquiterpene aryl eters, 4-O-methylmelleolide (2b) and judeol (1c). Their structures were deduced from spectral data and that of (2b) confirmed by X-ray analysis. The new esters (1c) and (2b) showed strong antibacterial activity against gram-positive bacteria.

  7. Carbonate polymers containing ethenyl aryl moieties



    There are disclosed carbonate polymers having ethenyl aryl moieties. Such carbonate polymers are prepared from one or more multi-hydric compounds and have an average degree of polymerization of at least about 1 based on multi-hydric compound. These polymers, including blends thereof, can be easily processed and shaped into various forms and structures according to the known techniques. During or subsequent to the processing, the polymers can be crosslinked, by exposure to heat or radiation, f...

  8. Fluoroalkylation of aryl ether perfluorocyclobutyl polymers


    Ligon, Clark; Ameduri, Bruno; Boutevin, Bernard; Smith, Dennis


    International audience; Post functionalization of aryl ether perfluorocyclobutyl (PFCB) polymers with fluoroalkyl side chains was accomplished with Umemoto's FITS reagents. The fluoroalkylated PFCB polymers (20 % functionalized) showed increases in both hydrophobicity and oleophobicity. Static contact angle for hexadecane was increased after fluoroalkylation from 0° to greater than 30° for the two PFCB polymers tested. Increased oil repellency makes these materials potential candidates for va...



    Fernández-Salguero, Pedro M.; Sonia eMulero-Navarro


    Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and ...

  10. New Trends in Aryl Hydrocarbon Receptor Biology


    Mulero-navarro, Sonia; Fernandez-Salguero, Pedro M.


    Traditionally considered as a critical intermediate in the toxic and carcinogenic response to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD), the Aryl hydrocarbon/Dioxin receptor (AhR) has proven to be also an important regulator of cell physiology and organ homeostasis. AhR has become an interesting and actual area of research mainly boosted by a significant number of recent studies analyzing its contribution to the proper functioning of the immune, hepatic, cardiovascular, vascular and ...

  11. Dipolar cross-linkers for PDMS networks with enhanced dielectric permittivity and low dielectric loss

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Daugaard, Anders Egede; Hvilsted, Søren;


    Dipole grafted cross-linkers were utilized to prepare polydimethylsiloxane (PDMS) elastomers with various chain lengths and with various concentrations of functional cross-linker. The grafted cross-linkers were prepared by reaction of two alkyne-functional dipoles, 1-ethynyl-4-nitrobenzene and 3...

  12. An acid-stable tert-butyldiarylsilyl (TBDAS) linker for solid-phase organic synthesis. (United States)

    Diblasi, Christine M; Macks, Daniel E; Tan, Derek S


    [reaction: see text] A new, robust tert-butyldiarylsilyl (TBDAS) linker has been developed for solid-phase organic synthesis. This linker is stable to both protic and Lewis acidic reaction conditions, overcoming a significant limitation of previously reported silyl linkers. Solid-phase acetal deprotection, olefination, asymmetric allylation, and silyl protecting group deblocking reactions have been demonstrated with TBDAS-linked substrates.

  13. Structural, DFT and biological studies on Co(II) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide (United States)

    Yousef, T. A.; El-Gammal, O. A.; Ahmed, Sara F.; Abu El-Reash, G. M.


    Three ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Co(II) chloride complexes were prepared and characterized by conventional techniques. The isolated complexes were assigned the formulaes, [Co(HPAPS)Cl(H2O)2]H2O, [Co(HPAPT)Cl]H2O and [Co(H2PABT)Cl2], respectively. The IR spectra of complexes shows that H2PAPS behaves as a mononegative tridentate via CO of hydrazide moiety and enolized CO of hydrazide moiety and CN (azomethine) group due to enolization of CO isocyanate moiety. H2PAPT behaves as mononegative tridentate via one CO of hydrazide moiety and thiol CS and NH groups and finally H2PABT behaves as neutral tetradentate via one CO of hydrazide moiety, CO of benzoyl moiety, Cdbnd S due to enolization of the second CO of hydrazide moiety and new CN (azomethine) groups. The vibrational frequencies of the IR spectra of ligands which were determined experimentally are compared with those obtained theoretically from DFT calculations. Also, the bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the ligand molecules. The calculated values of binding energies indicates the stability of metal complexes is higher that of ligand. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats-Redfern and Horowitz-Metzger methods. The antibacterial activities were also tested against Bacillus subtilis and Escherichia coli bacteria. The free ligands showed a higher antibacterial effect than their Co(II) complexes except [Co(HPAPS)Cl(H2O)2]H2O which shows higher activity than corresponding ligand. The antitumor activities of the Ligands and their Co(II) complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells. All ligands

  14. Peptide linkers for the assembly of semiconductor quantum dot bioconjugates (United States)

    Boeneman, Kelly; Mei, Bing C.; Deschamps, Jeffrey R.; Delehanty, James B.; Mattoussi, Hedi; Medintz, Igor


    The use of semiconductor luminescent quantum dots for the labeling of biomolecules is rapidly expanding, however it still requires facile methods to attach functional globular proteins to biologically optimized quantum dots. Here we discuss the development of controlled variable length peptidyl linkers to attach biomolecules to poly(ethylene) glycol (PEG) coated quantum dots for both in vitro and in vivo applications. The peptides chosen, β-sheets and alpha helices are appended to polyhistidine sequences and this allows for control of the ratio of peptide bioconjugated to QD and the distance from QD to the biomolecule. Recombinant DNA engineering, bacterial peptide expression and Ni-NTA purification of histidine labeled peptides are utilized to create the linkers. Peptide length is confirmed by in vitro fluorescent resonance energy transfer (FRET).

  15. Rheology of semiflexible bundle networks with transient linkers. (United States)

    Müller, Kei W; Bruinsma, Robijn F; Lieleg, Oliver; Bausch, Andreas R; Wall, Wolfgang A; Levine, Alex J


    We present a theoretical and computational analysis of the rheology of networks made up of bundles of semiflexible filaments bound by transient cross-linkers. Such systems are ubiquitous in the cytoskeleton and can be formed in vitro using filamentous actin and various cross-linkers. We find that their high-frequency rheology is characterized by a scaling behavior that is quite distinct from that of networks of the well-studied single semiflexible filaments. This regime can be understood theoretically in terms of a length-scale-dependent bending modulus for bundles. Next, we observe new dissipative dynamics associated with the shear-induced disruption of the network at intermediate frequencies. Finally, at low frequencies, we encounter a region of non-Newtonian rheology characterized by power-law scaling. This regime is dominated by bundle dissolution and large-scale rearrangements of the network driven by equilibrium thermal fluctuations.

  16. The Gelation Ability and Morphology Study of Organogel System Based on Calamitic Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Xia Ran


    Full Text Available The gelation property of a series of LMOG bearing hydrazide and azobenzene groups, namely, N-4-(alkoxyphenyl-N′-4-[(4-methoxyphenylazophenyl] benzohydrazide (BNBC-n, n=8,12,14, has been systematically studied in this work. The obtained results demonstrate that the gelling ability in organic solvents is significantly influenced by the length of terminal alkoxy chain. In different organic solvents, it is hard to observe the organogel formation for BNBC-8 molecule. On the contrary, the organogelators BNBC-12 and BNBC-14 bearing longer terminal chains have shown great ability to gel organic solvents to form stable organogels. The critical gelation concentration for BNBC-12 reaches as low as 5.3 × 10−3 M, which can be considered as a supergelator. It has been manifested that the aggregation morphology of organogel strongly depends on the nature of the gelling solvents and the length of the terminal alkoxy chain. The gelation of BNBC-n provides an easy method for the preparation of multidimensional structure and manipulation of morphology from ribbons, hollow tube fiber to 3D net-like structure in different solvents. The cooperation of hydrogen bonding, π-π interaction, and Van der Waals force is suggested to be the main contribution to this self-assembled structure.

  17. The Use of Maleic Hydrazide for Effective Hybridization of Setaria viridis.

    Directory of Open Access Journals (Sweden)

    Govinda Rizal

    Full Text Available An efficient method for crossing green foxtail (Setaria viridis is currently lacking. S. viridis is considered to be the new model plant for the study of C4 system in monocots and so an effective crossing protocol is urgently needed. S. viridis is a small grass with C4-NADP (ME type of photosynthesis and has the advantage of having small genome of about 515 Mb, small plant stature, short life cycle, multiple tillers, and profuse seed set, and hence is an ideal model species for research. The objectives of this project were to develop efficient methods of emasculation and pollination, and to speed up generation advancement. We assessed the response of S. viridis flowers to hot water treatment (48°C and to different concentrations of gibberellic acid, abscisic acid, maleic hydrazide (MH, and kinetin. We found that 500 μM of MH was effective in the emasculation of S. viridis, whilst still retaining the receptivity of the stigma to pollination. We also report effective ways to accelerate the breeding cycle of S. viridis for research through the germination of mature as well as immature seeds in optimized culture media. We believe these findings will be of great interest to researchers using Setaria.

  18. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide (United States)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban


    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  19. Palladium-Catalyzed alpha-Arylation of Tetramic Acids

    DEFF Research Database (Denmark)

    Storgaard, Morten; Dorwald, F. Z.; Peschke, B.;


    A mild, racemization-free, palladium-Catalyzed alpha-arylation of tetramic acids (2,4-pyrrolidinediones) has been developed. Various amino acid-derived tetramic acids were cleanly arylated by treatment with 2 mol % of Pd(OAc)(2), 4 mol % of a sterically demanding biaryl phosphine, 2.3 equiv of K2CO...

  20. Selective copper catalysed aromatic N-arylation in water

    DEFF Research Database (Denmark)

    Engel-Andreasen, Jens; Shimpukade, Bharat; Ulven, Trond.


    4,7-Dipyrrolidinyl-1,10-phenanthroline (DPPhen) was identified as an efficient ligand for copper catalyzed selective arom. N-arylation in water. N-Arylation of indoles, imidazoles and purines proceeds with moderate to excellent yields and complete selectivity over aliph. amines. Aq. medium and th...

  1. Linker polypeptides of the phycobilisome from the cyanobacterium Mastigocladus laminosus. I. Isolation and characterization of phycobiliprotein-linker-polypeptide complexes. (United States)

    Füglistaller, P; Suter, F; Zuber, H


    Phycobilisomes from the cyanobacterium Mastigocladus laminosus cultured in white and red light were isolated and compared with respect to the phycoerythrocyanin (PEC) and linker polypeptide contents. It was verified that the production of PEC is induced by low light intensities. A PEC complex, (alpha PEC beta PEC)6LR34.5,PEC, and a phycocyanin (PC) complex, (alpha PC beta PC)6LR34.5,PC, were isolated from phycobilisomes by Cellex-D anion exchange chromatography and sucrose density gradient centrifugation. The absorption and fluorescence emission maxima of the PEC complex are at 575 and 620 nm and those of the PC complex are at 631 and 647 nm, respectively. The extinction coefficients of the two complexes were determined. From different experiments it was concluded that PEC is present as a hexameric complex, (alpha PEC beta PEC)6LR34.5,PEC, in the phycobilisome. The two linker polypeptides LR34.5,PEC and LR34.5,PC were isolated from their phycobiliprotein complexes by gel filtration on Bio-Gel P-100 in 50% formic acid. A 5-kDa terminal segment of both linker polypeptides was found to influence the hexamer formation of the phycobiliproteins. The same segments have been described to be responsible for the hexamer-hexamer linkage (Yu, M.-H. & Glazer, A.N. (1982) J. Biol. Chem. 257, 3429-3433). A 8.9-kDa linker polypeptide, LR(C)8.9, was isolated from a PEC fraction of the Cellex-D column by Bio-Gel P-100 gel filtration in 50% formic acid. Localisation of this protein within the phycobilisome was attempted. Its most probable function is to terminate the phycobilisomal rods at the end distal to the allophycocyanin core.

  2. N-Arylation of azaheterocycles with aryl and heteroaryl halides catalyzed by iminodiacetic acid resin-chelated copper complex

    Institute of Scientific and Technical Information of China (English)


    Iminodiacetic acid resin-chelated copper(Ⅱ) complex is effective in cross-coupling reactions between azaheterocycles and aryl or heteroaryl halides,providing N-arylated products in good to excellent yields.The copper catalyst is air stable and can be readily recovered and reused with minimal loss of activity for three runs.

  3. C- versus O-Arylation of an Enol-Lactone Using Potassium tert-butoxide

    Directory of Open Access Journals (Sweden)

    El Moktar Essassi


    Full Text Available Abstract: The use of potassium tert-butoxide as the base in arylation reactions of an enollactone with a series of benzyl halides was explored. Our work demonstrates that the ratio of C-arylation to O-arylation varies with the substitution pattern of the aryl halide.

  4. Synthesis and Antimicrobial Activity of Some Derivatives on the Basis (7-hydroxy-2-oxo-2H-chromen-4-yl-acetic Acid Hydrazide

    Directory of Open Access Journals (Sweden)

    Elizabeth Has-Schon


    Full Text Available (7-Hydroxy-2-oxo-2H-chromen-4-yl-acetic acid hydrazide (2 was prepared from (7-hydroxy-2-oxo-2H-chromen-4-yl-acetic acid ethyl ester (1 and 100% hydrazine hydrate. Compound 2, is the key intermediate for the synthesis of several series of new compounds such as Schiff’s bases 3a-l, formic acid N'-[2-(7-hydroxy-2-oxo-2H- chromen-4-ylacetyl] hydrazide (4, acetic acid N'-[2-(7-hydroxy-2-oxo-2H-chromen-4- yl-acetyl] hydrazide (5, (7-hydroxy-2-oxo-2H-chromen-4-yl-acetic acid N'-[2-(4- hydroxy-2-oxo-2H-chromen-3-yl-2-oxoethyl] hydrazide (6, 4-phenyl-1-(7-hydroxy-2- oxo-2H-chromen- 4-acetyl thiosemicarbazide (7, ethyl 3-{2-[2-(7-hydroxy-2-oxo-2H- chromen-4-yl-acetyl]hydrazono}butanoate (8, (7-hydroxy-2-oxo-2H-chromen-4-yl- acetic acid N'-[(4-trifluoromethylphenyliminomethyl] hydrazide (9 and (7-hydroxy-2- oxo-2H-chromen-4-ylacetic acid N'-[(2,3,4-trifluorophenylimino-methyl] hydrazide (10. Cyclo- condensation of compound 2 with pentane-2,4-dione gave 4-[2-(3,5- dimethyl-1H-pyrazol-1-yl-2-oxoethyl]-7-hydroxy-2H-chromen-2-one (11, while with carbon disulfide it afforded 7-hydroxy-4-[(5-mercapto-1,3,4-oxadiazol-2-ylmethyl]-2H- chromen-2-one (12 and with potassium isothiocyanate it gave 7-hydroxy-4-[(5- mercapto-4H-1,2,4-triazol-3-ylmethyl]-2H-chromen-2-one (14. Compound 7 was cyclized to afford 2-(7-hydroxy-2-oxo-2H-chromen-4-yl-N ́-(4-oxo-2-phenylimino- thiazolidin-3-yl acetamide (15.

  5. Construction of a linker library with widely controllable flexibility for fusion protein design. (United States)

    Li, Gang; Huang, Ziliang; Zhang, Chong; Dong, Bo-Jun; Guo, Ruo-Hai; Yue, Hong-Wei; Yan, Li-Tang; Xing, Xin-Hui


    Flexibility or rigidity of the linker between two fused proteins is an important parameter that affects the function of fusion proteins. In this study, we constructed a linker library with five elementary units based on the combination of the flexible (GGGGS) and the rigid (EAAAK) units. Molecular dynamics (MD) simulation showed that more rigid units in the linkers lead to more helical conformation and hydrogen bonds, and less distance fluctuation between the N- and C-termini of the linker. The diversity of linker flexibility of the linker library was then studied by fluorescence resonance energy transfer (FRET) of cyan fluorescent protein (CFP)-yellow fluorescent protein (YFP) fusion proteins, which showed that there is a wide range of distribution of the FRET efficiency. Dissipative particle dynamics (DPD) simulation of CFP-YFP with different linkers also gave identical results with that of FRET efficiency analysis, and we further found that the combination manner of the linker peptide had a remarkable effect on the orientation of CFP and YFP domains. Our studies demonstrated that the construction of the linker library with the widely controllable flexibility could provide appropriate linkers with the desirable characteristics to engineer the fusion proteins with the expected functions.

  6. Synthesis and Crystal Structure of 2-Hydroxybenzoic Acid [1-(3,5-Dibromo-2- hydroxyphenyl)methylidene]hydrazide Methanol

    Institute of Scientific and Technical Information of China (English)

    WANG Nong; LI Jing-Ping; PU Yan-Ling


    A new Schiff base compound, 2-hydroxybenzoic acid [1-(3,5-dibromo-2-hydroxy- phenyl) methylidene]hydrazide methanol (C14H10Br2N2O3·CH3OH), has been synthesized by the condensation of equimolar 3,5-dibromosalicylaldehyde and 2-hydroxybenzoic acid hydrazide in a methanol solution. The compound was characterized by elemental analysis, IR spectra, and single- crystal X-ray diffraction. The compound consists of a Schiff base moiety 2-hydroxybenzoic acid [1-(3,5-dibromo-2-hydroxyphenyl)methylidene]hydrazide and a lattice methanol molecule. The crystal belongs to the monoclinic system, space group P21/n with a = 7.183(1), b = 15.673(2), c = 15.001(2 (A), β = 98.345(2)o, Z = 4, V = 1670.9(4) (A)3, Dc = 1.773 g/cm3, Mr = 446.10, λ(MoKα) = 0.71073(A), μ = 4.872 mm-1, F(000) = 880, R = 0.0458 and wR = 0.0963. A total of 3445 unique reflections were collected, of which 2236 with Ⅰ > 2σ(I) were observed. As expected, the molecule adopts a trans configuration about the C=N double bond. The two benzene rings are nearly coplanar (mean deviation from the combined plane is 0.061(4)(A)), with the dihedral angle of 7.9(3)o. The preliminary biological tests show that the compound has moderate antibacterial activities.

  7. Antioxidant Functions of the Aryl Hydrocarbon Receptor

    Directory of Open Access Journals (Sweden)

    Cornelia Dietrich


    Full Text Available The aryl hydrocarbon receptor (AhR is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.

  8. Self-assembly of Hydrazide-based Heterodimers Driven by Hydrogen Bonding and Donor-Acceptor Interaction

    Institute of Scientific and Technical Information of China (English)

    FENG,Dai-Jun; WANG,Peng; LI,Xiao-Qiang; LI,Zhan-Ting


    A new series of hydrogen bonding-driven heterodimers have been self-assembled in chloroform from hydrazide-based monomers. Additional intermolecular donor-acceptor interaction between the electron-rich bis(p-phenylene)-34-crown-10 unit and the electron-deficient naphthalene diimide unit has been utilized to increase the stability of the dimmers, and pronounced cooperativity of the two discrete non-covalent forces to stabilize the dimer has been revealed by the quantitative 1H (2D) NMR and UV-Vis experiments.

  9. Anticlastogenic effect of Spirulina maxima extract on the micronuclei induced by maleic hydrazide in Tradescantia. (United States)

    Ruiz Flores, L Elvia; Madrigal-Bujaidar, Eduardo; Salazar, María; Chamorro, Germán


    The aim of this investigation was to determine if extracts of Spirulina maxima reduce the genotoxic damage induced by maleic hydrazide (MH) using the Tradescantia biosssay. Two types of extracts from the alga were prepared: an aqueous extract with two different concentrations, 100 and 500 mg/ml, and a second one, the extract of a 1% solution of dimethyl sulfoxide (DMSO) which corresponded to 100 mg/ml of the alga. The capacity of MH to induce micronuclei (MN) was initially established by administering 0.005, 0.01, and 0.015 mg/ml of the chemical to the Tradescantia inflorescences, and observing its effect after 24 h.The results of this experiment showed a significant MN increase with the two high concentrations tested, although no dose-response effect was observed. For the anticlastogenic assay, the extracts of Spirulina were applied to the inflorescences alone or immediately before the application of MH (0.01 mg/ml) and the induced MN were observed 24 h later. We found that none of the extracts increased the MN level with respect to the untreated plants; also, that MH more or less doubled the basal micronuclei frequency, and finally, that all tested extracts reduced the genotoxic damage caused by MH. The inhibitory indices obtained for the aqueous extracts (100 and 500 mg/ml) and for the DMSO extract were respectively 59, 85, and 56.3%. These data indicate that Spirulina is an anticlastogenic agent and suggest that it is advisable to extend studies on this matter using other biological models.

  10. Pd-catalyzed carbonylative α-arylation of aryl bromides: scope and mechanistic studies. (United States)

    Nielsen, Dennis U; Lescot, Camille; Gøgsig, Thomas M; Lindhardt, Anders T; Skrydstrup, Troels


    Reaction conditions for the three-component synthesis of aryl 1,3-diketones are reported applying the palladium-catalyzed carbonylative α-arylation of ketones with aryl bromides. The optimal conditions were found by using a catalytic system derived from [Pd(dba)2] (dba=dibenzylideneacetone) as the palladium source and 1,3-bis(diphenylphosphino)propane (DPPP) as the bidentate ligand. These transformations were run in the two-chamber reactor, COware, applying only 1.5 equivalents of carbon monoxide generated from the CO-releasing compound, 9-methylfluorene-9-carbonyl chloride (COgen). The methodology proved adaptable to a wide variety of aryl and heteroaryl bromides leading to a diverse range of aryl 1,3-diketones. A mechanistic investigation of this transformation relying on 31P and 13C NMR spectroscopy was undertaken to determine the possible catalytic pathway. Our results revealed that the combination of [Pd(dba)2] and DPPP was only reactive towards 4-bromoanisole in the presence of the sodium enolate of propiophenone suggesting that a [Pd(dppp)(enolate)] anion was initially generated before the oxidative-addition step. Subsequent CO insertion into an [Pd(Ar)(dppp)(enolate)] species provided the 1,3-diketone. These results indicate that a catalytic cycle, different from the classical carbonylation mechanism proposed by Heck, is operating. To investigate the effect of the dba ligand, the Pd0 precursor, [Pd(η3-1-PhC3H4)(η5-C5H5)], was examined. In the presence of DPPP, and in contrast to [Pd(dba)2], its oxidative addition with 4-bromoanisole occurred smoothly providing the [PdBr(Ar)(dppp)] complex. After treatment with CO, the acyl complex [Pd(CO)Br(Ar)(dppp)] was generated, however, its treatment with the sodium enolate led exclusively to the acylated enol in high yield. Nevertheless, the carbonylative α-arylation of 4-bromoanisole with either catalytic or stoichiometric [Pd(η3-1-PhC3H4)(η5-C5H5)] over a short reaction time, led to the 1,3-diketone product

  11. Genetically encoded cleavable protein photo-cross-linker. (United States)

    Lin, Shixian; He, Dan; Long, Teng; Zhang, Shuai; Meng, Rong; Chen, Peng R


    We have developed a genetically encoded, selenium-based cleavable photo-cross-linker that allows for the separation of bait and prey proteins after protein photo-cross-linking. We have further demonstrated the efficient capture of the in situ generated selenenic acid on the cleaved prey proteins. Our strategy involves tagging the selenenic acid with an alkyne-containing dimethoxyaniline molecule and subsequently labeling with an azide-bearing fluorophore or biotin probe. This cleavage-and-capture after protein photo-cross-linking strategy allows for the efficient capture of prey proteins that are readily accessible by two-dimensional gel-based proteomics and mass spectrometry analysis.

  12. Investigation of the redox property of a metalloprotein layer self-assembled on various chemical linkers. (United States)

    Chung, Yong-Ho; Lee, Taek; Min, Junhong; Choi, Jeong-Woo


    Myogloblin, a well-known metalloprotein, was immobilized on a gold surface using various chemical linkers to investigate the length effect of chemical linker on the electron transfer in protein layers, because chemical linkers play roles in the pathway that transfers the electron from the protein to the gold substrate and act as protein immobilization reagents. Chemical linkers with 2, 6, 11, and 16 carbons were utilized to confirm length-effects. The immobilization of protein and chemical linker was validated with surface plasmon resonance (SPR) and atomic force microscopy (AFM). The electrochemical property was evaluated by cyclic voltammetry (CV) and chronocoulometry (CC). In those results, redox peaks of immobilized protein were controlled via the length of chemical linkers, and it could be directly applied to the realization of bioelectronic device.

  13. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin


    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Construction and Purification of EGF-Linker-TCSKDEL Fusion Proteins%EGF-Linker-TCSKDEL融合蛋白的构建及表达产物的纯化

    Institute of Scientific and Technical Information of China (English)



    目的构建EGF-Linker-TCSKDEL融合蛋白表达载体并纯化目的蛋白。方法以天花粉蛋白基因的改造产物TCSKDEL为毒素,人表皮生长因子EGFR为载体,构建重组免疫毒素EGF-Linker-TCSKDEL。PCR方法扩增EGF-Linker-TCSKDEL基因片段,插入表达载体PET28a中并诱导表达,使用Ni-NTA Agrose亲合层析纯化。结果该融合蛋白以可溶形式表达于大肠杆菌培养上清中,并获得有效纯化。结论成功构建了新型融合蛋白EGF-Linker-TCSKDEL,为其进一步的基础和临床研究奠定基础。%Objective To construct the expression vector of EGF-Linker-TCSKDEL fusion proteins and purify target protein. Methods Recombinant immunotoxin (EGF-Linker-TCSKDEL) was constructed by modified trichosanthin (TCS) with KDEL as toxin and epidermal growth factor (EGF) as a car ier. The DNA fragment of EGF-Linker-TCSKDEL was amplified by using PCR, and the fusion proteins were purified by Ni-NTA Agrose af inity chromatography. Results The fusion protein was expressed in a form of soluble protein and purified ef ectively using af inity chromatography. Conclusion A new EGF-Linker-TCSKDEL fusion proteins was successful y prepared. It laid a foundation of further research in basic and clinical of EGF-Linker-TCSKDEL.

  15. A Facile Method for the Synthesis of 6-Aryl-1-(3-Chloropropanoyl-4-[(E-1-(2-FurylMethylidene]-1,2,3,4-Tetrahydro-3-Pyridazinones and 2-(2-Chloroethyl-5-[α-Aracyl-β-(2-Furyl]-(E-Vinyl-1,3,4-Oxadiazoles

    Directory of Open Access Journals (Sweden)

    Ahmed I. Hashem


    Full Text Available The 6-aryl-1-(3-chloropropanoyl-4-[(E-1-(2-furylmethylidene]-1,2,3,4-tetrahydro-3-pyridazinones (6a-d were synthesized by the reaction of acid chloride 3 with α-aracyl(β-2-furylacrylic acid hydrazides (2a-d in a high yield, one pot reaction. On the other hand, 2-(2-chloroethyl-5-[α-aracyl-β-(2-furyl]-(E-vinyl-1,3,4-oxadiazoles (7a-d were also prepared by cyclodehydration of N1[α-aracyl-β-(2-furylacroyl-N2[3-chloro-propanoyl] hydrazine derivatives (4a-d. The proposed structures of the products were confirmed by elemental analysis, spectral data and chemical evidence.

  16. Tunable CO 2 Adsorbents by Mixed-Linker Synthesis and Postsynthetic Modification of Zeolitic Imidazolate Frameworks

    KAUST Repository

    Thompson, Joshua A.


    The incorporation of accessible amine functionality in zeolitic imidazolate frameworks (ZIFs) is used to improve the adsorption selectivity for CO 2/CH4 gas separation applications. Two synthetic approaches are described in this work to introduce functionality into the ZIF: (i) mixed-linker ZIF synthesis with 2-aminobenzimidazole as a substitution linker and (ii) postsynthetic modification of a mixed-linker ZIF with ethylenediamine. Using 2-aminobenzimidazole, a linker with a primary amine functional group, substitution of the ZIF-8 linker during synthesis allows for control over the adsorption properties while maintaining the ZIF-8 structure with up to nearly 50% substitution in the mixed-linker ZIF framework, producing a material with tunable pore size and amine functionality. Alternatively, postsynthetic modification of a mixed-linker ZIF containing an aldehyde functional group produces a ZIF material with a primary amine without detrimental loss of micropore volume by controlling the amount of functional group sites for modification. Both approaches using mixed-linker ZIFs yield new materials that show improvement in adsorption selectivity for the CO 2/CH4 gas pair over ZIF-8 and commercially available adsorbents as well as an increase in the heat of adsorption for CO2 without significant changes to the crystal structure. These results indicate that tuning the surface properties of ZIFs by either mixed-linker synthesis and/or postsynthetic modification may generate new materials with improved gas separation properties, thereby providing a new method for tailoring metal-organic frameworks. © 2013 American Chemical Society.

  17. The unexpected influence of aryl substituents in N-aryl-3-oxobutanamides on the behavior of their multicomponent reactions with 5-amino-3-methylisoxazole and salicylaldehyde

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Tkachenko


    Full Text Available The switchable three-component reactions of 5-amino-3-methylisoxazole, salicylaldehyde and N-aryl-3-oxobutanamides under different conditions were studied and discussed. The unexpected influence of the aryl substituent in N-aryl-3-oxobutanamides on the behavior of the reaction was discovered. The key influence of ultrasonication and Lewis acid catalysts led to an established protocol to selectively obtain two or three types of heterocyclic scaffolds depending on the substituent in the N-aryl moiety.

  18. Comprehensive mapping of protein N-glycosylation in human liver by combining hydrophilic interaction chromatography and hydrazide chemistry. (United States)

    Zhu, Jun; Sun, Zhen; Cheng, Kai; Chen, Rui; Ye, Mingliang; Xu, Bo; Sun, Deguang; Wang, Liming; Liu, Jing; Wang, Fangjun; Zou, Hanfa


    Although glycoproteomics is greatly developed in recent years, our knowledge about N-glycoproteome of human tissues is still very limited. In this study, we comprehensively mapped the N-glycosylation sites of human liver by combining click maltose-hydrophilic interaction chromatography (HILIC) and the improved hydrazide chemistry. The specificity could be as high as 90% for hydrazide chemistry and 80% for HILIC. Altogether, we identified 14,480 N-glycopeptides matched with N-!P-[S|T|C] sequence motif from human liver, corresponding to 2210 N-glycoproteins and 4783 N-glycosylation sites. These N-glycoproteins are widely involved into different types of biological processes, such as hepatic stellate cell activation and acute phase response of human liver, which all highly associate with the progression of liver diseases. Moreover, the exact N-glycosylation sites of some key-regulating proteins within different human liver physiological processes were also obtained, such as E-cadherin, transforming growth factor beta receptor and 29 members of G protein coupled receptors family.

  19. Synthesis and Crystal Structure of Isonicotinic Acid [1-(3,5-Dibromo-2- hydroxyphenyl)methylidene]hydrazide Methanol

    Institute of Scientific and Technical Information of China (English)


    A new Schiff base compound, C13H9Br2N3O2·CH3OH, isonicotinic acid [1-(3,5-dibromo-2-hydroxyphenyl)methylidene]hydrazide methanol, has been synthesized and characterized by elemental analysis, IR spectra, and single-crystal X-ray diffraction. The compound comprises a Schiff base moiety isonicotinic acid [1-(3,5-dibromo-2-hydroxyphenyl) methylidene]hydrazide and a methanol molecule. The crystal belongs to the triclinic system, space group P(1) with a = 8.464(1), b = 9.511(2), c = 10.901(2) (A), α = 92.940(2), β = 110.456(2), γ = 96.040(2)°, Z = 2, V = 814.0(2) (A)3, Dc = 1.759 g/cm3, Mr = 431.09, λ(MoKα) = 0.71073 (A), μ = 4.994 mm-1, F(000) = 424, R = 0.0440 and wR = 0.1061. A total of 3284 unique reflections were collected, of which 2197 with I>2σ(I) were observed. The molecule adopts a trans configuration about the C=N double bond. The dihedral angle between the benzene and pyridine rings is 22.0(4)°. The crystal structure is stabilized by intermolecular O-H…N and C-H…O hydrogen bonds, forming layers parallel to the ac plane. The preliminary biological tests show that the compound has potential antibacterial activities.

  20. Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT): A Novel Glycan-Relative Quantification Strategy (United States)

    Walker, S. Hunter; Taylor, Amber D.; Muddiman, David C.


    The Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT) strategy for the sample preparation, data analysis, and relative quantification of N-linked glycans is presented. Glycans are derivatized with either natural (L) or stable-isotope labeled (H) hydrazide reagents and analyzed using reversed phase liquid chromatography coupled online to a Q Exactive mass spectrometer. A simple glycan ladder, maltodextrin, is first used to demonstrate the relative quantification strategy in samples with negligible analytical and biological variability. It is shown that after a molecular weight correction attributable to isotopic overlap and a post-acquisition normalization of the data to account for any systematic bias, a plot of the experimental H:L ratio versus the calculated H:L ratio exhibits a correlation of unity for maltodextrin samples mixed in different ratios. We also demonstrate that the INLIGHT approach can quantify species over four orders of magnitude in ion abundance. The INLIGHT strategy is further demonstrated in pooled human plasma, where it is shown that the post-acquisition normalization is more effective than using a single spiked-in internal standard. Finally, changes in glycosylation are able to be detected in complex biological matrices, when spiked with a glycoprotein. The ability to spike in a glycoprotein and detect change at the glycan level validates both the sample preparation and data analysis strategy, making INLIGHT an invaluable relative quantification strategy for the field of glycomics.

  1. Experimental design to optimize an Haemophilus influenzae type b conjugate vaccine made with hydrazide-derivatized tetanus toxoid. (United States)

    Laferriere, Craig; Ravenscroft, Neil; Wilson, Seanette; Combrink, Jill; Gordon, Lizelle; Petre, Jean


    The introduction of type b Haemophilus influenzae conjugate vaccines into routine vaccination schedules has significantly reduced the burden of this disease; however, widespread use in developing countries is constrained by vaccine costs, and there is a need for a simple and high-yielding manufacturing process. The vaccine is composed of purified capsular polysaccharide conjugated to an immunogenic carrier protein. To improve the yield and rate of the reductive amination conjugation reaction used to make this vaccine, some of the carboxyl groups of the carrier protein, tetanus toxoid, were modified to hydrazides, which are more reactive than the ε -amine of lysine. Other reaction parameters, including the ratio of the reactants, the size of the polysaccharide, the temperature and the salt concentration, were also investigated. Experimental design was used to minimize the number of experiments required to optimize all these parameters to obtain conjugate in high yield with target characteristics. It was found that increasing the reactant ratio and decreasing the size of the polysaccharide increased the polysaccharide:protein mass ratio in the product. Temperature and salt concentration did not improve this ratio. These results are consistent with a diffusion controlled rate limiting step in the conjugation reaction. Excessive modification of tetanus toxoid with hydrazide was correlated with reduced yield and lower free polysaccharide. This was attributed to a greater tendency for precipitation, possibly due to changes in the isoelectric point. Experimental design and multiple regression helped identify key parameters to control and thereby optimize this conjugation reaction.

  2. Copper/N,N-Dimethylglycine Catalyzed Goldberg Reactions Between Aryl Bromides and Amides, Aryl Iodides and Secondary Acyclic Amides

    Directory of Open Access Journals (Sweden)

    Liqin Jiang


    Full Text Available An efficient and general copper-catalyzed Goldberg reaction at 90–110 °C between aryl bromides and amides providing the desired products in good to excellent yields has been developed using N,N-dimethylglycine as the ligand. The reaction is tolerant toward a wide range of amides and a variety of functional group substituted aryl bromides. In addition, hindered, unreactive aromatic and aliphatic secondary acyclic amides, known to be poor nucleophiles, are efficiently coupled with aryl iodides through this simple and cheap copper/N,N-dimethylglycine catalytic system.

  3. Homocoupling of Aryl Bromides Catalyzed by Nickel Chloride in Pyridine

    Institute of Scientific and Technical Information of China (English)

    TAO, Xiao-Chun; ZHOU, Wei; ZHANG, Yue-Ping; DAI, Chun-ya; SHEN, Dong; HUANG, Mei


    Pyridine was used as a solvent for homocoupling of aryl bromides catalyzed by nickel chloride/triarylphosphine in the presence of zinc and recycled easily. Triphenylphosphine was the best ligand for nickel in this coupling reaction.

  4. Mixture Genotoxicity of 2,4-Dichlorophenoxyacetic Acid, Acrylamide, and Maleic Hydrazide on Human Caco-2 Cells Assessed with Comet Assay

    DEFF Research Database (Denmark)

    Syberg, Kristian; Binderup, Mona-Lise; Cedergreen, Nina;


    ), and maleic hydrazide (MH), in an experiment with a fixed ratio design setup. The genotoxic effects were assessed with the single-cell gel electrophoresis assay (comet assay) for both single chemicals and the ternary mixture. The concentration ranges used were 0-1.4, 0-20, and 0-37.7 mM for 2,4-D, AA, and MH...

  5. Synthesis of aryl phosphates based on pyrimidine and triazine scaffolds. (United States)

    Courme, Caroline; Gresh, Nohad; Vidal, Michel; Lenoir, Christine; Garbay, Christiane; Florent, Jean-Claude; Bertounesque, Emmanuel


    The syntheses of the triazinyl-based bis-aryl phosphates 2 and 3, and of the aminopyrimidyl-based aryl phosphate 4 are described. Each compound contains a diaryl ether-phosphate structural motif. The synthetic route to bis-aryl phosphates 2 and 3 consisted in two nucleophilic substitution reactions with amines from cyanuric chloride, followed by a Suzuki coupling with the resulting 2,4-diamino-6-chloro-1,3,5-triazine derivative 12 to introduce the diaryl ether functionality. Aryl phosphate 4 was obtained via condensation of aryl guanidine 34 with aryloxyphenyl butenone 31. These de novo-designed aryl phosphates were evaluated as potential inhibitors of the Grb2-SH2 domain using an ELISA assay. The water-soluble sodium salt 26 of 3 gave an IC(50) value in the high micromolar range. Molecular modeling studies were subsequently performed upon modifying the 1,3,5-trisubstituted triazine scaffold of 3. Non-phosphate derivatives encompassing cyclopropane, pyrrole, keto-acid, and IZD fragments were thus step-wise designed and their Grb2-SH2 complexes were modeled by molecular dynamics. Some derivatives gave rise to an enriched pattern of H-bonds and cation-pi interactions with Grb2-SH2.

  6. A convenient catalyst system for microwave accelerated cross-coupling of a range of aryl boronic acids with aryl chlorides

    Directory of Open Access Journals (Sweden)

    Milton Edward J


    Full Text Available Abstract A convenient microwave accelerated cross-coupling procedure between aryl chlorides with a range of boronic acids has been developed. An explanation for the low reactivity of highly fluorinated boronic acids in Suzuki coupling is provided.

  7. Linkers, resins, and general procedures for solid-phase peptide synthesis

    DEFF Research Database (Denmark)

    Shelton, Anne Pernille Tofteng; Jensen, Knud Jørgen


    and linkers for solid-phase synthesis is a key parameter for successful peptide synthesis. This chapter provides an overview of the most common and useful resins and linkers for the synthesis of peptides with C-terminal amides, carboxylic acids, and more. The chapter finishes with robust protocols for general...

  8. Detection of ligation products of DNA linkers with 5'-OH ends by denaturing PAGE silver stain.

    Directory of Open Access Journals (Sweden)

    Feng Gao

    Full Text Available To explore if DNA linkers with 5'-hydroxyl (OH ends could be joined by commercial T4 and E. coli DNA ligase, these linkers were synthesized by using the solid-phase phosphoramidite method and joined by using commercial T4 and E. coli DNA ligases. The ligation products were detected by using denaturing PAGE silver stain and PCR method. About 0.5-1% of linkers A-B and E-F, and 0.13-0.5% of linkers C-D could be joined by T4 DNA ligases. About 0.25-0.77% of linkers A-B and E-F, and 0.06-0.39% of linkers C-D could be joined by E. coli DNA ligases. A 1-base deletion (-G and a 5-base deletion (-GGAGC could be found at the ligation junctions of the linkers. But about 80% of the ligation products purified with a PCR product purification kit did not contain these base deletions, meaning that some linkers had been correctly joined by T4 and E. coli DNA ligases. In addition, about 0.025-0.1% of oligo 11 could be phosphorylated by commercial T4 DNA ligase. The phosphorylation products could be increased when the phosphorylation reaction was extended from 1 hr to 2 hrs. We speculated that perhaps the linkers with 5'-OH ends could be joined by T4 or E. coli DNA ligase in 2 different manners: (i about 0.025-0.1% of linkers could be phosphorylated by commercial T4 DNA ligase, and then these phosphorylated linkers could be joined to the 3'-OH ends of other linkers; and (ii the linkers could delete one or more nucleotide(s at their 5'-ends and thereby generated some 5'-phosphate ends, and then these 5'-phosphate ends could be joined to the 3'-OH ends of other linkers at a low efficiency. Our findings may probably indicate that some DNA nicks with 5'-OH ends can be joined by commercial T4 or E. coli DNA ligase even in the absence of PNK.

  9. Molecular Cross-Talk between Nonribosomal Peptide Synthetase Carrier Proteins and Unstructured Linker Regions. (United States)

    Harden, Bradley J; Frueh, Dominique P


    Nonribosomal peptide synthetases (NRPSs) employ multiple domains separated by linker regions to incorporate substrates into natural products. During synthesis, substrates are covalently tethered to carrier proteins that translocate between catalytic partner domains. The molecular parameters that govern translocation and associated linker remodeling remain unknown. Here, we used NMR to characterize the structure, dynamics, and invisible states of a peptidyl carrier protein flanked by its linkers. We showed that the N-terminal linker stabilizes and interacts with the protein core while modulating dynamics at specific sites involved in post-translational modifications and/or domain interactions. The results detail the molecular communication between peptidyl carrier proteins and their linkers and could guide efforts in engineering NRPSs to obtain new pharmaceuticals.

  10. Advanced hybrid fluoropolymers from the cycloaddition of aryl trifluorovinyl ethers (United States)

    Ligon, S. Clark, Jr.

    This dissertation discusses the synthesis of aryl trifluorovinyl ethers and their cycloaddition polymerization to give perfluorocyclobutyl (PFCB) polymers. To explore the stereochemistry of these polymers, simple monomfunctional aryl trifluorovinyl ethers were dimerized and the resultant cis and trans isomers were separated. Differences in structure help to improve understanding of the amorphous nature of the bulk PFCB polymeric material. To apply this knowledge, crown ether containing perfluorocyclobutyl (PFCB) polymers were synthesized for use in lithium ion battery applications. While poor solubility has hindered further development of these materials, slight modifications to structure may provide a solution. Also described is a fluorinated aryl vinyl ether and its attempted copolymerization with chlorotrifluoroethylene. While this copolymerization did not yield the desired materials, novel semifluorinated phenol precursors have been utilized in reactions with carboxylic acids to give polyesters and most recently with phosgene like species to give polycarbonates. Next, PFCB polymers were post functionalized with fluoroalkyl tethers to improve oleophobicity and hydrophobicity without decreasing thermal stability or optical clarity. In addition, various silica nanostructures were functionalized with aryl trifluorovinyl ethers. This includes the reaction of aryl silanes to give trifluorovinyl ether functional POSS and their polymerization to provide PFCB hybrid materials. Silane coupling agents were also used to functionalize colloidal silica and fumed silica nanoparticles. These procedures allow excellent dispersion of the silica nanoparticles throughout the fluoropolymer matrix. Finally, the reaction of aryl trifluorovinyl ether with nonfluorinated alkenes and alkynes was explored. In these reactions, the fluorinated olefin adds with the hydrocarbon olefin to give semifluorinated cyclobutanes (SFCB) and with the alkyne to give semifluorinated cyclobutene. The

  11. Magnetic and Spectroscopic Studies of the Synthesized Metal Complexes of Bis(Pyridine-2-carbo Hydrazide and Their Antimicrobial Studies

    Directory of Open Access Journals (Sweden)

    Netra Pal Singh


    Full Text Available Cobalt(II, Nickel(II, Copper(II and Manganese(II complexes, having the general composition {M(L2X2}, have been synthesized [where L= bis(pyridine-2-carbo hydrazide(L, and X = Cl–]. All the Metal complexes reported here have been characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic and mass spectral studies. All the complexes were found to have magnetic moments corresponding to unpaired electrons. The possible geometries of the complexes were assigned on the basis of electronic and infrared spectral studies. On the basis of molar conductance values the complexes show 1:2 electrolytic nature. Newly synthesized ligand and its Metal complexes have been screened against Staphylococcus aureus (ATCC 25923, Staphylococcus aureus (ATCC 3160 bacterial species and Candida albicans (227 and Staphylococcus cereviscae (361 fungal species.

  12. Crystal Structure of a Novel Compound: 1-Phenyl-3-ethyl-4-(salicylidene hydrazide)-propenylidene-pyrazolone-5

    Institute of Scientific and Technical Information of China (English)

    CHAI Hui; LIU Guang-Fei; LIU Lang; JIA Dian-Zeng


    A novel compound PMPP-SAL (1-phenyl-3-methyl-4-(salicylidene hydrazide)-propenylidene-pyrazolone-5) has been synthesized and characterized by elemental analysis, IR, 1H NMR and single-crystal X-ray diffraction. The X-ray diffraction reveals that the compound is of orthorhombic, space group Pbca with a = 16.132(5), b = 10.113(3), c = 23.143(7) (A), V = 3776(2) (A)3, Z = 8, C20H20N4O3, Mr= 364.40, Dc = 1.282 g/cm3, F(000) = 1536, μ(MoKα) = 0.089 mm-1, S = 0.992, R = 0.0578 and wR = 0.1362 for 1871 observed reflections with I > 2σ(Ⅰ). In the crystal, the compound possesses two C=O bonds and exists in the NH-form' other than NH-form.

  13. Synthesis and Crystal Structure of N-(1-Phenyl-3- methyl-4-benzal-pyrazolone-5)-furoic Hydrazide

    Institute of Scientific and Technical Information of China (English)

    LIU Lang; JI Ya-Li; JIA Dian-Zeng; YU Kai-Bei


    N-(1-Phenyl-3-methyl-4-benzal-pyrazolone-5)-furoic hydrazide (PMBP-FUH, C22H18N4O3, CCDC No: 188946) has been synthesized and characterized by IR spectrum, 1H NMR and single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Pbca with a = 11.870(2), b = 15.951(3), c = 19.674(3) A, V = 3725.0(11) A3, Mr = 386.40, Z = 8, Dc = 1.378 g/cm3, F(000) = 1616, R = 0.0455 and Wr = 0.0809. The inter- or intramolecular hydrogen bonds result in the formation of three-dimensional network structure.

  14. Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi

    Energy Technology Data Exchange (ETDEWEB)

    Borchhardt, Deise M.; Oliva, Glaucius; Andricopulo, Adriano D. [Universidade de Sao Paulo, Sao Carlos (USP), SP (Brazil). Centro de Biotecnologia Molecular Estrutural. Lab. de Quimica Medicinal e Computacional; Mascarello, Alessandra; Chiaradia, Louise Domeneghini; Nunes, Ricardo J.; Yunes, Rosendo A. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Centro de Ciencias Fisicas e Matematicas. Lab. Estrutura e Atividade


    Chagas' disease, a parasitic infection widely distributed throughout Latin America, is a major public health problem with devastating consequences in terms of human morbidity and mortality. The enzyme cruzain is the major cysteine protease from Trypanosoma cruzi, the etiologic agent of American trypanosomiasis or Chagas' disease, and has been selected as an attractive target for the development of novel trypanocidal drugs. In the present work, we describe the synthesis and inhibitory effects of a series of thirty-three chalcone and seven hydrazide derivatives against the enzyme cruzain from T. cruzi. Most of the compounds showed promising in vitro inhibition (IC{sub 50} values in the range of 20-60 {mu}M), which suggest the potential of these compounds as lead candidates for further development. Twelve compounds have not been reported before, and four of them (7, 13, 16 e 18) are among the most potent inhibitors of the series. (author)


    Directory of Open Access Journals (Sweden)

    Dini Dinarti


    Full Text Available The objective of this research was to study shallot bulb formation on few concentrations of growth retardant succinic acid daminozid hydrazide (SAOH. Completely Randomized Design with 2 factors were used in this experiment. The first factor was four concentrations of SAOH (0, 30, 60 and 90 ppm and second was two cultivars of shallot (Bima Juna and Kuning Tablet. The cultivars did not give significant effect to total number of leaf, shoot, root, number and weight of bulb, diameter of bulb, and height of plantlets. While SADH concentrations gave very significant effect to number of leaf, but not significant to number of root, number and weight of bulb, diameter of bulb and height of plantlets. Combinations of the two factors only gave significant effect to number of leaf and shoot but not significant to number of root, number and weight of bulb and height of plantlets

  16. Microwave-Promoted Rapid Synthesis of 1-Aryl-1, 2, 3-Triazoles

    Institute of Scientific and Technical Information of China (English)


    Aryl azides and a-keto phosphorus ylides were reacted within 4~10 minutes with silica gel support, under microwave irridiation to afford corresponding l-aryl-l, 2, 3-triazoles in moderate to good yields.

  17. Synthesis and fungicidal activity of aryl carbamic acid-5-aryl-2-furanmethyl ester. (United States)

    Li, Ying; Li, Bao-Ju; Ling, Yun; Miao, Hong-Jian; Shi, Yan-Xia; Yang, Xin-Ling


    Chitin, a major structural component of insect cuticle and fungus cell wall but absent in plants and vertebrates, is regarded as a safe and selective target for pest control agents. Chitin synthesis inhibitors (CSIs) have been well-known as insect growth regulators (IGRs) but rarely found as fungicides in agriculture. To find novel CSIs with good activity, benzoylphenylurea, a typical kind of CSIs, was chosen as the lead compound and 26 novel aryl carbamic acid-5-aryl-2-furanmethyl esters were designed by converting the urea linkages of benzoylphenylureas to carbamic acid esters and changing the aniline parts into furanmethyl groups. The title compounds were synthesized and their structures confirmed by IR, (1)H NMR, and elemental analysis. Preliminary insecticidal and fungicidal bioassays were carried out. The results indicated that the title compounds had no insecticidal effect on Culex pipiens pallens and Plutella xylostella Linnaeus , but most compounds exhibited good fungicidal activities against Corynespora cassiicola , Thanatephorus cucumeris , Botrytis cinerea , and Fusarium oxysporum . In particular, compounds V-4, V-6, V-7, and V-8 showed better activities against the four strains than those of the commercialized fungicides. The morphologic result suggested that compound V-21 had disturbed the cell wall formation of C. cassiicola. The results indicated that modification on the urea linkage of benzoylphenylurea was an effective way to discover new candidates for fungicides.

  18. Gelatin-based biomaterial engineering with anhydride-containing oligomeric cross-linkers. (United States)

    Loth, Tina; Hötzel, Rudi; Kascholke, Christian; Anderegg, Ulf; Schulz-Siegmund, Michaela; Hacker, Michael C


    Chemically cross-linked gelatin hydrogels are versatile cell-adhesive hydrogel materials that have been established for a variety of biomedical applications. The most prominent cross-linker is glutaraldehyde, which, however, has been described to cause compatibility problems and loss of microscopic but relevant structural features. A recently developed oligomeric cross-linker that contains anhydride functionalities was evaluated as cross-linker for the fabrication of gelatin-based hydrogels and microparticles. In a fast curing reaction, hydrogels composed of gelatin and oligomeric cross-linker were fabricated with good conversion over a wide concentration range of constituents and with cross-linkers of different anhydride contents. Hydrogel properties, such as dry weight and mechanics, could be controlled by hydrogel composition and rheological properties correlated to elastic moduli from 1 to 10 kPa. The gels were shown to be cytocompatible and promoted cell adhesion. In soft formulations, cells migrated into the hydrogel bulk. Gelatin microparticles prepared by a standard water-in-oil emulsion technique were also treated with the novel oligomers, and cross-linking degrees matching those obtained with glutaraldehyde were obtained. At the same time, fewer interparticular cross-links were observed. Fluorescein-derivatized cross-linkers yielded labeled microparticles in a concentration-dependent manner. The oligomeric cross-linkers are presented as an efficient and possibly more functional and compatible alternative to glutaraldehyde. The engineered hydrogel materials hold potential for various biomedical applications.

  19. Charged Triazole Cross-Linkers for Hyaluronan-Based Hybrid Hydrogels

    Directory of Open Access Journals (Sweden)

    Maike Martini


    Full Text Available Polyelectrolyte hydrogels play an important role in tissue engineering and can be produced from natural polymers, such as the glycosaminoglycan hyaluronan. In order to control charge density and mechanical properties of hyaluronan-based hydrogels, we developed cross-linkers with a neutral or positively charged triazole core with different lengths of spacer arms and two terminal maleimide groups. These cross-linkers react with thiolated hyaluronan in a fast, stoichiometric thio-Michael addition. Introducing a positive charge on the core of the cross-linker enabled us to compare hydrogels with the same interconnectivity, but a different charge density. Positively charged cross-linkers form stiffer hydrogels relatively independent of the size of the cross-linker, whereas neutral cross-linkers only form stable hydrogels at small spacer lengths. These novel cross-linkers provide a platform to tune the hydrogel network charge and thus the mechanical properties of the network. In addition, they might offer a wide range of applications especially in bioprinting for precise design of hydrogels.

  20. Ruthenium(II)-Catalyzed C-C Arylations and Alkylations: Decarbamoylative C-C Functionalizations. (United States)

    Moselage, Marc; Li, Jie; Kramm, Frederik; Ackermann, Lutz


    Ruthenium(II)biscarboxylate catalysis enabled selective C-C functionalizations by means of decarbamoylative C-C arylations. The versatility of the ruthenium(II) catalysis was reflected by widely applicable C-C arylations and C-C alkylations of aryl amides, as well as acids with modifiable pyrazoles, through facile organometallic C-C activation.

  1. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling

    KAUST Repository

    Fan, Lulu


    A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C−O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.

  2. Mechanisms and origins of switchable chemoselectivity of Ni-catalyzed C(aryl)-O and C(acyl)-O activation of aryl esters with phosphine ligands. (United States)

    Hong, Xin; Liang, Yong; Houk, K N


    Many experiments have shown that nickel with monodentate phosphine ligands favors the C(aryl)-O activation over the C(acyl)-O activation for aryl esters. However, Itami and co-workers recently discovered that nickel with bidentate phosphine ligands can selectively activate the C(acyl)-O bond of aryl esters of aromatic carboxylic acids. The chemoselectivity with bidentate phosphine ligands can be switched back to C(aryl)-O activation when aryl pivalates are employed. To understand the mechanisms and origins of this switchable chemoselectivity, density functional theory (DFT) calculations have been conducted. For aryl esters, nickel with bidentate phosphine ligands cleaves C(acyl)-O and C(aryl)-O bonds via three-centered transition states. The C(acyl)-O activation is more favorable due to the lower bond dissociation energy (BDE) of C(acyl)-O bond, which translates into a lower transition-state distortion energy. However, when monodentate phosphine ligands are used, a vacant coordination site on nickel creates an extra Ni-O bond in the five-centered C(aryl)-O cleavage transition state. The additional interaction energy between the catalyst and substrate makes C(aryl)-O activation favorable. In the case of aryl pivalates, nickel with bidentate phosphine ligands still favors the C(acyl)-O activation over the C(aryl)-O activation at the cleavage step. However, the subsequent decarbonylation generates a very unstable tBu-Ni(II) intermediate, and this unfavorable step greatly increases the overall barrier for generating the C(acyl)-O activation products. Instead, the subsequent C-H activation of azoles and C-C coupling in the C(aryl)-O activation pathway are much easier, leading to the observed C(aryl)-O activation products.

  3. Distinct binding properties of TIAR RRMs and linker region. (United States)

    Kim, Henry S; Headey, Stephen J; Yoga, Yano M K; Scanlon, Martin J; Gorospe, Myriam; Wilce, Matthew C J; Wilce, Jacqueline A


    The RNA-binding protein TIAR is an mRNA-binding protein that acts as a translational repressor, particularly important under conditions of cellular stress. It binds to target mRNA and DNA via its RNA recognition motif (RRM) domains and is involved in both splicing regulation and translational repression via the formation of "stress granules." TIAR has also been shown to bind ssDNA and play a role in the regulation of transcription. Here we show, using surface plasmon resonance and nuclear magnetic resonance spectroscopy, specific roles of individual TIAR domains for high-affinity binding to RNA and DNA targets. We confirm that RRM2 of TIAR is the major RNA- and DNA-binding domain. However, the strong nanomolar affinity binding to U-rich RNA and T-rich DNA depends on the presence of the six amino acid residues found in the linker region C-terminal to RRM2. On its own, RRM1 shows preferred binding to DNA over RNA. We further characterize the interaction between RRM2 with the C-terminal extension and an AU-rich target RNA sequence using NMR spectroscopy to identify the amino acid residues involved in binding. We demonstrate that TIAR RRM2, together with its C-terminal extension, is the major contributor for the high-affinity (nM) interactions of TIAR with target RNA sequences.

  4. Discovery of highly selective and potent monoamine oxidase B inhibitors: Contribution of additional phenyl rings introduced into 2-aryl-1,3,4-oxadiazin-5(6H)-one. (United States)

    Lee, Jungeun; Lee, Yeongcheol; Park, So Jung; Lee, Joohee; Kim, Yeong Shik; Suh, Young-Ger; Lee, Jeeyeon


    Monoamine oxidase B (MAO-B) is a flavin adenine dinucleotide (FAD)-containing enzyme that plays a major role in the oxidative deamination of biogenic amines and neurotransmitters. Inhibiting MAO-B activity is a promising approach in the treatment of neurological disorders. Here, we report a series of 2-aryl-1,3,4-oxadiazin-5(6H)-one derivatives as highly selective and potent MAO-B inhibitors. Analysis of the binding sites of hMAO-A and hMAO-B led to design of linear analogs of 2-aryl-1,3,4-oxadiazin-5(6H)-one with an additional phenyl ring. Biological evaluation of the 26 new derivatives resulted in the identification of highly potent and selective inhibitors with optimal physicochemical properties to potentially cross the blood-brain barrier (BBB). Compounds 18a, 18b, 18e and 25b potently inhibited MAO-B, with IC50 values of 4-25 nM and excellent SI over MAO-A (18a > 25000, 18b > 8333 and 18e > 4000 and 25b > 4545). Docking results suggest that an optimal linker between two aromatic rings on the 2-aryl-1,3,4-oxadiazin-5(6H)-one scaffold is a key element in the binding and inhibition of MAO-B.

  5. Library of biphenyl privileged substructures using a safety-catch linker approach

    DEFF Research Database (Denmark)

    Severinsen, Rune; Bourne, Gregory T; Tran, Tran T


    A biphenyl privileged structure library containing three attachment points were synthesized using a catechol-based safety-catch linker strategy. The method requires the attachment of a bromo-acid to the linker, followed by a Pd-catalyzed Suzuki cross-coupling reaction. Further derivatization......, activation of the linker with strong acid and aminolysis afforded the respective products in high purity and good overall yield. To show the versatility of the synthesis, a 199-member library was generated. The library samples both conformational and chemical diversity about a well-known privileged...

  6. Aryl diazonium salts new coupling agents and surface science

    CERN Document Server

    Chehimi, Mohamed Mehdi


    Diazonium compounds are employed as a new class of coupling agents to link polymers, biomacromolecules, and other species (e. g. metallic nanoparticles) to the surface of materials. The resulting high performance materials show improved chemical and physical properties and find widespread applications. The advantage of aryl diazonium salts compared to other surface modifiers lies in their ease of preparation, rapid (electro)reduction, large choice of reactive functional groups, and strong aryl-surface covalent bonding.This unique book summarizes the current knowledge of the surface and

  7. DBU-Promoted Trifluoromethylation of Aryl Iodides with Difluoromethyltriphenylphosphonium Bromide

    Institute of Scientific and Technical Information of China (English)

    Yun Wei; Liuying Yu; Jinhong Lin; Xing Zheng; Jichang Xiao


    DBU-promoted trifluoromethylation of aryl iodides with difluoromethyltriphenylphosphonium bromide (DFPB) in the presence of copper source is described.In this transformation,DBU not only acts as base to deprotonate the difluoromethyl group in DFPB to generate difluoromethylene phosphonium ylide Ph3P+CF2,but also converts the difluorocarbene generated from ylide Ph3P+CF2 into trifluoromethyl anion,finally resulting in the trifluoromethylation of aryl iodides.The reactions proceeded smoothly to afford expected products in moderate to good yields.

  8. Synthesis, urease inhibition, antioxidant and antibacterial studies of some 4-amino-5-aryl-3H-1,2,4-triazole-3-thiones and their 3,6-disubstituted 1,2,4-triazolo[3,4-b]1,3,4-thiadiazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, Muhammad; Saleem, Muhammad; Rama, Nasim Hasan, E-mail:, E-mail: [Department of Chemistry, Quaid-i-Azam University, Islamabad (Pakistan); Hussain, Muhammad Tahir [Department of Applied Sciences, National Textile University, Faisalabad (Pakistan); Zaib, Sumera; Aslam, Muhammad Adil M.; Iqbal, Jamshed [Department of Pharmaceutical Sciences, COMSATS Institute of Information Technology, Abbottabad (Pakistan); Jones, Peter G. [Institute for Inorganic and Analytical Chemistry, Technical University of Braunschweig, Braunschweig (Germany)


    A new series of 4-amino-5-aryl-3H-1,2,4-triazole-3-thiones, bearing various methoxybenzyl- and methoxyphenethyl groups, was synthesized by refluxing potassium hydrazinecarbodithioate salts in dilute aqueous solution of hydrazine hydrate. These salts were formed by the reaction of acid hydrazides and carbon disulfide in methanolic potassium hydroxide solution at 0-5 deg C. 4-Amino- 5-aryl-3H-1,2,4-triazole-3-thiones were condensed with different substituted aromatic acids to yield 3,6-disubstituted-1,2,4-triazolo[3,4-b]1,3,4-thiadiazoles. The structures of the synthesized compounds were characterized by infrared (IR), {sup 1}H and {sup 13}C nuclear magnetic resonance (NMR), elemental analysis and mass spectrometric (MS) studies. All the synthesized compounds were screened for their urease inhibition, antioxidant and antibacterial activities. Some compounds showed excellent urease inhibition activity, more than the standard drug. Others exhibited potent antioxidant activity. All the compounds showed significant antibacterial activities as compared to the standard drug. (author)

  9. Rearrangement of 2-Benzothiazolylthioacetyl Hydrazide in Ethanol Solution of Potassium Hydroxide: Synthesis of s-Triazolo[3,4-b]benzothiazol-3-thiol and Its Derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yan(张艳); HUI,Xin-Ping(惠新平); DAI,Chao-Feng(戴朝峰); ZHANG,Zi-Yi(张自义); XU,Peng-Fei(许鹏飞)


    A novel rearrangement reaction about 2-benzothiazolylthioacetyl hydrazide (1) to produce s-triazolo[3,4-b]benzothiazol-3-thiol (3) in the presence of KOH and CS2 was described. Other way to synthesize 3 from 2-benzothiazolylhydrazine (2) under the same condition was compared and the Mannich reaction of compound 3 was reported too. Their structures were established by elemental analyses, IR, 1H NMR and MS spectra.

  10. Novel Synthesis of Hydrazide-Hydrazone Derivatives and Their Utilization in the Synthesis of Coumarin, Pyridine, Thiazole and Thiophene Derivatives with Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Rafat M. Mohareb


    Full Text Available The reaction of cyanoacetyl hydrazine (1 with 3-acetylpyridine (2 gave the hydrazide-hydrazone derivative 3. The latter compound undergoes a series of heterocyclization reactions to give new heterocyclic compounds. The antitumor evaluation of the newly synthesized products against three cancer cell lines, namely breast adenocarcinoma (MCF-7, non-small cell lung cancer (NCI-H460 and CNS cancer (SF-268 was performed. Most of the synthesized compounds showed high inhibitory effects.

  11. Design and Synthesis of Bis-amide and Hydrazide-containing Derivatives of Malonic Acid as Potential HIV-1 Integrase Inhibitors

    Directory of Open Access Journals (Sweden)

    Nouri Neamati


    Full Text Available HIV-1 integrase (IN is an attractive and validated target for the development of novel therapeutics against AIDS. In the search for new IN inhibitors, we designed and synthesized three series of bis-amide and hydrazide-containing derivatives of malonic acid. We performed a docking study to investigate the potential interactions of the title compounds with essential amino acids on the IN active site.

  12. Antagonistic effects of ethyl methanesulfonate and maleic hydrazide in inducing somatic mutations in the stamen hairs of Tradescantia clone BNL 4430


    市川, 定夫


    Mutagenic interaction between ethyl methanesulfonate (EMS; a monofunctional alkylating agent) and maleic hydrazide (MH; a promutagen activated into a mutagen in plants highly likely by peroxidase) was studied in the stamen hairs of Tradescantia clone BNL 4430, a blue/pink heterozygote. Since EMS has been shown to act synergistically with X rays in inducing mutations, and mutagenic synergisms have also been observed between X rays and MH by exposing to X rays before MH treatments, EMS and MH w...

  13. Pseudoephedrine-Directed Asymmetric α-Arylation of α-Amino Acid Derivatives. (United States)

    Atkinson, Rachel C; Fernández-Nieto, Fernando; Mas Roselló, Josep; Clayden, Jonathan


    Available α-amino acids undergo arylation at their α position in an enantioselective manner on treatment with base of N'-aryl urea derivatives ligated to pseudoephedrine as a chiral auxiliary. In situ silylation and enolization induces diastereoselective migration of the N'-aryl group to the α position of the amino acid, followed by ring closure to a hydantoin with concomitant explulsion of the recyclable auxiliary. The hydrolysis of the hydantoin products provides derivatives of quaternary amino acids. The arylation avoids the use of heavy-metal additives, and is successful with a range of amino acids and with aryl rings of varying electronic character.

  14. Pd-NHC-Catalyzed Alkynylation of General Aryl Sulfides with Alkynyl Grignard Reagents. (United States)

    Baralle, Alexandre; Yorimitsu, Hideki; Osuka, Atsuhiro


    Cross-coupling reactions of unactivated aryl sulfides with alkynylmagnesium chloride have been invented to afford 1-aryl-1-alkynes with the aid of a palladium/N-heterocyclic carbene complex. This reaction has by far the widest scope of all transformations utilizing aryl sulfides and alkynes, while known cross-coupling alkynylations of aryl-sulfur electrophiles require activated azaaryl sulfides, thiolactams, or arenesulfonyl chlorides. The alkynylation of aryl sulfides is compatible with typical protecting functional groups. The alkynylation is applied to the synthesis of benzofuran-based fluorescent molecules by taking advantage of characteristic organosulfur chemistry.

  15. P-Link: A method for generating multicomponent cytochrome P450 fusions with variable linker length

    DEFF Research Database (Denmark)

    Belsare, Ketaki D.; Ruff, Anna Joelle; Martinez, Ronny


    Fusion protein construction is a widely employed biochemical technique, especially when it comes to multi-component enzymes such as cytochrome P450s. Here we describe a novel method for generating fusion proteins with variable linker lengths, protein fusion with variable linker insertion (P......-LinK),. which was validated by fusing P450(cin) monooxygenase (CinA) to the flavodoxin shuttle protein (CinC). CinC was fused to the C terminus of CinA through a series of 16 amino acid linkers of different lengths in a single experiment employing 3 PCR amplifications. Screening for 2-beta-hydroxy-1,8-cineole...... but also requires only a single cloning and transformation step in order to generate multiple linker variants (1 to 16 amino acids long), making the approach technically simple and robust....

  16. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili


    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structural analysis of the S4-S5 linker of the human KCNQ1 potassium channel. (United States)

    Gayen, Shovanlal; Li, Qingxin; Kang, CongBao


    KCNQ1 plays important roles in the cardiac action potential and consists of an N-terminal domain, a voltage-sensor domain, a pore domain and a C-terminal domain. KCNQ1 is a voltage-gated potassium channel and its channel activity is regulated by membrane potentials. The linker between transmembrane helices 4 and 5 (S4-S5 linker) is important for transferring the conformational changes from the voltage-sensor domain to the pore domain. In this study, the structure of the S4-S5 linker of KCNQ1 was investigated by solution NMR, circular dichroism and fluorescence spectroscopic studies. The S4-S5 linker adopted a helical structure in detergent micelles. The W248 may interact with the cell membrane.

  18. Two Principles of Reticular Chemistry Uncovered in a Metal-Organic Framework of Heterotritopic Linkers and Infinite Secondary Building Units. (United States)

    Catarineu, Noelle R; Schoedel, Alexander; Urban, Philipp; Morla, Maureen B; Trickett, Christopher A; Yaghi, Omar M


    Structural diversity of metal-organic frameworks (MOFs) has been largely limited to linkers with at most two different types of coordinating groups. MOFs constructed from linkers with three or more nonidentical coordinating groups have not been explored. Here, we report a robust and porous crystalline MOF, Zn3(PBSP)2 or MOF-910, constructed from a novel linker PBSP (phenylyne-1-benzoate, 3-benzosemiquinonate, 5-oxidopyridine) bearing three distinct types of coordinative functionality. The MOF adopts a complex and previously unreported topology termed tto. Our study suggests that simple, symmetric linkers are not a necessity for formation of crystalline extended structures and that new, more complex topologies are attainable with irregular, heterotopic linkers. This work illustrates two principles of reticular chemistry: first, selectivity for helical over straight rod secondary building units (SBUs) is achievable with polyheterotopic linkers, and second, the pitch of the resulting helical SBUs may be fine-tuned based on the metrics of the polyheterotopic linker.

  19. Derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide as new antibacterial agents: synthesis and bioactivity

    Institute of Scientific and Technical Information of China (English)

    Wen-yuan YU; Li-xia YANG; Jian-shu XIE; Ling ZHOU; Xue-yuan JIANG; De-xu ZHU; Mutsumi MURAMATSU; Ming-wei WANG


    Aim: The aim of the present study was to design, synthesize, and evaluate novel antibacterial agents, derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide. Methods: A total of 44 derivatives of aryl-4-guanidin-omethylbenzoate (series A) and N-aryl-4-guanidinomethylbenzamide (series B) were synthesized and their antibacterial activities were assessed in vitro against a variety of Gram-positive and Gram-negative bacteria by an agar dilution method. Results: Twelve compounds showed potent bactericidal effects against a panel of Gram-positive germs, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), vancomycin-intermediate Sta-phylococcus aureus (VISA), and methicillin-resistant coagulase-negative staphy-lococci (MRCNS), with minimum inhibitory concentrations (MIC) ranging be-tween 0.5 and 8 μg/mL, which were comparable to the MIC values of several marketed antibiotics. They exhibited weak or no activity on the Gram-negative bacteria tested. In addition, these compounds displayed high inhibitory activities towards oligopeptidase B of bacterial origin. Conclusion: In comparison with the previ-ously reported MIC values of several known antibiotics, the derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide showed com-parable in vitro bactericidal activities against VRE and VISA as linezolid. Their growth inhibitory effects on MRSA were similar to vancomycin, but were less potent than linezolid and vancomycin against MRCNS. This class of compounds may have the potential to be developed into narrow spectrum antibacterial agents against certain drug-resistant strains of bacteria.

  20. Application of matrix solid-phase dispersion to the propham and maleic hydrazide determination in potatoes by differential pulse voltammetry and HPLC. (United States)

    Arribas, Alberto Sánchez; Bermejo, Esperanza; Chicharro, Manuel; Zapardiel, Antonio


    The application of the matrix solid-phase dispersion (MSPD) process as sample treatment in connection with the electrochemical detection is studied for the first time. For this purpose, a novel methodology is introduced for the extraction of propham and maleic hydrazide herbicides from potatoes samples based in the MSPD process prior to their electrochemical detection. Potato samples disruption was done by blending them with C(8) bonded-phase and selective herbicide extraction was achieved by successive treatment of the blended with 50mM phosphate buffer pH 7.4 (for maleic hydrazide) and methanol (for propham). The extraction procedure efficiency was estimated using differential pulse voltammetry in potato samples spiked with the herbicides yielding recovery values of 98% and 68% for propham and maleic hydrazide, respectively. No significant adverse effect of the MSPD process was observed on the herbicides electrochemical signals. For comparison, recovery studies using HPLC with UV detection were carried out and a good correlation in the results obtained by using both techniques was observed.

  1. Efficient loading of primary alcohols onto a solid phase using a trityl bromide linker

    DEFF Research Database (Denmark)

    Crestey, François; Ottesen, Lars Korsgaard; Jaroszewski, Jerzy Witold


    The Letter describes an improved, rapid and mild strategy for the loading of primary alcohols onto a polystyrene trityl resin via a highly reactive trityl bromide linker. This protocol facilitates an efficient resin loading even of acid-sensitive or heat-labile alcohols, which otherwise require...... of a sensitive alcohol containing an activated aziridine functionality, the use of the trityl bromide linker proved superior to a recently described silver triflate-assisted trityl chloride resin-based procedure....

  2. Monte Carlo analysis of neck linker extension in kinesin molecular motors.

    Directory of Open Access Journals (Sweden)

    Matthew L Kutys

    Full Text Available Kinesin stepping is thought to involve both concerted conformational changes and diffusive movement, but the relative roles played by these two processes are not clear. The neck linker docking model is widely accepted in the field, but the remainder of the step--diffusion of the tethered head to the next binding site--is often assumed to occur rapidly with little mechanical resistance. Here, we investigate the effect of tethering by the neck linker on the diffusive movement of the kinesin head, and focus on the predicted behavior of motors with naturally or artificially extended neck linker domains. The kinesin chemomechanical cycle was modeled using a discrete-state Markov chain to describe chemical transitions. Brownian dynamics were used to model the tethered diffusion of the free head, incorporating resistive forces from the neck linker and a position-dependent microtubule binding rate. The Brownian dynamics and chemomechanical cycle were coupled to model processive runs consisting of many 8 nm steps. Three mechanical models of the neck linker were investigated: Constant Stiffness (a simple spring, Increasing Stiffness (analogous to a Worm-Like Chain, and Reflecting (negligible stiffness up to a limiting contour length. Motor velocities and run lengths from simulated paths were compared to experimental results from Kinesin-1 and a mutant containing an extended neck linker domain. When tethered by an increasingly stiff spring, the head is predicted to spend an unrealistically short amount of time within the binding zone, and extending the neck is predicted to increase both the velocity and processivity, contrary to experiments. These results suggest that the Worm-Like Chain is not an adequate model for the flexible neck linker domain. The model can be reconciled with experimental data if the neck linker is either much more compliant or much stiffer than generally assumed, or if weak kinesin-microtubule interactions stabilize the diffusing

  3. Modular construction of plasmids through ligation-free assembly of vector components with oligonucleotide linkers. (United States)

    Vroom, Jonathan A; Wang, Clifford L


    We have developed a modular method of plasmid construction that can join multiple DNA components in a single reaction. A nicking enzyme is used to create 5' and 3' overhangs on PCR-generated DNA components. Without the use of ligase or restriction enzymes, components are joined using oligonucleotide linkers that recognize the overhangs. By specifying the sequences of the linkers, desired components can be assembled in any combination and order to generate different plasmid vectors.

  4. Pd-NHC-Catalyzed Direct Arylation of 1,4-Disubstituted 1,2,3-Triazoles with Aryl Halides

    Institute of Scientific and Technical Information of China (English)

    何涛; 王敏; 李品华; 王磊


    A highly efficient method for the synthesis of unsymmetrical multi-substituted 1,2,3-triazoles via a direct Pd-NHC system catalyzed C(5)-arylation of 1,4-disubstituted triazoles, which are readily accessible via "click" chemistry has been developed. It is important to note that C--H bond functionalizations of 1,2,3-triazoles with a variety of differently substituted aryl iodides and bromides as electrophiles can be conveniently achieved through this catalytic system at significantly milder reaction temperatures of 100 ℃ under air.

  5. Role of the S4-S5 linker in CNG channel activation. (United States)

    Kusch, Jana; Zimmer, Thomas; Holschuh, Jascha; Biskup, Christoph; Schulz, Eckhard; Nache, Vasilica; Benndorf, Klaus


    Cyclic nucleotide-gated (CNG) channels mediate sensory signal transduction in retinal and olfactory cells. The channels are activated by the binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus that is located at the intracellular side. The molecular events translating the ligand binding to the pore opening are still unknown. We investigated the role of the S4-S5 linker in the activation process by quantifying its interaction with other intracellular regions. To this end, we constructed chimeric channels in which the N-terminus, the S4-S5 linker, the C-linker, and the CNBD of the retinal CNGA1 subunit were systematically replaced by the respective regions of the olfactory CNGA2 subunit. Macroscopic concentration-response relations were analyzed, yielding the apparent affinity to cGMP and the Hill coefficient. The degree of functional coupling of intracellular regions in the activation gating was determined by thermodynamic double-mutant cycle analysis. We observed that all four intracellular regions, including the relatively short S4-S5 linker, are involved in controlling the apparent affinity of the channel to cGMP and, moreover, in determining the degree of cooperativity between the subunits, as derived from the Hill coefficient. The interaction energies reveal an interaction of the S4-S5 linker with both the N-terminus and the C-linker, but no interaction with the CNBD.

  6. Amberlyst-15 catalyzed synthesis of alkyl/aryl/heterocyclic phosphonates

    Institute of Scientific and Technical Information of China (English)

    U.M. Rao Kunda; V.N. Reddy Mudumala; C.S. Reddy Gangireddy; B.R. Nemallapudi; K.N. Sandip; S.R. Cirandur


    A novel and efficient procedure for the synthesis of alkyl phosphonates through one pot condensation of alkyl halide and tri-alkyl/aryl phosphite in the presence of Amberlyst-15 as catalyst under solvent free conditions was applied. It demonstrated several advantages such as good yields of products, simple operation, convenient separation and inexpensive catalyst.

  7. Rh-Catalyzed arylation of fluorinated ketones with arylboronic acids. (United States)

    Dobson, Luca S; Pattison, Graham


    The Rh-catalyzed arylation of fluorinated ketones with boronic acids is reported. This efficient process allows access to fluorinated alcohols in high yields under mild conditions. Competition experiments suggest that difluoromethyl ketones are more reactive than trifluoromethyl ketones in this process, despite their decreased electronic activation, an effect we postulate to be steric in origin.

  8. Oxidative electrochemical aryl C-C coupling of spiropyrans

    NARCIS (Netherlands)

    Ivashenko, Oleksii; van Herpt, Jochem T.; Rudolf, Petra; Feringa, Ben L.; Browne, Wesley R.


    The isolation and definitive assignment of the species formed upon electrochemical oxidation of nitro-spiropyran (SP) is reported. The oxidative aryl C-C coupling at the indoline moiety of the SP radical cation to form covalent dimers of the ring-closed SP form is demonstrated. The coupling is block

  9. Aminoarenethiolate-Copper(I)-Catalyzed Amination of Aryl Bromides

    NARCIS (Netherlands)

    Jerphagnon, Thomas; Klink, Gerard P.M. van; Vries, Johannes G. de; Koten, Gerard van


    Aminoarenethiolate-copper(I) complexes are known to be efficient catalysts for carbon-carbon bond formation. Here, we show the first examples that these thiolate-copper(I) complexes are efficient for carbon-nitrogen bond formation reactions as well. N-Arylation of benzylamine and imidazole with brom

  10. Kinetic Resolution of Aryl Alkenylcarbinols Catalyzed by Fc-PIP

    Institute of Scientific and Technical Information of China (English)

    胡斌; 孟萌; 姜山山; 邓卫平


    An effective kinetic resolution of a variety of aryl alkenylcarbinols catalyzed by nonenzymatic acyl transfer catalyst Fe-PIP was developed, affording corresponding unreacted alcohols in good to excellent ee value up to 99% and with selectivity factors up to 24.

  11. Synthesis and properties of poly(sulfone-arylate) copolymers

    NARCIS (Netherlands)

    Stephen, Ranimol; Gibon, Cécile M.; Weber, Martin; Gaymans, Reinoud J.


    Poly(sulfone-arylate) was synthesized in a reaction between dihydroxy polysulfone prepolymers and either diphenyl terephthalate or terephthaloyl chloride. The dihydroxy polysulfone prepolymers had molecular weights of 2000 and 4000 g/mol. The polymerization with diphenyl terephthalate was carried ou

  12. Quantitative Analysis of Surface-Immobilized Hydrazide Groups by Spectrophotometry%分光光度法测定固相表面酰肼活化基团

    Institute of Scientific and Technical Information of China (English)

    周雷激; 任志敏; 赵征寰


    建立了一种测定固相表面酰肼基团含量的方法.运用Fe(Ⅲ)-邻二氮菲显色体系,通过固相表面具有较强还原性的酰肼基团将Fe(Ⅲ)还原为Fe(Ⅱ),生成的Fe(Ⅱ)可与邻二氮菲生成稳定的桔红色络合物,从而利用分光光度法测定溶液体系吸光度来表征固相表面酰肼基团的含量.该方法在0~0.02 μmol/mL范围内呈良好线性关系,线性相关系数r=0.9975,检出限为5.4×10-4 μmol/mL.用该方法测出微珠固相表面酰肼基团的活化效率为72%.方法可以很好地应用于固相载体表面酰肼基团的测定.%A measurement approach of hydrazide groups on solid-phase surface by spectrophotometry was reported. By reducing Fe (Ⅲ ) to Fe (Ⅱ ) in solutions with microbead surface-conjugate hydrazide groups, a stable orange-red complex of Fe ( Ⅱ )-orthophenanthroline was formed. The content of hydrazide groups on the bead surface was then characterized by spectrophotometric measurement. This method has advantages of high sensitivity, simplicity and practicability. The linear range is from 0 to 0. 02 /μmol/mL with the linear correlation coefficient of 0. 9975 and detection limit of 5. 4×10-4μmol/mL (S/N = 3). In this method, 72% of the activation efficiency of the hydrazide groups activated on the carboxylated microbead surface was detected. It is promising to apply the approach to the quantitative assessment of hydrazide groups on various solid-phase surfaces.

  13. N-alkanol-N-cyclohexanol amine aryl esters: Multidrug resistance (MDR) reversing agents with high potency and efficacy. (United States)

    Teodori, Elisabetta; Dei, Silvia; Coronnello, Marcella; Floriddia, Elisa; Bartolucci, Gianluca; Manetti, Dina; Romanelli, Maria Novella; Santo Domingo Porqueras, Diego; Salerno, Milena


    In a continuing search for potent P-gp-dependent multidrug-resistant (MDR) reversers we synthesized and studied a new series of N-alkanol-N-cyclohexanol amine aryl esters characterized by the presence of two linkers with different flexibility: a polymethylene chain of variable length and a cyclohexylic scaffold, that gave origin to two geometrical isomers (cis and trans). The reversal activity of the new compounds was evaluated on the K562/DOX cell line by three tests: pirarubicin uptake modulation, doxorubicin cytotoxicity enhancement (reversal fold, RF) and inhibition of P-gp-mediated rhodamine-123 (Rhd 123) efflux tests. The chemical stability of their ester function was evaluated in the experimental conditions utilized (phosphate buffer solution (PBS), bovine serum and in the presence of K562/DOX cells) and in human plasma. The new series of molecules showed very interesting MDR reversing properties; in particular compound 5b (ELF26B), characterized by trans stereochemistry and a 5-methylene chain, presented the best pharmacological profile and is stable in each tested medium. Compound 5b could be an interesting lead for the development of new potent and efficacious P-gp-dependent MDR modulators.

  14. Thermodynamically Guided Synthesis of Mixed-Linker Zr-MOFs with Enhanced Tunability. (United States)

    Yuan, Shuai; Qin, Jun-Sheng; Zou, Lanfang; Chen, Ying-Pin; Wang, Xuan; Zhang, Qiang; Zhou, Hong-Cai


    Guided by thermodynamics, we have synthesized two mixed-linker zirconium-based metal-organic frameworks (Zr-MOFs), namely, PCN-133 and PCN-134. Both of them possess a layer-pillar structure, in which the connection between Zr6 clusters and primary BTB linkers form a (3,6)-connected kdg layer that is further extended into 3D frameworks by auxiliary DCDPS/TCPP linkers (BTB = benzene tribenzoate, DCDPS = 4,4'-dicarboxydiphenyl sulfone, TCPP = tetrakis(4-carboxyphenyl)porphyrin). PCN-134 demonstrates high porosity (N2 uptake of 717 cm(3)·g(-1) and BET surface area of 1946 cm(2)·g(-1)) and excellent chemical stability in aqueous solutions with pH values ranging from 0 to 13. More importantly, PCN-134 tolerates the partial absence of auxiliary linkers leading to structural defects during the assembly process while preserving its framework integrity. Furthermore, the defect density can be systematically controlled by tuning the occupancy of the auxiliary linker, which in turn affects the MOF properties. For instance, the dichromate uptake of PCN-134 is tuned by adjusting the BTB/TCPP ratios, which gives rise to an efficient dichromate absorbent when the TCPP molar ratio in linkers is set as 22%. In addition, the photocatalytic reduction of Cr(VI) in aqueous solution was also performed by PCN-134-22%TCPP which exhibits excellent catalytic activity. This work not only opens up a new synthetic route toward mixed-linker MOFs, but also provides tunable control of MOF defects and, in turn, the properties.

  15. Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II) (United States)

    Peng, Donglai; Hu, Bin; Kang, Mengmeng; Wang, Minghua; He, Linghao; Zhang, Zhihong; Fang, Shaoming


    An electrochemical sensor based on gold nanoparticles (Au NPs) modified with rhodamine B hydrazide (RBH) (AuNPs-RBH) was developed and applied in the highly sensitive and selective detection of Cu2+ in water. RBH molecules were bounded onto the surface of AuNPs via the strong interaction between the amino groups and Au NPs. The chemical structure variations were characterized by X-ray photoelectron spectroscopy and fluoresence spectroscopy. Additionally, electrochemical impedance spectroscopy was used to determine Cu2+ ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. Results show that the fabricated sensor exhibits good electrochemical performance because of the presence of Au NPs and high affinity with the Cu2+ resulting from the strong coordination chemistry between Cu2+ and RBH. The as-developed sensor towards detecting Cu2+ has a detection limitation of 12.5 fM within the concentration range of 0.1 pM-1 nM by using the electrochemical impedance technique. It also displays excellent selectivity, regeneration, stability, and practicability for Cu2+ detection. Therefore, the new strategy of the RBH-based electrochemical sensor exhibits great potential application in environment treatment and protection.

  16. The synthesis, characterization and theoretical study on nicotinic acid [1-(2,3-dihydroxyphenyl)methylidene]hydrazide. (United States)

    Dege, Necmi; Senyüz, Nuray; Batı, Hümeyra; Günay, Nergin; Avcı, Davut; Tamer, Ömer; Atalay, Yusuf


    In this study, we reported a combined experimental and theoretical study on nicotinic acid [1-(2,3-dihydroxyphenyl)methylidene]hydrazide (C13H11N3O3) molecule. The title compound was prepared and characterized by 1H and 13C FT-NMR, FT-IR and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P2₁/c with a=6.2681(3) Å, b=16.5309(7) Å, c=12.4197(6) Å, α=90°, β=111.603(4)°, γ=90° and Z=4. In addition, the molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO), continuous set of gauge transformations (CSGT), individual gauges for atoms in molecules (IGAIM) 1H and 13C NMR chemical shift values, natural bond orbital (NBO), nonlinear optical (NLO) and HOMO-LUMO analyses, molecular electrostatic potentials (MEPs) and thermodynamic properties of the title compound in the ground state were investigated by using Hartree-Fock (HF) and density functional theory (DFT/B3LYP) methods with 6-311++G(d,p). Besides, the hardness and electronegativity parameters were obtained from HOMO and LUMO energies. Obtained results indicate that there is a good agreement between the experimental and theoretical data.

  17. Water-Regulated Self-Assembly Structure Transformation and Gelation Behavior Prediction Based on a Hydrazide Derivative. (United States)

    Li, Yajie; Ran, Xia; Li, Qiuyue; Gao, Qiongqiong; Guo, Lijun


    Herein, we report the water-regulated supramolecular self-assembly structure transformation and the predictability of the gelation ability based on an azobenzene derivative bearing a hydrazide group, namely, N-(3,4,5-tributoxyphenyl)-N'-4-[(4-hydroxyphenyl)azophenyl] benzohydrazide (BNB-t4). The regulation effects are demonstrated in the morphological transformation from spherical to lamellar particles then back to spherical in different solvent ratios of n-propanol/water. The self-assembly behavior of BNB-t4 was characterized by minimum gelation concentration, microstructure, thermal, and mechanical stabilities. From the spectroscopy studies, it is suggested that gel formation of BNB-t4 is mainly driven by intermolecular hydrogen bonding, accompanied with the contribution from π-π stacking as well as hydrophobic interactions. The successfully established correlation between the self-assembly behavior and solubility parameters yields a facile way to predict the gelation performance of other molecules in other single or mixed solvents.

  18. Synthesis, biological investigation, calf thymus DNA binding and docking studies of the sulfonyl hydrazides and their derivatives (United States)

    Murtaza, Shahzad; Shamim, Saima; Kousar, Naghmana; Tahir, Muhammad Nawaz; Sirajuddin, Muhammad; Rana, Usman Ali


    The present study describes the syntheses and biological investigations of sulfonyl hydrazides and their novel derivatives. The detailed investigations involved the characterization of the newly synthesized compounds using FTIR, NMR, mass spectrometry and by single crystal X-Ray diffraction (XRD) analysis techniques. The binding tendencies of these compounds with CT-DNA (calf thymus DNA) have been explored by electronic absorption (UV) spectroscopy and viscosity measurement. The binding constant (K) and Gibb's free energy (ΔG) values were also calculated accordingly. In addition, we also investigated the biological activities such as antioxidant, antibacterial, enzyme inhibition and DNA interactions. The antioxidant activity was assayed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, while antibacterial activity was investigated against four bacterial strains (viz. Escherichia coli, Crynibacteria bovius, Staphylococcus auras and Bacillus antherasis) by employing the common disc diffusion method. Enzyme inhibition activity of the synthesized compounds was examined against butyrylcholinestrase. The results of enzyme inhibition activity and the DNA binding interaction studies were also collected through molecular docking program using computational analysis. Our study reveals that the newly synthesized compounds possess moderate to good biological activities.

  19. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro, Shelly Ann [Univ. of California, Berkeley, CA (United States)


    The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of LC7.8, further narrowed the candidates for interaction sites with the PC chromophores. Measurements of the absorption, fluorescence, CD and excitation anisotropy of PC trimer, PC/LR32.3, and PC/LRC28.5, document the spectroscopic effect of each linker peptide on the PC chromophores at a series of temperatures (298 to 77 K

  20. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro, Shelly A.


    The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of LC7.8, further narrowed the candidates for interaction sites with the PC chromophores. Measurements of the absorption, fluorescence, CD and excitation anisotropy of PC trimer, PC/LR32.3, and PC/LRC28.5, document the spectroscopic effect of each linker peptide on the PC chromophores at a series of temperatures (298 to 77 K). Because LR32.3 and LRC28.5 modulate the PC trimer spectral properties in distinct manners, it suggests different chromophore-interaction mechanisms for each linker. The low temperature absorbance spectrum of the PC trimer is consistent with an excitonic

  1. Tuning cooperativity by controlling the linker length of silica-supported amines in catalysis and CO2 capture. (United States)

    Brunelli, Nicholas A; Didas, Stephanie A; Venkatasubbaiah, Krishnan; Jones, Christopher W


    Cooperative interactions between aminoalkylsilanes and silanols on a silica surface can be controlled by varying the length of the alkyl linker attaching the amine to the silica surface from C1 (methyl) to C5 (pentyl). The linker length strongly affects the catalytic cooperativity of amines and silanols in aldol condensations as well as the adsorptive cooperativity for CO(2) capture. The catalytic cooperativity increases with the linker length up to propyl (C3), with longer, more flexible linkers (up to C5) providing no additional benefit or hindrance. Short linkers (C1 and C2) limit the beneficial amine-silanol cooperativity in aldol condensations, resulting in lower catalytic rates than with the C3+ linkers. For the same materials, the adsorptive cooperativity exhibits similar trends for CO(2) capture efficiency.

  2. The measles virus phosphoprotein interacts with the linker domain of STAT1

    Energy Technology Data Exchange (ETDEWEB)

    Devaux, Patricia, E-mail:; Priniski, Lauren; Cattaneo, Roberto


    The measles virus (MV) phosphoprotein (P) and V proteins block the interferon (IFN) response by impeding phosphorylation of the signal transducer and activator of transcription 1 (STAT1) by the Janus kinase 1 (JAK1). We characterized how STAT1 mutants interact with P and JAK1 phosphorylation. Certain mutants of the linker, the Src-homology 2 domain (SH2), or the transactivation domain had reduced or abolished phosphorylation through JAK1 after IFN treatment. Other mutants, mainly localized in the linker, failed to interact with P as documented by the lack of interference with nuclear translocation. Thus the functional footprint of P on STAT1 localizes mainly to the linker domain; there is also some overlap with the STAT1 phosphorylation functional footprint on the SH2 domain. Based on these observations, we discuss how the MV-P might operate to inhibit the JAK/STAT pathway. - Highlights: • Residue in the linker and SH2 domains of STAT1 are important for MV-P interaction. • Residue in the linker and SH2 domains of STAT1 are important for STAT1 phosphorylation. • Residues interferring with both functions have similar location on STAT1. • The viral P and V proteins may operate in concert to inhibit the JAK/STAT pathway.

  3. A Partial Calcium-Free Linker Confers Flexibility to Inner-Ear Protocadherin-15. (United States)

    Powers, Robert E; Gaudet, Rachelle; Sotomayor, Marcos


    Tip links of the inner ear are protein filaments essential for hearing and balance. Two atypical cadherins, cadherin-23 and protocadherin-15, interact in a Ca(2+)-dependent manner to form tip links. The largely unknown structure and mechanics of these proteins are integral to understanding how tip links pull on ion channels to initiate sensory perception. Protocadherin-15 has 11 extracellular cadherin (EC) repeats. Its EC3-4 linker lacks several of the canonical Ca(2+)-binding residues, and contains an aspartate-to-alanine polymorphism (D414A) under positive selection in East Asian populations. We present structures of protocadherin-15 EC3-5 featuring two Ca(2+)-binding linker regions: canonical EC4-5 linker binding three Ca(2+) ions, and non-canonical EC3-4 linker binding only two Ca(2+) ions. Our structures and biochemical assays reveal little difference between the D414 and D414A variants. Simulations predict that the partial Ca(2+)-free EC3-4 linker exhibits increased flexural flexibility without compromised mechanical strength, providing insight into the dynamics of tip links and other atypical cadherins.

  4. A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors (United States)

    Schwendeman, Andrew R.; Shaham, Shai


    Programmed cell death is a ubiquitous process in metazoan development. Apoptosis, one cell death form, has been studied extensively. However, mutations inactivating key mammalian apoptosis regulators do not block most developmental cell culling, suggesting that other cell death pathways are likely important. Recent work in the nematode Caenorhabditis elegans identified a non-apoptotic cell death form mediating the demise of the male-specific linker cell. This cell death process (LCD, linker cell-type death) is morphologically conserved, and its molecular effectors also mediate axon degeneration in mammals and Drosophila. To develop reagents to manipulate LCD, we established a simple high-throughput screening protocol for interrogating the effects of small molecules on C. elegans linker cell death in vivo. From 23,797 compounds assayed, 11 reproducibly block linker cell death onset. Of these, five induce animal lethality, and six promote a reversible developmental delay. These results provide proof-of principle validation of our screening protocol, demonstrate that developmental progression is required for linker cell death, and suggest that larger scale screens may identify LCD-specific small-molecule regulators that target the LCD execution machinery. PMID:27716809

  5. Palladium-catalyzed direct arylation and cyclization of o-iodobiaryls to a library of tetraphenylenes (United States)

    Zhu, Chendan; Zhao, Yue; Wang, Di; Sun, Wei-Yin; Shi, Zhuangzhi


    Aryl–aryl bond formation constitutes one of the most important subjects in organic synthesis. The recent developments in direct arylation reactions forming aryl–aryl bond have emerged as very attractive alternatives to traditional cross-coupling reactions. Here, we describe a general palladium-catalyzed direct arylation and cyclization of o-iodobiaryls to build a library of tetraphenylenes. This transformation represents one of the very few examples of C-H activation process that involves simultaneous formation of two aryl–aryl bonds. Oxygen plays a vital role by ensuring high reactivity, with air as the promoter furnished the best results. We anticipate this ligand-free and aerobic catalytic system will simplify the synthesis of tetraphenylenes as many of the reported methods involve use of preformed organometallic reagents and will lead to the discovery of highly efficient new direct arylation process.

  6. Linker length and flexibility induces new cellobiohydrolase activity of PoCel6A from Penicillium oxalicum. (United States)

    Gao, Le; Wang, Lushan; Jiang, Xukai; Qu, Yinbo


    In a previous study, a novel cellobiohydrolase, PoCel6A, with new enzymatic activity against p-nitrophenyl-β-D-cellobioside (pNPC), was purified from Penicillium oxalicum. The cellulose-binding module and catalytic domain of PoCel6A showed a high degree of sequence similarity with other fungal Cel6As. However, PoCel6A had 11 more amino acids in the linker region than other Cel6As. To evaluate the relationship between the longer linker of PoCel6A and its enzymatic activity, 11 amino acids were deleted from the linker region of PoCel6A. The shortened PoCel6A linker nullified the enzymatic activity against pNPC but dramatically increased the enzyme's capacity for crystalline cellulose degradation. The shortened linker segment appeared to have no effect on the secondary structural conformation of PoCel6A. Another variant (PoCel6A-6pro) with six consecutive proline residues in the interdomain linker had a higher rigid linker, and no enzymatic activity was observed against soluble and insoluble substrate. The flexibility of the linker had an important function in the formation of active cellulase. The length and flexibility of the linker is clearly able to modify the function of PoCel6A and induce new characteristics of Cel6A.

  7. Chaperone-like effect of the linker on the isolated C-terminal domain of rabbit muscle creatine kinase. (United States)

    Chen, Zhe; Chen, Xiang-Jun; Xia, Mengdie; He, Hua-Wei; Wang, Sha; Liu, Huihui; Gong, Haipeng; Yan, Yong-Bin


    Intramolecular chaperones (IMCs), which are specific domains/segments encoded in the primary structure of proteins, exhibit chaperone-like activity against the aggregation of the other domains in the same molecule. In this research, we found that the truncation of the linker greatly promoted the thermal aggregation of the isolated C-terminal domain (CTD) of rabbit muscle creatine kinase (RMCK). Either the existence of the linker covalently linked to CTD or the supply of the synthetic linker peptide additionally could successfully protect the CTD of RMCK against aggregation in a concentration-dependent manner. Truncated fragments of the linker also behaved as a chaperone-like effect with lower efficiency, revealing the importance of its C-terminal half in the IMC function of the linker. The aggregation sites in the CTD of RMCK were identified by molecular dynamics simulations. Mutational analysis of the three key hydrophobic residues resulted in opposing effects on the thermal aggregation between the CTD with intact or partial linker, confirming the role of linker as a lid to protect the hydrophobic residues against exposure to solvent. These observations suggested that the linkers in multidomain proteins could act as IMCs to facilitate the correct folding of the aggregation-prone domains. Furthermore, the intactness of the IMC linker after proteolysis modulates the production of off-pathway aggregates, which may be important to the onset of some diseases caused by the toxic effects of aggregated proteolytic fragments.

  8. A linker peptide with high affinity towards silica-containing materials. (United States)

    Sunna, Anwar; Chi, Fei; Bergquist, Peter L


    A peptide sequence with affinity to silica-containing materials was fused to a truncated form of Streptococcus strain G148 Protein G. The resulting recombinant Linker-Protein G (LPG) was produced in Escherichia coli and purified to apparent homogeneity. It displayed high affinity towards two natural clinoptilolite zeolites. The LPG also displayed high binding affinity towards commercial-grade synthetic zeolite, silica and silica-containing materials. A commercial sample of the truncated Protein G and a basic protein, both without the linker, did not bind to natural or synthetic zeolites or silica. We conclude that the zeolite-binding affinity is mediated by the linker peptide sequence. As a consequence, these data may imply that the binding affinity is directed to the SiO2 component rather than to the atomic orientation on the zeolite crystal surface as previously assumed.

  9. Modeling neck linker of kinesin motor movement with MRSR stochastic differential equation (United States)

    Razali, Wan Qashishah Akmal Wan; Ramli, Siti Norafidah Mohd; Radiman, Shahidan


    Stochastic differential equation has a significant role in a range of biological areas including molecular motor like kinesin motor. Mean-reverting square root (MRSR) stochastic differential equation is commonly used in economics and finance areas. In this study, we use the MRSR stochastic differential equation to model neck linker motion of kinesin motor by considering the possibilities of rightward direction and occasionally in the leftward direction of kinesin movements. This neck linker docking model of kinesin motor incorporates the conformational change in the chemical kinetics and the tethered diffusion of the free head of kinesin motor. Here, we demonstrate this model by using Hookean spring method which referred to the stiffness model of neck linker. The motion of kinesin motor seems to be well described to move in unidirectional way with volatile behavior based on MRSR rather than common stochastic differential equation [DOI 10.1007/s11538-011-9697-6].

  10. Smart linkers in polymer-drug conjugates for tumor-targeted delivery. (United States)

    Chang, Minglu; Zhang, Fang; Wei, Ting; Zuo, Tiantian; Guan, Yuanyuan; Lin, Guimei; Shao, Wei


    To achieve effective chemotherapy, many types of drug delivery systems have been developed for the specific environments in tumor tissues. Polymer-drug conjugates are increasingly used in tumor therapy due to several significant advantages over traditional delivery systems. In the fabrication of polymer-drug conjugates, a smart linker is an important component that joins two fragments or molecules together and can be cleared by a specific stimulus, which results in targeted drug delivery and controlled release. By regulating the conjugation between the drug and the nanocarriers, stimulus-sensitive systems based on smart linkers can offer high payloads, certified stability, controlled release and targeted delivery. In this review, we summarize the current state of smart linkers (e.g. disulfide, hydrazone, peptide, azo) used recently in various polymer-drug conjugate-based delivery systems with a primary focus on their sophisticated design principles and drug delivery mechanisms as well as in vivo processes.

  11. Wheat Gluten Blends with Maleic Anhydride-Functionalized Polyacrylate Cross-Linkers for Improved Properties. (United States)

    Diao, Cheng; Xia, Hongwei; Parnas, Richard S


    A family of polyacrylate-based cross-linkers was synthesized to maximize the toughness of high Tg, high modulus wheat gluten blends in the glassy state. Mechanical testing and damping measurements were conducted to provide an example where the work of fracture and strength of the blend substantially exceeds polystyrene while maintaining flexure stiffness in excess of 3 GPa. The new rubbery cross-linkers, polymethyl acrylate-co-maleic anhydride and polyethyl acrylate-co-maleic anhydride, improve WG mechanical properties and reduce water absorption simultaneously. MDSC, FTIR, HPLC, and NMR data confirmed the cross-linking reaction with wheat gluten. Flexural, DMA, and water absorption testing were carried out to characterize the property improvements. DMA was conducted to investigate the relationship between energy damping and mechanical property improvement. If the cross-linker damping temperature is close to the testing temperature, the entire sample exhibits high damping, toughness, and strength.

  12. Cul/8-Hydroxyquinalidine Promoted N-Arylation of Indole and Azoles

    Institute of Scientific and Technical Information of China (English)

    杨新业; 邢辉; 张烨; 赖宜生; 张奕华; 蒋咏文; 马大为


    An efficient catalytic system of CuI/8-hydroxyquinalidine was developed for the coupling of aryl iodides and indole as well as some azoles. The reaction could be carried out at 90 ~C under the condition of relatively low cata- lyst loading, affording various N-arylindoles and N-aryl azoles in good yields. The functionalized and hindered aryl iodides were suitable substrates for this transformation.

  13. Nickel-catalyzed cross-coupling of aryl phosphates with arylboronic acids. (United States)

    Chen, Hu; Huang, Zhongbin; Hu, Xiaoming; Tang, Guo; Xu, Pengxiang; Zhao, Yufen; Cheng, Chien-Hong


    The Suzuki-Miyaura cross-coupling of aryl phosphates using Ni(PCy(3))(2)Cl(2) as an inexpensive, bench-stable catalyst is described. Broad substrate scope and high efficiency are demonstrated by the syntheses of more than 40 biaryls and by constructing complex organic molecules. The poor reactivity of aryl phosphates relative to aryl halides is successfully employed to construct polyarenes by selective cross-coupling using Pd and Ni catalysts.

  14. Menthone aryl acid hydrazones: a new class of anticonvulsants. (United States)

    Jain, Jainendra; Kumar, Y; Sinha, Reema; Kumar, Rajeev; Stables, James


    A series of ten compounds (Compounds J(1)-J(10)) of (±) 3-menthone aryl acid hydrazone was synthesized and characterized by thin layer chromatography and spectral analysis. Synthesized compounds were evaluated for anticonvulsant activity after intraperitoneal (i.p) administration to mice by maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) induced seizure method and minimal clonic seizure test. Minimal motor impairment was also determined for these compounds. Results obtained showed that four compounds out of ten afforded significant protection in the minimal clonic seizure screen at 6 Hz. Compound J(6), 4-Chloro-N-(2-isopropyl-5-methylcyclohexylidene) benzohydrazide was found to be the most active compound with MES ED(50) of 16.1 mg/kg and protective index (pI) of greater than 20, indicating that (±) 3-menthone aryl acid hydrazone possesses better and safer anticonvulsant properties than other reported menthone derivatives viz. menthone Schiff bases, menthone semicarbazides and thiosemicarbazides.

  15. Palladium-catalyzed α-arylation of benzylic phosphine oxides. (United States)

    Montel, Sonia; Jia, Tiezheng; Walsh, Patrick J


    A novel approach to prepare diarylmethyl phosphine oxides from benzyl phosphine oxides via deprotonative cross-coupling processes (DCCP) is reported. The optimization of the reaction was guided by High-Throughput Experimentation (HTE) techniques. The Pd(OAc)2/Xantphos-based catalyst enabled the reaction between benzyl diphenyl or dicyclohexyl phosphine oxide derivatives and aryl bromides in good to excellent yields (51-91%).

  16. Palladium- (and nickel-) catalyzed vinylation of aryl halides†


    DENMARK, SCOTT E.; Butler, Christopher R.


    Functionalized styrenes are extremely useful building blocks for organic synthesis and for functional polymers. One of the most general syntheses of styrenes involves the combination of an aryl halide with a vinyl organometallic reagent under catalysis by palladium or nickel complexes. This Feature Article provides the first comprehensive summary of the vinylation methods currently available along with a critical comparison of the efficiency, cost and scope of the methods.

  17. Antileishmanial, antimicrobial and antifungal activities of some new aryl azomethines. (United States)

    Al-Kahraman, Yasser M S A; Madkour, Hassan M F; Ali, Dildar; Yasinzai, Masoom


    A series of eighteen azomethines has been synthesized by the reaction of appropriate primary aromatic amines with aryl and/or heteroaryl carboxaldehydes. The synthesized azomethines have been evaluated for their in vitro antileishmanial, antibacterial and antifungal activities. The results revealed some antifungal activity of most of the synthesized compounds, whereas the antileishmaniasis activity results highlighted that all synthesized azomethines inhibited parasite growth and most of them showed highly potent action towards Leishmania major promastigotes. No remarkable bactericidal activities were observed.

  18. Synthesis and characterization of 5-heteroarylsulfanyl-4-aryl-1,2,3-selena/thiadiazoles

    Indian Academy of Sciences (India)

    Ramaiyan Manikannan; Masilamani Shanmugaraja; Seetharaman Manojveer; Shanmugam Muthusubramanian


    Synthesis and spectral characterization of 2-methyl-5-[(4-aryl-1,2,3-selenadiazol-5-yl)sulfanyl]-1,3,4-thiadiazoles, 5-[4-aryl-1,2,3-selenadiazol-5-yl]sulfanyl-1-phenyl-1-1,2,3,4-tetraazoles, 4-aryl-5-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanyl]-1,2,3-thiadiazole and 5-[4-aryl-1,2,3-thiadiazol-5-yl]sulfanyl-1-phenyl-1-1,2,3,4-tetraazole have been reported.

  19. Synthesis of novel aryl(heteroaryl)sulfonyl ureas of possible biological interest. (United States)

    Saczewski, Franciszek; Kuchnio, Anna; Samsel, Monika; Łobocka, Marta; Kiedrowska, Agnieszka; Lisewska, Karolina; Saczewski, Jarosław; Gdaniec, Maria; Bednarski, Patrick J


    The course of reaction of aryl and heteroaryl sulfonamides with diphenylcarbonate (DPC) and 4-dimethylaminopyridine (DMAP) was found to depend on the pKa of the sulfonamide used. Aryl sulfonamides with pKa approximately 10 gave 4-dimethylamino-pyridinium arylsulfonyl-carbamoylides, while the more acidic heteroaryl sulfonamides (pKa approximately 8) furnished 4-dimethylaminopyridinium heteroarylsulfonyl carbamates. Both the carbamoylides and carbamate salts reacted with aliphatic and aromatic amines with the formation of appropriate aryl(heteroaryl)sulfonyl ureas, and therefore, can be regarded as safe and stable substitutes of the hazardous and difficult to handle aryl(heteroaryl)sulfonyl isocyanates.

  20. Synthesis of Novel Aryl(heteroarylsulfonyl Ureas of Possible Biological Interest

    Directory of Open Access Journals (Sweden)

    Maria Gdaniec


    Full Text Available The course of reaction of aryl and heteroaryl sulfonamides with diphenylcarbonate (DPC and 4-dimethylaminopyridine (DMAP was found to depend on the pKa of the sulfonamide used. Aryl sulfonamides with pKa ~ 10 gave 4-dimethylamino-pyridinium arylsulfonyl-carbamoylides, while the more acidic heteroaryl sulfonamides (pKa ~ 8 furnished 4-dimethylaminopyridinium heteroarylsulfonyl carbamates. Both the carbamoylides and carbamate salts reacted with aliphatic and aromatic amines with the formation of appropriate aryl(heteroarylsulfonyl ureas, and therefore, can be regarded as safe and stable substitutes of the hazardous and difficult to handle aryl(heteroarylsulfonyl isocyanates.

  1. Impact of metal-alkoxide functionalized linkers on H2 binding: A density functional study (United States)

    Banu, Tahamida; Ghosh, Avik; Das, Abhijit K.


    The effect of metal-alkoxide functionalization of different organic linkers on the H2 binding is investigated employing DFT approach. While analyzing the H2 binding interaction of magnesium-alkoxide modified benzene, naphthalene, anthracene and pyrene linkers, we find their comparable affinity toward H2 molecules. Six-member alkoxide ring containing naphthalene and pyrene systems interact with the H2 molecules in a comparatively better way than their five-member analogues. AIM, NBO and LMO-EDA analyses have been performed to comprehend the bonding nature between Mg center and the H2 molecules. Polarization along with the charge transfer interactions play significant role in stabilizing the systems.

  2. Replacement of the human topoisomerase linker domain with the plasmodial counterpart renders the enzyme camptothecin resistant

    DEFF Research Database (Denmark)

    Arnò, Barbara; D'Annessa, Ilda; Tesauro, Cinzia;


    , but it is characterized by a much faster religation rate. The hybrid enzyme is also camptothecin resistant. A 3D structure of the hybrid enzyme has been built and its structural-dynamical properties have been analyzed by molecular dynamics simulation. The analysis indicates that the swapped plasmodial linker samples......A human/plasmodial hybrid enzyme, generated by swapping the human topoisomerase IB linker domain with the corresponding domain of the Plasmodium falciparum enzyme, has been produced and characterized. The hybrid enzyme displays a relaxation activity comparable to the human enzyme...... in the modulation of the topoisomerase IB activity....

  3. Synthesis, Characterization and Thermal Analysis of a New Acetic Acid (2-Hydroxy-benzylidene)-hydrazide and its Complexes with Hg(II) and Pd(II)


    Sahebalzamani, Hajar; GHAMMAMY, Shahriare; Dexhkam, Shaghayegh; Moghadam, Alireza Hemati; Siavoshifar, Farhod


    The new complexes have been synthesized by the reaction of Hg(II) and Pd(II) with acetic acid(2-hydroxy-benzylidene)- hydrazide (L). These new complexes were characterized by elemental analysis, IR, H NMR spectroscopy and UV spectral techniques. The changes observed between the FT-IR, H NMR and UV-Vis spectra of the ligands and of the complexes allowed us to establish the coordination mode of the metal in complexes. Thermal properties, TG-DTA of these complexes were studied. TG- DTA and other...

  4. A photolabile linker for the solid-phase synthesis of 4-substituted NH-1,2,3-triazoles

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Nielsen, Thomas Eiland


    A novel photolabile linker for solid-phase synthesis is presented. The linker displays an azido handle for copper-catalyzed azide–alkyne cycloaddition reactions with a variety of alkynes, remains intact under typical solid-phase reaction conditions, and enables a mild photolytic release of 4-subs......-substituted NH-triazoles in high purity and yield....

  5. Backbone amide linker strategy for the synthesis of 1,4-triazole-containing cyclic tetra- and pentapeptides

    NARCIS (Netherlands)

    Springer, J.; de Cuba, K.R.; Calvet-Vitale, S.; Geenevasen, J.A.J.; Hermkens, P.H.H.; Hiemstra, H.; van Maarseveen, J.H.


    A backbone amide linker strategy was chosen for the solid-phase synthesis of triazole-containing Cyclic tetra- and pentapeptides. An alkyne-substituted linker derived from 4-hydroxy-2-methoxybenzaldehyde was elongated by using standard "Fmoc-based" solid phase chemistry and terminated by coupling of

  6. Onset of grain filling is associated with a change in properties of linker histone variants in maize kernels

    DEFF Research Database (Denmark)

    Kalamajka, R.; Finnie, Christine; Grasser, K.D.


    , the linker histones isolated from 16 dap kernels consistently displayed a lower affinity for DNA than the proteins isolated from 11 dap kernels. These findings suggest that the affinity for DNA of the linker histones may be regulated by post-translational modification and that the reduction in DNA affinity...

  7. Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry

    DEFF Research Database (Denmark)

    Bahrt, Frederikke; Dimitrov, Ivaylo; Daugaard, Anders Egede


    An azide-containing, trifunctional vinyl cross-linker for silicone networks has been synthesized. The cross-linker has through Cu(i) catalyzed 1,3-cycloaddition been reacted with six different alkyne-containing chemical groups which each possess a particular functionality. The functional cross-li...... The Royal Society of Chemistry....

  8. General Approach for Introduction of Various Chemical Labels in Specific RNA Locations Based on Insertion of Amino Linkers

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer


    Full Text Available Introduction of reporter groups at designed RNA sites is a widely accepted approach to gain information about the molecular environment of RNAs in their complexes with other biopolymers formed during various cellular processes. A general approach to obtain RNAs bearing diverse reporter groups at designed locations is based on site-specific insertion of groups containing primary aliphatic amine functions (amino linkers with their subsequent selective derivatization by appropriate chemicals. This article is a brief review on methods for site-specific introduction of amino linkers in different RNAs. These methods comprise: (i incorporation of a nucleoside carrying an amino-linker or a function that can be substituted with it into oligoribonucleotides in the course of their chemical synthesis; (ii assembly of amino linker-containing RNAs from short synthetic fragments via their ligation; (iii synthesis of amino linker-modified RNAs using T7 RNA polymerase; (iv insertion of amino linkers into unmodified RNAs at functional groups of a certain type such as the 5'-phosphates and N7 of guanosine residues and (v introduction of an amino linker into long highly structured RNAs exploiting an approach based on sequence-specific modification of nucleic acids. Particular reporter groups used for derivatization of amino linker-containing RNAs together with types of RNA derivatives obtained and fields of their application are presented.

  9. Influence of linker length and composition on enzymatic activity and ribosomal binding of neomycin dimers. (United States)

    Watkins, Derrick; Kumar, Sunil; Green, Keith D; Arya, Dev P; Garneau-Tsodikova, Sylvie


    The human and bacterial A site rRNA binding as well as the aminoglycoside-modifying enzyme (AME) activity against a series of neomycin B (NEO) dimers is presented. The data indicate that by simple modifications of linker length and composition, substantial differences in rRNA selectivity and AME activity can be obtained. We tested five different AMEs with dimeric NEO dimers that were tethered via triazole, urea, and thiourea linkages. We show that triazole-linked dimers were the worst substrates for most AMEs, with those containing the longer linkers showing the largest decrease in activity. Thiourea-linked dimers that showed a decrease in activity by AMEs also showed increased bacterial A site binding, with one compound (compound 14) even showing substantially reduced human A site binding. The urea-linked dimers showed a substantial decrease in activity by AMEs when a conformationally restrictive phenyl linker was introduced. The information learned herein advances our understanding of the importance of the linker length and composition for the generation of dimeric aminoglycoside antibiotics capable of avoiding the action of AMEs and selective binding to the bacterial rRNA over binding to the human rRNA.

  10. Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors (United States)

    Johann, D.; Goswami, D.; Kruse, K.


    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.

  11. Rapid construction of mechanically- confined multi- cellular structures using dendrimeric intercellular linker. (United States)

    Mo, Xuejun; Li, Qiushi; Yi Lui, Lena Wai; Zheng, Baixue; Kang, Chiang Huen; Nugraha, Bramasta; Yue, Zhilian; Jia, Rui Rui; Fu, Hong Xia; Choudhury, Deepak; Arooz, Talha; Yan, Jie; Lim, Chwee Teck; Shen, Shali; Hong Tan, Choon; Yu, Hanry


    Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications.

  12. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. (United States)

    Liu, Lu-Ning; Chen, Xiu-Lan; Zhang, Yu-Zhong; Zhou, Bai-Cheng


    Cyanobacteria and red algae have intricate light-harvesting systems comprised of phycobilisomes that are attached to the outer side of the thylakoid membrane. The phycobilisomes absorb light in the wavelength range of 500-650 nm and transfer energy to the chlorophyll for photosynthesis. Phycobilisomes, which biochemically consist of phycobiliproteins and linker polypeptides, are particularly wonderful subjects for the detailed analysis of structure and function due to their spectral properties and their various components affected by growth conditions. The linker polypeptides are believed to mediate both the assembly of phycobiliproteins into the highly ordered arrays in the phycobilisomes and the interactions between the phycobilisomes and the thylakoid membrane. Functionally, they have been reported to improve energy migration by regulating the spectral characteristics of colored phycobiliproteins. In this review, the progress regarding linker polypeptides research, including separation approaches, structures and interactions with phycobiliproteins, as well as their functions in the phycobilisomes, is presented. In addition, some problems with previous work on linkers are also discussed.

  13. A two-photon activatable amino acid linker for the induction of fluorescence. (United States)

    Friedrich, Felix; Klehs, Kathrin; Fichte, Manuela A H; Junek, Stephan; Heilemann, Mike; Heckel, Alexander


    A new one- and two-photon activatable fluorophore based on ATTO565 was developed using a photolabile linker that simultaneously acts as a quencher. It is especially interesting for protein and peptide applications because it can be incorporated by standard peptide chemistry. The application of the new fluorogenic construct in super-resolution microscopy of antibody conjugates is shown.

  14. Cellular delivery and antisense effects of peptide nucleic acid conjugated to polyethyleneimine via disulfide linkers

    DEFF Research Database (Denmark)

    Berthold, Peter R; Shiraishi, Takehiko; Nielsen, Peter E


    for PNA due to the (inherent) charge neutrality of PNA. However, PEI could function as an efficient scaffold for PNA via chemical conjugation. Accordingly, we modified PEI with the amine-reactive heterobifunctional linker agent N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) (with and without a PEG...

  15. Novel nucleosomal particles containing core histones and linker DNA but no histone H1. (United States)

    Cole, Hope A; Cui, Feng; Ocampo, Josefina; Burke, Tara L; Nikitina, Tatiana; Nagarajavel, V; Kotomura, Naoe; Zhurkin, Victor B; Clark, David J


    Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these 'proto-chromatosomes' are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.

  16. Solid-phase synthesis of polyfunctional polylysine dendrons using aldehyde linkers

    DEFF Research Database (Denmark)

    Svenssen, Daniel K.; Mirsharghi, Sahar; Boas, Ulrik


    A straightforward method for the solid-phase synthesis of C-terminally modified polylysine dendrons has been developed by applying bisalkoxybenzaldehyde and trisalkoxybenzaldehyde linkers. The method has been used for the synthesis of polylysine dendrons with a variety of C-terminal ‘tail groups’...

  17. Loop-length-dependent SVM prediction of domain linkers for high-throughput structural proteomics. (United States)

    Ebina, Teppei; Toh, Hiroyuki; Kuroda, Yutaka


    The prediction of structural domains in novel protein sequences is becoming of practical importance. One important area of application is the development of computer-aided techniques for identifying, at a low cost, novel protein domain targets for large-scale functional and structural proteomics. Here, we report a loop-length-dependent support vector machine (SVM) prediction of domain linkers, which are loops separating two structural domains. (DLP-SVM is freely available at: approximately domserv/cgi-bin/DLP-SVM.cgi.) We constructed three loop-length-dependent SVM predictors of domain linkers (SVM-All, SVM-Long and SVM-Short), and also built SVM-Joint, which combines the results of SVM-Short and SVM-Long into a single consolidated prediction. The performances of SVM-Joint were, in most aspects, the highest, with a sensitivity of 59.7% and a specificity of 43.6%, which indicated that the specificity and the sensitivity were improved by over 2 and 3% respectively, when loop-length-dependent characteristics were taken into account. Furthermore, the sensitivity and specificity of SVM-Joint were, respectively, 37.6 and 17.4% higher than those of a random guess, and also superior to those of previously reported domain linker predictors. These results indicate that SVMs can be used to predict domain linkers, and that loop-length-dependent characteristics are useful for improving SVM prediction performances.


    Institute of Scientific and Technical Information of China (English)

    SUN Weimin; LUO Juntao; HUANG Wenqiang; ZHU Xiaoxia


    A use of Sulfonate ester as a linker in synthesis of ω-aminoalkanols was reported. Diols were tethered onto polystyryl sulfonyl chloride resin, yielding sulfonate resins (2). After cleaved by diethyl amine, diisopropylamine and propylamine respectively, three ω-aminoalkanols were obtained.


    Institute of Scientific and Technical Information of China (English)

    SUNWeimin; ZHUXiaoxia; 等


    A use of sulfonate ester as a linker in synthesis of w-aminoalkanols was reporte.Diols were tethered onto polystyryl sulfonyl chloride resin,yielding sulfonate resins(2).After cleaved by diethyl amine,diisopropylamine and propylamine respectively,three w-aminoalkanlos were obtained.

  20. A Class of Rigid Linker-bearing Glucosides for Membrane Protein Structural Study

    DEFF Research Database (Denmark)

    Sadaf, Aiman; Mortensen, Jonas S; Capaldi, Stefano;


    with a branched tail group and a triglucoside head group. These head and tail groups were connected via an amide or ether linkage by using a tris(hydroxylmethyl)aminomethane (TRIS) or neopentyl glycol (NPG) linker to produce TRIS-derived triglucosides (TDTs) and NPG-derived triglucosides (NDTs), respectively...

  1. Arsenic metalation of seaweed Fucus vesiculosus metallothionein: the importance of the interdomain linker in metallothionein. (United States)

    Ngu, Thanh T; Lee, Janice A; Rushton, Moira K; Stillman, Martin J


    The presence of metallothionein in seaweed Fucus vesiculosus has been suggested as the protecting agent against toxic metals in the contaminated waters it can grow in. We report the first kinetic pathway data for A3+ binding to an algal metallothionein, F. vesiculosus metallothionein (rfMT). The time and temperature dependence of the relative concentrations of apo-rfMT and the five As-containing species have been determined following mixing of As3+ and apo-rfMT using electrospray ionization mass spectrometry (ESI MS). Kinetic analysis of the detailed time-resolved mass spectral data for As3+ metalation allows the simulation of the metalation reactions showing the consumption of apo-rfMT, the formation and consumption of As1- to As4-rfMT, and subsequent, final formation of As5-rfMT. The kinetic model proposed here provides a stepwise analysis of the metalation reaction showing time-resolved occupancy of the Cys7 and the Cys9 domain. The rate constants (M(-1) s(-1)) calculated from the fits for the 7-cysteine gamma domain are k1gamma, 19.8, and k2gamma, 1.4, and for the 9-cysteine beta domain are k1beta, 16.3, k2beta, 9.1, and k3beta, 2.2. The activation energies and Arrhenius factors for each of the reaction steps are also reported. rfMT has a long 14 residue linker, which as we show from analysis of the ESI MS data, allows each of its two domains to bind As3+ independently of each other. The analysis provides for the first time an explanation of the differing metal-binding properties of two-domain MTs with linkers of varying lengths, suggesting further comparison between plant (with long linkers) and mammalian (with short linkers) metallothioneins will shed light on the role of the interdomain linker.

  2. Ammonium Chloride Promoted Palladium-Catalyzed Ullmann Coupling of Aryl Bromide

    Institute of Scientific and Technical Information of China (English)

    李金恒; 梁云; 刘文杰; 唐石; 谢叶香


    In water, ammonium chloride was found to promote palladium-catalyzed Ullmann coupling reactions of aryl bromides. In the presence of Pd/C, zinc, NH4Cl, and water, coupling of various aryl bromides was carried out smoothly to afford the corresponding homocoupling products in moderate yields.

  3. Catalytic membrane-installed microchannel reactors for one-second allylic arylation. (United States)

    Yamada, Yoichi M A; Watanabe, Toshihiro; Torii, Kaoru; Uozumi, Yasuhiro


    A variety of catalytic membranes of palladium-complexes with linear polymer ligands were prepared inside a microchannel reactor via coordinative and ionic molecular convolution to provide catalytic membrane-installed microdevices, which were applied to the instantaneous allylic arylation reaction of allylic esters and aryl boron reagents under microflow conditions to afford the corresponding coupling products within 1 second of residence time.

  4. Unusual selectivity-determining factors in the phosphine-free Heck arylation of allyl ethers

    DEFF Research Database (Denmark)

    Ambrogio, I.; Fabrizi, G.; Cacchi, S.


    The Heck reaction of aryl iodides and bromides with allyl ethers has been investigated. Using phosphinefree Pd(OAc)(2) in DNIF at 90 degrees C in the presence of Bu4NOAc, the reaction gave cinnamyl derivatives, usually in good to high yields, with a wide range of aryl halides. The reaction tolera...

  5. Oxidative addition of aryl chlorides to monoligated palladium(0): A DFT-SCRF study

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Norrby, Per-Ola


    Oxidative addition of aryl chlorides to palladium has been investigated by hybrid density functional theory methods (B3LYP), including a continuum model describing the solvent implicitly. A series of para-substituted aryl chlorides were studied to see the influence of electronic effects on the re...

  6. Modular approach to novel chiral aryl-ferrocenyl phosphines by Suzuki cross-coupling

    DEFF Research Database (Denmark)

    Jensen, Jakob Feldthusen; Søtofte, Inger; Sorensen, H.O.;


    Two novel planar chiral and atropisomeric P,N and P,O aryl-ferrocenyl ligand systems have been developed. The strategy is short and involves a new synthetic approach to aryl-ferrocenyl compounds via a Suzuki cross-coupling procedure. The modular design can easily give access to variety of chiral ...

  7. Synthesis of 3-cyano-4-aryl-5-ethoxycarbonyl-6-methyl-3,4-dihydropyridine-2-thiones

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, A.A.; Liepin' sh, E.E.; Pelcher, Yu.E.; Kalme, Z.A.; Dipan, I.V.; Dubur, G.Ya.


    The condensation of ethyl arylidenacetoacetate with cyanothioacetamide and of arylidenecyanothioacetamides with ethyl acetoacetate or of arylidenecyanothioacetamides with ethyl ..beta..-aminocrotonate gave 3-cyano-4-aryl-5-ethoxycarbonyl-6-methyl-3,4-dihydropyridine-2-thiones. PMR spectroscopy showed that the 3-cyano-4-aryl-3,4-dihydro-pyridine-2-thiones are formed as a mixture of cis and trans isomers.

  8. Unprecedentedly mild direct Pd-catalyzed arylation of oxazolo[4,5-b]pyridine

    DEFF Research Database (Denmark)

    Zhuravlev, Fedor


    Pd-catalyzed C-2 arylation of oxazolo[4,5-b]pyridine proceeds efficiently at 30 degrees C and tolerates a variety of aryl halides, including derivatized amino acids for which no racemization was observed during the reaction. Experimental evidence for facile deprotonation of oxazolo[4,5-b]pyridine...

  9. Biodistribution of the chimeric monoclonal antibody U36 radioiodinated with a closo-dodecaborate-containing linker. Comparison with other radioiodination methods.

    NARCIS (Netherlands)

    Nestor, M; Persson, M; Cheng, J.; Tolmachev, V; Dongen, van G.A.M.S.; Anniko, M; Kairemo, K


    We have evaluated the applicability of the [(4-isothiocyanatobenzylammonio)undecahydro-closo-dodecaborate (1-)] (DABI) linker molecule for antibody radiohalogenation and compared it to radiohalogenation using the linker N-succinimidyl 4-iodobenzoate (PIB) and to direct radiohalogenation using Chlora

  10. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials. (United States)

    Hoang, Tuan K A; Webb, Michael I; Mai, Hung V; Hamaed, Ahmad; Walsby, Charles J; Trudeau, Michel; Antonelli, David M


    In this paper we demonstrate that the Kubas interaction, a nondissociative form of weak hydrogen chemisorption with binding enthalpies in the ideal 20-30 kJ/mol range for room-temperature hydrogen storage, can be exploited in the design of a new class of hydrogen storage materials which avoid the shortcomings of hydrides and physisorpion materials. This was accomplished through the synthesis of novel vanadium hydrazide gels that use low-coordinate V centers as the principal Kubas H(2) binding sites with only a negligible contribution from physisorption. Materials were synthesized at vanadium-to-hydrazine ratios of 4:3, 1:1, 1:1.5, and 1:2 and characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption, elemental analysis, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. The material with the highest capacity possesses an excess reversible storage of 4.04 wt % at 77 K and 85 bar, corresponding to a true volumetric adsorption of 80 kg H(2)/m(3) and an excess volumetric adsorption of 60.01 kg/m(3). These values are in the range of the ultimate U.S. Department of Energy goal for volumetric density (70 kg/m(3)) as well as the best physisorption material studied to date (49 kg H(2)/m(3) for MOF-177). This material also displays a surprisingly high volumetric density of 23.2 kg H(2)/m(3) at room temperature and 85 bar--roughly 3 times higher than that of compressed gas and approaching the DOE 2010 goal of 28 kg H(2)/m(3). These materials possess linear isotherms and enthalpies that rise on coverage and have little or no kinetic barrier to adsorption or desorption. In a practical system these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in many hydrogen test vehicles, to dramatically increase the amount of hydrogen stored and therefore the range of any vehicle.

  11. Catalytic arylation methods from the academic lab to industrial processes

    CERN Document Server

    Burke, Anthony J


    A current view of the challenging field of catalytic arylation reactions. Clearly structured, the chapters in this one-stop resource are arranged according to the reaction type, and focus on novel, efficient and sustainable processes, rather than the well-known and established cross-coupling methods.The entire contents are written by two authors with academic and industrial expertise to ensure consistent coverage of the latest developments in the field, as well as industrial applications, such as C-H activation, iron and gold-catalyzed coupling reactions, cycloadditions or novel methodologies

  12. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia

    Directory of Open Access Journals (Sweden)

    Guofeng Xie


    Full Text Available For both men and women, colorectal cancer (CRC is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.

  13. Antileishmanial, Antimicrobial and Antifungal Activities of Some New Aryl Azomethines

    Directory of Open Access Journals (Sweden)

    Masoom Yasinzai


    Full Text Available A series of eighteen azomethines has been synthesized by the reaction of appropriate primary aromatic amines with aryl and/or heteroaryl carboxaldehydes. The synthesized azomethines have been evaluated for their in vitro antileishmanial, antibacterial and antifungal activities. The results revealed some antifungal activity of most of the synthesized compounds, whereas the antileishmaniasis activity results highlighted that all synthesized azomethines inhibited parasite growth and most of them showed highly potent action towards Leishmania major promastigotes. No remarkable bactericidal activities were observed.

  14. Role of the Aryl Hydrocarbon Receptor in Colon Neoplasia

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Guofeng, E-mail:; Raufman, Jean-Pierre [Division of Gastroenterology and Hepatology, Veterans Administration Maryland Health Care System, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)


    For both men and women, colorectal cancer (CRC) is the second leading cause of cancer death in the United States, primarily as a consequence of limited therapies for metastatic disease. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor with diverse functions in detoxification of xenobiotics, inflammatory responses, and tissue homeostasis. Emerging evidence indicates that AhR also plays an important role in regulating intestinal cell proliferation and tumorigenesis. Here, we review both the pro- and anti-carcinogenic properties of AhR signaling and its potential role as a therapeutic target in CRC.

  15. CyTargetLinker: a cytoscape app to integrate regulatory interactions in network analysis.

    Directory of Open Access Journals (Sweden)

    Martina Kutmon

    Full Text Available INTRODUCTION: The high complexity and dynamic nature of the regulation of gene expression, protein synthesis, and protein activity pose a challenge to fully understand the cellular machinery. By deciphering the role of important players, including transcription factors, microRNAs, or small molecules, a better understanding of key regulatory processes can be obtained. Various databases contain information on the interactions of regulators with their targets for different organisms, data recently being extended with the results of the ENCODE (Encyclopedia of DNA Elements project. A systems biology approach integrating our understanding on different regulators is essential in interpreting the regulation of molecular biological processes. IMPLEMENTATION: We developed CyTargetLinker (, a Cytoscape app, for integrating regulatory interactions in network analysis. Recently we released CyTargetLinker as one of the first apps for Cytoscape 3. It provides a user-friendly and flexible interface to extend biological networks with regulatory interactions, such as microRNA-target, transcription factor-target and/or drug-target. Importantly, CyTargetLinker employs identifier mapping to combine various interaction data resources that use different types of identifiers. RESULTS: Three case studies demonstrate the strength and broad applicability of CyTargetLinker, (i extending a mouse molecular interaction network, containing genes linked to diabetes mellitus, with validated and predicted microRNAs, (ii enriching a molecular interaction network, containing DNA repair genes, with ENCODE transcription factor and (iii building a regulatory meta-network in which a biological process is extended with information on transcription factor, microRNA and drug regulation. CONCLUSIONS: CyTargetLinker provides a simple and extensible framework for biologists and bioinformaticians to integrate different regulatory interactions

  16. Room temperature N-arylation of amino acids and peptides using copper(I) and β-diketone. (United States)

    Sharma, Krishna K; Sharma, Swagat; Kudwal, Anurag; Jain, Rahul


    A mild and efficient method for the N-arylation of zwitterionic amino acids, amino acid esters and peptides is described. The procedure provides the first room temperature synthesis of N-arylated amino acids and peptides using CuI as a catalyst, diketone as a ligand, and aryl iodides as coupling partners. The method is equally applicable for using relatively inexpensive aryl bromides as coupling partners at 80 °C. Using this procedure, electronically and sterically diverse aryl halides, containing reactive functional groups were efficiently coupled in good to excellent yields.

  17. Aromatic fumaronitrile core-based donor-linker-acceptor-linker-donor (D-pi-A-pi-D) compounds: synthesis and photophysical properties. (United States)

    Panthi, Krishna; Adhikari, Ravi M; Kinstle, Thomas H


    A new class of aromatic fumaronitrile core-based compounds with different donors and linkers has been synthesized and well characterized. Compounds 1 and 2 have indole and 2-phenylindole groups as electron donors, respectively. Compounds 3 and 4 have a diphenylamino group as the electron donor, and compound 5 has a 3,6-di-tert-butylcarbazole group as an electron donor. These compounds absorb in the blue-to-green region and emit in the blue-to-red region depending on the electron donor, linker, and solvents. The quantum yields of fluorescence of these compounds in solution are measured and found to be moderate, but in solid states, they are high. These compounds display strong emission solvatochromism that is reflected by a large shift in their fluorescence emission maxima on changing the solvents. This change is accompanied by a successive decrease in fluorescence intensity. The fluorescence lifetimes of these compounds are measured in different solvent and found to vary from compounds with solvents, concentration, and excitation energy have been studied. The correlation between the functional group and optical properties has been established to some extent. The ability of these compounds to function as colorimetric and luminescence pH sensors is demonstrated with color changes and luminescence switching upon the addition of trifluoroacetic acid. The potentiality of these compounds for application in optoelectronics has been optically assessed.

  18. cis-Apa: a practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage. (United States)

    Baron, Alice; Verdié, Pascal; Martinez, Jean; Lamaty, Frédéric


    A new linker cis-5-aminopent-3-enoic acid (cis-Apa) was prepared for the synthesis of cyclic pseudopeptides by cyclization-cleavage by using ring-closing methatesis (RCM). We developed a new synthetic pathway for the preparation of the cis-Apa linker that was tested in the cyclization-cleavage process of different RGD peptide sequences. Different macrocyclic peptidomimetics were prepared by using this integrated microwave-assisted method, showing that the readily available cis-Apa amino acid is well adapted as a linker in the cyclization-cleavage process.

  19. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors. (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane


    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  20. Absence of aryl hydrocarbon hydroxylase (AHH) in three marine bivalves

    Energy Technology Data Exchange (ETDEWEB)

    Vandermeulen, J.H. (Bedford Inst. of Oceanography, Dartmouth, Nova Scotia); Penrose, W.R.


    Bivalves exposed to short-term (4 d) and long-term (6 yr) oil pollution were assayed for aryl hydrocarbon hydroxylase (AHH) and N-demethylase activity. Short-term induction studies were carried out on Mya arenaria, Mytilus edulis, and Ostrea edulis incubated in aqueous extracts of Kuwait crude oil or Bunker C (fuel) oil. For the chronic-induction studies Mya arenaria and Mytilus edulis were collected from oiled clam beds (Arrow Bunker C) in Chedabucto Bay, Nova Scotia. None of the bivalves showed any basal or petroleum-hydrocarbon-induced aryl hydrocarbon hydroxylase or N-demethylase activity, as shown by their inability to metabolize benzopyrene or imipramine. In contrast, oil-free control trout and trout taken from a polluted lake readily metabolized both these compounds. The inability of these bivalves to degrade petroleum aromatic hydrocarbons and the tendency of these compounds to accumulate in their tissues present an opportunity for transfer of unaltered hydrocarbons into the food chain.

  1. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane


    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  2. A mechanical model for the role of the neck linker during kinesin stepping and gating (United States)

    Wang, HaiYan; He, ChenJuan


    In this paper, considering the different elastic properties in the attached head and the free head, we propose a physical model, in which the free head undergoes a diffusive search in an entropic spring potential formed by undocking the neck linker, and there are asymmetric conformational changes in the attached head formed by docking the neck linker to support the load force and bias the diffusive search to the forward direction. By performing the thermodynamic analysis, we obtain the free energy difference between forward and backward binding sites. And using the Fokker-Planck equation with two absorbing boundaries, we obtain the dependence of the ratio of forward to backward steps on the backward force. Also, within the Michaelis-Menten model, we investigate the dependence of the velocity-load relationship on the effective length of the junction between the two heads. The results show that our model can provide a physical understanding for the processive movement of kinesin.

  3. Quantum-dot-sensitized solar cells: understanding linker molecules through theory and experiment. (United States)

    Margraf, Johannes T; Ruland, Andrés; Sgobba, Vito; Guldi, Dirk M; Clark, Timothy


    We have investigated the role of linker molecules in quantum-dot-sensitized solar cells (QDSSCs) using density-functional theory (DFT) and experiments. Linkers not only govern the number of attached QDs but also influence charge separation, recombination, and transport. Understanding their behavior is therefore not straightforward. DFT calculations show that mercaptopropionic acid (MPA) and cysteine (Cys) exhibit characteristic binding configurations on TiO(2) surfaces. This information is used to optimize the cell assembly process, yielding Cys-based cells that significantly outperform MPA cells, and reach power conversion efficiencies (PCE) as high as 2.7% under AM 1.5 illumination. Importantly, the structural information from theory also helps understand the cause for this improved performance.

  4. Structural and dynamic properties of linker histone H1 binding to DNA

    CERN Document Server

    Dootz, Rolf; Pfohl, Thomas


    Found in all eukaryotic cells, linker histones H1 are known to bind to and rearrange nucleosomal linker DNA. In vitro, the fundamental nature of H1/DNA interactions has attracted wide interest among research communities - for biologists from a chromatin organization deciphering point of view, and for physicists from the study of polyelectrolyte interactions point of view. Hence, H1/DNA binding processes, structural and dynamical information about these self-assemblies is of broad importance. Targeting a quantitative understanding of H1 induced DNA compaction mechanisms our strategy is based on using small angle X-ray microdiffraction in combination with microfluidics. The usage of microfluidic hydrodynamic focusing devices facilitate a microscale control of these self-assembly processes. In addition, the method enables time-resolved access to structure formation in situ, in particular to transient intermediate states. The observed time dependent structure evolution shows that the interaction of H1 with DNA ca...

  5. Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers

    CERN Document Server

    Weber, Ines; Schehr, Grégory; Santen, Ludger


    The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a $q^{-2}$ dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wavenumbers $q$. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like $q^{-2}$ spectrum.

  6. Randomized Terminal Linker-dependent PCR: A Versatile and Sensitive Method for Detection of DNA Damage

    Institute of Scientific and Technical Information of China (English)


    Objective To design and develop a novel, sensitive and versatile method for in vivo foot printing and studies of DNA damage, such as DNA adducts and strand breaks. Methods Starting with mammalian genomic DNA, single-stranded products were made by repeated primer extension, these products were ligated to a double-stranded linker having a randomized 3′ overhang, and used for PCR.DNA breaks in p53 gene produced by restriction endonuclease AfaI were detected by using this new method followed by Southern hybridization with DIG-labeled probe. Results This randomized terminal linker-dependent PCR (RDPCR) method could generate band signals many-fold stronger than conventional ligation-mediated PCR (LMPCR), and it was more rapid, convenient and accurate than the terminal transferase-dependent PCR (TDPCR). Conclusion DNA strand breakage can be detected sensitively in the gene level by RDPCR. Any lesion that blocks primer extension should be detectable.

  7. Low Density Lipoprotein Receptor Class A Repeats Are O-Glycosylated in Linker Regions

    DEFF Research Database (Denmark)

    Pedersen, Nis Borbye; Wang, Shengjun; Narimatsu, Yoshiki;


    , which in wild-type CHO cells is glycosylated with the typical sialylated core 1 structure. The glycosites in linker regions of LDLR class A repeats are conserved in LDLR from man to Xenopus and found in other homologous receptors. O-Glycosylation is controlled by a large family of polypeptide GalNAc...... transferases. Probing into which isoform(s) contributed to glycosylation of the linker regions of the LDLR class A repeats by in vitro enzyme assays suggested a major role of GalNAc-T11. This was supported by expression of LDLR in HEK293 cells, where knock-out of the GalNAc-T11 isoform resulted in the loss...

  8. Effects of branched O-glycosylation on a semiflexible peptide linker. (United States)

    Johnson, Quentin R; Lindsay, Richard J; Raval, Sherin R; Dobbs, Jeremy S; Nellas, Ricky B; Shen, Tongye


    Glycosylation is an essential modification of proteins and lipids by the addition of carbohydrate residues. These attached carbohydrates range from single monomers to elaborate branched glycans. Here, we examine how the level of glycosylation affects the conformation of a semiflexible peptide linker using the example of the hinge peptide from immunoglobulin A. Three sets of atomistic models of this hinge peptide with varying degrees of glycosylation are constructed to probe how glycosylation affects the physical properties of the linker. We found that glycosylation greatly altered the predominant conformations of the peptide, causing it to become elongated in reference to the unglycosylated form. Furthermore, glycosylation restricts the conformational exploration of the peptide. At the residue level, glycans are found to introduce a bias for the formation of more extended secondary structural elements for glycosylated serines. Additionally, the flexibility of this semiflexible proline-rich peptide is significantly reduced by glycosylation.

  9. The S4-S5 linker couples voltage sensing and activation of pacemaker channels. (United States)

    Chen, J; Mitcheson, J S; Tristani-Firouzi, M; Lin, M; Sanguinetti, M C


    Voltage-gated channels are normally opened by depolarization and closed by repolarization of the membrane. Despite sharing significant sequence homology with voltage-gated K(+) channels, the gating of hyperpolarization-activated, cyclic-nucleotide-gated (HCN) pacemaker channels has the opposite dependence on membrane potential: hyperpolarization opens, whereas depolarization closes, these channels. The mechanism and structural basis of the process that couples voltage sensor movement to HCN channel opening and closing is not understood. On the basis of our previous studies of a mutant HERG (human ether-a-go-go-related gene) channel, we hypothesized that the intracellular linker that connects the fourth and fifth transmembrane domains (S4-S5 linker) of HCN channels might be important for channel gating. Here, we used alanine-scanning mutagenesis of the HCN2 S4-S5 linker to identify three residues, E324, Y331, and R339, that when mutated disrupted normal channel closing. Mutation of a basic residue in the S4 domain (R318Q) prevented channel opening, presumably by disrupting S4 movement. However, channels with R318Q and Y331S mutations were constitutively open, suggesting that these channels can open without a functioning S4 domain. We conclude that the S4-S5 linker mediates coupling between voltage sensing and HCN channel activation. Our findings also suggest that opening of HCN and related channels corresponds to activation of a gate located near the inner pore, rather than recovery of channels from a C-type inactivated state.

  10. Moiety and linker site heterologies for highly sensitive immunoanalysis of cyprodinil in fermented alcoholic drinks


    Esteve Turrillas, Francesc Albert; Mercader Badia, Josep Vicent; Agulló, Consuelo; Abad Somovilla, Antonio; Abad Fuentes, Antonio


    Cyprodinil is a new-generation anilinopyrimidine fungicide widely used in crop protection and frequently found in fruits. In this study, novel derivatives of cyprodinil with linker site heterologies were synthesized and employed in order to produce antibodies with enhanced affinity. Moreover, moiety-heterologous haptens were designed and prepared for assay sensitivity improvement. Two competitive enzyme-linked immunosorbent assays for the analysis of this active substance were developed using...

  11. A New Achiral Linker Reagent for the Incorporation of Multiple Amino Groups Into Oligonucleotides

    DEFF Research Database (Denmark)


    The present invention relates to a new functionalized achiral linker reagent for incorporating multiple primary amino groups or reporter groups into oligonucleotides following the phosphoramidite methodology. It is possible to substitute any ribodeoxynucleotide, deoxynucleotide, or nucleotide wit......, to a method for preparing a labelled oligonucleotide, and to the use of the labelled oligonucleotide as hybridisation probe, in polymerase chain reactions (PCR), in nucleic acid sequencing, in cloning recombinant DNA and $i(in vitro) mutagenesis....

  12. New bis(azobenzocrown)s with dodecylmethylmalonyl linkers as ionophores for sodium selective potentiometric sensors



    Novel biscrowns 1 and 2 were synthesized from 13-membered azobenzocrown ethers containing bromoalkylenoxy chains in para position relative to the azo group. The synthesized diester molecules are dodecylmethylmalonic acid derivatives differing by the linker length. The synthesized compounds have the potential of being used as sodium ionophores in ion-selective electrodes. They were characterized and used as ionophores in classic and miniature, solid contact (screen-printed and glassy carbon) m...

  13. Roles of the linker region of RNA helicase A in HIV-1 RNA metabolism.

    Directory of Open Access Journals (Sweden)

    Li Xing

    Full Text Available RNA helicase A (RHA promotes multiple steps in HIV-1 production including transcription and translation of viral RNA, annealing of primer tRNA(Lys3 to viral RNA, and elevating the ratio of unspliced to spliced viral RNA. At its amino terminus are two double-stranded RNA binding domains (dsRBDs that are essential for RHA-viral RNA interaction. Linking the dsRBDs to the core helicase domain is a linker region containing 6 predicted helices. Working in vitro with purified mutant RHAs containing deletions of individual helices reveals that this region may regulate the enzyme's helicase activity, since deletion of helix 2 or 3 reduces the rate of unwinding RNA by RHA. The biological significance of this finding was then examined during HIV-1 production. Deletions in the linker region do not significantly affect either RHA-HIV-1 RNA interaction in vivo or the incorporation of mutant RHAs into progeny virions. While the partial reduction in helicase activity of mutant RHA containing a deletion of helices 2 or 3 does not reduce the ability of RHA to stimulate viral RNA synthesis, the promotion of tRNA(Lys3 annealing to viral RNA is blocked. In contrast, deletion of helices 4 or 5 does not affect the ability of RHA to promote tRNA(Lys3 annealing, but reduces its ability to stimulate viral RNA synthesis. Additionally, RHA stimulation of viral RNA synthesis results in an increased ratio of unspliced to spliced viral RNA, and this increase is not inhibited by deletions in the linker region, nor is the pattern of splicing changed within the ∼ 4.0 kb or ∼ 1.8 kb HIV-1 RNA classes, suggesting that RHA's effect on suppressing splicing is confined mainly to the first 5'-splice donor site. Overall, the differential responses to the mutations in the linker region of RHA reveal that RHA participates in HIV-1 RNA metabolism by multiple distinct mechanisms.

  14. Gold nanoparticles functionalised with fast water exchanging Gd3+ chelates: linker effects on the relaxivity. (United States)

    Ferreira, Miguel F; Gonçalves, Janaina; Mousavi, Bibimaryam; Prata, Maria I M; Rodrigues, Sérgio P J; Calle, Daniel; López-Larrubia, Pilar; Cerdan, Sebastian; Rodrigues, Tiago B; Ferreira, Paula M; Helm, Lothar; Martins, José A; Geraldes, Carlos F G C


    The relaxivity displayed by Gd(3+) chelates immobilized onto gold nanoparticles is the result of the complex interplay between the nanoparticle size, the water exchange rate and the chelate structure. In this work we study the effect of the length of ω-thioalkyl linkers, anchoring fast water exchanging Gd(3+) chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd(3+) chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(α-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM(-1) s(-1) (30 MHz, 25 °C), were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles was determined mainly by size. Small nanoparticles (HD = 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD = 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggest that functionalized gold nanoparticles hold great potential for further investigation as MRI contrast agents. This study contributes to a better understanding of the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd(3+) complexes. It is a relevant contribution towards "design rules" for nanostructures functionalized with Gd(3+) chelates as Contrast Agents for MRI and multimodal imaging.

  15. Electronic structure calculations for the study of D-π-A organic sensitizers: Exploring polythiophene linkers

    Energy Technology Data Exchange (ETDEWEB)

    Climent, Clàudia [Departament de Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona (Spain); Casanova, David, E-mail: [IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Euskadi, Spain, and Kimika Fakultea, Euskal Herriko Unibertsitatea (UPV/EHU), Donostia, Euskadi, Spain. (Spain)


    Highlights: • We study D-π-A dyes with polythiophene (Tn) or polycyclopentadithiophene (Cn) linkers. • Molecular geometry plays a crucial role in the photophysical properties of organic dyes. • Cn linkers induce lower transition energies and larger oscillator strengths than Tn separators. • We discuss a variety of computational tools to quantify the CT nature of electronic transitions. • We compute ground and excited state oxidation potentials with a long-range corrected functional. - Abstract: In this work we present a detailed study of the atomic and electronic structure of a collection of push–pull organic dyes for high-performance sensitized solar cells (DSSCs). We compare the computed photophysical properties of donor-bridge-acceptor (D-π-A) dyes with polythiophene (Tn) or polycyclopentadithiophene (Cn) conjugated linkers with up to four fused thiophene rings. Excitation energies to lowest excited singlet state have been rationalized by means of fragment and molecular orbitals. Vertical and adiabatic excitation energies are systematically lower for the Cn family and become smaller with the length of the molecular conjugation. We discuss a large variety of computational techniques for the characterization of the charge transfer (CT) nature of the electronic excitation. In addition to standard procedures to quantify CT character, we propose and explain several novel interaction based measures of CT. Finally, we have computed ground and excited state oxidation potentials (GSOP and ESOP) with long-range corrected (LRC) functional.

  16. Assembly fabrication of linkers on glass surface and their effect on DNA synthesis and hybridization

    Institute of Scientific and Technical Information of China (English)

    ShenJiayao; XiaoPengfeng; HouPeng; JiMeiju; SunXiao; HeNongyue


    Linkers were assembled on a glass surface based on the hydrolysis and condensation of 3-glycidoxy-propyltrimethoxysilane (GPS). After the assembly of GPS, four approaches were tried to open the ending epoxide group of GPS or to further elongate the linkers. The effect of these approaches on DNA in situ synthesis and hybridization was investigated. For the spacing of the synthesis initiation sites, the wettability of the support and the length of the linking group that attaches the initiation site to the surface have direct influences on the yield of coupling reactions and the subsequent hybridization events. X-ray photoelectron spectroscopy (XPS) and mean contact angles of deionized water of the above slides were measured to assess the linker's characteristics in each procedure. It was proved that the glass slides were successfully modified and became excellent supports for the oligonucleotides synthesis. In addition, it proved best for the in situ oligonueleotides synthesis that a glass slide was in turn treated with ethylenediamine, glutaradehyde, ethanolamine and sodium borohydride solution at ambient temperature after silanized with GPS.

  17. PDP-CON: prediction of domain/linker residues in protein sequences using a consensus approach. (United States)

    Chatterjee, Piyali; Basu, Subhadip; Zubek, Julian; Kundu, Mahantapas; Nasipuri, Mita; Plewczynski, Dariusz


    The prediction of domain/linker residues in protein sequences is a crucial task in the functional classification of proteins, homology-based protein structure prediction, and high-throughput structural genomics. In this work, a novel consensus-based machine-learning technique was applied for residue-level prediction of the domain/linker annotations in protein sequences using ordered/disordered regions along protein chains and a set of physicochemical properties. Six different classifiers-decision tree, Gaussian naïve Bayes, linear discriminant analysis, support vector machine, random forest, and multilayer perceptron-were exhaustively explored for the residue-level prediction of domain/linker regions. The protein sequences from the curated CATH database were used for training and cross-validation experiments. Test results obtained by applying the developed PDP-CON tool to the mutually exclusive, independent proteins of the CASP-8, CASP-9, and CASP-10 databases are reported. An n-star quality consensus approach was used to combine the results yielded by different classifiers. The average PDP-CON accuracy and F-measure values for the CASP targets were found to be 0.86 and 0.91, respectively. The dataset, source code, and all supplementary materials for this work are available at for noncommercial use.

  18. Linker engineering for fusion protein construction: Improvement and characterization of a GLP-1 fusion protein. (United States)

    Kong, Yuelin; Tong, Yue; Gao, Mingming; Chen, Chen; Gao, Xiangdong; Yao, Wenbing


    Protein engineering has been successfully applied in protein drug discovery. Using this technology, we previously have constructed a fusion protein by linking the globular domain of adiponectin to the C-terminus of a glucagon-like peptide-1 (GLP-1) analog. Herein, to further improve its bioactivity, we reconstructed this fusion protein by introducing linker peptides of different length and flexibility. The reconstructed fusion proteins were overexpressed in Escherichia coli and purified using nickel affinity chromatography. Their agonist activity towards receptors of GLP-1 and adiponectin were assessed in vitro by using luciferase assay and AMP-activated protein kinase (AMPK) immunoblotting, respectively. The effects of the selected fusion protein on glucose and lipid metabolism were evaluated in mice. The fusion protein reconstructed using a linker peptide of AMGPSSGAPGGGGS showed high potency in activating GLP-1 receptor and triggering AMPK phosphorylation via activating the adiponectin receptor. Remarkably, the optimized fusion protein was highly effective in lowering blood glucose and lipids in mice. Collectively, these findings demonstrate that the bioactivity of this GLP-1 fusion protein can be significantly promoted by linker engineering, and indicate that the optimized GLP-1 fusion protein is a promising lead structure for anti-diabetic drug discovery.

  19. Synthesis of hyaluronan haloacetates and biology of novel cross-linker-free synthetic extracellular matrix hydrogels. (United States)

    Serban, Monica A; Prestwich, Glenn D


    Hyaluronan (HA) derivatives containing thiol-reactive electrophilic esters were prepared to react with thiol-modified macromolecules to give cross-linker-free hydrogels. Specifically, HA was converted to two haloacetate derivatives, HA bromoacetate (HABA) and HA iodoacetate (HAIA). In cytotoxicity assays, these reactive macromolecules predictably induced cell death in a dose-dependent manner. Cross-linker-free synthetic extracellular matrix (sECM) hydrogels were prepared by thiol alkylation using HAIA and HABA as polyvalent electrophiles and thiol-modified HA (CMHA-S) with or without thiol-modified gelatin (Gtn-DTPH) as polyvalent nucleophiles. When primary human fibroblasts were seeded on the surface of the sECMs containing only the electrophilic HA haloacetate and nucleophilic CMHA-S components, no significant cytoadherence was observed. Cell attachment and viability was 17% (HABA) to 30% (HAIA) lower on HA haloacetate cross-linked hydrogels than on CMHA-S that had been oxidatively cross-linked via disulfide-bonds. In contrast, sECMs that included Gtn-DTPH allowed fibroblasts to attach, spread, and proliferate. Taken together, the HA haloacetates are attractive candidates for producing cross-linker-free sECM biomaterials that can function either as anti-adhesive barriers or as cytoadhesive sECMs for cell culture in pseudo-3-D.

  20. Fivefold increase of hydrogen uptake in MOF74 through linker decorations (United States)

    Arter, C. A.; Zuluaga, S.; Harrison, D.; Welchman, E.; Thonhauser, T.


    We present ab initio results for linker decorations in Mg-MOF74, i.e., attaching various metals M =Li, Na, K, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Pd, Ag, and Pt near the ring of the linker, creating new strong adsorption sites and thus maximizing small-molecule uptake. We find that in most cases these decorations influence the overall form and structure of Mg-MOF74 only marginally. After the initial screening, we chose metals that bind favorably to the linker and further investigated adsorption of H2,CO2, and H2O for M =Li , Na, K, and Sc. For the case of H2 we show that up to 24 additional guest molecules can be adsorbed in the metal-organic framework (MOF) unit cell, with binding energies comparable to the original open-metal sites at the six corners of the channel. This leads to a fivefold increase of the molecule uptake in Mg-MOF74, with tremendous impact on many applications in general and hydrogen storage in particular, where the gravimetric hydrogen density increases from 1.63 to 7.28 mass % and the volumetric density increases from 15.10 to 75.50 g H2L-1 .

  1. The human histone chaperone sNASP interacts with linker and core histones through distinct mechanisms. (United States)

    Wang, Huanyu; Ge, Zhongqi; Walsh, Scott T R; Parthun, Mark R


    Somatic nuclear autoantigenic sperm protein (sNASP) is a human homolog of the N1/N2 family of histone chaperones. sNASP contains the domain structure characteristic of this family, which includes a large acidic patch flanked by several tetratricopeptide repeat (TPR) motifs. sNASP possesses a unique binding specificity in that it forms specific complexes with both histone H1 and histones H3/H4. Based on the binding affinities of sNASP variants to histones H1, H3.3, H4 and H3.3/H4 complexes, sNASP uses distinct structural domains to interact with linker and core histones. For example, one of the acidic patches of sNASP was essential for linker histone binding but not for core histone interactions. The fourth TPR of sNASP played a critical role in interactions with histone H3/H4 complexes, but did not influence histone H1 binding. Finally, analysis of cellular proteins demonstrated that sNASP existed in distinct complexes that contained either linker or core histones.

  2. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei


    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  3. Linker proteins enable ultrafast excitation energy transfer in the phycobilisome antenna system of Thermosynechococcus vulcanus. (United States)

    Nganou, C; David, L; Adir, N; Mkandawire, M


    We applied a femtosecond flash method, using induced transient absorption changes, to obtain a time-resolved view of excitation energy transfer in intact phycobilisomes of Thermosynechococcus vulcanus at room temperature. Our measurement of an excitation energy transfer rate of 888 fs in phycobilisomes shows the existence of ultrafast kinetics along the phycocyanin rod subcomplex to the allophycocyanin core that is faster than expected for previous excitation energy transfer based on Förster theory in phycobilisomes. Allophycocyanin in the core further transfers energy to the terminal emitter(s) in 17 ps. In the phycobilisome, rod doublets composed of hexameric phycocyanin discs and internal linker proteins are arranged in a parallel fashion, facilitating direct rod-rod interactions. Excitonic splitting likely drives rod absorption at 635 nm as a result of strong coupling between β84 chromophores (20 ± 1 Å) in adjacent hexamers. In comparison to the absorbance of the phycobilisome antenna system of the cyanobacterium Acaryochloris marina, which possesses a single rod structure, the linkers in T. vulcanus rods induce a 17 nm red shift in the absorbance spectrum. Furthermore, the kinetics of 888 fs indicates that the presence of the linker protein induces ultrafast excitation energy transfer between phycocyanin and allophycocyanin inside the phycobilisome, which is faster than all previous excitation energy transfer in phycobilisome subunits or sub-complexes reported to date.

  4. Regioselective synthesis and biological studies of novel 1-aryl-3, 5-bis (het) aryl pyrazole derivatives as potential antiproliferative agents. (United States)

    Ananda, Hanumappa; Sharath Kumar, Kothanahally S; Nishana, Mayilaadumveettil; Hegde, Mahesh; Srivastava, Mrinal; Byregowda, Raghava; Choudhary, Bibha; Raghavan, Sathees C; Rangappa, Kanchugarakoppal S


    Pyrazole moiety represents an important category of heterocyclic compound in pharmaceutical and medicinal chemistry. The novel 1-aryl-3, 5-bis (het) aryl pyrazole derivatives were synthesized with complementary regioselectivity. The chemical structures were confirmed by IR, (1)H NMR, (13)C NMR, and mass spectral analysis. The chemical entities were screened in various cancer cell lines to assess their cell viability activity. Results showed that the compound 3-(1-(4-bromophenyl)-5-phenyl-1H-pyrazol-3-yl) pyridine (5d) possessed maximum cytotoxic effect against breast cancer and leukemic cells. The cytotoxicity was confirmed by live-dead cell assay and cell cycle analysis. Mitochondrial membrane potential, Annexin V-FITC staining, DNA fragmentation, Hoechst staining, and western blot assays revealed the ability of compound 5d to induce cell death by activating apoptosis in cancer cells. Thus, the present study demonstrates that compound 5d could be an attractive chemical entity for the development of small molecule inhibitors for treatment of leukemia and breast cancer.

  5. One-pot synthesis of aryl sulfones from organometallic reagents and iodonium salts. (United States)

    Margraf, Natalie; Manolikakes, Georg


    A transition-metal-free arylation of lithium, magnesium, and zinc sulfinates with diaryliodonium salts is described. The sulfinic acid salts were prepared from the reaction of the corresponding organometallic reagents and sulfur dioxide. Combination of the three single steps (preparation of the organometallic compound, sulfinate formation, and arylation) leads to a one-pot sequence for the synthesis of aryl sulfones from simple starting materials. The chemoselectivity of unsymmetrical diaryliodonium salts has been investigated. Potential and limitations of this method will be discussed.

  6. An advantageous route to oxcarbazepine (trileptal) based on palladium-catalyzed arylations free of transmetallating agents. (United States)

    Carril, Mónica; SanMartin, Raul; Churruca, Fátima; Tellitu, Imanol; Domínguez, Esther


    [reaction: see text] A new route to oxcarbazepine (Trileptal), the most widely prescribed antiepileptic drug, starting from commercially available 2'-aminoacetophenone and 1,2-dibromobenzene, is reported. The sequentially accomplished key steps are palladium-catalyzed intermolecular alpha-arylation of ketone enolates and intramolecular N-arylation reactions. After several experiments to establish the best conditions for both arylation processes, the target oxcarbazepine is obtained in a satisfactory overall yield, minimizing the number of steps and employing scalable catalytic procedures developed in partially aqueous media.

  7. Well-Defined Copper(I) Fluoroalkoxide Complexes for Trifluoroethoxylation of Aryl and Heteroaryl Bromides

    KAUST Repository

    Huang, Ronglu


    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copper(I) fluoroalkoxide complexes bearing dinitrogen ligands were synthesized and the structure and reactivity of the complexes toward trifluoroethoxylation, pentafluoropropoxylation, and tetrafluoropropoxylation of aryl and heteroaryl bromides were investigated. Efficiency drive: A series of copper(I) fluoroalkoxide complexes bearing N,N ligands have been prepared and structurally characterized. These well-defined complexes serve as efficient reagents for the fluoroalkoxylation of aryl and heteroaryl bromides to produce a wide range of trifluoroethyl, pentafluoropropyl, and tetrafluoropropyl (hetero)aryl ethers in good to excellent yields.

  8. Microwave-assisted synthesis of α-aryl malonates: Key intermediates for the

    Directory of Open Access Journals (Sweden)

    Mohamed A. Ibrahim


    Full Text Available We disclose a new microwave-assisted protocol for the effective α-arylation of diethyl malonate. The coupling of aryl halides with diethyl malonate proceeds smoothly in short reaction time in the presence of a catalytic amount of Cu(OTf2, 2-picolinic acid and Cs2CO3 in toluene using microwave irradiation. The resulting α-aryl malonates are then used as key intermediates for synthesis of variety of heterocyclic compounds, including benzodiazepines, isoquinolines and pyrrolopyridine scaffolds.

  9. Nanomolar detection of hypochlorite by a rhodamine-based chiral hydrazide in absolute aqueous media: application in tap water analysis with live-cell imaging. (United States)

    Goswami, Shyamaprosad; Das, Avijit Kumar; Manna, Abhishek; Maity, Anup Kumar; Saha, Partha; Quah, Ching Kheng; Fun, Hoong-Kun; Abdel-Aziz, Hatem A


    By employing the oxidation property of hypochlorite (OCl(-)), a novel rhodamine-based hydrazide of the chiral acid ((S)-(-)-2-pyrrolidone-5-carboxylic acid) (RHHP) was designed and synthesized for detection of OCl(-) absolutely in aqueous medium at nanomolar level. The structure of the chiral sensor was also proved by the X-ray crystallography. The bioactivity and the application of the probe for detection of OCl(-) in natural water system have been demonstrated. A plausible mechanism for oxidation of the sensor followed by hydrolysis is also proposed. The sensibility of the receptor toward OCl(-) was studied in absolute aqueous media, and the detection limit of hypochlorite-mediated oxidation to the receptor in nanomolar level makes this platform (RHHP) an ultrasensitive and unique system for OCl(-) oxidation.

  10. Synthesis, Characterization and Thermal Analysis of a New Acetic Acid (2-Hydroxy-benzylidene-hydrazide and its Complexes with Hg(II and Pd(II

    Directory of Open Access Journals (Sweden)

    Hajar Sahebalzamani


    Full Text Available The new complexes have been synthesized by the reaction of Hg(II and Pd(II with acetic acid(2-hydroxy-benzylidene- hydrazide (L. These new complexes were characterized by elemental analysis, IR, H NMR spectroscopy and UV spectral techniques. The changes observed between the FT-IR, H NMR and UV-Vis spectra of the ligands and of the complexes allowed us to establish the coordination mode of the metal in complexes. Thermal properties, TG-DTA of these complexes were studied. TG- DTA and other analytical methods have been applied to the investigation of the thermal behavior and structure of the compounds [M(L2]Cl2 M= Hg, Pd. Thermal decomposition of these compounds is multi-stage processes.

  11. One-Step Reduction and Surface Modification of Graphene Oxide by 3-Hydroxy-2-Naphthoic Acid Hydrazide and Its Polypropylene Nanocomposites (United States)

    Xu, Xiang-Nan; Guan, Xiao-Na; Zhou, Hui-Hua; Zhu, Yue-Feng


    3-Hydroxy-2-naphthoic acid hydrazide (HNH), a new reductant and modifier, was applied to reduce and modify graphene oxide (GO) in a one-step process. The obtained HNH reduced graphene oxide (HNH-rGO) was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy, X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared spectra (FTIR). The results demonstrated that GO was successfully reduced to graphene and the surface of HNH-rGO was grafted with HNH. The interlayer space was increased from 0.751 nm to 1.921 nm, and its agglomeration was much more attenuated compared with GO. HNH-rGO/polypropylene and graphene/polypropylene composites were synthesized through melt-blending method. The viscosity was enhanced with increased addition of graphene and surface modified graphene demonstrated stronger rheological behavior improving effect than the untreated graphene.

  12. Preparation and Characterization of Poly(ethyl hydrazide Grafted Oil Palm Empty Fruit Bunch for Removal of Ni(II Ion in Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Siti Mariam Mohd Nor


    Full Text Available Poly(ethyl hydrazide grafted oil palm empty fruit bunch (peh-g-opefb fiber has been successfully prepared by heating poly(methylacrylate-g-opefb at 60 °C for 4 h in a solution of hydrazine hydrate in ethanol. The chelating ability of peh-g-opefb was evaluated based on removal of Ni(II ions in aqueous solution. Adsorption of Ni(II by peh-g-opefb was characterized based on effect of pH, isotherm, kinetic and thermodynamic study. This cheap sorbent based on oil palm empty fruit bunch fiber has a great future potential in water treatment industries based on high adsorption capacity, biodegradability and renewability.

  13. Synthesis and characterization of a linker for primary amines used in the solid phase organic synthesis of spermidine

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Emerson T. da; San Gil, Rosane A.S.; Lima, Edson L.S. [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica; Caldarelli, Stefano [Aix-Marseille Univ., Marseille (France). Campus de Saint Jerome; Ziarelli, Fabio [Aix-Marseille Universite Spectropole - Federation de Sciences Chimiques de Marseille, Campus de Saint Jerome (France)


    A linker resin for the synthesis of functionalized spermidine in good yield is described, along with its characterization by infrared (IR), {sup 13}C solid-state nuclear magnetic resonance with cross polarization and magic angle spinning ({sup 13}C CPMAS NMR) and {sup 1}H high resolution magic angle spinning nuclear magnetic resonance ({sup 1}H HRMAS NMR). This linker has been regenerated after cleavage of spermidine and re-used without loss of efficiency. (author)

  14. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO2 separation from natural gas

    KAUST Repository

    Thompson, Joshua A.


    Zeolitic imidazolate framework (ZIF) materials are a promising subclass of metal-organic frameworks (MOF) for gas separations. However, due to the deleterious effects of gate-opening phenomena associated with organic linker rotation near the limiting pore apertures of ZIFs, there have been few demonstrations of improved gas separation properties over pure polymer membranes when utilizing ZIF materials in composite membranes for CO2-based gas separations. Here, we report a study of composite ZIF/polymer membranes, containing mixed-linker ZIF materials with ZIF-8 crystal topologies but composed of different organic linker compositions. Characterization of the mixed-linker ZIFs shows that the mixed linker approach offers control over the porosity and pore size distribution of the materials, as determined from nitrogen physisorption and Horváth-Kawazoe analysis. Single gas permeation measurements on mixed-matrix membranes reveal that inclusion of mixed-linker ZIFs yields membranes with better ideal CO2/CH4 selectivity than membranes containing ZIF-8. This improvement is shown to likely occur from enhancement in the diffusion selectivity of the membranes associated with controlling the pore size distribution of the ZIF filler. Mixed-gas permeation experiments show that membranes with mixed-linker ZIFs display an effective plasticization resistance that is not typical of the pure polymeric matrix. Overall, we demonstrate that mixed-linker ZIFs can improve the gas separation properties in composite membranes and may be applicable to aggressive CO2 concentrations in natural gas feeds. © 2013 Elsevier Inc. All rights reserved.

  15. ATPase domain and interdomain linker play a key role in aggregation of mitochondrial Hsp70 chaperone Ssc1. (United States)

    Blamowska, Marta; Sichting, Martin; Mapa, Koyeli; Mokranjac, Dejana; Neupert, Walter; Hell, Kai


    The co-chaperone Hep1 is required to prevent the aggregation of mitochondrial Hsp70 proteins. We have analyzed the interaction of Hep1 with mitochondrial Hsp70 (Ssc1) and the determinants in Ssc1 that make it prone to aggregation. The ATPase and peptide binding domain (PBD) of Hsp70 proteins are connected by a linker segment that mediates interdomain communication between the domains. We show here that the minimal Hep1 binding entity of Ssc1 consists of the ATPase domain and the interdomain linker. In the absence of Hep1, the ATPase domain with the interdomain linker had the tendency to aggregate, in contrast to the ATPase domain with the mutated linker segment or without linker, and in contrast to the PBD. The closest homolog of Ssc1, bacterial DnaK, and a Ssc1 chimera, in which a segment of the ATPase domain of Ssc1 was replaced by the corresponding segment from DnaK, did not aggregate in Delta hep1 mitochondria. The propensity to aggregate appears to be a specific property of the mitochondrial Hsp70 proteins. The ATPase domain in combination with the interdomain linker is crucial for aggregation of Ssc1. In conclusion, our results suggest that interdomain communication makes Ssc1 prone to aggregation. Hep1 counteracts aggregation by binding to this aggregation-prone conformer.

  16. Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers

    Directory of Open Access Journals (Sweden)

    Li Chen


    Full Text Available Aryl polyphosphonates (ArPPN have been demonstrated to function in wide applications as flame retardants for different polymer materials, including thermosets, polycarbonate, polyesters and polyamides, particularly due to their satisfactory thermal stability compared to aliphatic flame retardants, and to their desirable flow behavior observed during the processing of polymeric materials. This paper provides a brief overview of the main developments in ArPPN and their derivatives for flame-retarding polymeric materials, primarily based on the authors’ research work and the literature published over the last two decades. The synthetic chemistry of these compounds is discussed along with their thermal stabilities and flame-retardant properties. The possible mechanisms of ArPPN and their derivatives containing hetero elements, which exhibit a synergistic effect with phosphorus, are also discussed.

  17. Synthesis of N-benzoyl-N'-aryl selenoureas under PTC

    Institute of Scientific and Technical Information of China (English)

    WANG Hai; LIN Qi; ZHANG You-ming; WEI Tai-bao


    Recently many syntheses of selenium-containing compounds have been reported and studied, in which compounds selenoureas are used as the precursors for the syntheses of selenium-nitrogen heterocyclic compounds and their activities have received increasing attentions.Herein, we report the facile preparation of N-benzoyl-N'-aryl selenourea derivatives using potassium selenocyanate.In this typical procedure, Benzoyl chloride 1 was treated with potassium selenocyanate in CH2C12 under the condition of solid-liquid phase transfer catalysis using polyethylene glycal-400 as the catalyst to give the corresponding benzoyl isoselenocyanate 2. This compound did not need to be isolated and reacted with aromatic amine affording the N-benzoyl-N'-aryl selenourea derivatives 3.The reaction is described as:All the experiments were carried out under the condition of solid-liquid phase transfer catalysis using polyethylene glycal-400 as the catalyst and room temperature. And the structure was determined by IR, 1H NMR and 13C NMR. Selected data for N-benzoyl-N'-(4-fluoro)-selenourea:IR(KBr) 3426, 3274, 1672,1234,1155(C=Se); 1HMR(500MHz, DMSO) δ 12.85 (1H,S),11.86(1H,S), 7.27(2H,d,J=2.15), 7.98(2H,s,J=l.15), 7.30(2H,d,J=2.05), 7.56(2H.t,J=6.50),7.67(1H,t,J=6.20); 13C NMR(500MHz, DMSO)δ 181,168(C=Se),135,133, 132,115, 128.3, 128.8,161, 129.

  18. Microwave Assisted Solvent Free Synthesis of Azomethines from Aryl Aldehydes on Melamin Formaldehyde as Solid Support

    Directory of Open Access Journals (Sweden)

    Ramin Rezaei


    Full Text Available Various aryl aldehydes underwent prompt one pot conversion into the corresponding azomethines in high yields by reacting with hydroxylamine hydrochloride supported on melamine formaldehyde under microwave irradiation.

  19. Recent Advancements and Biological Activities of Aryl Propionic Acid Derivatives: (A Review

    Directory of Open Access Journals (Sweden)

    Harshita Dhall


    Full Text Available The aryl propionic acid derivatives belong to an important class of NSAIDs (Non Steroidal Anti-inflammatory Drugs. Ibuprofen, chemically called 2-(4-isobutyl phenyl propionic acid, is a well known NSAID. Aryl propionic acid derivatives possesses a wide range of biological activities including anti-bacterial, anti-convulsant, anti-cancer, analgesic and anti-inflammatory activities. Apart from very potent compounds in the field of analgesics and antipyrectics as Ibuprofen, Oxaprozin, Ketoprofen, Fenoprofen; aryl propionic acid derivatives plays important role to treat other ailments also. Through this review, an attempt has been made to emphasize on recent work done and recent advancements in arena of aryl propionic acid derivatives in view of medicinal chemistry.

  20. A Direct Transformation of Aryl Aldehydes to Benzyl Iodides Via Reductive Iodination

    Energy Technology Data Exchange (ETDEWEB)

    Ruso, Jayaraman Sembian; Rajendiran, Nagappan; Kumaran, Rajendran Senthil [Univ. of Madras, Chennai (India)


    A facile transformation of aryl aldehydes to benzyl iodides through one-pot reductive iodination is reported. This protocol displays remarkable functional group tolerance and the title compound was obtained in good to excellent yield.

  1. Synthesis and application of chiral N,N′-dialkylated cyclohexanediamine for asymmetric hydrogenation of aryl ketones

    Institute of Scientific and Technical Information of China (English)

    Meng Lin Ma; Chuan Hong Ren; Ya Jing Lv; Hua Chen; Xian Jun Li


    Chiral N,N′-dialkylated cyclohexanediamine derived ligands have been synthesized and used in the asymmetric hydrogenation of aryl ketones. Optically active alcohols with up to 90% enantiomeric excess were obtained in high yields.

  2. An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides

    KAUST Repository

    Weng, Zhiqiang


    A series of copper(I) trifluoromethyl thiolate complexes have been synthesized from the reaction of CuF2 with Me3SiCF 3 and S8 (see scheme; Cu red, F green, N blue, S yellow). These air-stable complexes serve as reagents for the efficient conversion of a wide range of aryl halides into the corresponding aryl trifluoromethyl thioethers in excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Photoinduced C-C Cross-Coupling of Aryl Chlorides and Inert Arenes

    Directory of Open Access Journals (Sweden)

    Lele Wang


    Full Text Available Here we report a facile, efficient, and catalyst-free method to realize C-C cross-coupling of aryl chlorides and inert arenes under UV light irradiation. The aryl radical upon homolytic cleavage of C-Cl bond initiated the nucleophilic substitution reaction with inert arenes to give biaryl products. This mild reaction mode can also be applied to other synthetic reactions, such as the construction of C-N bonds and trifluoromethylated compounds.

  4. Synthesis of Stable Diarylpalladium(II) Complexes: Detailed Study of the Aryl-Aryl Bond-Forming Reductive Elimination. (United States)

    Gensch, Tobias; Richter, Nils; Theumer, Gabriele; Kataeva, Olga; Knölker, Hans-Joachim


    The synthesis of diarylpalladium(II) complexes by twofold aryl C-H bond activation was developed. These intermediates of oxidative cyclization reactions are stabilized by chelation with acetyl groups while still maintaining sufficient reactivity to study their reductive elimination. Four distinct triggers were found for the reductive elimination of these complexes to dibenzofurans and carbazoles. Thermal elimination occurs at very high temperatures, whereas ligand-promoted and oxidatively induced reductive eliminations proceed readily at room temperature. Under these conditions, no isomerization occurs. In contrast, weak Brønsted acids, such as acetic acid, lead to a sequence of proto-demetalation, isomerization to a κ(3) -diarylpalladium(II) complex, and reductive elimination to non-symmetrical cyclization products.

  5. An Efficient and General Method for Formylation of Aryl Bromides with CO2 and Poly(methylhydrosiloxane). (United States)

    Yu, Bo; Yang, Zhenzhen; Zhao, Yanfei; Hao, Leiduan; Zhang, Hongye; Gao, Xiang; Han, Buxing; Liu, Zhimin


    The formylation of aryl halides with CO2 to generate aryl aldehydes is challenging. Herein, we report a novel synthesis of aryl aldehydes by formylation of aryl bromides with CO2 and a waste silane, poly(methylhydrosiloxane) (PMHS). It has been discovered that a simple combination of 1,3-bis(diphenyphosphino)propane (DPPP)-chelated Pd catalyst, Pd(DPPP)Cl2 , with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) is able to effectively catalyze the reaction, leading to aryl aldehydes in moderate to excellent yields, and without any by-products in most cases. Moreover, this route could be extended to the formylation of aryl iodides with high efficiency. This approach is simple, less costly, and environmentally friendly, and also widens the applications of CO2 to form value-added chemicals by the construction of new C-C bonds.

  6. The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction (United States)

    Tajti, Ádám; Ádám, Anna; Csontos, István; Karaghiosoff, Konstantin; Czugler, Mátyás; Ábrányi-Balogh, Péter


    Summary A family of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides was synthesized by the microwave-assisted solvent-free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two α-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N–H···O=P intermolecular hydrogen bridges pair.

  7. The DEK1 Calpain Linker Functions in Three-Dimensional Body Patterning in Physcomitrella patens1[OPEN (United States)

    Demko, Viktor; Mekhlif, Ahmed Khaleel


    The DEFECTIVE KERNEL1 (DEK1) calpain is a conserved 240-kD key regulator of three-dimensional body patterning in land plants acting via mitotic cell plane positioning. The activity of the cytosolic C-terminal calpain protease is regulated by the membrane-anchored DEK1 MEM, which is connected to the calpain via the 600-amino acid residue Linker. Similar to the calpain and MEM domains, the Linker is highly conserved in the land plant lineage, the similarity dropping sharply compared with orthologous charophyte sequences. Using site-directed mutagenesis, we studied the effect on Physcomitrella patens development by deleting the Linker and two conserved Linker motifs. The results show that removal of the Linker has nearly the same effect as removal of the entire DEK1 gene. In contrast, deletion of the conserved Laminin_G3 (LG3) domain had a milder effect, perturbing leafy gametophore patterning and archegonia development. The LG3 domain from Marchantia polymorpha is fully functional in P. patens, whereas angiosperm sequences are not functional. Deletion of a C-terminal Linker subsegment containing a potential calpain autolytic site severely disturbs gametophore development. Finally, changing one of the three calpain active-site amino acid residues results in the same phenotype as deleting the entire DEK1 gene. Based on the conserved nature of animal and DEK1 calpains, we propose that the DEK1 MEM-Linker complex inactivates the calpain by forcing apart the two calpain subunits carrying the three amino acids of the active site. PMID:27506240

  8. Reaction of Oxidized Polysialic Acid and a Diaminooxy Linker: Characterization and Process Optimization Using Nuclear Magnetic Resonance Spectroscopy. (United States)

    Ray, G Joseph; Siekmann, Jürgen; Scheinecker, Richard; Zhang, Zhenqing; Gerasimov, Mikhail V; Szabo, Christina M; Kosma, Paul


    Native polysialic acid (natPSA) is a high-molecular-weight glycan composed of repeat units of α-(2 → 8) linked N-acetylneuraminic acid (Neu5Ac). Mild periodate oxidation of PSA selectively targets the end sialic acid ring containing three adjacent alcohols generating a putative aldehyde, which can be used, after attachment of a linker molecule, for terminal attachment of PSA to protein. Previously, we showed that the oxidized PSA (oxoPSA) contained a hemiacetal at the oxidation site and can react with a linker containing an aminooxy group in a conjugation reaction to form a stable oxime linkage. Thus, reagents containing an aminooxy group may be prepared for conjugation of PSA to the carbohydrate moiety of therapeutic proteins, thereby increasing their half-life. These aminooxy-PSA reagents can selectively react with aldehyde groups generated by mild NaIO4 oxidation of glycans on the surface of the target protein. To comprehend the conjugation, unoxidized tetrasialic acid and Neu5Ac were reacted in model reactions with a diaminooxy linker to define the nuclear magnetic resonance (NMR) chemical shifts. Based on these data, we were able to show that, in the case of PSA, the reaction with the linker occurs not only at the expected oxidized end to form an aldoxime but also at the end distal to the oxidation to form a ketoxime. We determined that, in aged solutions, both oxoPSA and PSA aldoxime were hydrolyzed. PSA aldoxime was also shown to disproportionate to form a dimer (PSA-linker-PSA), which then could react further with the released linker at one of its PSA termini. Furthermore, NMR was used to monitor the effects of deliberate process changes so that conditions could be optimized for attachment of linker at the desired end of the PSA chain, which led to a well-defined product.

  9. Regional flexibility in the S4-S5 linker regulates hERG channel closed-state stabilization. (United States)

    Hull, Christina M; Sokolov, Stanislav; Van Slyke, Aaron C; Claydon, Tom W


    hERG K(+) channel function is vital for normal cardiac rhythm, yet the mechanisms underlying the unique biophysical characteristics of the channel, such as slow activation and deactivation gating, are incompletely understood. The S4-S5 linker is thought to transduce voltage sensor movement to opening of the pore gate, but may also integrate signals from cytoplasmic domains. Previously, we showed that substitutions of G546 within the S4-S5 linker destabilize the closed state of the channel. Here, we present results of a glycine-scan in the background of 546L. We demonstrate site-specific restoration of WT-like activation which suggests that flexibility in the N-terminal portion of the S4-S5 linker is critical for the voltage dependence of hERG channel activation. In addition, we show that the voltage dependence of deactivation, which was recently shown to be left-shifted from that of activation due to voltage sensor mode-shift, is also modulated by the S4-S5 linker. The G546L mutation greatly attenuated the coupling of voltage sensor mode-shift to the pore gate without altering the mode-shift itself. Indeed, all of the S4-S5 linker mutations tested similarly reduced coupling of the mode-shift to the pore gate. These data demonstrate a key role for S4-S5 linker in the unique activation and deactivation gating of hERG channels. Furthermore, uncoupling of the mode-shift to the pore by S4-S5 linker mutations parallels the effects of mutations in the N-terminus suggestive of functional interactions between the two regions.

  10. Atomic Structure of Clathrin: A β Propeller Terminal Domain Joins an α Zigzag Linker


    ter Haar, Ernst; Musacchio, Andrea; Harrison, Stephen C.; Kirchhausen, Tomas


    Clathrin triskelions form the lattice that organizes recruitment of proteins to coated pits and helps drive vesiculation of the lipid bilayer. We report the crystal structure at 2.6 Å resolution of a 55 kDa N-terminal fragment from the 190 kDa clathrin heavy chain. The structure comprises the globular “terminal domain” and the linker that joins it to the end of a triskelion leg. The terminal domain is a seven-blade β propeller, a structure well adapted to interaction with multiple partners, s...

  11. SEVA Linkers: A Versatile and Automatable DNA Backbone Exchange Standard for Synthetic Biology

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Cavaleiro, Mafalda; Rennig, Maja


    DNA vectors serve to maintain and select recombinant DNA in cell factories, and as design complexity increases, there is a greater need for well-characterized parts and methods for their assembly. Standards in synthetic biology are top priority, but standardizing molecular cloning contrasts...... flexibility, and different researchers prefer and master different molecular technologies. Here, we describe a new, highly versatile and automatable standard “SEVA linkers” for vector exchange. SEVA linkers enable backbone swapping with 20 combinations of classical enzymatic restriction/ligation, Gibson...... to the synthetic biology community....

  12. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids. (United States)

    Chu, Lingling; Lipshultz, Jeffrey M; MacMillan, David W C


    The direct decarboxylative arylation of α-oxo acids has been achieved by synergistic visible-light-mediated photoredox and nickel catalysis. This method offers rapid entry to aryl and alkyl ketone architectures from simple α-oxo acid precursors via an acyl radical intermediate. Significant substrate scope is observed with respect to both the oxo acid and arene coupling partners. This mild decarboxylative arylation can also be utilized to efficiently access medicinal agents, as demonstrated by the rapid synthesis of fenofibrate.

  13. Synthesis, Spectroscopic Characterization, and In Vitro Antimicrobial Studies of Pyridine-2-Carboxylic Acid N′-(4-Chloro-Benzoyl-Hydrazide and Its Co(II, Ni(II, and Cu(II Complexes

    Directory of Open Access Journals (Sweden)

    Jagvir Singh


    Full Text Available N-substituted pyridine hydrazide (pyridine-2-carbonyl chloride and 4-chloro-benzoic acid hydrazide undergoes hydrazide formation of the iminic carbon nitrogen double bond through its reaction with cobalt(II, nickel(II, and copper(II metal salts in ethanol which are reported and characterized based on elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, and thermal analysis (TG. From the elemental analyses data, 1 : 2 metal complexes are formed having the general formulae [MCl2(HL2] · yH2O (where M = Co(II, Ni(II, and Cu(II, y = 1–3. The important infrared (IR spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied. IR spectra show that ligand is coordinated to the metal ions in a neutral bidentate manner with ON donor sites. The solid complexes have been synthesized and studied by thermogravimetric analysis. All the metal chelates are found to be nonelectrolytes. From the magnetic and solid reflectance spectra, the complexes (cobalt(II, nickel(II, and copper(II have octahedral and square planner geometry, respectively. The antibacterial and antifungal activity’s data show that the metal complexes have a promising biological activity comparable with the parent ligand against bacterial and fungal species.

  14. Microwave-assisted cyclizations promoted by polyphosphoric acid esters: a general method for 1-aryl-2-iminoazacycloalkanes (United States)

    Díaz, Jimena E; Mollo, María C


    Summary The first general procedure for the synthesis of 5 to 7-membered 1-aryl-2-iminoazacycloalkanes is presented, by microwave-assisted ring closure of ω-arylaminonitriles promoted by polyphosphoric acid (PPA) esters. 1-Aryl-2-iminopyrrolidines were easily prepared from the acyclic precursors employing a chloroformic solution of ethyl polyphosphate (PPE). The use of trimethylsilyl polyphosphate (PPSE) in solvent-free conditions allowed for the synthesis of 1-aryl-2-iminopiperidines and hitherto unreported 1-aryl-2-iminoazepanes. The cyclization reaction involves good to high yields and short reaction times, and represents a novel application of PPA esters in heterocyclic synthesis. PMID:27829907

  15. Microwave-assisted cyclizations promoted by polyphosphoric acid esters: a general method for 1-aryl-2-iminoazacycloalkanes

    Directory of Open Access Journals (Sweden)

    Jimena E. Díaz


    Full Text Available The first general procedure for the synthesis of 5 to 7-membered 1-aryl-2-iminoazacycloalkanes is presented, by microwave-assisted ring closure of ω-arylaminonitriles promoted by polyphosphoric acid (PPA esters. 1-Aryl-2-iminopyrrolidines were easily prepared from the acyclic precursors employing a chloroformic solution of ethyl polyphosphate (PPE. The use of trimethylsilyl polyphosphate (PPSE in solvent-free conditions allowed for the synthesis of 1-aryl-2-iminopiperidines and hitherto unreported 1-aryl-2-iminoazepanes. The cyclization reaction involves good to high yields and short reaction times, and represents a novel application of PPA esters in heterocyclic synthesis.

  16. Mutations of the S4-S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes. (United States)

    Sanguinetti, M C; Xu, Q P


    1. The structural basis for the activation gate of voltage-dependent K+ channels is not known, but indirect evidence has implicated the S4-S5 linker, the cytoplasmic region between the fourth and fifth transmembrane domains of the channel subunit. We have studied the effects of mutations in the S4-S5 linker of HERG (human ether-á-go-go-related gene), a human delayed rectifier K+ channel, in Xenopus oocytes. 2. Mutation of acidic residues (D540, E544) in the S4-S5 linker of HERG channels to neutral (Ala) or basic (Lys) residues accelerated the rate of channel deactivation. Most mutations greatly accelerated the rate of activation. However, E544K HERG channels activated more slowly than wild-type HERG channels. 3. Mutation of residues in the S4-S5 linker had little or no effect on fast inactivation, consistent with independence of HERG channel activation and inactivation 4. In response to large hyperpolarizations, D540K HERG channels can reopen into a state that is distinct from the normal depolarization-induced open state. It is proposed that substitution of a negatively charged Asp with the positively charged Lys disrupts a subunit interaction that normally stabilizes the channel in a closed state at negative transmembrane potentials. 5. The results indicate that the S4-S5 linker is a crucial component of the activation gate of HERG channels.

  17. S3-S4 linker length modulates the relaxed state of a voltage-gated potassium channel. (United States)

    Priest, Michael F; Lacroix, Jérôme J; Villalba-Galea, Carlos A; Bezanilla, Francisco


    Voltage-sensing domains (VSDs) are membrane protein modules found in ion channels and enzymes that are responsible for a large number of fundamental biological tasks, such as neuronal electrical activity. The VSDs switch from a resting to an active conformation upon membrane depolarization, altering the activity of the protein in response to voltage changes. Interestingly, numerous studies describe the existence of a third distinct state, called the relaxed state, also populated at positive potentials. Although some physiological roles for the relaxed state have been suggested, little is known about the molecular determinants responsible for the development and modulation of VSD relaxation. Several lines of evidence have suggested that the linker (S3-S4 linker) between the third (S3) and fourth (S4) transmembrane segments of the VSD alters the equilibrium between resting and active conformations. By measuring gating currents from the Shaker potassium channel, we demonstrate here that shortening the S3-S4 linker stabilizes the relaxed state, whereas lengthening the linker or splitting it and coinjecting two fragments of the channel have little effect. We propose that natural variations of the length of the S3-S4 linker in various VSD-containing proteins may produce differential VSD relaxation in vivo.

  18. Effect of linker length between variable domains of single chain variable fragment antibody against daidzin on its reactivity. (United States)

    Yusakul, Gorawit; Sakamoto, Seiichi; Pongkitwitoon, Benyakan; Tanaka, Hiroyuki; Morimoto, Satoshi


    The peptide linker between variable domains of heavy (VH) and light (VL) chains is one of important factors that influence the characteristics of scFv, including binding activity and specificity against target antigen. The scFvs against daidzin (DZ-scFvs) with different linker lengths were constructed in the format of VH-(GGGGS)n-VL (n = 1, 3, 5, and 7). They were expressed in the hemolymph of silkworm larvae using the Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid DNA system, and their reactivity against daidzin and related compounds were evaluated using an indirect competitive enzyme-linked immunosorbent assay (icELISA), which is applicable for quantitative analysis of daidzin. The results showed that the reactivity of scFvs against daidzin was increased, whereas specificity slightly decreased when their peptide linker was lengthened. These results suggested that the linker length of DZ-scFvs contributes to its reactivity. In addition, the results emphasize that the linker length could control the reactivity of DZ-scFvs.

  19. Linker-Induced Anomalous Emission of Organic-Molecule Conjugated Metal-Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Turkowski, Volodymyr; Babu, Suresh; Le, Duy; Kumar, Amit; Haldar, Manas K.; Wagh, Anil V.; Hu, Zhongjian; Karakoti, Ajay S.; Gesquiere, Andre J.; Law, Benedict; Mallik, Sanku; Rahman, Talat S.; Leuenberger, Michael N.; Seal, Sudipta


    Semiconductor nanoparticles conjugated with organic- and dye-molecules to yield high efficiency visible photoluminescence (PL) hold great potential for many future technological applications. We show that folic acid (FA)-conjugated to nanosize TiO2 and CeO2 particles demonstrates a dramatic increase of photoemission intensity at wavelengths between 500 and 700 nm when derivatized using aminopropyl trimethoxysilane (APTMS) as spacer-linker molecules between the metal oxide and FA. Using density-functional theory (DFT) and time-dependent DFT calculations we demonstrate that the strong increase of the PL can be explained by electronic transitions between the titania surface oxygen vacancy (OV) states and the low-energy excited states of the FA/APTMS molecule anchored onto the surface oxygen bridge sites in close proximity to the OVs. We suggest this scenario to be a universal feature for a wide class of metal oxide nanoparticles, including nanoceria, possessing a similar band gap (3 eV) and with a large surface-vacancy-related density of electronic states. We demonstrate that the molecule-nanoparticle linker can play a crucial role in tuning the electronic and optical properties of nanosystems by bringing optically active parts of the molecule and of the surface close to each other.

  20. A minimal phycobilisome: fusion and chromophorylation of the truncated core-membrane linker and phycocyanin. (United States)

    Tang, Kun; Zeng, Xiao-Li; Yang, Yi; Wang, Zhi-Bin; Wu, Xian-Jun; Zhou, Ming; Noy, Dror; Scheer, Hugo; Zhao, Kai-Hong


    Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, consist of an allophycocyanin core that is attached to the membrane via a core-membrane linker, and rods comprised of phycocyanin and often also phycoerythrin or phycoerythrocyanin. Phycobiliproteins show excellent energy transfer among the chromophores that renders them biomarkers with large Stokes-shifts absorbing over most of the visible spectrum and into the near infrared. Their application is limited, however, due to covalent binding of the chromophores and by solubility problems. We report construction of a water-soluble minimal chromophore-binding unit of the red-absorbing and fluorescing core-membrane linker. This was fused to minimal chromophore-binding units of phycocyanin. After double chromophorylation with phycocyanobilin, in E. coli, the fused phycobiliproteins absorbed light in the range of 610-660nm, and fluoresced at ~670nm, similar to phycobilisomes devoid of phycoerythr(ocyan)in. The fused phycobiliprotein could also be doubly chromophorylated with phycoerythrobilin, resulting in a chromoprotein absorbing around 540-575nm, and fluorescing at ~585nm. The broad absorptions and the large Stokes shifts render these chromoproteins candidates for imaging; they may also be helpful in studying phycobilisome assembly.

  1. Bimane fluorescence scanning suggests secondary structure near the S3-S4 linker of BK channels. (United States)

    Semenova, Nina P; Abarca-Heidemann, Karin; Loranc, Eva; Rothberg, Brad S


    Gating of large conductance Ca(2+)-activated K(+) channels (BK or maxi-K channels) is controlled by a Ca(2+)-sensor, formed by the channel cytoplasmic C-terminal domain, and a voltage sensor, formed by its S0-S4 transmembrane helices. Here we analyze structural properties of a portion of the BK channel voltage sensing domain, the S3-S4 linker, using fluorescence lifetime spectroscopy. Single residues in the S3-S4 linker region were substituted with cysteine, and the cysteine-substituted mutants were expressed in CHO cells and covalently labeled with the sulfhydryl-reactive fluorophore monobromo-trimethylammonio-bimane (qBBr). qBBr fluorescence is quenched by tryptophan and, to a lesser extent, tyrosine side chains. We found that qBBr fluorescence in several of the labeled cysteine-substituted channels shows position-specific quenching, as indicated by increase of the brief lifetime component of the qBBr fluorescence decay. Quenching was reduced with the mutation W203F (in the S4 segment), suggesting that Trp-203 acts as a quenching group. Our results suggest a working hypothesis for the secondary structure of the BK channel S3-S4 region, and places residues Leu-204, Gly-205, and Leu-206 within the extracellular end of the S4 helix.

  2. Hybrid Zeolitic Imidazolate Frameworks: Controlling Framework Porosity and Functionality by Mixed-Linker Synthesis

    KAUST Repository

    Thompson, Joshua A.


    Zeolitic imidazolate frameworks (ZIFs) are a subclass of nanoporous metal-organic frameworks (MOFs) that exhibit zeolite-like structural topologies and have interesting molecular recognition properties, such as molecular sieving and gate-opening effects associated with their pore apertures. The synthesis and characterization of hybrid ZIFs with mixed linkers in the framework are described in this work, producing materials with properties distinctly different from the parent frameworks (ZIF-8, ZIF-90, and ZIF-7). NMR spectroscopy is used to assess the relative amounts of the different linkers included in the frameworks, whereas nitrogen physisorption shows the evolution of the effective pore size distribution in materials resulting from the framework hybridization. X-ray diffraction shows these hybrid materials to be crystalline. In the case of ZIF-8-90 hybrids, the cubic space group of the parent frameworks is continuously maintained, whereas in the case of the ZIF-7-8 hybrids there is a transition from a cubic to a rhombohedral space group. Nitrogen physisorption data reveal that the hybrid materials exhibit substantial changes in gate-opening phenomena, either occurring at continuously tunable partial pressures of nitrogen (ZIF-8-90 hybrids) or loss of gate-opening effects to yield more rigid frameworks (ZIF-7-8 hybrids). With this synthetic approach, significant alterations in MOF properties may be realized to suit a desired separation or catalytic process. © 2012 American Chemical Society.

  3. Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ana Villar-Garea

    Full Text Available The linker histone H1 binds to the DNA in between adjacent nucleosomes and contributes to chromatin organization and transcriptional control. It is known that H1 carries diverse posttranslational modifications (PTMs, including phosphorylation, lysine methylation and ADP-ribosylation. Their biological functions, however, remain largely unclear. This is in part due to the fact that most of the studies have been performed in organisms that have several H1 variants, which complicates the analyses. We have chosen Drosophila melanogaster, a model organism, which has a single H1 variant, to approach the study of the role of H1 PTMs during embryonic development. Mass spectrometry mapping of the entire sequence of the protein showed phosphorylation only in the ten N-terminal amino acids, mostly at S10. For the first time, changes in the PTMs of a linker H1 during the development of a multicellular organism are reported. The abundance of H1 monophosphorylated at S10 decreases as the embryos age, which suggests that this PTM is related to cell cycle progression and/or cell differentiation. Additionally, we have found a polymorphism in the protein sequence that can be mistaken with lysine methylation if the analysis is not rigorous.

  4. Nucleosome linker proteins HMGB1 and histone H1 differentially enhance DNA ligation reactions. (United States)

    Yamanaka, Shiho; Katayama, Eisaku; Yoshioka, Ken-ichi; Nagaki, Sumiko; Yoshida, Michiteru; Teraoka, Hirobumi


    We previously reported that HMGB1, which originally binds to chromatin in a manner competitive with linker histone H1 to modulate chromatin structure, enhances both intra-molecular and inter-molecular ligations. In this paper, we found that histone H1 differentially enhances ligation reaction of DNA double-strand breaks (DSB). Histone H1 stimulated exclusively inter-molecular ligation reaction of DSB with DNA ligase IIIbeta and IV, whereas HMGB1 enhanced mainly intra-molecular ligation reaction. Electron microscopy of direct DNA-protein interaction without chemical cross-linking visualized that HMGB1 bends and loops linear DNA to form compact DNA structure and that histone H1 is capable of assembling DNA in tandem arrangement with occasional branches. These results suggest that differences in the enhancement of DNA ligation reaction are due to those in alteration of DNA configuration induced by these two linker proteins. HMGB1 and histone H1 may function in non-homologous end-joining of DSB repair and V(D)J recombination in different manners.

  5. Effective generation of transgenic pigs and mice by linker based sperm-mediated gene transfer.

    Directory of Open Access Journals (Sweden)

    Shih Ping Yao


    Full Text Available Abstract Background Transgenic animals have become valuable tools for both research and applied purposes. The current method of gene transfer, microinjection, which is widely used in transgenic mouse production, has only had limited success in producing transgenic animals of larger or higher species. Here, we report a linker based sperm-mediated gene transfer method (LB-SMGT that greatly improves the production efficiency of large transgenic animals. Results The linker protein, a monoclonal antibody (mAb C, is reactive to a surface antigen on sperm of all tested species including pig, mouse, chicken, cow, goat, sheep, and human. mAb C is a basic protein that binds to DNA through ionic interaction allowing exogenous DNA to be linked specifically to sperm. After fertilization of the egg, the DNA is shown to be successfully integrated into the genome of viable pig and mouse offspring with germ-line transfer to the F1 generation at a highly efficient rate: 37.5% of pigs and 33% of mice. The integration is demonstrated again by FISH analysis and F2 transmission in pigs. Furthermore, expression of the transgene is demonstrated in 61% (35/57 of transgenic pigs (F0 generation. Conclusions Our data suggests that LB-SMGT could be used to generate transgenic animals efficiently in many different species.

  6. Metal-free arylation of ethyl acetoacetate with hypervalent diaryliodonium salts: an immediate access to diverse 3-aryl-4(1H)-quinolones. (United States)

    Monastyrskyi, Andrii; Namelikonda, Niranjan K; Manetsch, Roman


    A clean arylation protocol of ethyl acetoacetate was developed using hypervalent diaryliodonium salts under mild and metal-free conditions. The scope of the reaction, using symmetric and unsymmetric iodonium salts with varying sterics and electronics, was examined. Further, this method has been applied for the synthesis of antimalarial compound ELQ-300, which is currently in preclinical development.

  7. A simple LC/MRM-MS-based method to quantify free linker-payload in antibody-drug conjugate preparations. (United States)

    Zmolek, Wesley; Bañas, Stefanie; Barfield, Robyn M; Rabuka, David; Drake, Penelope M


    Antibody-drug conjugates represent a growing class of biologic drugs that use the targeted specificity of an antibody to direct the localization of a small molecule drug, often a cytotoxic payload. After conjugation, antibody-drug conjugate preparations typically retain a residual amount of free (unconjugated) linker-payload. Monitoring this free small molecule drug component is important due to the potential for free payload to mediate unintended (off-target) toxicity. We developed a simple RP-HPLC/MRM-MS-based assay that can be rapidly employed to quantify free linker-payload. The method uses low sample volumes and offers an LLOQ of 10nM with 370pg on column. This analytical approach was used to monitor free linker-payload removal during optimization of the tangential flow filtration manufacturing step.

  8. Tyrosine Residues from the S4-S5 Linker of Kv11.1 Channels Are Critical for Slow Deactivation. (United States)

    Ng, Chai-Ann; Gravel, Andrée E; Perry, Matthew D; Arnold, Alexandre A; Marcotte, Isabelle; Vandenberg, Jamie I


    Slow deactivation of Kv11.1 channels is critical for its function in the heart. The S4-S5 linker, which joins the voltage sensor and pore domains, plays a critical role in this slow deactivation gating. Here, we use NMR spectroscopy to identify the membrane-bound surface of the S4S5 linker, and we show that two highly conserved tyrosine residues within the KCNH subfamily of channels are membrane-associated. Site-directed mutagenesis and electrophysiological analysis indicates that Tyr-542 interacts with both the pore domain and voltage sensor residues to stabilize activated conformations of the channel, whereas Tyr-545 contributes to the slow kinetics of deactivation by primarily stabilizing the transition state between the activated and closed states. Thus, the two tyrosine residues in the Kv11.1 S4S5 linker play critical but distinct roles in the slow deactivation phenotype, which is a hallmark of Kv11.1 channels.

  9. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hui [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Laboratory Medicine, The Affiliated Tenth People' s Hospital, Tongji University, Shanghai 200072 (China); Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Wang, Zhanli [College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014 (China); Liang, Huaping, E-mail: [State Key Laboratory of Trauma, Burns, and Combined Injury, Department 1, Research Institute of Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)


    Research highlights: {yields} Evodiamine interacted with the AhR. {yields} Evodiamine inhibited the specific binding of [{sup 3}H]-TCDD to the AhR. {yields} Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K{sub i} value of 28.4 {+-} 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  10. Regioselective synthesis of C3 alkylated and arylated benzothiophenes (United States)

    Shrives, Harry J.; Fernández-Salas, José A.; Hedtke, Christin; Pulis, Alexander P.; Procter, David J.


    Benzothiophenes are heterocyclic constituents of important molecules relevant to society, including those with the potential to meet modern medical challenges. The construction of molecules would be vastly more efficient if carbon-hydrogen bonds, found in all organic molecules, can be directly converted into carbon-carbon bonds. In the case of elaborating benzothiophenes, functionalization of carbon-hydrogen bonds at carbon-number 3 (C3) is markedly more demanding than at C2 due to issues of regioselectivity (C3 versus C2), and the requirement of high temperatures, precious metals and the installation of superfluous directing groups. Herein, we demonstrate that synthetically unexplored but readily accessible benzothiophene S-oxides serve as novel precursors for C3-functionalized benzothiophenes. Employing an interrupted Pummerer reaction to capture and then deliver phenol and silane coupling partners, we have discovered a directing group-free method that delivers C3-arylated and -alkylated benzothiophenes with complete regioselectivity, under metal-free and mild conditions.

  11. Rat brain aryl acylamidase: further characterization of multiple forms. (United States)

    Hsu, L L; Halaris, A E; Freedman, D X


    1. Two fractions of aryl acylamidase (EC were further separated from rat brain extracts at pH 7.5 by ammonium sulfate precipitation and Bio-Gel chromatography. 2. 1,2,3,4-Tetrahydro-beta-carboline competitively inhibited (67%) fraction-1 but slightly inhibited (13%) fraction-2. Tetrahydroharman, 6-hydroxy-tetrahydroharman and harminic acid slightly inhibited both fractions. Harmalol inhibited fraction-1 but enhanced fraction-2. 6-Methoxy-harman, 6-methoxy-harmalan and harmaline enhanced both fractions. 3. Pargyline did not affect either fraction. Methiothepin, cyproheptadine and chlorimipramine inhibited fraction-1 but stimulated fraction-2. 4. Neostigmine moderately (30%) inhibited AAA-2 but did not have any significant effect on AAA-1. 5. These results indicate that the beta-carboline compounds might play a role in regulating activity of AAA-1 and 2 in brain. 6. Both fractions might be related to serotonergic neurons but only AAA-2 might be associated with acetylcholinesterase.

  12. Aryl biphenyl-3-ylmethylpiperazines as 5-HT7 receptor antagonists. (United States)

    Kim, Jeeyeon; Kim, Youngjae; Tae, Jinsung; Yeom, Miyoung; Moon, Bongjin; Huang, Xi-Ping; Roth, Bryan L; Lee, Kangho; Rhim, Hyewhon; Choo, Il Han; Chong, Youhoon; Keum, Gyochang; Nam, Ghilsoo; Choo, Hyunah


    The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.

  13. The S4-S5 linker acts as a signal integrator for HERG K+ channel activation and deactivation gating. (United States)

    Ng, Chai Ann; Perry, Matthew D; Tan, Peter S; Hill, Adam P; Kuchel, Philip W; Vandenberg, Jamie I


    Human ether-à-go-go-related gene (hERG) K(+) channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4-S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4-S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4-S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4-S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4-S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4-S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel.

  14. Cu(OAc)2/Pyrimidines-Catalyzed Cross-coupling Reactions of Aryl Iodides and Activated Aryl Bromides with Alkynes under Aerobic, Solvent-free and Palladium-free Conditions

    Institute of Scientific and Technical Information of China (English)

    XIE Ye-Xiang; DENG Chen-Liang; PI Shao-Feng; LI Jin-Heng; YIN Du-Lin


    Excellent results have been achieved in the Cu(OAc)2-catalyzed Sonogashira cross-couplings of aryl iodides and activated aryl bromides utilizing TBAF (tetrabutylammonium fluoride) as the base and 4,6-dimethoxypyrimidin-2-amine as the ligand. It is noteworthy that the reaction is conducted under aerobic, solvent-free and palladium-free conditions.

  15. Phosphine-Free Palladium-Catalyzed Direct C-3 Arylation of 2-Phenylimidazo[1,2-a]pyridine Using Silver(I Carboxylate

    Directory of Open Access Journals (Sweden)

    Sridevi Kona


    Full Text Available Phosphine-free palladium-catalyzed direct arylation of 2-phenyl-imidazo[1,2-a]pyridine has been developed with the concept of using silver(I carboxylate. This protocol efficiently catalyzes the C-H arylation of 2-phenyl-imidazo[1,2-a]pyridine with aryl iodides to afford the corresponding 2-phenyl-3-aryl-imidazo[1,2-a]pyridines in moderate to-good yields.

  16. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions. (United States)

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere


    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology.

  17. Palladium-catalyzed α-arylation of zinc enolates of esters: reaction conditions and substrate scope. (United States)

    Hama, Takuo; Ge, Shaozhong; Hartwig, John F


    The intermolecular α-arylation of esters by palladium-catalyzed coupling of aryl bromides with zinc enolates of esters is reported. Reactions of three different types of zinc enolates have been developed. α-Arylation of esters occurs in high yields with isolated Reformatsky reagents, with Reformatsky reagents generated from α-bromo esters and activated zinc, and with zinc enolates generated by quenching alkali metal enolates of esters with zinc chloride. The use of zinc enolates, instead of alkali metal enolates, greatly expands the scope of the arylation of esters. The reactions occur at room temperature or at 70 °C with bromoarenes containing cyano, nitro, ester, keto, fluoro, enolizable hydrogen, hydroxyl, or amino functionality and with bromopyridines. The scope of esters encompasses acyclic acetates, propionates, and isobutyrates, α-alkoxyesters, and lactones. The arylation of zinc enolates of esters was conducted with catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) or the highly reactive dimeric Pd(I) complex {[P(t-Bu)3]PdBr}2.

  18. Mechanistic Aspects of Aryl-Halide Oxidative Addition, Coordination Chemistry, and Ring-Walking by Palladium. (United States)

    Zenkina, Olena V; Gidron, Ori; Shimon, Linda J W; Iron, Mark A; van der Boom, Milko E


    This contribution describes the reactivity of a zero-valent palladium phosphine complex with substrates that contain both an aryl halide moiety and an unsaturated carbon-carbon bond. Although η(2) -coordination of the metal center to a C=C or C≡C unit is kinetically favored, aryl halide bond activation is favored thermodynamically. These quantitative transformations proceed under mild reaction conditions in solution or in the solid state. Kinetic measurements indicate that formation of η(2) -coordination complexes are not nonproductive side-equilibria, but observable (and in several cases even isolated) intermediates en route to aryl halide bond cleavage. At the same time, DFT calculations show that the reaction with palladium may proceed through a dissociation-oxidative addition mechanism rather than through a haptotropic intramolecular process (i.e., ring walking). Furthermore, the transition state involves coordination of a third phosphine to the palladium center, which is lost during the oxidative addition as the C-halide bond is being broken. Interestingly, selective activation of aryl halides has been demonstrated by adding reactive aryl halides to the η(2) -coordination complexes. The product distribution can be controlled by the concentration of the reactants and/or the presence of excess phosphine.

  19. Silyl-based alkyne-modifying linker for the preparation of C-terminal acetylene-derivatized protected peptides. (United States)

    Strack, Martin; Langklotz, Sina; Bandow, Julia E; Metzler-Nolte, Nils; Albada, H Bauke


    A novel linker for the synthesis of C-terminal acetylene-functionalized protected peptides is described. This SAM1 linker is applied in the manual Fmoc-based solid-phase peptide synthesis of Leu-enkephalin and in microwave-assisted automated synthesis of Maculatin 2.1, an antibacterial peptide that contains 18 amino acid residues. For the cleavage, treatment with tetramethylammonium fluoride results in protected acetylene-derivatized peptides. Alternatively, a one-pot cleavage-click procedure affords the protected 1,2,3-triazole conjugate in high yields after purification.

  20. Synthesis and Antimicrobial Activity of N-[2-(aryl/substituted aryl)-4-oxo-1,3-thiazolidin-3-yl]pyridine-4-carboxamide

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Asha B.; Nanda, Rabindra K.; Kothapalli, Lata P.; Deshpande, Avinash D. [Patil Institute of Pharmaceutical Sciences and Research, Maharashtra (India)


    A series of isonicotinyl hydrazones and their 4-thiazolidinones have been synthesized by condensation of isonicotinic acid hydrazide with various aromatic aldehydes to yield Schiff's bases, followed by the cyclocondensation of Schiff's bases with 2-mercaptoacetic acid to yield their 4-thiazolidinones. The synthesized compounds have been characterized by their elemental, analytical and spectral studies. All these compounds were evaluated for their in vitro antimicrobial activity against a spectrum of non-resistant and resistant microbial organisms. These studies proved that compounds 5e,i against B. subtilis; 5e,f,h against B. anthracis; 5g,i against S. aureus showed good activity at lower concentrations. Compounds 5d-5i displayed significant activity against resistant strain of K. pneumonia with minimum inhibitory potency in the concentration range of 2-16 ug/ml.

  1. Mapping N-linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Aryal, Uma K.; Dai, Ziyu; Mason, Alisa C.; Monroe, Matthew E.; Tian, Zhixin; Zhou, Jianying; Su, Dian; Weitz, Karl K.; Liu, Tao; Camp, David G.; Smith, Richard D.; Baker, Scott E.; Qian, Weijun


    Protein glycosylation is known to play an essential role in both cellular functions and the secretory pathways; however, little information is available on the dynamics of glycosylated N-linked glycosites of fungi. Herein we present the first extensive mapping of glycosylated N-linked glycosites in industrial strain Aspergillus niger by applying an optimized solid phase enrichment of glycopeptide protocol using hydrazide modified magnetic beads. The enrichment protocol was initially optimized using mouse plasma and A. niger secretome samples, which was then applied to profile N-linked glycosites from both the secretome and whole cell lysates of A. niger. A total of 847 unique N-linked glycosites and 330 N-linked glycoproteins were confidently identified by LC-MS/MS. Based on gene ontology analysis, the identified N-linked glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, golgi apparatus, lysosome, and storage vacuoles. The identified N-linked glycoproteins are involved in a wide range of biological processes including gene regulation and signal transduction, protein folding and assembly, protein modification and carbohydrate metabolism. The extensive coverage of glycosylated N-linked glycosites along with identification of partial N-linked glycosylation in those enzymes involving in different biochemical pathways provide useful information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.

  2. Synthesis of N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine analogues: succinamide, L-2-hydroxysuccinamide, and L-2-hydroxysuccinamic acid hydrazide analogues. (United States)

    De Huang, H; Risley, J M


    The syntheses of three analogues of N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine are described. N-(2-Acetamido-2-deoxy-beta-D-glucopyranosyl)succinamide was synthesized by the reaction of pentafluorophenyl succinamate with 2-acetamido-2-deoxy-beta-D-glucopyranosylamine. 2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosylamine was synthesized, and the complete assignment of the 1H NMR spectrum is given. Reaction of the protected beta-D-glycosylamine with L-malic acid chloralid in the presence of a coupling agent (EEDQ) gave N4-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-L-malamic acid chloralid that was deprotected two ways: (1) using ammonia, which gave N4-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-2-hydroxysuccinamide, and (2) using hydrazine, which gave N4-(2-acetamido-2-deoxy-1-D-glucopyranosyl)-L-2-hydroxysuccinamic acid hydrazide.

  3. Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation. (United States)

    Pappas, Iraklis; Chirik, Paul J


    The hydrogenolysis of titanium-nitrogen bonds in a series of bis(cyclopentadienyl) titanium amides, hydrazides and imides by proton coupled electron transfer (PCET) is described. Twelve different N-H bond dissociation free energies (BDFEs) among the various nitrogen-containing ligands were measured or calculated, and effects of metal oxidation state and N-ligand substituent were determined. Two metal hydride complexes, (η(5)-C5Me5)(py-Ph)Rh-H (py-Ph = 2-pyridylphenyl, [Rh]-H) and (η(5)-C5R5)(CO)3Cr-H ([Cr](R)-H, R= H, Me) were evaluated for formal H atom transfer reactivity and were selected due to their relatively weak M-H bond strengths yet ability to activate and cleave molecular hydrogen. Despite comparable M-H BDFEs, disparate reactivity between the two compounds was observed and was traced to the vastly different acidities of the M-H bonds and overall redox potentials of the molecules. With [Rh]-H, catalytic syntheses of ammonia, silylamine and N,N-dimethylhydrazine have been accomplished from the corresponding titanium(IV) complex using H2 as the stoichiometric H atom source. The data presented in this study provides the thermochemical foundation for the synthesis of NH3 by proton coupled electron transfer at a well-defined transition metal center.

  4. Synthesis, characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2- pyridinylmethylene)hydrazide] Schiff bases ligand

    Institute of Scientific and Technical Information of China (English)

    Abdulaziz M Ajlouni; Qutaiba Abu-Salem; Ziyad A Taha; Ahmed K Hijazi; Waleed Al Momani


    A Schiff baseL[2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene)hydrazide] with its lanthanide metal complexeswas synthesized. These complexes were characterized by elemental analysis, molar conductivity measurements, spectral analysis (NMR, FT-IR, and UV-Vis), luminescence and thermal gravimetric analysis. The Schiff base ligandwas a tridentate chelate and coordinates to the central lanthanide ion with 1:2 metal:ligand ratio. The conductivity data showeda1:1 electrolytic nature with a general formula [LnL2(NO3)2]NO3. The luminescence emission properties for Sm,Tb, and Eu complexeswere observed and showedthat the ligandL couldabsorb and transfer energy to Sm(III), Tb(III) and Eu(III)ions. The complexes possesseda good antibacterial activity against different bacterial strains. In addition,the scavenging activity of the Ln(III) complexes on DPPHwas concentration dependant and the complexeswere significantly more efficient in quenching DPPH than the free Schiff base ligand.

  5. Design, synthesis, and application of a hydrazide-functionalized isotope-coded affinity tag for the quantification of oxylipid-protein conjugates. (United States)

    Han, Bingnan; Stevens, Jan F; Maier, Claudia S


    An isotopically coded affinity probe was developed and evaluated for the characterization and quantification of proteins adducted by 2-alkenals derived from lipid peroxidation (LPO) processes. Lipid-derived 2-alkenals, such as acrolein and 4-hydroxy-2-nonenal (HNE), have the ability to react with cysteine, histidine, and lysine residues in proteins, thus causing protein damage and loss of protein function. Such modifications of proteins are difficult to characterize in biological samples by mass spectrometry due to the complexity of protein extracts and the low abundance of adducted proteins. The novel aldehyde-reactive, hydrazide-functionalized, isotope-coded affinity tag (HICAT) described in this study was found effective for the selective isolation, detection, and quantification of Michael-type adducts of 2-alkenals with proteins using a combination of affinity isolation, nanoLC, and matrix-assisted laser desorption ionization tandem mass spectrometry (MALDI-MS/MS). The chemical and mass spectrometric properties of the new probe are demonstrated on a model protein treated with HNE. The efficacy of HICAT for the analysis of complex samples was tested using preparations of mitochondrial proteins that were modified in vitro with HNE. The potential of the HICAT strategy for the identification, characterization, and quantification of in vivo oxylipid-protein conjugates is demonstrated on cardiac mitochondrial protein preparations, in which, for example, the ADP/ATP translocase 1 was found adducted to the 2-alkenals, acrolein and 4-hydroxy-2-hexenal, at Cys-256.

  6. Chemiluminescent determination of vanadium(IV) using a cinchomeronic hydrazide-H{sub 2}O{sub 2} system and flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pradana Perez, J.A. [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, c/Senda del Rey 9, 28040 Madrid (Spain); Alegria, J.S. Durand [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, c/Senda del Rey 9, 28040 Madrid (Spain); Hernando, P. Fernandez [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, c/Senda del Rey 9, 28040 Madrid (Spain)]. E-mail:; Sierra, A. Narros [Departamento de Ingenieria Quimica y del Medio Ambiente, Escuela Tecnica Superior de Ingenieros Industriales, Universidad Politecnica de Madrid, Madrid (Spain)


    This paper proposes a new chemiluminescent flow injection analysis (FIA) method for the determination of vanadium(IV) ions in aqueous media. The method is based on the chemiluminescent reaction that occurs between cinchomeronic hydrazide (CH) and hydrogen peroxide in a strongly alkaline medium, in which vanadium(IV) acts as a catalyst. The chemical and physical variables involved in the flow injection system are optimised using a modified simplex method. Vanadium ions can be detected in the 0.08 and 1.00 {mu}g mL{sup -1} range; the detection limit for a signal-to-noise ratio of 3 is 0.08 {mu}g mL{sup -1}. Great variations in the quantum yield were observed when cobalt(II), chromium(III), copper(II) and/or nickel(II) were present in the reaction medium. The proposed method is selective and simple, and can be successfully used to analyse water samples without the need for separation or preconcentration processes.

  7. Preparation and characterization of poly(ethyl hydrazide)-grafted oil palm empty fruit bunch fibre for the removal of Cu(II) ions from an aqueous environment. (United States)

    Johari, Ili Syazana; Yusof, Nor Azah; Haron, Md Jelas; Nor, Siti Mariam Mohd


    Poly(ethyl hydrazide)-grafted oil palm empty fruit bunch fibre (peh-g-opefb) was successfully prepared by heating poly(methyl acrylate)-grafted opefb (pma-g-opefb) at 60 °C for 4 h with a solution of hydrazine hydrate (15% v/v) in ethanol. The Fourier transform infrared spectrum of the product shows a secondary amine peak at 3267 cm⁻¹, with amide carbonyl peaks at 1729 cm⁻¹ and 1643 cm⁻¹. The chelating ability of peh-g-opefb was tested with copper ion in aqueous solution. A batch adsorption study revealed that maximum adsorption of copper ion was achieved at pH 5. An isotherm study showed the adsorption follows a Langmuir model, with a maximum adsorption capacity of 43.48 mg g-1 at 25 °C. A kinetic study showed that the adsorption of copper ion rapidly reaches equilibrium and follows a pseudo-second-order kinetic model, with a constant rate of 7.02 × 10⁻⁴ g mg⁻¹ min⁻¹ at 25 °C. The Gibbs free energy, ∆G⁰, value is negative, indicating a spontaneous sorption process. Entropy, ∆S⁰, gives a positive value, indicating that the system is becoming increasingly disordered after the adsorption of copper ion. A positive enthalpy value, ∆H⁰, shows that the endothermic process takes place during the adsorption and is more favourable at high temperatures.

  8. Preparation and Characterization of Poly(ethyl hydrazide-Grafted Oil Palm Empty Fruit Bunch Fibre for the Removal of Cu(II Ions from an Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Siti Mariam Mohd Nor


    Full Text Available Poly(ethyl hydrazide-grafted oil palm empty fruit bunch fibre (peh-g-opefb was successfully prepared by heating poly(methyl acrylate-grafted opefb (pma-g-opefb at 60 °C for 4 h with a solution of hydrazine hydrate (15% v/v in ethanol. The Fourier transform infrared spectrum of the product shows a secondary amine peak at 3267 cm−1, with amide carbonyl peaks at 1729 cm−1 and 1643 cm−1. The chelating ability of peh-g-opefb was tested with copper ion in aqueous solution. A batch adsorption study revealed that maximum adsorption of copper ion was achieved at pH 5. An isotherm study showed the adsorption follows a Langmuir model, with a maximum adsorption capacity of 43.48 mg g−1 at 25 °C. A kinetic study showed that the adsorption of copper ion rapidly reaches equilibrium and follows a pseudo–second-order kinetic model, with a constant rate of 7.02 × 10−4 g mg−1 min−1 at 25 °C. The Gibbs free energy, ∆G⁰, value is negative, indicating a spontaneous sorption process. Entropy, ∆S⁰, gives a positive value, indicating that the system is becoming increasingly disordered after the adsorption of copper ion. A positive enthalpy value, ∆H⁰, shows that the endothermic process takes place during the adsorption and is more favourable at high temperatures.

  9. Palladium-catalyzed aryl amination-heck cyclization cascade: A one-flask approach to 3-substituted Indoles

    DEFF Research Database (Denmark)

    Jensen, Thomas; Pedersen, Henrik; Bang-Andersen, B.;


    Two for the price of one: A Pd/dppf-based catalyst provides access to the title compounds from 1,2-dihalogenated aromatic compounds and allylic amines in a single reaction flask. The initial aryl amination step occurs with excellent selectivity for the aryl iodide to ensure the formation of a sin...

  10. Efficient N-Arylation and N-Alkenylation of the Five DNA/RNANucleobases

    DEFF Research Database (Denmark)

    Jacobsen, Mikkel Fog; Knudsen, Martin M.; Gothelf, Kurt Vesterager


    -substituted pyrimidin-2(1H)-one served as both a cytosine and a uracil precursor and was N-arylated and N-alkenylated in high yields. Adenine was efficiently and selectively N-arylated and N-alkenylated at the N9 position by employing a bis-Boc-protected adenine derivative, while a bis-Boc-protected 2-amino-6...

  11. Synthesis and Biological Activities of 3-(2-Furyl)-4-aryl- 1, 2, 4-triazole-5-thiones

    Institute of Scientific and Technical Information of China (English)


    A series of novel compounds 3-(2-furyl)-4-aryl-l, 2, 4-triazole-5-thiones have been synthesized. All the compounds were characterized by spectral data and elemental analysis. The preliminary biological test showed that some of them exhibited excellent plant-growth regulative acl ivities.

  12. Dramatic Substituent Effect on the CCL-catalyzed Kinetic Resolution of 1-Aryl-2,3-allenols

    Institute of Scientific and Technical Information of China (English)

    XU, Dai-Wang(徐代旺); LI, Zu-Yi(李祖义); MA, Sheng-Ming(麻生明)


    Optically active 1-aryl-2,3-allenols were obtained via CCL-mediated kinetic resolution of the racemic allenols. The substitution pattern of the aromatic ring, regarding to both the type of the substituent and its position on the aromatic ring, was found to be critical for the kinetic resolution of 1-aryl-2,3-allenols.

  13. Copper-Catalyzed N-Arylation of Amides Using (S-N-Methylpyrrolidine-2-carboxylate as the Ligand

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ma


    Full Text Available (S-N-methylpyrrolidine-2-carboxylate, a derivative of natural L-proline, was found to be an efficient ligand for the copper-catalyzed Goldberg-type N-arylation of amides with aryl halides under mild conditions. A variety of N-arylamides were synthesized in good to high yields.

  14. Synthesis of radiolabelled aryl azides from diazonium salts: experimental and computational results permit the identification of the preferred mechanism. (United States)

    Joshi, Sameer M; de Cózar, Abel; Gómez-Vallejo, Vanessa; Koziorowski, Jacek; Llop, Jordi; Cossío, Fernando P


    Experimental and computational studies on the formation of aryl azides from the corresponding diazonium salts support a stepwise mechanism via acyclic zwitterionic intermediates. The low energy barriers associated with both transition structures are compatible with very fast and efficient processes, thus making this method suitable for the chemical synthesis of radiolabelled aryl azides.

  15. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Directory of Open Access Journals (Sweden)

    Aiichiro Nagaki


    Full Text Available The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  16. Dithiocarbamate promoted practical synthesis of N-Aryl-2-aminobenzazoles: Synthesis of novel Aurora-A kinase inhibitor

    Indian Academy of Sciences (India)

    Naresh Kumar Katari; M Venkatanarayana; Kummari Srinivas


    Various N-aryl-2-aminobenzoxazoles and N-aryl-2-aminobenzothiazoles were synthesized from o-aminophenol and o-aminothiophenol, respectively, mediated by dithiocarbamate in one step. The salient features of this method include mild reaction condition, high yield and large scale synthesis. Application of this methodology has been demonstrated by synthesizing potent Aurora kinase-A inhibitors.

  17. Solid-phase synthesis of lidocaine and procainamide analogues using backbone amide linker (BAL) anchoring. (United States)

    Shannon, Simon K; Peacock, Mandy J; Kates, Steven A; Barany, George


    New solid-phase strategies have been developed for the synthesis of lidocaine (1) and procainamide (2) analogues, using backbone amide linker (BAL) anchoring. Both sets were prepared starting from a common resin-bound intermediate, followed by four general steps: (i) attachment of a primary aliphatic or aromatic amine to the solid support via reductive amination (as monitored by a novel test involving reaction of 2,4-dinitrophenylhydrazine with residual aldehyde groups); (ii) acylation of the resultant secondary amine; (iii) displacement of halide with an amine; and (iv) trifluoroacetic acid-mediated release from the support. A manual parallel strategy was followed to provide 60 novel compounds, of which two dozen have not been previously described. In most cases, initial crude purities were >80%, and overall isolated yields were in the 40-88% range.

  18. Speaking tasks for the assessment of English: the use of linkers

    Directory of Open Access Journals (Sweden)

    Marcos Peñate Cabrera


    Full Text Available Although assessment experts have been researching the relationship between the different types of tasks and their level of difficulty, this process of analysis should be pursued further in order to acquire a more accurate vision of the variables involved. In this article we study the three types of tasks most frequently used in the different models of oral exams (one-to-one interview based on a photo, one-to-one interview based on a comic strip and a dialogue in pairs. In order to carry out this study we assessed 244 pupils from the second year of Bachillerato belonging to nine different schools and having an A2 level of English. When contrasting the 3 types of tasks, our aim was to analyse the amount and complexity of the oral production, namely the use of linkers, by means of statistical tests of homogeneity and specificity.

  19. Aryl Polyenes, a Highly Abundant Class of Bacterial Natural Products, Are Functionally Related to Antioxidative Carotenoids. (United States)

    Schöner, Tim A; Gassel, Sören; Osawa, Ayako; Tobias, Nicholas J; Okuno, Yukari; Sakakibara, Yui; Shindo, Kazutoshi; Sandmann, Gerhard; Bode, Helge B


    Bacterial pigments of the aryl polyene type are structurally similar to the well-known carotenoids with respect to their polyene systems. Their biosynthetic gene cluster is widespread in taxonomically distant bacteria, and four classes of such pigments have been found. Here we report the structure elucidation of the aryl polyene/dialkylresorcinol hybrid pigments of Variovorax paradoxus B4 by HPLC-UV-MS, MALDI-MS and NMR. Furthermore, we show for the first time that this pigment class protects the bacterium from reactive oxygen species, similarly to what is known for carotenoids. An analysis of the distribution of biosynthetic genes for aryl polyenes and carotenoids in bacterial genomes is presented; it shows a complementary distribution of these protective pigments in bacteria.

  20. A General Palladium-Catalyzed Hiyama Cross-Coupling Reaction of Aryl and Heteroaryl Chlorides. (United States)

    Yuen, On Ying; So, Chau Ming; Man, Ho Wing; Kwong, Fuk Yee


    A general palladium-catalyzed Hiyama cross-coupling reaction of aryl and heteroaryl chlorides with aryl and heteroaryl trialkoxysilanes by a Pd(OAc)2 /L2 catalytic system is presented. A newly developed water addition protocol can dramatically improve the product yields. The conjugation of the Pd/L2 system and the water addition protocol can efficiently catalyze a broad range of electron-rich, -neutral, -deficient, and sterically hindered aryl chlorides and heteroaryl chlorides with excellent yields within three hours and the catalyst loading can be down to 0.05 mol % Pd for the first time. Hiyama coupling of heteroaryl chlorides with heteroaryl silanes is also reported for the first time. The reaction can be easily scaled up 200 times (100 mmol) without any degasification and purification of reactants; this facilitates the practical application in routine synthesis.

  1. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination.

    Directory of Open Access Journals (Sweden)

    Samantha F Kornfeld

    Full Text Available Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as

  2. Synthesis of a TREN in which the aryl substituents are part of a 45 atom macrocycle. (United States)

    Cain, Matthew F; Forrest, William P; Peryshkov, Dmitry V; Schrock, Richard R; Müller, Peter


    A substituted TREN has been prepared in which the aryl groups in (ArylNHCH2CH2)3N are substituted at the 3- and 5-positions with a total of six OCH2(CH2)nCH═CH2 groups (n = 1, 2, 3). Molybdenum nitride complexes, [(ArylNCH2CH2)3N]Mo(N), have been isolated as adducts that contain B(C6F5)3 bound to the nitride. Two of these [(ArylNCH2CH2)3N]Mo(NB(C6F5)3) complexes (n = 1 and 3) were crystallographically characterized. After removal of the borane from [(ArylNCH2CH2)3N]Mo(NB(C6F5)3) with PMe3, ring-closing olefin metathesis (RCM) was employed to join the aryl rings with OCH2(CH2)nCH═CH(CH2)nCH2O links (n = 1-3) between them. RCM worked best with a W(O)(CHCMe3)(Me2Pyr)(OHMT)(PMe2Ph) catalyst (OHMT = hexamethylterphenoxide, Me2Pyr = 2,5-dimethylpyrrolide) and n = 3. The macrocyclic ligand was removed from the metal through hydrolysis and isolated in 70-75% yields relative to the borane adducts. Crystallographic characterization showed that the macrocyclic TREN ligand in which n = 3 contains three cis double bonds. Hydrogenation produced a TREN in which the three links are saturated, i.e., O(CH2)10O.

  3. Temperature-triggered release of a liquid cross-linker micro-encapsulated in a glassy polymer for low temperature curing

    NARCIS (Netherlands)

    Senatore, D.; Cate, A.T. ten; Laven, J.; Benthem, R.A.T.M. van; With, G. de


    In order to prevent a liquid epoxy cross-linker from premature, Arrhenius-law predicted, reaction with an acid-functional polyester resin, the liquid cross-linker has been physically separated from the resin by encapsulation while release is only possible by a temperature-controlled trigger. The gla

  4. Synthesis of Selective Butyrylcholinesterase Inhibitors Coupled between α-Lipoic Acid and Polyphenols by Using 2-(Piperazin-1-yl)ethanol Linker

    Energy Technology Data Exchange (ETDEWEB)

    Yeun, Go Heun; Lee, Seung Hwan; LIm, Yong Bae; Lee, Hye Sook; Lee, Bong Ho; Park, Jeong Ho [Hanbat National Univ., Daejeon (Korea, Republic of); Won, Mooho [Kangwon National Univ., Chuncheon (Korea, Republic of)


    In the previous paper (Bull. Korean Chem. Soc., 2011, 32, 2997), the hybrid molecules between α-lipoic acid (ALA) and polyphenols (PPs) connected with neutral 2-(2-aminoethoxy)ethanol linker (linker-1) showed new biological activity such as butyrylcholinesterase (BuChE) inhibition. In order to increase the binding affinity of the hybrid compounds to cholinesterase (ChE), the neutral 2-(2-aminoethoxy)ethanol (linker 1) was switched to the cationic 2-(piperazin-1-yl)ethanol linker (linker 2). The IC{sub 50} values of the linker-2 hybrid molecules for BuChE inhibition were lower than those of linker-1 hybrid molecules (except 9-2) and they also had the same great selectivity for BuChE over AChE (> 800 fold) as linker-1 hybrid molecules. ALA-acetyl caffeic acid (10-2, ALA-AcCA) was shown as an effective inhibitor of BuChE (IC{sub 50} = 0.44 ± 0.24 μM). A kinetic study using 7-2 showed that it is the same mixed type inhibition as 7-1. Its inhibition constant (Ki) to BuChE is 4.3 ± 0.09 μM.

  5. Oculomotor deficits in aryl hydrocarbon receptor null mouse.

    Directory of Open Access Journals (Sweden)

    Aline Chevallier

    Full Text Available The Aryl hydrocarbon Receptor or AhR, a ligand-activated transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD. Recent studies in Caenorhabditis elegans and Drosophila melanogaster show that the orthologs of the AhR are expressed exclusively in certain types of neurons and are implicated in the development and the homeostasis of the central nervous system. While physiological roles of the AhR were demonstrated in the mammalian heart, liver and gametogenesis, its ontogenic expression and putative neural functions remain elusive. Here, we report that the constitutive absence of the AhR in adult mice (AhR-/- leads to abnormal eye movements in the form of a spontaneous pendular horizontal nystagmus. To determine if the nystagmus is of vestibular, visual, or cerebellar origin, gaze stabilizing reflexes, namely vestibulo-ocular and optokinetic reflexes (VOR and OKR, were investigated. The OKR is less effective in the AhR-/- mice suggesting a deficit in the visuo-motor circuitry, while the VOR is mildly affected. Furthermore, the AhR is expressed in the retinal ganglion cells during the development, however electroretinograms revealed no impairment of retinal cell function. The structure of the cerebellum of the AhR-/- mice is normal which is compatible with the preserved VOR adaptation, a plastic process dependent on cerebellar integrity. Finally, intoxication with TCDD of control adults did not lead to any abnormality of the oculomotor control. These results demonstrate that the absence of the AhR leads to acquired central nervous system deficits in the adults. Given the many common features between both AhR mouse and human infantile nystagmus syndromes, the AhR-/- mice might give insights into the developmental mechanisms which lead to congenital eye disorders.

  6. Enantiospecific effects of ketoconazole on aryl hydrocarbon receptor.

    Directory of Open Access Journals (Sweden)

    Aneta Novotna

    Full Text Available Azole antifungal ketoconazole (KET was demonstrated to activate aryl hydrocarbon receptor (AhR. Since clinically used KET is a racemic mixture of two cis-enantiomers (2R,4S-(+-KET and (2S,4R-(--KET, we examined the effects of KET enantiomers on AhR signaling pathway. (+-KET dose-dependently activated AhR in human gene reporter cell line AZ-AHR, and displayed 5-20× higher agonist activity (efficacy, as compared to (--KET; both enantiomers were AhR antagonists with equal potency (IC50. Consistently, (+-KET strongly induced CYP1A1 mRNA and protein in human HepG2 cells, while (--KET exerted less than 10% of (+-KET activity. In primary human hepatocytes, both enantiomers preferentially induced CYP1A2 over CYP1A1 mRNA and protein, and the potency of (+-KET was slightly higher as compared to (--KET. Ligand binding assay with guinea pig liver cytosols revealed that both (+-KET and (--KET are weak ligands of AhR that displaced [3H]-TCDD with comparable potency. Similarly, both enantiomers weakly transformed AhR to DNA-binding form with similar potency, as showed by EMSA, in guinea pig liver cytosolic extracts and nuclear extracts from mouse Hepa-1 cells. We also examined effects of KET on glucocorticoid receptor (GR, a regulator of AhR activity. Both KET enantiomers antagonized GR with similar potency, as revealed by gene reporter assay in AZ-GR cell line and down-regulation of tyrosine aminotransferase mRNA in human hepatocytes. Finally, we demonstrate enantiospecific antifungal activities of KET enantiomers in six Candida spp. strains. In conclusion, the significance of current study is providing the first evidence of enatiospecific effects of cis-enantiomers of ketoconazole on AhR-CYP1A pathway.

  7. CuI/Proline-catalyzed N-Arylation of Nitrogen Heterocycles

    Institute of Scientific and Technical Information of China (English)


    Ma's CuI/proline procedure for the catalytic cross coupling between nitrogen heterocycles and aryl halides was markedly improved. The key finding was that K3PO4 was a much better base than K2CO3 for the reaction. With this new reaction condition the cross coupling with aryl iodides could be accomplished in 1,4-dioxane instead of DMSO. This reactin also could be carried out in DMF. Furthermore, the coupling yields under the new conditions are usually higher than in Ma's original methods.

  8. 3-methylcholanthrene induces differential recruitment of aryl hydrocarbon receptor to human promoters

    DEFF Research Database (Denmark)

    Pansoy, Andrea; Ahmed, Shaimaa; Valen, Eivind;


    The aryl hydrocarbon receptor (AHR) is a ligand-activated protein that mediates the toxic actions of polycyclic aromatic and halogenated compounds. Identifying genes directly regulated by AHR is important in understanding the pathways regulated by this receptor. Here we used chromatin immunopreci......The aryl hydrocarbon receptor (AHR) is a ligand-activated protein that mediates the toxic actions of polycyclic aromatic and halogenated compounds. Identifying genes directly regulated by AHR is important in understanding the pathways regulated by this receptor. Here we used chromatin...

  9. Amination Reactions of Aryl Halides with Nitrogen-Containing Reagents Catalyzed by Cul in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    YAN,Jin-Can; ZHOU,Li; WANG,Lei


    CuI-catalyzed coupling reactions of aryl iodides and electron-deficient aryl bromides with nitrogen-containing reagents, such as imidazole, benzimidazole, aliphatic primary and secondary amines, aniline, primary and secondary amides, in ionic liquid were developed. The reaction conditions involved the use of[Bmim][BF4] as the solvent,potassium phosphate as the base, and CuI as the catalyst. The CuI and[Bmim][BF4] could be recovered and recycled for five consecutive trials without significant loss of their activity.

  10. Asymmetric synthesis of quaternary aryl amino acid derivatives via a three-component aryne coupling reaction

    Directory of Open Access Journals (Sweden)

    Elizabeth P. Jones


    Full Text Available A method was developed for the synthesis of α-alkyl, α-aryl-bislactim ethers in good to excellent yields and high diastereoselectivities, consisting of a facile one-pot procedure in which the aryl group is introduced by means of a nucleophilic addition to benzyne and the alkyl group by alkylation of a resultant benzylic anion. Hydrolysis of the sterically less hindered adducts gave the corresponding quaternary amino acids with no racemization, whereas hydrolytic ring opening gave the corresponding valine dipeptides from bulkier bislactims.

  11. Synthesis and antifungal activity of novel (1-aryl-2-heterocyclyl)ethylideneaminooxymethyl-substituted dioxolanes

    Energy Technology Data Exchange (ETDEWEB)

    Baji, H.; Flammang, M.; Kimny, T.; Gasquez, F.; Compagnon, P.L.; Delcourt, A. [Dijon Univ., 21 (France)


    A novel series of (1-aryl-2-heterocyclyl)ethylideneaminooxymethyl -substituted dioxolanes IIIa-n were synthesized by condensation of substituted 1,3-dioxolan-4-ylmethyl p-toluenesulfonates 4 with 1-(hydroxyimino)-1-aryl-2-heterocyclylethanes 5. Compounds IIIa-n were found to have effective in vitro antifungal activity when evaluated against the pathogenic fungi Candida albicans, Aspergillus flavus and Fusarium solani with MIC (minimum inhibitory concentration) values of 10 {mu}g-ml{sup -1} for IIIa-I and 5 {mu}g-ml{sup -1} for IIIm,n. (authors). 24 refs., 4 figs., 5 tabs.

  12. Mechanistic Evaluation of Motion in Redox-Driven Rotaxanes Reveals Longer Linkers Hasten Forward Escape's and Hinder Backward Translations

    DEFF Research Database (Denmark)

    Andersen, S. S.; Share, A. I.; Poulsen, B. L.;


    of the glycol linker connecting the two stations (n = 5, 8, 11, and 23 atoms). We undertook the first mechanistic study of the full cycle of motion in this class of molecular switch using cyclic voltammetry. The kinetics parameters (k, Delta G(double dagger) of switching were determined at different...

  13. Phenyl amide linker improves the pharmacokinetics and pharmacodynamics of N-terminally mono-PEGylated human growth hormone. (United States)

    Wu, Ling; Ji, Shaoyang; Shen, Lijuan; Hu, Tao


    Human growth hormone (hGH) suffers from a short plasma half-life of ∼15 min, necessitating frequent injections to maintain its physiological effect. PEGylation, conjugation of polyethylene glycol (PEG), is an effective strategy to prolong the plasma half-life of hGH. However, PEGylation can significantly decrease the bioactivity of hGH. Thus, a new PEGylation approach is desired to improve the pharmacokinetics (PK) and pharmacodynamics (PD) of the PEGylated hGH. In the present study, two N-terminally mono-PEGylated hGHs were prepared using aldehyde chemistry. Phenyl amide and ethyl moieties were used as the linkers between PEG and hGH, respectively. The hydrodynamic volume, proteolytic sensitivity, and immunogenicity of the PEGylated hGH with phenyl amide linker (hGH-phenyl-PEG) were lower than those of the one with propyl linker (hGH-prop-PEG). In addition, hGH-phenyl-PEG showed a higher in vitro bioactivity and better PK and PD than hGH-prop-PEG. The better PK of hGH-phenyl-PEG was mainly due to its lower proteolytic sensitivity and low immunogenicity. The better PD of hGH-phenyl-PEG was mainly due to its higher in vitro bioactivity. Thus, the phenyl amide linker can improve the overall pharmacological profiles of the PEGylated hGH. Our study is expected to advance the development of long-acting protein biotherapeutics with high therapeutic efficacy.

  14. Binary functionalization of H:Si(111) surfaces by alkyl monolayers with different linker atoms enhances monolayer stability and packing. (United States)

    Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos


    Alkyl monolayer modified Si forms a class of inorganic-organic hybrid materials with applications across many technologies such as thin-films, fuel/solar-cells and biosensors. Previous studies have shown that the linker atom, through which the monolayer binds to the Si substrate, and any tail group in the alkyl chain, can tune the monolayer stability and electronic properties. In this paper we study the H:Si(111) surface functionalized with binary SAMs: these are composed of alkyl chains that are linked to the surface by two different linker groups. Aiming to enhance SAM stability and increase coverage over singly functionalized Si, we examine with density functional theory simulations that incorporate vdW interactions, a range of linker groups which we denote as -X-(alkyl) with X = CH2, O(H), S(H) or NH(2) (alkyl = C6 and C12 chains). We show how the stability of the SAM can be enhanced by adsorbing alkyl chains with two different linkers, e.g. Si-[C, NH]-alkyl, through which the adsorption energy is increased compared to functionalization with the individual -X-alkyl chains. Our results show that it is possible to improve stability and optimum coverage of alkyl functionalized SAMs linked through a direct Si-C bond by incorporating alkyl chains linked to Si through a different linker group, while preserving the interface electronic structure that determines key electronic properties. This is important since any enhancement in stability and coverage to give more densely packed monolayers will result in fewer defects. We also show that the work function can be tuned within the interval of 3.65-4.94 eV (4.55 eV for bare H:Si(111)).

  15. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. (United States)

    Yan, Yong; Yang, Sihai; Blake, Alexander J; Schröder, Martin


    Hydrogen (H2) is a promising alternative energy carrier because of its environmental benefits, high energy density, and abundance. However, development of a practical storage system to enable the "Hydrogen Economy" remains a huge challenge. Metal-organic frameworks (MOFs) are an important class of crystalline coordination polymers constructed by bridging metal centers with organic linkers. MOFs show promise for H2 storage owing to their high surface area and tuneable properties. In this Account, we summarize our research on novel porous materials with enhanced H2 storage properties and describe frameworks derived from 3,5-substituted dicarboxylates (isophthalates) that serve as versatile molecular building blocks for the construction of a range of interesting coordination polymers with Cu(II) ions. We synthesized a series of materials by connecting linear tetracarboxylate linkers to {Cu(II)2} paddlewheel moieties. These materials exhibit high structural stability and permanent porosity. Varying the organic linker modulates the pore size, geometry, and functionality to control the overall H2 adsorption. Our top-performing material in this series has a H2 storage capacity of 77.8 mg g(-1) at 77 K, 60 bar. H2 adsorption at low, medium, and high pressures correlates with the isosteric heat of adsorption, surface area, and pore volume, respectively. Another series, using tribranched C3-symmetric hexacarboxylate ligands with Cu(II), gives highly porous (3,24)-connected frameworks incorporating {Cu(II)2} paddlewheels. Increasing the length of the hexacarboxylate struts directly tunes the porosity of the resultant material from micro- to mesoporosity. These materials show exceptionally high H2 uptakes owing to their high surface area and pore volume. The first member of this family reported adsorbs 111 mg g(-1) of H2, or 55.9 g L(-1), at 77 K, 77 bar, while at 77 K, 1 bar, the material adsorbs 2.3 wt % H2. We and others have since achieved enhanced H2 adsorption in these

  16. Mechanistic investigation into cross-linking reactions in low rank coal: formation and pyrolysis of aryl esters

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Kiddern, M.K.; Skeen, J.D. [Oak Ridge National Lab. Oak Ridge, TN (USA). Chemical Sciences Division


    In this study, the sealed tube pyrolysis of mixtures of m-phenylphenol and benzoic acid have been investigated at 400{sup o}C to determine if cross-linking reactions can occur, and to determine the low temperature pyrolysis pathways of aryl esters, which are not known. Initial studies show that condensation reactions occur between carboxylic acids and phenols to form aryl esters at temperatures as low as 200{sup o}C. With a 3:1 ratio of m-phenylphenol to benzoic acid, yields of m-phenylphenyl benzoate were as high as 50% at 400{sup o}C. At short reaction times, the dominant products were the aryl ester and benzene, formed by the acid catalyzed decarboxylation of benzoic acid, but at longer times, other arylated products grew in indicating that radical reactions were occurring. These products appear to arise from the induced decomposition of benzoic anhydride to form phenyl radicals. The thermal stability of aryl esters was investigated through the pyrolysis of phenyl benzoate at 400{sup o}C. As predicted, the aryl ester appeared to be thermally stable but hydrolytically unstable. In general, formation of aryl esters could act as a low temperature cross-link in low rank coals. 19 refs., 3 figs., 1 tab.

  17. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig


    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  18. Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity. (United States)

    Yoon, Byung-Il; Hirabayashi, Yoko; Kawasaki, Yasushi; Kodama, Yukio; Kaneko, Toyozo; Kanno, Jun; Kim, Dae-Yong; Fujii-Kuriyama, Yoshiaki; Inoue, Tohru


    Benzene can induce hematotoxicity and leukemia in humans and mice. Since a review of the literature shows that the CYP2E1 knockout mouse is not known to possess any benzene toxicity, the metabolism of benzene by CYP2E1 in the liver is regarded to be prerequisite for its cytotoxicity and genotoxicity, although the mechanism is not fully understood yet. Because it was found some years ago that benzene was also a substrate for CYP1A1, we investigated the involvement of the aryl hydrocarbon receptor (AhR) in benzene hematotoxicity using AhR wild-type (AhR(+/+)), heterozygous (AhR(+/-)), and homozygous (AhR(-/-)) male mice. Interestingly, following a 2-week inhalation of 300 ppm benzene (a potent dose for leukemogenicity), no hematotoxicity was induced in AhR(-/-) mice. Further, there were no changes in cellularity of peripheral blood and bone marrow (BM), nor in levels of granulocyte-macrophage colony-forming units in BM. This lack of hematotoxicity was associated with the lack of p21 overexpression, which was regularly seen in the wild-type mice following benzene inhalation. Combined treatment with two major benzene metabolites, phenol and hydroquinone, induced hemopoietic toxicity, although it was not known whether this happened due to a surprising lack of expression of CYP2E1 by AhR knockout, or due to a lack of other AhR-mediated CYP enzymes, including 1A1 (i.e., a possible alternative pathway of benzene metabolism). The former possibility, evaluated in the present study, failed to show a significant relationship between AhR and the expression of CYP2E1. Furthermore, a subsequent evaluation of AhR expression after benzene inhalation tended to show higher but less significant expression in the liver, and none in the BM, compared with sham control. Although this study failed to identify the more likely of the above-mentioned two possibilities, the study using AhR knockout mice on benzene inhalation presents the unique possibility that the benzene toxicity may be

  19. Smoke carcinogens cause bone loss through the aryl hydrocarbon receptor and induction of CYP1 enzymes (United States)

    Smoking is a major risk factor for osteoporosis and fracture. Here, we show that smoke toxins and environmental chemicals such as benzo[a]pyrene (BaP), 2,3,7,8-tetrachlorodibenzo-pdioxin (TCDD), and 3-methyl cholanthrene, which are well known aryl hydrocarbon receptor (AHR) agonists, induce osteocla...

  20. Synthesis of a Crushed Fullerene C60H24 through Sixfold Palladium-Catalyzed Arylation. (United States)

    Dorel, Ruth; de Mendoza, Paula; Calleja, Pilar; Pascual, Sergio; González-Cantalapiedra, Esther; Cabello, Noemí; Echavarren, Antonio M


    The synthesis of a new C3v -symmetric crushed fullerene C60H24 (5) has been accomplished in three steps from truxene through sixfold palladium-catalyzed intramolecular arylation of a syn-trialkylated truxene precursor. Laser irradiation of 5 induces cyclodehydrogenation processes that result in the formation of C60, as detected by LDI-MS.

  1. Synthesis of a Crushed Fullerene C60H24 through Sixfold Palladium‐Catalyzed Arylation (United States)

    Dorel, Ruth; de Mendoza, Paula; Calleja, Pilar; Pascual, Sergio; González‐Cantalapiedra, Esther; Cabello, Noemí


    The synthesis of a new C 3v‐symmetric crushed fullerene C60H24 (5) has been accomplished in three steps from truxene through sixfold palladium‐catalyzed intramolecular arylation of a syn‐trialkylated truxene precursor. Laser irradiation of 5 induces cyclodehydrogenation processes that result in the formation of C60, as detected by LDI‐MS. PMID:27774038

  2. N-Unsubstituted and N-Arylated Fulleropyrrolidines: New Useful Building Blocks for C60 Functionalization

    Institute of Scientific and Technical Information of China (English)

    TONG,Chen-Hua; WU,Zong-Quan; HOU,Jun-Li; LI,Zhan-Ting


    Two series of stable and soluble fulleropyrrolidines have been prepared from the reactions of C60, glycine or its N-arylated derivatives and aliphatic aldehydes or ketones in refluxing toluene or chlorobenzene. The new C60 derivatives represent new useful building blocks for further preparation of more funcionalized C60 derivatives.

  3. Restricted utility of aryl isoprenoids as indicators of photic zone anoxia

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Koopmans, M.P.; Schouten, S.; Kohnen, M.E.L.


    In a North Sea oil, the carotenoid derivatives -carotene, -isorenieratane, and isorenieratane were identified, together with a series of aryl isoprenoids with a 2,3,6-trimethyl substitution pattern for the aromatic ring. The 13C values of -carotene and -isorenieratane are similar, whereas isoreniera

  4. A General and Efficient CuBr2-Catalyzed N-Arylation of Secondary Acyclic Amides

    Institute of Scientific and Technical Information of China (English)

    王满刚; 于华; 尤心稳; 吴军; 商志才


    A general and efficient Cu(II)-catalyzed cross-coupling method is reported for the preparation of acyclic tertiary amides. Generally moderate to excellent yields and functional group tolerance were obtained with secondary acyclic amides and aryl halides as substrates in toluene.

  5. Arylation of Acrylamide and Acrylonitrile with Arenediazonium Salts Catalyzed by Palladium Acetate

    Institute of Scientific and Technical Information of China (English)


    Arylation of acrylamide and acrylonitrile were carried out with various arenediazonium tetrafluoroborates in the presence of a catalytic amount of Pd(OAc)2 in ethanol and a variety of substituted (E)-cinnamamides and (E)-cinnamonitriles were obtained in high yields under mild reaction conditions.

  6. Dynamic Rheological Characterization of A Thermotropic Liquid Crystalline Poly (aryl ether ketone)

    Institute of Scientific and Technical Information of China (English)


    The rheometrics ARES rheometer was applied to determining the rheological behavior of a thermotropic liquid crystalline poly (aryl ether ketone). The viscosity of the material decreases with increasing temperature, reaching a minimum in the nematic state, then slightly increases with further raising the temperature in the biphase.

  7. Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols

    NARCIS (Netherlands)

    Ferreira, P.; Medina, M.; Guillén, F.; Martínez, M.J.; Berkel, van W.J.H.; Martínez, A.T.


    Spectral and catalytic properties of the flavoenzyme AAO (aryl-alcohol oxidase) from Pleurotus eryngii were investigated using recombinant enzyme. Unlike most flavoprotein oxidases, AAO does not thermodynamically stabilize a flavin semiquinone radical and forms no sulphite adduct. AAO catalyses the

  8. A Convenient Synthesis of 2-Aryl-3-per(poly)fluoroacylindoles

    Institute of Scientific and Technical Information of China (English)

    LIU,Jin-Tao(刘金涛); L(U),He-Jun(吕贺军)


    2-Aryl-3-per(poly) fluoroacylindoles were synthesized in good yields by the 1,3-dipolar cycloddition reaction of C-aryi-Nphenylnitrones with fluorine-containing olefins and the subsequent rearrangement of the adducts. An ionic mechanism was proposed for the formtion of the titled compounds.

  9. Studies on Aryl-Substituted Phenylalanines: Synthesis, Activity, and Different Binding Modes at AMPA Receptors

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Frydenvang, Karla Andrea; Pickering, Darryl S;


    A series of racemic aryl-substituted phenylalanines was synthesized and evaluated in vitro at recombinant rat GluA1−3, at GluK1−3, and at native AMPA receptors. The individual enantiomers of two target compounds, (RS)-2-amino-3-(3,4-dichloro-5-(5-hydroxypyridin-3-yl)phenyl)- propanoic acid (37...

  10. An Efficient Synthesis of Cyclopeptides Bridged with Aliphafic-aryl Ether Bond

    Institute of Scientific and Technical Information of China (English)

    Zhe LIU; Gui Jei TIAN; De Xin WANG


    Based on the pseudo-dilution effect (PDE) on solid support, three cyclopeptides with an aliphatic-aryl ether bond as the bridge were synthesized via SN2 reaction between bromoacetylated at N-terminal and the phenol -OH group in C-terminal Tyr residue. All the products were obtained in good overall yields and characterized by related analytic data.

  11. A nordehydroabietyl amide-containing chiral diene for rhodium-catalysed asymmetric arylation to nitroolefins. (United States)

    Li, Ruikun; Wen, Zhongqing; Wu, Na


    A highly enantioselective rhodium catalysed asymmetric arylation (RCAA) of nitroolefins with arylboronic acids is presented using a newly developed, C1-symmetric, non-covalent interacted, phellandrene derived, nordehydroabietyl amide-containing chiral diene under mild conditions. Stereoelectronic effects were studied, suggesting an activation of the bound substrate through the secondary amide as a hydrogen-bond donor.

  12. Aryl hydrocarbon receptor ligand effects in RBL2H3 cells

    DEFF Research Database (Denmark)

    Maaetoft-Udsen, Kristina; Shimoda, Lori M. N.; Frøkiær, Hanne;


    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system, but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory...

  13. Brønsted acid-surfactant (BAS catalysed cyclotrimerization of aryl methyl ketone

    Directory of Open Access Journals (Sweden)

    Kiran Phatangare


    Full Text Available A brønsted acid-surfactant catalysed and simple, mild, metal catalyst free and chemo-selective method has been developed for synthesis of 1, 3, 5-triaryl benzenes from aryl methyl ketones. The advantages of this protocol subsume green and sustainable reaction medium, mild reaction conditions, easy product recovery and its good yields.

  14. An Efficient Solid-State Synthesis of N-Aryl-2-phenyldiazenecarboxamides

    Institute of Scientific and Technical Information of China (English)


    A new and efficient solid-state reaction using K3Fe(CN)6/KOH to oxidize diaryl semicarbazides for preparing azo compounds has been reported. Nine N-aryl-2-phenyl-diazenecarboxamides have been synthesized in excellent yields with simple instrument.

  15. Palladium-catalyzed Coupling between Aryl Halides and Trimethylsilylacetylene Assisted by Dimethylaminotrimethyltin

    Institute of Scientific and Technical Information of China (English)

    Cai Liangzhen; Yang Dujuan; Sun Zhonghua; Tao Xiaochun; Cai Lisheng; Pike Victor W


    Palladium-catalyzed coupling between aryl halides, especially less reactive ones or N-heteroaryls, and trimethylsilylacetylene in the presence of dimethylaminotrimethyltin generated the coupled products in high yields. The reaction does not need CuI and base as auxiliary agents.

  16. Dioxin increases the interaction between aryl hydrocarbon receptor and estrogen receptor alpha at human promoters

    DEFF Research Database (Denmark)

    Ahmed, Shaaima; Valen, Eivind; Sandelin, Albin Gustav;


    Recent studies have shown that activated aryl hydrocarbon receptor (AHR) induced the recruitment of estrogen receptor- (ER ) to AHR-regulated genes and that AHR is recruited to ER -regulated genes. However, these findings were limited to a small number of well-characterized AHR- or ER -responsive...

  17. Trapping Reactive Intermediates by Mechanochemistry: Elusive Aryl N-Thiocarbamoylbenzotriazoles as Bench-Stable Reagents. (United States)

    Štrukil, Vjekoslav; Gracin, Davor; Magdysyuk, Oxana V; Dinnebier, Robert E; Friščić, Tomislav


    Monitoring of mechanochemical thiocarbamoylation by in situ Raman spectroscopy revealed the formation of aryl N-thiocarbamoylbenzotriazoles, reactive intermediates deemed unisolable in solution. The first-time isolation and structural characterization of these elusive molecules demonstrates the ability of mechanochemistry to access otherwise unobtainable intermediates and offers a new range of masked isothiocyanate reagents.

  18. Direct synthesis of diaryl sulfides by copper-catalyzed coupling of aryl halides with aminothiourea

    Institute of Scientific and Technical Information of China (English)

    Xiang Mei Wu; Wei Ya Hu


    An efficient and simple protocol of copper-catalyzed C-S bond formation between aryl halides and inexpensive and commercially available aminothiourea is reported.A variety of symmetrical diaryl sulfides can be synthesized in good to excellent yields up to 94% with the advantage of avoiding foul-smelling thiols.

  19. Suzuki-Miyaura cross-coupling of potassium dioxolanylethyltrifluoroborate and aryl/heteroaryl chlorides. (United States)

    Fleury-Brégeot, Nicolas; Oehlrich, Daniel; Rombouts, Frederik; Molander, Gary A


    A robust and efficient protocol for the introduction of the dioxolanylethyl moiety onto various aryl and heteroaryl halides has been developed, providing cross-coupling yields up to 93%. Copper-catalyzed borylation of 2-(2-bromoethyl)-1,3-dioxolane with bis(pinacolato)diboron followed by treatment with potassium bifluoride provides the key organotrifluoroborate reagent.

  20. Palladium-catalyzed Substitution of Ketone or Aldehyde Bearing Aryl Triflates by Amines or Amides

    Institute of Scientific and Technical Information of China (English)

    TAO Xiaochun; DAI Chunya; CAO Xiongjie; CAI Lisheng; PIKE Victor W


    Various aryl triflates, bearing ketone or aldehyde groups, were evaluated for palladium-mediated introduction of an amino group at the triflate position in the presence of various phosphine ligands. BINAP was best for secondary amines, MOP-type ligand for primary or small secondary amines and Xantphos for primary or cyclic secondary amides. No ligand was found effective for acyclic secondary amides.

  1. Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, S.F.; Byrd, J.C.; Basbaum, C.; Kim, Y.S. (Veterans Administration Medical Center, San Francisco, CA (USA))


    Specific inhibitors of the glycosylation of O-glycosidically linked glycoproteins have not previously been described. When tested for their effects on mucin glycosylation in a mucin-producing colon cancer cell line, LS174T, benzyl-, phenyl-, and p-nitrophenyl-N-acetyl-alpha-galactosaminide inhibited the formation of fully glycosylated mucin in a dose-dependent manner. Free aryl-oligosaccharides were found in the medium of treated cells labeled with ({sup 3}H)glucosamine, ({sup 3}H)galactose, ({sup 3}H)fucose, ({sup 3}H)mannosamine, or phenyl-alpha-(6-{sup 3}H) N-acetylgalactosamine. UDP-Gal:GalNAc-beta 1,3-galactosyltransferase was inhibited by aryl-N-acetyl-alpha-galactosaminides but not by a number of other aryl-glycosides. Treatment with these inhibitors also causes reversible morphologic changes including formation of intercellular cysts. Aryl-N-acetyl-alpha-galactosaminides can be useful for the structural and functional studies of mucin macromolecules and other O-linked glycoproteins.

  2. Mild Pd-catalyzed aminocarbonylation of (hetero)aryl bromides with a palladacycle precatalyst. (United States)

    Friis, Stig D; Skrydstrup, Troels; Buchwald, Stephen L


    A palladacyclic precatalyst is employed to cleanly generate a highly active XantPhos-ligated Pd-catalyst. Its use in low temperature aminocarbonylations of (hetero)aryl bromides provides access to a range of challenging products in good to excellent yields with low catalyst loading and only a slight excess of CO. Some products are unattainable by traditional carbonylative coupling.

  3. Rhodium-catalysed arylative annulation of 1,4-enynes with arylboronic acids. (United States)

    Matsuda, Takanori; Watanuki, Shoichi


    The rhodium(I)-catalysed arylative annulation of 1,4-enynes with arylboronic acids was investigated. The reaction was found to proceed via an addition-1,4-rhodium migration-addition sequence, affording the corresponding 1,1-disubstituted 3-(arylmethylene)indanes.

  4. Palladium-Catalyzed Carbonylation of Aryl Bromides with N-Substituted Cyanamides

    DEFF Research Database (Denmark)

    Lian, Zhong; Friis, Stig D.; Lindhardt, Anders T.;


    The palladium(0)-catalyzed three-component coupling reaction of aryl bromides, carbon monoxide, and N-alkyl cyan­amides has been developed employing a two-chamber system with ex situ generation of carbon monoxide from a silacarboxylic acid. The reactions proceeded well and were complete with a re...

  5. LDA-Mediated Synthesis of Triarylmethanes by Arylation of Diarylmethanes with Fluoroarenes at Room Temperature. (United States)

    Ji, Xinfei; Huang, Tao; Wu, Wei; Liang, Fang; Cao, Song


    A practical and convenient approach for the secondary C(sp(3))-H arylation of diarylmethanes with various fluoroarenes is described. The reaction proceeds smoothly in the presence of LDA (lithium diisopropylamide) at room temperature and affords triarylmethanes in moderate to high yields.

  6. An effective synthesis of β-aryl substituted isotetronic acids via Suzuki coupling

    Institute of Scientific and Technical Information of China (English)

    Huan Sheng Chen; Xia Ping Ma; Zhi Ming Li; Quan Rui Wang; Feng Gang Tao


    lsotetronic acids are of great agricultural and pharmacological relevance and occur in a number of natural products.A convenient synthetic pathway to β-aryl substituted isotetronic acid derivatives was developed via Suzuki cross-coupling of the corresponding β-bromo substituted isotetronic acid derivatives with arylboronic acids under palladium acetate catalysis.Good to excellent yields have been achieved.

  7. Vibrational energy relaxation of liquid aryl-halides X-C6H5 (X = F, Cl, Br, I). (United States)

    Pein, Brandt C; Seong, Nak-Hyun; Dlott, Dana D


    Anti-Stokes Raman spectroscopy was used to probe vibrational energy dynamics in liquid ambient-temperature aryl-halides, X-Ph (X = F, Cl, Br, I; -Ph = C(6)H(5)), following IR excitation of a 3068 cm(-1) CH-stretching transition. Five ring vibrations and two substituent-dependent vibrations were monitored in each aryl-halide. Overall, the vibrational relaxation (VR) lifetimes in aryl-halides were shorter than those in normal benzene (H-Ph). The aryl-halide CH-stretch lifetimes increased in the order F, Cl, Br, I, ranging from 2.5 to 3.4 ps, compared with 6.2 ps in H-Ph. The aryl-halide energy transfer processes were similar overall with four exceptions. Three of the four exceptions could be explained as a result of faster VR of midrange vibrations (1000-1600 cm(-1)) in the heavier aryl-halides. The fourth appeared to result from a coincidental resonance in chlorobenzene that does not occur in the other aryl-halides. Among the aryl-halides, the decay of CH-stretching excitations (∼3070 cm(-1)) was slower in the heavier species, but the decay of midrange vibrations was faster in the heavier species. This seeming contradiction could be explained if VR depended primarily on the density of states (DOS) of the lower tiers of vibrational excitations. The DOS for the first few (1-4) tiers is similar for all aryl-halides in the CH-stretch region, but DOS increases with increasing halide mass in the midrange region.

  8. NHC Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling Reactions of Aryl Boronate Esters with Perfluorobenzenes. (United States)

    Zhou, Jing; Berthel, Johannes H J; Kuntze-Fechner, Maximilian W; Friedrich, Alexandra; Marder, Todd B; Radius, Udo


    An efficient Suzuki-Miyaura cross-coupling reaction of perfluorinated arenes with aryl boronate esters using NHC nickel complexes as catalysts is described. The efficiencies of different boronate esters (p-tolyl-Beg, p-tolyl-Bneop, p-tolyl-Bpin, p-tolyl-Bcat) and the corresponding boronic acid (p-tolyl-B(OH)2) in this type of cross-coupling reaction were evaluated (eg, ethyleneglycolato; neop, neopentylglycolato; pin, pinacolato; cat, catecholato). Aryl-Beg was shown to be the most reactive boronate ester among those studied. The use of CsF as an additive is essential for an efficient reaction of hexafluorobenzene with aryl neopentylglycolboronates.

  9. Pd(OAc)2/DPPF-catalysed microwave-assisted cyanide-free synthesis of aryl nitriles

    Indian Academy of Sciences (India)

    Dinesh N Sawant; Bhalchandra M Bhanage


    This study reports microwave-assisted cyanide-free synthesis of aryl nitriles from aryl halides using palladium acetate/1,1-bis(diphenylphosphino)ferrocene as a new catalyst system. Reported protocol is a rapid, cyanide-free, single step reaction, wherein formamide acts as a solvent as well as a source of cyanide. The use of microwave increases the rate of reaction substantially and it was observed that aryl nitriles can be synthesised in 50 min of microwave irradiation compared to conventional thermal heating protocol which requires 48 h.

  10. The concerted contribution of the S4-S5 linker and the S6 segment to the modulation of a Kv channel by 1-alkanols. (United States)

    Bhattacharji, Aditya; Kaplan, Benjamin; Harris, Thanawath; Qu, Xiaoguang; Germann, Markus W; Covarrubias, Manuel


    Gating of voltage-gated K(+) channels (K(v) channels) depends on the electromechanical coupling between the voltage sensor and activation gate. The main activation gate of K(v) channels involves the COOH-terminal section of the S6 segment (S6-b) and the S4-S5 linker at the intracellular mouth of the pore. In this study, we have expanded our earlier work to probe the concerted contribution of these regions to the putative amphipathic 1-alkanol site in the Shaw2 K(+) channel. In the S4-S5 linker, we found a direct energetic correlation between alpha-helical propensity and the inhibition of the Shaw2 channel by 1-butanol. Spectroscopic structural analyses of the S4-S5 linker supported this correlation. Furthermore, the analysis of chimeric Shaw2 and K(v)3.4 channels that exchanged their corresponding S4-S5 linkers showed that the potentiation induced by 1-butanol depends on the combination of a single mutation in the S6 PVPV motif (PVAV) and the presence of the Shaw2 S4-S5 linker. Then, using tandem-heterodimer subunits, we determined that this potentiation also depends on the number of S4-S5 linkers and PVAV mutations in the K(v) channel tetramer. Consistent with the critical contribution of the Shaw2 S4-S5 linker, the equivalent PVAV mutation in certain mammalian K(v) channels with divergent S4-S5 linkers conferred weak potentiation by 1-butanol. Overall, these results suggest that 1-alkanol action in Shaw2 channels depends on interactions involving the S4-S5 linker and the S6-b segment. Therefore, we propose that amphiphilic general anesthetic agents such as 1-alkanols may modulate gating of the Shaw2 K(+) channel by an interaction with its activation gate.

  11. The S1-S2 linker determines the distinct pH sensitivity between ZmK2.1 and KAT1. (United States)

    Wang, Li; Yang, Shun-Ying; Guo, Man-Yuan; Huang, Ya-Nan; Sentenac, Hervé; Véry, Anne-Aliénor; Su, Yan-Hua


    Efficient stomatal opening requires activation of KAT-type K(+) channels, which mediate K(+) influx into guard cells. Most KAT-type channels are functionally facilitated by extracellular acidification. However, despite sequence and structural homologies, the maize counterpart of Arabidopsis KAT1 (ZmK2.1) is resistant to pH activation. To understand the structural determinant that results in the differential pH activation of these counterparts, we analysed chimeric channels and channels with point mutations for ZmK2.1 and its closest Arabidopsis homologue KAT1. Exchange of the S1-S2 linkers altered the pH sensitivity between the two channels, suggesting that the S1-S2 linker is essentially involved in the pH sensitivity. The effects of D92 mutation within the linker motif together with substitution of the first half of the linker largely resemble the effects of substitution of the complete linker. Topological modelling predicts that one of the two cysteines located on the outer face section of the S5 domain may serve as a potential titratable group that interacts with the S1-S2 linker. The difference between ZmK2.1 and KAT1 is predicted to be the result of the distance of the stabilized linkers from the titratable group. In KAT1, residue K85 within the linker forms a hydrogen bond with C211 that enables the pH activation; conversely, the linker of ZmK2.1 is distantly located and thus does not interact with the equivalent titration group (C208). Thus, in addition to the known structural contributors to the proton activation of KAT channels, we have uncovered a previously unidentified component that is strongly involved in this complex proton activation network.

  12. Chitosan hydrogel formation using laccase activated phenolics as cross-linkers. (United States)

    Huber, Daniela; Tegl, Gregor; Baumann, Martina; Sommer, Eva; Gorji, Elham Ghorbani; Borth, Nicole; Schleining, Gerhard; Nyanhongo, Gibson S; Guebitz, Georg M


    Chitosan hydrogels are gaining increasing interest for biomedical applications due to attractive properties such as biocompatibility. In order to replace toxic chemical cross-linkers for hydrogel formation, we investigated the cross-linking potential of laccase oxidized phenolics. HPLC-TOF-MS and ATR-FTIR demonstrated that phenolics were bond to glucosamine as chitosan model substrate. Phenolics concentrations required for hydrogel formation varied from 500μM for catechol to 5000μM for sinapic acid. The hydrogels showed different swelling and release properties assessed using methylene blue release as a model. Laccase oxidized caffeic acid and pyrogallol-chitosan hydrogels showed excellent behavior in up-taking water with a swelling of 208.7% for caffeic acid. Biocompatibility results did not show any significant inhibition of growth of HEK293 cell line when phenolics like catechol or eugenol were used. Therefore, this study demonstrates that laccase oxidized phenolics are potential cross-linking agents of chitosan as a novel green approach to synthesizing chitosan hydrogels.

  13. Interaction between the sodium channel inactivation linker and domain III S4-S5. (United States)

    Smith, M R; Goldin, A L


    The III-IV linker (L(III-IV)) of the rat brain sodium channel is critical for fast inactivation, possibly forming a fast inactivation particle. Inactivation can be disrupted by mutation of a conserved alanine at position 1329 in the S4-S5 loop of domain III. Combination of a charged mutation at 1329 with a compensatory (opposite) charge mutation at position 1489 in L(III-IV) partially restores inactivation of the channel. The compensatory charge mutant channel has a single-channel mean open time that is similar to that of the wild-type channel and is approximately 50 times shorter than that of the L(III-IV) mutant channel. The results of thermodynamic cycle analysis indicate that the mutations in domain III S4-S5 and L(III-IV) have a coupling energy of 2.8 kcal/mol, indicating that the two mutations act interdependently. These data suggest that L(III-IV) interacts directly with A1329, which may form part of the docking site if L(III-IV) is a fast inactivation particle.

  14. Tuning the mechanosensitivity of a BK channel by changing the linker length

    Institute of Scientific and Technical Information of China (English)


    Some large-conductance Ca2+ and voltage-activated K+ (BK) channels are activated by membrane stretch. However, the mechanism of mechano-gating of the BK channels is still not well understood. Previous studies have led to the proposal that the tinker-gating ring complex functions as a passive spring, transducing the force generated by intraceilular Ca2+ to the gate to open the channel. This raises the question as to whether membrane stretch is also transmitted to the gate of mechanosensitive (MS) BK channels via the tinker-gating complex. To study this, we changed the linker length in the stretch-activated BK channel (SAKCaC), and examined the effect of membrane stretch on the gating of the resultant mutant channels. Shortening the tinker increased, whereas extending the tinker reduced, the channel mechanosensitivity both in the presence and in the absence of intracellular Ca2+. However, the voltage and Ca2+ sensitivities were not significantly altered by membrane stretch. Furthermore, the SAKCaC became less sensitive to membrane stretch at relatively high intracellular Ca2+ concentrations or membrane depolarization. These observations suggest that once the channel is in the open-state conformation, tension on the spring is partially released and membrane stretch is less effective. Our results are consistent with the idea that membrane stretch is transferred to the gate via the tinker-gating ring complex of the MS BK channels.

  15. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact. (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew


    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics.

  16. Graft linker immobilization for spatial control of protein immobilization inside fused microchips. (United States)

    Shirai, Kentaro; Renberg, Björn; Sato, Kae; Mawatari, Kazuma; Konno, Tomohiro; Ishihara, Kazuhiko; Kitamori, Takehiko


    Fused silica glass microchips have several attractive features for lab-on-a-chip applications; they can be machined with excellent precision down to nanospace; are stable; transparent and can be modified with a range of silanization agents to change channel surface properties. For immobilization, however, ligands must be added after bonding, since the harsh bonding conditions using heat or hydrofluoric acid would remove all prior immobilized ligands. For spatial control over immobilization, UV-mediated immobilization offers several advantages; spots can be created in parallel, the feature size can be made small, and spatial control over patterns and positions is excellent. However, UV sensitive groups are often based on hydrophobic chemical moieties, which unfortunately result in greater non-specific binding of biomolecules, especially proteins. Here, we present techniques in which any -CH(x) (x=1,2,3) containing surface coating can be used as foundation for grafting a hydrophilic linker with a chemical anchor, a carboxyl group, to which proteins and amine containing molecules can be covalently coupled. Hence, the attractive features of many well-known protein and biomolecule repelling polymer coatings can be utilized while achieving site-specific immobilization only to pre-determined areas within the bonded microchips.

  17. Graphitic carbon nanofiber (GCNF)/polymer materials. I. GCNF/epoxy monoliths using hexanediamine linker molecules. (United States)

    Zhong, Wei-Hong; Li, Jiang; Xu, Luoyu R; Michel, Jason A; Sullivan, Lisa M; Lukehart, Charles M


    Processing methods have been optimized for the formation of graphitic carbon nanofiber (GCNF)/epoxy nanocomposites containing GCNFs highly dispersed throughout a thermoset epoxy matrix. GCNFs having a herringbone atomic structure are surface-derivatized with bifunctional hexanediamine linker molecules (GCNF-HDA) capable of covalent binding to an epoxy matrix during thermal curing and are cut to smaller dimension using high-power ultrasonication. GCNF-HDA nanofibers are dispersed in epoxy resin at 0.3 wt.% loading using variable levels of ultrasonication processing prior to thermal curing. Effects of sonication power on the quality of the GCNF-HDA/epoxy material obtained after curing have been determined from flexural property measurements, thermomechanical analysis and SEM/TEM imaging. GCNF-HDA/epoxy material of the highest quality is obtained using low-power sonication, although high-power sonication for short periods gives improved flexural properties without lowering the glass transition temperature. Good dispersion and polymer wetting of the GCNF component is evident on the nanoscale.

  18. Single-Molecule Studies of the Linker Histone H1 Binding to DNA and the Nucleosome. (United States)

    Yue, Hongjun; Fang, He; Wei, Sijie; Hayes, Jeffrey J; Lee, Tae-Hee


    Linker histone H1 regulates chromatin structure and gene expression. Investigating the dynamics and stoichiometry of binding of H1 to DNA and the nucleosome is crucial to elucidating its functions. Because of the abundant positive charges and the strong self-affinity of H1, quantitative in vitro studies of its binding to DNA and the nucleosome have generated results that vary widely and, therefore, should be interpreted in a system specific manner. We sought to overcome this limitation by developing a specially passivated microscope slide surface to monitor binding of H1 to DNA and the nucleosome at a single-molecule level. According to our measurements, the stoichiometry of binding of H1 to DNA and the nucleosome is very heterogeneous with a wide distribution whose averages are in reasonable agreement with previously published values. Our study also revealed that H1 does not dissociate from DNA or the nucleosome on a time scale of tens of minutes. We found that histone chaperone Nap1 readily dissociates H1 from DNA and superstoichiometrically bound H1 from the nucleosome, supporting a hypothesis whereby histone chaperones contribute to the regulation of the H1 profile in chromatin.

  19. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics. (United States)

    Bernier, Morgan; Luo, Yi; Nwokelo, Kingsley C; Goodwin, Michelle; Dreher, Sarah J; Zhang, Pei; Parthun, Mark R; Fondufe-Mittendorf, Yvonne; Ottesen, Jennifer J; Poirier, Michael G


    H1 linker histones are highly abundant proteins that compact nucleosomes and chromatin to regulate DNA accessibility and transcription. However, the mechanisms that target H1 regulation to specific regions of eukaryotic genomes are unknown. Here we report fluorescence measurements of human H1 regulation of nucleosome dynamics and transcription factor (TF) binding within nucleosomes. H1 does not block TF binding, instead it suppresses nucleosome unwrapping to reduce DNA accessibility within H1-bound nucleosomes. We then investigated H1 regulation by H3K56 and H3K122 acetylation, two transcriptional activating histone post translational modifications (PTMs). Only H3K56 acetylation, which increases nucleosome unwrapping, abolishes H1.0 reduction of TF binding. These findings show that nucleosomes remain dynamic, while H1 is bound and H1 dissociation is not required for TF binding within the nucleosome. Furthermore, our H3K56 acetylation measurements suggest that a single-histone PTM can define regions of the genome that are not regulated by H1.

  20. Linker-free conjugation and specific cell targeting of antibody functionalized iron-oxide nanoparticles (United States)

    Xu, Yaolin; Baiu, Dana C.; Sherwood, Jennifer A.; McElreath, Meghan R.; Qin, Ying; Lackey, Kimberly H.; Otto, Mario; Bao, Yuping


    Specific targeting is a key step to realize the full potential of iron oxide nanoparticles in biomedical applications, especially tumor-associated diagnosis and therapy. Here, we developed anti-GD2 antibody conjugated iron oxide nanoparticles for highly efficient neuroblastoma cell targeting. The antibody conjugation was achieved through an easy, linker-free method based on catechol reactions. The targeting efficiency and specificity of the antibody-conjugated nanoparticles to GD2-positive neuroblastoma cells were confirmed by flow cytometry, fluorescence microscopy, Prussian blue staining and transmission electron microscopy. These detailed studies indicated that the receptor-recognition capability of the antibody was fully retained after conjugation and the conjugated nanoparticles quickly attached to GD2-positive cells within four hours. Interestingly, longer treatment (12 h) led the cell membrane-bound nanoparticles to be internalized into cytosol, either by directly penetrating the cell membrane or escaping from the endosomes. Last but importantly, the uniquely designed functional surfaces of the nanoparticles allow easy conjugation of other bioactive molecules. PMID:26660881

  1. On the Efficiency of NHS Ester Cross-Linkers for Stabilizing Integral Membrane Protein Complexes (United States)

    Chen, Fan; Gerber, Sabina; Korkhov, Volodymyr M.; Mireku, Samantha; Bucher, Monika; Locher, Kaspar P.; Zenobi, Renato


    We have previously presented a straightforward approach based on high-mass matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) to study membrane proteins. In addition, the stoichiometry of integral membrane protein complexes could be determined by MALDI-MS, following chemical cross-linking via glutaraldehyde. However, glutaraldehyde polymerizes in solution and reacts nonspecifically with various functional groups of proteins, limiting its usefulness for structural studies of protein complexes. Here, we investigated the capability of N-hydroxysuccinimide (NHS) esters, which react much more specifically, to cross-link membrane protein complexes such as PglK and BtuC2D2. We present clear evidence that NHS esters are capable of stabilizing membrane protein complexes in situ, in the presence of detergents such as DDM, C12E8, and LDAO. The stabilization efficiency strongly depends on the membrane protein structure (i.e, the number of primary amine groups and the distances between primary amines). A minimum number of primary amine groups is required, and the distances between primary amines govern whether a cross-linker with a specific spacer arm length is able to bridge two amine groups.

  2. De novo transcriptome analysis of the red seaweed Gracilaria chilensis and identification of linkers associated with phycobilisomes. (United States)

    Vorphal, María Alejandra; Gallardo-Escárate, Cristian; Valenzuela-Muñoz, Valentina; Dagnino-Leone, Jorge; Vásquez, José Aleikar; Martínez-Oyanedel, José; Bunster, Marta


    This work reports the results of the Illumina RNA-Seq of a wild population of female haploid plants of Gracilaria chilensis (Bird et al., 1986) (Rhodophyta, Gigartinalis). Most transcripts were de novo assembled in 12,331 contigs with an average length of 1756bp, showing that 96.64% of the sequences were annotated with known proteins. In particular, the identification of linker proteins of phycobilisomes (PBS) is reported. Linker proteins have primary been identified in cyanobacteria but the information available about them in eukaryotic red alga is not complete, and this is the first report in G. chilensis. This resource will also provide the basis for the study of metabolic pathways related to polysaccharide production.

  3. Postassembly Transformation of a Catalytically Active Composite Material, Pt@ZIF-8, via Solvent-Assisted Linker Exchange. (United States)

    Stephenson, Casey J; Hupp, Joseph T; Farha, Omar K


    2-Methylimidazolate linkers of Pt@ZIF-8 are exchanged with imidazolate using solvent-assisted linker exchange (SALE) to expand the apertures of the parent material and create Pt@SALEM-2. Characterization of the material before and after SALE was performed. Both materials are active as catalysts for the hydrogenation of 1-octene, whereas the hydrogenation of cis-cyclohexene occurred only with Pt@SALEM-2, consistent with larger apertures for the daughter material. The largest substrate, β-pinene, proved to be unreactive with H2 when either material was employed as a candidate catalyst, supporting the contention that substrate molecules, for both composites, must traverse the metal-organic framework component in order to reach the catalytic nanoparticles.

  4. Development of a Novel, Oxidatively Activated, Safety-Catch Linker for Solid-Phase Asymmetric Organic Synthesis (SPOS)

    Institute of Scientific and Technical Information of China (English)

    LIN,Jun; Hjalmar Skarphedinsson; Stepehen G.Davies


    @@ Solid-phase asymmetric organic synthesis has become a very important synthetic strategy within the organic chemistry community.[1] Critical to success in SPOS is a linking strategy which allows both the substrate to be loaded and the product released efficiently from the polymeric support. A safety catch linker[2] (SCL) is in principle a linking molecule orthogonal to the reaction conditions of the library synthesis, which can be easily activated by a simple chemical transformation to allow efficient cleavage of the products from the polymer under mild conditions. In order to introduce the SuperQuat chiral auxiliaries[3] for SOPS, we report herein design and synthesis of a novel safety catch linker for asymmetric conjugate addition reactions.

  5. The structural kinetics of switch-1 and the neck linker explain the functions of kinesin-1 and Eg5. (United States)

    Muretta, Joseph M; Jun, Yonggun; Gross, Steven P; Major, Jennifer; Thomas, David D; Rosenfeld, Steven S


    Kinesins perform mechanical work to power a variety of cellular functions, from mitosis to organelle transport. Distinct functions shape distinct enzymologies, and this is illustrated by comparing kinesin-1, a highly processive transport motor that can work alone, to Eg5, a minimally processive mitotic motor that works in large ensembles. Although crystallographic models for both motors reveal similar structures for the domains involved in mechanochemical transduction--including switch-1 and the neck linker--how movement of these two domains is coordinated through the ATPase cycle remains unknown. We have addressed this issue by using a novel combination of transient kinetics and time-resolved fluorescence, which we refer to as "structural kinetics," to map the timing of structural changes in the switch-1 loop and neck linker. We find that differences between the structural kinetics of Eg5 and kinesin-1 yield insights into how these two motors adapt their enzymologies for their distinct functions.

  6. The solution structure of the S4-S5 linker of the hERG potassium channel. (United States)

    Gayen, Shovanlal; Li, Qingxin; Kang, CongBao


    The human ether-à-go-go related gene (hERG) encodes a protein that forms a voltage-gated potassium channel and plays an important role in the heart by controlling the rapid delayed rectifier K(+) current (I(Kr)). The S4-S5 linker was shown to be important for the gating of the hERG channel. Nuclear magnetic resonance study showed that a peptide derived from the S4-S5 linker had no well-ordered structure in aqueous solution and adopted a 3(10) -helix (E544-Y545-G546) structure in detergent micelles. The existence of an amphipathic helix was confirmed, which may be important for interaction with cell membrane. Close contact between side chains of residues R541 and E544 was observed, which may be important for its regulation of channel gating.

  7. Interaction of local anesthetics with a peptide encompassing the IV/S4-S5 linker of the Na+ channel. (United States)

    Fraceto, Leonardo F; Oyama, Sérgio; Nakaie, Clóvis R; Spisni, Alberto; de Paula, Eneida; Pertinhez, Thelma A


    The peptide pIV/S4-S5 encompasses the cytoplasmic linker between helices S4-S5 in domain IV of the voltage-gated Na+ channel, residues 1644-1664. The interaction of two local anesthetics (LA), lidocaine and benzocaine, with pIV/S4-S5 has been studied by DOSY, heteronuclear NMR 1H-15N-HSQC spectroscopy and computational methods. DOSY indicates that benzocaine, a neutral ester, exhibits stronger interaction with pIV/S4-S5 than lidocaine, a charged amine-amide. Weighted average chemical shifts, Deltadelta(1H-15N), show that benzocaine affects residues L1653, M1655 and S1656 while lidocaine slightly perturbs residues I1646, L1649 and A1659, L1660, near the N- and C-terminus, respectively. Computational methods confirmed the stability of the benzocaine binding and the existence of two binding sites for lidocaine. Even considering that the approach of studying the peptide in the presence of a co-solvent (TFE/H2O, 30%/70% v/v) has an inherently limited implication, our data strongly support the existence of multiple LA binding sites in the IV/S4-S5 linker, as suggested in the literature. In addition, we consider that LA can bind to the S4-S5 linker with diverse binding modes and strength since this linker is part of the receptor for the "inactivation gate particle". Conditions for devising new functional studies, aiming to better understand Na+ channel functionality as well as the various facets of LA pharmacological activity are proposed in this work.

  8. Facile synthesis of one-dimensional organometallic-organic hybrid polymers based on a diphosphorus complex and flexible bipyridyl linkers. (United States)

    Elsayed Moussa, M; Attenberger, B; Peresypkina, E V; Fleischmann, M; Balázs, G; Scheer, M


    The selective synthesis of a series of new "ladderlike" one-dimensional organometallic-organic hybrid polymers is shown. The polymers are obtained from the reaction of the diphosphorus ligand complex [Cp2Mo2(CO)4(η(2)-P2)] with the copper salt [Cu(CH3CN)4]BF4 in the presence of flexible organic bipyridyl linkers in high selectivity. This unique behaviour is supported by DFT calculations.

  9. Targeting C-myc G-Quadruplex: Dual Recognition by Aminosugar-Bisbenzimidazoles with Varying Linker Lengths

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan


    Full Text Available G-quadruplexes are therapeutically important biological targets. In this report, we present biophysical studies of neomycin-Hoechst 33258 conjugates binding to a G-quadruplex derived from the C-myc promoter sequence. Our studies indicate that conjugation of neomycin to a G-quadruplex binder, Hoechst 33258, enhances its binding. The enhancement in G-quadruplex binding of these conjugates varies with the length and composition of the linkers joining the neomycin and Hoechst 33258 units.

  10. Effects of Linker Length and Transient Secondary Structure Elements in the Intrinsically Disordered Notch RAM Region on Notch Signaling. (United States)

    Sherry, Kathryn P; Johnson, Scott E; Hatem, Christine L; Majumdar, Ananya; Barrick, Doug


    Formation of the bivalent interaction between the Notch intracellular domain (NICD) and the transcription factor CBF-1/RBP-j, Su(H), Lag-1 (CSL) is a key event in Notch signaling because it switches Notch-responsive genes from a repressed state to an activated state. Interaction of the intrinsically disordered RBP-j-associated molecule (RAM) region of NICD with CSL is thought to both disrupt binding of corepressor proteins to CSL and anchor NICD to CSL, promoting interaction of the ankyrin domain of NICD with CSL through an effective concentration mechanism. To quantify the role of disorder in the RAM linker region on the effective concentration enhancement of Notch transcriptional activation, we measured the effects of linker length variation on activation. The resulting activation profile has general features of a worm-like chain model for effective concentration. However, deviations from the model for short sequence deletions suggest that RAM contains sequence-specific structural elements that may be important for activation. Structural characterization of the RAM linker with sedimentation velocity analytical ultracentrifugation and NMR spectroscopy reveals that the linker is compact and contains three transient helices and two extended and dynamic regions. To test if these secondary structure elements are important for activation, we made sequence substitutions to change the secondary structure propensities of these elements and measured transcriptional activation of the resulting variants. Substitutions to two of these nonrandom elements (helix 2, extended region 1) have effects on activation, but these effects do not depend on the nature of the substituting residues. Thus, the primary sequences of these elements, but not their secondary structures, are influencing signaling.

  11. Reactivation of VX-inhibited AChE by novel oximes having two oxygen atoms in the linker. (United States)

    Kuca, Kamil; Cabal, Jiri; Jun, Daniel; Musilek, Kamil; Soukup, Ondrej; Pohanka, Miroslav; Pejchal, Jaroslav; Oh, Kyung-Ae; Yang, Garp Yeol; Jung, Young-Sik


    Two newly developed AChE reactivators possessing two oxime groups in 4-position of the pyridinium rings with linkers CH(2)O(CH(2))(2)OCH(2) and CH(2)O(CH(2))(4)OCH(2) were tested for their potency to reactivate VX-inhibited AChE. Their reactivation potency was compared with currently available oximes such as pralidoxime, obidoxime and HI-6. Appropriate constants (affinity towards the intact and inhibited enzyme, reactivation rate) characterizing the reactivation process were determined. According to the data obtained, a new oxime with CH(2)O(CH(2))(2)OCH(2) linker reached as high reactivation potency as HI-6. The percentage of reactivation of the oxime with CH(2)O(CH(2))(2)OCH(2) linker was comparable to that of obidoxime at a concentration 10(-3)M. Hence, these oximes may be worthy of future development for the treatment of nerve agent intoxications, especially, with lipophilic agents such as soman and cyclosarin.

  12. Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells. (United States)

    Yu, Yaping; Wu, Yang; Zhang, Andong; Li, Cheng; Tang, Zheng; Ma, Wei; Wu, Yonggang; Li, Weiwei


    Conjugated polymers consisting of diketopyrrolopyrrole (DPP) units have been successfully applied in field-effect transistors (FETs) and polymer solar cells (PSCs), while most of the DPP polymers were designed as symmetric structures containing identical aromatic linkers. In this manuscript, we design a new asymmetric DPP polymer with varied aromatic linkers in the backbone for application in FETs and PSCs. The designation provides the chance to finely adjust the energy levels of conjugated polymers so as to influence the device performance. The asymmetric polymer exhibits highly crystalline properties, high hole mobilities of 3.05 cm(2) V(-1) s(-1) in FETs, and a high efficiency of 5.9% in PSCs with spectra response from 300 to 850 nm. Morphology investigation demonstrates that the asymmetric polymer has a large crystal domain in blended thin films, indicating that the solar cell performance can be further enhanced by optimizing the microphase separation. The study reveals that the asymmetric design via adjusting the aromatic linkers in DPP polymers is a useful route toward flexible electronic devices.

  13. Manipulation of electrostatic and saccharide linker interactions in the design of efficient glycopolypeptide-based cholera toxin inhibitors. (United States)

    Maheshwari, Ronak; Levenson, Eric A; Kiick, Kristi L


    Multivalent, glycopolymer inhibitors designed for the treatment of disease and pathogen infection have shown improvements in binding correlated with general changes in glycopolymer architecture and composition. We have previously demonstrated that control of glycopolypeptide backbone extension and ligand spacing significantly impacts the inhibition of the cholera toxin B subunit pentamer (CT B(5)) by these polymers. In the studies reported here, we elucidate the role of backbone charge and linker length in modulating the inhibition event. Peptides of the sequence AXPXG (where X is a positive, neutral or negative amino acid), equipped with the alkyne functionality of propargyl glycine, were designed and synthesized via solid-phase peptide synthetic methods and glycosylated via Cu(I)-catalyzed alkyne-azide cycloaddition reactions. The capacity of the glycopeptides to inhibit the binding of the B(5) subunit of cholera toxin was evaluated. These studies indicated that glycopeptides with a negatively charged backbone show improved inhibition of the binding event relative to the other glycopeptides. In addition, variations in the length of the linker between the peptide and the saccharide ligand also affected the inhibition of CT by the glycopeptides. Our findings suggest that, apart from appropriate saccharide spacing and polypeptide chain extension, saccharide linker conformation and the systematic placement of charges on the polypeptide backbone are also significant variables that can be tuned to improve the inhibitory potencies of glycopolypeptide-based multivalent inhibitors.

  14. PIP2 controls voltage-sensor movement and pore opening of Kv channels through the S4-S5 linker. (United States)

    Rodriguez-Menchaca, Aldo A; Adney, Scott K; Tang, Qiong-Yao; Meng, Xuan-Yu; Rosenhouse-Dantsker, Avia; Cui, Meng; Logothetis, Diomedes E


    Voltage-gated K(+) (Kv) channels couple the movement of a voltage sensor to the channel gate(s) via a helical intracellular region, the S4-S5 linker. A number of studies link voltage sensitivity to interactions of S4 charges with membrane phospholipids in the outer leaflet of the bilayer. Although the phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)) in the inner membrane leaflet has emerged as a universal activator of ion channels, no such role has been established for mammalian Kv channels. Here we show that PIP(2) depletion induced two kinetically distinct effects on Kv channels: an increase in voltage sensitivity and a concomitant decrease in current amplitude. These effects are reversible, exhibiting distinct molecular determinants and sensitivities to PIP(2). Gating current measurements revealed that PIP(2) constrains the movement of the sensor through interactions with the S4-S5 linker. Thus, PIP(2) controls both the movement of the voltage sensor and the stability of the open pore through interactions with the linker that connects them.

  15. Iodine Catalyzed Microwave-Assisted Synthesis of 14-Aryl(Alkyl)-14H-dibenzo[a,j]xanthenes

    Institute of Scientific and Technical Information of China (English)

    DING,Fei-Qing; AN,Li-Tao; ZOU,Jian-Ping


    A straightforward and effective procedure for the synthesis of 14-aryl(alkyl)-14H-dibenzo[a,j]xanthenes was described using a catalytic amount of molecular iodine under microwave irradiation to afford the corresponding xanthenes in good yields.

  16. Cooperative effect of silver in copper-catalyzed trifluoromethylation of aryl iodides using Me3SiCF3

    KAUST Repository

    Weng, Zhiqiang


    An effective model of cooperative effect of silver for the coppercatalyzed trifluoromethylation of activated and unactivated aryl iodides to trifluoromethylated arenes using Me3SiCF3 was achieved with a broad substrate scope. © 2011 American Chemical Society.

  17. Influences of Alkyl and Aryl Substituents on Iminopyridine Fe(II- and Co(II-Catalyzed Isoprene Polymerization

    Directory of Open Access Journals (Sweden)

    Lihua Guo


    Full Text Available A series of alkyl- and aryl-substituted iminopyridine Fe(II complexes 1a–7a and Co(II complexes 2b, 3b, 5b, and 6b were synthesized. The activator effect, influence of temperature, and, particularly, the alkyl and aryl substituents’ effect on catalytic activity, polymer molecular weight, and regio-/stereoselectivity were investigated when these complexes were applied in isoprene polymerization. All of the Fe(II complexes afforded polyisoprene with high molecular weight and moderate cis-1,4 selectivity. In contrast, the Co(II complexes produced polymers with low molecular weight and relatively high cis-1,4 selectivity. In the iminopyridine Fe(II system, the alkyl and aryl substituents’ effect exhibits significant variation on the isoprene polymerization. In the iminopyridine Co(II system, there is little influence observed on isoprene polymerization by alkyl and aryl substituents.

  18. In vitro function of the aryl hydrocarbon receptor predicts in vivo sensitivity of oviparous vertebrates to dioxin-like compounds (United States)

    Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investig...

  19. Stereoconservative Negishi arylation and alkynylation as an efficient approach to enantiopure 2,2'-diarylated 1,1'-binaphthyls. (United States)

    Krascsenicsová, Katarína; Walla, Peter; Kasák, Peter; Uray, Georg; Kappe, C Oliver; Putala, Martin


    Negishi arylation and alkynylation of easily synthesized chiral 2,2'-diodo-1,1'-binaphthyl rapidly proceeds in refluxing THF utilizing controlled microwave irradiation, affording enantiopure 2,2'-diarylated 1,1'-binaphthyls in good to excellent yields.

  20. Asymmetric synthesis of gem-diaryl substituted cyclic sulfamidates and sulfamides by rhodium-catalyzed arylation of cyclic ketimines. (United States)

    Nishimura, Takahiro; Ebe, Yusuke; Fujimoto, Hiroto; Hayashi, Tamio


    Asymmetric addition of arylboronates to aryl-substituted cyclic ketimines proceeded in the presence of a rhodium catalyst coordinated with a chiral diene ligand to give high yields of sulfamidates and sulfamides with high enantioselectivity (up to 99% ee).

  1. Cu-catalyzed arylation of the amino group in the indazole ring: regioselective synthesis of pyrazolo-carbazoles. (United States)

    Anil Kumar, K; Kannaboina, Prakash; Dhaked, Devendra K; Vishwakarma, Ram A; Bharatam, Prasad V; Das, Parthasarathi


    Cu(II)-catalyzed cross-coupling of various aryl boronic acids with 5 and 6-amino indazoles has resulted in (arylamino)-indazoles. These (arylamino)-indazoles have been utilized in synthesizing medicinally important pyrazole-fused carbazoles via Pd(II)-catalyzed cross-dehydrogenative coupling (CDC). This combined N-arylation/C-H arylation strategy has been successfully applied to the regioselective synthesis of polyheterocycles 3,6-dihydropyrazolo[3,4-c]carbazoles and 1,6-dihydro pyrazolo[4,3-c]carbazoles. Quantum chemical analysis has been carried out to understand the regioselectivity and to trace the potential energy surface of the entire reaction upon 5-N-aryl-indazole conversion to the corresponding carbazole.

  2. An Efficient Synthesis of Diaryl Ethers by Coupling Aryl Halides with Substituted Phenoxytrimethylsilane in the Presence of TBAF

    Institute of Scientific and Technical Information of China (English)

    Jian Kui ZHAO; Yan Guang WANG


    A general synthesis of diaryl ethers via coupling of aryl halides with substitutedphenoxytrimethylsilane in the presence of TBAF is described. The protocol is simple and mild,and gives good to excellent yields.

  3. Catalytic Enantioselective Aryl Transfer to Aldehydes Using Chiral 2,2’-Bispyrrolidine-Based Salan Ligands

    Directory of Open Access Journals (Sweden)

    Yixiang Cheng


    Full Text Available Chiral C2-symmetric diamines have emerged as versatile auxiliaries or ligands in numerous asymmetric transformations. Chiral 2,2’-bispyrrolidine-based salan ligands were prepared and applied to the asymmetric aryl transfer to aldehydes with arylboronic acids as the source of transferable aryl groups. The corresponding diarylmethanols were obtained in high yields with moderate to good enantioselectivitives of up to 83% ee.

  4. Cu-catalyzed arylation of phosphinic amide facilitated by (±)-trans-cyclohexane-1,2-diamine

    Institute of Scientific and Technical Information of China (English)

    Juan Li; Song Lin Zhang; Chuan Zhou Tao; Yao Fu; Qing Xiang Guo


    Cu-catalyzed cross coupling between phosphinic amides and aryl halides was accomplished for the first time by using (±)-transcyclohexane-1,2-diamine as the ligand. This reaction provided a novel approach for synthesizing arylated phosphinic amides. Both kinetic measurement and theoretical calculation indicated that phosphinic amides were much less reactive than amides by about 10times in Cu-catalyzed cross coupling.

  5. Palladium-catalyzed arylation of ketone enolates: an expeditious entry to tamoxifen-related 1,2,2-triarylethanones. (United States)

    Churruca, Fátima; SanMartin, Raul; Tellitu, Imanol; Domínguez, Esther


    [reaction: see text]. After a rigorous study on the effect of several catalytic systems, a simple, high yielding procedure for the preparation of 1,2,2-triarylethanones, skeletal analogues of tamoxifen, is presented. Apart from the economic and environmental advantages involved, this palladium-catalyzed arylation of deoxybenzoin enolates features a lack of ortho-arylation side reactions. In addition, an alternative approach from acetophenones to the target triarylethanone system is also announced.

  6. A novel synthesis of 2-aryl-2H-indazoles via a palladium-catalyzed intramolecular amination reaction. (United States)

    Song, J J; Yee, N K


    [reaction: see text] A variety of 2-aryl-2H-indazoles were synthesized by the palladium-catalyzed intramolecular amination of the corresponding N-aryl-N(o-bromobenzyl)hydrazines. Of several sets of reaction conditions surveyed, the combination of Pd(OAc)2/dppf/tBuONa gave the best results. This method applies to a wide scope of substrates containing electron-donating and electron-withdrawing substituents.

  7. A unified approach for the synthesis of symmetrical and unsymmetrical dibenzyl ethers from aryl aldehydes through reductive etherification

    Directory of Open Access Journals (Sweden)

    J. Sembian Ruso


    Full Text Available In this paper, we describe a simple and convenient conversion of aryl aldehydes to symmetrical dibenzyl ethers through reductive etherification. Similarly, unsymmetrical dibenzyl ether was obtained from aryl aldehyde and TES-protected benzyl alcohol. Triethyl silane with catalytic amount of InCl3 was found to be an efficient condition for the reductive etherification. Moreover, it exhibits remarkable functional group compatibility with yield ranging from good to excellent.

  8. Butane-1,2,3,4-tetraol-based amphiphilic stereoisomers for membrane protein study: importance of chirality in the linker region

    DEFF Research Database (Denmark)

    Das, Manabendra; Du, Yang; Mortensen, Jonas S.


    of the targeted membrane proteins depending on the chirality of the linker region. These findings indicate an important role for detergent stereochemistry in membrane protein stabilization. In addition, we generally observed enhanced detergent efficacy with increasing alkyl chain length, reinforcing...

  9. Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate. (United States)

    Lee, E A; Zimmerman, L R; Bhullar, B S; Thurman, E M


    A novel, sensitive, linker-assisted enzyme-linked immunosorbent assay (L'ELISA) was compared to on-line solid-phase extraction (SPE) with high-performance liquid chromatography/mass spectrometry (HPLC/MS) for the analysis of glyphosate in surface water and groundwater samples. The L'ELISA used succinic anhydride to derivatize glyphosate, which mimics the epitotic attachment of glyphosate to horseradish peroxidase hapten. Thus, L'ELISA recognized the derivatized glyphosate more effectively (detection limit of 0.1 microg/L) and with increased sensitivity (10-100 times) over conventional ELISA and showed the potential for other applications. The precision and accuracy of L'ELISA then was compared with on-line SPE/HPLC/MS, which detected glyphosate and its degradate derivatized with 9-fluorenylmethyl chloroformate using negative-ion electrospray (detection limit 0.1 microg/ L, relative standard deviation +/- 15%). Derivatization efficiency and matrix effects were minimized by adding an isotope-labeled glyphosate (2-13C15N). The accuracy of L'EUSA gave a false positive rate of 18% between 0.1 and 1.0 microg/L and a false positive rate of only 1% above 1.0 microg/L The relative standard deviation was +/- 20%. The correlation of L'ELISA and HPLC/MS for 66 surface water and groundwater samples was 0.97 with a slope of 1.28, with many detections of glyphosate and its degradate in surface water but not in groundwater.

  10. Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate (United States)

    Lee, E.A.; Zimmerman, L.R.; Bhullar, B.S.; Thurman, E.M.


    A novel, sensitive, linker-assisted enzyme-linked immunosorbent assay (L'ELISA) was compared to on-line solidphase extraction (SPE) with high-performance liquid chromatography/mass spectrometry (HPLC/MS) for the analysis of glyphosate in surface water and groundwater samples. The L'ELISA used succinic anhydride to derivatize glyphosate, which mimics the epitotic attachment of glyphosate to horseradish peroxidase hapten. Thus, L'ELISA recognized the derivatized glyphosate more effectively (detection limit of 0.1 ??g/L) and with increased sensitivity (10-100 times) over conventional ELISA and showed the potential for other applications. The precision and accuracy of L'ELISA then was compared with on-line SPE/HPLC/MS, which detected glyphosate and its degradate derivatized with 9-fluorenylmethyl chloroformate using negative-ion electrospray (detection limit 0.1 ??g/L, relative standard deviation ??15%). Derivatization efficiency and matrix effects were minimized by adding an isotope-labeled glyphosate (2-13C15N). The accuracy of L'ELISA gave a false positive rate of 18% between 0.1 and 1.0 ??g/L and a false positive rate of only 1% above 1.0 ??g/L. The relative standard deviation was ??20%. The correlation of L'ELISA and HPLC/MS for 66 surface water and groundwater samples was 0.97 with a slope of 1.28, with many detections of glyphosate and its degradate in surface water but not in groundwater.

  11. Post-translational modifications of linker histone H1 variants in mammals (United States)

    Starkova, T. Yu; Polyanichko, A. M.; Artamonova, T. O.; Khodorkovskii, M. A.; Kostyleva, E. I.; Chikhirzhina, E. V.; Tomilin, A. N.


    The covalent modifications of the linker histone H1 and the core histones are thought to play an important role in the control of chromatin functioning. Histone H1 variants from K562 cell line (hH1), mouse (mH1) and calf (cH1) thymi were studied by matrix-activated laser desorption/ionization fourier transform ion cyclotron resonance mass-spectroscopy (MALDI-FT-ICR-MS). The proteomics analysis revealed novel post-translational modifications of the histone H1, such as meK34-mH1.4, meK35-cH1.1, meK35-mH1.1, meK75-hH1.2, meK75-hH1.3, acK26-hH1.4, acK26-hH1.3 and acK17-hH1.1. The comparison of the hH1, mH1 and cH1 proteins has demonstrated that the types and positions of the post-translational modifications of the globular domains of the H1.2–H1.4 variants are very conservative. However, the post-translational modifications of the N- and C-terminal tails of H1.2, H1.3 and H1.4 are different. The differences of post-translational modifications in the N- and C-terminal tails of H1.2, H1.3 and H1.4 likely lead to the differences in DNA-H1 and H1-protein interactions.

  12. Rh(I)-Catalyzed Arylation of Heterocycles via C-H Bond Activation: Expanded Scope Through Mechanistic Insight

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jared; Berman, Ashley; Bergman, Robert; Ellman, Jonathan


    A practical, functional group tolerant method for the Rh-catalyzed direct arylation of a variety of pharmaceutically important azoles with aryl bromides is described. Many of the successful azole and aryl bromide coupling partners are not compatible with methods for the direct arylation of heterocycles using Pd(0) or Cu(I) catalysts. The readily prepared, low molecular weight ligand, Z-1-tert-butyl-2,3,6,7-tetrahydrophosphepine, which coordinates to Rh in a bidentate P-olefin fashion to provide a highly active yet thermally stable arylation catalyst, is essential to the success of this method. By using the tetrafluoroborate salt of the corresponding phosphonium, the reactions can be assembled outside of a glove box without purification of reagents or solvent. The reactions are also conducted in THF or dioxane, which greatly simplifies product isolation relative to most other methods for direct arylation of azoles employing high-boiling amide solvents. The reactions are performed with heating in a microwave reactor to obtain excellent product yields in two hours.

  13. Extracellular Linkers Completely Transplant the Voltage Dependence from Kv1.2 Ion Channels to Kv2.1. (United States)

    Elinder, Fredrik; Madeja, Michael; Zeberg, Hugo; Århem, Peter


    The transmembrane voltage needed to open different voltage-gated K (Kv) channels differs by up to 50 mV from each other. In this study we test the hypothesis that the channels' voltage dependences to a large extent are set by charged amino-acid residues of the extracellular linkers of the Kv channels, which electrostatically affect the charged amino-acid residues of the voltage sensor S4. Extracellular cations shift the conductance-versus-voltage curve, G(V), by interfering with these extracellular charges. We have explored these issues by analyzing the effects of the divalent strontium ion (Sr(2+)) on the voltage dependence of the G(V) curves of wild-type and chimeric Kv channels expressed in Xenopus oocytes, using the voltage-clamp technique. Out of seven Kv channels, Kv1.2 was found to be most sensitive to Sr(2+) (50 mM shifted G(V) by +21.7 mV), and Kv2.1 to be the least sensitive (+7.8 mV). Experiments on 25 chimeras, constructed from Kv1.2 and Kv2.1, showed that the large Sr(2+)-induced G(V) shift of Kv1.2 can be transferred to Kv2.1 by exchanging the extracellular linker between S3 and S4 (L3/4) in combination with either the extracellular linker between S5 and the pore (L5/P) or that between the pore and S6 (LP/6). The effects of the linker substitutions were nonadditive, suggesting specific structural interactions. The free energy of these interactions was ∼20 kJ/mol, suggesting involvement of hydrophobic interactions and/or hydrogen bonds. Using principles from double-layer theory we derived an approximate linear equation (relating the voltage shifts to altered ionic strength), which proved to well match experimental data, suggesting that Sr(2+) acts on these channels mainly by screening surface charges. Taken together, these results highlight the extracellular surface potential at the voltage sensor as an important determinant of the channels' voltage dependence, making the extracellular linkers essential targets for evolutionary selection.

  14. Spectroscopic investigation of photoinduced charge-transfer processes in FTO/TiO2/N719 photoanodes with and without covalent attachment through silane-based linkers. (United States)

    Pandit, Bill; Luitel, Tulashi; Cummins, Dustin R; Thapa, Arjun K; Druffel, Thad; Zamborini, Frank; Liu, Jinjun


    Understanding electron-transfer (ET) processes in dye-sensitized solar cells (DSSCs) is crucial to improving their device performance. Recently, covalent attachment of dye molecules to mesoporous semiconductor nanoparticle films via molecular linkers has been employed to increase the stability of DSSC photoanodes. The power conversion efficiency (PCE) of these DSSCs, however, is lower than DSSCs with conventional unmodified photoanodes in this study. Ultrafast transient absorption pump-probe spectroscopy (TAPPS) has been used to study the electron injection process from N719 dye molecules to TiO2 nanoparticles (NPs) in DSSC photoanodes with and without the presence of two silane-based linker molecules: 3-aminopropyltriethoxysilane (APTES) and p-aminophenyltrimethoxysilane (APhS). Ultrafast biphasic electron injection kinetics were observed in all three photoanodes using a 530 nm pump wavelength and 860 nm probe wavelength. Both the slow and fast decay components, attributed to electron injection from singlet and triplet excited states, respectively, of the N719 dye to the TiO2 conduction band, are hindered by the molecular linkers. The hindering effect is less significant with the APhS linker than the APTES linker and is more significant for the singlet-state channel than the triplet-state one. Electron injection from the vibrationally excited states is less affected by the linkers. The spectroscopic results are interpreted on the basis of the standard ET theory and can be used to guide selection of molecular linkers for DSSCs with better device performance. Other factors that affect the efficiency and stability of the DSSCs are also discussed. The relatively lower PCE of the covalently attached photoanodes is attributed to the multilayer and aggregation of the dye molecules as well as the linkers.

  15. Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts: structural and functional significance of the intermodular linker

    Directory of Open Access Journals (Sweden)

    Svetlana Petkun


    Full Text Available Non-cellulosomal processive endoglucanase 9I (Cel9I from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9 catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b, separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to be essential for endoglucanase activity. Physical reassociation of independently expressed GH9 and CBM3c modules (containing linker sequences restored 60–70% of the intact Cel9I endocellulase activity. However, the mechanism responsible for recovery of activity remained unclear. In this work we independently expressed recombinant GH9 and CBM3c with and without their interconnecting linker in Escherichia coli. We crystallized and determined the molecular structure of the GH9/linker-CBM3c heterodimer at a resolution of 1.68 Å to understand the functional and structural importance of the mutual spatial orientation of the modules and the role of the interconnecting linker during their re-association. Enzyme activity assays and isothermal titration calorimetry were performed to study and compare the effect of the linker on the re-association. The results indicated that reassembly of the modules could also occur without the linker, albeit with only very low recovery of endoglucanase activity. We propose that the linker regions in the GH9/CBM3c endoglucanases are important for spatial organization and fixation of the modules into functional enzymes.

  16. Evaluation of the effects of chemically different linkers on hepatic accumulations, cell tropism and gene silencing ability of cholesterol-conjugated antisense oligonucleotides. (United States)

    Wada, Shunsuke; Yasuhara, Hidenori; Wada, Fumito; Sawamura, Motoki; Waki, Reiko; Yamamoto, Tsuyoshi; Harada-Shiba, Mariko; Obika, Satoshi


    Cholesterol conjugation of oligonucleotides is an attractive way to deliver the oligonucleotides specifically to the liver. However cholesterol-conjugated antisense oligonucleotides (ASOs) mainly accumulate in non-parenchymal cells (NPCs) such as Kupffer cells. In this study, to increase the hepatic accumulation of cholesterol-conjugated ASOs, we prepared a variety of linkers for cholesterol conjugation to anti-Pcsk9 ASOs and examined their effects on pharmacological parameters. Hepatic accumulation of ASO was dramatically increased with cholesterol conjugation. The increase in hepatic accumulation depended largely on the linker chemistry of each cholesterol-conjugated ASO. In addition to hepatic accumulation, the cell tropism of each cholesterol-conjugated ASO tended to depend on their linker. Although a linker bearing a disulfide bond accumulated mainly in NPCs, hexamethylene succinimide linker accumulated mainly in hepatocytes. To estimate the benefits of releasing ASO from the conjugated cholesterol in hepatocyte, we designed another linker based on hexamethylene succinimide, which has a phosphodiester bond between the linker and the ASO. The cholesterol-conjugated ASO bearing such a phosphodiester bond showed a significantly improved Pcsk9 mRNA inhibitory effect compared to its counterpart, cholesterol-conjugated ASO with a phosphorothioate bond, while the hepatic accumulation of both cholesterol-conjugated ASOs was comparable, indicating the effectiveness of removing the conjugated cholesterol for ASO activity. In toxicity analysis, some of the linkers induced lethal toxicities when they were injected at high concentrations (>600μM). These toxicities were attributed to decreased platelet levels in the blood, suggesting an interaction between cholesterol-conjugated ASO and platelets. Our findings may provide a guideline for the design of molecule-conjugated ASOs.

  17. Discovery of aryl ureas and aryl amides as potent and selective histamine H3 receptor antagonists for the treatment of obesity (part I). (United States)

    Gao, Zhongli; Hurst, William J; Guillot, Etienne; Czechtizky, Werngard; Lukasczyk, Ulrike; Nagorny, Raisa; Pruniaux, Marie-Pierre; Schwink, Lothar; Sanchez, Juan Antonio; Stengelin, Siegfried; Tang, Lei; Winkler, Irvin; Hendrix, James A; George, Pascal G


    A series of structurally novel aryl ureas was derived from optimization of the HTS lead as selective histamine H3 receptor (H3R) antagonists. The SAR was explored and the data obtained set up the starting point and foundation for further optimization. The most potent tool compounds, as exemplified by compounds 2l, 5b, 5d, and 5e, displayed antagonism potencies in the subnanomolar range in in vitro human-H3R FLIPR assays and rhesus monkey H3R binding assays.

  18. Syntheses of aporphine and homoaporphine alkaloids by intramolecular ortho-arylation of phenols with aryl halides via SRN1 reactions in liquid ammonia. (United States)

    Barolo, Silvia M; Teng, Xin; Cuny, Gregory D; Rossi, Roberto A


    The photostimulated intramolecular ortho-arylation reactions of bromoarenes linked with pendant phenoxy containing N-substituted tetrahydroisoquinolines in liquid ammonia afforded aporphine (54-82% yield) alkaloid derivatives via SRN1 reactions. This strategy was extended for the first time to the synthesis of a homoaporphine derivative (40% yield). Tetrahydroisoquinoline precursors that contained electron-withdrawing groups on nitrogen (i.e., amides, sulfonamides, and carbamates) gave cyclized products, whereas precursors with basic nitrogens (i.e., NH or NMe) either failed to yield cyclized products or gave aporphines in only low yield.

  19. Role of the external NH2 linker on the conformation of surface immobilized single strand DNA probes and their SERS detection (United States)

    He, Lijie; Langlet, Michel; Stambouli, Valerie


    The conformation and topological properties of DNA single strand probe molecules attached on solid surfaces are important, notably for the performances of devices such as biosensors. Commonly, the DNA probes are tethered to the surface using external linkers such as NH2. In this study, the role and influence of this amino-linker on the immobilization way and conformation of DNA probes on Ag nanoparticle surface is emphasized using Surface Enhanced Raman Spectroscopy (SERS). We compare the SERS spectra and their reproducibility in the case of two groups of DNA polybase probes which are polyA, polyC, polyT, and polyG. In the first group, the polybases exhibit an external NH2 functional linker while in the second group the polybases are NH2-free. The results show that the reproducibility of SERS spectra is enhanced in the case of the first group. It leads us to propose two models of polybase conformation on Ag surface according to the presence or the absence of the external NH2 linker. In the presence of the NH2 external linker, the latter would act as a major anchoring point. As a result, the polybases are much ordered with a less random orientation than in the case of NH2-free polybases. Consequently, in view of further in situ hybridization for biosensing applications, it is strongly recommended to use NH2 linker functionalized DNA probes.

  20. Repairing the Sickle Cell mutation. II. Effect of psoralen linker length on specificity of formation and yield of third strand-directed photoproducts with the mutant target sequence. (United States)

    Amosova, Olga; Broitman, Steven L; Fresco, Jacques R


    Three identical deoxyoligonucleotide third strands with a 3'-terminal psoralen moiety attached by linkers that differ in length (N = 16, 6 and 4 atoms) and structure were examined for their ability to form triplex-directed psoralen photoproducts with both the mutant T residue of the Sickle Cell beta-globin gene and the comparable wild-type sequence in linear duplex targets. Specificity and yield of UVA (365 nm) and visible (419 nm) light-induced photoadducts were studied. The total photoproduct yield varies with the linker and includes both monoadducts and crosslinks at various available pyrimidine sites. The specificity of photoadduct formation at the desired mutant T residue site was greatly improved by shortening the psoralen linker. In particular, using the N-4 linker, psoralen interaction with the residues of the non-coding duplex strand was essentially eliminated, while modification of the Sickle Cell mutant T residue was maximized. At the same time, the proportion of crosslink formation at the mutant T residue upon UV irradiation was much greater for the N-4 linker. The photoproducts formed with the wild-type target were fully consistent with its single base pair difference. The third strand with the N-4 linker was also shown to bind to a supercoiled plasmid containing the Sickle Cell mutation site, giving photoproduct yields comparable with those observed in the linear mutant target.

  1. Understanding and Exploitation of Neighboring Heteroatom Effect for the Mild N-Arylation of Heterocycles with Diaryliodonium Salts under Aqueous Conditions: A Theoretical and Experimental Mechanistic Study. (United States)

    Bihari, Tamás; Babinszki, Bence; Gonda, Zsombor; Kovács, Szabolcs; Novák, Zoltán; Stirling, András


    The mechanism of arylation of N-heterocycles with unsymmetric diaryliodonium salts is elucidated. The fast and efficient N-arylation reaction is interpreted in terms of the bifunctionality of the substrate: The consecutive actions of properly oriented Lewis base and Brønsted acid centers in sufficient proximity result in the fast and efficient N-arylation. The mechanistic picture points to a promising synthetic strategy where suitably positioned nucleophilic and acidic centers enable functionalization, and it is tested experimentally.

  2. Antioxidant and DNA damage inhibition activities of 4-Aryl-N-(4-arylthiazol-2-yl)-5,6-dihydro-4H-1,3,4-oxadiazine-2-carboxamides

    Indian Academy of Sciences (India)

    K Shubakara; K B Umesha; N Srikantamurthy; J Chethan


    A series of 4-aryl--(4-pheny-thiazol-2-yl)-5,6-dihydro-4-1,3,4-oxadiazine-2-carboxamides were synthesized by condensing 4-aryl-5,6-dihydro-4-1,3,4-oxadiazine-2-carboxylic acid with 2-amino-4-aryl-thiazole derivatives. The newly synthesized molecules were characterized by spectral analysis and subjected to antioxidant and DNA damage inhibition studies.

  3. 2-(Hetero(aryl)methylene)hydrazine-1-carbothioamides as potent urease inhibitors. (United States)

    Saeed, Aamer; Imran, Aqeel; Channar, Pervaiz A; Shahid, Mohammad; Mahmood, Wajahat; Iqbal, Jamshed


    A small series of 2-(hetero(aryl)methylene) hydrazine-1-carbothioamides including two aryl derivatives was synthesized and tested for their inhibitory activity against urease. Compound (E)-2-(Furan-2-ylmethylene) hydrazine-1-carbothioamide (3f), having a furan ring, was the most potent inhibitor of urease with an IC50 value of 0.58 μM. Molecular modeling was carried out through docking the designed compounds into the urease binding site to predict whether these derivatives have analogous binding mode to the urease inhibitors. The study revealed that all of the tested compounds bind with both metal atoms at the active site of the enzyme. The aromatic ring of the compounds forms ionic interactions with the residues, Ala(440), Asp(494), Ala(636), and Met(637).

  4. Molecular modelling of some para-substituted aryl methyl telluride and diaryl telluride antioxidants (United States)

    Frisell, H.; Engman, L.


    Quantum mechanical calculations using the 3-21G(d) basis-set were performed on some p-substituted diaryl tellurides and aryl methyl tellurides, and the corresponding cationic radicals of these compounds. Calculated relative radical stabilization energies (RSE:s) were shown to correlate with experimentally determined peak oxidation potentials ( R=0.93) and 125Te-NMR chemical shifts ( R=0.91). A good correlation was also observed between the RSE:s and the Mulliken charge at the tellurium atoms ( R=0.97). The results showed that Hartree-Fock calculations using the 3-21G(d) basis set was sufficiently accurate for estimating the impact of p-substituents in aryl tellurides on experimentally determined properties such as peak oxidation potentials and 125Te-NMR chemical shifts.

  5. Synthesis of Poly(aryl amide imide)s Derived from o-diphenyltrimellitic Anhydride

    Institute of Scientific and Technical Information of China (English)


    The synthesis and characterization of a series of novel poly(aryl amide imide)s based on o-diphenyltrimellitic anhydride are described.The poly(aryl amide-imide)s having inherent viscosities of 0.39-1.43dL/g in N-methyl-2-pyrrolidinone at 30℃,were prepared by polymerization with aromatic diamines in N,N-dimethylacetamide and subsequent chemical imidization.All the polymers were amorphous,readily soluble in aprotic polar solvents such as DMAC,NMP,DMF,DMSO,and m-cresol,and could be cast to form flexible and tough films.The glass trsanition temperatures were in the range of 284-336℃,and the temperatures for 5% weight loss in nitrogen were above 468℃.

  6. Simple preparation of new N-aryl-N-(3-indolmethyl acetamides and their spectroscopic analysis

    Directory of Open Access Journals (Sweden)

    José A. Henao


    Full Text Available To prepare new indolic molecules and characterize them by spectroscopic methods. Materials and methods: All reagentswere purchased from Aldrich, commercial grade. The purity of the products and the composition of the reaction mixtures were monitoredby thin layer chromatography over Silufol UV254 0.25 mm-thick chromatoplates. Product isolation and purification were performed bycolumn chromatography (SiO2, using ethyl acetate-petroleum ether mixtures as eluents. Results. The synthesis of new N-aryl-N-(3-indolmethyl acetamides based on first step iminization reaction of indol-3-carbaldehyde is accomplished. The structures of the C-3substituted indoles were confirmed by 1H-NMR and 13C-NMR studies supported by inverse-detected 2D NMR experiments and alsothrough monocrystal X-ray diffraction. Conclusions. An efficient, economic, and fast synthetic route was designed to the construction ofthe N-aryl-N-(3-indolmethyl acetamides, structural analogues of some alkaloids.

  7. Restricted utility of aryl isoprenoids as indicators of photic zone anoxia


    Sinninghe Damsté, J.S.; Koopmans, M. P.; S. Schouten; Kohnen, M.E.L.


    In a North Sea oil, the carotenoid derivatives -carotene, -isorenieratane, and isorenieratane were identified, together with a series of aryl isoprenoids with a 2,3,6-trimethyl substitution pattern for the aromatic ring. The 13C values of -carotene and -isorenieratane are similar, whereas isorenieratane is ca. 15% heavier. This suggests that -isorenieratane is not derived from -isorenieratane biosynthesised by Chlorobiaceae, but from aromatisation of -carotene. This was confirmed by laborator...

  8. Mild synthesis of N'-aryl-N,N-dimethylformamidinium chloride by Vilsmeier-Haack reagent

    Institute of Scientific and Technical Information of China (English)

    Ge Meng; Yao Wu Sha; Rui Zhang; Nan Bai


    Formamidine derivatives could be used as the building blocks for substituted heterocyclic compounds with various biological activities. N'-Aryl-N,N-dimethylformamidinium chlorides have been synthesized in high yields by reaction of aromatic primary amines with Vilsmeier-Haack reagent at room temperature. The structures of all the new compounds were identified by ESI-MS, IR and NMR spectra. The steric structures of some of these compounds were clarified by X-ray single crystal analysis.

  9. Palladium-Catalyzed Suzuki-Miyaura Type Coupling Reaction of Aryl Halides with Triphenylborane-Pyridine

    Institute of Scientific and Technical Information of China (English)

    杨明华; 顾勇冰; 王艳; 赵玺玉; 严国兵


    The Suzuki-Miyaura type coupling reaction of aryl halides with triphenylborane-pyridine was described. The reaction can be catalyzed by Pd(OAc)2 (5 mol%) in presence of Cs2CO3 at 50 ℃ or 80 ℃, and functionalized biaryls were obtained in good to excellent yields. This protocol is general and can tolerate a wide range of func- tional groups.

  10. Extending the utility of [Pd(NHC)(cinnamyl)Cl] precatalysts: Direct arylation of heterocycles


    Anthony R Martin; Anthony Chartoire; Slawin, Alexandra M. Z.; Nolan, Steven P


    The use of [Pd(NHC)(cinnamyl)Cl] precatalysts in the direct arylation of heterocycles has been investigated. Among four different precatalysts, [Pd(SIPr)(cinnamyl)Cl] proved to be the most efficient promoter of the reaction. The C–H functionalization of sulfuror nitrogen-containing heterocycles has been achieved at low catalyst loadings. These catalyst charges range from 0.1 to 0.01 mol % palladium. Publisher PDF Peer reviewed

  11. Synthesis and dynamic stereochemistry of 4-aryl-thiomorpholine-3,5-dione derivatives (United States)

    Szawkało, Joanna; Maurin, Jan K.; Pluciński, Franciszek; Czarnocki, Zbigniew


    A series of new N-aryl-substituted thiomorpholine-3,5-diones were synthesized. Crystal structures of seven compounds were established on the basis of X-ray crystallography. Stable at room temperature diastereomers were detected for (2-phenyl)-substituted derivatives using 1H NMR. The dynamic stereochemistry of compound 36 was studied with variable-temperature 1H NMR and the mechanism of diastereomers interconversion was proposed on the basis of quantum chemical calculations.

  12. A mild and simple synthesis of N-aryl substituted toluenesulfamides under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    ZHAO Na; WANG Yu-lu


    N- aryl substituted benzenesulfamides are often used as heating-sensitive recording material1, thermal printing material2, sensitizer3 and developer4. Moreover, some of the benzenesulfamides have antifungal activities5. Many methods have been described for preparation of sulfamides. They are used to carry out in solvent8 or in solid phase condition9. These methods required solvent or solid support and even required heating or cooling. At the same time, the process of these methods is complex. Now we have developed a new method to prepare N-aryl substituted toluenesulfamides under solvent-free conditions.In recent years, solvent-free technology has gained popularity in organic synthesis. For instance,solidstate reaction and microwave reaction have received considerable attention. Solvent-free synthesis of amides has been reported10-11. This technology has many advantages such as high efficiency and selectivity, easy separation and environmental acceptability. All these merits are in accord with green chemistry's requirements of energy-saving, high efficiency and environmental benefits.In our paper, we used a simple and efficient method for preparing N-aryl substituted toluenesulfamides under solvent-free conditions, as a replacement for classic solvent, which gives many environmental benefits.All reactions were completed at room temperature by co-grinding in an agate mortar for 3-20min and the results are shown in Table 1.In conclusion, we have developed an efficient and convenient method of preparation N-aryl substituted toluenesulfamides in high yields. It symbols an improvement for synthesis of benzenesulfamides.

  13. Lineage-dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis


    Harrill, Joshua A.; Bethany B Parks; Wauthier, Eliane; Rowlands, J. Craig; Reid, Lola M.; Thomas, Russell S.


    Rodent cancer bioassays indicate that the aryl hydrocarbon receptor (AHR) agonist, 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD), causes increases in both hepatocytic and cholangiocytic tumors. Effects of AHR activation have been evaluated on rodent hepatic stem cells (rHpSCs) versus their descendants, hepatoblasts (rHBs), two lineage stages of multipotent, hepatic precursors with overlapping but also distinct phenotypic traits. This was made possible by defining the first successful culture co...

  14. Aryl Hydrocarbon Receptor Activation by TCDD Reduces Inflammation Associated with Crohn's Disease


    Benson, Jenna M.; Shepherd, David M.


    Crohn's disease results from a combination of genetic and environmental factors that trigger an inappropriate immune response to commensal gut bacteria. The aryl hydrocarbon receptor (AhR) is well known for its involvement in the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant that affects people primarily through the diet. Recently, TCDD was shown to suppress immune responses by generating regulatory T cells (Tregs). We hypothesized that AhR activation da...

  15. Solid-Phase Organic Synthesis of Aryl Vinyl Ethers Using Sulfone-Linking Strategy

    Institute of Scientific and Technical Information of China (English)

    余腊妹; 汤妮; 盛寿日; 陈茹冰; 刘晓玲; 蔡明中


    A novel facile solid-phase organic synthesis of aryl vinyl ethers by reaction of polystyrene-supported 2-phenylsulfonylethanol with phenols under Mitsunobu conditions and subsequent elimination reaction with DBU has been developed. The advantages of this method include straightforward operation, good yield and high purity of the products. Alternatively, a typical example of Suzuki coupling reaction on-resin was further applied to prepare 4-phenylphenyl vinyl ether for extending this method.



    Quintana, Francisco J.


    The ligand-activated transcription factor aryl hydrocarbon receptor controls the activity of several components of the immune system, many of which play an important role in neuroinflammation. This review discusses the role of AhR in T cells and dendritic cells, its relevance for the control of autoimmunity in the central nervous system, and its potential as a therapeutic target for immune mediated disorders.

  17. Microwave-Assisted Synthesis of Some 3,5-Arylated 2-Pyrazolines

    Directory of Open Access Journals (Sweden)

    Hassan Ghasemnejad


    Full Text Available Condensation of 2-acetylnaphthalene with benzaldehydes under microwave irradiation affords chalcones which undergo facile and clean cyclizations with hydrazines RNHNH2 (R= H, Ph, Ac to afford 3,5-arylated 2-pyrazolines in quantitative yields, also under microwave irradiation and in the presence of dry AcOH as cyclizing agent. The results obtained indicate that, unlike classical heating, microwave irradiation results in higher yields, shorter reaction times (2-12 min. and cleaner reactions.

  18. Direct Arylation Strategies in the Synthesis of π-Extended Monomers for Organic Polymeric Solar Cells


    Andrea Nitti; Riccardo Po; Gabriele Bianchi; Dario Pasini


    π-conjugated macromolecules for organic polymeric solar cells can be rationally engineered at the molecular level in order to tune the optical, electrochemical and solid-state morphology characteristics, and thus to address requirements for the efficient solid state device implementation. The synthetic accessibility of monomers and polymers required for the device is getting increasing attention. Direct arylation reactions for the production of the π-extended scaffolds are gaining importance,...

  19. Synthesis, structure and ring-opening polymerization of macrocyclic arylates containing phthalic unit

    Institute of Scientific and Technical Information of China (English)

    姜洪焱; 陈天禄; 邢彦; 林永华; 徐纪平


    A series of maerocyclic arylate diraers have been selectively synthesized by an interfacial polyconden-sation of o-phthaloyldichloride with bisphenols A combination of GPC,FAB-MS,1H and 13C NMR unambiguously confirmed the cyclic nature Although single-crystal X-ray analysis of two such macrocycles reveals no severe strain on the cyclic structures,these macrocycles can undergo facile melt polymerization to give high molecular weight polyary-lates.

  20. Synthesis of Poly(aryl ether ketone) Copolymers Containing Adamantyl-substituted Naphthalene Rings

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiao-liang; ZHANG Shu-ling; REN Dian-fu; GUAN Shao-wei; WANG Gui-bin; JIANG Zhen-hua


    @@ 1 Introduction High performance polymers have received considerable attention over the past decade owing to their increased demands as replacements for metals or ceramics in automotive,aerospace,and microelectronic industries.Poly(aryl ether ketone)s(PAEKs) are a class of important high-performance aromatic polymers with excellent mechanical properties,good solvent resistance,size-accuracy,electrical characteristics,and superior thermal stability[1-3].

  1. Synthesis and antileishmanial activity of new 1-Aryl-1H-Pyrazole-4- carboximidamides derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Mauricio S. dos; Gomes, Adriana O.; Bernardino, Alice M.R.; Souza, Marcos C. de, E-mail: [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Quimica Organica; Khan, Misbahul A. [The Islamia University of Bahawalpur (Pakistan). Chemistry Dept.; Brito, Monique A. de [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Fac. de Farmacia. Lab. de Quimica Medicinal Computacional; Castro, Helena C.; Abreu, Paula A. [Universidade Federal Fluminense (LABioMol/GCM/UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Lab. de Antibioticos, Bioquimica e Modelagem Molecular; Rodrigues, Carlos R. [Universidade Federal do Rio de Janeiro (ModMol/UFRJ), RJ (Brazil). Fac. de Farmacia. Lab. de Modelagem Molecular e QSAR; Leo, Rosa M.M. de; Leon, Leonor L.; Canto-Cavalheiro, Marilene M. [Fundacao Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ (Brazil). Instituto Oswaldo Cruz. Lab. de Bioquimica de Tripanosomatideos


    Chemotherapy for leishmaniasis, diseases caused by protozoa of the genus Leishmania, remains inefficient in several treatments. So there is a need to search for new drugs. In this work, we have synthesized 1-aryl-1H-pyrazole-4-carboximidamides derivatives and evaluated antileishmanial activities in vitro, as well as cytotoxic effects. Structure-activity relationship (SAR) studies were carried out with all the compounds of the series. Compound 2 showed an activity profile that can be improved through medicinal chemistry strategies. (author)

  2. A Copper-Assisted Palladium(II)-catalyzed Direct Arylation of Cyclic Enaminones with Arylboronic Acids


    Kim, Yong Wook; Niphakis, Micah J.; Georg, Gunda I.


    Described herein is a palladium(II)-catalyzed direct arylation of cyclic enaminones with arylboronic acids. The versatility of this method is that both electron-rich and electron-poor boronic acids can be coupled in high yields. A mixture of two Cu(II) additives was crucial for efficient cross-coupling. The role of each Cu(II) reagent appears to be distinct and complementary serving to assist catalyst reoxidation and transmetallation through a putative arylcopper intermediate.

  3. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    CERN Document Server

    Park, Y T; Kim, M S; Kwon, J H


    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  4. Dehalogenation of Aryl Halides Catalyzed by Montmorillonite Immobilized Bimetal Catalyst in Aqueous System

    Institute of Scientific and Technical Information of China (English)


    A novel bisupported bimetal catalyst PVP-PdCl2-FeSO4/Al-Mont-PEG600 was prepared by immobilization of PVP (poly (N-vinyl-2-pyrrolidone)) supported bimetallic catalyst using alumina pillared inartificial montmorillonite as the carrier. This catalyst has good dehalogenation activity and selectivity to aryl halides-o-chlorotoluene in aqueous system in the presence of phase transfer catalyst (PEG) and sodium formate as hydrogen source. The catalyst also shows good reusability.

  5. Efficient synthesis of π-conjugated molecules incorporating fluorinated phenylene units through palladium-catalyzed iterative C(sp2–H bond arylations

    Directory of Open Access Journals (Sweden)

    Fatiha Abdelmalek


    Full Text Available We report herein a two or three step synthesis of fluorinated π-conjugated oligomers through iterative C–H bond arylations. Palladium-catalyzed desulfitative arylation of heteroarenes allowed in a first step the synthesis of fluoroaryl-heteroarene units in high yields. Then, the next steps involve direct arylation with aryl bromides catalyzed by PdCl(C3H5(dppb to afford triad or tetrad heteroaromatic compounds via regioselective activation of C(sp2–H bonds.

  6. Restricted utility of aryl isoprenoids as indicators for photic zone anoxia (United States)

    Koopmans, Martin P.; Schouten, Stefan; Kohnen, Math E. L.; Sinninghe Damsté, Jaap S.


    In a North Sea oil, the carotenoid derivatives β-carotene, β-isorenieratane, and isorenieratane were identified, together with a series of aryl isoprenoids with a 2,3,6-trimethyl substitution pattern for the aromatic ring. The δ13C values of β-carotene and β-isorenieratane are similar, whereas isorenieratane is ca. 15% heavier. This suggests that β-isorenieratane is not derived from β-isorenieratane biosynthesised by Chlorobiaceae, but from aromatisation of β-carotene. This was confirmed by laboratory aromatisation of partially hydrogenated β-carotene, which yielded β-isorenieratane as the main product. The aryl isoprenoids, which can be formed by Csbnd C bond cleavage of both isorenieratane and β-isorenieratane, have a mixed isotopic signature in the oil. These results indicate that mere identification of aryl isoprenoids, without determination of their δ13C values, cannot be used to assess the presence of Chlorobiaceae, and, thus, photic zone anoxia in the depositional environment.

  7. Synthesis and thermal degradation characterization of novel poly(phosphazene-aryl amides

    Directory of Open Access Journals (Sweden)

    Z. P. Zhao


    Full Text Available New fully aromatic poly(phosphazene-aryl amides were prepared by polycondensation reaction of our synthesized aromatic diamine: 1,1,3,5-tetraphenoxy-4,6-bis(4-aminophenoxyoligocyclotriphosphazene (monomer 1 with terephthaloyl dichloride. Their chemical structure and composition were characterized by elemental analysis, 1H and 31P NMR (Nuclear Magnetic Resonance, and FT-IR (Fourier transform infrared spectroscopy, whereas their thermal degradation properties were determined by DSC (Differential Scanning Calorimetry and TGA (Thermal Gravimertic Analysis techniques. The solid residues of all samples were analysed by FT-IR and SEM (Scanning Electron Microscopy. Compared to conventional PPTA (poly(p-phenylene terephthamide, PPAA (poly(phosphazene-aryl amide shows excellent thermal stability and solubility in polar protic solvents. All poly(phosphazene-aryl amides show two thermal degradation in the temperature range 150–600°C. The monomer 1, due to its structure, shows the first maximum rate of thermal decomposition temperature around 150–350°C, which may be due to the decomposition of the P–O–C bone. Morphology of the solid residues by Scanning Electron Microscope exhibit that the granular of the solid residues gradual disappearance with the increase of monomer 1 content. The surface layer of PPAA solid residues has been grumous, for the syneresis of P–O–P took place.

  8. Why do p-nitro-substituted aryl azides provide unintended dark reactions with proteins? (United States)

    Popova, Tatyana V; Reinbolt, Joseph; Ehresmann, Bernard; Shakirov, Makhmut M; Serebriakova, Marina V; Gerassimova, Yulia V; Knorre, Dmitri G; Godovikova, Tatyana S


    Aryl azide-mediated photo cross-linking has been widely used to obtain structural features in biological systems, even though the reactive species generated upon photolysis in aqueous solution have not been well characterized. We have established a mechanistic framework for the formation of adducts between photoactivated 5-azido-2-nitrobenzoyl reagents and protein functional groups. Photolysis of the aryl azide tethered to biotin via an amide linkage yields a cross-link with streptavidin. The ability of the pre-irradiated reagent to form a similar cross-link indicates that it is the long-lived reactive intermediate that contributes to the cross-link formation. The reactive intermediate forms an adduct with tryptophan. The sequence of the labeled peptide is found to be GlyTrp(*)ThrValAlaTrp(*)LysAsn, corresponding to residues 74-81 of the streptavidin sequence, where Trp(*) designates the modified Trp-75 and Trp-79. A peak at m/z 1455.1 corresponding to the calculated [M(peptide)+aryl nitrene+2O](+) molecular ion value has been observed for the labeled peptide. Product structure identification experiments support the assignment that the long-lived reactive intermediate is a p-nitro-N-arylhydroxylamine, which undergoes a number of transformations in aqueous solution leading to nitroso derivatives. A plausible mechanism of the interaction between tryptophan and nitroso compound is discussed.

  9. Ruthenium-catalyzed α-(hetero)arylation of saturated cyclic amines: reaction scope and mechanism. (United States)

    Peschiulli, Aldo; Smout, Veerle; Storr, Thomas E; Mitchell, Emily A; Eliáš, Zdeněk; Herrebout, Wouter; Berthelot, Didier; Meerpoel, Lieven; Maes, Bert U W


    Transition-metal-catalyzed sp(3) C-H activation has emerged as a powerful approach to functionalize saturated cyclic amines. Our group recently disclosed a direct catalytic arylation reaction of piperidines at the α position to the nitrogen atom. 1-(Pyridin-2-yl)piperidine could be smoothly α-arylated if treated with an arylboronic ester in the presence of a catalytic amount of [Ru3(CO)12] and one equivalent of 3-ethyl-3-pentanol. A systematic study on the substrate and reagent scope of this transformation is disclosed in this paper. The effect of substitution on both the piperidine ring and the arylboronic ester has been investigated. Smaller (pyrrolidine) and larger (azepane) saturated ring systems, as well as benzoannulated derivatives, were found to be compatible substrates with the α-arylation protocol. The successful use of a variety of heteroarylboronic esters as coupling partners further proved the power of this direct functionalization method. Mechanistic studies have allowed for a better understanding of the catalytic cycle of this remarkable transformation featuring an unprecedented direct transmetalation on a Ru(II)-H species.

  10. 1D coordination polymers with polychalcogenides as linkers between metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Kysliak, Oleksandr; Beck, Johannes, E-mail:


    The reactions of zinc metal with elemental selenium and selenium/sulfur mixtures in liquid ammonia or methylamine under solvothermal conditions in closed glass ampoules at 50 °C lead within some days specifically to [Zn(NH{sub 3}){sub 2}Se{sub 4}]{sub n} (1), [Zn(MeNH{sub 2}){sub 2}Se{sub 4}]{sub n} (2), [Zn(NH{sub 3}){sub 2}Se{sub 2.23}S{sub 1.77}]{sub n} (3). From MnCl{sub 2}, Rb{sub 2}Se and excess Se in n-butylamine [Mn({sup n}BuNH{sub 2}){sub 4}Se{sub 6}]{sub n} (4) is obtained after prolonged reaction time at ambient temperature. The compounds are sensitive towards air and loss of NH{sub 3} or the amine ligands. The crystal structures were determined by single crystal diffraction at low temperatures. As a common structural feature, all compounds represent 1D coordination polymers with polychalcogenide chains as linkers between the metal atoms and consist of infinite [M–Ch{sub m}–]{sub n} chains (M=Zn, Mn; Ch{sub m}=Se{sub 4}, (S/Se){sub 4}, Se{sub 6}). The Zn central atoms in 1–3 have tetrahedral coordination with two amine ligands, the Mn atoms in 4 have octahedral coordination with four amine ligands and cis position of the two Se atoms. Raman spectra of 1–3 show the stretching mode vibrations of the Ch{sub 4} groups. The observation of S–S, S–Se, and Se–Se vibration bands in the spectrum of 3 indicates the presence of mixed S/Se polyanions. An optical band gap of 1.86(5) eV was determined for 2 by diffuse reflectance spectroscopy. - Graphical abstract: The reaction of Zn and Se in liquid methylamine yields dark red [Zn(NH{sub 2}CH{sub 3})Se{sub 4}], a 1D coordination polymer consisting of helical Zn–Se{sub 4}–Zn– chains. - Highlights: • A series of 1D coordination polymers consisting of metal amine complexes concatenated by polychalcogenide ions is presented. • Syntheses were performed as solvothermal reactions in liquid ammonia, liquid methylamine and n-butylamine. • Crystal structures are dominated by helices [M–Ch{sub m

  11. Linker for activation of T cells contributes to airway inflammation in an asthmatic mouse model

    Institute of Scientific and Technical Information of China (English)

    GUO Xue-jun; REN Lian-ping; SUN Yi-ping; ZHOU Min; XU Wei-guo


    Background Allergic asthma is associated with airway inflammation and hyperresponsiveness caused by dysregulated production of cytokines secreted by allergen-specific helper T-type 2 (Th2) cells. The linker for activation of T cells (LAT)is a membrane-associated adaptor protein, which has been shown to take part in regulating T cell receptor (TCR)signaling and T cell homeostasis. In this study, we established an asthmatic mouse model to examine the changes in LAT levels during allergic airway disease and the effects of LAT transgenic expression on airway inflammation.Methods T ceils from mouse lung tissues were isolated from allergen challenged (ovalbumin (OVA)) and control mice,and the purity of these isolated T cells was examined by fluorescence-activated cell sorter (FACS). Semi-quantitative RT-PCR and Western blotting were used to detect the expression of the LAT gene and LAT protein, respectively. After an intranasally administered mixture of pCMV-HA-LAT plasmid and Lipofectamine 2000, 24 hours before and 72 hours after allergen challenge, the BALF cell count and the differential cytologies were studied. In addition, IL-4 and IFN-γ levels in the BALF were determined by ELISA, and pathological changes in lung tissues were observed.Results LAT protein and mRNA expression were decreased in lung T cells in a mouse model of allergen-induced airway disease. After intranasal administration of pCMV-HA-LAT, histopathological examination of the lungs showed that intervention with LAT overexpression prevented mice from developing airway inflammation, and the number of total cells,eosinophils, neutrophils, and lymphocytes in the BALF was reduced significantly compared with the OVA sensitized and challenged group. In addition, the Th2 cytokine IL-4 decreased, while the Th1 cytokine IFN-Y increased compared to the OVA sensitized and challenged group or the OVA sensitized group plus pCMV-HA treatment.Conclusion This study demonstrates that LAT might effectively diminish Th2

  12. Improving the antitumor activity of squalenoyl-paclitaxel conjugate nanoassemblies by manipulating the linker between paclitaxel and squalene. (United States)

    Caron, Joachim; Maksimenko, Andrei; Wack, Séverine; Lepeltier, Elise; Bourgaux, Claudie; Morvan, Estelle; Leblanc, Karine; Couvreur, Patrick; Desmaële, Didier


    A series of new lipid prodrugs of paclitaxel, which can be formulated as nanoassemblies, are described. These prodrugs which are designed to overcome the limitations due to the systemic toxicity and low water solubility of paclitaxel consist of a squalene chain bound to the 2'-OH of paclitaxel through a 1,4-cis,cis-dienic linker. This design allows the squalene-conjugates to self-assemble as nanoparticular systems while preserving an efficient release of the free drug, thanks to the dienic spacer. The size, steric hindrance, and functional groups of the spacer have been modulated. All these prodrugs self-assemble into nanosized aggregates in aqueous solution as characterized by dynamic light scattering and transmission electron microscopy and appear stable in water for several days as determined by particle size measurement. In vitro biological assessment shows that these squalenoyl-paclitaxel nanoparticles display notable cytotoxicity on several tumor cell lines including A549 lung cell line, colon cell line HT-29, or KB 3.1 nasopharyngeal epidermoid cell line. The cis,cis-squalenyl-deca-5,8-dienoate prodrug show improved activity over simple 2'-squalenoyl-paclitaxel prodrug highlighting the favourable effect of the dienic linker. The antitumor efficacy of the nanoassemblies constructed with the more active prodrugs has been investigated on human lung (A549) carcinoma xenograft model in mice. The prodrug bearing the cis,cis-deca-5,8-dienoyl linker shows comparable antitumor efficacy to the parent drug, but reveals a much lower subacute toxicity as seen in body weight loss. Thus, nanoparticles with the incorporated squalenoyl paclitaxel prodrug may prove useful for replacement of the toxic Cremophor EL.

  13. Voltage-dependent gating of hyperpolarization-activated, cyclic nucleotide-gated pacemaker channels: molecular coupling between the S4-S5 and C-linkers. (United States)

    Decher, Niels; Chen, Jun; Sanguinetti, Michael C


    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels have a transmembrane topology that is highly similar to voltage-gated K(+) channels, yet HCN channels open in response to membrane hyperpolarization instead of depolarization. The structural basis for the "inverted" voltage dependence of HCN gating and how voltage sensing by the S1-S4 domains is coupled to the opening of the intracellular gate formed by the S6 domain are unknown. Coupling could arise from interaction between specific residues or entire transmembrane domains. We previously reported that the mutation of specific residues in the S4-S5 linker of HCN2 (i.e. Tyr-331 and Arg-339) prevented normal channel closure presumably by disruption of a crucial interaction with the activation gate. Here we hypothesized that the C-linker, a carboxyl terminus segment that connects S6 to the cyclic nucleotide binding domain, interacts with specific residues of the S4-S5 linker to mediate coupling. The recently solved structure of the C-linker of HCN2 indicates that an alpha-helix (the A'-helix) is located near the end of each S6 domain, the presumed location of the activation gate. Ala-scanning mutagenesis of the end of S6 and the A'-helix identified five residues that were important for normal gating as mutations disrupted channel closure. However, partial deletion of the C-linker indicated that the presence of only two of these residues was required for normal coupling. Further mutation analyses suggested that a specific electrostatic interaction between Arg-339 of the S4-S5 linker and Asp-443 of the C-linker stabilizes the closed state and thus participates in the coupling of voltage sensing and activation gating in HCN channels.

  14. Kv Channel S1-S2 Linker Working as a Binding Site of Human β-Defensin 2 for Channel Activation Modulation. (United States)

    Feng, Jing; Yang, Weishan; Xie, Zili; Xiang, Fang; Cao, Zhijian; Li, Wenxin; Hu, Hongzhen; Chen, Zongyun; Wu, Yingliang


    Among the three extracellular domains of the tetrameric voltage-gated K(+) (Kv) channels consisting of six membrane-spanning helical segments named S1-S6, the functional role of the S1-S2 linker still remains unclear because of the lack of a peptide ligand. In this study, the Kv1.3 channel S1-S2 linker was reported as a novel receptor site for human β-defensin 2 (hBD2). hBD2 shifts the conductance-voltage relationship curve of the human Kv1.3 channel in a positive direction by nearly 10.5 mV and increases the activation time constant for the channel. Unlike classical gating modifiers of toxin peptides from animal venoms, which generally bind to the Kv channel S3-S4 linker, hBD2 only targets residues in both the N and C termini of the S1-S2 linker to influence channel gating and inhibit channel currents. The increment and decrement of the basic residue number in a positively charged S4 sensor of Kv1.3 channel yields conductance-voltage relationship curves in the positive direction by ∼31.2 mV and 2-4 mV, which suggests that positively charged hBD2 is anchored in the channel S1-S2 linker and is modulating channel activation through electrostatic repulsion with an adjacent S4 helix. Together, these findings reveal a novel peptide ligand that binds with the Kv channel S1-S2 linker to modulate channel activation. These findings also highlight the functional importance of the Kv channel S1-S2 linker in ligand recognition and modification of channel activation.

  15. A pull-down method with a biotinylated bait protein prepared by cell-free translation using a puromycin linker. (United States)

    Mochizuki, Yuki; Kohno, Fumiaki; Nishigaki, Koichi; Nemoto, Naoto


    In this paper, we demonstrate a novel pull-down method that dramatically reduces the cost and preparation time of a bait protein by cell-free translation with a puromycin linker. With the C-terminus of the bait protein linked to biotin through a puromycin molecule after the translation reaction and subsequent mRNA degradation by RNase, the prey protein was easily pulled down by streptavidin-coated magnetic beads in a test tube. Three fluorescent prey protein types were tested and confirmed by gel electrophoresis to be pulled down easily and rapidly, depending on their affinity.

  16. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. (United States)

    Sindbert, Simon; Kalinin, Stanislav; Nguyen, Hien; Kienzler, Andrea; Clima, Lilia; Bannwarth, Willi; Appel, Bettina; Müller, Sabine; Seidel, Claus A M


    In Förster resonance energy transfer (FRET) experiments, the donor (D) and acceptor (A) fluorophores are usually attached to the macromolecule of interest via long flexible linkers of up to 15 Å in length. This causes significant uncertainties in quantitative distance measurements and prevents experiments with short distances between the attachment points of the dyes due to possible dye-dye interactions. We present two approaches to overcome the above problems as demonstrated by FRET measurements for a series of dsDNA and dsRNA internally labeled with Alexa488 and Cy5 as D and A dye, respectively. First, we characterize the influence of linker length and flexibility on FRET for different dye linker types (long, intermediate, short) by analyzing fluorescence lifetime and anisotropy decays. For long linkers, we describe a straightforward procedure that allows for very high accuracy of FRET-based structure determination through proper consideration of the position distribution of the dye and of linker dynamics. The position distribution can be quickly calculated with geometric accessible volume (AV) simulations, provided that the local structure of RNA or DNA in the proximity of the dye is known and that the dye diffuses freely in the sterically allowed space. The AV approach provides results similar to molecular dynamics simulations (MD) and is fully consistent with experimental FRET data. In a benchmark study for ds A-RNA, an rmsd value of 1.3 Å is achieved. Considering the case of undefined dye environments or very short DA distances, we introduce short linkers with a propargyl or alkenyl unit for internal labeling of nucleic acids to minimize position uncertainties. Studies by ensemble time correlated single photon counting and single-molecule detection show that the nature of the linker strongly affects the radius of the dye's accessible volume (6-16 Å). For short propargyl linkers, heterogeneous dye environments are observed on the millisecond time scale. A

  17. Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine. (United States)

    van der Walt, M M; Terre'Blanche, G


    Recent research exploring C8 substitution on the caffeine core identified 8-(2-phenylethyl)-1,3,7-trimethylxanthine as a non-selective adenosine receptor antagonist. To elaborate further, we included various C8 two-chain-length linkers to enhance adenosine receptor affinity. The results indicated that the unsubstituted benzyloxy linker (1e A1Ki = 1.52 μM) displayed the highest affinity for the A1 adenosine receptor and the para-chloro-substituted phenoxymethyl (1d A2AKi = 1.33 μM) linker the best A2A adenosine receptor affinity. The position of the oxygen revealed that the phenoxymethyl linker favoured A1 adenosine receptor selectivity over the benzyloxy linker and, by introducing a para-chloro substituent, A2A adenosine receptor selectivity was obtained. Selected compounds (1c, 1e) behaved as A1 adenosine receptor antagonists in GTP shift assays and therefore represent selective and non-selective A1 and A2A adenosine receptor antagonists that may have potential for treating neurological disorders.

  18. Facile, regioselective [4 + 2] cycloaddition involving 1-aryl-4-phenyl-1-azadienes and allenic esters: an efficient route to novel substituted 1-aryl-4-phenyl-1,4-dihydropyridines. (United States)

    Ishar, M P; Kumar, K; Kaur, S; Kumar, S; Girdhar, N K; Sachar, S; Marwaha, A; Kapoor, A


    [reaction: see text]1-Aryl-4-phenyl-1-azadienes undergo facile, regioselective [4 + 2] cycloaddition to the C2,C3 pi-bond of allenic esters in refluxing benzene, and the formed adducts undergo a 1,3-H shift to afford novel 2-alkyl-1-aryl-3-ethoxycarbonyl-4-phenyl-1,4-dihydropyridines (78-97%). However, when the reaction is carried at room temperature, besides the [4 + 2] addition, the [2 + 2] mode of addition involving C=N of azadiene and C3,C4 pi-bond of allenic esters also intervenes. The resulting N-aryl-2-ethoxy-carbonyl-methylidene-4-styrylazetidines (17-28%) undergo reorganization on silica gel to afford 2-cyclohexen-1-ones.

  19. Reversal of HCN channel voltage dependence via bridging of the S4-S5 linker and Post-S6. (United States)

    Prole, David L; Yellen, Gary


    Voltage-gated ion channels possess charged domains that move in response to changes in transmembrane voltage. How this movement is transduced into gating of the channel pore is largely unknown. Here we show directly that two functionally important regions of the spHCN1 pacemaker channel, the S4-S5 linker and the C-linker, come into close proximity during gating. Cross-linking these regions with high-affinity metal bridges or disulfide bridges dramatically alters channel gating in the absence of cAMP; after modification the polarity of voltage dependence is reversed. Instead of being closed at positive voltage and activating with hyperpolarization, modified channels are closed at negative voltage and activate with depolarization. Mechanistically, this reversal of voltage dependence occurs as a result of selectively eliminating channel deactivation, while retaining an existing inactivation process. Bridging also alters channel activation by cAMP, showing that interaction of these two regions can also affect the efficacy of physiological ligands.

  20. An A-T linker adapter polymerase chain reaction method for chromosome walking without restriction site cloning bias. (United States)

    Trinh, Quoclinh; Xu, Wentao; Shi, Hui; Luo, Yunbo; Huang, Kunlun


    A-T linker adapter polymerase chain reaction (PCR) was modified and employed for the isolation of genomic fragments adjacent to a known DNA sequence. The improvements in the method focus on two points. The first is the modification of the PO(4) and NH(2) groups in the adapter to inhibit the self-ligation of the adapter or the generation of nonspecific products. The second improvement is the use of the capacity of rTaq DNA polymerase to add an adenosine overhang at the 3' ends of digested DNA to suppress self-ligation in the digested DNA and simultaneously resolve restriction site clone bias. The combination of modifications in the adapter and in the digested DNA leads to T/A-specific ligation, which enhances the flexibility of this method and makes it feasible to use many different restriction enzymes with a single adapter. This novel A-T linker adapter PCR overcomes the inherent limitations of the original ligation-mediated PCR method such as low specificity and a lack of restriction enzyme choice. Moreover, this method also offers higher amplification efficiency, greater flexibility, and easier manipulation compared with other PCR methods for chromosome walking. Experimental results from 143 Arabidopsis mutants illustrate that this method is reliable and efficient in high-throughput experiments.

  1. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy. (United States)

    Casini, Arturo; MacDonald, James T; De Jonghe, Joachim; Christodoulou, Georgia; Freemont, Paul S; Baldwin, Geoff S; Ellis, Tom


    Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications.

  2. Wall to membrane linkers, stretch activated channels, and the detection of tension, voltage, temperature, auxin, and pH (United States)

    Pickard, B. G.


    Introduction. The higher plant is a heterogeneous, mechanically prestressed structure continually subject to shifting forces. When a cell grows in a plant at gravitropic equilibrium, it must create localized maxima of shear in walls of neighboring cells. Such mechanical stress and strain are likely detected in a variety of ways. However, tension-sensitive ion channels are of particular interest because it appears that they are elaborately evolved for sensory function. We hypothesize that 1) the patchy patterns of high shear are focused via wall-to-membrane linkers onto the plasma membrane, where 2) they are translated by mechanosensory cation channels into corresponding patterns of high cytosolic Ca2+, which 3) initiate local enhancement of wall expansion. Further, we hypothesize that the local promotion of enhancement is achieved at least in part by local intensification of auxin transport across the plasma membrane. By implication, when an organ is asymmetrically pressed, rubbed, or bent or when it is displaced in the gravitational field, the net asymmetry of shear stress occurring across the organ would lead to asymmetric redistribution of auxin and corrective asymmetric growth. We shall describe a representative mechanosensitive Ca(2+) -selective cation channel (MCaC) with susceptibilities to xenobiotics implicating it as a force transducer in thigmo- and gravitropism. Then, we shall consider whether a putative wall-to-membrane linker (WML) could be a key feature of the molecular architecture permitting the stress distributed in the wall system to be focused on the channels.

  3. Mutations within the S4-S5 linker alter voltage sensor constraints in hERG K+ channels. (United States)

    Van Slyke, Aaron C; Rezazadeh, Saman; Snopkowski, Mischa; Shi, Patrick; Allard, Charlene R; Claydon, Tom W


    Human ether-a-go-go related gene (hERG) channel gating is associated with slow activation, yet the mechanistic basis for this is unclear. Here, we examine the effects of mutation of a unique glycine residue (G546) in the S4-S5 linker on voltage sensor movement and its coupling to pore gating. Substitution of G546 with residues possessing different physicochemical properties shifted activation gating by ∼-50 mV (with the exception of G546C). With the activation shift taken into account, the time constant of activation was also accelerated, suggesting a stabilization of the closed state by ∼1.6-4.3 kcal/mol (the energy equivalent of one to two hydrogen bonds). Predictions of the α-helical content of the S4-S5 linker suggest that the presence of G546 in wild-type hERG provides flexibility to the helix. Deactivation gating was affected differentially by the G546 substitutions. G546V induced a pronounced slow component of closing that was voltage-independent. Fluorescence measurements of voltage sensor movement in G546V revealed a slow component of voltage sensor return that was uncoupled from charge movement, suggesting a direct effect of the mutation on voltage sensor movement. These data suggest that G546 plays a critical role in channel gating and that hERG channel closing involves at least two independently modifiable reconfigurations of the voltage sensor.

  4. Role of autoantibodies against the linker subdomains of envoplakin and periplakin in the pathogenesis of paraneoplastic pemphigus

    Institute of Scientific and Technical Information of China (English)

    LI Jing; BU Ding-fang; HUANG Yong-chu; ZHU Xue-jun


    Background The presence of autoantibodies against multiple epidermal proteins is an important feature in paraneoplastic pemphigus (PNP). Circulating anti-desmoglein 3 autoantibody, the major pathogenic autoantibody in pemphigus vulgaris (PV), has been proved pathogenic in PNP. Because of many clinical differences between PNP and PV, we speculate about the involvement of other autoantibodies in the pathogenesis of PNP. Envoplakin (EPL) and periplakin (PPL) are recognized by most PNP sere. Their linker subdomains are highly homologous and necessary for the association of intermediate filaments.Methods We characterized the autoantibodies against the linker subdomains of EPL and PPL in PNP patients' sera and their associated tumors by enzyme-linked immunosorbent assay (ELISA) and immunofluorence. We also applied the purified autoantibodies against EPL and PPL from PNP sera to cultured human epidermal keratinocytes (HEK), to evaluate the changes of cell-cell adhesion.Results Autoantibodies against EPL and PPL were detected in most PNP patients by ELISA, and the decrease of these autoantibodies after removal of the tumors was roughly comparable to the improvement of clinical symptoms. Cultured tumor cells from PNP patients secreted these autoantibodies. Specific immunoglobulin receptors for EPL and PPL were found on B lymphocytes in tumors from PNP. Furthermore, purified anti-EPL and anti-PPL autoantibodies from PNP sere were capable of dissociating cultured human epidermal keratinocytes.Conclusion Autoantibodies against EPL and PPL may also be pathogenic in PNP.

  5. Synthesis of 4-Halo-2 ( 5H )-furanones and Their Suzuki-Coupling Reactions with Organoboronic Acids.A General Route to 4-Aryl-2 ( 5 H ) - furanones

    Institute of Scientific and Technical Information of China (English)

    MA,Sheng-Ming(麻生明); SHI,zhang-Jie(施章杰)


    4-Halo-2(5H)-furanones were prepared by the halolactoniza-tion of 2,3-allenoic acids.The subsequent Suzuki coupling reaction of 4-halo-2(5H)-furanones with aryl boronic acids was carried out to produce 4-aryl-2(5H).furanones in excellent yields.``

  6. Synthesis of 2,3-epoxy-1-phenyl-3-aryl-1-propanone by combination of phase transfer catalyst and ultrasound irradiation

    Directory of Open Access Journals (Sweden)

    Ji-Tai Li


    Full Text Available Seven 2,3-epoxy-1-phenyl-3-aryl-1-propanones were synthesized via epoxidation of thecorresponding 1-phenyl-3-aryl-2-propen-1-ones with 30% aqueous hydrogen peroxide in 74-99% yields usingbenzyldimethyltetradecylammonium chloride as phase transfer catalyst under ultrasound irradiation.

  7. One-pot four-component synthesis of 2-aryl-3,3-dihaloacrylonitriles using potassium hexacyanoferrate(II) as environmentally benign cyanide source


    Zhao,Zhouxing; Li, Zheng


    An efficient route to one-pot four-component reactions of aroyl chlorides, potassium hexacyanoferrate(II), triphenylphosphine and carbon tetrahalides to synthesize 2-aryl-3,3-dichloroacrylonitriles and 2-aryl-3,3-dibromoacrylonitriles was described. This protocol has advantages of use of non-toxic cyanide source, high yield and simple work-up procedure.

  8. One-pot four-component synthesis of 2-aryl-3,3-dihaloacrylonitriles using potassium hexacyanoferrate(II) as environmentally benign cyanide source

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhouxing; Li, Zheng, E-mail: [Northwest Normal Univ., Lanzhou, Gansu (China). Key Lab. of Polymer Materials of Gansu Province


    An efficient route to one-pot four-component reactions of aroyl chlorides, potassium hexacyanoferrate(II), triphenylphosphine and carbon tetrahalides to synthesize 2-aryl-3,3-dichloroacrylonitriles and 2-aryl-3,3-dibromoacrylonitriles was described. This protocol has advantages of use of non-toxic cyanide source, high yield and simple work-up procedure. (author)

  9. Synthesis of o-(dimethylamino)aryl ketones, acridones, acridinium salts, and 1H-indazoles by the reaction of hydrazones and arynes. (United States)

    Dubrovskiy, Anton V; Larock, Richard C


    A novel, efficient route to biologically and pharmaceutically important o-(dimethylamino)aryl ketones, acridones, acridinium salts, and 1H-indazoles has been developed starting from readily available hydrazones of aldehydes and o-(trimethylsilyl)aryl triflates. The reaction proceeds through arynes under mild conditions, tolerates a wide range of functional groups, and provides the final products in good to excellent yields.

  10. Synthesis of N1-Substituted-3-aryl-4-alkyl-4, 5-dihydro-1H-1-pyra- zolethiocarboxamide as Novel Small Molecule Inhibitors of Cysteine Protease of T. cruzi

    Institute of Scientific and Technical Information of China (English)


    A series of N1-substituted-3-aryl-4-alkyl-4, 5-dihydro-1H-1-pyrazolethiocarboxamide were prepared from the Mannich bases of aryl ketones in good yields. Some derivatives were found to be active against the cysteine protease of T.cruzi..

  11. Application of nano SnO2 as a green and recyclable catalyst for the synthesis of 2-aryl or alkylbenzoxazole derivatives under ambient temperature

    Indian Academy of Sciences (India)

    Seyed Mohammad Vahdat; Shima Ghafouri Raz; Saeed Baghery


    Application of nano SnO2 as an efficient and benign catalyst has been explored for the synthesis of 2-aryl or alkylbenzoxazole derivatives via condensation reaction of aldehyde with 2-aminophenol. The reactions proceed under heterogeneous and mild conditions in ethanol at room temperature to provide 2-aryl or alkylbenzoxazoles in high yields.

  12. Phase Transfer Catalyzed Synthesis of 1, 2-Bis[(3-aryl)-s-triazolo-[3, 4-b]-[1, 3, 4]thiadiazole-6-yl]ethanes

    Institute of Scientific and Technical Information of China (English)

    De Jiang LI; He Qing FU


    A series of new 1, 2-bis[(3-aryl)-s-triazolo[3, 4-b]-[1, 3, 4]thiadiazole-6-yl]ethanes were synthesized in 50-82% yield by cyclization of 3-aryl-4-amino-5-mercapto-1, 2, 4-triazole with butanedioic acid in the presence of POC13 and tetrabutylammonium iodide as phase transfer catalyst.

  13. Design, Synthesis, and Validation of an Effective, Reusable Silicon-Based Transfer Agent for Room-Temperature Pd-Catalyzed Cross-Coupling Reactions of Aryl and Heteroaryl Chlorides with Readily Available Aryl Lithium Reagents. (United States)

    Martinez-Solorio, Dionicio; Melillo, Bruno; Sanchez, Luis; Liang, Yong; Lam, Erwin; Houk, K N; Smith, Amos B


    A reusable silicon-based transfer agent (1) has been designed, synthesized, and validated for effective room-temperature palladium-catalyzed cross-coupling reactions (CCRs) of aryl and heteroaryl chlorides with readily accessible aryl lithium reagents. The crystalline, bench-stable siloxane transfer agent (1) is easily prepared via a one-step protocol. Importantly, this "green" CCR protocol circumvents prefunctionalization, isolation of organometallic cross-coupling partners, and/or stoichiometric waste aside from LiCl. DFT calculations support a σ-bond metathesis mechanism during transmetalation and lead to insights on the importance of the CF3 groups.

  14. Microwave Assisted Synthesis of N-Aryl-N'-[5-(4- Chlorophenyl)-2-Furoyl]-Thioureas And Ureas

    Institute of Scientific and Technical Information of China (English)

    WANG; XiCun


    Substituted thioureas have attracted much attention due to their herbicidal1, antibacterial2, anti-HIV3 and plant-growth regulating4 activity. Meanwhile substituted ureas are not only used as medicines and agrochemicals because of their antiinflammatory5, analgesic5 and insectcidal6 activity, but also used as intermediates for the synthesis of many important heterocyclic compounds. In addition, 5-aryl-2-furoic acid derivatives have been used as antibacterial agent7, local anesthesia8, analgesic9 and plant-growth regulator10. Therefore, with the objective of obtaining new biologically active compounds, it is necessary to investigate the convenient and efficient method to prepare new compounds bearing 5-aryl-2-furoyl and thiourea or 5-aryl-2-furoyl and urea moieties.  ……

  15. Syntheses and Antibacterial Studies of Some 1-Phenyl-3-(4-(2-ethanoloxy phenyl-5-aryl-1H-pyrazoles

    Directory of Open Access Journals (Sweden)

    Anju Goyal


    Full Text Available A series of 1-phenyl-3-(4-(2-ethanoloxy phenyl-5-aryl-1H-pyrazoles were synthesized from chalcones, that is, 3-aryl-1-(4-hydroxyphenyl prop-2-en-1-ones and studied for their in vitro antibacterial activity. Chalcones 1 on reaction with phenyl hydrazine in the presence of acetic acid and few drops of hydrochloric acid yielded the corresponding 1-phenyl-3-(4-hydroxyphenyl-5-aryl-1H-pyrazoles 2 which on further reaction with 2-chloroethanol furnished the title compounds 3. These compounds were characterized by CHN analyses, IR, mass and 1H NMR spectral data. All the compounds were evaluated for their in vitro antibacterial activity against two Gram positive strains (Bacillus subtilis and Staphylococcus aureus and two Gram negative strains (Escherichia coli and Pseudomonas aeruginosa, and their minimum inhibitory concentration (MIC was determined.

  16. Microwave Assisted Synthesis of N-Aryl-N'-[5-(4- Chlorophenyl)-2-Furoyl]-Thioureas And Ureas

    Institute of Scientific and Technical Information of China (English)


    @@ Substituted thioureas have attracted much attention due to their herbicidal1, antibacterial2, anti-HIV3 and plant-growth regulating4 activity. Meanwhile substituted ureas are not only used as medicines and agrochemicals because of their antiinflammatory5, analgesic5 and insectcidal6 activity, but also used as intermediates for the synthesis of many important heterocyclic compounds. In addition, 5-aryl-2-furoic acid derivatives have been used as antibacterial agent7, local anesthesia8, analgesic9 and plant-growth regulator10. Therefore, with the objective of obtaining new biologically active compounds, it is necessary to investigate the convenient and efficient method to prepare new compounds bearing 5-aryl-2-furoyl and thiourea or 5-aryl-2-furoyl and urea moieties.

  17. Ru(II)-Catalyzed β-Carboline Directed C-H Arylation and Isolation of Its Cycloruthenated Intermediates. (United States)

    Rajkumar, Subramani; Karthik, Shanmugam; Gandhi, Thirumanavelan


    A Ru(II)-catalyzed C-H arylation approach has been developed utilizing β-carboline alkaloids as the directing group. Selective formations of diarylated products from moderate to excellent yields were accomplished. Broad substrate scope with excellent functional group tolerance for C1-phenyl/thienyl/PAHs-β-carbolines was demonstrated. X-ray crystal structure of cycloruthenated complex 2cr and no arylation reaction with model substrate 13 strongly suggests that N2 is the directing group than N9 in C1-aryl-β-carbolines. Catalytic properties and stability of the cycloruthenated complexes have been explored. Library of biologically relevant new β-carboline derivatives and isolation of its cycloruthenated intermediates are the highlights of this work.

  18. Synthesis and characterization of the B3-monomer and hyperbranched poly(aryl ether ketone)s

    Institute of Scientific and Technical Information of China (English)

    Mu Jianxin; Zhang Chunling; Wang Zou; Chen Jie; Jiang Zhenhua


    Hyperbranched poly(aryl ether ketone)s were prepared by polymerization of hydroquinone(A2)and 1,3,5-tris[4-(4-fluorobenzoyl)phenoxy]benzene (B3).The gelation of hyperbranched poly(aryl ether ketone)s was effectively avoided.Hydroxyl-terminated(HPAEK-OH)and fluoro-terminated (HPAEK-F) hyperbranched poly(aryl ether ketone)s were prepared by using different A2/B3 mass ratio.The structure of the B3 monomer was confirmed by MS,1H NMR/IR.The glass transition temperatures of the HPAEK-F and HPAEK-OH are 114℃ and 162℃ respectively.Thermal stability of HPAEK-F is higher than HPAEK-OH.

  19. Efficient Pathway for the Preparation of Aryl(isoquinoline)iodonium(III) Salts and Synthesis of Radiofluorinated Isoquinolines. (United States)

    Yuan, Zheliang; Cheng, Ran; Chen, Pinhong; Liu, Guosheng; Liang, Steven H


    Iodonium compounds play a pivotal role in (18) F-fluorination of radiopharmaceuticals containing non-activated arenes. However, preparation of these species is limited to oxidation conditions or exchange with organometallics that are prepared from aryl halides. Herein we describe a novel "one-pot" process to assemble aryl(isoquinoline)iodonium salts in 40-94 % yields from mesoionic carbene silver complex and Aryl-I-Py2 (OTf)2 . The method is general, practical, and compatible with well-functionalized molecules as well as useful for the preparation of a wide range of (18) F-labeled isoquinolines resulting in up to 92 % radiochemical conversion. As proof of concept, a fluorinated isoquinoline alkaloid, (18) F-aspergillitine is prepared in 10 % isolated radiochemical yield from the corresponding phenyl(aspergillitine)iodonium salt.

  20. Synthesis, Characterization and Biological Activities of N-Acyl-3-(3-pyridyl)-5-aryl-pyrazoles

    Institute of Scientific and Technical Information of China (English)

    KANG Yan-fang; WANG Dun-jia; XU Ben-po; WEI Xian-hong; ZHENG Jing


    Ten novel N-acyl-3-(3-pyridyl)-5-aryl-pyrazoles were synthesized by Claisen condensation of the aryl methyl ketones with ethyl nicotinate,the cyclization with hydrazine hydrate and the N-acylation with acyl chloride in turn.The structures of all the compounds synthesized were confirmed by means of Fourier transform infrared(FTIR),1H NMR,mass spectroscopy and elemental analysis.The biological activities of the title compounds were examined by disc diffusion method against Escherichia coli,Staphylococcus aureus,Pyricularia oryzae and Rhizoctnia solani.All the N-acyl-3-(3-pyridyl)-5-aryl-pyrazoles exhibited a certain degree of antibacterial and antifungal activities.Comparatively,compounds 3c and 3d exhibited much significant antibacterial and antifungal activities than the other pyrazole derivatives.