WorldWideScience

Sample records for artworks ir microspectroscopy

  1. Vibrational microspectroscopy of food. Raman vs. FT-IR

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Løkke, Mette Marie; Micklander, Elisabeth

    2003-01-01

    FT-IR and Raman spectroscopy are complementary techniques for the study of molecular vibrations and structure. The combination with a microscope results in an analytical method that allows spatially resolved investigation of the chemical composition of heterogeneous foods and food ingredients....... The high spatial resolution makes it possible to study areas down to approximately 10x10 mum with FT-IR microspectroscopy and approximately 1 x 1 mum with Raman microspectroscopy. This presentation highlights the advantages and disadvantages of the two microspectroscopic techniques when applied...... to different heterogeneous food systems. FT-IR and Raman microspectroscopy were applied to a number of different problems related to food analysis: (1) in situ determination of starch and pectin in the potato cell, (2) in situ determination of the distribution of amygdalin in bitter almonds, (3...

  2. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  3. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Science.gov (United States)

    Vidal, Benedicto de Campos; Mello, Maria Luiza S

    2016-01-01

    Rat ear cartilage was studied using Fourier transform-infrared (FT-IR) microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM) with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs) with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs) were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1) after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1) overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder) at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue under

  4. NIR FT-Raman microspectroscopy of fluid inclusions: Comparisons with VIS Raman and FT-IR microspectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Pironon, J.; Dubessy, J. (CREGU and GDR CNRS-CREGU, Vandoeuvre-les-Nancy (France)); Sawatzki, J. (BRUKER Analytische Messtechnik Gmbh, Karlsruhe (Germany))

    1991-12-01

    The first Raman spectra of hydrocarbon inclusions using Fourier transform (FT) Raman microspectroscopy were obtained with a 1,064 nm laser excitation in the near-infrared range (NIR FT-Raman). Some inclusions reveal the typical CH vibrational bands of organic compounds, but most of the inclusions that are fluorescent during visible Raman microspectroscopy (514 nm excitation) are still fluorescent in the NIR range. These Raman spectra are presented and compared to the conventional visible (VIS) Raman and FT-IR spectra. For spectra obtained on the same nonfluorescent inclusion, the signal/background ratio is lower in NIR FT-Raman than in VIS Raman. This ratio should be improved by application of more sensitive detectors. The increase of the power density (laser power/impact laser area) could be a future improvement in the limit of thermal background excitation and pyrolysis of the oils trapped in inclusions.

  5. FT-IR microspectroscopy in rapid identification of bacteria in pure and mixed culture

    Science.gov (United States)

    Fontoura, Inglid; Belo, Ricardo; Sakane, Kumiko; Cardoso, Maria Angélica Gargione; Khouri, Sônia; Uehara, Mituo; Raniero, Leandro; Martin, Airton A.

    2010-02-01

    In recent years FT-IR microspectroscopy has been developed for microbiology analysis and applied successfully in pure cultures of microorganisms to rapidly identify strains of bacteria, yeasts and fungi. The investigation and characterization of microorganism mixed cultures is also of growing importance, especially in hospitals where it is common to poly-microbial infections. In this work, the rapid identification of bacteria in pure and mixed cultures was studied. The bacteria were obtained from the Institute Oswaldo Cruz culture collection at Brazil. Escherichia coli ATCC 10799 and Staphylococcus aureus ATCC 14456 were analyzed, 3 inoculations were examined in triplicate: Escherichia coli, Staphylococcus aureus and a mixed culture of them. The inoculations were prepared according to McFarland 0.5, incubated at 37 ° C for 6 hours, diluted in saline, placed in the CaF2 window and store for one hour at 50°C to obtain thin film. The measurement was performed by Spectrum Spotlight 400 (Perkin-Elmer) equipment in the range of 4000-900 cm-1, with 32 scans using a transmittance technique with point and image modes. The data were processed (baseline, normalization, calculation of first derivate followed by smoothing with 9 point using a Savitzky-Golay algorithm) and a cluster analysis were done by Ward's algorithm and an excellent discrimination between pure and mixed culture was obtained. Our preliminary results indicate that the FT-IR microspectroscopy associated with cluster analysis can be used to discriminate between pure and mixed culture.

  6. Application of FT-IR microspectroscopy to the study of an injectable composite for bone and dental surgery.

    OpenAIRE

    Weiss, Pierre; Bohic, Sylvain; Lapkowski, Mieczyslaw; Daculsi, Guy

    1998-01-01

    Hydroxypropylmethylcellulose (HPMC) of high-viscosity grade is used as a ligand for a bioactive calcium phosphate ceramic (the filler) in a ready-to-use injectable sterilized biomaterial for bone and dental surgery. Application of physico-chemical methods such as XPS, NMR, or Raman spectroscopy encounters difficulties when used to study such a multiphased material. This paper reports on the application of FT-IR microspectroscopy (FT-IRM) for the investigation of inorganic and organic phases o...

  7. Single cell synchrotron FT-IR microspectroscopy reveals a link between neutral lipid and storage carbohydrate fluxes in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Frédéric Jamme

    Full Text Available In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins. We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated.

  8. Single Cell Synchrotron FT-IR Microspectroscopy Reveals a Link between Neutral Lipid and Storage Carbohydrate Fluxes in S. cerevisiae

    Science.gov (United States)

    Jamme, Frédéric; Vindigni, Jean-David; Méchin, Valérie; Cherifi, Tamazight; Chardot, Thierry; Froissard, Marine

    2013-01-01

    In most organisms, storage lipids are packaged into specialized structures called lipid droplets. These contain a core of neutral lipids surrounded by a monolayer of phospholipids, and various proteins which vary depending on the species. Hydrophobic structural proteins stabilize the interface between the lipid core and aqueous cellular environment (perilipin family of proteins, apolipoproteins, oleosins). We developed a genetic approach using heterologous expression in Saccharomyces cerevisiae of the Arabidopsis thaliana lipid droplet oleosin and caleosin proteins AtOle1 and AtClo1. These transformed yeasts overaccumulate lipid droplets, leading to a specific increase in storage lipids. The phenotype of these cells was explored using synchrotron FT-IR microspectroscopy to investigate the dynamics of lipid storage and cellular carbon fluxes reflected as changes in spectral fingerprints. Multivariate statistical analysis of the data showed a clear effect on storage carbohydrates and more specifically, a decrease in glycogen in our modified strains. These observations were confirmed by biochemical quantification of the storage carbohydrates glycogen and trehalose. Our results demonstrate that neutral lipid and storage carbohydrate fluxes are tightly connected and co-regulated. PMID:24040242

  9. In situ synchrotron IR microspectroscopy of CO2 adsorption on single crystals of the functionalized MOF Sc2(BDC-NH2)3.

    Science.gov (United States)

    Greenaway, Alex; Gonzalez-Santiago, Berenice; Donaldson, Paul M; Frogley, Mark D; Cinque, Gianfelice; Sotelo, Jorge; Moggach, Stephen; Shiko, Elenica; Brandani, Stefano; Howe, Russell F; Wright, Paul A

    2014-12-01

    Synchrotron radiation (SR) IR microspectroscopy has enabled determination of the thermodynamics, kinetics, and molecular orientation of CO2 adsorbed in single microcrystals of a functionalized metal-organic framework (MOF) under conditions relevant to carbon capture from flue gases. Single crystals of the small-pore MOF, Sc2 (BDC-NH2 )3 , (BDC-NH2 =2-amino-1,4-benzenedicarboxylate), with well-defined crystal form have been investigated during CO2 uptake at partial pressures of 0.025-0.2 bar at 298-373 K. The enthalpy and diffusivity of adsorption determined from individual single crystals are consistent with values obtained from measurements on bulk samples. The brilliant SR IR source permits rapid collection of polarized spectra. Strong variations in absorbance of the symmetric stretch of the NH2 groups of the MOF and the asymmetric stretch of the adsorbed CO2 at different orientations of the crystals relative to the polarized IR light show that CO2 molecules align along channels in the MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A study of Ganoderma lucidum spores by FTIR microspectroscopy

    Science.gov (United States)

    Wang, Xin; Chen, Xianliang; Qi, Zeming; Liu, Xingcun; Li, Weizu; Wang, Shengyi

    2012-06-01

    In order to obtain unique information of Ganoderma lucidum spores, FTIR microspectroscopy was used to study G. lucidum spores from Anhui Province (A), Liaoning Province (B) and Shangdong Province (C) of China. IR micro-spectra were acquired with high-resolution and well-reproducibility. The IR spectra of G. lucidum spores from different areas were similar and mainly made up of the absorption bands of polysaccharide, sterols, proteins, fatty acids, etc. The results of curve fitting indicated the protein secondary structures were dissimilar among the above G. lucidum spores. To identify G. lucidum spores from different areas, the H1078/H1640 value might be a potentially useful factor, furthermore FTIR microspectroscopy could realize this identification efficiently with the help of hierarchical cluster analysis. The result indicates FTIR microspectroscopy is an efficient tool for identification of G. lucidum spores from different areas. The result also suggests FTIR microspectroscopy is a potentially useful tool for the study of TCM.

  11. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    Science.gov (United States)

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  12. Lasers in the Conservation of Artworks

    CERN Document Server

    Nimmrichter, Johann; Schreiner, Manfred; LACONA VI Proceedings

    2007-01-01

    Within the last decades, the use of lasers in artworks conservation became an important tool for many conservators, scientists, architects and other experts, who are involved in the care of monuments and artefacts or laser technology. For the first time in 1995 Professor Costas Fotakis brought together restorers and scientists to discuss the potential of lasers in art conservation. Since then the field of "Lasers in the Conservation of Artworks" has gained enormously in importance. Nowadays restorers and laser scientists work close together in order to develop new fields of applications during the last years. Furthermore a large number of national and international research projects have been carried out by conservator-restorers, architects and scientists. In the last 10 years a number of historical and artistic high quality monuments (e.g. St. Stephens Cathedral in Vienna) have been cleaned or measured by laser and brought the laser in the spectra of tools which are useful in the sensible field of artworks. ...

  13. Arduino Tool: For Interactive Artwork Installations

    CERN Document Server

    Shaikh, Murtaza Hussain

    2012-01-01

    The emergence of the digital media and computational tools has widened the doors for creativity. The cutting edge in the digital arts and role of new technologies can be explored for the possible creativity. This gives an opportunity to involve arts with technologies to make creative works. The interactive artworks are often installed in the places where multiple people can interact with the installation, which allows the art to achieve its purpose by allowing the people to observe and involve with the installation. The level of engagement of the audience depends on the various factors such as aesthetic satisfaction, how the audience constructs meaning, pleasure and enjoyment. The method to evaluate these experiences is challenging as it depends on integration between the artificial life and real life by means of human computer interaction. This research investigates "How Adriano fits for creative and interactive artwork installations?" using an artwork installation in the campus of NTNU (Norwegian University...

  14. [FTIR microspectroscopy and its progress in application].

    Science.gov (United States)

    Li, Xiao-Ting; Zhu, Da-Zhou; Pan, Li-Gang; Ma, Zhi-Hong; Lu, An-Xiang; Wang, Dong; Wang, Ji-Hua

    2011-09-01

    FTIR microspectroscopy technique was born in the mid-nineties. The research on this technique has just began abroad, and this technology has not yet been widely recognized in China. It is a rapid, nondestructive testing technology, has the advantages of microdomain, visualization, high precision and high sensitivity. In the present study, the composition, operational principle and working mode of FTIR microspectroscopy were summarized. The progress in application of FTIR microspectroscopy technique was investigated in some fields, including biomedicine, microbiology, forensic science, materials science, nutrition and feed science and agricultural products. The difficulty of FTIR microspectroscopy research and the prospects of this technique were also discussed.

  15. Interacting with Visual Poems through AR-Based Digital Artwork

    Science.gov (United States)

    Lin, Hao-Chiang Koong; Hsieh, Min-Chai; Liu, Eric Zhi-Feng; Chuang, Tsung-Yen

    2012-01-01

    In this study, an AR-based digital artwork called "Mind Log" was designed and evaluated. The augmented reality technique was employed to create digital artwork that would present interactive poems. A digital poem was generated via the interplay between a video film and a text-based poem. This artwork was created following a rigorous design flow,…

  16. ATR microspectroscopy with multivariate analysis segregates grades of exfoliative cervical cytology.

    Science.gov (United States)

    Walsh, Michael J; Singh, Maneesh N; Pollock, Hubert M; Cooper, Leanne J; German, Matthew J; Stringfellow, Helen F; Fullwood, Nigel J; Paraskevaidis, Evangelos; Martin-Hirsch, Pierre L; Martin, Francis L

    2007-01-05

    Although cervical cancer screening in the UK has led to reductions in the incidence of invasive disease, this programme remains flawed. We set out to examine the potential of infrared (IR) microspectroscopy to allow the profiling of cellular biochemical constituents associated with disease progression. Attenuated total reflection-Fourier Transform IR (ATR) microspectroscopy was employed to interrogate spectral differences between samples of exfoliative cervical cytology collected into liquid based cytology (LBC). These were histologically characterised as normal (n = 5), low-grade (n = 5), high-grade (n = 5) or severe dyskaryosis (? carcinoma) (n = 5). Examination of resultant spectra was coupled with principal component analysis (PCA) and subsequent linear discriminant analysis (LDA). The interrogation of LBC samples using ATR microspectroscopy with PCA-LDA facilitated the discrimination of different categories of exfoliative cytology and allowed the identification of potential biomarkers of abnormality; these occurred prominently in the IR spectral region 1200 cm(-1) - 950 cm(-1) consisting of carbohydrates, phosphate, and glycogen. Shifts in the centroids of amide I (approximately 1650 cm(-1)) and II (approximately 1530 cm(-1)) absorbance bands, indicating conformational changes to the secondary structure of intracellular proteins and associated with increasing disease progression, were also noted. This work demonstrates the potential of ATR microspectroscopy coupled with multivariate analysis to be an objective alternative to routine cytology.

  17. Distinction of broken cellular wall Ganoderma lucidum spores and G. lucidum spores using FTIR microspectroscopy

    Science.gov (United States)

    Chen, Xianliang; Liu, Xingcun; Sheng, Daping; Huang, Dake; Li, Weizu; Wang, Xin

    2012-11-01

    In this paper, FTIR microspectroscopy was used to identify broken cellular wall Ganoderma lucidum spores and G. lucidum spores. For IR spectra, broken cellular wall G. lucidum spores and G. lucidum spores were mainly different in the regions of 3000-2800, 1660-1600, 1400-1200 and 1100-1000 cm-1. For curve fitting, the results showed the differences in the protein secondary structures and the polysaccharide structures/content between broken cellular wall G. lucidum spores and G. lucidum spores. Moreover, the value of A1078/A1741 might be a potentially useful factor to distinguish broken cellular wall G. lucidum spores from G. lucidum spores. Additionally, FTIR microspectroscopy could identify broken cellular wall G. lucidum spores and G. lucidum spores accurately when it was combined with hierarchical cluster analysis. The result suggests FTIR microspectroscopy is very simple and efficient for distinction of broken cellular wall G. lucidum spores and G. lucidum spores. The result also indicates FTIR microspectroscopy may be useful for TCM identification.

  18. FTIR-Microspectroscopy of Prion-Infected Nervous Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Kretlow,A.; Wang, Q.; Kneipp, J.; Lasch, P.; Beekes, M.; Miller, L.; Naumann, D.

    2006-01-01

    The family of transmissible spongiform encephalopathies (TSE), also termed prion diseases, is a group of fatal, neurodegenerative diseases characterized by the accumulation of a misfolded protein, the disease-associated prion protein PrPSc. This glycoprotein differs in secondary structure from its normal, cellular isoform PrPC, which is physiologically expressed mostly by neurons. Scrapie is a prion disease first described in the 18th century in sheep and goats, and has been established as a model in rodents to study the pathogenesis and pathology of prion diseases. Assuming a multitude of molecular parameters change in the tissue in the course of the disease, FTIR microspectroscopy has been proposed as a valuable new method to study and identify prion-affected tissues due to its ability to detect a variety of changes in molecular structure and composition simultaneously. This paper reviews and discusses results from previous FTIR microspectroscopic studies on nervous tissue of scrapie-infected hamsters in the context of histological and molecular alterations known from conventional pathogenesis studies. In particular, data from studies reporting on disease-specific changes of protein structure characteristics, and also results of a recent study on hamster dorsal root ganglia (DRG) are discussed. These data include an illustration on how the application of a brilliant IR synchrotron light source enables the in situ investigation of localized changes in protein structure and composition in nervous cells or tissue due to PrPSc deposition, and a demonstration on how the IR spectral information can be correlated with results of complementary studies using immunohistochemistry and x-ray fluorescence techniques. Using IR microspectroscopy, some neurons exhibited a high accumulation of disease-associated prion protein evidenced by an increased amount of beta-sheet at narrow regions in or around the infected nervous cells. However, not all neurons from terminally diseased

  19. Analysis of single particle photodegradation using photothermal infrared microspectroscopy.

    Science.gov (United States)

    Moffat, Jonathan G; Eddleston, Mark D; Belton, Peter S; Jones, William; Craig, Duncan Q M

    2013-04-21

    The increasing use of high throughput methods, coupled with the need to develop approaches to anticipate long term stability issues, has necessitated the introduction of testing approaches whereby extremely small samples may be rapidly analysed. A novel method is described whereby the UV light-induced degradation of single particles of a model drug, nifedipine, may be rapidly and simply monitored using photothermal infrared microspectroscopy (PTMS). The technique involves the contact attachment of individual particles to a heated probe tip composed of a modified Wollaston wire which enables temperature fluctuations to be measured. Application of a focused IR beam to excite the sample allows measurement and subsequent Fourier transformation of the resultant interferogram to produce an IR spectrum which is in good agreement with that obtained from conventional IR methods. By application of a UV source to the assembly for specified time periods, we demonstrate that it is possible to monitor the appearance of peaks associated with degradation products as a function of time. The technique is critically evaluated in terms of practical issues associated with volatilization, particle size effects and orientation to the light source as well as more general issues associated with the sensitivity, resolution and quantitative interpretation of data from the PTMS technique. Overall the method has been shown to be capable of rapid measurement of photo-instability on individual particles, with important implications for development of the approach as a rapid screening or high throughput technique, although there are practical and theoretical limitations to reliable quantitative analysis at the present time.

  20. Vibrational Microspectroscopy for Cancer Screening

    Directory of Open Access Journals (Sweden)

    Fiona M. Lyng

    2015-02-01

    Full Text Available Vibrational spectroscopy analyses vibrations within a molecule and can be used to characterise a molecular structure. Raman spectroscopy is one of the vibrational spectroscopic techniques, in which incident radiation is used to induce vibrations in the molecules of a sample, and the scattered radiation may be used to characterise the sample in a rapid and non-destructive manner. Infrared (IR spectroscopy is a complementary vibrational spectroscopic technique based on the absorption of IR radiation by the sample. Molecules absorb specific frequencies of the incident light which are characteristic of their structure. IR and Raman spectroscopy are sensitive to subtle biochemical changes occurring at the molecular level allowing spectral variations corresponding to disease onset to be detected. Over the past 15 years, there have been numerous reports demonstrating the potential of IR and Raman spectroscopy together with multivariate statistical analysis techniques for the detection of a variety of cancers including, breast, lung, brain, colon, oral, oesophageal, prostate and cervical cancer. This paper discusses the recent advances and the future perspectives in relation to cancer screening applications, focussing on cervical and oral cancer.

  1. Fourier transform infrared microspectroscopy shows significant differences between spectra of undifferentiated and polynucleated FLG 29.1 dried cells

    Science.gov (United States)

    Romano, Salvatore; Benvenuti, Susanna; Conti, Antonio; Benedetti, Enzo; Bramanti, Emilia; Rossi, Ilaria; Benedetti, Edoardo

    1994-02-01

    In a recent study made on cultures of human leukaemic cells (FLG 29.1 cell line) we were able to detect, by IR microspectroscopy, some significant IR spectroscopic variations following differentiation of cells towards osteoclastic-like behavior. The present study was undertaken on the same cell line in order to monitor biochemical structure variations following fusion induced by polyetilenglycole (PEG), using FTIR microspectroscopy. The finger-print region of all the spectra was retained and normalized according to a new regression procedure. Eleven bands were selected and total band power and mean power per unit frequency were compared with the corresponding reference session bands by a Dunnett's T test. Significant differences were found in both the tested variables only between treated and untreated cells, in 6 bands.

  2. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  3. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  4. Imaging Local Chemical Microstructure of Germinated Wheat with Synchrotron Infrared Microspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koc,H.; Wetzel, D.

    2008-01-01

    The spatial resolution enabled by in situ Fourier-transform infrared (FT-IR) microspectroscopy as predicted from our earlier report in Spectroscopy (1) is applied to localized chemical analysis in this vital biological process of seed germination. Germination includes several different biochemical and structural processes. Ultimately, the entire seed is consumed in sustaining the new life that results after sprouting and growth (2-4). Alpha amylase production is the standard evidence for detection of sprouted (germinated) wheat at harvest. Moist preharvest conditions can cause devastating losses and render the harvested wheat unfit for flour production. Dormancy of dry seeds following harvest retards sprouting under proper storage.

  5. Children's Heroes and Heroines: Developing Values Manifested through Artwork.

    Science.gov (United States)

    McCrary, Judy H.

    This study assessed the personal values of a group of 17 kindergarten-age children. Children participated in a classroom discussion of heroes and heroines, then drew a picture of their heroes or heroines. The researcher analyzed each child's artwork and determined the outstanding values represented by the hero or heroine. A parallel was drawn…

  6. Primary Students' Understanding and Appreciation of the Artwork in Picturebooks

    Science.gov (United States)

    Pantaleo, Sylvia

    2016-01-01

    One of the purposes of the classroom-based research featured in this article was to explore how the ongoing development of young children's understanding of elements of visual art and design would affect their comprehension, interpretation and analysis of the artwork in a selection of picturebooks. Social semiotics, multimodality, sociocultural…

  7. Microspectroscopy of the photosynthetic compartment of algae.

    Science.gov (United States)

    Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Barsanti, Laura; Gualtieri, Paolo

    2006-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of algae belonging to different taxonomic divisions and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls a, b and c, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  8. Role of Synchrotron infra red microspectroscopy in studying epidermotropism of cutaneous T-cell lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    El Bedewi, A.; El Anany, G; El Mofty, M

    2010-01-01

    The molecular mechanisms of epidermotropism in mycosis fungoides (MF) are not well understood to date. The aim of this study was to differentiate between epidermal and dermal lymphocytes within the skin of MF patients. This study was done on 10 MF patients with a mean age of 50 years diagnosed clinically in the Department of Dermatology, Cairo University, Egypt. A 6 mm biopsy was taken from each patient in order to confirm the diagnosis. Skin biopsies were cut, put on low e-slides and then stained with H&E. Further examination with Synchrotron infrared (IR) microspectroscopy was done in National Synchrotron Light Source - Brookhaven National Laboratory, New York, USA. Immunophenotyping using antibodies CD3, CD4, CD8, CD20 and CD30 was also done. Statistical analysis was done by Student's t-test and cluster analysis. Both epidermal and dermal lymphocytes were clustered separately. Also, Amide I and RNA and DNA within the lymphocytes were significantly different between the epidermis and the dermis. The biochemical analysis of protein, RNA and DNA with Synchrotron IR microspectroscopy is a promising tool for studying epidermotropism in cutaneous T-cell lymphoma.

  9. Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis.

    Science.gov (United States)

    Kumar, Srividya; Verma, Taru; Mukherjee, Ria; Ariese, Freek; Somasundaram, Kumaravel; Umapathy, Siva

    2016-04-07

    Biomolecular structure elucidation is one of the major techniques for studying the basic processes of life. These processes get modulated, hindered or altered due to various causes like diseases, which is why biomolecular analysis and imaging play an important role in diagnosis, treatment prognosis and monitoring. Vibrational spectroscopy (IR and Raman), which is a molecular bond specific technique, can assist the researcher in chemical structure interpretation. Based on the combination with microscopy, vibrational microspectroscopy is currently emerging as an important tool for biomedical research, with a spatial resolution at the cellular and sub-cellular level. These techniques offer various advantages, enabling label-free, biomolecular fingerprinting in the native state. However, the complexity involved in deciphering the required information from a spectrum hampered their entry into the clinic. Today with the advent of automated algorithms, vibrational microspectroscopy excels in the field of spectropathology. However, researchers should be aware of how quantification based on absolute band intensities may be affected by instrumental parameters, sample thickness, water content, substrate backgrounds and other possible artefacts. In this review these practical issues and their effects on the quantification of biomolecules will be discussed in detail. In many cases ratiometric analysis can help to circumvent these problems and enable the quantitative study of biological samples, including ratiometric imaging in 1D, 2D and 3D. We provide an extensive overview from the recent scientific literature on IR and Raman band ratios used for studying biological systems and for disease diagnosis and treatment prognosis.

  10. Infrared Microspectroscopy Of Pathologic Tissue

    Science.gov (United States)

    O'Leary, Timothy J.; Engler, Walter F.; Ventre, Kathleen M.

    1989-12-01

    ). Alternatively, fresh or formalin-fixed tissues which have not been embedded in paraffin may be prepared for examination by freezing them in a cryostat, cutting five to ten micrometer thick sections, and mounting them directly on the polylysine coated gold-plated slides. These tissues may then be stained with hematoxylin and eosin or with Diff-Quik, then dehydrated with acetone, thus preserving cellular lipids. We have examined a number of cases of medullary carcinoma of the thyroid and obtained infrared spectra of the associated amyloid protein. Spectra were obtained using an IR-Plan microscope interfaced to a Bomem DA3 Fourier transform infrared spectrometer. A 32x objective was used, with a circular aperture which allowed acquisition of spectra from a region as small as 90 micrometers in diameter. A narrow-band 0.25 mm MCT detector was employed. A typical spectrum from amyloid found i11 a medullary carcinoma of the thyroid is found in Figure 1; features found in the 1630 to 1645 cm region of the Amide I band are indicative of β-sheet structure, which has previously been described in amyloid proteins (4). The amount of fl-sheet structure, as assessed visually in comparison with the rest of the Amide I band, varies markedly from region to region and case to case. The presence of this βsheet structure cannot be used to differentiate amyloid from other extracellular proteins. Figure 2 shows the spectrum of colloid from a thyroid follicle. This material, which is largely composed of thyroglobulin, also shows a significant amount of βstructure, as does the heart muscle examined following frozen section. In the case of the heart muscle, however, cellular lipid is also observed as methylene C-H stretching modes in the 2800-3100 cm region of the spectrum. The frozen section tissue preparation procedure leaves the cellular lipid in place, while the paraffin-embedding and removal procedure used for preparation of the first two specimens extracts cellular lipids as well, resulting in

  11. Perception of emotion in abstract artworks: a multidisciplinary approach.

    Science.gov (United States)

    Melcher, David; Bacci, Francesca

    2013-01-01

    There is a long-standing and fundamental debate regarding how emotion can be expressed by fine art. Some artists and theorists have claimed that certain features of paintings, such as color, line, form, and composition, can consistently express an "objective" emotion, while others have argued that emotion perception is subjective and depends more on expertise of the observer. Here, we discuss two studies in which we have found evidence for consistency in observer ratings of emotion for abstract artworks. We have developed a stimulus set of abstract art images to test emotional priming, both between different painting images and between paintings and faces. The ratings were also used in a computational vision analysis of the visual features underlying emotion expression. Overall, these findings suggest that there is a strong bottom-up and objective aspect to perception of emotion in abstract artworks that may tap into basic visual mechanisms.

  12. Microspectroscopy as applied to the study of wood molecular structure

    DEFF Research Database (Denmark)

    Fackler, Karin; Thygesen, Lisbeth Garbrecht

    2013-01-01

    Microspectroscopy gives access to spatially resolved information on the molecular structure and chemical composition of a material. For a highly heterogeneous and anisotropic material like wood, such information is essential when assessing structure/property relationships such as moisture...

  13. Analysis of bone protein and mineral composition in bone disease using synchrotron infrared microspectroscopy

    Science.gov (United States)

    Miller, Lisa M.; Hamerman, David; Chance, Mark R.; Carlson, Cathy S.

    1999-10-01

    Infrared (IR) microspectroscopy is an analytical technique that is highly sensitive to the chemical components in bone. The brightness of a synchrotron source permits the examination of individual regions of bone in situ at a spatial resolution superior to that of a conventional infrared source. At Beamlines U10B and U2B at the National Synchrotron Light Source, we are examining the role of bone chemical composition in bone disease. In osteoarthritis (OA), it has been demonstrated that the bone underlying the joint cartilage (subchondral bone) becomes thickened prior to cartilage breakdown. Using synchrotron infrared microspectroscopy, we have examined the chemical composition of the subchondral bone in histologically normal and OA monkeys. Results demonstrate that the subchondral bone of OA monkeys is significantly more mineralized than the normal bone, primarily due to an increase in carbonate concentration in the OA bone. High resolution analysis indicates that differences in carbonate content are uniform throughout the subchondral bone region, suggesting that high subchondral bone carbonate may be a marker for OA. Conversely, increases in phosphate content are more pronounced in the region near the marrow space, suggesting that, as the subchondral bone thickens, the bone also becomes more mineralized. Osteoporosis is a disease characterized by a reduction in bone mass and a skeleton that is more susceptible to fracture. To date, it is unclear whether bone remodeled after the onset of osteoporosis differs in chemical composition from older bone. Using fluorescence-assisted infrared microspectroscopy, we are comparing the composition of monkey bone remodeled at various time points after the onset of osteoporosis (induced by ovariectomy). We find that the chemical composition of bone remodeled one year after ovariectomy and one year prior to necropsy is similar to normal bone. On the other hand, bone remodeled two years after ovariectomy is less mature, indicated

  14. Molecular mapping of periodontal tissues using infrared microspectroscopy

    Directory of Open Access Journals (Sweden)

    Singer David L

    2005-05-01

    Full Text Available Abstract Background Chronic periodontitis is an inflammatory disease of the supporting structures of the teeth. Infrared microspectroscopy has the potential to simultaneously monitor multiple disease markers, including cellular infiltration and collagen catabolism, and hence differentiate diseased and healthy tissues. Therefore, our aim was to establish an infrared microspectroscopy methodology with which to analyze and interpret molecular maps defining pathogenic processes in periodontal tissues. Methods Specific key cellular and connective tissue components were identified by infrared microspectroscopy and using a chemical imaging method. Results Higher densities of DNA, total protein and lipid were revealed in epithelial tissue, compared to the lower percentage of these components in connective tissue. Collagen-specific tissue mapping by infrared microspectroscopy revealed much higher levels of collagen deposition in the connective tissues compared to that in the epithelium, as would be expected. Thus inflammatory events such as cellular infiltration and collagen deposition and catabolism can be identified by infrared microspectroscopy. Conclusion These results suggest that infrared microspectroscopy may represent a simple, reagent-free, multi-dimensional tool with which to examine periodontal disease etiology using entirely unprocessed tissue sections.

  15. Analysis of human hair by Raman microspectroscopy

    Science.gov (United States)

    Plascencia-Castro, A. S.; Cordova-Fraga, T.; Piña-Ruiz, A. L.; Hernández-Rayas, A.; Bernal, J. J.

    2017-04-01

    Raman microspectroscopy is an optical compound identification technique, which is widely used nowadays for different field applications. A crucial part of this technique is the focus given to the sample in the microscope because it depends on which part of the sample it will analyze. In this work, the effects of irradiating a natural hair samples, obtained from women aged 18 to 55, with a monochromatic light of the Raman spectrometer in two different focus is presented. Two different spectra were obtained with a peak in common. Depending on the information wanted, how the sample is focused plays a crucial role, either way the spectra is information-rich and may be used for biomedical applications.

  16. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    Energy Technology Data Exchange (ETDEWEB)

    Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  17. Local Area Artworks: Collaborative Art Interpretation On-Site

    DEFF Research Database (Denmark)

    Polli, Anna Maria; Korn, Matthias; Klokmose, Clemens Nylandsted

    2013-01-01

    to the shared physical space. We do this by re-emphasizing the local characteristics of wireless networks over the global connectivity to the Internet. With a collaborative writing system in a semi-public place, we encourage local art discussions and provide a platform for the public to actively participate...... in interpretations of individual artworks. Our preliminary findings suggest that people were (to our surprise) not questioning the inner workings of our system. Through engaging with the system, individuals felt being part of the exhibition. However, no coherent piece of text emerged during the runtime...

  18. In situ noninvasive study of artworks: the MOLAB multitechnique approach.

    Science.gov (United States)

    Miliani, Costanza; Rosi, Francesca; Brunetti, Brunetto Giovanni; Sgamellotti, Antonio

    2010-06-15

    Driven by the need to study precious and irreplaceable artworks without compromising their integrity, researchers have undertaken numerous efforts to develop noninvasive analytical tools and methodologies that can provide a chemical description of cultural heritage materials without any contact with the object. The challenge is that artworks are made of complex mixtures, often with heterogeneous and unknown layered materials. Their components must be identified over a range of size scales, from the molecular identification of constituent compounds to the mapping of alteration phases. In this Account, we review recent research in spectroscopic techniques accessible from the mobile laboratory (MOLAB). The lab is equipped with an array of state-of-the-art, portable, and noninvasive instruments specifically tailored to tackle the different issues confronted by archaeologists, curators, and conservators. The MOLAB approach is suitable for studying a variety of objects, from ceramics to manuscripts or from historical wall paintings to contemporary canvases. We begin by discussing issues related to the acquisition and interpretation of reflectance or backscattered spectra from the surface of heterogeneous materials. Then we show how the selectivity needed for the noninvasive identification of pigments in paintings, even in mixtures or in layered matrices, can be acquired by combining elemental information from X-ray fluorescence with molecular and structural insights from electronic and vibrational spectroscopies. Discriminating between original pigments and restoration retouches is possible, even when both comprise similar chromophores, as highlighted in the study of paintings by Jordaens and Raphael. The noninvasive approach permits the examination of a very large number of artworks with a virtually limitless number of measurements. Thus, unexpected and uncommon features may be uncovered, as in the case of a lead pyroantimonate yellow doped with zinc that was discovered

  19. Sonic Onyx: Case Study of an Interactive Artwork

    Science.gov (United States)

    Ahmed, Salah Uddin; Jaccheri, Letizia; M'kadmi, Samir

    Software supported art projects are increasing in numbers in recent years as artists are exploring how computing can be used to create new forms of live art. Interactive sound installation is one kind of art in this genre. In this article we present the development process and functional description of Sonic Onyx, an interactive sound installation. The objective is to show, through the life cycle of Sonic Onyx, how a software dependent interactive artwork involves its users and raises issues related to its interaction and functionalities.

  20. Corrosive Space Gas Restores Artwork, Promises Myriad Applications

    Science.gov (United States)

    2007-01-01

    Atomic oxygen's unique characteristic of oxidizing primarily hydrogen, carbon, and hydrocarbon polymers at surface levels has been applied in the restoration of artwork, detection of document forgeries, and removal of bacterial contaminants from surgical implants. The Electro-Physics Branch at Glenn Research Center built on corrosion studies of long-duration coatings for use in space, and applied atomic oxygen's selectivity to instances where elements need to be removed from a surface. Atomic oxygen is able to remove organic compounds high in carbon (mostly soot) from fire-damaged artworks without causing a shift in the paint color. First successfully tested on oil paintings, the team then applied the restoration technique to acrylics, watercolors, and ink. The successful art restoration process was well-publicized, and soon a multinational, nonprofit professional organization dedicated to the art of forensic analysis of documents had successfully applied this process in the field of forgery detection. The gas has biomedical applications as well-Atomic Oxygen technology can be used to decontaminate orthopedic surgical hip and knee implants prior to surgery, and additional collaborative research between the Cleveland Clinic Foundation and the Glenn team shows that this gas's roughening of surfaces improves cell adhesion, which is important for the development of new drugs.

  1. Confocal Raman microspectroscopy of the skin.

    Science.gov (United States)

    Förster, Matthias; Bolzinger, Marie-Alexandrine; Montagnac, Gilles; Briançon, Stéphanie

    2011-01-01

    Confocal Raman spectroscopy is a technique with considerable potential for the non-invasive study of biological tissues and skin samples in vitro or in vivo. It can be used to study skin physiology and possible pathological conditions and to obtain data about molecular composition and the structure of skin, for example, water content, moisturization and changes in the skin barrier function can all be observed. In-depth measurements also allow biopharmaceutical studies, such as analyzing the rate of penetration of a drug and the biochemical changes that may be induced by an applied formulation. Confocal Raman microspectroscopy is now at such a stage of refinement that it opens up new vistas. The big leap forward in its ease of use enables this technology to be used as an analytical method by more and more non-specialist laboratories. This review gives an overview of the state of the art of this technology by presenting an update on the principles of Raman spectroscopy and then by looking at examples of new developments in in vivo and in vitro applications.

  2. Ultrasonic microspectroscopy characterization of chemically tempered glass

    Science.gov (United States)

    Arakawa, Mototaka; Kushibiki, Jun-ichi; Ohashi, Yuji

    2017-01-01

    We evaluated the elastic properties of the compressive stress (CS) layer of chemically tempered glass by ultrasonic microspectroscopy (UMS) in a very high frequency (VHF) range. Two commercial aluminosilicate glass specimens were prepared, and one of them was chemically tempered. Changes in elastic properties in the CS layer with the residual stress introduced by the exchange of Na+ ions for larger K+ ions were estimated by precisely measuring the densities and longitudinal and shear velocities for both the tempered and nontempered specimens. Using a single-layer model for the surface layer, we observed drastic increases in bulk-wave velocities and significant decreases in attenuation coefficients. We determined that the average elastic properties, namely, the elastic constants c 11 and c 44, and the density of the surface layer, were 9.6 and 7.1, and 1.2% larger than those of the nontempered specimen, respectively. We also estimated the distributions of the elastic properties according to the complementary error function (CEF) for the distribution of K+ ion concentration. Furthermore, using a line-focus-beam (LFB) system, we measured the frequency characteristics of the velocity (V LSAW) of leaky surface acoustic waves (LSAWs) on a water-loaded surface of the tempered specimen and clarified that the distributions of the elastic properties did not follow the CEF. The LFB system can be used for analyzing/determining details of the surface properties and is a promising tool for evaluating and characterizing chemically tempered glass and tempering process conditions.

  3. Raman microspectroscopy for visualization of peripheral nerves

    Science.gov (United States)

    Minamikawa, Takeo; Harada, Yoshinori; Koizumi, Noriaki; Takamatsu, Tetsuro

    2013-02-01

    The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery is essential for improving quality of life of patients. To preserve peripheral nerves, detection of ne peripheral nerves that cannot be identi ed by human eye or under white light imaging is necessary. In this study, we sought to provide a proof-of-principle demonstration of a label-free detection technique of peripheral nerve tissues against adjacent tissues that employs spontaneous Raman microspectroscopy. A line-illumination confocal Raman microscope was used for the experiment. A laser operating at the wavelength of 532 nm was used as an excitation laser light. We obtained Raman spectra of peripheral nerve, brous connective tissue, skeletal muscle, blood vessel, and adipose tissue of Wistar rats, and extracted speci c spectral features of peripheral nerves and adjacent tissues. By applying multivariate image analysis, peripheral nerves were clearly detected against adjacent tissues without any preprocessing neither xation nor staining. These results suggest the potential of the Raman spectroscopic observation for noninvasive and label-free nerve detection, and we expect this method could be a key technique for nerve-sparing surgery.

  4. Japanese Porcelain Artwork “Blue Planet of Human Life” Donated to CPAFFC

    Institute of Scientific and Technical Information of China (English)

    Pan; Lin

    2013-01-01

    <正>On March 22, a donation ceremony of the Japanese porcelain artwork the "Blue Planet of Human Life" was held in the Peace Palace of the CPAFFC. This huge spherical porcelain art-work, with a diameter of 1.05 meters, a total height of 2.1 meters and a weight of 300 kilograms, was designed and

  5. Psychological and neural responses to art embody viewer and artwork histories.

    Science.gov (United States)

    Vartanian, Oshin; Kaufman, James C

    2013-04-01

    The research programs of empirical aesthetics and neuroaesthetics have reflected deep concerns about viewers' sensitivities to artworks' historical contexts by investigating the impact of two factors on art perception: viewers' developmental (and educational) histories and the contextual histories of artworks. These considerations are consistent with data demonstrating that art perception is underwritten by dynamically reconfigured and evolutionarily adapted neural and psychological mechanisms.

  6. 25 CFR 547.16 - What are the minimum standards for game artwork, glass, and rules?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false What are the minimum standards for game artwork, glass, and rules? 547.16 Section 547.16 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR... § 547.16 What are the minimum standards for game artwork, glass, and rules? This section provides...

  7. One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in the solid-state glucose/asparagine Maillard reaction.

    Science.gov (United States)

    Hwang, Deng-Fwu; Hsieh, Tzu-Feng; Lin, Shan-Yang

    2013-01-01

    The stepwise reaction pathway of the solid-state Maillard reaction between glucose (Glc) and asparagine (Asn) was investigated using simultaneous differential scanning calorimetry (DSC)-FTIR microspectroscopy. The color change and FTIR spectra of Glc-Asn physical mixtures (molar ratio = 1:1) preheated to different temperatures followed by cooling were also examined. The successive reaction products such as Schiff base intermediate, Amadori product, and decarboxylated Amadori product in the solid-state Glc-Asn Maillard reaction were first simultaneously evidenced by this unique DSC-FTIR microspectroscopy. The color changed from white to yellow-brown to dark brown, and appearance of new IR peaks confirmed the formation of Maillard reaction products. The present study clearly indicates that this unique DSC-FTIR technique not only accelerates but also detects precursors and products of the Maillard reaction in real time.

  8. Background-free nonlinear microspectroscopy with vibrational molecular interferometry

    NARCIS (Netherlands)

    Garbacik, E.T.; Korterik, Jeroen P.; Otto, Cornelis; Mukamel, S.; Herek, Jennifer Lynn; Offerhaus, Herman L.; Periasamy, A.; König, K.; So, P.T.C.

    2012-01-01

    We demonstrate a method for performing nonlinear microspectroscopy that provides an intuitive and unified description of the various signal contributions, and allows the direct extraction of the vibrational response. Three optical fields create a pair of Stokes Raman pathways that interfere in the

  9. Background-Free Nonlinear Microspectroscopy with Vibrational Molecular Interferometry

    NARCIS (Netherlands)

    Garbacik, Erik T.; Korterik, Jeroen P.; Otto, Cees; Mukamel, Shaul; Herek, Jennifer L.; Offerhaus, Herman L.

    2011-01-01

    We demonstrate a method for performing nonlinear microspectroscopy that provides an intuitive and unified description of the various signal contributions, and allows the direct extraction of the vibrational response. Three optical fields create a pair of Stokes Raman pathways that interfere in the s

  10. Confocal raman microspectroscopy : a novel diagnostic tool in medical microbiology

    NARCIS (Netherlands)

    K. Maquelin (Kees)

    2002-01-01

    textabstractThe aim of the research described in this thesis was to develop confocal Raman microspectroscopy techniques for the rapid identification and characterisation of clinically relevant microorganisms. Chapter 2 describes a study in which the accuracy of the identification of Enterococcus spp

  11. Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy

    NARCIS (Netherlands)

    Ramanauskaite, R B; SegersNolten, IGMJ; DeGrauw, K J; Sijtsema, N M; VanderMaas, L; Greve, J; Otto, C; Figdor, C G

    1997-01-01

    Carotenoid levels in lymphocytes obtained from peripheral blood of healthy people have been investigated by Raman microspectroscopy. We observed that carotenoids are concentrated in so-called ''Gall bodies''. The level of carotenoids in living human lymphocytes was found to be age-dependent and to d

  12. Reading Hidden Messages Through Deciphered Manual Alphabets on Classic Artwork

    Science.gov (United States)

    Castronovo, Joseph Anthony, Jr.

    1998-10-01

    Decipherment is the tool used to uncover several types of hand signs that played vital roles in the creation of hidden messages in classic artwork. A 3,100 B.C. bas-relief of The 'Kaph' Telescope, formerly named The Narmer Palette, and Michaelangelo Buonarrotte's Battle of Cascina of 1506 were two key works of art that show certain similarities even though separated by 4,500 years. It is evident that Renaissance humanists provided artists with certain knowledge of the ancients. Results of incorporating a number of minor works of art showed that the competence of ancient Egyptians, Cretans and Australian Aboriginals, to name a few, as astronomers, was underestimated. Some deciphered Indus seals attested to a global understanding of the universe, with Gemini and the star of Thuban at the center of their attention. Certain forms of secrecy had to be undertaken for various reasons throughout the millennia. Three examples are: (1) In Italy, to keep controversial and truthful teachings discreet and hidden, artists embedded them in artwork long before the plight of Galileo Galilei and his discoveries. (2) Among Jewish Kabbalists, a well-known design was obscured in The Arnolfini Wedding painting for fear it would be lost due to persecution. (3) Michaelangelo Buonarrotte indicated several meanings through the hands of The Statue of Moses. They were overlooked by several societies, including the gesticulating culture of Italy, because they oppressed the value of signed languages. Spatial decipherment may testify to a need for the restoration of a spatial writing system for expanded linguistic accessibility. A 21st century model community for sign language residents and employees will benefit visual learners, particularly visual artists and non-phonetic decipherers, to better uncover, understand and perhaps use ancient hand forms to restore ancient knowledge. Moreover, the National Association of Teaching English (NATE) has recently endorsed the addition of two skills

  13. IR intensity

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2015-01-01

    Definitions, formulas, and code for producing epsilon values (molar absorption coefficients) and IR spectral curve from 'Gaussian' FREQ output.......Definitions, formulas, and code for producing epsilon values (molar absorption coefficients) and IR spectral curve from 'Gaussian' FREQ output....

  14. Confocal Raman Microspectroscopy for Evaluating the Stratum Corneum Removal by 3 Standard Methods

    National Research Council Canada - National Science Library

    Förster, M; Bolzinger, M.A; Rovere, M.R; Damour, O; Montagnac, G; Briançon, S

    2011-01-01

    ...: The removal qualities of tape stripping, cyanoacrylate skin surface biopsy and trypsinization were estimated in vitro via histological imaging and confocal Raman microspectroscopy (CRM) and compared...

  15. Cholesterol esters are detected by Raman microspectroscopy in HeLa cells

    NARCIS (Netherlands)

    Manen, van Henk-Jan; Otto, Cees

    2008-01-01

    The detection of trans-unsaturated lipids in single HeLa cells by Raman microspectroscopy was recently reported in this journal by Onogi et al. Based on our previously published Raman microspectroscopy data of individual macrophage foam cells, a detailed comparison between our spectra and spectrum r

  16. Rapid recognition of drug-resistance/sensitivity in leukemic cells by Fourier transform infrared microspectroscopy and unsupervised hierarchical cluster analysis.

    Science.gov (United States)

    Bellisola, Giuseppe; Cinque, Gianfelice; Vezzalini, Marzia; Moratti, Elisabetta; Silvestri, Giovannino; Redaelli, Sara; Gambacorti Passerini, Carlo; Wehbe, Katia; Sorio, Claudio

    2013-07-21

    We tested the ability of Fourier Transform (FT) InfraRed (IR) microspectroscopy (microFTIR) in combination with unsupervised Hierarchical Cluster Analysis (HCA) in identifying drug-resistance/sensitivity in leukemic cells exposed to tyrosine kinase inhibitors (TKIs). Experiments were carried out in a well-established mouse model of human Chronic Myelogenous Leukemia (CML). Mouse-derived pro-B Ba/F3 cells transfected with and stably expressing the human p210(BCR-ABL) drug-sensitive wild-type BCR-ABL or the V299L or T315I p210(BCR-ABL) drug-resistant BCR-ABL mutants were exposed to imatinib-mesylate (IMA) or dasatinib (DAS). MicroFTIR was carried out at the Diamond IR beamline MIRIAM where the mid-IR absorbance spectra of individual Ba/F3 cells were acquired using the high brilliance IR synchrotron radiation (SR) via aperture of 15 × 15 μm(2) in sizes. A conventional IR source (globar) was used to compare average spectra over 15 cells or more. IR signatures of drug actions were identified by supervised analyses in the spectra of TKI-sensitive cells. Unsupervised HCA applied to selected intervals of wavenumber allowed us to classify the IR patterns of viable (drug-resistant) and apoptotic (drug-sensitive) cells with an accuracy of >95%. The results from microFTIR + HCA analysis were cross-validated with those obtained via immunochemical methods, i.e. immunoblotting and flow cytometry (FC) that resulted directly and significantly correlated. We conclude that this combined microFTIR + HCA method potentially represents a rapid, convenient and robust screening approach to study the impact of drugs in leukemic cells as well as in peripheral blasts from patients in clinical trials with new anti-leukemic drugs.

  17. Localization of polyhydroxybutyrate in sugarcane using Fourier-transform infrared microspectroscopy and multivariate imaging.

    Science.gov (United States)

    Lupoi, Jason S; Smith-Moritz, Andreia; Singh, Seema; McQualter, Richard; Scheller, Henrik V; Simmons, Blake A; Henry, Robert J

    2015-01-01

    Slow-degrading, fossil fuel-derived plastics can have deleterious effects on the environment, especially marine ecosystems. The production of bio-based, biodegradable plastics from or in plants can assist in supplanting those manufactured using fossil fuels. Polyhydroxybutyrate (PHB) is one such biodegradable polyester that has been evaluated as a possible candidate for relinquishing the use of environmentally harmful plastics. PHB, possessing similar properties to polyesters produced from non-renewable sources, has been previously engineered in sugarcane, thereby creating a high-value co-product in addition to the high biomass yield. This manuscript illustrates the coupling of a Fourier-transform infrared microspectrometer, equipped with a focal plane array (FPA) detector, with multivariate imaging to successfully identify and localize PHB aggregates. Principal component analysis imaging facilitated the mining of the abundant quantity of spectral data acquired using the FPA for distinct PHB vibrational modes. PHB was measured in the chloroplasts of mesophyll and bundle sheath cells, acquiescent with previously evaluated plant samples. This study demonstrates the power of IR microspectroscopy to rapidly image plant sections to provide a snapshot of the chemical composition of the cell. While PHB was localized in sugarcane, this method is readily transferable to other value-added co-products in different plants.

  18. Microspectroscopy as applied to the study of wood molecular structure

    DEFF Research Database (Denmark)

    Fackler, Karin; Thygesen, Lisbeth Garbrecht

    2013-01-01

    -induced dimensional changes, decay resistance or mechanical properties. It is, however, important to choose the right technique for the purpose at hand and to apply it in a suitable way if any new insights are to be gained. This review presents and compares three different microspectroscopic techniques: infrared......Microspectroscopy gives access to spatially resolved information on the molecular structure and chemical composition of a material. For a highly heterogeneous and anisotropic material like wood, such information is essential when assessing structure/property relationships such as moisture...

  19. Background-Free Nonlinear Microspectroscopy with Vibrational Molecular Interferometry

    Science.gov (United States)

    Garbacik, Erik T.; Korterik, Jeroen P.; Otto, Cees; Mukamel, Shaul; Herek, Jennifer L.; Offerhaus, Herman L.

    2013-01-01

    We demonstrate a method for performing nonlinear microspectroscopy that provides an intuitive and unified description of the various signal contributions, and allows the direct extraction of the vibrational response. Three optical fields create a pair of Stokes Raman pathways that interfere in the same vibrational state. Frequency modulating one of the fields leads to amplitude modulations on all of the fields. This vibrational molecular interferometry technique allows imaging at high speed free of nonresonant background, and is able to distinguish between electronic and vibrational contributions to the total signal. PMID:22243075

  20. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    Science.gov (United States)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic responses was evident while

  1. Enhancing in-Museum Informal Learning by Augmenting Artworks with Gesture Interactions and AIED Paradigms

    DEFF Research Database (Denmark)

    Blanchard, Emmanuel G.; Zanciu, Alin-Nicolae; Mahmoud, Haydar

    2014-01-01

    This paper presents a computer-supported approach for providing ‘enhanced’ discovery learning in informal settings like museums. It is grounded on a combination of gesture-based interactions and artwork-embedded AIED paradigms, and is implemented through a distributed architecture.......This paper presents a computer-supported approach for providing ‘enhanced’ discovery learning in informal settings like museums. It is grounded on a combination of gesture-based interactions and artwork-embedded AIED paradigms, and is implemented through a distributed architecture....

  2. Can't See the Forest: Using an Evolutionary Algorithm to Produce an Animated Artwork

    Science.gov (United States)

    Trist, Karen; Ciesielski, Vic; Barile, Perry

    We describe an artist's journey of working with an evolutionary algorithm to create an artwork suitable for exhibition in a gallery. Software based on the evolutionary algorithm produces animations which engage the viewer with a target image slowly emerging from a random collection of greyscale lines. The artwork consists of a grid of movies of eucalyptus tree targets. Each movie resolves with different aesthetic qualities, tempo and energy. The artist exercises creative control by choice of target and values for evolutionary and drawing parameters.

  3. Chemical imaging on liver steatosis using synchrotron infrared and ToF-SIMS microspectroscopies.

    Directory of Open Access Journals (Sweden)

    François Le Naour

    Full Text Available Fatty liver or steatosis is a frequent histopathological change. It is a precursor for steatohepatitis that may progress to cirrhosis and in some cases to hepatocellular carcinoma. In this study we addressed the in situ composition and distribution of biochemical compounds on tissue sections of steatotic liver using both synchrotron FTIR (Fourier transform infrared and ToF-SIMS (time of flight secondary ion mass spectrometry microspectroscopies. FTIR is a vibrational spectroscopy that allows investigating the global biochemical composition and ToF-SIMS lead to identify molecular species in particular lipids. Synchrotron FTIR microspectroscopy demonstrated that bands linked to lipid contribution such as -CH(3 and -CH(2 as well as esters were highly intense in steatotic vesicles. Moreover, a careful analysis of the -CH(2 symmetric and anti-symmetric stretching modes revealed a slight downward shift in spectra recorded inside steatotic vesicles when compared to spectra recorded outside, suggesting a different lipid environment inside the steatotic vesicles. ToF-SIMS analysis of such steatotic vesicles disclosed a selective enrichment in cholesterol as well as in diacylglycerol (DAG species carrying long alkyl chains. Indeed, DAG C36 species were selectively localized inside the steatotic vesicles whereas DAG C30 species were detected mostly outside. Furthermore, FTIR detected a signal corresponding to olefin (C = C, 3000-3060 cm(-1 and revealed a selective localization of unsaturated lipids inside the steatotic vesicles. ToF-SIMS analysis definitely demonstrated that DAG species C30, C32, C34 and C36 carrying at least one unsaturated alkyl chain were selectively concentrated into the steatotic vesicles. On the other hand, investigations performed on the non-steatotic part of the fatty livers have revealed important changes when compared to the normal liver. Although the non-steatotic regions of fatty livers exhibited normal histological aspect, IR

  4. In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals

    NARCIS (Netherlands)

    Stavitski, Eli; Kox, Marianne H. F.; Swart, Ingmar; de Groot, Frank M. F.; Weckhuysen, Bert M.

    2008-01-01

    In recent years a number of in situ microspectroscopic techniques have been explored to investigate catalytic reactions taking place in heterogeneous catalysts in a timeand space-resolved manner.[1–8] These spectroscopic methods have proven to be very successful in elucidating valuable

  5. In situ synchrotron-based IR microspectroscopy to study catalytic reactions in zeolite crystals

    NARCIS (Netherlands)

    Stavitski, Eli; Kox, Marianne H. F.; Swart, Ingmar; de Groot, Frank M. F.; Weckhuysen, Bert M.

    2008-01-01

    In recent years a number of in situ microspectroscopic techniques have been explored to investigate catalytic reactions taking place in heterogeneous catalysts in a timeand space-resolved manner.[1–8] These spectroscopic methods have proven to be very successful in elucidating valuable structure–fun

  6. Creativity and the Artwork: The Perspectives of a Painter and a Philosopher

    Science.gov (United States)

    Keating, Ross

    2009-01-01

    Creativity in Robert Henri's view is a gratuitous act, shot through with mystery; what is left after such an act is the artwork itself as concrete evidence that such a heightened state of consciousness has been achieved. This paper will examine Henri's understanding of the nature of creativity from his perspective as a twentieth century New York…

  7. Nanotech, blur and tragedy in recent artworks by Gerhard Richter

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    2008-01-01

    The author considers Gerhard Richter's work on nanotechnology, highlighting how these pieces continue the artist's ontology on photographic blur and, as such, raise questions about truth and reality with respect to the mass media's visual presentation of nanotechnology. The four works discussed i...... and terrorism, and contrasts Richter's artworks with utopian visions of nano-science in the mass media....

  8. Adult Learners and AIDS Artwork: Conceptual Suggestions for Adult Education Practice

    Science.gov (United States)

    Collins, Joshua C.

    2012-01-01

    Significant stigma exists to marginalize persons living with HIV/AIDS (PLWHA). Research has demonstrated it is possible to reduce stigma and prejudice through the development of meaningful and innovative education. The purpose of this article is to explore the ways in which the creative and purposeful use of AIDS Artwork as an educational tool may…

  9. Adult Learners and AIDS Artwork: Conceptual Suggestions for Adult Education Practice

    Science.gov (United States)

    Collins, Joshua C.

    2012-01-01

    Significant stigma exists to marginalize persons living with HIV/AIDS (PLWHA). Research has demonstrated it is possible to reduce stigma and prejudice through the development of meaningful and innovative education. The purpose of this article is to explore the ways in which the creative and purposeful use of AIDS Artwork as an educational tool may…

  10. Identification of proteinaceous binders used in artworks by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Kuckova, Stepanka; Hynek, Radovan; Kodicek, Milan

    2007-05-01

    Proper identification of proteinaceous binders in artworks is essential for specification of the painting technique and thus also for selection of the restoration method; moreover, it might be helpful for the authentication of the artwork. This paper is concerned with the optimisation of analysis of the proteinaceous binders contained in the colour layers of artworks. Within this study, we worked out a method for the preparation and analysis of solid samples from artworks using tryptic cleavage and subsequent analysis of the acquired peptide mixture by matrix-assisted laser desorption/ionisation time of flight mass spectrometry. To make this approach rational and efficient, we created a database of commonly used binders (egg yolk, egg white, casein, milk, curd, whey, gelatine, and various types of animal glues); certain peaks in the mass spectra of these binders, formed by rich protein mixtures, were matched to amino acid sequences of the individual proteins that were found in the Internet database ExPASy; their cleavage was simulated by the program Mass-2.0-alpha4. The method developed was tested on model samples of ground layers prepared by an independent laboratory and then successfully applied to a real sample originating from a painting by Edvard Munch.

  11. 3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework

    Directory of Open Access Journals (Sweden)

    Sandro Barone

    2012-12-01

    Full Text Available Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface.

  12. Characterization of Carbonaceous Material from the Sudbury Impact Structure Using Raman Microspectroscopy

    Science.gov (United States)

    Wright, A. J.; Parnell, J.; Ames, D. E.

    2008-03-01

    Samples from the 1.85 Ga Sudbury impact structure have been analyzed using Raman microspectroscopy in order to characterize the carbonaceous material and to investigate the relationship between the carbonaceous strata associated with the structure.

  13. Statistical image properties of print advertisements, visual artworks and images of architecture

    Directory of Open Access Journals (Sweden)

    Julia eBraun

    2013-11-01

    Full Text Available Most visual advertisements are designed to attract attention, often by inducing a pleasant impression in human observers. Accordingly, results from brain imaging studies show that advertisements can activate the brain’s reward circuitry, which is also involved in the perception of other visually pleasing images, such as artworks. At the image level, large subsets of artworks are characterized by specific statistical image properties, such as a high self-similarity and intermediate complexity. Moreover, some image properties are distributed uniformly across orientations in the artworks (low anisotropy. In the present study, we asked whether images of advertisements share these properties. To answer this question, subsets of different types of advertisements (single-product print advertisements, supermarket and department store leaflets, magazine covers and show windows were analyzed using computer vision algorithms and compared to other types of images (photographs of simple objects, faces, large-vista natural scenes and branches. We show that, on average, images of advertisements and artworks share a similar degree of complexity (fractal dimension and self-similarity, as well as similarities in the Fourier spectrum. However, images of advertisements are more anisotropic than artworks. Values for single-product advertisements resemble each other, independent of the type of product promoted (cars, cosmetics, fashion or other products. For comparison, we studied images of architecture as another type of visually pleasing stimuli and obtained comparable results. These findings support the general idea that, on average, man-made visually pleasing images are characterized by specific patterns of higher-order (global image properties that distinguish them from other types of images. Whether these properties are necessary or sufficient to induce aesthetic perception and how they correlate with brain activation upon viewing advertisements remains to be

  14. Statistical image properties of print advertisements, visual artworks and images of architecture.

    Science.gov (United States)

    Braun, Julia; Amirshahi, Seyed A; Denzler, Joachim; Redies, Christoph

    2013-01-01

    Most visual advertisements are designed to attract attention, often by inducing a pleasant impression in human observers. Accordingly, results from brain imaging studies show that advertisements can activate the brain's reward circuitry, which is also involved in the perception of other visually pleasing images, such as artworks. At the image level, large subsets of artworks are characterized by specific statistical image properties, such as a high self-similarity and intermediate complexity. Moreover, some image properties are distributed uniformly across orientations in the artworks (low anisotropy). In the present study, we asked whether images of advertisements share these properties. To answer this question, subsets of different types of advertisements (single-product print advertisements, supermarket and department store leaflets, magazine covers and show windows) were analyzed using computer vision algorithms and compared to other types of images (photographs of simple objects, faces, large-vista natural scenes and branches). We show that, on average, images of advertisements and artworks share a similar degree of complexity (fractal dimension) and self-similarity, as well as similarities in the Fourier spectrum. However, images of advertisements are more anisotropic than artworks. Values for single-product advertisements resemble each other, independent of the type of product promoted (cars, cosmetics, fashion or other products). For comparison, we studied images of architecture as another type of visually pleasing stimuli and obtained comparable results. These findings support the general idea that, on average, man-made visually pleasing images are characterized by specific patterns of higher-order (global) image properties that distinguish them from other types of images. Whether these properties are necessary or sufficient to induce aesthetic perception and how they correlate with brain activation upon viewing advertisements remains to be investigated.

  15. Characterization of Protein in Old Myocardial Infarction by FTIR Micro-spectroscopy

    Institute of Scientific and Technical Information of China (English)

    郑娜; 杨天潼; 梁曼; 张海东; 李立平; 阿兰达; 刘良

    2010-01-01

    The aim of the present study was to assess whether Fourier transform infrared spectrometry (FTIR) micro-spectroscopy could produce distinct spectral information on protein of old myocardial infarction (OMI) and to set them as molecular markers to diagnose atypical OMI. Paraffin-embedded heart samples were derived from victims dying of OMI. In combination with histological stain, FTIR and infrared micro-spectroscopy, the characteristics of OMI were analyzed morphologically and molecularly. The most relevant ...

  16. Raman microspectroscopy of nanodiamond-induced structural changes in albumin.

    Science.gov (United States)

    Svetlakova, Anastasiya S; Brandt, Nikolay N; Priezzhev, Alexander V; Chikishev, Andrey Yu

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND–protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  17. Raman microspectroscopy of nanodiamond-induced structural changes in albumin

    Science.gov (United States)

    Svetlakova, Anastasiya S.; Brandt, Nikolay N.; Priezzhev, Alexander V.; Chikishev, Andrey Yu.

    2015-04-01

    Nanodiamonds (NDs) are promising agents for theranostic applications due to reported low toxicity and high biocompatibility, which is still being extensively tested on cellular, tissue, and organism levels. It is presumed that for experimental and future clinical applications, NDs will be administered into the organism via the blood circulation system. In this regard, the interaction of NDs with blood components needs to be thoroughly studied. We studied the interaction of carboxylated NDs (cNDs) with albumin, one of the major proteins of blood plasma. After 2-h long in vitro incubation in an aqueous solution of the protein, 100-nm cNDs were dried and the dry samples were studied with the aid of Raman microspectroscopy. The spectroscopic data indicate significant conformational changes that can be due to cND-protein interaction. A possible decrease in the functional activity of albumin related to the conformational changes must be taken into account in the in vivo applications.

  18. Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis.

    Directory of Open Access Journals (Sweden)

    Giulia Rusciano

    Full Text Available Acanthamoeba keratitis is a rare but serious corneal disease, often observed in contact lens wearers. Clinical treatment of infected patients frequently involves the use of polyhexamethylene biguanide (PHMB, a polymer used as a disinfectant and antiseptic, which is toxic also for the epithelial cells of the cornea. Prompt and effective diagnostic tools are hence highly desiderable for both starting early therapy and timely suspension of the treatment. In this work we use Raman microspectroscopy to analyse in vitro a single Acanthamoeba cell in cystic phase. In particular, we investigate the effect of PHMB at the single-cell level, providing useful information on both the underlying biochemical mechanism and the time frame for Acanthamoeba eradication in ocular infections. Furthermore, we demonstrate that Raman spectroscopy, in conjunction with standard multivariate analysis methods, allows discriminating between live and dead Acanthamoebas, which is fundamental to optimizing patients' treatment.

  19. Raman microspectroscopy analysis in the treatment of acanthamoeba keratitis.

    Science.gov (United States)

    Rusciano, Giulia; Capriglione, Paola; Pesce, Giuseppe; Del Prete, Salvatore; Cennamo, Gilda; Di Cave, David; Cerulli, Luciano; Sasso, Antonio

    2013-01-01

    Acanthamoeba keratitis is a rare but serious corneal disease, often observed in contact lens wearers. Clinical treatment of infected patients frequently involves the use of polyhexamethylene biguanide (PHMB), a polymer used as a disinfectant and antiseptic, which is toxic also for the epithelial cells of the cornea. Prompt and effective diagnostic tools are hence highly desiderable for both starting early therapy and timely suspension of the treatment. In this work we use Raman microspectroscopy to analyse in vitro a single Acanthamoeba cell in cystic phase. In particular, we investigate the effect of PHMB at the single-cell level, providing useful information on both the underlying biochemical mechanism and the time frame for Acanthamoeba eradication in ocular infections. Furthermore, we demonstrate that Raman spectroscopy, in conjunction with standard multivariate analysis methods, allows discriminating between live and dead Acanthamoebas, which is fundamental to optimizing patients' treatment.

  20. [Application of FTIR micro-spectroscopy in the tribology].

    Science.gov (United States)

    Hu, Zhi-meng

    2002-10-01

    The wave number of characteristic absorption peak nu asC-O-C of the polyester formed on the frictional process were determined by Fourier Transform Infrared (FTIR) Micro-spectroscopy, and the wave number displacement of characteristic absorption peak nu asC-O-C was analyzed based on the conversion mass of polyester formed. The internal relations between anti-wear order rule of hydroxyl fatty acids and vibration absorption peak nu asC-O-C of polyester formed by hydroxyl fatty acids was deduced according to these results, and the anti-wear order of hydroxyl fatty acids was reasonably explained, that is 13, 14-di-hydroxydocosanoic acid > 13 (14)-monohydroxydocosanoic acid = 9,10-dihydroxyoctadecanoic acid > 9,10,12-trihydroxyoctadecanoic acid > 9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by 13, 14-dihydroxydocosanoic acid and a linear polyester film is formed by 9, (10)-monohydroxyoctadecanoic acid and 13(14)-monohydroxydocosanoic acid.

  1. IRS organigram

    Science.gov (United States)

    Messerschmid, Ernst

    1991-01-01

    Charts and graphs relative to magnetoplasmadynamic (MPD) thruster technology are given. The research activities at the Institute of Space Transportation, University of Stuttgart, are summarized. Information is given on the Institute's Electric Propulsion and Plasma Wind Tunnel; thermal arcjet research; the nozzle-type thruster, DT-IRS; nozzle-type MPD thrusters; a hot anode thruster; the DT6 thruster; the ZT-1 thruster; the cylindrical MPD thruster; and a comparison of continuous and quasi-steady MPD.

  2. An enquiry into passive and active exclusion from unreachable artworks in the museum: two case studies of final-year students at California School for the Blind studying artworks through galleries and on the web

    OpenAIRE

    Hayhoe, Simon J.

    2014-01-01

    Two case studies of students from California School for the Blind studying artworks in museums and on the Web are discussed. The analysis focuses on the traditional understanding that unreachable artworks in the museum are deciphered by non-intellectual elites primarily from the perspective of visual perception and museums are simple vessels of art, as contended by Ernst Gombrich and Pierre Bourdieu, and that exclusion is either passive or active. It is also argued that there is a bridge betw...

  3. Considerations in relation to some research on the possible neural underpinnings linked to visual artworks observation

    Directory of Open Access Journals (Sweden)

    Gabriella Bartoli

    2017-05-01

    Full Text Available On the basis of the observations conducted by Freedberg & Gallese (2007 on neural processes implication in organizing the empathetic/aesthetic response, some recent research carried out by neuroscientists and art historians are analyzed, as they demonstrated cortical sensorimotor activation during the observation of abstract artworks (2012, 2013. The role of the “embodied simulation” of artist’s gesture in the empathic perception of artworks is hereby confirmed. These results are commented in light of psychological studies about aesthetic experience, with special regard to those based on a phenomenological methodology. The intention is to further explore possible interactions between neurosciences and phenomenological psychology, in accordance with their respective theoretical and methodological differences.

  4. 5th International Conference LACONA V (Lasers in the Conservation of Artworks)

    CERN Document Server

    Dickmann, Klaus; Asmus, John F; Lasers in the Conservation of Artworks

    2005-01-01

    Since 1995, when Costas Fotakis first brought together restorers and scientists to discuss the potential of lasers in art conservation, the field has grown enormously in importance, and today restorers and laser scientists work together to develop new applications. This book presents the more than six dozen research papers prepared for LACONA V (Lasers in Art Conservation), held in Osnabrueck/Germany in September 2003. The fifth congress once again gathers restorers, art historians, museum staff, laser scientists and laser manufacturers. The topics include, among others: laser cleaning of artworks (case studies and side effects), removal of former conservation layers, fundamentals of laser-artwork interaction, online monitoring and process control, laser diagnostics, spectroscopy for monitoring and identification, networks and co-operation projects.

  5. Effect of the nickel precursor on the impregnation and drying of γ-Al2O3 catalyst bodies: a UV-vis and IR micro-spectroscopic study

    NARCIS (Netherlands)

    Espinosa Alonso, L.; de Jong, K.P.; Weckhuysen, B.M.

    2008-01-01

    The elemental preparation steps of impregnation and drying of Ni/g-Al2O3 catalyst bodies have been studied by combining UV-vis and IR microspectroscopy. The influence of the number of chelating ligands in [Ni(en)x(H2O)6-2x]2+ precursor complexes (with en ) ethylenediamine and x ) 0-3) has been inves

  6. Development of organic and hybrid glasses using Interpenetrating PolymerNetworks for artworks protection

    OpenAIRE

    2015-01-01

    This work position itself on a primary issue of heritage and more precisely on the preventive conservation of artworks. To provide a low cost solution to museums, capable of meeting the requirements set for the cultural heritage protection, we have developed new polymer glazing to protect works without altering their perception by the public. These materials will eventually be able to replace poly(methyl methacrylate) (PMMA) glazing, which are widely used but have high sensitivity to scratchi...

  7. Neuropsychology of Aesthetic Judgment of Ambiguous and Non-Ambiguous Artworks.

    Science.gov (United States)

    Boccia, Maddalena; Barbetti, Sonia; Piccardi, Laura; Guariglia, Cecilia; Giannini, Anna Maria

    2017-03-18

    Several affective and cognitive processes have been found to be pivotal in affecting aesthetic experience of artworks and both neuropsychological as well as psychiatric symptoms have been found to affect artistic production. However, there is a paucity of studies directly investigating effects of brain lesions on aesthetic judgment. Here, we assessed the effects of unilateral brain damage on aesthetic judgment of artworks showing part/whole ambiguity. We asked 19 unilaterally brain-damaged patients (10 left and 9 right brain damaged patients, respectively LBDP and RBDP) and 20 age- and education-matched healthy individuals (controls, C) to rate 10 Arcimboldo's ambiguous portraits (AP), 10 realistic Renaissance portraits (RP), 10 still life paintings (SL), and 10 Arcimboldo's modified portraits where only objects/parts are detectable (AO). They were also administered a Navon task, a facial recognition test, and evaluated on visuo-perceptual and visuo-constructional abilities. Patients included in the study did not show any deficits that could affect the capability to explore and enjoy artworks. SL and RP was not affected by brain damage regardless of its laterality. On the other hand, we found that RBDP liked AP more than the C participants. Furthermore, we found a positive correlation between aesthetic judgment of AP and visuo-perceptual skills even if the single case analyses failed to find a systematic association between neuropsychological deficits and aesthetic judgment of AP. On the whole, the present data suggest that a right hemisphere lesion may affect aesthetic judgment of ambiguous artworks, even in the absence of exploration or constructional deficits.

  8. Klimt artwork: material investigation by backscattering Fe-57 Mössbauer and Raman spectroscopy

    Science.gov (United States)

    Costa, B. F. O.; Blumers, M.; Sansano, A.; Klingelhöfer, G.; Rull, F.; Lehmann, R.; Renz, F.

    2014-04-01

    The long lost painting "Trumpeting Putto" was discovered and now is not only in the focus of art historian, but has also scientific interest too. We underwent this rare case of an inorganic layered artwork a non-destructive material investigation by employing Raman and MIMOSII Fe-57 Mössbauer spectroscopy. First results indicate several layers, where two layers of different pigments are on an inorganic background layer stabilised by a metallic wire within a wooden frame structure

  9. Neuropsychology of Aesthetic Judgment of Ambiguous and Non-Ambiguous Artworks

    Science.gov (United States)

    Boccia, Maddalena; Barbetti, Sonia; Piccardi, Laura; Guariglia, Cecilia; Giannini, Anna Maria

    2017-01-01

    Several affective and cognitive processes have been found to be pivotal in affecting aesthetic experience of artworks and both neuropsychological as well as psychiatric symptoms have been found to affect artistic production. However, there is a paucity of studies directly investigating effects of brain lesions on aesthetic judgment. Here, we assessed the effects of unilateral brain damage on aesthetic judgment of artworks showing part/whole ambiguity. We asked 19 unilaterally brain-damaged patients (10 left and 9 right brain damaged patients, respectively LBDP and RBDP) and 20 age- and education-matched healthy individuals (controls, C) to rate 10 Arcimboldo’s ambiguous portraits (AP), 10 realistic Renaissance portraits (RP), 10 still life paintings (SL), and 10 Arcimboldo’s modified portraits where only objects/parts are detectable (AO). They were also administered a Navon task, a facial recognition test, and evaluated on visuo-perceptual and visuo-constructional abilities. Patients included in the study did not show any deficits that could affect the capability to explore and enjoy artworks. SL and RP was not affected by brain damage regardless of its laterality. On the other hand, we found that RBDP liked AP more than the C participants. Furthermore, we found a positive correlation between aesthetic judgment of AP and visuo-perceptual skills even if the single case analyses failed to find a systematic association between neuropsychological deficits and aesthetic judgment of AP. On the whole, the present data suggest that a right hemisphere lesion may affect aesthetic judgment of ambiguous artworks, even in the absence of exploration or constructional deficits. PMID:28335460

  10. [Microalgae Species Identification Study with Raman Microspectroscopy Technology].

    Science.gov (United States)

    Shao, Yong-ni; Pan, Jian; Jiang, Lu-lu; He, Yong

    2015-07-01

    Identification and classification of microalgae are basis and premise in the study of physiological and biochemical characteristics for microalgae. Microalgae cells mainly consist of five kinds of biological molecules, including proteins, carbonhydrates, lipids, nucleic acids and pigments. These five kinds of biological molecules contents with different ratio in microalgae cells can be utilized to identify microalgae species as a supplement method. This paper investigated the application of Raman microspectroscopy technology in the field of rapid identification on different algae species such as aschlorella sp. and chlamydomonas sp. . Cultivated in the same conditions of culture medium, illumination duration and intensity, these two kinds of species of microalgae cells were immobilized by using agar, and then the samples were placed under 514. 5 nm Raman laser to collect Raman spectra of different growth periods of different species. An approach to remove fluorescence background in Raman spectra called Rolling Circle Filter (RCF) algorithm was adopted to remove the fluorescent background, and then some preprocessing methods were used to offset the baseline and smooth method of Savitzky-Golay was tried to make the spectra curves of total 80 samples smoother. Then 50 samples were randomly extracted from 80 samples for modeling, and the remaining 30 samples for independent validation. This paper adopted different pretreatment methods, and used the partial least squares (PLS) to establish model between the spectral data and the microalgae species, then compared the effects of different pretreatment methods. The results showed that with Raman microspectroscopy technology, the pretreatment method of max-peak ratio standardization was a more effective identification approach which utilizes the different content ratios of pigments of different microalgae species. This method could efficiently eliminate the influence on Raman signal due to different growth stages of

  11. Raman microspectroscopy investigation of Ag ion-exchanged glass layers.

    Science.gov (United States)

    Rahman, A; Giarola, M; Cattaruzza, E; Gonella, F; Mardegan, M; Trave, E; Quaranta, A; Mariotto, G

    2012-11-01

    The ion-exchange process is widely used to dope silicate glass layers with silver, aimed at controlling the Ag state in view of possible applications, ranging from light waveguide fabrication to nanostructured composite glass synthesis. The silver doped glass structure as well as its prescribed properties depend on both the preparation parameters and the subsequent treatments. Several structural aspects are still open with regard either to the modification of the glass incorporating the dopant, or to clustering phenomena silver undergoes as a function of its local concentration and state, which are in turn strongly dependent on the preparation route. Systematic characterizations of these systems are mandatory to address the role of the various synthesis parameters in giving rise to the observed features, thus pointing out the effective methodologies for the fabrication of silicate glass layers with the desired properties. In this work, the results of micro-Raman, optical absorption and photoluminescence characterizations are presented for soda-lime glass slides doped with silver by Ag(+)-Na+ exchange and subsequent thermal treatments in air. In particular, a cross-section profiling analysis by Raman micro-spectroscopy was performed on Ag ion-exchanged samples after treatment at some different temperatures. The experimental findings allow to elucidate the role of the treatment temperature in the clustering process related to the local Ag concentration inside the exchanged glass layer.

  12. Nonlinear photothermal Mid-Infrared Microspectroscopy with Superresolution

    Science.gov (United States)

    Erramilli, Shyamsunder; Mertiri, Alket; Liu, Hui; Totachawattana, Atcha; Hong, Mi; Sander, Michelle

    2015-03-01

    We describe a nonlinear method for breaking the diffraction limit in mid-infrared microscopy using nonlinear photothermal microspectroscopy. A Quantum Cascade Laser (QCL) tuned to an infrared active vibrational molecular normal mode is used as the pump laser. A low-phase noise Erbium-doped fiber (EDFL) laser is used as the probe. When the incident intensity of the mid-infrared pump laser is increased past a critical threshold, a nanobubble is nucleated, strongly modulating the scatter of the probe beam, in agreement with prior work. Remarkably, we have also found that the photothermal spectral signature of the mid-infrared absorption bifurcates and is strongly narrowed, consistent with an effective ``mean-field'' theory of the observed pitchfork bifurcation. This ultrasharp narrowing can be exploited to obtain mid-infrared images with a resolution that breaks the diffraction limit, without the need of mechanical scanning near-field probes. The method provides a powerful new tool for hyperspectral label-free mid-infrared imaging and characterization of biological tissues and materials science and engineering. We thank our collaborators H. Altug, L. D. Ziegler, J. Mertz, for their advice and generous loan of equipment.

  13. Identification of meat-associated pathogens via Raman microspectroscopy.

    Science.gov (United States)

    Meisel, Susann; Stöckel, Stephan; Rösch, Petra; Popp, Jürgen

    2014-04-01

    The development of fast and reliable sensing techniques to detect food-borne microorganisms is a permanent concern in food industry and health care. For this reason, Raman microspectroscopy was applied to rapidly detect pathogens in meat, which could be a promising supplement to currently established methods. In this context, a spectral database of 19 species of the most important harmful and non-pathogenic bacteria associated with meat and poultry was established. To create a meat-like environment the microbial species were prepared on three different agar types. The whole amount of Raman data was taken as a basis to build up a three level classification model by means of support vector machines. Subsequent to a first classifier that differentiates between Raman spectra of Gram-positive and Gram-negative bacteria, two decision knots regarding bacterial genus and species follow. The different steps of the classification model achieved accuracies in the range of 90.6%-99.5%. This database was then challenged with independently prepared test samples. By doing so, beef and poultry samples were spiked with different pathogens associated with food-borne diseases and then identified. The test samples were correctly assigned to their genus and for the most part down to the species-level i.e. a differentiation from closely-related non-pathogenic members was achieved.

  14. Tilted Two-Dimensional Array Multifocus Confocal Raman Microspectroscopy.

    Science.gov (United States)

    Yabumoto, Sohshi; Hamaguchi, Hiro-O

    2017-07-18

    A simple and efficient two-dimensional multifocus confocal Raman microspectroscopy featuring the tilted-array technique is demonstrated. Raman scattering from a 4 × 4 square foci array passing through a 4 × 4 confocal pinhole array is tilted with a periscope. The tilted array of Raman scattering signals is dispersed by an imaging spectrograph onto a CCD detector, giving 16 independent Raman spectra formed as 16 bands with different heights on the sensor. Use of a state-of-the-art imaging spectrograph enables high-precision wavenumber duplicability of the 16 spectra. This high duplicability makes the simultaneously obtained spectra endurable for multivariate spectral analyses, which is demonstrated by a singular value decomposition analysis for Raman spectra of liquid indene. Although the present implementation attains only 16 measurement points, the number of points can be extended to larger than 100 without any technical leaps. Limit of parallelization depends on the interval of measurement points as well as the performance of the optical system. Criteria for finding the maximum feasible number are discussed.

  15. Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry.

    Science.gov (United States)

    Meade, A D; Clarke, C; Byrne, H J; Lyng, F M

    2010-02-01

    The scientific literature contains an ever-growing number of reports of applications of vibrational spectroscopy as a multivariate non-invasive tool for analysis of biological effects at the molecular level. Recently, Fourier transform infrared microspectroscopy (FTIRM) has been demonstrated to be sensitive to molecular events occurring in cells and tissue after exposure to ionizing radiation. In this work the application of FTIRM in the examination of dose-dependent molecular effects occurring in skin cells after exposure to ionizing radiation with the use of partial least-squares regression (PLSR) and generalized regression neural networks (GRNN) was studied. The methodology is shown to be sensitive to molecular events occurring with radiation dose and time after exposure. The variation in molecular species with dose and time after irradiation is shown to be non-linear by virtue of the higher modeling efficiency yielded from the non-linear algorithms. Dose prediction efficiencies of approximately +/-10 mGy were achieved at 96 h after irradiation, highlighting the potential applications of the methodology in radiobiological dosimetry.

  16. Shining light on the microbial world the application of Raman microspectroscopy.

    Science.gov (United States)

    Huang, Wei E; Li, Mengqiu; Jarvis, Roger M; Goodacre, Royston; Banwart, Steven A

    2010-01-01

    Raman microspectroscopy is a noninvasive, label-free, and single-cell technology for biochemical analysis of individual mammalian cells, organelles, bacteria, viruses, and nanoparticles. Chemical information derived from a Raman spectrum provides comprehensive and intrinsic information (e.g., nucleic acids, protein, carbohydrates, and lipids) of single cells without the need of any external labeling. A Raman spectrum functions as a molecular "fingerprint" of single cells, which enables the differentiation of cell types, physiological states, nutrient condition, and variable phenotypes. Raman microspectroscopy combined with stable isotope probing, fluorescent in situ hybridization, and optical tweezers offers a culture-independent approach to study the functions and physiology of unculturable microorganisms in the ecosystem. Here, we review the application of Raman microspectroscopy to microbiology research with particular emphasis on single bacterial cells.

  17. Identification of monoclinic calcium pyrophosphate dihydrate and hydroxyapatite in human sclera using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Chen, Ko-Hua; Li, Mei-Jane; Cheng, Wen-Ting;

    2009-01-01

    Raman microspectroscopy was first used to determine the composition of a calcified plaque located at the pterygium-excision site of a 51-year-old female patient's left nasal sclera after surgery. It was unexpectedly found that the Raman spectrum of the calcified sample at 1149, 1108, 1049, 756, 517...... to the characteristic peak at 958/cm of hydroxyapatite (HA). This is the first study to report the spectral biodiagnosis of both monoclinic CPPD and HA co-deposited in the calcified plaque of a patient with sclera dystrophic calcification using Raman microspectroscopy....

  18. KioskAR: An Augmented Reality Game as a New Business Model to Present Artworks

    Directory of Open Access Journals (Sweden)

    Yoones A. Sekhavat

    2016-01-01

    Full Text Available This paper presents the architecture of KioskAR, which is a pervasive game implemented using augmented reality (AR. This game introduces a new business model that makes it possible for players to present their artworks in virtual kiosks using augmented reality, while they are having fun playing the game. In addition to competition between the players in the game, this game requires social interaction between players to earn more points. A user study is conducted to evaluate the sense of presence and the usability of the application. The results of experiments show that KioskAR can achieve a high level of usability as well as sense of presence.

  19. Electronics for artists adding light, motion, and sound to your artwork

    CERN Document Server

    Field, Simon Quellen

    2015-01-01

    With today's modern technology-LEDs, servomotors, motion sensors, speakers, and more-artwork can incorporate elements of light, sound, and motion for dramatic effects. Author and educator Simon Quellen Field has developed a primer for creative individuals looking for new ways to express themselves though electronically enhanced art. Following step-by-step examples of basic circuitry and programming, readers can develop the skills necessary to enhance their works of art. The book also features art projects to try, including a bouquet of glowing flowers, an LED metronome, a talking computer, a s

  20. 2nd EUROPEAN CONFERENCE ON ELECTROCHEMICAL METHODS APPLIED TO THE CONSERVATION OF ARTWORKS

    OpenAIRE

    Domenech Carbo, Mª Teresa; DOMENECH CARBO, ANTONIO

    2014-01-01

    This book is issued at the occasion of the 2nd European Conference on electrochemical methods applied to the conservation of artworks, held in Valencia, on 23th September, 2014. This Conference has been hosted by the Instituto Universitario de Restauración del Patrimonio of the Universitat Politècnica de València and has been organized under the auspices of the Ministerio de Ciencia e Innovación, the Universitat Politécnica de València, the Universitat de València and the Universisad de Grana...

  1. Public artworks and the freedom of panorama controversy: a case of Wikimedia influence

    Directory of Open Access Journals (Sweden)

    Mélanie Dulong de Rosnay

    2017-02-01

    Full Text Available Freedom of panorama, an exception to copyright law, is the legal right, in some countries, to publish pictures of artworks which are in public space. A controversy emerged at the time of the discussions towards the revision of the 2001 European Copyright Directive, opposing free knowledge communities as advocates of the public domain, and authors’ collecting societies aiming at preserving their constituents’ income. The article decrypts the legal framework and political implications of a topic which has been polarising copyright reform lobbyists, and analyses its development within the public debate since the XIXth century. Articulating legal analysis with text mining, this article aims at contributing to the policy debate.

  2. Artwork 2016

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    This book aims, by way of examples, to encourage and inspire the readers to explore their own abilities in art. Many people have an urge to try, but it takes a little effort to start. Rewards are the enrichment of life by artistic activities likely to make you more relaxed and reflective, as well...

  3. Artwork 2016

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    as helping you to avoid becoming idle when you reach the pension age. Das Ziel dieses Buches ist, mit Beispielen, die Leser zu ermutigen und zu inspirieren, um ihre eigenen Fähigkeiten in der Kunst zu erkunden. Viele Menschen haben den Drang zu probieren, aber es dauert ein wenig Mühe um zu starten...

  4. Analysis of Wilhelm Ostwald's "Colour Organ" with Raman microspectroscopy

    Science.gov (United States)

    Bridarolli, Alexandra; Atak, Sefkan; Herm, Christoph

    2016-11-01

    The "Scientific Colour Organ" is a collection of 680 pigment powders, created by the chemist Wilhelm Ostwald in 1925 as a means to represent his colour system. Today, it remains a leading part of colour theory. Analysis of these materials was undertaken to understand how the colour system was realised and to gain indications for preservation of the collection to which it belongs. Dispersive Raman microspectroscopy was applied directly to the powders, as well as using alternative techniques to suppress fluorescence. Barium sulphate was detected in all of the samples with one exception. Portable X-ray fluorescence revealed that this compound was a constituent of lithopone pigment. Raman spectroscopy furthermore revealed synthetic ultramarine (C.I. PB 29) as well as six different synthetic organic pigments and dyes (C.I. PY3; C.I. PO5; C.I. PR81:1; C.I. PV2 and two different triarylmethane dyes). Thin-layer chromatography was applied to determine the exact combination of dyes causing the gradual change in colour of each powder compared to the adjacent samples. With the exception of triarylmethane, the synthetic organic dyes could be identified with Raman spectroscopy directly on the chromatographic plate. The efficiency of thin-layer chromatography combined with Raman spectroscopy for identification of organic pigments could thus be shown. X-ray fluorescence indicated the presence of tungsten-molybdenum lakes in some samples. Comparison of the analytical results to information published by Oswald in 1917 showed that he switched to more light-stable synthetic organic pigments used for his "Scientific Colour Organ".

  5. Metal stearate distributions in modern artists' oil paints: surface and cross-sectional investigation of reference paint films using conventional and synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Osmond, Gillian; Boon, Jaap J; Puskar, Ljiljana; Drennan, John

    2012-10-01

    Zinc oxide is a prevalent industrial-age pigment that readily reacts with fatty acids in oil-based paints to form zinc carboxylates. Zinc stearate aggregates are associated with deterioration in late nineteenth and twentieth century paintings. The current study uses both conventional and synchrotron Fourier transform infrared spectroscopy (FT-IR) to investigate metal carboxylate composition in a range of naturally aged artists' oil paints and reference paint film draw-downs. The paints contain zinc oxide alone or in combination with lead white, titanium white, and aluminum stearate and are prepared with linseed and safflower oils. Attenuated total reflectance (ATR)-FT-IR using the conventional source identifies marked differences in carboxylate profiles between exposed and protected surfaces in a large number of samples. Synchrotron FT-IR microspectroscopy of thin paint cross-sections maps metal carboxylate distributions at high spatial resolution and resolves broad concentration gradients and micrometer-scale phase separation of carboxylate species. Aluminum stearate, a common paint additive, is found to influence the distribution of zinc carboxylates more strongly than pigment composition or oil type. The presence of aluminum stearate results in higher concentrations and more pronounced separation of saturated C16 and C18 chain zinc carboxylates in the margin of paint nearest the polyester substrate. The presence of aluminum stearate in association with zinc oxide has a clear influence on zinc carboxylate formation and distribution, with potential implications for long term stability of vulnerable paintings.

  6. Examining cultural drifts in artworks through history and development: cultural comparisons between Japanese and western landscape paintings and drawings.

    Science.gov (United States)

    Nand, Kristina; Masuda, Takahiko; Senzaki, Sawa; Ishii, Keiko

    2014-01-01

    Research on cultural products suggest that there are substantial cultural variations between East Asian and European landscape masterpieces and contemporary members' landscape artwork (Masuda et al., 2008c), and that these cultural differences in drawing styles emerge around the age of 8 (Senzaki et al., 2014b). However, culture is not static. To explore the dynamics of historical and ontogenetic influence on artistic expressions, we examined (1) 17-20th century Japanese and Western landscape masterpieces, and (2) cross-sectional adolescent data in landscape artworks alongside previous findings of elementary school-aged children, and undergraduates. The results showed cultural variations in artworks and masterpieces as well as substantial "cultural drifts" (Herskovits, 1948) where at certain time periods in history and in development, people's expressions deviated from culturally default patterns but occasionally returned to its previous state. The bidirectional influence of culture and implications for furthering the discipline of cultural psychology will be discussed.

  7. Examining cultural drifts in artworks through history and development: cultural comparisons between Japanese and western landscape paintings and drawings

    Science.gov (United States)

    Nand, Kristina; Masuda, Takahiko; Senzaki, Sawa; Ishii, Keiko

    2014-01-01

    Research on cultural products suggest that there are substantial cultural variations between East Asian and European landscape masterpieces and contemporary members' landscape artwork (Masuda et al., 2008c), and that these cultural differences in drawing styles emerge around the age of 8 (Senzaki et al., 2014b). However, culture is not static. To explore the dynamics of historical and ontogenetic influence on artistic expressions, we examined (1) 17–20th century Japanese and Western landscape masterpieces, and (2) cross-sectional adolescent data in landscape artworks alongside previous findings of elementary school-aged children, and undergraduates. The results showed cultural variations in artworks and masterpieces as well as substantial “cultural drifts” (Herskovits, 1948) where at certain time periods in history and in development, people's expressions deviated from culturally default patterns but occasionally returned to its previous state. The bidirectional influence of culture and implications for furthering the discipline of cultural psychology will be discussed. PMID:25285085

  8. Examining Cultural Drifts in Artworks through History and Development: Cultural Comparisons between Japanese and Western Landscape Paintings and Drawings.

    Directory of Open Access Journals (Sweden)

    Kristina eNand

    2014-09-01

    Full Text Available Research on cultural products suggest that there are substantial cultural variations between East Asian and European landscape masterpieces and contemporary members’ landscape artwork (Masuda et al., 2008, and that these cultural differences in drawing styles emerge around the age of 8 (Senzaki et al., 2014. However, culture is not static. To explore the dynamics of historical and ontogenetic influence on artistic expressions, we examined (1 17th to 20th century Japanese and Western landscape masterpieces, and (2 cross-sectional adolescent data in landscape artworks alongside previous findings of elementary school-aged children, and undergraduates. The results showed cultural variations in artworks and masterpieces as well as substantial cultural drifts (Herskovits, 1948 where at certain time periods in history and in development, people’s expressions deviated from culturally default patterns but occasionally returned to its previous state. The bidirectional influence of culture and implications for furthering the discipline of cultural psychology will be discussed.

  9. Portable apparatus for in situ x-ray diffraction and fluorescence analyses of artworks.

    Science.gov (United States)

    Eveno, Myriam; Moignard, Brice; Castaing, Jacques

    2011-10-01

    A portable X-ray fluorescence/X-ray diffraction (XRF/XRD) system for artwork studies has been designed constructed and tested. It is based on Debye Scherrer XRD in reflection that takes advantage of many recent improvements in the handling of X-rays (polycapillary optics; advanced two-dimensional detection). The apparatus is based on a copper anode air cooled X-ray source, and the XRD analysis is performed on a 5-20 μm thick layer from the object surface. Energy dispersive XRF elemental analysis can be performed at the same point as XRD, giving elemental compositions that support the interpretation of XRD diagrams. XRF and XRD analyses were tested to explore the quality and the limits of the analytical technique. The XRD diagrams are comparable in quality with diagrams obtained with conventional laboratory equipment. The mineral identification of materials in artwork is routinely performed with the portable XRF-XRD system. Examples are given for ceramic glazes containing crystals and for paintings where the determination of pigments is still a challenge for nondestructive analysis. For instance, lead compounds that provide a variety of color pigments can be easily identified as well as a pigment such as lapis lazuli that is difficult to identify by XRF alone. More than 70 works of art have been studied in situ in museums, monuments, etc. In addition to ceramics and paintings, these works include bronzes, manuscripts, etc., which permit improvement in the comprehension of ancient artistic techniques.

  10. THz Spectroscopic Identification of Red Mineral Pigments in Ancient Chinese Artworks

    Science.gov (United States)

    Yang, Yuping; Zhai, Dongwei; Zhang, Zhenwei; Zhang, Cunlin

    2017-10-01

    Nondestructive analysis of historical objects is of significance for cultural heritage conservation. In this paper, terahertz time-domain spectroscopy (THz-TDS) was used to distinguish seven red mineral pigments used in ancient Chinese artworks. Two absorption features of natural minerals HgS and four highly resolved spectral features of mineral pigment Pb3O4 were observed and identified as their fingerprints in the range 0.2 to 3.0 THz, based on which the spatial distribution of individual chemical substances including cinnabar, vermilion, and red lead were clearly revealed at various frequencies using terahertz spectroscopy imaging. Moreover, a noncontact evaluation of thickness changing and dehydration of a wet painting was monitored by inferring time delay as well as signal amplitude of THz pulses transmitted through the painting. In order to demonstrate the feasibility of THz-TDS and THz imaging for authentic artworks detection, a complete set of THz analysis of two nineteenth century wall paintings discovered in the Fuchen Temple of the Forbidden City, Beijing, was performed and the results indicate that THz measurement techniques provide a noninvasive and nondestructive solution for the care, preservation, and restoration of cultural relics.

  11. New Strategy for the Cleaning of Paper Artworks: A Smart Combination of Gels and Biosensors

    Directory of Open Access Journals (Sweden)

    Laura Micheli

    2014-01-01

    Full Text Available In this work an outlook on the design and application, in the cultural heritage field, of new tools for diagnostic and cleaning use, based on biocompatible hydrogels and electrochemical sensors, is reported. The use of hydrogels is intriguing because it does not require liquid treatment that could induce damage on artworks, while electrochemical biosensors not only are easy to prepare, but also can be selective for a specific compound and therefore are suitable for monitoring the cleaning process. In the field of restoration of paper artworks, more efforts have to be done in order to know how to perform the best way for an effective restoration. Rigid Gellan gel, made up of Gellan gum and calcium acetate, was proposed as a paper cleaning treatment, and selective biosensors for substances to be removed from this gel have been obtained by choosing the appropriate enzymes to be immobilized. Using this approach, it is possible to know when the cleanup process will be completed, avoiding lengthy and sometimes unnecessary cleaning material applications.

  12. Icons of Just Is: Justice, Suffering, and the Artwork of Samuel Bak

    Directory of Open Access Journals (Sweden)

    Gary A. Phillips

    2017-06-01

    Full Text Available This paper examines select paintings by Holocaust survivor and painter Samuel Bak from his recent Just Is series. The essay explores ways Bak’s art bears witness to suffering. He creatively interrogates and reanimates the iconic figure of Lady Justice and the biblical principle of the lex talionis (“eye for an eye” in order to fashion alternative icons fit for an age of atrocity and loss. Bak’s artwork gives visual expression to Theodor Adorno’s view of the precariousness of art after Auschwitz. It is art’s responsibility to attend to the burden of real suffering experiences (the burden of the empirical and to think in contradictions, which renders art both adequate and inadequate in standing up against the injustice of other’s suffering. Through inventive juxtaposition of secular and sacred symbols, Bak displays the paradox of representation after the Holocaust and art’s precarious responsibility giving voice to suffering. Bak fashions visual spaces in which barbarity and beauty coincide and collide. He invites viewers into this space and into dialogue about justice’s standing and promises. Do Bak's remade icons of Just Is lament a permanent loss of justice and peace, or do they point tentatively to possibilities of life lived in a damaged world with an alternative Just Is? Bak’s artwork prompts such vexing questions for his viewers to contemplate and leaves them to decide what must be done.

  13. Sensitive Skin: Assessment of the Skin Barrier Using Confocal Raman Microspectroscopy

    NARCIS (Netherlands)

    Richters, R.J.H.; Falcone, D.; Uzunbajakava, N.E.; Varghese, B.; Caspers, P.J.; Puppels, G.J.; Erp, P.E.J. van; Kerkhof, P.C.M. van de

    2017-01-01

    BACKGROUND/AIMS: Sensitive skin (SS), a frequently reported condition in the Western world, has been suggested to be underlined by an impaired skin barrier. The aim of this study was to investigate the skin barrier molecular composition in SS subjects using confocal Raman microspectroscopy (CRS),

  14. Carotenoids located in human lymphocyte subpopulations and Natural Killer cells by Raman microspectroscopy

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Garritsen, H.S.P.; Garritsen, H.S.P.; Kummer, J.A.; Greve, Jan

    1993-01-01

    The presence and subcellular location of carotenoids in human lymphocyte sub-populations (CD4+, CD8+, T-cell receptor-γδ+, and CD19+ ) and natural killer cells (CD16+ ) were studied by means of Raman microspectroscopy. In CD4+ lymphocytes a high concentration (10-3M) of carotenoids was found in the

  15. Raman micro-spectroscopy for quantitative thickness measurement of nanometer thin polymer films

    NARCIS (Netherlands)

    Liszka, Barbara M.; Lenferink, Aufried T.M.; Witkamp, Geert-Jan; Otto, Cees

    2015-01-01

    The sensitivity of far-field Raman micro-spectroscopy was investigated to determine quantitatively the actual thickness of organic thin films. It is shown that the thickness of organic films can be quantitatively determined down to 3 nm with an error margin of 20% and down to 1.5 nm with an error ma

  16. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis.

    Science.gov (United States)

    Santos, P M; Pereira-Filho, E R; Rodriguez-Saona, L E

    2013-05-01

    The application of attenuated total reflectance mid-infrared microspectroscopy (MIR-microspectroscopy) was evaluated as a rapid method for detection and quantification of milk adulteration. Milk samples were purchased from local grocery stores (Columbus, OH, USA) and spiked at different concentrations of whey, hydrogen peroxide, synthetic urine, urea and synthetic milk. Samples were place on a 192-well microarray slide, air-dried and spectra were collected by using MIR-microspectroscopy. Pattern recognition analysis by Soft Independent Modeling of Class Analogy (SIMCA) showed tight and well-separated clusters allowing discrimination of control samples from adulterated milk. Partial Least Squares Regression (PLSR) showed standard error of prediction (SEP) ~2.33, 0.06, 0.41, 0.30 and 0.014 g/L for estimation of levels of adulteration with whey, synthetic milk, synthetic urine, urea and hydrogen peroxide, respectively. Results showed that MIR-microspectroscopy can provide an alternative methodology to the dairy industry for screening potential fraudulent practice for economic adulteration of cow's milk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Raman microspectroscopy: shining a new light on reproductive medicine.

    Science.gov (United States)

    Mallidis, Con; Sanchez, Victoria; Wistuba, Joachim; Wuebbeling, Frank; Burger, Martin; Fallnich, Carsten; Schlatt, Stefan

    2014-01-01

    in investigative and therapeutic reproductive medicine. However, without stringent assessment and the clear representation of the methods' findings, their true meaning cannot be revealed nor should any conclusions be hastily derived. For the potential of Raman microspectroscopy to be truly realized, the dependability and reliability of the technique and its results can only be ascertained by multidisciplinary collaborations that undertake carefully conducted, controlled and analysed studies.

  18. Label-free detection of tumor markers in a colon carcinoma tumor progression model by confocal Raman microspectroscopy

    Science.gov (United States)

    Scalfi-Happ, Claudia; Rück, Angelika; Udart, Martin; Hauser, Carmen; Dürr, Christine; Kriebel, Martin

    2013-06-01

    Living colon carcinoma cells were investigated by confocal Raman microspectroscopy. An in vitro model of tumor progression was established. Evaluation of data sets by cluster analysis reveals that lipid bodies might be a valuable diagnostic parameter for early carcinogenesis.

  19. Inexpensive, Near-Infrared Imaging of Artwork Using a Night-Vision Webcam for Chemistry-of-Art Courses

    Science.gov (United States)

    Smith, Gregory D.; Nunan, Elizabeth; Walker, Claire; Kushel, Dan

    2009-01-01

    Imaging of artwork is an important aspect of art conservation, technical art history, and art authentication. Many forms of near-infrared (NIR) imaging are used by conservators, archaeologists, forensic scientists, and technical art historians to examine the underdrawings of paintings, to detect damages and restorations, to enhance faded or…

  20. How to Preserve Photographic Artworks for the Future : Chemical and Physical Interactions and Implications for Conservation Strategies

    NARCIS (Netherlands)

    Reijers, E.B.

    2017-01-01

    The combination of photographic prints with additional materials such as paints, varnishes, glues, etc. has given rise to a new type of artworks known as photoworks or photographic art. These photoworks have become a important part of our cultural heritage, and are being recognised as contemporary a

  1. Inexpensive, Near-Infrared Imaging of Artwork Using a Night-Vision Webcam for Chemistry-of-Art Courses

    Science.gov (United States)

    Smith, Gregory D.; Nunan, Elizabeth; Walker, Claire; Kushel, Dan

    2009-01-01

    Imaging of artwork is an important aspect of art conservation, technical art history, and art authentication. Many forms of near-infrared (NIR) imaging are used by conservators, archaeologists, forensic scientists, and technical art historians to examine the underdrawings of paintings, to detect damages and restorations, to enhance faded or…

  2. THE ARTWORK IN THE FIELD OF ART: THE STAKE, THE CAPITAL, THE HABITUÉS

    Directory of Open Access Journals (Sweden)

    A. A. Kalashnikova

    2017-01-01

    Full Text Available The article analyzes the relationship between agents of the art field and works created by them. The relevance of this topic is conditioned both by the growing social interest in the art and economic characteristics of this interest (rising prices and volume of art sales on the world market. The theoretical basis of the study is the theory of symbolic production fields created by P. Bourdieu, as well as criticism of this theory from the standpoint of sociological “returning to things” approach. Attempting to complement the agent-based approach of the theory of art field with the artwork consideration, we reveal the role of objects in the success of an agent in a symbolic game. The basis of our research consists of the fragmentary historical retrospective of art development, sales at different levels of the art market data and information obtained during author’s empirical research of the Ukrainian market of art. We postulate that works of art are involved in constructing the fields along with the agents, but do not operate in an independent or comparable to agents way, but perform delegated functions. Basing on the materiality of the artwork (if not physical, then legal and social, we consider the spatial and social relations, which the product being created is included in. These are the inclusion in the exhibition space, the storage and its terms, the spatial distribution in micro- and macro context, the movement and the sale. It is shown how physical and social space are interconnected: the transfer in one is immanent to the transfer in other. Analyzing the works in their relationship with the agents of the field of art, we find a parallelism of the trajectories of agents and objects that they have created, or which they are related to. Thus, the body of the artist’s works is understood as a socially marked out-object entity, structured by evolution of the author’s artistic style and at the same time structuringhis claims to change

  3. Concurrent studies on artworks by digital speckle pattern interferometry and thermographic analysis

    Science.gov (United States)

    Arena, Giovanni; Rippa, Massimo; Mormile, Pasquale; Grilli, Mariangela; Paturzo, Melania; Fatigati, Giancarlo; Ferraro, Pietro

    2016-03-01

    We utilize Digital Speckle Pattern Interferometry and Square Pulse Thermography Analysis, as complementary tools for cultural heritage artifacts diagnostics. The concurrent utilization of two methods provide the possibility to complement and validate the effective understanding of each individual technique results, that are not always easy to interpret. Both techniques are non-invasive and can be applied on almost any type of archaeological finds, providing relevant information about their state of conservation. The applications include the whole structure analysis, as well as the detection of detachments, micro-cracks, hidden damages. The diagnostic investigation can be carried out before, during and after a restoration. It is also possible the real time monitoring of the behavior of the object according to the environment thermo-hygrometric changes. Examples of analysis on different artworks are illustrated.

  4. Surface modification of plasticized PVC by dry cleaning methods: Consequences for artworks

    Science.gov (United States)

    Morales Muñoz, C.

    2010-03-01

    A study of dry cleaning methods for plasticized PVC has been undertaken using three commercial cloths recommended for plastics artworks, in addition to cotton swabs traditionally used in art conservation. The evaluation of the cleaning has focussed on the efficiency of the cleaners, and the physical and chemical damages caused by the cleaning. The physical and chemical modifications of the PVC surface have been studied by optical microscopy, non-contact profilometry and ATR-FTIR spectroscopy, while spectrocolorimetry and non-contact profilometry have been used for evaluating the cleaning efficiency. The results have shown that the cleaner's composition and the cleaning time play an important role in damaging the plasticized PVC surface. On the contrary, it has not been completely determined if the texture of the cleaning agents' surface had an influence on the cleaning efficiency.

  5. DNA Methylation Changes in Valproic Acid-Treated HeLa Cells as Assessed by Image Analysis, Immunofluorescence and Vibrational Microspectroscopy

    Science.gov (United States)

    Veronezi, Giovana M. B.; Felisbino, Marina Barreto; Gatti, Maria Sílvia V.; Vidal, Benedicto de Campos

    2017-01-01

    Valproic acid (VPA), a well-known histone deacetylase inhibitor, has been reported to affect the DNA methylation status in addition to inducing histone hyperacetylation in several cell types. In HeLa cells, VPA promotes histone acetylation and chromatin remodeling. However, DNA demethylation was not checked in this cell model for standing effects longer than those provided by histone acetylation, which is a rapid and transient phenomenon. Demonstration of VPA-induced DNA demethylation in HeLa cells would contribute to understanding the effect of VPA on an aggressive tumor cell line. In the present work, DNA demethylation in VPA-treated HeLa cells was assessed by image analysis of chromatin texture, the abundance of 5-methylcytosine (5mC) immunofluorescence signals and Fourier transform-infrared (FT-IR) microspectroscopy centered on spectral regions related to the vibration of–CH3 groups. Image analysis indicated that increased chromatin unpacking promoted by a 4-h-treatment with 1.0 mM VPA persisted for 24 h in the absence of the drug, suggesting the occurrence of DNA demethylation that was confirmed by decreased 5mC immunofluorescence signals. FT-IR spectra of DNA samples from 1 mM or 20 mM VPA-treated cells subjected to a peak fitting analysis of the spectral window for–CH3 stretching vibrations showed decreased vibrations and energy of these groups as a function of the decreased abundance of 5mC induced by increased VPA concentrations. Only the 20 mM-VPA treatment caused an increase in the ratio of -CH3 bending vibrations evaluated at 1375 cm-1 in relation to in-plane vibrations of overall cytosines evaluated at 1492 cm-1. CH3 stretching vibrations showed to be more sensitive than–CH3 bending vibrations, as detected with FT-IR microspectroscopy, for studies aiming to associate vibrational spectroscopy and changes in DNA 5mC abundance. PMID:28114349

  6. Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs

    Energy Technology Data Exchange (ETDEWEB)

    Zammit, Gabrielle, E-mail: gabrielle.zammit@gmail.com [Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta (Malta); Sanchez-Moral, Sergio [Dept. de Geologia, Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Albertano, Patrizia [Dept. of Biology, Faculty of Science, University of Rome ' Tor Vergata' , Rome (Italy)

    2011-06-15

    Mineral structures formed by bacterial and microalgal biofilms growing on the archaeological surface in Maltese hypogea were studied using Energy Dispersive X-Ray Spectroscopy (EDS) coupled to Environmental Scanning Electron Microscopy (ESEM), X-ray micro-diffraction (XRD) and X-ray fluorescence (XRF). These techniques have shown that mineral structures having different morphologies and chemical composition were associated with the microorganisms in the subaerophytic biofilm. Salt efflorescences and mineral deposits on the archaeological surface were often formed from gypsum (CaSO{sub 4}{center_dot} 2H{sub 2}O), halite (NaCl) and calcite (CaCO{sub 3}). Biogenic carbonates produced by microbial activities were a common occurrence. These assumed different forms, such as the production of mineral coats around cyanobacterial sheaths and the occurrence of calcite fibres with different morphologies on the surface of the biofilms. Moreover, vaterite (CaCO{sub 3}) spherulites which appeared hollow in cross-section were observed. The presence of struvite was recorded from one catacomb site. These investigations have facilitated the study of the neoformation of metastable minerals by microbially mediated processes, which potentially contribute to a better understanding of the biodeterioration of artworks in Maltese palaeo-Christian catacombs. - Research highlights: {yields} Mineral structures formed by subaerial biofilms growing in hypogea were examined. {yields} Efflorescences and mineral deposits were often formed from gypsum, halite, and calcite. {yields} Biogenic carbonates assumed different forms e.g. vaterite spherulite, calcite fibres. {yields} The formation of rare minerals e.g. struvite was mediated by bacteria. {yields} Understanding biomineralisation processes facilitates the conservation of artworks.

  7. Modern technology in originality and authentication dispute on movable and detached artworks

    Science.gov (United States)

    Tornari, Vivi; Kouloumpi, Eleni; Koussiaki, Fotini

    2013-05-01

    Begin the abstract two lines below author names and addresses. The abstract summarizes key findings in the paper. It is a paragraph of 250 words or less. For the keywords, select up to 8 key terms for a search on your manuscript's subject. Precious artworks are in constant loan due to the increase demand for tour exhibitions around the globe. Archeological findings and historical parts of wallpaintings are detached and get into the route of a fraud market. Most of these detached art pieces are lost, destroyed or hidden by public view by anonymous collectors. The damage to the historical, cultural and aesthetic values is most of the times irreversible. Originality and authentication are essential properties in the identification of movable artworks provoking dispute and fraud actions endangering the long-lasting public approach to the precious but disputed works of art. Scientific community and technology developments are implemented in the battle against fraud and misinterpretation of origin through systematic and material classified studies. European projects have influenced and provoked intense research in this fragile field of modern technology applications and recent results are presented. Investigation protocols and classification needed for the standardization of valuation of these critical properties comprise an intense field of research embraced with international interest. In this paper it is presented long-lasting research effort with photonic technologies to bridge the results with the conventional means and the conservation expert opinion aiding to the identification and ensuring the origin of a masterpiece. Results from laboratory investigation and characteristic examples of paintings faced with the dispute of their authentication are given.

  8. FTIR Microspectroscopy Coupled with Two-Class Discrimination Segregates Markers Responsible for Inter- and Intra-Category Variance in Exfoliative Cervical Cytology.

    Science.gov (United States)

    Walsh, Michael J; Singh, Maneesh N; Stringfellow, Helen F; Pollock, Hubert M; Hammiche, Azzedine; Grude, Olaug; Fullwood, Nigel J; Pitt, Mark A; Martin-Hirsch, Pierre L; Martin, Francis L

    2008-03-25

    Infrared (IR) absorbance of cellular biomolecules generates a vibrational spectrum, which can be exploited as a "biochemical fingerprint" of a particular cell type. Biomolecules absorb in the mid-IR (2-20 mum) and Fourier-transform infrared (FTIR) microspectroscopy applied to discriminate different cell types (exfoliative cervical cytology collected into buffered fixative solution) was evaluated. This consisted of cervical cytology free of atypia (i.e. normal; n = 60), specimens categorised as containing low-grade changes (i.e. CIN1 or LSIL; n = 60) and a further cohort designated as high-grade (CIN2/3 or HSIL; n = 60). IR spectral analysis was coupled with principal component analysis (PCA), with or without subsequent linear discriminant analysis (LDA), to determine if normal versus low-grade versus high-grade exfoliative cytology could be segregated. With increasing severity of atypia, decreases in absorbance intensity were observable throughout the 1,500 cm(-1) to 1,100 cm(-1) spectral region; this included proteins (1,460 cm(-1)), glycoproteins (1,380 cm(-1)), amide III (1,260 cm(-1)), asymmetric (nu(as)) PO(2) (-) (1,225 cm(-1)) and carbohydrates (1,155 cm(-1)). In contrast, symmetric (nu(s)) PO(2) (-) (1,080 cm(-1)) appeared to have an elevated intensity in high-grade cytology. Inter-category variance was associated with protein and DNA conformational changes whereas glycogen status strongly influenced intra-category. Multivariate data reduction of IR spectra using PCA with LDA maximises inter-category variance whilst reducing the influence of intra-class variation towards an objective approach to class cervical cytology based on a biochemical profile.

  9. FTIR Microspectroscopy Coupled with Two-Class Discrimination Segregates Markers Responsible for Inter- and Intra-Category Variance in Exfoliative Cervical Cytology

    Directory of Open Access Journals (Sweden)

    Mark A. Pitt

    2008-01-01

    Full Text Available Infrared (IR absorbance of cellular biomolecules generates a vibrational spectrum, which can be exploited as a “biochemical fingerprint” of a particular cell type. Biomolecules absorb in the mid-IR (2–20 μm and Fourier-transform infrared (FTIR microspectroscopy applied to discriminate different cell types (exfoliative cervical cytology collected into buffered fixative solution was evaluated. This consisted of cervical cytology free of atypia (i.e. normal; n = 60, specimens categorised as containing low-grade changes (i.e. CIN1 or LSIL; n = 60 and a further cohort designated as high-grade (CIN2/3 or HSIL; n = 60. IR spectral analysis was coupled with principal component analysis (PCA, with or without subsequent linear discriminant analysis (LDA, to determine if normal versus low-grade versus high-grade exfoliative cytology could be segregated. With increasing severity of atypia, decreases in absorbance intensity were observable throughout the 1,500 cm−1 to 1,100 cm−1 spectral region; this included proteins (1,460 cm−1, glycoproteins (1,380 cm−1, amide III (1,260 cm−1, asymmetric (νas PO2 − (1,225 cm−1 and carbohydrates (1,155 cm−1. In contrast, symmetric (νs PO2 − (1,080 cm−1 appeared to have an elevated intensity in high-grade cytology. Inter-category variance was associated with protein and DNA conformational changes whereas glycogen status strongly influenced intra-category. Multivariate data reduction of IR spectra using PCA with LDA maximises inter-category variance whilst reducing the influence of intra-class variation towards an objective approach to class cervical cytology based on a biochemical profile.

  10. Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications

    Science.gov (United States)

    Krafft, Christoph; Dietzek, Benjamin; Schmitt, Michael; Popp, Jürgen

    2012-04-01

    A tutorial article is presented for the use of linear and nonlinear Raman microspectroscopies in biomedical diagnostics. Coherent anti-Stokes Raman scattering (CARS) is the most frequently applied nonlinear variant of Raman spectroscopy. The basic concepts of Raman and CARS are introduced first, and subsequent biomedical applications of Raman and CARS are described. Raman microspectroscopy is applied to both in-vivo and in-vitro tissue diagnostics, and the characterization and identification of individual mammalian cells. These applications benefit from the fact that Raman spectra provide specific information on the chemical composition and molecular structure in a label-free and nondestructive manner. Combining the chemical specificity of Raman spectroscopy with the spatial resolution of an optical microscope allows recording hyperspectral images with molecular contrast. We also elaborate on interfacing Raman spectroscopic tools with other technologies such as optical tweezing, microfluidics and fiber optic probes. Thereby, we aim at presenting a guide into one exciting branch of modern biophotonics research.

  11. Competitive evaluation of data mining algorithms for use in classification of leukocyte subtypes with Raman microspectroscopy.

    Science.gov (United States)

    Maguire, A; Vega-Carrascal, I; Bryant, J; White, L; Howe, O; Lyng, F M; Meade, A D

    2015-04-07

    Raman microspectroscopy has been investigated for some time for use in label-free cell sorting devices. These approaches require coupling of the Raman spectrometer to complex data mining algorithms for identification of cellular subtypes such as the leukocyte subpopulations of lymphocytes and monocytes. In this study, three distinct multivariate classification approaches, (PCA-LDA, SVMs and Random Forests) are developed and tested on their ability to classify the cellular subtype in extracted peripheral blood mononuclear cells (T-cell lymphocytes from myeloid cells), and are evaluated in terms of their respective classification performance. A strategy for optimisation of each of the classification algorithm is presented with emphasis on reduction of model complexity in each of the algorithms. The relative classification performance and performance characteristics are highlighted, overall suggesting the radial basis function SVM as a robust option for classification of leukocytes with Raman microspectroscopy.

  12. Laser trapping and assembling of nanoparticles at solution surface studied by reflection micro-spectroscopy

    Science.gov (United States)

    Wang, Shun-Fa; Yuyama, Ken-ichi; Suigiyama, Teruki; Masuhara, Hiroshi

    2015-08-01

    We present the laser power dependent behavior of optical trapping assembling of 208-nm polystyrene (PS) nanoparticles at the solution surface layer. The assembling dynamics is examined by reflection microspectroscopy as well as transmission and backscattering imaging. The transmission imaging shows that the laser irradiation at the solution surface layer forms a nanoparticle assembly, whose diameter becomes large with the increase in the laser power. The backscattering image of the assembly gives structural color, meaning that nanoparticles are periodically arranged over the whole assembly region. In reflection microspectroscopy, one band appears at long wavelength and is gradually shifted to the short wavelength with the irradiation. After the blue shift, the reflection band is located at the shorter wavelength under the laser irradiation at the higher power. We discuss these spectral changes from the viewpoint of the inter-particle distance determined by the dynamic balance between attractive optical force and repulsive electrostatic force among nanoparticles.

  13. Fluorescence microspectroscopy as a tool to study mechanism of nanoparticles delivery into living cancer cells.

    Science.gov (United States)

    Arsov, Zoran; Urbančič, Iztok; Garvas, Maja; Biglino, Daniele; Ljubetič, Ajasja; Koklič, Tilen; Strancar, Janez

    2011-08-01

    Lack of better understanding of nanoparticles targeted delivery into cancer cells calls for advanced optical microscopy methodologies. Here we present a development of fluorescence microspectroscopy (spectral imaging) based on a white light spinning disk confocal microscope with emission wavelength selection by a liquid crystal tunable filter. Spectral contrasting of images was used to localize polymer nanoparticles and cell membranes labeled with fluorophores that have substantially overlapping spectra. In addition, fluorescence microspectroscopy enabled spatially-resolved detection of small but significant effects of local molecular environment on the properties of environment-sensitive fluorescent probe. The observed spectral shift suggests that the delivery of suitably composed cancerostatic alkylphospholipid nanoparticles into living cancer cells might rely on the fusion with plasma cell membrane.

  14. Chemical responses of single yeast cells studied by fluorescence microspectroscopy under solution-flow conditions.

    Science.gov (United States)

    Kogi, Osamu; Kim, Haeng-Boo; Kitamura, Noboru

    2002-07-01

    A microspectroscopy system combined with a fluid manifold was developed to manipulate and analyze "single" living cells. A sample buffer solution containing living cells was introduced into a flow cell set on a thermostated microscope stage and a few cells were allowed to attach to the bottom wall of the flow cell. With these living cells being attached to the wall, other floating cells were pumped out by flowing a buffer solution. These procedures made it possible to keep a few cells in the flow cell and to analyze single cells by fluorescence microspectroscopy. The technique was applied to study the time course of staining processes of single living yeast (Saccharomyces cerevisiae) cells by using two types of a fluorescent probe. The present methodology was shown to be of primary importance for obtaining biochemical/physiological information on single living cells and also for studying cell-to-cell variations in several characteristics.

  15. The Characterisation of Pluripotent and Multipotent Stem Cells Using Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    Mark J. Tobin

    2013-08-01

    Full Text Available Fourier transform infrared (FTIR microspectroscopy shows potential as a benign, objective and rapid tool to screen pluripotent and multipotent stem cells for clinical use. It offers a new experimental approach that provides a holistic measurement of macromolecular composition such that a signature representing the internal cellular phenotype is obtained. The use of this technique therefore contributes information that is complementary to that acquired by conventional genetic and immunohistochemical methods.

  16. Fluorescence microspectroscopy as a tool to study mechanism of nanoparticles delivery into living cancer cells

    OpenAIRE

    Arsov, Zoran; Urbančič, Iztok; Garvas, Maja; Biglino, Daniele; Ljubetič, Ajasja; Koklič, Tilen; Štrancar, Janez

    2011-01-01

    Lack of better understanding of nanoparticles targeted delivery into cancer cells calls for advanced optical microscopy methodologies. Here we present a development of fluorescence microspectroscopy (spectral imaging) based on a white light spinning disk confocal microscope with emission wavelength selection by a liquid crystal tunable filter. Spectral contrasting of images was used to localize polymer nanoparticles and cell membranes labeled with fluorophores that have substantially overlapp...

  17. Coexistence of Probe Conformations in Lipid Phases—A Polarized Fluorescence Microspectroscopy Study

    OpenAIRE

    Urbančič, Iztok; Ljubetič, Ajasja; Arsov, Zoran; Štrancar, Janez

    2013-01-01

    Several well-established fluorescence methods depend on environment-sensitive probes that report about molecular properties of their local environment. For reliable interpretation of experiments, careful characterization of probes’ behavior is required. In this study, bleaching-corrected polarized fluorescence microspectroscopy with nanometer spectral peak position resolution was applied to characterize conformations of two alkyl chain-labeled 7-nitro-2-1,3-benzoxadiazol-4-yl phospholipids in...

  18. In Situ Detection of Antibiotic Amphotericin B Produced in Streptomyces nodosus Using Raman Microspectroscopy

    Directory of Open Access Journals (Sweden)

    Rimi Miyaoka

    2014-05-01

    Full Text Available The study of spatial distribution of secondary metabolites within microbial cells facilitates the screening of candidate strains from marine environments for functional metabolites and allows for the subsequent assessment of the production of metabolites, such as antibiotics. This paper demonstrates the first application of Raman microspectroscopy for in situ detection of the antifungal antibiotic amphotericin B (AmB produced by actinomycetes—Streptomyces nodosus. Raman spectra measured from hyphae of S. nodosus show the specific Raman bands, caused by resonance enhancement, corresponding to the polyene chain of AmB. In addition, Raman microspectroscopy enabled us to monitor the time-dependent change of AmB production corresponding to the growth of mycelia. The Raman images of S. nodosus reveal the heterogeneous distribution of AmB within the mycelia and individual hyphae. Moreover, the molecular association state of AmB in the mycelia was directly identified by observed Raman spectral shifts. These findings suggest that Raman microspectroscopy could be used for in situ monitoring of antibiotic production directly in marine microorganisms with a method that is non-destructive and does not require labeling.

  19. Artworks characterization at THz frequencies: preliminary results via the Fiber-Coupled Terahertz Time Domain System

    Science.gov (United States)

    Catapano, Ilaria; Soldovieri, Francesco

    2015-04-01

    In the research field of art and archaeology, scientific observation and analysis are hugely demanded to gather as more information as possible on the materials and techniques used to create artworks as well as in previous restoration actions. In this frame, diagnostic tools exploiting electromagnetic waves deserve massive interest tanks to their ability to provide non-invasive and possibly contactless characterization of the investigated objects. Among the electromagnetic diagnostic technologies, those working at frequencies belonging to the 0.1-10 THz range are currently deserving an increased attention since THz waves are capable of penetrating into optically opaque materials (up to the preparation layers), without direct contact and by involving sufficiently low energy to be considered as perfectly non-invasive in practice [1,2]. Moreover, being THz non-ionizing radiations, a moderate exposure to them implies minor long term risks to the molecular stability of the historical artifact and humans. Finally, recent developments of THz technology have allowed the commercialization of compact, flexible and portable systems. One of them is the Fiber-Coupled Terahertz Time Domain System (FICO) developed by Z-Omega, acquired by the Institute of Electromagnetic Sensing of the Environment (IREA) in 2013. This system works in the range from 60GHz to 3THz with a waveform acquisition speed up to 500Hz, it is equipped with fiber optic coupled transmitting and receiving probes and, few months ago, has been potentiated by means of an automatic positioning system enabling to scan a 150mm x 150mm area. In the frame of the IREA research activities regarding cultural heritage, the FICO system is currently adopted to perform both spectroscopy and imaging, which are the two kind of analysis wherein THz technology can be profitably explored [3]. In particular, THz spectroscopy is used to distinguish different artists materials by exploiting their peculiar fingerprint in the absorption

  20. Wide-band IR imaging in the NIR-MIR-FIR regions for in situ analysis of frescoes

    Science.gov (United States)

    Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C.

    2011-06-01

    Imaging methods offer several advantages in the field of conservation allowing to perform non-invasive inspection of works of art. In particular, non-invasive techniques based on imaging in different infrared (IR) regions are widely used for the investigation of paintings. Using radiation beyond the visible range, different characteristics of the inspected artwork may be revealed according to the bandwidth acquired. In this paper we present the recent results of a joint project among the two research institutes DIMEG and CNR-INO, and the restoration facility Opificio delle Pietre Dure, concerning the wide-band integration of IR imaging techniques, in the spectral ranges NIR 0.8-2.5 μm, MIR 3-5 μm, and FIR 8-12 μm, for in situ analysis of artworks. A joint, multi-mode use of reflection and thermal bands is proposed for the diagnostics of mural paintings, and it is demonstrated to be an effective tool in inspecting the layered structure. High resolution IR reflectography and, to a greater extent, IR imaging in the 3-5 μm band, are effectively used to characterize the superficial layer of the fresco and to analyze the stratigraphy of different pictorial layers. IR thermography in the 8-12 μm band is used to characterize the support deep structure. The integration of all the data provides a multi- layered and multi-spectral representation of the fresco that yields a comprehensive analysis.

  1. Characterization of narrow-band near-IR diodes arranged in array patterns

    Science.gov (United States)

    Ortega, Antonio; Paez, Gonzalo; Strojnik, Marija

    2011-09-01

    We examined old, not-well documented paintings before the process of restoration was started, to look for the presence of any invisible signatures and dates, as well as original line drawings and possible painted-over or hidden images. We connected IR LEDs in two-dimensional arrays to allow us to sample the surface of the artwork with approximately uniform illumination, but at different peak wavelengths. We describe the extended area infrared LED illumination sources as to their geometrical arrangement, and their resulting spectral, spatial, and power output characteristics. With these light sources, we were able to make invisible information available for review and critical assessment by the art historians.

  2. Masterpieces unmasked: New high-resolution infrared cameras produce rich, detailed images of artwork, and create new controversies

    CERN Document Server

    Marshall, J

    2002-01-01

    Luca Pezzati is a physicist who heads a group called Art Diagnostics, which is a part of the Opificio delle Pietre Dure, an institute devoted to the research and conservation of artworks in Italy. Pezzati and his group use high-resolution infrared scanning device to produce colour images of what lies below the surface of paintings. Their scanner is able to produce the best-known quality of images without harming the painting under examination (1 page).

  3. From regular text to artistic writing and artworks: Fourier statistics of images with low and high aesthetic appeal

    Directory of Open Access Journals (Sweden)

    Tamara eMelmer

    2013-04-01

    Full Text Available The spatial characteristics of letters and their influence on readability and letter identification have been intensely studied during the last decades. There have been few studies, however, on statistical image properties that reflect more global aspects of text, for example properties that may relate to its aesthetic appeal. It has been shown that natural scenes and a large variety of visual artworks possess a scale-invariant Fourier power spectrum that falls off linearly with increasing frequency in log-log plots. We asked whether images of text share this property. As expected, the Fourier spectrum of images of regular typed or handwritten text is highly anisotropic, i.e. the spectral image properties in vertical, horizontal and oblique orientations differ. Moreover, the spatial frequency spectra of text images are not scale invariant in any direction. The decline is shallower in the low-frequency part of the spectrum for text than for aesthetic artworks, whereas, in the high-frequency part, it is steeper. These results indicate that, in general, images of regular text contain less global structure (low spatial frequencies relative to fine detail (high spatial frequencies than images of aesthetics artworks. Moreover, we studied images of text with artistic claim (ornate print and calligraphy and ornamental art. For some measures, these images assume average values intermediate between regular text and aesthetic artworks. Finally, to answer the question of whether the statistical properties measured by us are universal amongst humans or are subject to intercultural differences, we compared images from three different cultural backgrounds (Western, East Asian and Arabic. Results for different categories (regular text, aesthetic writing, ornamental art and fine art were similar across cultures.

  4. From regular text to artistic writing and artworks: Fourier statistics of images with low and high aesthetic appeal.

    Science.gov (United States)

    Melmer, Tamara; Amirshahi, Seyed A; Koch, Michael; Denzler, Joachim; Redies, Christoph

    2013-01-01

    The spatial characteristics of letters and their influence on readability and letter identification have been intensely studied during the last decades. There have been few studies, however, on statistical image properties that reflect more global aspects of text, for example properties that may relate to its aesthetic appeal. It has been shown that natural scenes and a large variety of visual artworks possess a scale-invariant Fourier power spectrum that falls off linearly with increasing frequency in log-log plots. We asked whether images of text share this property. As expected, the Fourier spectrum of images of regular typed or handwritten text is highly anisotropic, i.e., the spectral image properties in vertical, horizontal, and oblique orientations differ. Moreover, the spatial frequency spectra of text images are not scale-invariant in any direction. The decline is shallower in the low-frequency part of the spectrum for text than for aesthetic artworks, whereas, in the high-frequency part, it is steeper. These results indicate that, in general, images of regular text contain less global structure (low spatial frequencies) relative to fine detail (high spatial frequencies) than images of aesthetics artworks. Moreover, we studied images of text with artistic claim (ornate print and calligraphy) and ornamental art. For some measures, these images assume average values intermediate between regular text and aesthetic artworks. Finally, to answer the question of whether the statistical properties measured by us are universal amongst humans or are subject to intercultural differences, we compared images from three different cultural backgrounds (Western, East Asian, and Arabic). Results for different categories (regular text, aesthetic writing, ornamental art, and fine art) were similar across cultures.

  5. Overcoming Information Aesthetics: In Defense of a Non-Quantitative Informational Understanding of Artworks

    Directory of Open Access Journals (Sweden)

    Rodrigo Hernández-Ramírez

    2016-11-01

    Full Text Available Attempts to describe aesthetic artefacts through informational models have existed at least since the late 1950s; but they have not been as successful as their proponents expected nor are they popular among art scholars because of their (mostly quantitative nature. However, given how information technology has deeply shifted every aspect of our world, it is fair to ask whether aesthetic value continues to be immune to informational interpretations. This paper discusses the ideas of the late Russian biophysicist, Mikhail Volkenstein concerning art and aesthetic value. It contrasts them with Max Bense’s ‘information aesthetics’, and with contemporary philosophical understandings of information. Overall, this paper shows that an informational but not necessarily quantitative approach serves not only as an effective means to describe our interaction with artworks, but also contributes to explain why purely quantitative models struggle to formalise aesthetic value. Finally, it makes the case that adopting an informational outlook helps overcome the ‘analogue vs digital’ dichotomy by arguing the distinction is epistemological rather than ontological, and therefore the two notions need not be incompatible.

  6. In-air broad beam ionoluminescence microscopy as a tool for rocks and stone artworks characterisation.

    Science.gov (United States)

    Lo Giudice, Alessandro; Re, Alessandro; Angelici, Debora; Calusi, Silvia; Gelli, Nicla; Giuntini, Lorenzo; Massi, Mirko; Pratesi, Giovanni

    2012-07-01

    Broad beam ionoluminescence (IL) microscopy is a promising technique for the non-destructive characterisation of rocks and stone objects. Luminescence imaging by means of broad ion beams has been sporadically used by other authors but, to our knowledge, its potential has not yet been fully investigated, neither in geological science nor in other fields. The in-air broad beam IL microscope was developed and installed at the INFN-LABEC external microbeam in Florence. Similar to the cathodoluminescence (CL) microscope, the apparatus exploits a CCD colour camera collecting images (few square millimetres wide, with ~10-μm spatial resolution) of the luminescence emitted by the sample hit by a defocused megaelectron volt (MeV) proton beam. The main differences with the well-established and widespread CL are the possibility of working in air (no sampling or conductive coatings required) and the possibility of combining the analysis with microbeam analysis, such as, for example, μ-IL and μ-PIXE (particle-induced X-ray emission). To show the potential of the technique, IL images of thin sections of lapis lazuli are compared with those obtained by means of an in-vacuum cold CL. An application to the study of stone artworks is also reported. This technique and apparatus will provide a valuable help for interdisciplinary applications, e.g. in geological sciences and in the cultural heritage field.

  7. Postcards And Supasigns: Extending Integrationist Theory Through The Creation Of Interactive Digital Artworks

    Directory of Open Access Journals (Sweden)

    Sally Pryor

    2007-01-01

    Full Text Available Integrationism is a post-structuralist theory of language and communication. The theory has been applied to a groundbreaking analysis of writing as a form of communication where writing is teased apart from speech and realigned with spatial configurations in general. Although it has many practical applications, this view can be extremely difficult to comprehend when expressed as a very specific form of writing, that is, as written words on paper. A solution to this problem is offered by the creative interaction design of two digital artworks, Postcard From Tunis and Postcards From Writing. The works are interactive multimedia pieces that creatively express the integrationist theory of writing and extend it into the transformations of writing that are possible in the human-computer interface. More generally, the unique rollover-based interfaces of these works both express the integrationist theory of communication and suggest that it is necessary in order to explain the creation of communicative signs that they demonstrate are possible.

  8. Abbreviated Title of the Artwork in the System of Signs by Ch. Peirce

    Directory of Open Access Journals (Sweden)

    Grigoriy Valeryevich Tokarev

    2015-09-01

    Full Text Available The article is devoted to the semiotic aspect of the functioning of the abbreviated title of the postmodern artwork. The authors analyze the relationship of title-sign to the object which it replaces. The title is considered from the perspective of three main features peculiar of the sign in accordance with the Charles S. Peirce's theory. This fact allows us to conclude that, being a sign, the abbreviated title replaces a literary text, which is also expressed in symbolic form of the author's knowledge of reality. In this aspect the title becomes the metasign of its text. It is shown that in this connection, decoding and interpretation process take place in two stages – before reading the text and in the process of its reading and interpretation. It is alleged that the result of the interpretation of the title depends on the reader's competence which is determined by their individual literary scope, as well as by the skills of productive work with the text. On the basis of the classification of signs created by Charles Pierce, it was found that the abbreviated title has a complex semiotic nature combining the features of indexicality, conventionality, and iconicity, the latter of which may be present only in the abbreviated title.

  9. The Influence of Time on Artworks: A Hermeneutical Reading of Holocaust Films

    Directory of Open Access Journals (Sweden)

    Abdullah Başaran

    2014-06-01

    Full Text Available This article’s aim is to focus on the close relationship that exists between the notions of prejudice and historicity and the time in which a film director of genocide lives and the extent to which their temporality unavoidably colors their artistic response to a historical event, such as the Holocaust. In this regard, depending on such an event, a categorization of people will be offered: victims and survivors, survivors’ children who born after genocide, witnesses of victims and survivors, and, finally, people born after the genocide. In this way, according to the main argument of this essay, the time period the film director lives in relative to the event is one of the criteria for evaluating their artwork in virtue of the formation of their prejudices and of their approach to the Holocaust as a historical event. But it must be noted that this essay will not argue that films of the directors belonging to any of the particular categories are better representations of the Holocaust than the films of the others. Instead, it will be stated that there appears a two-stage linguistic gap among human beings when directors narrate their own experience or highlight the significance of the event per se.

  10. Computed Tomography with X-rays and Fast Neutrons for Restoration of Wooden Artwork

    Science.gov (United States)

    Osterloh, Kurt; Bellon, Carsten; Hohendorf, Stefan; Kolkoori, Sanjeevareddy; Wrobel, Norma; Nusser, Amélie; Freitag, Markus; Bücherl, Thomas; Bar, Doron; Mor, Ilan; Tamin, Noam; Weiss-Babai, Ruth; Bromberger, Benjamin; Dangendorf, Volker; Tittelmeier, Kai

    The objects of this investigation were sculptures taken from a ca. three hundred years old baroque epitaph of a church in Tönning, a town in Northern Germany. Around 1900 it was found in a disastrous state heavily damaged by wood-worm. At that time, the whole artwork was treated with the tar extract carbolineum as a remedy. Nowadays, this substance has been identified as carcinogenic, and its presence can be perceived by its stench and visually at certain spots on the surface where it has penetrated the covering paint. A gold-painted sculpture of a massive wooden skull was interrogated with X-rays and fast neutrons to investigate the internal distribution of the carbolineum. The X-ray tomography, with its excellent spatial resolution revealed galleries left over from the worm infestation in the outer areas and cracks in the central region. The golden color coating appeared as a thick and dense layer. In comparison the tomography with fast neutrons, though being of lower resolution and yet unresolved artefacts revealed sections of slightly different densities in the bulk of the wood. These differences we attribute to the differences in the distribution of the impregnant in the wood, visible due to its higher hydrogen content making it less transparent for neutrons.

  11. Novel approach to the microscopic inspection during laser cleaning treatments of artworks.

    Science.gov (United States)

    Cacciari, I; Ciofini, D; Mascalchi, M; Mencaglia, A; Siano, S

    2012-02-01

    The present work focuses on the potential of 3D digital microscopy for assessing micro-morphological features during laser cleaning treatments of artworks. This application requires preliminary optimization studies aimed at defining operative irradiation parameters and practicable degree of cleaning, as well as in situ diagnostic assessments during the restoration work. To this goal, we developed and tested a dedicated 3D digital microscope by implementing the "shape-from-focus" technique. The significant potential of this instrument, which provides textural and chromatic information, was proven for the phenomenological characterization of black crust removal from stones, earthy concretion from bronzes and dark varnish from easel paintings. Comparative measurements using 3D digital microscopy and contact microprofilometry were performed after laser cleaning tests of prepared samples, genuine archaeological bronze artefacts and a stone sculptural element from Florence's Dome. The results achieved demonstrate the effectiveness and reliability of the novel approach and the advantages it provides with respect to alternative techniques, which will allow the methods to be used in the wider restoration community.

  12. AM Multipurpose High-Resolution Imaging Topological Radar (ITR): reverse engineering and artworks monitoring and restoration

    Science.gov (United States)

    Guarneri, Massimiliano; Bartolini, Luciano; Fornetti, Giorgio; Ferri De Collibus, Mario; De Dominicis, Luigi; Paglia, Emiliano; Poggi, Claudio; Ricci, Roberto

    2005-08-01

    A high resolution Amplitude Modulated Imaging Laser Radar (AM-LR) sensor has recently been developed, aimed to accurately reconstructing 3D digital models of real targets - either single objects or large amplitude complex scenes. The system sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotating platform. Both intensity and phase shift of the back-scattered light are then collected and processed, providing respectively a shade-free photographic-like picture and accurate range data in the form of a range or depth image, with accuracy depending mainly on the laser modulation frequency. The development of software, suitable for simultaneous 3D rendering of the intensity and absolute distance data collected by the ITR, constitutes one of the main objectives of the research activity, whatever is the application pursued. In fact, high resolution AM-LR systems have a great interest for their potentials in accurate 3D imaging of valuable objects which must be preserved in digital archives. Examples range from artwork monitoring, cataloguing and restoration from sparse fragments, to medicine for non-hazardous diagnostics and fast design of bio-compatible prostheses, to microtechnology in the miniaturization of macro-components (plastic prototypes, quality control). Several meaningful results of measurements executed in various important European archaeological sites, in particular Santa Maria Antiqua church situated in Fori Imperiali area in Rome and Costanza (Romania), involving 3D color mapped representation are also presented.

  13. The Influence of Art Expertise and Training on Emotion and Preference Ratings for Representational and Abstract Artworks.

    Science.gov (United States)

    van Paasschen, Jorien; Bacci, Francesca; Melcher, David P

    2015-01-01

    Across cultures and throughout recorded history, humans have produced visual art. This raises the question of why people report such an emotional response to artworks and find some works more beautiful or compelling than others. In the current study we investigated the interplay between art expertise, and emotional and preference judgments. Sixty participants (40 novices, 20 art experts) rated a set of 150 abstract artworks and portraits during two occasions: in a laboratory setting and in a museum. Before commencing their second session, half of the art novices received a brief training on stylistic and art historical aspects of abstract art and portraiture. Results showed that art experts rated the artworks higher than novices on aesthetic facets (beauty and wanting), but no group differences were observed on affective evaluations (valence and arousal). The training session made a small effect on ratings of preference compared to the non-trained group of novices. Overall, these findings are consistent with the idea that affective components of art appreciation are less driven by expertise and largely consistent across observers, while more cognitive aspects of aesthetic viewing depend on viewer characteristics such as art expertise.

  14. The Influence of Art Expertise and Training on Emotion and Preference Ratings for Representational and Abstract Artworks.

    Directory of Open Access Journals (Sweden)

    Jorien van Paasschen

    Full Text Available Across cultures and throughout recorded history, humans have produced visual art. This raises the question of why people report such an emotional response to artworks and find some works more beautiful or compelling than others. In the current study we investigated the interplay between art expertise, and emotional and preference judgments. Sixty participants (40 novices, 20 art experts rated a set of 150 abstract artworks and portraits during two occasions: in a laboratory setting and in a museum. Before commencing their second session, half of the art novices received a brief training on stylistic and art historical aspects of abstract art and portraiture. Results showed that art experts rated the artworks higher than novices on aesthetic facets (beauty and wanting, but no group differences were observed on affective evaluations (valence and arousal. The training session made a small effect on ratings of preference compared to the non-trained group of novices. Overall, these findings are consistent with the idea that affective components of art appreciation are less driven by expertise and largely consistent across observers, while more cognitive aspects of aesthetic viewing depend on viewer characteristics such as art expertise.

  15. Phase-shift effect of amplitude spread function on spectrum and image formation in coherent Raman scattering microspectroscopy.

    Science.gov (United States)

    Fukutake, Naoki

    2016-03-01

    Coherent Raman scattering microspectroscopy, which includes coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microspectroscopy, permits label-free hyperspectral imaging. We report the theoretical study of the phase-shift effect of the impulse response function on the spectral and image-forming properties of coherent Raman scattering microspectroscopy. We show that the spectrum and image are influenced by not only the NA of objective for excitation (NA(ex)) but also that for signal collection (NA(col)), in association with the phase-shift effect. We discuss that, under the condition NA(ex)≠NA(col), both the spectrum and the image become deformed by the phase-shift effect, which can be applied to the direct measurement of the imaginary part of the nonlinear susceptibility in CARS spectroscopy. We point out that, even in SRS microscopy, the nonresonant background can contribute to the image formation and cause the artifact in the image.

  16. High-resolution laser radar for 3D imaging in artwork cataloging, reproduction, and restoration

    Science.gov (United States)

    Ricci, Roberto; Fantoni, Roberta; Ferri de Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Massimiliano; Poggi, Claudio

    2003-10-01

    A high resolution Amplitude Modulated Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotating platform, enabling to obtain respectively linear and cylindrical range maps. Both amplitude and phase shift of the modulating wave of back-scattered light are collected and processed, providing respectively a shade-free, high resolution, photographic-like picture and accurate range data in the form of a range image. The resolution of range measurements depends mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW (current best performances are ~100 μm). The complete object surface can be reconstructed from the sampled points by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, alloys, bones), with relevant applications in different fields, ranging from industrial machining to medical diagnostics, to vision in hostile environments. Examples of artwork reconstructed models (pottery, marble statues) are presented and the relevance of this technology for reverse engineering applied to cultural heritage conservation and restoration are discussed. Final 3D models can be passed to numeric control machines for rapid-prototyping, exported in standard formats for CAD/CAM purposes and made available on the Internet by adopting a virtual museum paradigm, thus possibly enabling specialists to perform remote inspections on high resolution digital reproductions of hardly accessible masterpieces.

  17. Raman microspectroscopy for in situ examination of carbon-microbe-mineral interactions

    Science.gov (United States)

    Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Waldrop, M. P.

    2016-12-01

    The changing paradigm of soil organic matter formation and turnover is focused at the nexus of microbe-carbon-mineral interactions. However, visualizing biotic and abiotic stabilization of C on mineral surfaces is difficult given our current techniques. Therefore we investigated Raman microspectroscopy as a potential tool to examine microbially mediated organo-mineral associations. Raman microspectroscopy is a non-destructive technique that has been used to identify microorganisms and minerals, and to quantify microbial assimilation of 13C labeled substrates in culture. We developed a partial least squares regression (PLSR) model to accurately quantify (within 5%) adsorption of four model 12C substrates (glucose, glutamic acid, oxalic acid, p-hydroxybenzoic acid) on a range of soil minerals. We also developed a PLSR model to quantify the incorporation of 13C into E. coli cells. Using these two models, along with measures of the 13C content of respired CO2, we determined the allocation of glucose-derived C into mineral-associated microbial biomass and respired CO2 in situ and through time. We observed progressive 13C enrichment of microbial biomass with incubation time, as well as 13C enrichment of CO2 indicating preferential decomposition of glucose-derived C. We will also present results on the application of our in situ chamber to quantify the formation of organo-mineral associations under both abiotic and biotic conditions with a variety of C and mineral substrates, as well as the rate of turnover and stabilization of microbial residues. Application of Raman microspectroscopy to microbial-mineral interactions represents a novel method to quantify microbial transformation of C substrates and subsequent mineral stabilization without destructive sampling, and has the potential to provide new insights to our conceptual understanding of carbon-microbe-mineral interactions.

  18. Identification of early biomarkers during acetaminophen-induced hepatotoxicity by fourier transform infrared microspectroscopy.

    Directory of Open Access Journals (Sweden)

    Rekha Gautam

    Full Text Available Acetaminophen is a widely prescribed drug used to relieve pain and fever; however, it is a leading cause of drug-induced liver injury and a burden on public healthcare. In this study, hepatotoxicity in mice post oral dosing of acetaminophen was investigated using liver and sera samples with Fourier Transform Infrared microspectroscopy. The infrared spectra of acetaminophen treated livers in BALB/c mice show decrease in glycogen, increase in amounts of cholesteryl esters and DNA respectively. Rescue experiments using L-methionine demonstrate that depletion in glycogen and increase in DNA are abrogated with pre-treatment, but not post-treatment, with L-methionine. This indicates that changes in glycogen and DNA are more sensitive to the rapid depletion of glutathione. Importantly, analysis of sera identified lowering of glycogen and increase in DNA and chlolesteryl esters earlier than increase in alanine aminotransferase, which is routinely used to diagnose liver damage. In addition, these changes are also observed in C57BL/6 and Nos2(-/- mice. There is no difference in the kinetics of expression of these three molecules in both strains of mice, the extent of damage is similar and corroborated with ALT and histological analysis. Quantification of cytokines in sera showed increase upon APAP treatment. Although the levels of Tnfα and Ifnγ in sera are not significantly affected, Nos2(-/- mice display lower Il6 but higher Il10 levels during this acute model of hepatotoxicity. Overall, this study reinforces the growing potential of Fourier Transform Infrared microspectroscopy as a fast, highly sensitive and label-free technique for non-invasive diagnosis of liver damage. The combination of Fourier Transform Infrared microspectroscopy and cytokine analysis is a powerful tool to identify multiple biomarkers, understand differential host responses and evaluate therapeutic regimens during liver damage and, possibly, other diseases.

  19. Absorption microspectroscopy, theory and applications in the case of the photosynthetic compartment.

    Science.gov (United States)

    Barsanti, Laura; Evangelista, Valtere; Frassanito, Anna Maria; Vesentini, Nicoletta; Passarelli, Vincenzo; Gualtieri, Paolo

    2007-01-01

    We performed microspectroscopic evaluation of the pigment composition of the photosynthetic compartments of both algae and higher plants. The feasibility of microspectroscopy for discriminating among species and/or phylogenetic groups was tested on laboratory cultures. Gaussian bands decompositions, and a fitting algorithm, together with fourth-derivative transformation of absorbance spectra, provided a reliable discrimination among chlorophylls, phycobiliproteins and carotenoids. Comparative analysis of absorption spectra highlighted the evolutionary grouping of the algae into three main lineages in accordance with the most recent endosymbiotic theories.

  20. One-step Real-time Food Quality Analysis by Simultaneous DSC-FTIR Microspectroscopy.

    Science.gov (United States)

    Lin, Shan-Yang; Lin, Chih-Cheng

    2016-01-01

    This review discusses an analytical technique that combines differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy, which simulates the accelerated stability test and detects decomposition products simultaneously in real time. We show that the DSC-FTIR technique is a fast, simple and powerful analytical tool with applications in food sciences. This technique has been applied successfully to the simultaneous investigation of: encapsulated squid oil stability; the dehydration and intramolecular condensation of sweetener (aspartame); the dehydration, rehydration and solidification of trehalose; and online monitoring of the Maillard reaction for glucose (Glc)/asparagine (Asn) in the solid state. This technique delivers rapid and appropriate interpretations with food science applications.

  1. Raman microspectroscopy of hydrotalcite-like compounds modified with sulphate and sulphonate organic anions

    Science.gov (United States)

    Burrueco, María Isabel; Mora, Manuel; Jiménez-Sanchidrián, César; Ruiz, José Rafael

    2013-02-01

    Hydrotalcite-like compounds (HTlcs) containing dodecylsulphate and dodecylbenzene-sulphonate organic anions in their interlayer region were synthesized by rehydrating the calcination product of a 3:1 magnesium-aluminium hydrotalcite intercalated with carbonate ions and characterized by Raman microspectroscopy. The Raman spectra for the samples with intercalated organic anions exhibited the typical bands for the hydrocarbon chains and the sulphate or sulphonate group. This is the first time HTlcs containing organic sulphate or sulphonate ions have been characterized by this technique and Raman spectroscopy proved an effective tool for discriminating between organo-hybrid HTlcs.

  2. A method for examining the chemical basis for bone disease: synchrotron infrared microspectroscopy.

    Science.gov (United States)

    Miller, L M; Carlson, C S; Carr, G L; Chance, M R

    1998-02-01

    Infrared microspectroscopy combines microscopy and spectroscopy for the purpose of chemical microanalysis. Light microscopy provides a way to generate and record magnified images and visibly resolve microstructural detail. Infrared spectroscopy provides a means for analyzing the chemical makeup of materials. Combining light microscopy and infrared spectroscopy permits the correlation of microstructure with chemical composition. Inherently, the long wavelengths of infrared radiation limit the spatial resolution of the technique. However, synchrotron infrared radiation significantly improves both the spectral and spatial resolution of an infrared microspectrometer, such that data can be obtained with high signal-to-noise at the diffraction limit, which is 3-5 microm in the mid-infrared region. In this study, we use infrared microspectroscopy to study the chemical composition of bone using two mapping methods. In the osteon method, linear maps are collected from the center of an osteon (newer bone) to the periphery (older bone) and their chemical compositions are compared. In the transverse method, applied specifically to subchondral bone, line maps are collected from the edge of the articular cartilage (older bone) to the marrow space (newer bone). A significant advantage of infrared microspectroscopy over other chemical methods is that the bone does not need to be homogenized for testing; we are able to study cross-sectional samples of bone in situ at a resolution better than 5 microm and compare the results with morphological findings on stained serial sections immediately adjacent to those examined by infrared microspectroscopy. The infrared absorption bands of bone proteins and mineral are sensitive to mineral content (i.e. carbonate, phosphate, acid phosphate), mineral crystallinity and the content/nature of the organic matrix. In this study, they are analyzed as a function of (1) age, i.e. distance with respect to the center of an osteon, and (2) morphology, i

  3. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  4. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  5. Demonstration of the Protein Involvement in Cell Electropermeabilization using Confocal Raman Microspectroscopy

    Science.gov (United States)

    Azan, Antoine; Untereiner, Valérie; Gobinet, Cyril; Sockalingum, Ganesh D.; Breton, Marie; Piot, Olivier; Mir, Lluis M.

    2017-01-01

    Confocal Raman microspectroscopy was used to study the interaction between pulsed electric fields and live cells from a molecular point of view in a non-invasive and label-free manner. Raman signatures of live human adipose-derived mesenchymal stem cells exposed or not to pulsed electric fields (8 pulses, 1 000 V/cm, 100 μs, 1 Hz) were acquired at two cellular locations (nucleus and cytoplasm) and two spectral bands (600–1 800 cm−1 and 2 800–3 100 cm−1). Vibrational modes of proteins (phenylalanine and amide I) and lipids were found to be modified by the electropermeabilization process with a statistically significant difference. The relative magnitude of four phenylalanine peaks decreased in the spectra of the pulsed group. On the contrary, the relative magnitude of the amide I band at 1658 cm−1 increased by 40% when comparing pulsed and control group. No difference was found between the control and the pulsed group in the high wavenumber spectral band. Our results reveal the modification of proteins in living cells exposed to pulsed electric fields by means of confocal Raman microspectroscopy. PMID:28102326

  6. Histochemistry and infrared microspectroscopy of lignified tissue in young stems of Struthanthus vulgaris Mart.

    Directory of Open Access Journals (Sweden)

    Gisely de Lima Oliveira

    Full Text Available In this study, we aimed to determine lignified tissue in young stems of Struthanthus vulgaris Mart. by infrared microspectroscopy and histochemical methods as well as by fluorescence microscopy. Struthanthus vulgaris Mart. is a mistletoe species that belongs to the Loranthaceae family. A brief anatomical description was also carried out. The first procedure for analysis was to elaborate anatomical cross sections (20-30 µm from young stems before and after treatment with NaOH 1%. This procedure was applied to release possible low molecular mass phenolic compounds. Safranin-astra blue was used to distinguish anatomical tissues while Wiesner test enabled verification of lignified pericyclic fibers. Infrared microspectroscopy analysis confirmed the presence of lignin in this region according to the following spectral signals: 1600 (shoulder, 1511, 1453, 1338 and 1244 cm-1. Analyses of the cross section of young stems under fluorescence microscopy before and after treatment with NaOH 1% allowed us to confirm the presence of low mass phenolic compounds in the region of pericyclic fibers.

  7. Accurate and interpretable classification of microspectroscopy pixels using artificial neural networks.

    Science.gov (United States)

    Manescu, Petru; Jong Lee, Young; Camp, Charles; Cicerone, Marcus; Brady, Mary; Bajcsy, Peter

    2017-04-01

    This paper addresses the problem of classifying materials from microspectroscopy at a pixel level. The challenges lie in identifying discriminatory spectral features and obtaining accurate and interpretable models relating spectra and class labels. We approach the problem by designing a supervised classifier from a tandem of Artificial Neural Network (ANN) models that identify relevant features in raw spectra and achieve high classification accuracy. The tandem of ANN models is meshed with classification rule extraction methods to lower the model complexity and to achieve interpretability of the resulting model. The contribution of the work is in designing each ANN model based on the microspectroscopy hypothesis about a discriminatory feature of a certain target class being composed of a linear combination of spectra. The novelty lies in meshing ANN and decision rule models into a tandem configuration to achieve accurate and interpretable classification results. The proposed method was evaluated using a set of broadband coherent anti-Stokes Raman scattering (BCARS) microscopy cell images (600 000  pixel-level spectra) and a reference four-class rule-based model previously created by biochemical experts. The generated classification rule-based model was on average 85% accurate measured by the DICE pixel label similarity metric, and on average 96% similar to the reference rules measured by the vector cosine metric.

  8. Novel Method for Differentiating Histological Types of Gastric Adenocarcinoma by Using Confocal Raman Microspectroscopy.

    Science.gov (United States)

    Hsu, Chih-Wei; Huang, Chia-Chi; Sheu, Jeng-Horng; Lin, Chia-Wen; Lin, Lien-Fu; Jin, Jong-Shiaw; Chau, Lai-Kwan; Chen, Wenlung

    2016-01-01

    Gastric adenocarcinoma, a single heterogeneous disease with multiple epidemiological and histopathological characteristics, accounts for approximately 10% of cancers worldwide. It is categorized into four histological types: papillary adenocarcinoma (PAC), tubular adenocarcinoma (TAC), mucinous adenocarcinoma (MAC), and signet ring cell adenocarcinoma (SRC). Effective differentiation of the four types of adenocarcinoma will greatly improve the treatment of gastric adenocarcinoma to increase its five-year survival rate. We reported here the differentiation of the four histological types of gastric adenocarcinoma from the molecularly structural viewpoint of confocal Raman microspectroscopy. In total, 79 patients underwent laparoscopic or open radical gastrectomy during 2008-2011: 21 for signet ring cell carcinoma, 21 for tubular adenocarcinoma, 14 for papillary adenocarcinoma, 6 for mucinous carcinoma, and 17 for normal gastric mucosas obtained from patients underwent operation for other benign lesions. Clinical data were retrospectively reviewed from medical charts, and Raman data were processed and analyzed by using principal component analysis (PCA) and linear discriminant analysis (LDA). Two-dimensional plots of PCA and LDA clearly demonstrated that the four histological types of gastric adenocarcinoma could be differentiated, and confocal Raman microspectroscopy provides potentially a rapid and effective method for differentiating SRC and MAC from TAC or PAC.

  9. Cold atmospheric-pressure plasma and bacteria: understanding the mode of action using vibrational microspectroscopy

    Science.gov (United States)

    Kartaschew, Konstantin; Baldus, Sabrina; Mischo, Meike; Bründermann, Erik; Awakowicz, Peter; Havenith, Martina

    2016-09-01

    Cold atmospheric-pressure plasma show promising antimicrobial effects, however the detailed biochemical mechanism of the bacterial inactivation is still unknown. We investigated, for the first time, plasma-treated Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria with Raman and infrared microspectroscopy. A dielectric barrier discharge was used as a plasma source. We were able to detect several plasma-induced chemical modifications, which suggest a pronounced oxidative effect on the cell envelope, cellular proteins and nucleotides as well as a generation of organic nitrates in the treated bacteria. Vibrational microspectroscopy is used as a comprehensive and a powerful tool for the analysis of plasma interactions with whole organisms such as bacteria. Analysis of reaction kinetics of chemical modifications allow a time-dependent insight into the plasma-mediated impact. Investigating possible synergistic effects between the plasma-produced components, our observations strongly indicate that the detected plasma-mediated chemical alterations can be mainly explained by the particle effect of the generated reactive species. By changing the polarity of the applied voltage pulse, and hence the propagation mechanisms of streamers, no significant effect on the spectral results could be detected. This method allows the analysis of the individual impact of each plasma constituent for particular chemical modifications. Our approach shows great potential to contribute to a better understanding of plasma-cell interactions.

  10. Identification of Contaminated Cells with Viruses, Bacteria, or Fungi by Fourier Transform Infrared Microspectroscopy

    Directory of Open Access Journals (Sweden)

    V. Erukhimovitch

    2013-01-01

    Full Text Available Fourier transform infrared microspectroscopy (FTIR-M can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1 or contaminated with E. coli bacteria or Candida albicans fungi and analyzed by FTIR microscopy at 24 h postinfection/contamination. Specific different spectral changes were observed according to the infecting or contaminating agent. For instance, both pure fungi and cell culture contaminated with this fungi showed specific peaks at 1030 cm−1 and at 1373 cm−1 regions, while pure E. coli and cell culture contaminated with this bacteria showed a specific and unique peak at 1657 cm−1. These results support the potential of developing FTIR microspectroscopy as a simple, reagent free method for identification and discrimination between different tissue infection or contamination with various pathogens.

  11. Aleurone Cell Walls of Wheat Grain: High Spatial Resolution Investigation Using Synchrotron Infrared Microspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jamme, F.; Robert, R; Bouchet, B; Saulnier, L; Dumas, P; Guillon, F

    2008-01-01

    Infrared microspectroscopy and immunolabeling techniques were employed in order to obtain deeper insight into the biochemical nature of aleurone cell walls of wheat grain. The use of a synchrotron source, thanks to its intrinsic brightness, has provided unprecedented information at the level of a few micrometers and has allowed the discrimination of various polysaccharides in cell walls. The high spectral quality obtained in the small analyzed domain has been beneficial in estimating the relative proportions of {Beta}-glucan and arabinoxylan, through the use of principal component analysis (PCA). The highest amount of {Beta}-glucan is found in periclinal cell walls close to the starchy endosperm. The junction regions between aleurone cells are enriched in arabinoxylan. At the early stage of wheat grain development (271 degrees D), the chemical composition along the cell walls is more heterogeneous than at the mature stage. Both synchrotron infrared microspectroscopy and immunolabeling experiments made it possible to reveal the spatial heterogeneity of the various chemical compositions of aleurone cell walls.

  12. Insight into Sam Francis' painting techniques through the analytical study of twenty-eight artworks made between 1946 and 1992

    Science.gov (United States)

    Defeyt, Catherine; Mazurek, Joy; Zebala, Aneta; Burchett-Lere, Debra

    2016-11-01

    The present paper proposes an overview of the painting materials experimented with over the years by Sam Francis, leading figure of the post-World War II American painting, through the analytical study of an extended number of paint samples supplied by the Sam Francis Foundation. In total, 279 samples taken from twenty-eight artworks made between 1946 and 1992, were analyzed by Raman, FTIR and Py-GC/MS techniques. The obtained results revealed the Francis' preference in terms of pigments, i.e., phthalocyanine blues and greens, and outlined unconventional combination of binder media.

  13. Cool Science: Year 2 of Using Children's Artwork about Climate Change to Engage Riders on Mass Transit

    Science.gov (United States)

    Lustick, D. S.; Lohmeier, J.; Chen, R. F.

    2014-12-01

    A team of educators and scientists from the University of Massachusetts Lowell and the University of Massachusetts Boston will report on the second year of an informal science learning research project using mass transit spaces in Lowell, MA. Cool Science (CS) conducts a statewide art competition for K-12 students in the fall challenging them to express climate science understanding through the visual arts. An inter-disciplinary panel of judges evaluates entries and identifies the top 24 works of art. The best six student works of art are then put on public display throughout the spring on the Lowell Regional Transit Authority (LRTA). Displaying student artwork in Out of Home Multi-Media (OHMM) such as bus placards and posters is intended to engage riders with opportunities to learn informally. CS aims to promote and evaluate learning about climate change science among the general public and k-12 students/teachers. The goals of CS are: 1) Engage teachers, students, and parents in a climate change science communication competition. 2) Display the winning 6 artworks from K-12 students throughout the LRTA. 3) Assess the impact of Cool Science on the teaching and learning of climate science in K-12 formal education. 4) Assess the impact of Cool Science artwork on attitudes, awareness, and understanding of climate change among adult bus riders. A naturalistic inquiry employing a mixed methodology approach best describes our research design. The evaluation focuses on providing feedback regarding the potential learning outcomes for the K-12 students who create the media for the project and the general riding public who engage with the student artwork. To identify possible outcomes, data was collected in the several forms: survey, interviews, and online analytics. We see an urgent need to improve both the public's engagement with climate change science and to the profile of climate change science in formal education settings. The Cool Science (CS) project is an opportunity

  14. Emergent Learning and Interactive Media Artworks: Parameters of Interaction for Novice Groups

    Directory of Open Access Journals (Sweden)

    Marta Kawka

    2011-11-01

    Full Text Available Emergent learning describes learning that occurs when participants interact and distribute knowledge, where learning is self-directed, and where the learning destination of the participants is largely unpredictable (Williams, Karousou, & Mackness, 2011. These notions of learning arise from the topologies of social networks and can be applied to the learning that occurs in educational institutions. However, the question remains whether institutional frameworks can accommodate the opposing notion of “cooperative systems” (Shirky, 2005, systems that facilitate the creation of user-generated content, particularly as first-year education cohorts are novice groups in the sense of not yet having developed university-level knowledge.This paper theorizes an emergent learning assessment item (Flickr photo-narratives within a first-year media arts undergraduate education course. It challenges the conventional models of student–lecturer interaction by outlining a methodology of teaching for emergence that will facilitate student-directed and open-ended learning. The paper applies a matrix with four parameters (teacher-directed content/student-directed content; non-interactive learning task/interactive learning framework. This matrix is used as a conceptual space within which to investigate how a learning task might be constructed to afford the best opportunities for emergent learning. It explores the strategies that interactive artists utilize for participant engagement (particularly the relationship between the artist and the audience in the creation of interactive artworks and suggests how these strategies might be applied to emergent generative outcomes with first-year education students.We build upon Williams et al.’s framework of emergent learning, where “content will not be delivered to learners but co-constructed with them” (De Freitas & Conole, as cited in Williams et al., 2011, p. 40, and the notion that in constructing emergent

  15. Fluorescence spectroscopy: a powerful technique for the noninvasive characterization of artwork.

    Science.gov (United States)

    Romani, Aldo; Clementi, Catia; Miliani, Costanza; Favaro, Gianna

    2010-06-15

    After electronic excitation by ultraviolet or visible radiation, atoms and molecules can undergo thermal or radiative deactivation processes before relaxing to the ground state. They can emit photons with longer wavelengths than the incoming exciting radiation, that is, they can fluoresce in the UV-vis-near-infrared (NIR) range. The study of fluorescence relaxation processes is one of the experimental bases on which modern theories of atomic and molecular structure are founded. Over the past few decades, technological improvements in both optics and electronics have greatly expanded fluorimetric applications, particularly in analytical fields, because of the high sensitivity and specificity afforded by the methods. Using fluorimetry in the study and conservation of cultural heritage is a recent innovation. In this Account, we briefly summarize the use of fluorescence-based techniques in examining the constituent materials of a work of art in a noninvasive manner. Many chemical components in artwork, especially those of an organic nature, are fluorescent materials, which can be reliably used for both diagnostic and conservative purposes. We begin by examining fluorimetry in the laboratory setting, considering the organic dyes and inorganic pigments that are commonly studied. For a number of reasons, works of art often cannot be moved into laboratories, so we continue with a discussion of portable instruments and a variety of successful "field applications" of fluorimetry to works of cultural heritage. These examples include studies of mural paintings, canvas paintings, tapestries, and parchments. We conclude by examining recent advances in treating the data that are generated in fluorescence studies. These new perspectives are focused on the spectral shape and lifetime of the emitted radiation. Recent developments have provided the opportunity to use various spectroscopic techniques on an increasing number of objects, as well as the ability to fully characterize

  16. Determination of detection limits for SEM-EDS and m-FTIR analysis of artwork.

    Science.gov (United States)

    Sessa, C; Vila, A; García, J F

    2011-06-01

    Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS) and micro-Fourier transform infrared (m-FTIR) spectroscopy are two of the primary analytical techniques used for the characterisation of artwork (Casadio and Toniolo, J. Cult. Herit. 2:71-78, 2001; Bruni et al., Vibr. Spectrosc. 20:15-25, 1999; Bouchard et al., e-Preserv. Sci. 6:27-37, 2009). Despite wide application of these techniques, no studies have been performed to evaluate their detection limits for this type of analysis. The characterisation of minor components used in a piece of art is important because these components may provide key information about the process of creation and answer questions regarding conservation and restoration (Casadio and Toniolo, J. Cult. Herit. 2:71-78, 2001; Bicchieri et al., Spectrochim. Acta B At. Spectrosc. 56:915-922, 2001). This study focused on easel paintings. Several mock-ups were prepared, and the painting layers were created with binary mixtures of three different blues (Prussian blue, phthalocyanine blue and ultramarine blue). Blue pigments have been used extensively in many art pieces and several studies have described problems related to their determination in low concentrations (Bouchard et al., e-Preserv. Sci. 6:27-37, 2009; Bicchieri et al., Spectrochim. Acta B At. Spectrosc. 56:915-922, 2001; Osticiolia et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 73:525-531, 2009; Giaccai, Mater. Res. Soc. Symp. Proc. 1047:233-242, 2008; Lutzenberger and Stege, e-Preserv. Sci. 6:89-100, 2009). This study indicated that the minimum concentrations at which the presence of the minor pigment is detected in at least half of the determinations performed are between 0.9% and 1.5% for phthalocyanine blue, between 0.8% and 1.3% for Prussian blue and between 0.3% and 1% for ultramarine blue with SEM-EDS; with m-FTIR spectroscopy, the minimum concentrations are between 0.9% and 1.5% for phthalocyanine blue, 2.4% or more for Prussian blue and 19% or

  17. Advances in laser cleaning of artwork and objects of historical interest: the optimized pulse duration approach.

    Science.gov (United States)

    Siano, Salvatore; Salimbeni, Renzo

    2010-06-15

    Laser ablation has found numerous applications in biomedical and industrial settings but has not spread as quickly as a means of cleaning artwork. In this Account, we report recent advances in the study and application of laser cleaning to the conservation of cultural heritage. We focus on the solution of representative cleaning problems of encrusted stones, metals, and wall paintings that were achieved through the optimization of laser pulse duration. We begin by introducing the basic mechanisms involved in the laser ablation of stratified materials and the criteria for preventing undesired side effects to the substrate and then briefly present case studies for each of these materials. Laser interaction effects are reviewed in a schematic way, with a concise overview of the physical models needed to support intuitive interpretations of the phenomenology observed, both in laboratory tests and in practical applications on important artifacts. This approach aims to provide keys of generalization that will favor the rigorous application of laser cleaning, repeatability of the successful results reported in this work, and further dissemination and acceptance of the technique. The topics treated examine the ablation mechanisms along with the efficiency, gradualness, selectivity, and effectiveness of the technique as a function of the pulse duration of neodymium laser systems and the operating conditions. Physical modeling and experimental evidence support the selection of pulse durations of between several tens of nanoseconds and several tens of microseconds, making it possible to minimize the risk of photothermal and photomechanical effects and maximize the selectivity of the ablation process. The sections dedicated to stones and metals also deal with the important problem of discoloration, which has significantly slowed the spread of the laser cleaning technique. The well-known problem of a yellowish appearance after laser cleaning is shown to be closely related to

  18. High precision mapping of kidney stones using μ-IR spectroscopy to determine urinary lithogenesis.

    Science.gov (United States)

    Blanco, Francisco; Ortiz-Alías, Pilar; López-Mesas, Montserrat; Valiente, Manuel

    2015-06-01

    Evolution of urinary lithiasis is determined by the metabolism and life-style of the related patient. The appropriate classification of the stone is mandatory for the identification of the lithogenic process. In this study, cros-sections from a single stone of each of the most frequent urolithiasis types (calcium oxalate mono and dihydrate and carbonate apatite) have been selected and imaged using IR microspectroscopy. Moreover, the use of high definition sFTIR (synchrotron source) has revealed hidden information to the conventional FTIR. This work has demonstrated that minor components become key factors on the description of the stages of stone formation. Intensity map for COM (1630 cm(-1) peak). The high spatial definition achieved is key for the precise description of the kidney stone history.

  19. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Treiman, Marek; Brazhe, Alexey R

    2012-01-01

    This paper presents a nonivasive approach to study redox state of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text] of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we...... perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text]. The rod......-shaped cardiomyocytes possess uneven distribution of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text] in cell center and periphery. Moreover, by means of Raman spectroscopy we demonstrated the decrease in the relative amounts of reduced cytochromes [Formula: see text], [Formula: see...

  20. Mapping of Redox State of Mitochondrial Cytochromes in Live Cardiomyocytes Using Raman Microspectroscopy

    Science.gov (United States)

    Brazhe, Nadezda A.; Treiman, Marek; Brazhe, Alexey R.; Find, Ninett L.; Maksimov, Georgy V.; Sosnovtseva, Olga V.

    2012-01-01

    This paper presents a nonivasive approach to study redox state of reduced cytochromes , and of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes , and . The rod-shaped cardiomyocytes possess uneven distribution of reduced cytochromes , and in cell center and periphery. Moreover, by means of Raman spectroscopy we demonstrated the decrease in the relative amounts of reduced cytochromes , and in the rod-shaped cardiomyocytes caused by H2O2-induced oxidative stress before any visible changes. Results of Raman mapping and time-dependent study of reduced cytochromes of complexes II and III and cytochrome in cardiomyocytes are in a good agreement with our fluorescence indicator studies and other published data. PMID:22957018

  1. Darkfield microspectroscopy of nanostructures on silver tip-enhanced Raman scattering probes

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tamitake, E-mail: tamitake-itou@aist.go.jp [Nano-Bioanalysis Team, Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395 (Japan); Yamamoto, Yuko S., E-mail: yamayulab@gmail.com [Research Fellow of the Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472 (Japan); Department of Chemistry, School of Science and Technology, Kagawa University, Takamatsu, Kagawa 761-0396 (Japan); Suzuki, Toshiaki [UNISOKU Co. Ltd., 2-4-3 Kasugano, Hirakata, Osaka 573-0131 (Japan); Kitahama, Yasutaka; Ozaki, Yukihiro [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337 (Japan)

    2016-01-11

    We report an evaluation method employing darkfield microspectroscopy for silver probes used in tip-enhanced Raman scattering (TERS). By adjusting the darkfield illumination, the diffracted light from the probe outlines disappears and the diffracted light from the surface nanostructures and tips of the probes appears as colorful spots. Scanning electron microscopy reveals that the spectral variations in these spots reflect the shapes of the surface nanostructures. The tip curvatures correlate to the spectral maxima of their spots. Temporal color changes in the spots indicate the deterioration due to the oxidation of the silver surfaces. These results show that the proposed method is useful for in situ evaluation of plasmonic properties of TERS probes.

  2. Raman microspectroscopy of Hematoporphyrins. Imaging of the noncancerous and the cancerous human breast tissues with photosensitizers

    Science.gov (United States)

    Brozek-Pluska, B.; Kopec, M.

    2016-12-01

    Raman microspectroscopy combined with fluorescence were used to study the distribution of Hematoporphyrin (Hp) in noncancerous and cancerous breast tissues. The results demonstrate the ability of Raman spectroscopy to distinguish between noncancerous and cancerous human breast tissue and to identify differences in the distribution and photodegradation of Hematoporphyrin, which is a photosensitizer in photodynamic therapy (PDT), photodynamic diagnosis (PDD) and photoimmunotherapy (PIT) of cancer. Presented results show that Hematoporphyrin level in the noncancerous breast tissue is lower compared to the cancerous one. We have proved also that the Raman intensity of lipids and proteins doesn't change dramatically after laser light irradiation, which indicates that the PDT treatment destroys preferably cancer cells, in which the photosensitizer is accumulated. The specific subcellular localization of photosensitizer for breast tissues samples soaked with Hematoporphyrin was not observed.

  3. Imaging phospholipid conformational disorder and packing in giant multilamellar liposome by confocal Raman microspectroscopy.

    Science.gov (United States)

    Noothalapati, Hemanth; Iwasaki, Keita; Yoshimoto, Chikako; Yoshikiyo, Keisuke; Nishikawa, Tomoe; Ando, Masahiro; Hamaguchi, Hiro-O; Yamamoto, Tatsuyuki

    2017-12-05

    Liposomes are closed phospholipid bilayer systems that have profound applications in fundamental cell biology, pharmaceutics and medicine. Depending on the composition (pure or mixture of phospholipids, presence of cholesterol) and preparation protocol, intra- and inter-chain molecular interactions vary leading to changes in the quality (order and packing) of liposomes. So far it is not possible to image conformational disorders and packing densities within a liposome in a straightforward manner. In this study, we utilized confocal Raman microspectroscopy to visualize structural disorders and packing efficiency within a giant multilamellar liposome model by focusing mainly on three regions in the vibrational spectrum (CC stretching, CH deformation and CH stretching). We estimated properties such as trans/gauche isomers and lateral packing probability. Interestingly, our Raman imaging studies revealed gel phase rich domains and heterogeneous lateral packing within the giant multilamellar liposome. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Microchemical structure of soybean seeds revealed in situ by ultraspatially resolved synchrotron Fourier transformed infrared microspectroscopy.

    Science.gov (United States)

    Pietrzak, Lukasz N; Miller, S Shea

    2005-11-30

    The distribution of water in soybean seeds during imbibition varies with the chemical composition of the tissue. To understand the dynamics of imbibition, the proteins, lipids, and carbohydrates of the cotyledons and hilum region in mature soybean seeds were mapped using synchrotron Fourier transformed infrared microspectroscopy, based on characteristic peaks for each component: amide I at 1650 cm(-1) and amide II at 1550 cm(-1) for protein, lipid ester stretch at 1545 cm(-1), and the region from 1200 to 900 cm(-1) for carbohydrates. The amount and configuration of the proteins varied across the cotyledon, as well as the amount of lipid and carbohydrate. It was found that protein distribution across the cotyledon is similar to water distribution during imbibition. The chemistry of the hilum region was also studied, as this is the point of water entry, and differences in the chemical composition of the tissues studied were observed.

  5. High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy

    Directory of Open Access Journals (Sweden)

    F. Scarponi

    2017-07-01

    Full Text Available Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical, and structural properties of condensed matter. Brillouin-Raman investigations currently require separate measurements and a site-matched approach to obtain complementary information from a sample. Here, we demonstrate a new concept of fully scanning multimodal microspectroscopy for simultaneous detection of Brillouin and Raman light scattering in an exceptionally wide spectral range, from fractions of GHz to hundreds of THz. It yields an unprecedented 150-dB contrast, which is especially important for the analysis of opaque or turbid media such as biomedical samples, and spatial resolution on a subcellular scale. We report the first applications of this new multimodal method to a range of systems, from a single cell to the fast reaction kinetics of a curing process, and the mechanochemical mapping of highly scattering biological samples.

  6. High-Performance Versatile Setup for Simultaneous Brillouin-Raman Microspectroscopy

    Science.gov (United States)

    Scarponi, F.; Mattana, S.; Corezzi, S.; Caponi, S.; Comez, L.; Sassi, P.; Morresi, A.; Paolantoni, M.; Urbanelli, L.; Emiliani, C.; Roscini, L.; Corte, L.; Cardinali, G.; Palombo, F.; Sandercock, J. R.; Fioretto, D.

    2017-07-01

    Brillouin and Raman scattering spectroscopy are established techniques for the nondestructive contactless and label-free readout of mechanical, chemical, and structural properties of condensed matter. Brillouin-Raman investigations currently require separate measurements and a site-matched approach to obtain complementary information from a sample. Here, we demonstrate a new concept of fully scanning multimodal microspectroscopy for simultaneous detection of Brillouin and Raman light scattering in an exceptionally wide spectral range, from fractions of GHz to hundreds of THz. It yields an unprecedented 150-dB contrast, which is especially important for the analysis of opaque or turbid media such as biomedical samples, and spatial resolution on a subcellular scale. We report the first applications of this new multimodal method to a range of systems, from a single cell to the fast reaction kinetics of a curing process, and the mechanochemical mapping of highly scattering biological samples.

  7. In situ synchrotron radiation X-ray microspectroscopy of polymer microcontainers.

    Science.gov (United States)

    Graf-Zeiler, Birgit; Fink, Rainer H; Tzvetkov, George

    2011-12-23

    Direct, real-time analytical techniques that provide high-resolution information on the chemical composition and submicrometer structure of various polymer micro- and nanoparticles are in high demand in a range of life science disciplines. Synchrotron-based scanning transmission X-ray microspectroscopy (STXM) combines both local-spot chemical information (assessed via near-edge X-ray absorption fine structure spectroscopy) and imaging with resolution of several tens of nanometers, and thus can yield new insights into the nanoscale properties of these materials. Furthermore, this method allows in situ examination of soft-matter samples in aqueous/gaseous environments and under external stimuli, such as temperature, pressure, ultrasound, and light irradiation. This Minireview highlights some recent progress in the application of the STXM technique to study the temperature-dependent behavior of polymer core-shell microcapsules and to characterize the physicochemical properties of the supporting shells of gas-filled microbubbles in their natural hydrated state.

  8. Discrimination of handlebar grip samples by fourier transform infrared microspectroscopy analysis and statistics

    Directory of Open Access Journals (Sweden)

    Zeyu Lin

    2017-01-01

    Full Text Available In this paper, the authors presented a study on the discrimination of handlebar grip samples, to provide effective forensic science service for hit and run traffic cases. 50 bicycle handlebar grip samples, 49 electric bike handlebar grip samples, and 96 motorcycle handlebar grip samples have been randomly collected by the local police in Beijing (China. Fourier transform infrared microspectroscopy (FTIR was utilized as analytical technology. Then, target absorption selection, data pretreatment, and discrimination of linked samples and unlinked samples were chosen as three steps to improve the discrimination of FTIR spectrums collected from different handlebar grip samples. Principal component analysis and receiver operating characteristic curve were utilized to evaluate different data selection methods and different data pretreatment methods, respectively. It is possible to explore the evidential value of handlebar grip residue evidence through instrumental analysis and statistical treatments. It will provide a universal discrimination method for other forensic science samples as well.

  9. Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy.

    Science.gov (United States)

    Wang, Yong; Spencer, Paulette

    2002-01-01

    Confocal Raman microspectroscopy (CRM) provides an important and novel means of analyzing the chemical composition of the adhesive/dentin (a/d) interface. The purpose of this study was to develop a method for quantitative determination of the degree of adhesive penetration at the a/d interface using CRM. Three commercial dentin adhesive systems [Scotchbond Multipurpose Plus (SBMP+), Single Bond (SB), and Primer Bond NT (PBNT)] based on the total etch and "wet" bonding technique were examined in this study. Human dentin specimens treated with these adhesives were analyzed with CRM mapping across the a/d interface. Also, Raman spectra were collected on model mixtures of adhesive and type I collagen, and the ratios of the relative intensities of the Raman bands corresponding to adhesive and collagen were used for the construction of calibration curves. By comparing the Raman band ratios of interface specimens to the calibration curves, the percent of adhesive as a function of spatial position across the a/d interface was determined. The results show that there is a gradual decrease in penetration as a function of position for all three adhesive systems while the adhesive concentration gradient decreases in the order of SBMP+ > SB > PBNT. These differences in penetration of the three adhesives at the a/d interface also are discussed relative to the composition and phase segregation in adhesives. Additionally, our results indicate that confocal Raman microspectroscopy is a reliable in situ analytical technique for simple and rapid quantitative determination of adhesive penetration at its interface with prepared dentin. Copyright 2001 John Wiley & Sons, Inc.

  10. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    Directory of Open Access Journals (Sweden)

    Ladislav Nedbal

    2010-09-01

    Full Text Available Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm−1 (cis C=C stretching mode and 1,445 cm−1 (CH2 scissoring mode as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

  11. Study of gemcitabine-sensitive/resistant cancer cells by cell cloning and synchrotron FTIR microspectroscopy.

    Science.gov (United States)

    Rutter, Abigail V; Siddique, Muhammad R; Filik, Jacob; Sandt, Christophe; Dumas, Paul; Cinque, Gianfelice; Sockalingum, Ganesh D; Yang, Ying; Sulé-Suso, Josep

    2014-08-01

    Over the last few years, significant scientific insight on the effects of chemotherapy drugs at cellular level using synchrotron-based FTIR (S-FTIR) microspectroscopy has been obtained. The work carried out so far has identified spectral differences in cancer cells before and after the addition of drugs. However, this had to account for the following issues. First, chemotherapy agents cause both chemical and morphological changes in cells, the latter being responsible for changes in the spectral profile not correlated with biochemical characteristics. Second, as the work has been carried out in mixed populations of cells (resistant and sensitive), it is important to distinguish the spectral differences which are due to sensitivity/resistance to those due to cell morphology and/or cell mixture. Here, we successfully cloned resistant and sensitive lung cancer cells to a chemotherapy drug. This allowed us to study a more uniform population and, more important, allowed us to study sensitive and resistant cells prior to the addition of the drug with S-FTIR microscopy. Principal component analysis (PCA) did not detect major differences in resistant cells prior to and after adding the drug. However, PCA separated sensitive cells prior to and after the addition of the drug. This would indicate that the spectral differences between cells prior to and after adding a drug might reside on those more or less sensitive cells that have been able to remain alive when they were collected to be studied with S-FTIR microspectroscopy. This is a proof of concept and a feasibility study showing a methodology that opens a new way to identify the effects of drugs on more homogeneous cell populations using vibrational spectroscopy.

  12. Evaluation of MidIR fibre optic reflectance: detection limit, reproducibility and binary mixture discrimination.

    Science.gov (United States)

    Sessa, Clarimma; Bagán, Héctor; García, José Francisco

    2013-11-01

    MidIR fibre optic reflectance (MidIR-FORS) is a promising analytical technique in the field of science conservation, especially because it is non-destructive. Another advantage of MidIR-FORS is that the obtained information is representative, as a large amount of spectral data can be collected. Although the technique has a high potential and is almost routinely applied, its quality parameters have not been thoroughly studied in the specific application of analysis of artistic materials. The objective of this study is to evaluate the instrumental capabilities of MidIR-FORS for the analysis of artwork materials in terms of detection limit, reproducibility, and mixture characterisation. The study has been focused on oil easel painting and several paints of known composition have been analysed. Paint layers include blue pigments not only because of their important role along art history, but also because their physical and spectroscopic characteristics allow a better evaluation of the MidIR-FORS capabilities. The results of the analysis indicate that MidIR-FORS supplies a signal affected by different factors, such as the optical, morphological and physical properties of the surface, in addition to the composition of materials analysed. Consequently, the detection limits established are relatively high for artistic objects (Prussian blue - PB 2.1-6.5%; Phthalocyanine blue - Pht 6.3-10.2%; synthetic Ultramarine blue - UM 12.1%) and may therefore lead to an incomplete description of the artwork. Reproducibility of the technique over time and across surface has been determined. The results show that the major sources of dispersion are the heterogeneity of the pigments distribution, physical features, and band shape distortions. The total dispersion is around 4% for the most intense bands (oil) and increases up to 26% when weak or overlapped bands are considered (PB, Pht, UM). The application of different pre-treatments (cutoff of fibres absorption, Savizky-Golay smoothing

  13. Characterization of acrylic resins used for restoration of artworks by pyrolysis-silylation-gas chromatography/mass spectrometry with hexamethyldisilazane.

    Science.gov (United States)

    Osete-Cortina, Laura; Doménech-Carbó, María Teresa

    2006-09-15

    A procedure based on the technique of the pyrolysis-GC/MS has been applied, in this work, in order to determine the composition of synthetic acrylic resins employed in artworks. The method is based on the on line derivatization of these resins using hexamethyldisilazane (HMDS). Results obtained have been compared with those others from direct pyrolysis and in situ thermally assisted hydrolysis and methylation with tetramethylammonium hydroxide (TMAH). Sensitivity using HMDS as derivatising reagent is found similar to that from direct pyrolysis and methylation with TMAH. Better resolution of the most representative peaks has been also obtained. Additionally, this method reduces the formation of free acrylic acid molecules during the pyrolysis process and, in consequence, more simplified and well-resolved chromatograms are obtained. Finally, the reported procedure has been successfully used for characterizing several acrylic-based varnishes and binding media currently used in Fine Arts and real pictorial samples from graffiti performed on a Middle Ages bridge.

  14. HWIL IR imaging testing

    Science.gov (United States)

    Vinson, R. J.; Passwater, R. D.

    1981-03-01

    The Army simulator facilities are presently configured to conduct hardware-in-the-loop mission tasks on the HELLFIRE and COPPERHEAD missile systems. These systems presently use a LASER seeker. The facility is an ideal candidate to be converted to include infrared (IR) seekers used on the TGSM system. This study investigates the possibility and impact of a facility update. This report documents the feasibility of developing a hardware-in-the-loop (HWIL) hybrid simulation incorporating infrared IR seekers used for the Assault Breaker program. Other hardware to be considered are the autopilot, signal conditioning, signal processing, and actuators which may be integrated into the system simulation. Considerations are given to replacing all or elements of hardware while substituting math models in the system simulation.

  15. Localised IR spectroscopy of hemoglobin

    CERN Document Server

    Yarrow, Fiona

    2010-01-01

    IR absorption spectroscopy of hemoglobin was performed using an IR optical parametric oscillator laser and a commercial atomic force microscope in a novel experimental arrangement based on the use of a bottom-up excitation alignment. This experimental approach enables detection of protein samples with a resolution that is much higher than that of standard IR spectroscopy. Presented here are AFM based IR absorption spectra of micron sized hemoglobin features

  16. IR nanoscale spectroscopy and imaging

    Science.gov (United States)

    Kennedy, Eamonn; Yarrow, Fiona; Rice, James H.

    2011-10-01

    Sub diffraction limited infrared absorption imaging was applied to hemoglobin by coupling IR optics with an atomic force microscope. Comparisons between the AFM topography and IR absorption images of micron sized hemoglobin features are presented, along with nanoscale IR spectroscopic analysis of the metalloprotein.

  17. Combined Holographic Subsurface Radar and Infrared Thermography for Diagnosis of the Conditions of Historical Structures and Artworks

    Science.gov (United States)

    Capineri, L.; Falorni, P.; Ivashov, S.; Zhuravlev, A.; Vasiliev, I.; Razevig, V.; Bechtel, T.; Stankiewicz, G.

    2009-04-01

    of RASCAN radar and infrared thermography (IRT) as a means of alleviating the non-uniqueness problem. Coincident RASCAN and IRT images have been recorded for laboratory mock-ups of stone, wood and plaster structures and artworks containing subsurface cracks, voids, moisture, insect damage, supports, repairs, and the like. In addition, some initial side-by-side testing has been performed on actual historic structures and artworks. Since both RASCAN and IRT produce real-time, plan-view images, they are easily overlain and compared, and both can be interpreted visually - especially by persons familiar with the particular item under investigation. Because they are sensitive to completely independent physical properties (dielectric constant for RASCAN and thermal conductivity and heat capacity for IRT), this comparison can allow confident identification of target materials and conditions. Our testing confirms that both are exquisitely sensitive to hidden moisture. Finally, instrumentation for both RASCAN and IRT is commercially available, relatively low cost, and easy to use and interpret - making this combination of methods a potentially powerful tool for workers engaged in the preservation and restoration of artworks and architecture.

  18. Albuminas ir jo vartojimas

    OpenAIRE

    Reingardienė, Dagmara Ona

    2002-01-01

    Albuminas yra natūralus koloidas, tačiau jo vartojimo svarba ir efektyvumas, gydant kritines būkles, pastaraisiais metais iš esmės pasikeitė. Šiame straipsnyje aptariami naujausi literatūros duomenys apie albumino vartojimą. Aišku, kad įprastas albumino vartojimas, esant sumažėjusiam jo kiekiui plazmoje, nerekomenduotinas. Šiuo metu moksliškai pagrįstų indikacijų albumino vartojimui nėra. Jo galima skirti tik kaip antrojo pasirinkimo tirpalą tais atvejais, kai kiti tirpalai neindikuotini ar k...

  19. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  20. The IRS-1 signaling system.

    Science.gov (United States)

    White, M F

    1994-02-01

    IRS-1 is a principal substrate of the insulin receptor tyrosine kinase. It undergoes multi-site tyrosine phosphorylation and mediates the insulin signal by associating with various signaling molecules containing Src homology 2 domains. Interleukin-4 also stimulates IRS-1 phosphorylation, and it is suspected that a few more growth factors or cytokines will be added to form a select group of receptors that utilize the IRS-1 signaling pathway. More IRS-1-like adapter molecules, such as 4PS (IRS-2), may remain to be found.

  1. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy.

    Science.gov (United States)

    Brazhe, Nadezda A; Treiman, Marek; Brazhe, Alexey R; Find, Ninett L; Maksimov, Georgy V; Sosnovtseva, Olga V

    2012-01-01

    This paper presents a nonivasive approach to study redox state of reduced cytochromes c, c1 and b of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach we perform studies of rod- and round-shaped cardiomyocytes, representing different morphological and functional states. Raman mapping and cluster analysis reveal that these cardiomyocytes differ in the amounts of reduced cytochromes c, c1 and b. The rod-shaped cardiomyocytes possess uneven distribution of reduced cytochromes c, c1 and b in cell center and periphery. Moreover, by means of Raman spectroscopy we demonstrated the decrease in the relative amounts of reduced cytochromes c, c1 and b in the rod-shaped cardiomyocytes caused by H2O2-induced oxidative stress before any visible changes. Results of Raman mapping and time-dependent study of reduced cytochromes of complexes II and III and cytochrome c in cardiomyocytes are in a good agreement with our fluorescence indicator studies and other published data.

  2. Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques.

    Science.gov (United States)

    Chakraborty, Nilay; Wang, Mian; Solocinski, Jason; Kim, Wonsuk; Argento, Alan

    2016-01-01

    This work presents an optospectroscopic characterization technique for soft tissue microstructure using site-matched confocal Raman microspectroscopy and polarized light microscopy. Using the technique, the microstructure of soft tissue samples is directly observed by polarized light microscopy during loading while spatially correlated spectroscopic information is extracted from the same plane, verifying the orientation and arrangement of the collagen fibers. Results show the response and orientation of the collagen fiber arrangement in its native state as well as during tensile and compressive loadings in a porcine sclera model. An example is also given showing how the data can be used with a finite element program to estimate the strain in individual collagen fibers. The measurements demonstrate features that indicate microstructural reorganization and damage of the sclera's collagen fiber arrangement under loading. The site-matched confocal Raman microspectroscopic characterization of the tissue provides a qualitative measure to relate the change in fibrillar arrangement with possible chemical damage to the collagen microstructure. Tests and analyses presented here can potentially be used to determine the stress-strain behavior, and fiber reorganization of the collagen microstructure in soft tissue during viscoelastic response.

  3. Quantification of chemotaxis-related alkane accumulation in Acinetobacter baylyi using Raman microspectroscopy.

    Science.gov (United States)

    Li, Hanbing; L Martin, Francis Luke; Zhang, Dayi

    2017-03-03

    Alkanes are one of the most widespread contaminants in the natural environment, primarily as a consequence of biological synthesis and oil spills. Many indigenous microbes metabolize alkanes, and the chemotaxis and accumulation in some strains has been identified. For the first time, we apply Raman microspectroscopy to identify such chemotaxis-related affinity, and quantify the alkane concentrations via spectral alterations. Raman spectral alterations were only found for the alkane chemo-attractant bacteria Acinetobacter baylyi ADP1, not for Pseudomonas fluorescence, which exhibits limited chemotaxis towards alkane. The significant alterations were attributed to the strong chemotactic ability of A. baylyi enhancing the affinity and accumulation of alkane molecules on cell membranes or cellular internalization. Spectral fingerprints of A. baylyi significantly altered after 1-h exposure to pure alkanes (dodecane or tetradecane) and alkane mixtures (mineral oil or crude oil), but not monocyclic aromatic hydrocarbons (MAHs) or polycyclic aromatic hydrocarbons (PAHs). A semi-log linear regression relationship between Raman spectral alterations and alkane concentrations showed its feasibility in quantifying alkane concentration in environmental samples. Pure alkanes or alkane mixtures exhibited different limits of detection and regression slopes, indicating that the chemotaxis-related alkane accumulation in A. baylyi is dependent on the carbon chain length. This work provides a novel biospectroscopy approach to characterize the chemotaxis-related alkane bioaccumulation, and has immense potential for fast and high-throughput screening bacterial chemotaxis.

  4. Multiphoton microscopy and microspectroscopy for diagnostics of inflammatory and neoplastic lung

    Science.gov (United States)

    Pavlova, Ina; Hume, Kelly R.; Yazinski, Stephanie A.; Flanders, James; Southard, Teresa L.; Weiss, Robert S.; Webb, Watt W.

    2012-03-01

    Limitations of current medical procedures for detecting early lung cancers inspire the need for new diagnostic imaging modalities for the direct microscopic visualization of lung nodules. Multiphoton microscopy (MPM) provides for subcellular resolution imaging of intrinsic fluorescence from unprocessed tissue with minimal optical attenuation and photodamage. We demonstrate that MPM detects morphological and spectral features of lung tissue and differentiates between normal, inflammatory and neoplastic lung. Ex vivo MPM imaging of intrinsic two-photon excited fluorescence was performed on mouse and canine neoplastic, inflammatory and tumor-free lung sites. Results showed that MPM detected microanatomical differences between tumor-free and neoplastic lung tissue similar to standard histopathology but without the need for tissue processing. Furthermore, inflammatory sites displayed a distinct red-shifted fluorescence compared to neoplasms in both mouse and canine lung, and adenocarcinomas displayed a less pronounced fluorescence emission in the 500 to 550 nm region compared to adenomas in mouse models of lung cancer. These spectral distinctions were also confirmed by two-photon excited fluorescence microspectroscopy. We demonstrate the feasibility of applying MPM imaging of intrinsic fluorescence for the differentiation of lung neoplasms, inflammatory and tumor-free lung, which motivates the application of multiphoton endoscopy for the in situ imaging of lung nodules.

  5. Using infrared and Raman microspectroscopies to compare ex vivo involved psoriatic skin with normal human skin

    Science.gov (United States)

    Leroy, Marie; Lefèvre, Thierry; Pouliot, Roxane; Auger, Michèle; Laroche, Gaétan

    2015-06-01

    Psoriasis is a chronic dermatosis that affects around 3% of the world's population. The etiology of this autoimmune pathology is not completely understood. The barrier function of psoriatic skin is known to be strongly altered, but the structural modifications at the origin of this dysfunction are not clear. To develop strategies to reduce symptoms of psoriasis or adequate substitutes for modeling, a deep understanding of the organization of psoriatic skin at a molecular level is required. Infrared and Raman microspectroscopies have been used to obtain direct molecular-level information on psoriatic and healthy human skin biopsies. From the intensities and positions of specific vibrational bands, the lipid and protein distribution and the lipid order have been mapped in the different layers of the skin. Results showed a similar distribution of lipids and collagen for normal and psoriatic human skin. However, psoriatic skin is characterized by heterogeneity in lipid/protein composition at the micrometer scale, a reduction in the definition of skin layer boundaries and a decrease in lipid chain order in the stratum corneum as compared to normal skin. A global decrease of the structural organization is exhibited in psoriatic skin that is compatible with an alteration of its barrier properties.

  6. In vitro colocalization of plasmonic nano-biolabels and biomolecules using plasmonic and Raman scattering microspectroscopy

    Science.gov (United States)

    Chaudhari, Kamalesh; Pradeep, Thalappil

    2015-04-01

    An insight into the intracellular fate of theranostics is important for improving their potential in biological applications. In vivo efficacy of plasmonic theranostics depends on our ability to monitor temporal changes in their size, shape, and state of aggregation, and the identification of molecules adsorbed on their surfaces. We develop a technique which combines plasmonic and Raman scattering microspectroscopy to colocalize plasmonic scattering from metallic nanoparticles with the Raman signatures of biomolecules adsorbed on the surface of the former. Using this technique, we have colocalized biomolecules with the plasmonic scattering from silver nanoparticles in the vicinity of Escherichia coli bacteria. To prove the applicability of this setup for the measurements on mammalian cells, imaging of HEK293 cells treated with gold nanoparticles was performed. We discuss the importance of such correlated measurements over individual techniques, although the latter may lead to misinterpretation of results. Finally, with the above-mentioned examples, we have given criteria to improve the specificity of theranostics. We believe that this methodology will be considered as a prime development in the assessment of theranostics.

  7. Coexistence of probe conformations in lipid phases-a polarized fluorescence microspectroscopy study.

    Science.gov (United States)

    Urbančič, Iztok; Ljubetič, Ajasja; Arsov, Zoran; Strancar, Janez

    2013-08-20

    Several well-established fluorescence methods depend on environment-sensitive probes that report about molecular properties of their local environment. For reliable interpretation of experiments, careful characterization of probes' behavior is required. In this study, bleaching-corrected polarized fluorescence microspectroscopy with nanometer spectral peak position resolution was applied to characterize conformations of two alkyl chain-labeled 7-nitro-2-1,3-benzoxadiazol-4-yl phospholipids in three model membranes, representing the three main lipid phases. The combination of polarized and spectral detection revealed two main probe conformations with their preferential fluorophore dipole orientations roughly parallel and perpendicular to membrane normal. Their peak positions were separated by 2-6 nm because of different local polarities and depended on lipid environment. The relative populations of conformations, estimated by a numerical model, indicated a specific sensitivity of the two probes to molecular packing with cholesterol. The coexistence of probe conformations could be further exploited to investigate membrane organization below microscopy spatial resolution, such as lipid rafts. With the addition of polarized excitation or detection to any environment-sensitive fluorescence imaging technique, the conformational analysis can be directly applied to explore local membrane complexity.

  8. Differentiating gastrointestinal stromal tumors from gastric adenocarcinomas and normal mucosae using confocal Raman microspectroscopy

    Science.gov (United States)

    Hsu, Chih-Wei; Huang, Chia-Chi; Sheu, Jeng-Horng; Lin, Chia-Wen; Lin, Lien-Fu; Jin, Jong-Shiaw; Chen, Wenlung

    2016-07-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, and gastric adenocarcinomas are a common cancer worldwide. To differentiate GISTs from adenocarcinomas is important because the surgical processes for both are different; the former excises the tumor with negative margins, while the latter requires radical gastrectomy with lymph node dissection. Endoscopy with biopsy is used to distinguish GISTs from adenocarcinomas; however, it may cause tumor bleeding in GISTs. We reported here the confocal Raman microspectroscopy as an effective tool to differentiate GISTs, adenocarcinomas, and normal mucosae. Of 119 patients enrolled in this study, 102 patients underwent gastrectomy (40 GISTs and 62 adenocarcinomas), and 17 patients with benign lesions were obtained as normal mucosae. Raman signals were integrated for 100 s for each spot on the specimen, and 5 to 10 spots, depending on the sample size, were chosen for each specimen. There were significant differences among those tissues as evidenced by different Raman signal responding to phospholipids and protein structures. The spectral data were further processed and analyzed by using principal component analysis. A two-dimensional plot demonstrated that GISTs, adenocarcinomas, and normal gastric mucosae could be effectively differentiated from each other.

  9. Unraveling the interactions between cold atmospheric plasma and skin-components with vibrational microspectroscopy.

    Science.gov (United States)

    Kartaschew, Konstantin; Mischo, Meike; Baldus, Sabrina; Bründermann, Erik; Awakowicz, Peter; Havenith, Martina

    2015-01-01

    Using infrared and Raman microspectroscopy, the authors examined the interaction of cold atmospheric plasma with the skin's built-in protective cushion, the outermost skin layer stratum corneum. Following a spectroscopic analysis, the authors could identify four prominent chemical alterations caused by plasma treatment: (1) oxidation of disulfide bonds in keratin leading to a generation of cysteic acid; (2) formation of organic nitrates as well as (3) of new carbonyl groups like ketones, aldehydes and acids; and (4) reduction of double bonds in the lipid matter lanolin, which resembles human sebum. The authors suggest that these generated acidic and NO-containing functional groups are the source of an antibacterial and regenerative environment at the treatment location of the stratum corneum. Based upon the author's results, the authors propose a mechanistic view of how cold atmospheric plasmas could modulate the skin chemistry to produce positive long-term effects on wound healing: briefly, cold atmospheric plasmas have the potential to transform the skin itself into a therapeutic resource.

  10. Probing the whole ore chalcopyrite-bacteria interactions and jarosite biosynthesis by Raman and FTIR microspectroscopies.

    Science.gov (United States)

    Adamou, Anastasia; Manos, Giorgos; Messios, Nicholas; Georgiou, Lazaros; Xydas, Constantinos; Varotsis, Constantinos

    2016-08-01

    The whole ore chalcopyrite-bacteria interaction and the formation of the extracellular polymeric substances (EPS) during the bioleaching process by microorganisms found in the mine of Hellenic Copper Mines in Cyprus were investigated. Raman and FTIR microspectroscopies have been applied towards establishing a direct method for monitoring the formation of secondary minerals and the newly found vibrational marker bands were used to monitor the time evolution of the formation of covellite, and the K(+) and NH4(+)-jarosites from the chalcopyrite surfaces. The Raman data indicate that the formation of K(+)-jarosite is followed by the formation of NH4(+)-jarosite. The variation in color in the FTIR imaging data and the observation of the amide I vibration at 1637cm(-1) indicate that the microorganisms are attached on the mineral surface and the changes in the frequency/intensity of the biofilm marker bands in the 900-1140cm(-1) frequency range with time demonstrate the existence of biofilm conformations. Copyright © 2016. Published by Elsevier Ltd.

  11. Analysis of human cancer prostate tissues using FTIR microspectroscopy and SRIXE techniques

    Science.gov (United States)

    Paluszkiewicz, Czesława; Kwiatek, Wojciech M.

    2001-05-01

    It is known that Fourier transform infrared (FTIR) spectra of human tissues are specific and can be used to discriminate between various disease states. In this study, cancer and healthy parts of prostate tissues were examined. The human prostate tissues were obtained during surgical operation. Sections of samples were mounted onto Mylar foils and measured by both FTIR microspectroscopy and synchrotron radiation induced X-ray emission (SRIXE) methods. Neighboring sections of tissues analyzed by FTIR and SRIXE were also examined by a histopathologist. Since the SRIXE technique is suitable for trace element analysis the two-dimensional scans on both cancerous and non-cancerous parts of the prostate tissues were done in order to find elemental distribution of trace elements. The single point analysis on selected areas were also performed. Then the same samples were studied in the mid infrared region on Excalibur spectrometer with infrared microscope UMA-500 equipped with an automatic xy-stage and video camera. Both FTIR spectra and elemental distribution show differences between cancerous and non-cancerous parts of the analyzed tissues.

  12. Detecting viability transitions of umbilical cord mesenchymal stem cells by Raman micro-spectroscopy

    Science.gov (United States)

    Bai, H.; Chen, P.; Fang, H.; Lin, L.; Tang, G. Q.; Mu, G. G.; Gong, W.; Liu, Z. P.; Wu, H.; Zhao, H.; Han, Z. C.

    2011-01-01

    Recent research suggests that human umbilical cord derived mesenchymal stem cells (hUC-MSCs) can be promising candidates for cell-based therapy. Since large population and high viability are generally required, detecting viability transitions of these cells is crucial for their population expansion and quality control. Here, as a non-invasive method, Raman micro-spectroscopy is applied to examine hUC-MSCs with different viability. Using peak fitting and statistic t-test, the Raman peaks with obvious differences between the cells with high viability (> 90%) and low viability (< 20%) are extracted. It is found that the C=O out of plane bending in thymine at 744 cm-1, symmetric stretching of C-C in lipids at 877 cm-1 and CH deformation in proteins at 1342 cm-1 show the most significant changes (p < 0.001). When the cell viability decreases, the intensities of the former two peaks are both about doubled while that of the latter peak reduces by about 30%. Based on these results, we propose that the viability of hUC-MSCs can be characterized by these three peaks. And their intensity changes can be understood from the model of excessive reactive oxygen species interacting with the bio-macromolecules.

  13. X-ray radiation-induced effects in human mammary epithelial cells investigated by Raman microspectroscopy

    Science.gov (United States)

    Risi, R.; Manti, L.; Perna, G.; Lasalvia, M.; Capozzi, V.; Delfino, I.; Lepore, M.

    2012-06-01

    Micro-Raman technique can be particularly useful to investigate the chemical changes induced in structure, protein, nucleic acid, lipid, and carbohydrate contents of cells. The aim of this work is to inspect the possibility to employ Raman microspectroscopy to detect biochemical modifications in human mammary epithelial cells after exposure to different Xray doses. The samples consisted of cells cultured on polylysine-coated glass coverslips. After the exposition, control and treated cells were washed in phosphate-buffered saline (PBS) and then fixed in paraformaldehyde 3.7%. They were examined using a confocal micro-Raman system equipped with a He-Ne laser (λ = 632.8 nm; power on the sample= 3.5mW). Differences in the intensity ratio of specific Raman vibrational markers commonly assigned to phenylalanine and tyrosine amino acids (at 1000, 1030, 1618 cm-1), DNA bases (787, 1090, 1305 cm-1), and amide III (1237, and 1265 cm-1) with respect a reference peak (the one of lipids at 1450 cm-1) were evidenced between control and exposed cells. These differences may be indicative of damage in exposed cells as the fragmentation of individual amino acids and DNA bases, crosslink effects in molecular structure of DNA and protein conformational change that especially tend to "unwind" the protein due to the breaking of hydrogen bonds between peptide chains.

  14. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  15. In search of Leonardo: computer-based facial image analysis of Renaissance artworks for identifying Leonardo as subject

    Science.gov (United States)

    Tyler, Christopher W.; Smith, William A. P.; Stork, David G.

    2012-03-01

    One of the enduring mysteries in the history of the Renaissance is the adult appearance of the archetypical "Renaissance Man," Leonardo da Vinci. His only acknowledged self-portrait is from an advanced age, and various candidate images of younger men are difficult to assess given the absence of documentary evidence. One clue about Leonardo's appearance comes from the remark of the contemporary historian, Vasari, that the sculpture of David by Leonardo's master, Andrea del Verrocchio, was based on the appearance of Leonardo when he was an apprentice. Taking a cue from this statement, we suggest that the more mature sculpture of St. Thomas, also by Verrocchio, might also have been a portrait of Leonardo. We tested the possibility Leonardo was the subject for Verrocchio's sculpture by a novel computational technique for the comparison of three-dimensional facial configurations. Based on quantitative measures of similarities, we also assess whether another pair of candidate two-dimensional images are plausibly attributable as being portraits of Leonardo as a young adult. Our results are consistent with the claim Leonardo is indeed the subject in these works, but we need comparisons with images in a larger corpora of candidate artworks before our results achieve statistical significance.

  16. Analytical Approaches Based on Gas Chromatography Mass Spectrometry (GC/MS) to Study Organic Materials in Artworks and Archaeological Objects.

    Science.gov (United States)

    Bonaduce, Ilaria; Ribechini, Erika; Modugno, Francesca; Colombini, Maria Perla

    2016-02-01

    Gas chromatography/mass spectrometry (GC/MS), after appropriate wet chemical sample pre-treatments or pyrolysis, is one of the most commonly adopted analytical techniques in the study of organic materials from cultural heritage objects. Organic materials in archaeological contexts, in classical art objects, or in modern and contemporary works of art may be the same or belong to the same classes, but can also vary considerably, often presenting different ageing pathways and chemical environments. This paper provides an overview of the literature published in the last 10 years on the research based on the use of GC/MS for the analysis of organic materials in artworks and archaeological objects. The latest progresses in advancing analytical approaches, characterising materials and understanding their degradation, and developing methods for monitoring their stability are discussed. Case studies from the literature are presented to examine how the choice of the working conditions and the analytical approaches is driven by the analytical and technical question to be answered, as well as the nature of the object from which the samples are collected.

  17. Myowater dynamics and protein secondary structural changes as affected by heating rate in three pork qualities: a combined FT-IR microspectroscopic and 1H NMR relaxometry study.

    Science.gov (United States)

    Wu, Zhiyun; Bertram, Hanne Christine; Böcker, Ulrike; Ofstad, Ragni; Kohler, Achim

    2007-05-16

    The objective of this study was to investigate the influence of heating rate on myowater dynamics and protein secondary structures in three pork qualities by proton NMR T2 relaxation and Fourier transform infrared (FT-IR) microspectroscopy measurements. Two oven temperatures at 100 degrees C and 200 degrees C corresponding to slow and fast heating rates were applied on three pork qualities (DFD, PSE, and normal) to an internal center temperature of 65 degrees C. The fast heating induced a higher cooking loss, particularly for PSE meat. The water proton T21 distribution representing water entrapped within the myofibrillar network was influenced by heating rate and meat quality. Fast heating broadened the T21 distribution and decreased the relaxation times of the T21 peak position for three meat qualities. The changes in T21 relaxation times in meat can be interpreted in terms of chemical and diffusive exchange. FT-IR showed that fast heating caused a higher gain of random structures and aggregated beta-sheets at the expense of native alpha-helixes, and these changes dominate the fast-heating-induced broadening of T21 distribution and reduction in T21 times. Furthermore, of the three meat qualities, PSE meat had the broadest T21 distribution and the lowest T21 times for both heating rates, reflecting that the protein aggregation of PSE caused by heating is more extensive than those of DFD and normal, which is consistent with the IR data. The present study demonstrated that the changes in T2 relaxation times of water protons affected by heating rate and raw meat quality are well related to the protein secondary structural changes as probed by FT-IR microspectroscopy.

  18. The extragalactic IR background

    CERN Document Server

    De Zotti, G; Mazzei, P; Toffolatti, L; Danese, L; De Zotti, G; Franceschini, A; Mazzei, P; Toffolatti, L; Danese, L

    1994-01-01

    Current limits on the intensity of the extragalactic infrared background are consistent with the expected contribution from evolving galaxies. Depending on the behaviour of the star formation rate and of the initial mass function, we can expect that dust extinction during early evolutionary phases ranges from moderate to strong. An example of the latter case may be the ultraluminous galaxy IRAS F10214 + 4724. The remarkable lack of high redshift galaxies in faint optically selected samples may be indirect evidence that strong extinction is common during early phases. Testable implications of different scenarios are discussed; ISO can play a key role in this context. Estimates of possible contributions of galaxies to the background under different assumptions are presented. The COBE/FIRAS limits on deviations from a blackbody spectrum at sub-mm wavelengths already set important constraints on the evolution of the far-IR emission of galaxies and on the density of obscured (``Type 2'') AGNs. A major progress in ...

  19. Application of infrared microspectroscopy and multivariate analysis for monitoring the effect of adjunct cultures during Swiss cheese ripening.

    Science.gov (United States)

    Chen, G; Kocaoglu-Vurma, N A; Harper, W J; Rodriguez-Saona, L E

    2009-08-01

    Improved cheese flavor has been attributed to the addition of adjunct cultures, which provide certain key enzymes for proteolysis and affect the dynamics of starter and nonstarter cultures. Infrared microspectroscopy provides unique fingerprint-like spectra for cheese samples and allows for rapid monitoring of cheese composition during ripening. The objective was to use infrared microspectroscopy and multivariate analysis to evaluate the effect of adjunct cultures on Swiss cheeses during ripening. Swiss cheeses, manufactured using a commercial starter culture combination and 1 of 3 adjunct Lactobacillus spp., were evaluated at d 1, 6, 30, 60, and 90 of ripening. Cheese samples (approximately 20 g) were powdered with liquid nitrogen and homogenized using water and organic solvents, and the water-soluble components were separated. A 3-microL aliquot of the extract was applied onto a reflective microscope slide, vacuum-dried, and analyzed by infrared microspectroscopy. The infrared spectra (900 to 1,800 cm(-1)) produced specific absorption profiles that allowed for discrimination among different cheese samples. Cheeses manufactured with adjunct cultures showed more uniform and consistent spectral profiles, leading to the formation of tight clusters by pattern-recognition analysis (soft independent modeling of class analogy) as compared with cheeses with no adjuncts, which exhibited more spectral variability among replicated samples. In addition, the soft independent modeling of class analogy discriminating power indicated that cheeses were differentiated predominantly based on the band at 1,122 cm(-1), which was associated with S-O vibrations. The greatest changes in the chemical profile of each cheese occurred between d 6 and 30 of warm-room ripening. The band at 1,412 cm(-1), which was associated with acidic AA, had the greatest contribution to differentiation, indicating substantial changes in levels of proteolysis during warm-room ripening in addition to propionic

  20. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  1. Measuring Cellular-scale Nutrient Distribution in Algal Biofilms with Synchrotron Confocal Infrared Microspectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    J Murdock; W Dodds; J Reffner; D Wetzel

    2011-12-31

    The microscope and infrared spectrometer are two of the most useful tools for the study of biological materials, and their combined analytical power far exceeds the sum of the two. Performing molecular spectroscopy through a microscope superimposes chemical information onto the physical microstructure obtained from the optical microscope when visible and infrared information are collected under the same conditions. The instrument developments that enable current infrared microspectroscopic studies began with the introduction of the first research-grade infrared microscope, patented in 1989 (1). By 1993, published reports using this method to determine macroalgae (seaweed) cell-wall composition appeared (2-4). Since these initial reports, the use of infrared microspectroscopy (IMS) in microalgal (single cells or groups of cells) research has grown. Primarily, cultured algae have been used to hone IMS methodology and evaluate its capabilities in algal research (5-8). Studies involving natural, mixed species assemblages, which can utilize the spatial resolution potential of this technique fully are rare (9-11). For instance, in a recent review of IMS microalgal ecological research (12), only 3 of the 29 peer-reviewed publications investigated natural algal assemblages. Both thermal and synchrotron infrared sources provide a resolution capable of measuring individual algae in mixed species assemblages, and each has its advantages. For example, thermal source IMS is more accessible, allowing more samples to be analyzed than synchrotron IMS. However, synchrotron IMS with confocal masking provides superior resolution, which can be critical in isolating small or contiguous cells. Algal ecology is the study of the interaction between algae and their environment. Infrared microspectroscopy addresses a major logistical problem in this field, obtaining species-specific cellular biochemical information from natural, mixed-species assemblages (11,12). Benthic (bottom

  2. Synchrotron FTIR micro-spectroscopy study of the rat hippocampal formation after pilocarpine-evoked seizures.

    Science.gov (United States)

    Chwiej, J; Dulinska, J; Janeczko, K; Dumas, P; Eichert, D; Dudala, J; Setkowicz, Z

    2010-10-01

    In the present work, synchrotron radiation Fourier transform infrared (SRFTIR) micro-spectroscopy and imaging were used for topographic and semi-quantitative biochemical analysis of rat brain tissue in cases of pilocarpine-induced epilepsy. The tissue samples were analyzed with a beam defined by small apertures and spatial resolution steps of 10 microm which allowed us to probe the selected cellular layers of hippocampal formation. Raster scanning of the samples has generated 2D chemical cartographies revealing the distribution of proteins, lipids and nucleic acids. Spectral analysis has shown changes in the saturation level of phospholipids and relative secondary structure of proteins. Special interest was put in the analysis of two areas of the hippocampal formation (sector 3 of the Ammon's horn, CA3 and dentate gyrus, DG) in which elemental abnormalities were observed during our previous studies. Statistically significant increase in the saturation level of phospholipids (increased ratio of the absorption intensities at around 2921 and 2958 cm(-1)) as well as conformational changes of proteins (beta-type structure discrepancies as shown by the increased ratio of the absorbance intensities at around 1631 and 1657 cm(-1) as well as the ratio of the absorbance at 1548 and 1657 cm(-1)) were detected in pyramidal cells of CA3 area as well as in the multiform and molecular layers of DG. The findings presented here suggest that abnormalities in the protein secondary structure and increases in the level of phospholipid saturation could be involved in mechanisms of neurodegenerative changes following the oxidative stress evoked in brain areas affected by pilocarpine-induced seizures.

  3. The structural analysis of three-dimensional fibrous collagen hydrogels by Raman microspectroscopy.

    Science.gov (United States)

    Hwang, Yu Jer; Lyubovitsky, Julia G

    2013-06-01

    To investigate molecular effects of 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), EDC/N-hydroxysuccinimide (NHS), glyceraldehyde cross-linking as well as polymerization temperature and concentration on the three-dimensional (3D) collagen hydrogels, we analyzed the structures in situ by Raman microspectroscopy. The increased intensity of the 814 and 936 cm(-1) Raman bands corresponding to the C-C stretch of a protein backbone and a shift in the amide III bands from 1241 cm(-1)/1268 cm(-1) in controls to 1247 cm(-1)/1283 cm(-1) in glyceraldehyde-treated gels indicated changes to the alignment of the collagen molecules, fibrils/fibers and/or changes to the secondary structure on glyceraldehyde treatment. The increased intensity of 1450 cm(-1) band and the appearance of a strong peak at 1468 cm(-1) reflected a change in the motion of lysine/arginine CH2 groups. For the EDC-treated collagen hydrogels, the increased intensity of 823 cm(-1) peak corresponding to the C-C stretch of the protein backbone indicated that EDC also changed the packing of collagen molecules. The 23% decrease in the ratio of 1238 cm(-1) to 1271 cm(-1) amide III band intensities in the EDC-modified samples compared with the controls indicated changes to the alignment of the collagen molecules/fibrils and/or the secondary structure. A change in the motion of lysine/arginine CH2 groups was detected as well. The addition of NHS did not induce additional Raman shifts compared to the effect of EDC alone with the exception of a 1416 cm(-1) band corresponding to a COO(-) stretch. Overall, the Raman spectra suggest that glyceraldehyde affects the collagen states within 3D hydrogels to a greater extent compared to EDC and the effects of temperature and concentration are minimal and/or not detectable.

  4. Sensitive Skin: Assessment of the Skin Barrier Using Confocal Raman Microspectroscopy.

    Science.gov (United States)

    Richters, Renée J H; Falcone, Denise; Uzunbajakava, Natallia E; Varghese, Babu; Caspers, Peter J; Puppels, Gerwin J; van Erp, Piet E J; van de Kerkhof, Peter C M

    2017-01-01

    Sensitive skin (SS), a frequently reported condition in the Western world, has been suggested to be underlined by an impaired skin barrier. The aim of this study was to investigate the skin barrier molecular composition in SS subjects using confocal Raman microspectroscopy (CRS), and to compare it with that of non-SS (NSS) individuals as well as atopic dermatitis (AD) and allergic rhinoconjunctivitis (AR) subjects, who frequently report SS. Subjects with SS (n = 29), NSS (n = 30), AD (n = 11), and AR (n = 27) were included. Stratum corneum (SC) thickness, water, ceramides/fatty acids, and natural moisturizing factor (NMF) were measured by CRS along with transepidermal water loss and capacitance on the ventral forearm, thenar, and cheek. Sebum levels were additionally measured on the forearm and cheek. No differences between SS and NSS subjects were found regarding SC thickness, water, and NMF content, yet a trend towards lower ceramides/fatty acids was observed in the cheek. Compared to AD subjects, the SS group showed higher ceramides/fatty acid content in the forearm, whereas no differences emerged with AR. The correlation of macroscopic biophysical techniques and CRS was weak, yet CRS confirmed the well-known lower content of NMF and water, and thinner SC in subjects with filaggrin mutations. The skin barrier in SS is not impaired in terms of SC thickness, water, NMF, and ceramides/fatty acid content. The failure of biophysical techniques to follow alterations in the molecular composition of the skin barrier revealed by CRS emphasizes a strong need in sensitive and specific tools for in vivo skin barrier analysis. © 2017 S. Karger AG, Basel.

  5. Fourier transform infrared microspectroscopy as a diagnostic tool for distinguishing between normal and malignant human gastric tissue

    Indian Academy of Sciences (India)

    Abasalt Hosseinzadeh Colagar; Mohammad Javad Chaichi; Tahereh Khadjvand

    2011-09-01

    Fourier transform infrared (FTIR) microspectroscopy can be considered to be a fast and non-invasive tool for distinguishing between normal and cancerous cells and tissues without the need for laborious and invasive sampling procedures. Gastric samples from four patients (age, 65±2 years) were analysed. Samples were obtained from the organs removed during gastrectomy and then classified as normal or cancerous. Classification was based on histopathological examinations at our institution. Formalin-fixed sections of gastric tissue were analysed by FTIR-microspectroscopy. To characterize differences between sections of normal and cancerous tissue, specific regions of the spectra were analysed to study variations in the levels of metabolites. To distinguish between two conditions (normal and cancerous), changes in the relative intensity of bands in the range 600–4000 cm−1 were analysed. A FTIR spectral map of the bands in the region 2800–3100 cm–1 and 900–1800 cm–1 were created to analyse pathological changes in tissues. The limited data available showed that normal gastric tissue had stronger absorption than cancerous tissue over a wide region in the four patients. There was a significant decrease in total biomolecular components for cancerous tissue compared with normal tissue.

  6. The influence of high fat diets with different ketogenic ratios on the hippocampal accumulation of creatine - FTIR microspectroscopy study

    Science.gov (United States)

    Skoczen, A.; Setkowicz, Z.; Janeczko, K.; Sandt, Ch.; Borondics, F.; Chwiej, J.

    2017-09-01

    The main purpose of this study was the determination and comparison of anomalies in creatine (Cr) accumulation occurring within CA3 and DG areas of hippocampal formation as a result of two high-fat, carbohydrate-restricted ketogenic diets (KD) with different ketogenic ratio (KR). To reach this goal, Fourier transformed infrared microspectroscopy with synchrotron radiation source (SRFTIR microspectroscopy) was applied for chemical mapping of creatine absorption bands, occurring around 1304, 1398 and 2800 cm- 1. The samples were taken from three groups of experimental animals: control group (N) fed with standard laboratory diet, KD1 and KD2 groups fed with high-fat diets with KR 5:1 and 9:1 respectively. Additionally, the possible influence on the phosphocreatine (PhCr, the high energetic form of creatine) content was evaluated by comparative analysis of chemical maps obtained for creatine and for compounds containing phosphate groups which manifest in the spectra at the wavenumbers of around 1240 and 1080 cm- 1. Our results showed that KD2 strongly modifies the frequency of Cr inclusions in both analyzed hippocampal areas. Statistical analysis, performed with Mann-Whitney U test revealed increased accumulation of Cr within CA3 and DG areas of KD2 fed rats compared to both normal rats and KD1 experimental group. Moreover, KD2 diet may modify the frequency of PhCr deposits as well as the PhCr to Cr ratio.

  7. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.; Weckhuysen, B.M.

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  8. Revealing Shape Selectivity and Catalytic Activity Trends Within the Pores of H-ZSM-5 Crystals by Time- and Space-Resolved Optical and Fluorescence Microspectroscopy

    NARCIS (Netherlands)

    Stavitski, I.|info:eu-repo/dai/nl/310912008; Kox, M.H.F.|info:eu-repo/dai/nl/30484179X; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2007-01-01

    A combination of in-situ optical and fluorescence microspectroscopy has been employed to investigate the oligomerization of styrene derivatives occurring in the micropores of coffin-shaped H-ZSM-5 zeolite crystals in a space- and time-resolved manner. The carbocationic intermediates in this reaction

  9. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.; Weckhuysen, B.M.

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region a

  10. IR seeker simulator and IR scene generation to evaluate IR decoy effectiveness; 2005BU1-EO

    NARCIS (Netherlands)

    Jong, W. de; Dam, F.A.M.; Kunz, G.J.; Schleijpen, H.M.A.

    2005-01-01

    IR decoys can be an effective countermeasure against IR guided anti ship missiles. However, it's not so easy to determine how the decoys should be deployed to get maximum effectiveness. A limitation of trials is that results are obtained for the specific trial condition only. Software tools have bee

  11. Optical constants of infrared (IR) materials in the IR region

    Science.gov (United States)

    Nagendra, C. L.; Thutupalli, G. K. M.

    1992-01-01

    Optical constants, i.e., refractive index 'n' and absorption index 'k' of the IR materials, Ge, ThF4, CdTe and CdSe have been determined, through spectrophotometric method, in the IR region from 2.5 to 15 microns. It is seen that all these films are transparent in the IR region, and the optical constants of the films deposited at elevated temperatures (T = 200 C) are unaffected, even after subjecting to severe environs such as humidity and thermal shock/cycling. Making use of Ge/ThF4 and CdTe/CdSe coating combinations, IR antireflection coatings (ARCs) which can find applications in space-borne electrooptical systems have been successfully designed and developed. The resulting ARCs have not only efficient optical properties, low reflection loss and high transmission, but are also durable against adverse environments.

  12. Advanced IR imaging seeker program

    Science.gov (United States)

    Aguiera, R. A.

    1980-05-01

    An advanced IR Imaging Seeker System was developed which is compatible with the Hellfire Missile System mission. A technical overview of this program and current status is presented. The IR imaging seeker was tested during late 1979 and early 1980. This seeker utilizes a 1024 element InAsSb/silicon hybrid focal plane array (FPA) operating at 77 degrees K and IR-sensitive in the 2.4-4.0 micrometer wavelength region. A multimode tracker provides improved tracking capability for operation against targets in a high clutter background.

  13. L’objet à l’œuvre dans l’art des British Young Artists Objecting to materialization: Some artworks by Young British Artists

    Directory of Open Access Journals (Sweden)

    Charlotte Gould

    2006-01-01

    Full Text Available While an artwork is never merely an object, the relationship between the two has come to define some of the historical evolutions of art, and especially that of the 20th century, going from representation to presentation. The works of the Young British Artists, at the very end of the century, have suggested a way out of both the dematerialization process inaugurated by some of their elders and the very weighty materialism of the New Sculpture of the eighties with its “truth to material” motto, by adopting a lighter approach, unencumbered with history, which does away with the unbearable heaviness of things.

  14. An analysis of differences of post artwork scores between a science intervention in a traditional classroom versus an intervention in an outdoor environment

    Science.gov (United States)

    Nix, Maria

    Outdoor education has been presented as one alternative to classroom based instruction to increase student knowledge retention and interest. This mixed method study used pre and post drawings to determine the difference in scores of two groups of college students. One group of 19 students attended a lesson in a classroom and a second group of 19 students participated in an outdoor lesson. A dependent t test showed that post artwork scores of both groups increased significantly after their intervention * p = assessment of learning is possible.

  15. Mid-IR fiber-optic reflectance spectroscopy for identifying the finish on wooden furniture.

    Science.gov (United States)

    Poli, T; Chiantore, O; Nervo, M; Piccirillo, A

    2011-05-01

    Mid-IR fiber-optic reflectance spectroscopy (FORS) is a totally noninvasive infrared analytical technique allowing the investigation of artworks without the need for any sampling. The development and optimization of this analytical methodology can provide a tool that is capable of supporting conservators during the first steps of their interventions, yielding fast results and dramatically reducing the number of samples needed to identify the materials involved. Furthermore, since reflection IR spectra suffer from important spectral anomalies that complicate accurate spectral interpretation, it is important to characterize known reference materials and substrates in advance. This work aims to verify the possibility of investigating and identifying the most widely used wood finishes by means of fiber-optic (chalcogenide and metal halides) mid-infrared spectroscopy. Two historically widely employed wood finishes (beeswax, shellac) and two modern ones (a hydrogenated hydrocarbon resin and a microcrystalline wax) were investigated in an extended IR range (from 1000 to 6000 cm(-1)) with reflectance spectroscopy and with FORS. The broad spectral response of the MCT detector was exploited in order to include overtones and combination bands from the NIR spectral range in the investigation. The reflectance spectra were compared with those collected in transmission mode in order to highlight modifications to shapes and intensities, to assign absorptions, and finally to select "marker" bands indicating the presence of certain finishing materials, even when applied onto a substrate such as wood, which shows many absorptions in the mid-infrared region. After the characterization, the different products were applied to samples of aged pear wood and investigated with the same techniques in order to check the ability of mid-IR FORS to reveal the presence and composition of the product on the wooden substrate.

  16. Results of IR working group

    Energy Technology Data Exchange (ETDEWEB)

    Ritson, D. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)]|[Superconducting Super Collider Lab., Dallas, TX (United States)

    1992-03-01

    The IP luminosity at the Eloisatron will direct very large fluxes of hadronic debris into the IR quads. For instance at 1.10{sup 35} cm{sup 2}/sec the flux corresponds to 180 kilowatts. Already at the SSC fluxes in the neighborhood of 2 kilowatts are expected to require special handling. Scaling from SSC design experience we propose a configuration for the first IR quads at the Eloisatron capable of handling the heat load and radiation problems.

  17. Spatial metabolic fingerprinting using FT-IR spectroscopy: investigating abiotic stresses on Micrasterias hardyi.

    Science.gov (United States)

    Patel, Soyab A; Currie, Felicity; Thakker, Nalin; Goodacre, Royston

    2008-12-01

    The release of active pharmaceutical ingredients (APIs) into the environment is an ecologically important topic for study because, whilst APIs have been designed to have a wide range of biological properties for the target of interest (usually in man), little information on potential ecological risks is currently available regarding their effects on the organisms that inhabit the environment. In this study, the algae Micrasterias hardyi was exposed to propranolol, metoprolol (beta-adrenergic receptor agonist drugs) and mefenamic acid (a non steroidal anti-inflammatory drug), at concentrations ranging between 0.002-0.2 mM. Initial studies showed that Fourier transform infrared (FT-IR) spectroscopy on algal homogenates illustrated that all three APIs had a quantitative effect on the metabolism of the organisms and it was possible to estimate the level of API exposure from the FT-IR metabolic fingerprints using partial least squares (PLS) regression. From the inspection of the PLS loadings matrices it was possible to elucidate that all drugs caused effects on protein and lipid levels. Most strikingly propranolol had significant effects on the lipid components of the cell. These were dramatically reduced possibly as a consequence of loss of membrane integrity. In order to investigate this further, FT-IR microspectroscopy was used to generate detailed metabolic fingerprinting maps. These chemical maps revealed that all the drugs had a dramatic effect on the distribution of various chemical species throughout the algae, and that all drugs had an affect on protein and lipid levels. In particular, as noted in the PLS analyses for propranolol treated cells, the lipid complement found in the lipid storage areas in the processes of M. hardyi was greatly reduced. This illustrates the power of spatial metabolic fingerprinting for investigating abiotic stresses on complex biological species.

  18. IR microscopy utilizing intense supercontinuum light source

    DEFF Research Database (Denmark)

    Dupont, Sune; Petersen, Christian; Thøgersen, Jan;

    2012-01-01

    . The supercontinuum light source has a high brightness and spans the infrared region from 1400 nm to 4000 nm. This combination allows contact free high resolution hyper spectral infrared microscopy. The microscope is demonstrated by imaging an oil/water sample with 20 μm resolution.......Combining the molecular specificity of the infrared spectral region with high resolution microscopy has been pursued by researchers for decades. Here we demonstrate infrared supercontinuum radiated from an optical fiber as a promising new light source for infrared microspectroscopy...

  19. Label-free imaging and quantitative chemical analysis of Alzheimer's disease brain samples with multimodal multiphoton nonlinear optical microspectroscopy

    Science.gov (United States)

    Lee, Jang Hyuk; Kim, Dae Hwan; Song, Woo Keun; Oh, Myoung-Kyu; Ko, Do-Kyeong

    2015-05-01

    We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform. Measurements of two hippocampal regions, the cornus ammonis-1 and dentate gyrus, revealed more lipids, amyloid fibers, and collagen in the AD samples than in the normal samples. Normal and AD brains were clearly distinguished by a large spectral difference and quantitative analysis of the CH mode using CARS microendoscope spectroscopy. We expect this system to be an important diagnosis tool in AD research.

  20. Local observation of modes from three-dimensional woodpile photonic crystals with near-field microspectroscopy under supercontinuum illumination.

    Science.gov (United States)

    Jia, Baohua; Norton, Andrew H; Li, Jiafang; Rahmani, Adel; Asatryan, Ara A; Botten, Lindsay C; Gu, Min

    2008-05-15

    A near-field microscope coupled with a near-infrared (NIR) supercontinuum source is developed and applied to characterize optical modes in a three-dimensional (3D) woodpile photonic crystal (PC) possessing a NIR partial bandgap. Spatially resolved near-field intensity distributions under different illumination wavelengths demonstrate that the electric fields preferentially dwell in the polymer rods or in the gaps between rods, respectively, for frequencies below or above the stop gap, as predicted by the 3D finite-difference time-domain modeling. Near-field microspectroscopy further reveals that the position-dependent band-edge effect plays an important role in PC-based all-optical integrated devices.

  1. Synchrotron FTIR micro-spectroscopy for structural analysis of Lewy bodies in the brain of Parkinson’s disease patients

    Science.gov (United States)

    Araki, Katsuya; Yagi, Naoto; Ikemoto, Yuka; Yagi, Hisashi; Choong, Chi-Jing; Hayakawa, Hideki; Beck, Goichi; Sumi, Hisae; Fujimura, Harutoshi; Moriwaki, Taro; Nagai, Yoshitaka; Goto, Yuji; Mochizuki, Hideki

    2015-12-01

    Lewy bodies (LBs), which mainly consist of α-synuclein (α-syn), are neuropathological hallmarks of patients with Parkinson’s disease (PD). The fine structure of LBs is unknown, and LBs cannot be made artificially. Nevertheless, many studies have described fibrillisation using recombinant α-syn purified from E. coli. An extremely fundamental problem is whether the structure of LBs is the same as that of recombinant amyloid fibrils. Thus, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to analyse the fine structure of LBs in the brain of PD patients. Our results showed a shift in the infrared spectrum that indicates abundance of a β-sheet-rich structure in LBs. Also, 2D infrared mapping of LBs revealed that the content of the β-sheet structure is higher in the halo than in the core, and the core contains a large amount of proteins and lipids.

  2. Monitoring the RNA distribution in human embryonic stem cells using Raman micro-spectroscopy and fluorescence imaging

    Science.gov (United States)

    Falamas, A.; Kalra, S.; Chis, V.; Notingher, I.

    2013-11-01

    The aim of this study was to monitor the intracellular distribution of nucleic acids in human embryonic stem cells. Raman micro-spectroscopy and fluorescence imaging investigations were employed to obtain high-spatial resolution maps of nucleic acids. The DNA Raman signal was identified based on the 782 cm-1 band, while the RNA characteristic signal was detected based on the 813 cm-1 fingerprint band assigned to O-P-O symmetric stretching vibrations. Additionally, principal components analysis was performed and nucleic acids characteristic Raman signals were identified in the data set, which were plotted at each position in the cells. In this manner, high intensity RNA signal was identified in the cells nucleolus and cytoplasm, while the nucleus presented a much lower signal.

  3. Applications of synchrotron infrared microspectroscopy to the study of inorganic-organic interactions at the bacterial-mineral interface

    Energy Technology Data Exchange (ETDEWEB)

    Holman, H.Y.N.; Perry, D.L.; Martin, M.C.; McKinney, W.R. [Lawrence Berkeley National Lab., CA (United States)

    1998-12-31

    Synchrotron microspectroscopy has been used to study the inorganic-organic interactions in the mid-infrared region (4,000-400 cm{sup {minus}1}) as Arthrobacter oxydans attach themselves to magnetite surfaces. Relative band intensities and band intensity ratios for functional groups of organically-derived biological molecules that are inherent to the experimental system are discussed. The molecular components as they are perturbed by interactions with water, dichromate and chromate metal ions on the mineral surfaces are investigated. Mapping of the spectral markers for the inorganic-organic interactions at the biological-mineral interfaces is presented and discussed. Comparative analyses of the synchrotron infrared microspectra suggest that the bacterial-chromium interactions depend on the solubility and toxicity of the chromium compounds.

  4. Synchrotron ultraviolet microspectroscopy on rat cortical bone: involvement of tyrosine and tryptophan in the osteocyte and its environment.

    Directory of Open Access Journals (Sweden)

    Stéphane Pallu

    Full Text Available Alcohol induced osteoporosis is characterized by a bone mass decrease and microarchitecture alterations. Having observed an excess in osteocyte apoptosis, we aimed to assess the bone tissue biochemistry, particularly in the osteocyte and its environment. For this purpose, we used a model of alcohol induced osteoporosis in rats. Bone sections of cortical bone were investigated using synchrotron UV-microspectrofluorescence at subcellular resolution. We show that bone present three fluorescence peaks at 305, 333 and 385 nm, respectively corresponding to tyrosine, tryptophan and collagen. We have determined that tyrosine/collagen and tryptophan/collagen ratios were higher in the strong alcohol consumption group. Tryptophan is related to the serotonin metabolism involved in bone formation, while tyrosine is involved in the activity of tyrosine kinases and phosphatases in osteocytes. Our experiment represents the first combined synchrotron UV microspectroscopy analysis of bone tissue with a quantitative biochemical characterization in the osteocyte and surrounding matrix performed separately.

  5. Taxon-specific responses of Southern Ocean diatoms to Fe enrichment revealed by synchrotron radiation FTIR microspectroscopy

    Directory of Open Access Journals (Sweden)

    O. Sackett

    2014-05-01

    Full Text Available Photosynthesis by marine diatoms contributes substantially to global biogeochemical cycling and ecosystem productivity. It is widely accepted that diatoms are extremely sensitive to changes in Fe availability, with numerous in situ experiments demonstrating rapid growth and increased export of elements (e.g. C, Si and Fe from surface waters as a result of Fe addition. Less is known about the effects of Fe enrichment on the phenotypes of diatoms, such as associated changes in nutritional value, furthermore data on taxon-specific responses is almost non-existent. Enhanced supply of nutrient-rich waters along the coast of the subantarctic Kerguelen Island provide a valuable opportunity to examine the responses of phytoplankton to natural Fe enrichment. Here we demonstrate the use of synchrotron radiation Fourier Transform Infrared (SR-FTIR microspectroscopy to analyse changes in the macromolecular composition of diatoms collected along the coast and plateau of Kerguelen Island, Southern Ocean. SR-FTIR microspectroscopy enabled the analysis of individual diatom cells from mixed communities of field-collected samples, thereby providing insight into in situ taxon-specific responses in relation to changes in Fe availability. Phenotypic responses were taxon-specific in terms of intraspecific variability and changes in proteins, amino acids, phosphorylated molecules, silicate and carbohydrates. In contrast to some previous studies, silicate levels increased under Fe enrichment, in conjunction with increases in carbohydrate stores. The highly abundant taxon Fragilariopsis kerguelensis displayed a higher level of phenotypic plasticity than Pseudo-nitzschia spp., while analysis of the data pooled across all measured taxa showed different patterns in macromolecular composition compared to those for individual taxon. This study demonstrates that taxon-specific responses to Fe enrichment may not always be accurately reflected by bulk community measurements

  6. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy

    Science.gov (United States)

    Liu, Jinghua; Qi, Zeming; Huang, Qing; Wei, Xiaoli; Ke, Zhigang; Fang, Yusheng; Tian, Yangchao; Yu, Zengliang

    2013-01-01

    Energetic particles exist ubiquitously and cause varied biological effects such as DNA strand breaks, lipid peroxidation, protein modification, cell apoptosis or death. An emerging biotechnology based on ion-beam technique has been developed to serve as an effective tool for mutation breeding of crops and microbes. In order to improve the effectiveness of ion-beam biotechnology for mutation breeding, it is indispensible to gain a better understanding of the mechanism of the interactions between the energetic ions and biological systems which is still elusive. A new trend is to conduct more comprehensive research which is based on micro-scaled observation of the changes of the cellular structures and compositions under the interactions. For this purpose, advanced synchrotron FTIR (s-FTIR) microscopy was employed to monitor the cellular changes of single fungal hyphae under irradiation of α-particles from 241Am. Intracellular contents of ROS, MDA, GSSG/GSH and activities of CAT and SOD were measured via biochemical assay. Ion-irradiation on Rhizopus oryzae causes localized vacuolation, autolysis of cell wall and membrane, lipid peroxidation, DNA damage and conformational changes of proteins, which have been clearly revealed by the s-FTIR microspectroscopy. The different changes of cell viability, SOD and CAT activities can be explained by the ROS-involved chemical reactions. Evidently, the elevated level of ROS in hyphal cells upon irradiation plays the key role in the caused biological effect. This study demonstrates that s-FTIR microspectroscopy is an effective tool to study the damage of fungal hyphae caused by ionizing radiation and it facilitates the exploit of the mechanism for the interactions between the energetic ions and biological systems.

  7. The influence of indoor microclimate on thermal comfort and conservation of artworks: the case study of the cathedral of Matera (South Italy)

    Science.gov (United States)

    Cardinale, Tiziana; Rospi, Gianluca; Cardinale, Nicola; Paterino, Lucia; Persia, Ivan

    2014-05-01

    The Matera Cathedral was built in Apulian-Romanesque style in the thirteenth century on the highest spur of the "Civita" that divides "Sassi" district in two parts. The constructive material is the calcareous stone of the Vaglia, extracted from quarries in the area of Matera. The interior is Baroque and presents several artworks, including: mortars covered with a golden patina, a wooden ceiling, painted canvas and painting frescoes, three minor altars and a major altar of precious white marble, a nativity scene made of local painted limestone. The research had to evaluate the indoor microclimate during and after the restoration works, that also concern the installation of floor heating system to heat the indoor environments. Specifically, we have analyzed the thermal comfort and the effect that the artwork and construction materials inside the Cathedral of Matera have undergone. This evaluation was carried out in two different phases: in the first one we have investigated the state of the art (history of the site, constructive typology and artworks); in the second one we have done a systematic diagnosis and an instrumental one. The analysis were carried out in a qualitative and quantitative way and have allowed us to test indoor microclimatic parameters (air temperature, relative humidity and indoor air velocity), surface temperatures of the envelope and also Fanger's comfort indices (PMV and PPD) according to the UNI EN ISO 7730. The thermal mapping of the wall surface and of the artworks, carried out through thermal imaging camera, and the instrumental measurement campaigns were made both before restoration and after installation of the heating system; in addition measurements were taken with system on and off. The analysis thus made possible to verify that the thermo-hygrometric parameters found, as a result of the recovery operations, meet the limits indicated by the regulations and international studies. In this way, we can affirm that the indoor environment

  8. Infrared synchrotron radiation spectroscopy and microspectroscopy: new tools for interdisciplinary applications

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Synchrotron radiation sources, whose number is steadily increasing, are undoubtedly the most powerful and brilliant sources in the X-ray range. Although the synchrotron emission covers with high brilliance also the infrared region, its use in this energy range has developed at a much slower rate. Nowadays, after a couple of decades of attempts, the aim of extending the unique performances of the synchrotron source to the infrared domain is achieved by several dedicated beamlines in different countries. With their high-brilliance, polarized and broad-band radiation one may perform experiments that are out of the range of conventional sources from the near-IR up to the far-IR range.

  9. High-pressure synchrotron x-ray diffraction and infrared microspectroscopy: applications to dense hydrous phases

    CERN Document Server

    Liu, Z; Yang, H; Mao Ho Kwang; Hemley, R J

    2002-01-01

    Synchrotron x-ray diffraction (XRD) and infrared (IR) absorption spectra of hydrous and 'anhydrous' forms of phase X were measured to 30 GPa at room temperature. Three OH stretching modes were found in the hydrous phase, and surprisingly one sharp OH mode was observed in the previously characterized anhydrous phase. All OH stretching modes soften and broaden with increasing pressure and become very weak above approx 20 GPa. XRD indicates that the crystal structure remains stable up to 30 GPa. Combining IR absorption and XRD results, the behaviour is attributed to pressure-induced distortion of the Si sub 2 O sub 7 groups and disorder of the hydrogen atoms. The bulk moduli of the hydrous and 'anhydrous' phases are in the region of 74 GPa.

  10. FTIR microspectroscopy of tissues for in-vivo and in-vitro cancer diagnostics

    Science.gov (United States)

    Waesche, Wolfgang; Bindig, Uwe; Mueller, Gerhard J.; Frege, P.; Gross, Ulrich M.

    1997-12-01

    FT-IR-microspectroscopic mapping technique has been used in combination with imaging methods for characterizing thin tissue sections of human adenocarcinomas of the colon and rectum as well as carcinomas of the breast. This paper presents results of microspectroscopic measurements in vitro of 10 micrometer cryosections of healthy and tumor tissue samples of gastro-intestinal and gastro-oesophageal origin by using a minimal spatial resolution of 100 micrometers squared. This technique is not only able to detect the amount of collagen, lipids and tissue related features as well as different substructures of the tissue samples, it could also be used for the differentiation between healthy and tumor tissue. The IR-maps based on the ratio of intensities of selected wavenumbers were compared with parallel cut and HE stained cryosections which were judged by a pathologist. The method is based on differences in IR-spectra of tissues which have been already described in the literature. Several papers have shown that the main differences are to be expected in the so-called 'fingerprint region' (1500 - 1000 cm-1). Additional spectroscopic changes arise from carbonyl/amide vibrational modes. Measurements were carried out using transmission, attenuated total reflection and spatial reflectance infrared spectroscopy. IR-maps of healthy and tumor tissue specimen are presented and discussed. Different modes of spectra acquisition (transmission, ATR, diffuse reflectance) are compared. The aim of the investigations is the determination of suitable wavelengths to distinguish between healthy and tumor epithelia tissue for tumor diagnostic with an endoscopic approach in vivo.

  11. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  12. #Occupy IR: Exposing the Orthodoxy

    OpenAIRE

    Ivan Manokha; Mona Chalabi

    2012-01-01

    The #occupy IR/IPE initiative was created in response to the #occupy movement, whose own roots can be traced backed to the latest crisis of global finance. In this contribution, we link #occupy and the crisis in a different way. We argue that we must occupy IR/IPE because of the discipline’s failure to apprehend and acknowledge the crisis itself, just as the Occupy movement is calling for their overarching authorities to notice and help address the social and economic inequalities produced by...

  13. Rethinking IR from the Amazon

    Directory of Open Access Journals (Sweden)

    Manuela Picq

    Full Text Available Abstract This article proposes Amazonia as a site to think world politics. The Amazon is invisible in the study International Relations (IR, yet its experiences are deeply global. I present the international dynamics at play in Amazonia at different historical moments to posit that this periphery has contributed to forging the political-economy of what is refer to as the core. The Amazon's absence from the study of IR speaks about the larger inequality in processes of knowledge production. Serious engagements with Amazonia are one way to invite a plurality of worlds in the production of theories, disrupting global divisions of labor in knowledge production ally.

  14. Synchrotron radiation Fourier-transform infrared and Raman microspectroscopy study showing an increased frequency of creatine inclusions in the rat hippocampal formation following pilocarpine-induced seizures

    OpenAIRE

    Dulinska, J.; Setkowicz, Z.; Janeczko, K.; C. SANDT; Dumas, P.; Uram, L.; Gzielo-Jurek, K.; Chwiej, J.

    2011-01-01

    In the present work, synchrotron radiation Fourier-transform infrared (SRFTIR) and Raman microspectroscopies were used to evaluate a possible role of creatine in the pathogenesis and progress of pilocarpine-evoked seizures and seizure-induced neurodegenerative changes in the rat hippocampal tissue. The main goal of this study was to identify creatine deposits within the examined brain area, to analyze their frequency in epileptic animals and naive controls and to examine correlations between ...

  15. 红外显微成像技术及其应用进展%FTIR Microspectroscopy and Its Progress in Application

    Institute of Scientific and Technical Information of China (English)

    李晓婷; 朱大洲; 潘立刚; 马智宏; 陆安祥; 王冬; 王纪华

    2011-01-01

    FTIR microspectroscopy technique was born in the mid-nineties. The research on this technique has just began abroad, and this technology has not yet been widely recognized in China. It is a rapid, nondestructive testing technology, has the advantages of microdomain, visualization, high precision and high sensitivity. In the present study, the composition, operational principle and working mode of FTIR microspectroscopy were summarized. The progress in application of FTIR microspectroscopy technique was investigated in some fields, including biomedicine, microbiology, forensic science, materials science, nutrition and feed science and agricultural products. The difficulty of FTIR microspectroscopy research and the prospects of this technique were also discussed.%红外显微成像技术诞生于20世纪90年代中期,该方法的应用研究在国外刚刚起步,而在国内这项技术还未被广泛认识.它是一种快速、无损的检测技术,具有图谱合一、微区化、可视化、高精度和高灵敏度等优点.文章概述了红外显微成像系统的组成、工作原理及工作方式,重点介绍了其在生物医学、微生物学、法庭科学、材料学、营养饲料学以及农产品质量检测方面的研究进展,分析了红外显微成像技术的研究难点,并对其发展趋势进行了展望.

  16. Cultivating Children’s Inspiration for Creating Artworks%中小学生工艺制作创意灵感的培养

    Institute of Scientific and Technical Information of China (English)

    茅菁文

    2014-01-01

    中小学生觉得工艺作品创意灵感难以寻觅,为此,教师可从四个方面加以培养:社会和生活信息的外界引发;思维和探索的导向诱发;紧张和放松的转换触发;分析和综合的绘图激发。%Children feel difficult to make creative artworks, for which teachers can inspire them from four aspects:information on society and life;inner thinking and exploration;transformation between tension and relaxation;combination of analysis and synthesis.

  17. Computational Paradigm to Elucidate the Effects of Arts-Based Approaches and Interventions: Individual and Collective Emerging Behaviors in Artwork Construction.

    Directory of Open Access Journals (Sweden)

    Billie Sandak

    Full Text Available Art therapy, as well as other arts-based therapies and interventions, is used to reduce pain, stress, depression, breathlessness and other symptoms in a wide variety of serious and chronic diseases, such as cancer, Alzheimer and schizophrenia. Arts-based approaches are also known to contribute to one's well-being and quality of life. However, much research is required, since the mechanisms by which these non-pharmacological treatments exert their therapeutic and psychosocial effects are not adequately understood. A typical clinical setting utilizing the arts consists of the creation work itself, such as the artwork, as well as the therapist and the patient, all of which constitute a rich and dynamic environment of occurrences. The underlying complex, simultaneous and interwoven processes of this setting are often considered intractable to human observers, and as a consequence are usually interpreted subjectively and described verbally, which affect their subsequent analyses and understanding. We introduce a computational research method for elucidating and analyzing emergent expressive and social behaviors, aiming to understand how arts-based approaches operate. Our methodology, which centers on the visual language of Statecharts and tools for its execution, enables rigorous qualitative and quantitative tracking, analysis and documentation of the underlying creation and interaction processes. Also, it enables one to carry out exploratory, hypotheses-generating and knowledge discovery investigations, which are empirical-based. Furthermore, we illustrate our method's use in a proof-of-principle study, applying it to a real-world artwork investigation with human participants. We explore individual and collective emergent behaviors impacted by diverse drawing tasks, yielding significant gender and age hypotheses, which may account for variation factors in response to art use. We also discuss how to gear our research method to systematic and

  18. Lacquerware Pigment Identification with Fixed and Mobile Raman Microspectrometers: A Potential Technique to Differentiate Original/Fake Artworks

    Directory of Open Access Journals (Sweden)

    Philippe Colomban

    2013-07-01

    Full Text Available (FT Raman spectroscopy is used for the first time to identify pigments used in 19th & 20th century Japanese and Vietnamese Lacquerwares. IR spectroscopy is used to assess the Lacquer matrix. Different operative conditions and parameters were experimented with on a limited number of lacquerwares in order to determine the optimal procedure for the identification of pigments/dyes as potential chronological or technological markers. The test was then performed in the collector’s rooms with a mobile Raman set-up. Different pigments (vermilion, Prussian Blue, Naples Yellow, Phtalocyanine Blue, anatase, rutile, chalk, carbon black were identified despite a strong fluorescence and a rapid degradation of both pigments and binder under increasing laser power. Better spectra were obtained on older lacquerwares.

  19. Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction.

    Science.gov (United States)

    Lim, Jinkyu; Yang, Sungeun; Kim, Chanyeon; Roh, Chi-Woo; Kwon, Yongwoo; Kim, Yong-Tae; Lee, Hyunjoo

    2016-04-25

    Shaped Ir-Ni bimetallic nanoparticles were synthesized and used for electrocatalytic oxygen evolution reaction (OER). The obtained bimetallic nanoparticles showed significantly enhanced Ir mass activity and durability compared with Ir nanoparticles.

  20. Oferta ir akceptas vartojimo sutartyse

    OpenAIRE

    Ežerskytė, Ramunė

    2011-01-01

    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  1. IRS memorandum limits joint ventures.

    Science.gov (United States)

    Herman, A W

    1992-08-01

    Based on a new memorandum, the Internal Revenue Service (IRS) will be looking at joint hospital/physician activities with greater attention to the nuances of public versus private benefit. As a result, hospitals face greater risk of losing their tax-exempt status in the maze of joint ventures, physician recruitment, and practice acquisition. To be successful, ventures will have to be backed by sound reasoning and thorough documentation.

  2. Climate Prediction Center IR 4km Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  3. The Use of Synchrotron Infrared Microspectroscopy in the Assessment of Cutaneous T-cell Lymphoma vs. Pityriasis lichenoides Chronica

    Energy Technology Data Exchange (ETDEWEB)

    El Bedewi, A.; El Anany, G; El Mofty, M; Kretlow, A; Park, S; Miller, L

    2010-01-01

    The diagnosis of cutaneous lymphomas remains a challenge for both the clinician and dermatopathologist. To differentiate between frank malignant and premalignant lymphocytes within the skin. This study was performed on 20 patients with a mean age of 50 years. They were divided into two groups: mycosis fungoides (MF) (stage IA, IB and IIA) and pityriasis lichenoides chronica (PLC). Immunophenotyping using antibodies CD3, CD4, CD8, CD20 and CD30 was performed. Synchrotron Fourier transform infrared microspectroscopy (S-FTIRM) was performed on cell nuclei to assess chemical differences between MF and PLC cases as a potential complementary screening tool. Dermal spectra of both MF and PLC were compared using principal components analysis (PCA) of the S-FTIRM data. All PLC spectra was clustered together. However, the MF spectra formed two clusters, one that grouped with the PLC and the other grouped separately. Moreover, protein and nucleic acids showed highly significant differences between MF (IIA and IB), MF (IA) and PLC. The malignant transformation within lymphocytes was identifiable through the spectroscopic analysis of protein, RNA and DNA with S-FTIRM, making it a promising tool for classifying the progression of cutaneous T-cell lymphoma.

  4. Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals.

    Science.gov (United States)

    Mazurek, Sylwester; Mucciolo, Antonio; Humbel, Bruno M; Nawrath, Christiane

    2013-06-01

    A procedure for the simultaneous analysis of cell-wall polysaccharides, amides and aliphatic polyesters by transmission Fourier transform infrared microspectroscopy (FTIR) has been established for Arabidopsis petals. The combination of FTIR imaging with spectra derivatization revealed that petals, in contrast to other organs, have a characteristic chemical zoning with high amount of aliphatic compounds and esters in the lamina and of polysaccharides in the stalk of the petal. The hinge region of petals was particular rich in amides as well as in vibrations potentially associated with hemicellulose. In addition, a number of other distribution patterns have been identified. Analyses of mutants in cutin deposition confirmed that vibrations of aliphatic compounds and esters present in the lamina were largely associated with the cuticular polyester. Calculation of spectrotypes, including the standard deviation of intensities, allowed detailed comparison of the spectral features of various mutants. The spectrotypes not only revealed differences in the amount of polyesters in cutin mutants, but also changes in other compound classes. For example, in addition to the expected strong deficiencies in polyester content, the long-chain acyl CoA synthase 2 mutant showed increased intensities of vibrations in a wavelength range that is typical for polysaccharides. Identical spectral features were observed in quasimodo2, a cell-wall mutant of Arabidopsis with a defect in pectin formation that exhibits increased cellulose synthase activity. FTIR thus proved to be a convenient method for the identification and characterization of mutants affected in the deposition of cutin in petals.

  5. Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis

    Science.gov (United States)

    Croxford, Allyson M.; Selva Nandakumar, Kutty; Holmdahl, Rikard; Tobin, Mark J.; McNaughton, Don; Rowley, Merrill J.

    2011-06-01

    Collagen antibody-induced arthritis develops in mice following passive transfer of monoclonal antibodies (mAbs) to type II collagen (CII) and is attributed to effects of proinflammatory immune complexes, but transferred mAbs may react directly and damagingly with CII. To determine whether such mAbs cause cartilage damage in vivo in the absence of inflammation, mice lacking complement factor 5 that do not develop joint inflammation were injected intravenously with two arthritogenic mAbs to CII, M2139 and CIIC1. Paws were collected at day 3, decalcified, paraffin embedded, and 5-μm sections were examined using standard histology and synchrotron Fourier-transform infrared microspectroscopy (FTIRM). None of the mice injected with mAb showed visual or histological evidence of inflammation but there were histological changes in the articular cartilage including loss of proteoglycan and altered chondrocyte morphology. Findings using FTIRM at high lateral resolution revealed loss of collagen and the appearance of a new peak at 1635 cm-1 at the surface of the cartilage interpreted as cellular activation. Thus, we demonstrate the utility of synchrotron FTIRM for examining chemical changes in diseased cartilage at the microscopic level and establish that arthritogenic mAbs to CII do cause cartilage damage in vivo in the absence of inflammation.

  6. Recent applications and current trends in Cultural Heritage Science using synchrotron-based Fourier transform infrared micro-spectroscopy

    Science.gov (United States)

    Cotte, Marine; Dumas, Paul; Taniguchi, Yoko; Checroun, Emilie; Walter, Philippe; Susini, Jean

    2009-09-01

    Synchrotron-based Fourier transform infrared micro-spectroscopy (SR-FTIR) is one of the emerging techniques increasingly employed for Cultural Heritage analytical science. Such a technique combines the assets of FTIR spectroscopy (namely, the identification of molecular groups in various environments: organic/inorganic, crystallized/amorphous, solid/liquid/gas), with the extra potential of chemical imaging (localization of components + easier data treatment thanks to geographical correlations) and the properties of the synchrotron source (namely, high brightness, offering high data quality even with reduced dwell time and reduced spot size). This technique can be applied to nearly all kind of materials found in museum objects, going from hard materials, like metals, to soft materials, like paper, and passing through hybrid materials such as paintings and bones. The purpose is usually the identification of complex compositions in tiny, heterogeneous samples. Recent applications are reviewed in this article, together with the fundamental aspects of the infrared synchrotron source which are leading to such improvements in analytical capabilities. A recent example from the ancient Buddhist paintings from Bamiyan is detailed. Emphasis is made on the true potential offered at such large scale facilities in combining SR-FTIR microscopy with other synchrotron-based micro-imaging techniques. To cite this article: M. Cotte et al., C. R. Physique 10 (2009).

  7. Optical micro-spectroscopy of single metallic nanoparticles: quantitative extinction and transient resonant four-wave mixing.

    Science.gov (United States)

    Payne, Lukas; Zoriniants, George; Masia, Francesco; Arkill, Kenton P; Verkade, Paul; Rowles, Darren; Langbein, Wolfgang; Borri, Paola

    2015-01-01

    We report a wide-field imaging method to rapidly and quantitatively measure the optical extinction cross-section σ(ext) (also polarisation resolved) of a large number of individual gold nanoparticles, for statistically-relevant single particle analysis. We demonstrate a sensitivity of 5 nm(2) in σ(ext), enabling detection of single 5 nm gold nanoparticles with total acquisition times in the 1 min range. Moreover, we have developed an analytical model of the polarisation resolved σ(ext), which enabled us to extract geometrical particle aspect ratios from the measured σ(ext). Using this method, we have characterized a large number of nominally-spherical gold nanoparticles in the 10-100 nm size range. Furthermore, the method provided measurements of in-house fabricated nanoparticle conjugates, allowing distinction of individual dimers from single particles and larger aggregates. The same particle conjugates were investigated correlatively by phase-resolved transient resonant four-wave mixing micro-spectroscopy. A direct comparison of the phase-resolved response between single gold nanoparticles and dimers highlighted the promise of the four-wave mixing technique for sensing applications with dimers as plasmon rulers.

  8. Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples.

    Science.gov (United States)

    Lin, Shan-Yang; Wang, Shun-Li

    2012-04-01

    The solid-state chemistry of drugs has seen growing importance in the pharmaceutical industry for the development of useful API (active pharmaceutical ingredients) of drugs and stable dosage forms. The stability of drugs in various solid dosage forms is an important issue because solid dosage forms are the most common pharmaceutical formulation in clinical use. In solid-state stability studies of drugs, an ideal accelerated method must not only be selected by different complicated methods, but must also detect the formation of degraded product. In this review article, an analytical technique combining differential scanning calorimetry and Fourier-transform infrared (DSC-FTIR) microspectroscopy simulates the accelerated stability test, and simultaneously detects the decomposed products in real time. The pharmaceutical dipeptides aspartame hemihydrate, lisinopril dihydrate, and enalapril maleate either with or without Eudragit E were used as testing examples. This one-step simultaneous DSC-FTIR technique for real-time detection of diketopiperazine (DKP) directly evidenced the dehydration process and DKP formation as an impurity common in pharmaceutical dipeptides. DKP formation in various dipeptides determined by different analytical methods had been collected and compiled. Although many analytical methods have been applied, the combined DSC-FTIR technique is an easy and fast analytical method which not only can simulate the accelerated drug stability testing but also at the same time enable to explore phase transformation as well as degradation due to thermal-related reactions. This technique offers quick and proper interpretations.

  9. In situ observation of dynamic electrodeposition processes by soft x-ray fluorescence microspectroscopy and keyhole coherent diffractive imaging

    Science.gov (United States)

    Bozzini, Benedetto; Kourousias, George; Gianoncelli, Alessandra

    2017-03-01

    This paper describes two novel in situ microspectroscopic approaches to the dynamic study of electrodeposition processes: x-ray fluorescence (XRF) mapping with submicrometric space resolution and keyhole coherent diffractive imaging (kCDI) with nanometric lateral resolution. As a case study, we consider the pulse-plating of nanocomposites with polypyrrole matrix and Mn x Co y O z dispersoids, a prospective cathode material for zinc-air batteries. This study is centred on the detailed measurement of the elemental distributions developing in two representative subsequent growth steps, based on the combination of in situ identical-location XRF microspectroscopy—accompanied by soft-x ray absorption microscopy—and kCDI. XRF discloses space and time distributions of the two electrodeposited metals and kCDI on the one hand allows nanometric resolution and on the other hand provides complementary absorption as well as phase contrast modes. The joint information derived from these two microspectroscopies allows measurement of otherwise inaccessible observables that are a prerequisite for electrodeposition modelling and control accounting for dynamic localization processes.

  10. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy

    Directory of Open Access Journals (Sweden)

    Irène Tatischeff

    2012-11-01

    Full Text Available The joint use of 3 complementary techniques, namely, nanoparticle tracking analysis (NTA, cryo-electron microscopy (Cryo-EM and Raman tweezers microspectroscopy (RTM, is proposed for a rapid characterisation of extracellular vesicles (EVs of various origins. NTA is valuable for studying the size distribution and concentration, Cryo-EM is outstanding for the morphological characterisation, including observation of vesicle heterogeneity, while RTM provides the global chemical composition without using any exogenous label. The capabilities of this approach are evaluated on the example of cell-derived vesicles of Dictyostelium discoideum, a convenient general model for eukaryotic EVs. At least 2 separate species differing in chemical composition (relative amounts of DNA, lipids and proteins, presence of carotenoids were found for each of the 2 physiological states of this non-pathogenic microorganism, that is, cell growth and starvation-induced aggregation. These findings demonstrate the specific potency of RTM. In addition, the first Raman spectra of human urinary exosomes are reported, presumably constituting the primary step towards Raman characterisation of EVs for the purpose of human diseases diagnoses.

  11. The use of synchrotron infrared microspectroscopy in the assessment of cutaneous T-cell lymphoma vs. pityriasis lichenoides chronica.

    Science.gov (United States)

    El Bedewi, Ahmed; El Anany, Galal; El Mofty, Medhat; Kretlow, Ariane; Park, Simone; Miller, Lisa M

    2010-04-01

    The diagnosis of cutaneous lymphomas remains a challenge for both the clinician and dermatopathologist. To differentiate between frank malignant and premalignant lymphocytes within the skin. This study was performed on 20 patients with a mean age of 50 years. They were divided into two groups: mycosis fungoides (MF) (stage IA, IB and IIA) and pityriasis lichenoides chronica (PLC). Immunophenotyping using antibodies CD3, CD4, CD8, CD20 and CD30 was performed. Synchrotron Fourier transform infrared microspectroscopy (S-FTIRM) was performed on cell nuclei to assess chemical differences between MF and PLC cases as a potential complementary screening tool. Dermal spectra of both MF and PLC were compared using principal components analysis (PCA) of the S-FTIRM data. All PLC spectra was clustered together. However, the MF spectra formed two clusters, one that grouped with the PLC and the other grouped separately. Moreover, protein and nucleic acids showed highly significant differences between MF (IIA and IB), MF (IA) and PLC. The malignant transformation within lymphocytes was identifiable through the spectroscopic analysis of protein, RNA and DNA with S-FTIRM, making it a promising tool for classifying the progression of cutaneous T-cell lymphoma.

  12. Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis.

    Science.gov (United States)

    Oinas, J; Rieppo, L; Finnilä, M A J; Valkealahti, M; Lehenkari, P; Saarakkala, S

    2016-07-21

    The changes in chemical composition of human articular cartilage (AC) caused by osteoarthritis (OA) were investigated using Fourier transform infrared microspectroscopy (FTIR-MS). We demonstrate the sensitivity of FTIR-MS for monitoring compositional changes that occur with OA progression. Twenty-eight AC samples from tibial plateaus were imaged with FTIR-MS. Hyperspectral images of all samples were combined for K-means clustering. Partial least squares regression (PLSR) analysis was used to compare the spectra with the OARSI grade (histopathological grading of OA). Furthermore, the amide I and the carbohydrate regions were used to estimate collagen and proteoglycan contents, respectively. Spectral peak at 1338 cm(-1) was used to estimate the integrity of the collagen network. The layered structure of AC was revealed using the carbohydrate region for clustering. Statistically significant correlation was observed between the OARSI grade and the collagen integrity in the superficial (r = -0.55) and the deep (r = -0.41) zones. Furthermore, PLSR models predicted the OARSI grade from the superficial (r = 0.94) and the deep (r = 0.77) regions of the AC with high accuracy. Obtained results suggest that quantitative and qualitative changes occur in the AC composition during OA progression, and these can be monitored by the use of FTIR-MS.

  13. Subcellular Raman Microspectroscopy Imaging of Nucleic Acids and Tryptophan for Distinction of Normal Human Skin Cells and Tumorigenic Keratinocytes.

    Science.gov (United States)

    Piredda, Paola; Berning, Manuel; Boukamp, Petra; Volkmer, Andreas

    2015-07-07

    At present, tumor diagnostic imaging is commonly based on hematoxylin and eosin or immunohistochemical staining of biopsies, which requires tissue excision, fixation, and staining with exogenous marker molecules. Here, we report on label-free tumor imaging using confocal spontaneous Raman scattering microspectroscopy, which exploits the intrinsic vibrational contrast of endogenous biomolecular species. We present a chemically specific and quantitative approach to monitoring normal human skin cells (keratinocytes and fibroblasts) as well as the human HaCaT in vitro skin carcinogenesis model and the tumor-derived MET in vivo skin cancer progression model. Mapping the amplitudes of two spectrally well isolated Raman bands at 752 and 785 cm(-1) allowed for direct visualization of the distributions representative of tryptophan-rich proteins and nucleic acids, respectively, with subcellular spatial resolution. Using these Raman markers, it was feasible to discriminate between normal human epidermal keratinocytes (NHEK) and dermal fibroblasts (NHDF) and to confine all tumorigenic cells from both the NHEK and NHDF. First evidence for the successful application of the proposed intracellular nucleic acid and tryptophan Raman signatures for skin cancer diagnosis was further demonstrated in an organotypic cutaneous squamous cell carcinomas model, allowing for the identification of tumor cells and their surrounding stroma in the tissue context.

  14. Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time.

    Science.gov (United States)

    Hall, Edward K; Singer, Gabriel A; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J

    2011-02-01

    Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.

  15. Looking inside the box: using Raman microspectroscopy to deconstruct microbial biomass stoichiometry one cell at a time

    Science.gov (United States)

    Hall, Edward K.; Singer, Gabriel A.; Pölzl, Marvin; Hämmerle, Ieda; Schwarz, Christian; Daims, Holger; Maixner, Frank; Battin, Tom J.

    2011-01-01

    Stoichiometry of microbial biomass is a key determinant of nutrient recycling in a wide variety of ecosystems. However, little is known about the underlying causes of variance in microbial biomass stoichiometry. This is primarily because of technological constraints limiting the analysis of macromolecular composition to large quantities of microbial biomass. Here, we use Raman microspectroscopy (MS), to analyze the macromolecular composition of single cells of two species of bacteria grown on minimal media over a wide range of resource stoichiometry. We show that macromolecular composition, determined from a subset of identified peaks within the Raman spectra, was consistent with macromolecular composition determined using traditional analytical methods. In addition, macromolecular composition determined by Raman MS correlated with total biomass stoichiometry, indicating that analysis with Raman MS included a large proportion of a cell's total macromolecular composition. Growth phase (logarithmic or stationary), resource stoichiometry and species identity each influenced each organism's macromolecular composition and thus biomass stoichiometry. Interestingly, the least variable peaks in the Raman spectra were those responsible for differentiation between species, suggesting a phylogenetically specific cellular architecture. As Raman MS has been previously shown to be applicable to cells sampled directly from complex environments, our results suggest Raman MS is an extremely useful application for evaluating the biomass stoichiometry of environmental microorganisms. This includes the ability to partition microbial biomass into its constituent macromolecules and increase our understanding of how microorganisms in the environment respond to resource heterogeneity.

  16. Soft X-ray induced modifications of PVA-based microbubbles in aqueous environment: a microspectroscopy study.

    Science.gov (United States)

    Tzvetkov, George; Fernandes, Paulo; Wenzel, Stephan; Fery, Andreas; Paradossi, Gaio; Fink, Rainer H

    2009-02-21

    We use scanning-transmission X-ray microspectroscopy (STXM) for in situ characterization of the physicochemical changes in air-filled poly(vinyl alcohol) (PVA) based microbubbles upon soft X-ray irradiation. The microbubbles were illuminated directly in aqueous suspension with 520 eV X-rays and a continuous shrinkage of the particles with an illumination time/radiation dose was observed. Utilizing the intrinsic absorption properties of the species and the high spatial resolution of the STXM, the modifications of the particles' structure were simultaneously recognized. A thorough characterization of the microbubble volume, membrane thickness and absorption coefficient was performed by quantitative fitting of the radial transmittance profiles of the targeted microbubbles. Apart from the observed volume contraction, there was no significant change in the shell thickness. The chemical changes in the membranes were clarified via C K-edge near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. It was revealed that the observed structural alterations go along with a continuous degradation of the PVA network associated with formation of carbonyl- and carboxyl-containing species as well as an increased content of unsaturated bonds.

  17. Moisture map by IR thermography

    Science.gov (United States)

    Grinzato, E.; Cadelano, G.; Bison, P.

    2010-10-01

    A new approach to moisture detection in buildings by an optical method is presented. Limits of classical and new methods are discussed. The state of the art about the use of IR thermography is illustrated as well. The new technique exploits characteristics of the materials and takes into account explicitly the heat and mass exchange between surface and environment. A set of experiments in controlled laboratory conditions on different materials is used to better understand the physical problem. The testing procedure and the data reduction are illustrated. A case study on a heritage building points up the features of this technique.

  18. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both?

    Science.gov (United States)

    Käppler, Andrea; Fischer, Dieter; Oberbeckmann, Sonja; Schernewski, Gerald; Labrenz, Matthias; Eichhorn, Klaus-Jochen; Voit, Brigitte

    2016-11-01

    The contamination of aquatic ecosystems with microplastics has recently been reported through many studies, and negative impacts on the aquatic biota have been described. For the chemical identification of microplastics, mainly Fourier transform infrared (FTIR) and Raman spectroscopy are used. But up to now, a critical comparison and validation of both spectroscopic methods with respect to microplastics analysis is missing. To close this knowledge gap, we investigated environmental samples by both Raman and FTIR spectroscopy. Firstly, particles and fibres >500 μm extracted from beach sediment samples were analysed by Raman and FTIR microspectroscopic single measurements. Our results illustrate that both methods are in principle suitable to identify microplastics from the environment. However, in some cases, especially for coloured particles, a combination of both spectroscopic methods is necessary for a complete and reliable characterisation of the chemical composition. Secondly, a marine sample containing particles microplastics as well as spectra quality, measurement time and handling. We show that FTIR imaging leads to significant underestimation (about 35 %) of microplastics compared to Raman imaging, especially in the size range microplastics fraction into 500-50 μm (rapid and reliable analysis by FTIR imaging) and into 50-1 μm (detailed and more time-consuming analysis by Raman imaging). Graphical Abstract Marine microplastic sample (fraction <400 μm) on a silicon filter (middle) with the corresponding Raman and IR images.

  19. Possible Application of Raman Microspectroscopy to Verify the Interstitial Cystitis Diagnosis after Potassium Sensitivity Test: Phenylalanine or Tryptophan as a Biomarker

    Directory of Open Access Journals (Sweden)

    Tzu-Feng Hsieh

    2007-01-01

    Full Text Available There is lack of a worldwide standard technique for clinical diagnosis of interstitial cystitis (IC. Raman spectroscopy with higher specificity and sensitivity has been extensively used to act as a non-destructive analytical technique without special sample preparation. In this preliminary study, possible use of Raman microspectroscopy as an IC diagnostic tool was attempted. Twenty-two participants were screened by clinical features, history, urodynamic evaluations and potassium sensitivity test (PST. The freeze-dried water samples voided from all the participants after PST were directly determined by using a confocal Raman microspectroscopy to search the biomarker. Participants with or without IC symptom were separated into control and clinical groups, according to the above screening. The participants in the clinical group were further divided into mild and severe subgroups by PST. The symptom of urinary pain and urgency was significant difference between the mild and severe subgroups (p < 0.05. A significant increase in urinary frequency but a marked reduction in bladder capacity, maximum cystometric capacity and maximum voiding flow rate were obtained for clinical group of IC participants, as compared with the result of control group (p < 0.05. By using Raman microspectroscopic determination, the band near 1003 or 1005 cm−1 assigned to phenylalanine was respectively detected from the freeze-dried water sample of control group or mild subgroup, but the band at 1010 cm−1 due to tryptophan was found in the freeze-dried water sample of severe subgroup. The result of this preliminary study first suggests a possible application of Raman microspectroscopy to strongly certify the results of PST for IC diagnosis. Phenylalanine or tryptophan might be acted as a biomarker to assist the diagnosis of IC after PST. Particularly, the appearance of tryptophan might be used to discriminate the severity of IC symptom.

  20. Coprates Chasma Landslides in IR

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Today's daytime IR image is of a portion of Coprates Chasma, part of Valles Marineris. As with yesterday's image, this image shows multiple large landslides. Image information: IR instrument. Latitude -8.2, Longitude 300.2 East (59.8 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy

    Science.gov (United States)

    Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.

    2011-05-01

    Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.

  2. On the effect of experimental noise on the classification of biological samples using Raman micro-spectroscopy

    Science.gov (United States)

    Barton, Sinead J.; Kerr, Laura T.; Domijan, Katarina; Hennelly, Bryan M.

    2016-04-01

    Raman micro-spectroscopy is an optoelectronic technique that can be used to evaluate the chemical composition of biological samples and has been shown to be a powerful diagnostic tool for the investigation of various cancer related diseases including bladder, breast, and cervical cancer. Raman scattering is an inherently weak process with approximately 1 in 107 photons undergoing scattering and for this reason, noise from the recording system can have a significant impact on the quality of the signal, and its suitability for diagnostic classification. The main sources of noise in the recorded signal are shot noise, CCD dark current, and CCD readout noise. Shot noise results from the low signal photon count while dark current results from thermally generated electrons in the semiconductor pixels. Both of these noise sources are time dependent; readout noise is time independent but is inherent in each individual recording and results in the fundamental limit of measurement, arising from the internal electronics of the camera. In this paper, each of the aforementioned noise sources are analysed in isolation, and used to experimentally validate a mathematical model. This model is then used to simulate spectra that might be acquired under various experimental conditions including the use of different cameras, different source wavelength, and power etc. Simulated noisy datasets of T24 and RT112 cell line spectra are generated based on true cell Raman spectrum irradiance values (recorded using very long exposure times) and the addition of simulated noise. These datasets are then input to multivariate classification using Principal Components Analysis and Linear Discriminant Analysis. This method enables an investigation into the effect of noise on the sensitivity and specificity of Raman based classification under various experimental conditions and using different equipment.

  3. Vibrational microspectroscopic identification of powdered traditional medicines: chemical micromorphology of Poria observed by infrared and Raman microspectroscopy.

    Science.gov (United States)

    Chen, Jian-bo; Sun, Su-qin; Ma, Fang; Zhou, Qun

    2014-07-15

    Microscopic identification using optical microscopes is a simple and effective method to identify powdered traditional medicines made from plants, animals and fungi. Sometimes, the criteria based on physical properties of the microscopic characteristics of drug powder may be ambiguous, which makes the microscopic identification method subjective and empirical to some extent. In this research, the vibrational microspectroscopic identification method is proposed for more explicit discrimination of powdered traditional medicines. The chemical micromorphology, i.e., chemical compositions and related physical morphologies, of the drug powder can be profiled objectively and quantitatively by infrared and Raman microspectroscopy, leading to better understanding about the formation mechanisms of microscopic characteristics and more accurate identification criteria. As an example, the powder of Poria, which is one of the most used traditional Chinese medicines, is studied in this research. Three types of hyphae are classified according to their infrared spectral features in the region from 1200 to 900 cm(-1). Different kinds of polysaccharides indicate that these hyphae may be in different stages of the growth. The granular and branched clumps observed by the optical microscope may be formed from the aggregation of the mature hyphae with β-D-glucan reserves. The newfound spherical particles may originate from the exuded droplets in the fresh Poria because they are both composed of α-D-glucan. The results are helpful to understand the development of the hyphae and the formation of active polysaccharides in Poria and to establish accurate microspectroscopic identification criteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Rapid identification of goblet cells in unstained colon thin sections by means of quantum cascade laser-based infrared microspectroscopy.

    Science.gov (United States)

    Kröger-Lui, N; Gretz, N; Haase, K; Kränzlin, B; Neudecker, S; Pucci, A; Regenscheit, A; Schönhals, A; Petrich, W

    2015-04-07

    Changes in the volume covered by mucin-secreting goblet cell regions within colon thin sections may serve as a means to differentiate between ulcerative colitis and infectious colitis. Here we show that rapid, quantum cascade laser-based mid-infrared microspectroscopy might be able to contribute to the differential diagnosis of colitis ulcerosa, an inflammatory bowel disease. Infrared hyperspectral images of mouse colon thin sections were obtained within 7.5 minutes per section with a pixel size of 3.65 × 3.65 μm(2) and a field of view of 2.8 × 3.1 mm(2). The spectra were processed by training a random decision forest classifier on the basis of k-means clustering on one thin section. The trained algorithm was then applied to 5 further thin sections for a blinded validation and it was able to identify goblet cells in all sections. The rapid identification of goblet cells within these unstained, paraffinized thin sections of colon tissue was enabled by the high content of glycopeptides within the goblet cells as revealed by the pronounced spectral signatures in the 7.6 μm-8.6 μm and the 9.2 μm-9.7 μm wavelength ranges of the electromagnetic spectrum. More so, the simple calculation of the ratio between the absorbance values at 9.29 μm and 8.47 μm provides the potential to further shorten the time for measurement and analysis of a thin section down to well below 1 minute.

  5. Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy.

    Science.gov (United States)

    Vanna, R; Ronchi, P; Lenferink, A T M; Tresoldi, C; Morasso, C; Mehn, D; Bedoni, M; Picciolini, S; Terstappen, L W M M; Ciceri, F; Otto, C; Gramatica, F

    2015-02-21

    In clinical practice, the diagnosis and classification of acute myeloid leukaemia (AML) and myelodysplastic syndrome (MDS) start from the manual examination of stained smears of bone marrow (BM) and peripheral blood (PB) by using an optical microscope. This step is subjective and scarcely reproducible. Therefore, the development of subjective and potentially automatable methods for the recognition of typical AML/MDS cells is necessary. Here we have used Raman spectroscopy for distinguishing myeloblasts, promyelocytes, abnormal promyelocytes and erhytroblasts, which have to be counted for a correct diagnosis and morphological classification of AML and MDS. BM samples from patients affected by four different AML subtypes, mostly characterized by the presence of the four subpopulations selected for this study, were analyzed. First, each cell was scanned by acquiring 4096 spectra, thus obtaining Raman images which demonstrate an accurate description of morphological features characteristic of each subpopulation. Raman imaging coupled with hierarchical cluster analysis permitted the automatic discrimination and localization of the nucleus, the cytoplasm, myeloperoxidase containing granules and haemoglobin. Second, the averaged Raman fingerprint of each cell was analysed by multivariate analysis (principal component analysis and linear discriminant analysis) in order to study the typical vibrational features of each subpopulation and also for the automatic recognition of cells. The leave-one-out cross validation of a Raman-based classification model demonstrated the correct classification of myeloblasts, promyelocytes (normal/abnormal) and erhytroblasts with an accuracy of 100%. Normal and abnormal promyelocytes were distinguished with 95% accuracy. The overall classification accuracy considering the four subpopulations was 98%. This proof-of-concept study shows that Raman micro-spectroscopy could be a valid approach for developing label-free, objective and automatic

  6. Reflections on Cultural Artwork Exchanges%对文化艺术品交易所有关问题的思考

    Institute of Scientific and Technical Information of China (English)

    徐博文

    2012-01-01

    本文对我国当前文化艺术品交易所的交易模式进行了比较分析,认为相比产权制,份额制存在的隐患更为突出.而其中门槛的合理设置、流动性的有效控制、定位的多样化、后市表现的维持、退出机制的设计与建立、入盘资金量的限制、平台化作用的强化、估值定价模式的改良以及行业自律组织的建立是份额制文交所务必应对与解决的重点问题。%Recently,controversies about cultural artwork exchanges not only remind us of the existing vulnerability and risk, but also lead us to think about the future of the exchanges. Compared with ownership, the hidden problems of share system are more serious. Among these problems, it is imperative to improve the reasonable design of threshold, effective control of liquidity, diversified positioning, after-market performance, design and establishment of exit mechanism, limit of in-market funds, strengthening of the role of the platform, valuation pricing models and establishment of industry self-regulatory organization.

  7. Klimt artwork (Part II): material investigation by backscattering Fe-57 Mössbauer- and Raman- spectroscopy, SEM and p-XRF

    Energy Technology Data Exchange (ETDEWEB)

    Costa, B. F. O. [University of Coimbra, CFisUC, Physics Department (Portugal); Lehmann, R.; Wengerowsky, D. [Leibniz Universität Hannover, Institut für Anorganische Chemie (Germany); Blumers, M. [Joh. Gutenberg-Universität Mainz, Institut für Anorganische Chemie und Analytische Chemie (Germany); Sansano, A.; Rull, F. [Unidad Asociada UVA-CSIC Centro de Astrobiologia (Spain); Schmidt, H.-J. [Leibniz Universität Hannover, Institut für Anorganische Chemie (Germany); Dencker, F. [Hochschule Hannover, Fakultät II-Maschinenbau und Bioverfahrenstechnik (Germany); Niebur, A. [Technische Universität Dresden, Institut für Physikalische Chemie (Germany); Klingelhöfer, G. [Joh. Gutenberg-Universität Mainz, Institut für Anorganische Chemie und Analytische Chemie (Germany); Sindelar, R. [Hochschule Hannover, Fakultät II-Maschinenbau und Bioverfahrenstechnik (Germany); Renz, F., E-mail: renz@acd.uni-hannover.de [Leibniz Universität Hannover, Institut für Anorganische Chemie (Germany)

    2016-12-15

    In a rediscovered Klimt-artwork “Trompetender Putto” material tests have been conducted. We report studies on different points of the painting. The spots are of different colors, mainly taken in spots of the painting not restaurated. MIMOS II Fe-57 Mössbauer spectroscopy revealed mainly haematite and nano particle oxides in red and red/brown colors. Brown colors also contain crystallized goethite. In brown/ochre colors the same pigments as in brown colors are observed, but there is less quantity of goethite and more quantity of haematite. The green colors show Fe-rich clays, like celadonite or glauconite and or lepidocrocite as main component. Raman spectroscopy revealed cinnabar in red colors of the Scarf; and massicot in brown/ochre points, i.e. in the Left Wing of the “Putto”. With scanning electron microscopy, various layers of the original and of overpainting could be recognized. The investigations of sample 1 show three layers of colored materials, which were identified as zinc-white, cinnabar and galena as well as carbon compounds. In sample 2 four layers could be detected. These are identified (bottom to top) as gypsum and lead-white (layer 1), zinc-white (layer 2), lead-white and cinnabar (layer 3) and titanium-white (layer 4). The elementary composition was examined with the portable X-ray-fluorescence analysis for qualitative manner at different points.

  8. Klimt artwork (Part II): material investigation by backscattering Fe-57 Mössbauer- and Raman- spectroscopy, SEM and p-XRF

    Science.gov (United States)

    Costa, B. F. O.; Lehmann, R.; Wengerowsky, D.; Blumers, M.; Sansano, A.; Rull, F.; Schmidt, H.-J.; Dencker, F.; Niebur, A.; Klingelhöfer, G.; Sindelar, R.; Renz, F.

    2016-12-01

    In a rediscovered Klimt-artwork " Trompetender Putto" material tests have been conducted. We report studies on different points of the painting. The spots are of different colors, mainly taken in spots of the painting not restaurated. MIMOS II Fe-57 Mössbauer spectroscopy revealed mainly haematite and nano particle oxides in red and red/brown colors. Brown colors also contain crystallized goethite. In brown/ochre colors the same pigments as in brown colors are observed, but there is less quantity of goethite and more quantity of haematite. The green colors show Fe-rich clays, like celadonite or glauconite and or lepidocrocite as main component. Raman spectroscopy revealed cinnabar in red colors of the Scarf; and massicot in brown/ochre points, i.e. in the Left Wing of the "Putto". With scanning electron microscopy, various layers of the original and of overpainting could be recognized. The investigations of sample 1 show three layers of colored materials, which were identified as zinc-white, cinnabar and galena as well as carbon compounds. In sample 2 four layers could be detected. These are identified (bottom to top) as gypsum and lead-white (layer 1), zinc-white (layer 2), lead-white and cinnabar (layer 3) and titanium-white (layer 4). The elementary composition was examined with the portable X-ray-fluorescence analysis for qualitative manner at different points.

  9. IR Thermography NDE of ISS Radiator Panels

    Science.gov (United States)

    Koshti, Ajay; Winfree, William; Morton, Richard; Wilson, Walter; Reynolds, Gary

    2010-01-01

    The presentation covers an active and a passive infrared (IR) thermography for detection of delaminations in the radiator panels used for the International Space Station (ISS) program. The passive radiator IR data was taken by a NASA astronaut in an extravehicular activity (EVA) using a modified FLIR EVA hand-held camera. The IR data could be successfully analyzed to detect gross facesheet disbonds. The technique used the internal hot fluid tube as the heat source in analyzing the IR data. Some non-flight ISS radiators were inspected using an active technique of IR flash thermography to detect disbond of face sheet with honeycomb core, and debonds in facesheet overlap areas. The surface temperature and radiated heat emission from flight radiators is stable during acquisition of the IR video data. This data was analyzed to detect locations of unexpected surface temperature gradients. The flash thermography data was analyzed using derivative analysis and contrast evolutions. Results of the inspection are provided.

  10. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar

    2016-01-01

    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myth...... helps us recognize what is missing from IR theorizing - conceptions of the international by 'others' who also constitute the international. I illustrate this point by focussing on a landmark text on Ottoman history, Ortayll's The Longest Century of the Empire....

  11. IR properties of AGN and SB

    Science.gov (United States)

    Talezade Lari, M. H.; Davoudifar, P.; Mickaelian, A. M.

    2016-09-01

    Through multi-wavelength flux ratios it is possible to detect AGN and Star-burst Galaxies. Techniques of detecting extragalactic objects as well as AGN are studied in different wavelengths (X-Ray, Radio and IR). Specification of AGN as IR and radio sources is discussed. IR catalogues of 2MASS and WISE were used to study the interrelationship between interactions/merging, starburst and AGN phenomena.

  12. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  13. Hydrogen intercalation under graphene on Ir(111)

    Science.gov (United States)

    Grånäs, Elin; Gerber, Timm; Schröder, Ulrike A.; Schulte, Karina; Andersen, Jesper N.; Michely, Thomas; Knudsen, Jan

    2016-09-01

    Using high resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy we study the intercalation of hydrogen under graphene/Ir(111). The hydrogen intercalated graphene is characterized by a component in C 1s that is shifted -0.10 to -0.18 eV with respect to pristine graphene and a component in Ir 4f at 60.54 eV. The position of this Ir 4f component is identical to that of the Ir(111) surface layer with hydrogen atoms adsorbed, indicating that the atomic hydrogen adsorption site on bare Ir(111) and beneath graphene is the same. Based on co-existence of fully- and non-intercalated graphene, and the inability to intercalate a closed graphene film covering the entire Ir(111) surface, we conclude that hydrogen dissociatively adsorbs at bare Ir(111) patches, and subsequently diffuses rapidly under graphene. A likely entry point for the intercalating hydrogen atoms is identified to be where graphene crosses an underlying Ir(111) step.

  14. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  15. Measuring Collimator Infrared (IR) Spectral Transmission

    Science.gov (United States)

    2016-05-01

    TECHNICAL REPORT RDMR-WD-16-15 MEASURING COLLIMATOR INFRARED (IR) SPECTRAL TRANSMISSION Christopher L. Dobbins Weapons...Distribution Statement A: Approved for public release; distribution unlimited. DESTRUCTION NOTICE FOR CLASSIFIED DOCUMENTS...AND DATES COVERED Final 4. TITLE AND SUBTITLE Measuring Collimator Infrared (IR) Spectral Transmission 5. FUNDING NUMBERS 6. AUTHOR(S) Christopher L

  16. The IR Luminosity Functions of Rich Clusters

    CERN Document Server

    Bai, Lei; Rieke, Marcia J; Christlein, Daniel; Zabludoff, Ann I

    2008-01-01

    We present MIPS observations of the cluster A3266. About 100 spectroscopic cluster members have been detected at 24 micron. The IR luminosity function in A3266 is very similar to that in the Coma cluster down to the detection limit L_IR~10^43 ergs/s, suggesting a universal form of the bright end IR LF for local rich clusters with M~10^15 M_sun. The shape of the bright end of the A3266-Coma composite IR LF is not significantly different from that of nearby field galaxies, but the fraction of IR-bright galaxies (SFR > 0.2M_sun/yr) in both clusters increases with cluster-centric radius. The decrease of the blue galaxy fraction toward the high density cores only accounts for part of the trend; the fraction of red galaxies with moderate SFRs (0.2 < SFR < 1 M_sun/yr) also decreases with increasing galaxy density. These results suggest that for the IR bright galaxies, nearby rich clusters are distinguished from the field by a lower star-forming galaxy fraction, but not by a change in L*_IR. The composite IR LF...

  17. Status Of Sofradir IR-CCD Detectors

    Science.gov (United States)

    Tribolet, Philippe; Radisson, Patrick

    1988-05-01

    The topics of this paper deal with the IR-CCD detectors manufactured by SOFRADIR the new French joint venture. Description of the IRCCD technology and the advantages of this approach are given. In conclusion, some IR-CCD typical results are given.

  18. Increasing Medical Student Exposure to IR through Integration of IR into the Gross Anatomy Course.

    Science.gov (United States)

    DePietro, Daniel M; Kiefer, Ryan M; Redmond, Jonas W; Workman, Alan D; Nadolski, Gregory J; Gade, Terence P; Trerotola, Scott O; Hunt, Stephen J

    2017-10-01

    To compare medical student knowledge of and interest in interventional radiology (IR) before and after the integration of an IR lecture series within the gross anatomy course. Four elective IR lectures were scheduled to coincide with the relevant anatomy dissection curriculum. Anonymous surveys were distributed to 146 students before and after the lectures regarding students' knowledge of and interest in IR, responsibilities of an IR physician, and IR training pathways. Those who did not attend served as controls. Response rates were 67% (n = 98) in the prelecture group, 55% (n = 22) in the group who attended the lecture, and 28% (n = 30) in the control group. A total of 73% of the prelecture group reported little knowledge of IR compared with other specialties. This decreased to 27% in those who attended the lecture (P attended believed they had more knowledge of IR than any other specialty, compared with 7% of controls (P value not significant) and 2% of the prelecture group (P attendance could name a significantly greater number of IR procedures (mean, 1.82) than the prelecture group (mean, 0.57; P attended would consider a career in IR, compared with 24% in the prelecture group and 33% in the control group (P attended had knowledge of the IR residency, compared with 5% in the prelecture group and 33% in the control group (P students about IR and generating interest in the field. Copyright © 2017 SIR. All rights reserved.

  19. Synchrotron-based Infrared-microspectroscopy reveals the impact of land management on carbon storage in soil micro-aggregates

    Science.gov (United States)

    Hernandez-Soriano, Maria C.; Dalal, Ram C.; Menzies, Neal W.; Kopittke, Peter M.

    2015-04-01

    Carbon stabilization in soil microaggregates results from chemical and biological processes that are highly sensitive to changes in land use. Indeed, such processes govern soil capability to store carbon, this being essential for soil health and productivity and to regulate emissions of soil organic carbon (SOC) as CO2. The identification of carbon functionalities using traditional mid-infrared analysis can be linked to carbon metabolism in soil but differences associated to land use are generally limited. The spatial resolution of synchrotron-based Infrared-microspectroscopy allows mapping microaggregate-associated forms of SOC because it has 1000 times higher brightness than a conventional thermal globar source. These maps can contribute to better understand molecular organization of SOC, physical protection in the soil particles and co-localization of carbon sources with microbial processes. Spatially-resolved analyses of carbon distribution in micro-aggregates (20 years). Soils were gently screened (250 μm) to obtain intact microaggregates which were humidified and frozen at -20°C, and sectioned (200 μm thickness) using a diamond knife and a cryo-ultramicrotome. The sections were placed between CaF2 windows and the spectra were acquired in transmission mode. The maps obtained (5 µm step-size over ca. 150 × 150 µm) revealed carbon distribution in microaggregates from soils under contrasting land management, namely undisturbed and cropping land. Accumulation of aromatic and carboxylic functions on specific spots and marginal co-localization with clays was observed, which suggests processes other than organo-mineral associations being responsible for carbon stabilization. A substantial decrease in carboxylic compounds was observed for agricultural soils. Clays were mostly co-localized with alkenes and polysaccharides, particularly in agricultural soils, likely due to enhanced microbial activity in those spots. Results will be linked to currently ongoing

  20. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Science.gov (United States)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  1. Holographic RG flows with nematic IR phases

    CERN Document Server

    Cremonini, Sera; Rong, Junchen; Sun, Kai

    2014-01-01

    We construct zero-temperature geometries that interpolate between a Lifshitz fixed point in the UV and an IR phase that breaks spatial rotations but preserves translations. We work with a simple holographic model describing two massive gauge fields coupled to gravity and a neutral scalar. Our construction can be used to describe RG flows in non-relativistic, strongly coupled quantum systems with nematic order in the IR. In particular, when the dynamical critical exponent of the UV fixed point is z=2 and the IR scaling exponents are chosen appropriately, our model realizes holographically the scaling properties of the bosonic modes of the quadratic band crossing model.

  2. Detection of protein structure of frozen ancient human remains recovered from a glacier in Canada using synchrotron fourier transform infrared microspectroscopy.

    Science.gov (United States)

    Quaroni, Luca; Christensen, Colleen R; Chen, Becky; Vogl, Wayne; Monsalve, Maria Victoria

    2013-06-01

    We previously used synchrotron infrared microspectroscopy to describe the biochemical signature of skeletal muscle (biceps brachii) from the frozen ancient remains of a young man. In this current paper, we use light microscopy to assess the state of preservation of cellular components in the trapezius muscle from these same ancient remains and then use mid-infrared analysis at the Canadian Light Source synchrotron facility to further analyze the tissue. We compare spectra between the trapezius samples from the ancient remains and a recently deceased cadaver (control). Infrared spectra indicate preservation of secondary structure, with the α-helix being the principal component, along with triple helical portions of the protein backbone. Our mid-infrared analysis indicates an energy reserve in the skeletal muscle in the ancient remains.

  3. Comparison of methodologies for separation of fungal isolates using Fourier transform infrared (FTIR) spectroscopy and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) microspectroscopy.

    Science.gov (United States)

    Oberle, Jennifer; Dighton, John; Arbuckle-Keil, Georgia

    2015-11-01

    Twenty distinct fungal isolates were analysed using three methods of sample preparation for FTIR spectroscopy and FTIR-ATR microspectroscopy to test for differences in surface chemical composition between living and dried fungal samples, as well as differences between surface chemistry and overall chemistry of homogenized dried samples. Results indicated that visually the FTIR spectra of different fungi are remarkably similar with subtle discernable differences, which statistical analysis of the spectra supported. Within each data set, different fungal isolates were responsible for statistical differences. Lack of congruence between each of the methods used suggests that determination of chemical composition is highly dependent upon the method of sample preparation and analysis (surface vs. whole) applied.

  4. Study of cell-differentiation and assembly of photosynthetic proteins during greening of etiolated Zea mays leaves using confocal fluorescence microspectroscopy at liquid-nitrogen temperature.

    Science.gov (United States)

    Shibata, Yutaka; Katoh, Wataru; Tahara, Yukari

    2013-04-01

    Fluorescence microspectroscopy observations were used to study the processes of cell differentiation and assemblies of photosynthesis proteins in Zea mays leaves under the greening process. The observations were done at 78K by setting the sample in a cryostat to avoid any undesired progress of the greening process during the measurements. The lateral and axial spatial resolutions of the system were 0.64μm and 4.4μm, respectively. The study revealed the spatial distributions of protochlorophyllide (PChld) in both the 632-nm-emitting and 655-nm-emitting forms within etiolated Zea mays leaves. The sizes of the fluorescence spots attributed to the former were larger than those of the latter, validating the assignment of the former and latter to the prothylakoid and prolamellar bodies, respectively. In vivo microspectroscopy observations of mature Zea mays leaves confirmed the different photosystem II (PS I)/photosystem I (PS II) ratio between the bundle sheath (BS) and mesophyll (MS) cells, which is specific for C4-plants. The BS cells in Zea mays leaves 1h after the initiation of the greening process tended to show fluorescence spectra at shorter wavelength side (at around 679nm) than the MS cells (at around 682nm). The 679-nm-emitting chlorophyll-a form observed mainly in the BS cells was attributed to putative precursor complexes to PS I. The BS cells under 3-h greening showed higher relative intensities of the PS I fluorescence band at around 735nm, suggesting the reduced PS II amount in the BS cells in this greening stage. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Combination of synchrotron radiation-based Fourier transforms infrared microspectroscopy and confocal laser scanning microscopy to understand spatial heterogeneity in aquatic multispecies biofilms.

    Science.gov (United States)

    Reuben, Sheela; Banas, Krzysztof; Banas, Agnieszka; Swarup, Sanjay

    2014-11-01

    Understanding the spatial heterogeneity within environmental biofilms can provide an insight into compartmentalization of different functions in biofilm communities. We used a non-destructive and label-free method by combining Synchrotron Radiation-based Fourier Transform Infrared Microspectroscopy (SR-FTIR) with Confocal Laser Scanning Microscopy (CLSM) to distinguish the spatial chemical changes within multispecies biofilms grown from natural storm waters in flow cells. Among the different surfaces tested for biofilm growth and optimal imaging, mylar membranes were most suited and it enabled successful spatial infrared imaging of natural biofilms for obtaining reliable and interpretable FTIR spectra. Time series analysis of biofilm growth showed that influx of water during biofilm growth, results in significant changes in biofilm formation. Early biofilms showed active nutrient acquisition and desiccation tolerance mechanisms corresponding with accumulation of secreted proteins. Statistical approach used for the evaluation of chemical spectra allowed for clustering and classification of various regions of the biofilm. Microheterogeneity was observed in the polymeric components of the biofilm matrix, including cellulose, glycocalyx and dextran-like molecules. Fructan and glycan-rich regions were distinguishable and glycocalyx was abundant in the strongly adhering peripheral regions of biofilms. Inner core showed coexistence of oxygen dimers and ferrihydrite that will likely support growth of Fe (II)-oxidising bacteria. The combined SR-FTIR microspectroscopy and CSLM approach for complex natural biofilms described here will be useful both in understanding heterogeneity of matrix components and in correlating functions of juxtaposed microbial species in complex natural biofilms with physicochemical microenvironment to which they are exposed.

  6. Near-IR Photoluminescence of C60().

    Science.gov (United States)

    Strelnikov, Dmitry V; Kern, Bastian; Kappes, Manfred M

    2017-10-05

    We have observed that C60(+) ions isolated in cryogenic matrices show distinct near-IR photoluminescence upon excitation in the near-IR range. By contrast, UV photoexcitation does not lead to measurable luminescence. Near-IR C60(+) photoluminescence is a one-photon process. The emission is mainly concentrated in one band and corresponds to (2)A1u ← (2)E1g relaxation. We present experimental data for the Stokes shift, power, and temperature dependencies as well as the quantum efficiency of the photoluminescence. Our findings may be relevant for astronomy, considering recent unequivocal assignment of five diffuse interstellar bands to near-IR absorption bands of C60(+).

  7. IR aperture measurement at β*=40 cm

    CERN Document Server

    Bruce, Roderik; Hermes, Pascal Dominik; Kwee-Hinzmann, Regina; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Valentino, Gianluca; Valloni, Alessandra; CERN. Geneva. ATS Department

    2015-01-01

    This note summarizes MD 307, performed on August 27 2015, during which we measured with beam the global apertures at 6.5 TeV with IR1 and IR5 squeezed to β* =40 cm and a half crossing angle of 205 rad. The measurement technique involved opening collimators in steps, while inducing beam losses at each step, until the main loss location moved from the collimators to the global bottleneck in one of the triplets. Measurements were performed in both beams and planes, and each measurement gave the minimum triplet aperture over IR1 and IR5. The results are in very good agreement with theoretical predictions. At the end of the MD, an asynchronous beam dump test was performed with all collimators moved in to so-called 2-σ retraction settings. This MD is one in a series meant to address various open points for the reach in β* in Run II.

  8. WFC3 IR Image Quality

    Science.gov (United States)

    Dressel, Linda

    2009-07-01

    The IR imaging performance over the detector will be assessed periodically {every 4 months} in two passbands to check for image stability. The field around star 58 in the open cluster NGC188 is the chosen target because it is sufficiently dense to provide good sampling over the FOV while providing enough isolated stars to permit accurate PSF {point spread function} measurement. It is available year-round and used previously for ACS image quality assessment. The field is astrometric, and astrometric guide stars will be used, so that the plate scale and image orientation may also be determined if necessary {as in SMOV proposals 11437 and 11443}. Full frame images will be obtained at each of 4 POSTARG offset positions designed to improve sampling over the detector in F098M, F105W, and F160W. The PSFs will be sampled at 4 positions with subpixel shifts in filters F164N and F127M.This proposal is a periodic repeat {once every 4 months} of the visits in SMOV proposal 11437 {activity ID WFC3-24}. The data will be analyzed using the code and techniques described in ISR WFC3 2008-41 {Hartig}. Profiles of encircled energy will be monitored and presented in an ISR. If an update to the SIAF is needed, {V2,V3} locations of stars will be obtained from the Flight Ops Sensors and Calibrations group at GSFC, the {V2,V3} of the reference pixel and the orientation of the detector will be determined by the WFC3 group, and the Telescopes group will update and deliver the SIAF to the PRDB branch.The specific PSF metrics to be examined are encircled energy for aperture diameter 0.25, 0.37, and 0.60 arcsec, FWHM, and sharpness. {See ISR WFC3 2008-41 tables 2 and 3 and preceding text.} 20 stars distributed over the detector will be measured in each exposure for each filter. The mean, rms, and rms of the mean will be determined for each metric. The values determined from each of the 4 exposures per filter within a visit will be compared to each other to see to what extent they are affected

  9. IR Optimization, DID and anti-DID

    Energy Technology Data Exchange (ETDEWEB)

    Seryi, Andrei; Maruyama, Takashi; /SLAC; Parker, Brett; /Brookhaven

    2006-02-03

    In this paper, we discuss optimization of the larger crossing angle Interaction Region of the Linear Collider, where specially shaped transverse field of the Detector Integrated Dipole can be reversed and adjusted to optimize trajectories of the low energy pairs, so that their majority would be directed into the extraction exit hole. This decreases the backscattering and makes background in 14mrad IR to be similar to background in 2mrad IR.

  10. OCT for Examination of Artwork

    Science.gov (United States)

    Targowski, Piotr; Iwanicka, Magdalena; Rouba, Bogumiła J.; Frosinini, Cecilia

    In this chapter the application of OCT to examination of objects of cultural heritage is given. The knowledge about the structure of the object of art is necessary both for inventory purposes and planning/monitoring of conservation-restoration treatments. Due to its noninvasiveness OCT is well suited for such applications. The major limitation is in the lack of transparency of certain structures. Specific requirements, advantages and limitations of use of the OCT technique in this area are discussed first. Then the overview of applications to easel paintings, historic glass, and craftsmanship is given, followed by two examples of monitoring the laser ablation with OCT: very local in case of Laser Induced Breakdown Spectroscopy (LIBS), and more general in case of laser ablation of the varnish layer. Then the examples of application of OCT to examination of paintings are given: investigation of deterioration of the varnish layer in the "Adoration of the Magi" by Leonardo da Vinci (Uffizi, Italy), imaging of overpaintings on two 17th and 18th c. oil paintings on canvas, and visualization of specific case of retouching located between two layers of varnish in the "Madonna with Yarnwinder" (attributed to L. da Vinci, private property).

  11. Matrix isolation studies with Fourier transform IR

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W.; Reedy, Gerald T.

    1977-01-01

    The combination of Fourier transform infrared (FT-IR) spectroscopy with the matrix-isolation techniques has advantages compared with the use of more conventional grating spectroscopy. Furthermore, the recent commercial availability of Fourier transform spectrometers has made FT-IR a practical alternative. Some advantages of the FT-IR spectrometer over the grating spectrometer are the result of the computerized data system that is a necessary part of the FT-IR spectrometer; other advantages are a consequence of the difference in optical arrangements and these represent the inherent advantages of the FT-IR method. In most applications with the matrix-isolation technique, the use of FT-IR spectroscopy results in either an improved signal-to-noise ratio or a shorter time for data collection compared with grating infrared spectroscopy. Fourier transform infrared spectroscopy has been used in the laboratory to study several molecular species in low-temperature matrices. Some species have been produced by high-temperature vaporization from Knudsen cells and others by sputtering. By sputtering, Ar and Kr matrices have been prepared which contain U atoms, UO, UO/sub 2/, UO/sub 3/, PuO, PuO/sub 2/, UN, or UN/sub 2/, depending upon the composition of the gas used to sputter as well as the identity of the metallic cathode. Infrared spectra of matrices containing these compounds are presented and discussed. (JRD)

  12. Resonant optical devices for IR lasers

    Science.gov (United States)

    Johnson, Eric G.; Li, Yuan; Raghu Srimathi, Indumathi; Woodward, Ryan H.; Poutous, Menelaos K.; Pung, Aaron J.; Richardson, Martin; Shah, Lawrence; Shori, Ramesh; Magnusson, Robert

    2013-03-01

    This paper highlights recent developments in resonant optical devices for infrared (IR) and mid-infrared (mid- IR) lasers. Sub-wavelength grating based resonant optical filters are introduced and their application in 2 μm thulium fiber laser and amplifier systems has been discussed. The paper focuses on applying such filtering techniques to 2.8 μm mid-IR fiber laser systems. A narrowband mid-IR Guided-Mode Resonance Filter (GMRF) was designed and fabricated using Hafnium(IV) Oxide film/quartz wafer material system. The fabricated GMRF was then integrated into an Erbium (Er)-doped Zr-Ba-La-Al-Na (ZBLAN) fluoride glass fiber laser as a wavelength selective feedback element. The laser operated at 2782 nm with a linewidth less than 2 nm demonstrating the viability of GMRF's for wavelength selection in the mid-IR. Furthermore, a GMRF of narrower linewidth based on Aluminum Oxide/quartz wafer material system is fabricated and tested in the same setup. The potentials and challenges with GMRFs will be discussed and summarized.

  13. Tuning the Graphene on Ir(111) adsorption regime by Fe/Ir surface-alloying

    Science.gov (United States)

    Brede, Jens; Sławińska, Jagoda; Abadia, Mikel; Rogero, Celia; Ortega, J. Enrique; Piquero-Zulaica, Ignacio; Lobo-Checa, Jorge; Arnau, Andres; Iribas Cerdá, Jorge

    2017-03-01

    A combined scanning tunneling microscopy, x-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, and density functional theory study of graphene on a Fe-Ir(111) alloy with variable Ir concentration is presented. Starting from an intercalated Fe layer between the graphene and Ir(111) surface we find that graphene-substrate interaction can be fine-tuned by Fe-Ir alloying at the interface. When a critical Ir-concentration close to 0.25 is reached in the Fe layer, the Dirac cone of graphene is largely restored and can thereafter be tuned across the Fermi level by further increasing the Ir content. Indeed, our study reveals an abrupt transition between a chemisorbed phase at small Ir concentrations and a physisorbed phase above the critical concentration. The latter phase is highly reminiscent of the graphene on the clean Ir(111) surface. Furthermore, the transition is accompanied by an inversion of the graphene’s induced magnetization due to the coupling with the Fe atoms from antiferromagnetic when chemisorbed to weakly ferromagnetic in the physisorption regime, with spin polarizations whose magnitude may be tuned with the amount of Fe content.

  14. Tunable mid IR plasmon in GZO nanocrystals.

    Science.gov (United States)

    Hamza, M K; Bluet, J-M; Masenelli-Varlot, K; Canut, B; Boisron, O; Melinon, P; Masenelli, B

    2015-07-28

    Degenerate metal oxide nanoparticles are promising systems to expand the significant achievements of plasmonics into the infrared (IR) range. Among the possible candidates, Ga-doped ZnO nanocrystals are particularly suited for mid IR, considering their wide range of possible doping levels and thus of plasmon tuning. In the present work, we report on the tunable mid IR plasmon induced in degenerate Ga-doped ZnO nanocrystals. The nanocrystals are produced by a plasma expansion and exhibit unprotected surfaces. Tuning the Ga concentration allows tuning the localized surface plasmon resonance. Moreover, the plasmon resonance is characterized by a large damping. By comparing the plasmon of nanocrystal assemblies to that of nanoparticles dispersed in an alumina matrix, we investigate the possible origins of such damping. We demonstrate that it partially results from the self-organization of the naked particles and also from intrinsic inhomogeneity of dopants.

  15. The FLUKA Model of IR8

    CERN Document Server

    Appleby, R B

    2010-01-01

    The study of machine induced background (MIB), the radiation environment and beam dynamics of the LHC requires a detailed model of the machine tunnel, elements and electromagnetic fields. In this note, a specially created model of IR8 in FLUKA is described, including the tunnel, vacuum chambers, magnets, collimators, injection elements and shielding. The inclusion of all relevant machine elements in the LSS of IR8 results in a very flexible model suitable for a large variety of calculations and studies. The validation of the model is discussed, and some example applications described.

  16. Compressive sensing in the EO/IR.

    Science.gov (United States)

    Gehm, M E; Brady, D J

    2015-03-10

    We investigate the utility of compressive sensing (CS) to electro-optic and infrared (EO/IR) applications. We introduce the field through a discussion of historical antecedents and the development of the modern CS framework. Basic economic arguments (in the broadest sense) are presented regarding the applicability of CS to the EO/IR and used to draw conclusions regarding application areas where CS would be most viable. A number of experimental success stories are presented to demonstrate the overall feasibility of the approaches, and we conclude with a discussion of open challenges to practical adoption of CS methods.

  17. Near-IR imaging and imaging polarimetry of OMC 2

    Science.gov (United States)

    Rayner, John; Mclean, Ian; Aspin, Colin; Mccaughrean, Mark

    1989-01-01

    NIR and 2.2-micron imaging polarimetry of the molecular cloud region OMC 2, reveals a cluster of low- to intermediate-mass premain-sequence stars embedded in circumstellar disks. The 2.2-micron imaging polarimetry indicates that the compact NIR sources OMC 2 IRS1, IRS2, IRS3 and IRS4 N, are illumination centers for the surrounding extended emission. By application of Hubble's relation to the nebulae illuminated by IRS1, IRS2 and IRS4 N, the illuminating geometry is explained and the intrinsic NIR colors of these objects are estimated.

  18. Near-IR imaging and imaging polarimetry of OMC 2

    Science.gov (United States)

    Rayner, John; Mclean, Ian; Aspin, Colin; Mccaughrean, Mark

    1989-01-01

    NIR and 2.2-micron imaging polarimetry of the molecular cloud region OMC 2, reveals a cluster of low- to intermediate-mass premain-sequence stars embedded in circumstellar disks. The 2.2-micron imaging polarimetry indicates that the compact NIR sources OMC 2 IRS1, IRS2, IRS3 and IRS4 N, are illumination centers for the surrounding extended emission. By application of Hubble's relation to the nebulae illuminated by IRS1, IRS2 and IRS4 N, the illuminating geometry is explained and the intrinsic NIR colors of these objects are estimated.

  19. FT-IR光谱在电离辐射作用于微生物研究中的应用%Application of FT-IR Spectroscopy in Study of Biological Effects on Microorganisms Induced by Ionizing Radiation

    Institute of Scientific and Technical Information of China (English)

    刘京华; 黄青

    2012-01-01

    傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FT-IR)是一种很有用的生物分析检测技术,通过FT-IR光谱技术可以得到有关蛋白质、脂类、核酸和多糖等微生物和细胞各类组成成分的信息.基于同步辐射光源的显微FT-IR光谱具有更高的空间分辨率和更快的测量速度,因而在生物学研究中具有进行快速、实时、动态和无损检测等优势.本文介绍了FT-IR光谱技术在微生物及电离辐射作用于微生物引起的生物学效应研究中的应用,并对该领域未来研究的发展趋势进行了展望.%Fourier transform infrared (FT-IR) spectroscopy is a useful and powerful technique that can provide rich information on proteins,lipids,nucleic acids and carbohydrates in biological systems. Especially,the high-resolution synchrotron Fourier-transform infrared (SR-FTIR) microspectroscopy and imaging technique can be employed as an excellent tool for convenient,fast,non-invasive,and real-time monitoring of varied complicated processes occuring in a biological system. In this review,the authors discuss the recent progress on the application of FT-IR spectroscopy in the study of biological effects on microorganisms induced by ionizing radiation,and also give an outlook for the future FT-IR spectroscopy research in this field.

  20. Micas from mariupolite of the Oktiabrski massif (SE Ukraine): an insight into the host rock evolution--geochemical data supported by Raman microspectroscopy.

    Science.gov (United States)

    Dumańska-Słowik, Magdalena; Wesełucha-Birczyńska, Aleksandra; Pieczka, Adam

    2015-02-25

    Muscovite and two dark mica varieties (the coarse-crystalline, pegmatitic, and fine-crystalline with signs of early weathering) representing members of the biotite series, originating from mariupolite of the Oktiabrski massif, (Ukraine), were investigated along with their solid inclusions using electron microprobe and Raman micro-spectroscopy to discuss their genesis and relationship to the parental magma. The coarse-crystalline, pegmatitic biotite, (K1.90Rb0.02Na0.01)(Fe3.56(2+)Mg1.34Ti0.36Fe0.34(3+)Mn0.03)[(Si5.73Al2.10Fe0.17(3+))O20](OH3.24 F0.76) represents the primary, magmatic annite that crystallized from an alkaline, Fe-rich and Mg-depleted host magma, whereas the fine-crystalline biotite, partly altered to vermiculite, (K1.75Rb0.03Na0.03)(Fe3.23(3+)Fe1.16(2+)Mg0.26Mn0.04Ti0.10)[(Si5.16 Al2.84)O20](OH)4.00, devoid of F, represents a re-equilibrated or secondary, post-magmatic Fe(3+)-bearing mica crystallized from alkaline to the subalkaline host magma. Muscovite, (K1.96Na0.06)(Al3.97Fe0.06(2+))[(Si5.99Al2.01)O20](OH)4, with low Na/(Na+K) ratio, low Fe and devoid of Ti and also F, forms only tiny, subhedral flakes formed in the post-magmatic, hydrothermal stage. The primary, unaltered biotite contains numerous solid inclusions of primary origin (albite, aegirine, zircon, K-feldspar, nepheline, pyrochlore, magnetite) and secondary origin (natrolite, hematite, Ti-Mn oxides/hydroxides); most of them are accompanied by a carbonaceous substance, all confirmed by scanning electron microscopy and Raman microspectroscopy. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Quantification and Identification of Microplastics in Marine Samples from 5 µm to 5 mm by FTIR and Raman Microspectroscopy and Imaging

    Science.gov (United States)

    Fischer, D.

    2016-12-01

    Several million tons of plastic debris enter the oceans every year caused by industry, inappropriate disposal of waste, waste from fishing activities and waste from ships. Macro plastic parts in the ocean are degraded to secondary microplastics (MP), mostly in the range from 1 µm to 5 mm. Primary MP on the other hand, are microbeads in cosmetic products, cleaning agents and industrial incorrect disposed raw materials. The impacts of MP on marine ecosystems can cause many problems for animals, birds and humans, like the absorption of toxic contaminants by MP, the potential association of MP with pathogenic microorganism, the mistake with food and that MP itself can contain toxic additives. We show the first results, achieved with samples collected from different sites in the Baltic Sea and adjacent river systems, gathered from the water surface, from the water column and from sea sediments and beaches to get knowledge of the composition, size and distribution of MP in the oceans. After preparation we get cleaned samples on a silicon filter [1]. On this filter we identify MP by FTIR and Raman microspectroscopy. All particles > 500 µm are separately measured. The particles types are PE, PP, PS, PVC, PC and polyester. An example for a Raman image is shown in Fig. 1. Fig.1: 3D Raman Image (z-axis: intensity of the CH range 2800-3000cm-1) of a sample from a setting sediment sampler at the island Gotland, Baltic Sea We compared Raman imaging and single point measurements and additionally FTIR and Raman Imaging. These and further topics, like the comparison of different sampling sites will be discussed in the talk. It can be summarized that Raman microspectroscopy is an outstanding method to detect MP in aquatic systems down to 1 µm. Detailed results are described in [1, 2]. [1] Käppler A., Fischer D., Eichhorn K.-J. et. al. Anal. Bioanal. Chem. 2015; 407: 6791 [2] Fischer D., Käppler A., Eichhorn K.-J. American Laboratory 2015; 47: 32

  2. IR thermography diagnostics for the WEST project

    Energy Technology Data Exchange (ETDEWEB)

    Courtois, X., E-mail: xavier.courtois@cea.fr [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Aumeunier, M.H. [OPTIS, ZE de La Farlède, F-83078 Toulon Cedex 9 (France); Joanny, M.; Roche, H.; Micolon, F.; Salasca, S.; Balorin, C.; Jouve, M. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2014-10-15

    Highlights: • The WEST project requires a set of three infrared diagnostics. • The tungsten divertor will be monitored by the existing diagnostic renewed. • The antennas monitoring require the development of an innovative diagnostic. • A fiber bundle will be used as image transport for the antennas monitoring. • A wide angle tangential view of the upper divertor and the first wall is studied. - Abstract: To operate long plasma discharge in tokamak equipped with actively cooled plasma facing components (PFC), infrared (IR) thermography is a key diagnostic. Indeed IR data are used for both PFC safety monitoring, to avoid material degradation and water leak, and various physics studies on plasma-wall interaction. The IR monitoring is becoming even more crucial with today metallic PFCs. This is the case for the WEST project (Tungsten (W) Environment for Steady State Tokamak), which aims at installing a W divertor in Tore Supra (TS), in order to operate the 1st tokamak with a full W actively cooled divertor in long plasma discharges. The IR thermography system for the WEST project described in this paper will consist of a set of 3 different diagnostics: (1) Six cameras located in upper ports viewing the full W divertor, which reuse a part of the existing diagnostic of TS. (2) Five novel views located behind the inner protection panels for the antennas monitoring, based on an innovative imaging fibers bundle technology. (3) A tangential wide angle view located in a median port, for the upper divertor and first wall monitoring.

  3. Controlling Hydrogenation of Graphene on Ir(111)

    DEFF Research Database (Denmark)

    Balog, Richard; Andersen, Mie; Jørgensen, Bjarke

    2013-01-01

    Combined fast X-ray photoelectron spectroscopy and density functional theory calculations reveal the presence of two types of hydrogen adsorbate structures at the graphene/ Ir(111) interface, namely, graphane-like islands and hydrogen dimer structures. While the former give rise to a periodic...

  4. Interactive Response Systems (IRS) Socrative Application Sample

    Science.gov (United States)

    Aslan, Bilge; Seker, Hasan

    2017-01-01

    In globally developing education system, technology has made instructional improved in many ways. One of these improvements is the Interactive Response Systems (IRS) that are applied in classroom activities. Therefore, it is "smart" to focus on interactive response systems in learning environment. This study was conducted aiming to focus…

  5. Synchrotron IR spectromicroscopy: chemistry of living cells.

    Science.gov (United States)

    Holman, Hoi-Ying N; Bechtel, Hans A; Hao, Zhao; Martin, Michael C

    2010-11-01

    Advanced analytical capabilities of synchrotron IR spectromicroscopy meet the demands of modern biological research for studying molecular reactions in individual living cells. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).

  6. Panel discussion: The future of IR astronomy

    Science.gov (United States)

    Caroff, Lawrence J.

    1995-01-01

    A panel discussion was held on the future of IR astronomy. The chairman gave a brief introduction to current planned programs for NASA and other space agencies, followed by short contributions from the six panel members on a variety of special topics. After that, a short question and answer session was held.

  7. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as possib

  8. Growth and termination of a rutile IrO2(100) layer on Ir(111)

    Science.gov (United States)

    Rai, Rahul; Li, Tao; Liang, Zhu; Kim, Minkyu; Asthagiri, Aravind; Weaver, Jason F.

    2016-10-01

    We investigated the oxidation of Ir(111) by gas-phase oxygen atoms at temperatures between 500 and 625 K using temperature programmed desorption (TPD), low energy electron diffraction (LEED), low energy ion scattering spectroscopy (LEISS) and density functional theory (DFT) calculations. We find that a well-ordered surface oxide with (√ 3 × √ 3)R30° periodicity relative to Ir(111) develops prior to the formation of a rutile IrO2(100) layer. The IrO2(100) layer reaches a saturation thickness of about four oxide layers under the oxidation conditions employed, and decomposes during TPD to produce a single, sharp O2 desorption peak at 770 K. Favorable lattice matching at the oxide-metal interface is likely responsible for the preferential growth of the IrO2(100) facet during the initial oxidation of Ir(111), with the resulting coincidence lattice generating a clear (6 × 1) moiré pattern in LEED. Temperature programmed reaction spectroscopy (TPRS) experiments reveal that CO and H2O molecules bind only weakly on the IrO2(100) surface and LEISS measurements show that the oxide surface is highly enriched in O-atoms. These characteristics provide strong evidence that the rutile IrO2(100) layer is oxygen-terminated, and thus lacks reactive Ir atoms that can strongly bind molecular adsorbates. Oxygen binding energies predicted by DFT suggest that on-top O-atoms will remain adsorbed on IrO2(100) at temperatures up to 625 K, thus supporting the conclusion that the rutile IrO2 layer grown in our experiments is oxygen-terminated. As such, the appearance of only a single O2 TPD peak indicates that the singly coordinate, on-top O-atoms remain stable on the IrO2(100) surface up to temperatures at which the oxide layer begins to thermally decompose.

  9. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a method of fabrication of far IR and THZ range multilayer metal-mesh filters. This type of filter consists of alternative...

  10. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  11. Raman micro-spectroscopy of UOX and MOX spent nuclear fuel characterization and oxidation resistance of the high burn-up structure

    Science.gov (United States)

    Jegou, C.; Gennisson, M.; Peuget, S.; Desgranges, L.; Guimbretière, G.; Magnin, M.; Talip, Z.; Simon, P.

    2015-03-01

    Raman micro-spectroscopy was applied to study the structure and oxidation resistance of UO2 (burnup 60 GWd/tHM) and MOX (burnup 47 GWd/tHM) irradiated fuels. The Raman technique, adapted to working under extreme conditions, enabled structural information to be obtained at the cubic micrometer scale in various zones of interest within irradiated fuel (central and zones like the Rim for UOX60, and the plutonium-enriched agglomerates for MOX47 characterized by a high burn-up structure), and the study of their oxidation resistance. As regards the structural information after irradiation, the spectra obtained make up a set of data consistent with the systematic presence of the T2g band characteristic of the fluorite structure, and of a triplet band located between 500 and 700 cm-1. The existence of this triplet can be attributed to the presence of defects originating in changes to the fuel chemistry occurring in the reactor (presence of fission products) and to the accumulation of irradiation damage. As concerns the oxidation resistance of the different zones of interest, Raman spectroscopy results confirmed the good stability of the restructured zones (plutonium-enriched agglomerates and Rim) rich in fission products compared to the non-restructured UO2 grains. A greater structural stability was noticed in the case of high plutonium content agglomerates, as this element favors the maintenance of the fluorite structure.

  12. Characterization of the microchemical structure of seed endosperm within a cellular dimension among six barley varieties with distinct degradation kinetics, using ultraspatially resolved synchrotron-based infrared microspectroscopy.

    Science.gov (United States)

    Liu, Na; Yu, Peiqiang

    2010-07-14

    Barley varieties have similar chemical composition but exhibit different rumen degradation kinetics and nutrient availability. These biological differences may be related to molecular, structural, and chemical makeup among the seed endosperm tissue. No detailed study was carried out. The objectives of this study were: (1) to use a molecular spectroscopy technique, synchrotron-based Fourier transform infrared microspectroscopy (SFTIRM), to determine the microchemical-structural features in seed endosperm tissue of six developed barley varieties; (2) to study the relationship among molecular-structural characteristics, degradation kinetics, and nutrient availability in six genotypes of barley. The results showed that inherent microchemical-structural differences in the endosperm among the six barley varieties were detected by the synchrotron-based analytical technique, SFTIRM, with the univariate molecular spectral analysis. The SFTIRM spectral profiles differed (P degradation). Weak correlations may indicate that limited variations of these six barley varieties might not be sufficient to interpret the relationship between spectroscopic information and the nutrient value of barley grain, although significant differences in biodegradation kinetics were observed. In conclusion, the studies demonstrated the potential of ultraspatially resolved synchrotron based technology (SFTIRM) to reveal the structural and chemical makeup within cellular and subcellular dimensions without destruction of the inherent structure of cereal grain tissue.

  13. The interaction of an amino-modified ZrO2 nanomaterial with macrophages-an in situ investigation by Raman microspectroscopy.

    Science.gov (United States)

    Silge, Anja; Bocklitz, Thomas; Ossig, Rainer; Schnekenburger, Jürgen; Rösch, Petra; Popp, Jürgen

    2016-08-01

    Metal oxide nanoparticles (NP) are applied in the fields of biomedicine, pharmaceutics, and in consumer products as textiles, cosmetics, paints, or fuels. In this context, the functionalization of the NP surface is a common method to modify and modulate the product performance. A chemical surface modification of NP such as an amino-functionalization can be used to achieve a positively charged and hydrophobic surface. Surface functionalization is known to affect the interaction of nanomaterials (NM) with cellular macromolecules and the responses of tissues or cells, like the uptake of particles by phagocytic cells. Therefore, it is important to assess the possible risk of those modified NP for human health and environment. By applying Raman microspectroscopy, we verified in situ the interaction of amino-modified ZrO2 NP with cultivated macrophages. The results demonstrated strong adhesion properties of the NP to the cell membrane and internalization into the cells. The intracellular localization of the NP was visualized via Raman depth scans of single cells. After the cells were treated with sodium azide (NaN3) and 2-deoxy-glucose to inhibit the phagocytic activity, NP were still detected inside cells to comparable percentages. The observed tendency of amino-modified ZrO2 NP to interact with the cultivated macrophages may influence membrane integrity and cellular functions of alveolar macrophages in the respiratory system. Graphical abstract Detection of ZrO2 NM at subcellular level.

  14. Preliminary studies of the effects of psychological stress on circulating lymphocytes analyzed by synchrotron radiation based-Fourier transform infrared microspectroscopy

    Science.gov (United States)

    Vargas-Caraveo, Alejandra; Castillo-Michel, Hiram; Mejia-Carmona, Gloria Erika; Pérez-Ishiwara, David Guillermo; Cotte, Marine; Martínez-Martínez, Alejandro

    2014-07-01

    Psychological stress is a condition that not only generates behavioral disorders but also disrupts homeostasis and immune activity that can exacerbate or lead to inflammatory diseases. The aim of this work was to study biochemical changes in circulating immune cells from rats under psychological stress by using vibrational spectroscopy. A stress model was used, where exposure to a stressor was repeated for 5 days. Subsequently, circulating lymphocytes were examined for their biomolecular vibrational fingerprints with synchrotron radiation based-Fourier transform infrared microspectroscopy. The results showed an increased absorption at the ester lipid region (1720-1755 cm-1) in lymphocytes from stressed rats, suggesting lipid peroxidation. Statistical significant changes in wavenumber peak position and absorbance in the nucleic acid region were also observed (915-950 cm-1 Z-DNA, 1090-1150 cm-1 symmetric stretching of Psbnd Osbnd C, 1200-1260 cm-1 asymmetric PO2 and 1570-1510 cm-1 methylated nucleotides) which suggest a reduction of transcriptional activity in lymphocytes from stressed rat. These results unravel part of the mechanisms by which psychological stress may affect the immune system leading to systemic consequences.

  15. Tax-deferred annuity plans: meeting the IRS audit challenge.

    Science.gov (United States)

    Schussler, M

    1997-01-01

    A growing number of nonprofit organizations are being fined for violations of IRS regulations following IRS audits of their tax-deferred annuity (TDA) plans. To ensure that their organizations can withstand the scrutiny of an IRS audit, TDA plan administrators must ensure that plans meet IRS regulations and be prepared for IRS audits. Documentation--particularly of the TDA plan itself, and procedures related to salary reduction programs, compensation limits, excess deferrals and other excess contributions, loans, and distributions--must be comprehensive and in compliance with IRS regulations.

  16. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  17. Studying the nonlinearity in Sonic IR NDE

    Science.gov (United States)

    Yu, Qiuye; Obeidat, Omar; Han, Xiaoyan

    2017-02-01

    Sonic IR Imaging combines pulsed ultrasound excitation and infrared imaging to detect defects in materials. The sound pulse causes rubbing due to non--unison motion between faces of defects, and infrared sensors image the temperature map over the target to identify defects. It works in various materials, including metal/metal alloy, ceramics, and composite materials. Its biggest advantage is that it's a fast, wide area NDE technique. It takes only a fraction of a second or a few seconds, depending on the thermal properties of the target, for one test over a few square feet. However, due to the nonlinearity in the coupling between the ultrasound transducer and the target, the repeatability has been an issue, which affects its application. In this paper, we present our study on this issue in Sonic IR.

  18. Flexible high-performance IR camera systems

    Science.gov (United States)

    Hoelter, Theodore R.; Petronio, Susan M.; Carralejo, Ronald J.; Frank, Jeffery D.; Graff, John H.

    1999-07-01

    Indigo Systems Corporation has developed a family of standard readout integrated circuits (ROIC) for use in IR focal plane arrays (FPAs) imaging systems. These standard ROICs are designed to provide a compete set of operating features for camera level FPA control, while also providing high performance capability with any of several detector materials. By creating a uniform electrical interface for FPAs, these standard ROICs simplify the task of FPA integration with imaging electronics and physical packages. This paper begins with a brief description of the features of four Indigo standard ROICs and continues with a description of the features, design, and measured performance of indium antimonide, quantum well IR photo- detectors and indium gallium arsenide imaging system built using the described standard ROICs.

  19. Fermion RG blocking transformations and IR structure

    CERN Document Server

    Cheng, X

    2011-01-01

    We explore fermion RG block-spinning transformations on the lattice with the aim of studying the IR structure of gauge theories and, in particular, the existence of IR fixed points for varying fermion content. In the case of light fermions the main concern and difficulty is ensuring locality of any adopted blocking scheme. We discuss the problem of constructing a local blocked fermion action in the background of arbitrary gauge fields. We then discuss the carrying out of accompanying gauge field blocking. In the presence of the blocked fermions implementation of MCRG is not straightforward. By adopting judicious approximations we arrive at an easily implementable approximate RG recursion scheme that allows quick, inexpensive estimates of the location of conformal windows for various groups and fermion representations. We apply this scheme to locate the conformal windows in the case of SU(2) and SU(3) gauge groups. Some of the reasons for the apparent efficacy of this and similar decimation schemes are discuss...

  20. Medical Applications of IR Focal Plane Arrays

    Science.gov (United States)

    2007-11-02

    imaging in deep venous thrombosis, coming up with definitive conclusions. Kunihiko Mabuchi (Japan) describes the development of an image processing... Hemodialysis Shunts", Proc. 19th Annual Intl. IEEE/EMBS Conf., Chicago, II., Nov. 1997. 60. Marcott, C, Reeder, R., Paschelis, E., Boskey, A., "FT-IR...major thrust for all the infrared measurements. These, coupled with standard equipment and methods will definitely give us the further validation

  1. Overview of IRS Plasma Wind Tunnel Facilities

    Science.gov (United States)

    2000-04-01

    Saturn system with the 80- 30, 40, Cassini spacecraft, which was designed, built and 120 h launched by NASA [30]. During the entry into Titan’s i 60...launched in 1995, a ring reentry for landing in Cayenne and the re- first experiment was conducted to determine whether quired mass flow within the PWK... formation . In the IRS MPG facility continuous The operating times range typically from several operation with methane components up to 10%, as minutes to

  2. An uncooled capacitive sensor for IR detection

    Science.gov (United States)

    Siebke, Georg; Gerngroß, Kathrin; Holik, Peter; Schmitz, Sam; Rohloff, Markus; Tätzner, Simon; Steltenkamp, Siegfried

    2014-06-01

    The beetle Melanophila acuminata detects forest fires from distances as far as 80 miles away. To accomplish this, the beetle uses highly specific IR receptors with a diameter of approximately 15 μm. These receptors are mechanoreceptors that detect deformations induced by the absorption of radiation. Although the detection mechanism is understood in principle, it is still unclear how the beetle reaches such high sensitivity. In this work, we present the biomimetic approach of an uncooled IR sensor based on the beetle's receptors. This sensor is based on a fluid-filled pressure cell and operates at room temperature. Upon absorbing IR radiation, the fluid heats up and expands. The expanding fluid deflects one electrode of a plate capacitor. By measuring the change in capacitance, the volume increase and the absorbed energy can be inferred. To prevent the risk of damage at high energy absorption, a compensation mechanism is presented in this work. The mechanism prevents large but slow volume changes inside the pressure cell by a microfluidic connection of the pressure cell with a compensation chamber. The channel and the compensation chamber act as a microfluidic low-pass filter and do not affect the overall sensitivity above an appropriate cut-off frequency. Using MEMS technology, we are able to incorporate the complete system into a silicon chip with an area of a few mm2. Here, we show a proof-of-concept and first measurements of the sensor.

  3. Supplemental Security Income (SSI) / Internal Revenue Service (IRS) 1099

    Data.gov (United States)

    Social Security Administration — A finder file from SSA's Title XVI database is provided to the IRS. The IRS discloses 1099 information to SSA for use in verifying eligibility, amount, and benefits...

  4. IR decoys modeling method based on particle system

    Science.gov (United States)

    Liu, Jun-yu; Wu, Kai-feng; Dong, Yan-bing

    2016-10-01

    Due to the complexity in combustion processes of IR decoys, it is difficult to describe its infrared radiation characteristics by deterministic model. In this work, the IR decoys simulation based on particle system was found. The measured date of the IR decoy is used to analyze the typical characteristic of the IR decoy. A semi-empirical model of the IR decoy motion law has been set up based on friction factors and a IR decoys simulation model has been build up based on particle system. The infrared imaging characteristic and time varying characteristic of the IR decoy were simulated by making use of the particle feature such as lifetime, speed and color. The dynamic IR decoys simulation is realized with the VC++6.0 and OpenGL.

  5. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Science.gov (United States)

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  6. Arbitrage Rebate Compliance: Recent IRS Scrutiny of School Districts.

    Science.gov (United States)

    Given, Lynda K.; Gurrola, George E.; Richardson, James R.

    2002-01-01

    Describes rules and procedures school districts must follow to comply with IRS arbitrage and rebate rules and exceptions on profits derived from investing yields of tax-exempt bonds in a higher yielding account. Describes consequences of noncompliance and seven ways to be prepared for an IRS audit--for example, answering the IRS promptly. (PKP)

  7. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Science.gov (United States)

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  8. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)

    2014-01-01

    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons wh

  9. Measuring PAH Emission in Ultradeep Spitzer IRS Spectroscopy of High Redshift IR Luminous Galaxies

    CERN Document Server

    Teplitz, H I; Armus, L; Chary, R; Marshall, J A; Colbert, J W; Frayer, D T; Pope, A; Blain, A; Spoon, H; Charmandaris, V; Scott, D

    2007-01-01

    The study of the dominant population of high redshift IR-luminous galaxies (10^11 - 10^12 Lsun at 1IR. We present the deepest spectra taken to date with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope. We targeted two faint (f24~0.15 mJy) sources in the Southern GOODS field at z=1.09 and z=2.69. Spectra of the lower redshift target were taken in the observed-frame 8--21 micron range, while the spectrum of the higher redshift target covered 21--37 microns. We also present the spectra of two secondary sources within the slit. We detect strong PAH emission in all four targets, and compare the spectra to those of local galaxies observed by the IRS. The z=1.09 source appears to be a typical, star-formation dominated IR-luminous galaxy, while the z=2.69 source is a composite source with strong star formation and a prominent AGN. The IRAC colors of this source show no evidence of rest-frame near-infrared stellar photospheric...

  10. Wild 2 grains characterized combining MIR/FIR/Raman micro-spectroscopy and FE-SEM/EDS analyses

    Science.gov (United States)

    Ferrari, M.; Rotundi, A.; Rietmeijer, F. J. M.; Della Corte, V.; Baratta, G. A.; Brunetto, R.; Dartois, E.; Djouadi, Z.; Merouane, S.; Borg, J.; Brucato, J. R.; Le Sergeant d'Hendecourt, L.; Mennella, V.; Palumbo, M. E.; Palumbo, P.

    We present the results of the analyses \\cite{Rotundi14} of two bulk terminal particles (TPs), C2112,7,171,0,0 (TP2) and C2112,9,171,0,0 (TP3), derived from the Jupiter-Family comet 81P/Wild 2 returned by the NASA Stardust mission \\cite{Brownlee06}. Each particle, embedded in a slab of silica aerogel, was pressed in a diamond cell. Aerogel is usually cause of problems when characterizing the minerals and organic materials present in the embedded particles. We overcame this common issue by means of the combination of FE-SEM/EDS, IR and Raman mu -spectroscopy, three non-destructive analytical techniques, which provided bulk mineralogical and organic information on TP2 and TP3. This approach proved to be a practical solution for preliminary characterization, i.e. scanning particles for chemical and mineralogical heterogeneity. Using this type of bulk characterization prior to more detailed studies, could be taken into account as a standard procedure to be followed for selecting Stardust particles-of-interest. TP2 and TP3 are dominated by Ca-free and low-Ca, Mg-rich, Mg,Fe-olivine. The presence of melilite in both particles is supported by IR mu -spectroscopy and corroborated by FE-SEM/EDS analyses, but is not confirmed by Raman mu -spectroscopy possibly because the amount of this mineral is too small to be detected. TP2 and TP3 show similar silicate mineral compositions, but Ni-free, low-Ni, sub-sulfur (Fe,Ni)S grains are present only in TP2. TP2 contains indigenous amorphous carbon hot spots, while no indigenous carbon was identified in TP3. These non-chondritic particles probably originated in a differentiated body. The presence of high temperature melilite group minerals (incl. gehlenite) in TP2 and TP3 reinforces the notion that collisionally-ejected refractory debris from differentiated asteroids may be common in Jupiter-Family comets. This raises the question whether similar debris and other clearly asteroidal particles could be present in Halley-type comets

  11. Ibogaino ir noribogaino toksiškumo ir farmakokinetinių savybių tyrimas

    OpenAIRE

    2014-01-01

    Ibogainas yra indolo grupės alkaloidas, išskiriamas iš augalo Tabernanthe iboga Baill. (Apocynaceae). Šis alkaloidas mažina priklausomybę nuo opiatų bei lengvina abstinencijos požymius. Noribogainas – ibogaino aktyvusis metabolitas, sukeliantis mažiau nepageidaujamų reiškinių. Darbo tikslas: ištirti ibogaino ir noribogaino toksiškumą ir farmakokinetines savybes taikant eksperimentinį laboratorinių pelių modelį. Uždaviniai: Nustatyti ibogaino ir noribogaino toksiškumą, apskaičiuojant šių medži...

  12. Tekstai ir tekstynai svetimos kalbos mokymosi procese

    OpenAIRE

    Končius, Vytenis

    2013-01-01

    Išanalizavus tyrimo rezultatus straipsnyje aptariamos išvados ir pateikiami tolimesnių tyrimų siūlymai. Corpus linguistics can help in the process of second language acquisition, for example, by examining a number of well-established claims or “myths” about second language teaching and learning. One of these claims, which is rarely examined, is the supposed benefit of extensive reading to the successful acquisition of the vocabulary (Krashen et al). This claim states that a language learne...

  13. Application of IR microbolometers in border surveillance

    Science.gov (United States)

    Breakfield, David K.; Norton, Peter; Plemons, Dan; Rodriguez, Christian; Sustare, Dennis

    2007-04-01

    BAE Systems led a collaborative study with New Mexico State University to investigate a series of ground based persistent surveillance solutions for potential use along the Southwest border of the United States. This study considered a wide range of system options for mobile and fixed site applications. This paper summarizes the findings of the study including the central role of the imaging subsystems in mobile ground based surveillance solutions and the suitability of uncooled IR Microbolometers within this subsystem. The paper also provides a discussion of the benefits of real time decision support applications when fielding a persistent surveillance solution.

  14. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael

    2005-01-01

    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...... the warehouse by allowing navigation in the structure of documents and in a concept hierarchy of query terms. The facts described in the relevant documents will be ranked and analyzed in a novel OLAP cube model able to represent and manage facts with relevance indexes....

  15. Low Power Polysilicon Sources for IR Applications

    Science.gov (United States)

    Das, N. C.; Jhabvala, M.; Shu, P.

    1998-01-01

    We have designed and fabricated polysilicon thin film infrared (IR) sources by micromachining technology. These sources are made with a lightly doped middle region for light emission and heavy doping of the supporting legs. The sources are fabricated on a 10 mm thick, low temperature process parameters in the fabrication of these silicon dioxide layer. Different doping levels were used to achieve various source resistances. From the power requirement to reach the required light emission versus source resistance curve it is seen that there exists a resistance value which minimizes the necessary input power.

  16. Types of Research Bias Encountered in IR.

    Science.gov (United States)

    Gabr, Ahmed; Kallini, Joseph Ralph; Desai, Kush; Hickey, Ryan; Thornburg, Bartley; Kulik, Laura; Lewandowski, Robert J; Salem, Riad

    2016-04-01

    Bias is a systemic error in studies that leads to inaccurate deductions. Relevant biases in the field of IR and interventional oncology were identified after reviewing articles published in the Journal of Vascular and Interventional Radiology and CardioVascular and Interventional Radiology. Biases cited in these articles were divided into three categories: preinterventional (health care access, participation, referral, and sample biases), periinterventional (contamination, investigator, and operator biases), and postinterventional (guarantee-time, lead time, loss to follow-up, recall, and reporting biases). Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  17. Stringy horizons and UV/IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel)

    2015-11-24

    The target-space interpretation of the exact (in α{sup ′}) reflection coefficient for scattering from Euclidean black-hole horizons in classical string theory is studied. For concreteness, we focus on the solvable SL(2,ℝ){sub k}/U(1) black hole. It is shown that it exhibits a fascinating UV/IR mixing, dramatically modifying the late-time behavior of general relativity. We speculate that this might play an important role in the black-hole information puzzle, as well as in clarifying features related with the non-locality of Little String Theory.

  18. CORRELATED INTERFERENCE CANCELLATION FOR IR-UWB

    Institute of Scientific and Technical Information of China (English)

    Zhang Zaichen; Yu Xutao; Bi Guangguo

    2008-01-01

    In this letter,we propose a hybrid analog/digital detection algorithm,the Correlated Interference Cancellation (CIC) algorithm,for Impulse Radio Ultra-WideBand (IR-UWB) system. The CIC algorithm correlates received signal with its delayed versions in the analog domain and samples the correlation output at the symbol rate. The symbol rate samples are processed in the digital domain to perform interference cancellation. Therefore,CIC works for high data rate systems with heavy InterSymbol Interference (ISI). Simulation results show that CIC achieves good performance in typical UWB channels.

  19. Pelno (nuostolio) atskaitos formavimas ir analizė

    OpenAIRE

    Liutkevičius, Marius

    2014-01-01

    Užsienio šalyse visos įmonės, organizacijos yra įpratusios prie tam tikrų pastovių apskaitos ir finansinės informacijos pateikimo principų ir taisyklių. Todėl Lietuvos įmonėms bendradarbiaujant su užsienio partneriais ir investuotojais, viena pagrindinių problemų yra finansinių rezultatų pristatymas ir pateikimas. Užsienio partneriai ar investuotojai nori matyti Lietuvos įmonių finansinę informaciją, parengtą pagal jiems suprantamus ir priimtinus principus bei taisykles. Ši informacija naudoj...

  20. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  1. New supersymmetric quartet of nuclei: 192Os, 193Os, 193Ir, 194Ir

    CERN Document Server

    Bijker, R; Frank, A; Graw, G; Hertenberger, R; Jolie, J; Wirth, H -F

    2008-01-01

    We present evidence of the existence of a new supersymmetric quartet of nuclei in the A=190 mass region. The analysis is based on new experimental information on the odd-odd nucleus 194Ir from transfer and capture reactions. The new data allow the identification of a new supersymmetric quartet, consisting of the 192,193Os and 193,194Ir nuclei. We make explicit predictions fo r193Os, and suggest that its spectroscopic properties be measured in dedicated experiments. Finally, we study correlations between different transfer reactions.

  2. Vientos galácticos extremos y ``starburst" en IR mergers e IR QSOs

    Science.gov (United States)

    Lípari, S.; Sanders, D.; Terlevich, R.; Veilleux, S.; Díaz, R.; Taniguchi, Y.; Zheng, W.; Kim, D.; Tsvetanov, Z.; Carranza, G.; Dottori, H.

    We report -as a part of a long-term study of mergers and IR QSOs- detailed spectroscopic evidences for outflow (OF) and Wolf Rayet (WR) features in: (i) low velocity OF ongoing mergers NGC 4038/39 and IRAS 23128-5919; and (ii) extreme velocity OF (EVOF) QSOs IRAS 01003-2238 and IRAS 13218+0552. We also study the presence of OF and EVOF in a complete sample of ultra-luminous IR galaxies and QSOs (``The IRAS 1 Jy MKO-KPNO Survey", of 118 objects). We found EVOF in IRAS 11119+3257, 14394+5332, 15130+1958 and 15462-0450 (and probable OF in IRAS 05024-1941, 13305-1739, 13451+1232, and 23389+0300). The OF components detected in these objects were mainly associated to starburst processes: i.e., to galactic-winds generated in multiple type II SN explosions and massive stars. The EVOF were detected in objects with strong starburst plus obscured IR QSOs; which suggest that interaction of both processes could generate EVOF. In addition, we analyze the presence of Wolf Rayet features in the large sample of Bright PG-QSOs (Boroson and Green 1992), and nearby mergers and galactic-wind galaxies. We found clear WR features in the Fe II PG-QSOs (type I): PG 1244+026, 1444+407, 1448+273, 1535+547; and in the IR merger Arp 220. We describe the properties of the [O III]λ5007-4959 emission, in strong and extreme Fe II+IR+BAL emitters (QSOs of types I and II). HST archive images of IR+BAL QSOs show in practically all of these objects "arc or shell" features probably associated to galactic-winds (i.e., to multiple type II SN explosions) and/or merger processes. Finally, we discuss the presence of extreme starburst and galactic wind as a possible evolutive link between IR merger and IR QSOs; where the relation between mergers and extreme starburst (with powerful galactic-winds and ``multiple" type II SN explosions) plays an important role, in the evolution of galaxies (a complete version of this work was published in Astro-ph 0007316).

  3. Pigmented Creatine Deposits in Amyotrophic Lateral Sclerosis Central Nervous System Tissues Identified by Synchrotron Fourier Transform Infrared Microspectroscopy and X-ray Fluorescence Spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kastyak, M.; Szczerbowska-Boruchowska, M; Adamek, D; Tomik, B; Lankosz, M; Gough, K

    2010-01-01

    Amyotrophic Lateral Sclerosis (ALS) is an untreatable, neurodegenerative disease of motor neurons characterized by progressive muscle atrophy, limb paralysis, dysarthria, dysphagia, dyspnae and finally death. Large motor neurons in ventral horns of spinal cord and motor nuclei in brainstem, large pyramidal neurons of motor cortex and/or large myelinated axons of corticospinal tracts are affected. In recent synchrotron Fourier Transform Infrared microspectroscopy (sFTIR) studies of ALS CNS autopsy tissue, we discovered a small deposit of crystalline creatine, which has a crucial role in energy metabolism. We have now examined unfixed, snap frozen, post-autopsy tissue sections of motor cortex, brain stem, spinal cord, hippocampus and substantia nigra from six ALS and three non-degenerated cases with FTIR and micro-X-ray fluorescence (XRF). Heterogeneous pigmented deposits were discovered in spinal cord, brain stem and motor neuron cortex of two ALS cases. The FTIR signature of creatine has been identified in these deposits and in numerous large, non-pigmented deposits in four of the ALS cases. Comparable pigmentation and creatine deposits were not found in controls or in ALS hippocampus and substantia nigra. Ca, K, Fe, Cu and Zn, as determined by XRF, were not correlated with the pigmented deposits; however, there was a higher incidence of hot spots (Ca, Zn, Fe and Cu) in the ALS cases. The identity of the pigmented deposits remains unknown, although the absence of Fe argues against both erythrocytes and neuromelanin. We conclude that elevated creatine deposits may be indicators of dysfunctional oxidative processes in some ALS cases.

  4. Synbeads porous-rigid methacrylic support: application to solid phase peptide synthesis and characterization of the polymeric matrix by FTIR microspectroscopy and high resolution magic angle spinning NMR.

    Science.gov (United States)

    Sinigoi, Loris; Bravin, Paola; Ebert, Cynthia; D'Amelio, Nicola; Vaccari, Lisa; Ciccarelli, Laura; Cantone, Sara; Basso, Alessandra; Gardossi, Lucia

    2009-01-01

    Porous and rigid methacrylic Synbeads were optimized and applied efficiently to the solid phase peptide synthesis with the objective of improving significantly volumetric yields (0.33 mol/L calculated on the basis of maximum chemical accessibility, i.e. the maximum number of functional groups that can be acylated by FmocCl) as compared to swelling commercial polymers (from 0.06 to 0.12 mol/L). The effects of the density of functional groups and spacer length were investigated obtaining a chemical accessibility of the functional groups up to 1 mmol/g(dry). High resolution magic angle spinning (HR-MAS) was exploited to evidence the presence of "solution-like" flexible linkers anchored on the rigid methacrylic backbone of Synbeads and to study the degree of functionalization by the Wang linker. To demonstrate the efficiency of the optimized Synbeads, the peptides Somatostatin and Terlipressin were synthesized. In the case of Somatostatin, final synthetic yields of 45 and 60% were achieved by following the HCTU/DIPEA and DIC/HOBt routes respectively, with the HPLC purity always higher than 83%. In the case of Terlipressin, the synthesis was carried out in parallel on Synbeads and also on TentaGel, ChemMatrix, and PS-DVB for comparison (DIC/HOBt route). The profiles describing the synthetic efficiency demonstrated that Synbeads leads to synthetic efficiency (86%) comparable to PS-DVB (96%) or ChemMatrix (84%). In order to gain a more precise picture of chemical and morphological features of Synbeads, their matrix was also characterized by exploiting innovative approaches based on FTIR microspectroscopy with a conventional source and with synchrotron radiation. A uniform distribution of the functional groups was evidenced through a detailed chemical mapping.

  5. Active IR-applications in civil engineering

    Science.gov (United States)

    Wiggenhauser, H.

    2002-06-01

    Applications of IR-thermography in civil engineering are not limited to the identification of heat losses in building envelopes. As it is well known from other areas of non-destructive testing, active IR-thermographic methods such as cooling down or lock-in thermography improves the results in many investigations. In civil engineering these techniques have not been used widely. Mostly thermography is used in a quasi-static manner. The interpretation of moisture measurements with thermography on surfaces can be very difficult due to several overlapping effects: emissivity changes due to composition, heat transfer through wet sections of the specimen, cooling through air flow or reflected spurious radiation sources. These effects can be reduced by selectively measuring the reflection in two wavelength windows, one on an absorption band of water and another in a reference band and then combining the results in a moisture index image. Cooling down thermography can be used to identify subsurface structural deficiencies. For building materials like concrete these measurements are performed on a much longer time scale than in flash lamp experiments. A quantitative analysis of the full cooling down process over several minutes can reliably identify defects at different depths. Experiments at BAM have shown, that active thermography is capabale of identifying structural deficiencies or moist areas in building materials much more reliable than quasi-static thermography.

  6. MEMS-based IR-sources

    Science.gov (United States)

    Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen

    2016-03-01

    The series JSIR350 sources are MEMS based infrared emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our pyro-electric or thermopile detectors. The MEMS chips used in Micro-Hybrid's infrared emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of infrared radiation sources with soldered infrared filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based infrared emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.

  7. An IR Navigation System for Pleural PDT

    Directory of Open Access Journals (Sweden)

    Timothy C Zhu

    2015-03-01

    Full Text Available Pleural photodynamic therapy (PDT has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM. In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  8. An IR Navigation System for Pleural PDT.

    Science.gov (United States)

    Zhu, Timothy C; Liang, Xing; Kim, Michele M; Finlay, Jarod C; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles B; Friedberg, Joseph S; Cengel, Keith A

    2015-03-01

    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light fluence uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  9. Modelling the Spoon IRS diagnostic diagram

    CERN Document Server

    Rowan-Robinson, Michael

    2009-01-01

    We explore whether our models for starbursts, quiescent star-forming galaxies and for AGN dust tori are able to model the full range of IRS spectra measured with Spitzer. The diagnostic plot of 9.7 mu silicate optical depth versus 6.2 mu PAH equivalent width, introduced by Spoon and coworkers in 2007, gives a good indication of the age and optical depth of a starburst, and of the contribution of an AGN dust torus. However there is aliasing between age and optical depth at later times in the evolution of a starburst, and between age and the presence of an AGN dust torus. Modeling the full IRS spectra and using broad-band 25-850 mu fluxes can help to resolve these aliases. The observed spectral energy distributions require starbursts of a range of ages with initial dust optical depth ranging from 50-200, optically thin dust emission ('cirrus') illuminated by a range of surface brightnesses of the interstellar radiation field, and AGN dust tori with a range of viewing angles.

  10. An IR Navigation System for Pleural PDT

    Science.gov (United States)

    Zhu, Timothy; Liang, Xing; Kim, Michele; Finlay, Jarod; Dimofte, Andreea; Rodriguez, Carmen; Simone, Charles; Friedberg, Joseph; Cengel, Keith

    2015-03-01

    Pleural photodynamic therapy (PDT) has been used as an adjuvant treatment with lung-sparing surgical treatment for malignant pleural mesothelioma (MPM). In the current pleural PDT protocol, a moving fiber-based point source is used to deliver the light. The light fluences at multiple locations are monitored by several isotropic detectors placed in the pleural cavity. To improve the delivery of light fluence uniformity, an infrared (IR) navigation system is used to track the motion of the light source in real-time at a rate of 20 - 60 Hz. A treatment planning system uses the laser source positions obtained from the IR camera to calculate light fluence distribution to monitor the light dose uniformity on the surface of the pleural cavity. A novel reconstruction algorithm is used to determine the pleural cavity surface contour. A dual-correction method is used to match the calculated fluences at detector locations to the detector readings. Preliminary data from a phantom shows superior light uniformity using this method. Light fluence uniformity from patient treatments is also shown with and without the correction method.

  11. Wafer level test solutions for IR sensors

    Science.gov (United States)

    Giessmann, Sebastian; Werner, Frank-Michael

    2014-05-01

    Wafer probers provide an established platform for performing electrical measurements at wafer level for CMOS and similar process technologies. For testing IR sensors, the requirements are beyond the standard prober capabilities. This presentation will give an overview about state of the art IR sensor probing systems reaching from flexible engineering solutions to automated production needs. Cooled sensors typically need to be tested at a target temperature below 80 K. Not only is the device temperature important but also the surrounding environment is required to prevent background radiation from reaching the device under test. To achieve that, a cryogenic shield is protecting the movable chuck. By operating that shield to attract residual gases inside the chamber, a completely contamination-free test environment can be guaranteed. The use of special black coatings are furthermore supporting the removal of stray light. Typically, probe card needles are operating at ambient (room) temperature when connecting to the wafer. To avoid the entrance of heat, which can result in distorted measurements, the probe card is fully embedded into the cryogenic shield. A shutter system, located above the probe field, is designed to switch between the microscope view to align the sensor under the needles and the test relevant setup. This includes a completely closed position to take dark current measurements. Another position holds a possible filter glass with the required aperture opening. The necessary infrared sources to stimulate the device are located above.

  12. Bipolar outflows in OH/IR stars

    CERN Document Server

    Zijlstra, A A; Hekkert, P L; Likkel, L; Comeron, F; Norris, R P; Molster, F J; Cohen, R J; Zijlstra, Albert A.

    2000-01-01

    We investigate the development of bipolar outflows during the early post-AGB evolution. A sample of ten OH/IR stars is observed at high angular resolution, including bipolar nebulae (OH231.8+4.2), bright post-AGB stars (HD 101584) and reflection nebulae (e.g. Roberts 22). The IRAS colour--colour diagram separates the sample into different types of objects. One group may contain the progenitors to the (few) extreme bipolar planetary nebulae. Two objects show colours and chemistry very similar to the planetary nebulae with late IR-[WC] stars. One object is a confirmed close binary. A model is presented consisting of an outer AGB wind which is swept up by a faster post-AGB wind, with either wind being non-spherically symetric. The interface of the two winds is shown to exhibit a linear relation between velocity and distance from the star. The OH data confirms the predicted linear velocity gradients, and reveals torus-like, uniformly expanding components. All sources are discussed in detail using optical/HST imag...

  13. Epitaxial polar europium oxide on Ir(111)

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Stefan; Foerster, Daniel F.; Busse, Carsten; Michely, Thomas [II. Physikalisches Institut, Universitaet Koeln, Zuelpicher Strasse 77, D-50937 Koeln (Germany)

    2011-07-01

    EuO is a ferromagnetic semiconductor with a Curie temperature of 69 K and a band gap of about 1.2 eV. We have grown submonolayer films of EuO by means of reactive molecular beam epitaxy on Ir(111). The initial growth shows atomically flat islands of polar EuO(111) as can be seen from scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). Both in STM images and LEED we see a rotational mismatch of the dense-packed rows of EuO(111) and Ir(111) of up to about 5 . Using dI/dz spectroscopy and analyzing the Gundlach oscillations in scanning tunneling spectra we find a strong increase of the work function for the first polar bilayer EuO compared to bare iridium. The work function increase also gives rise to a strong reduction of the apparent height of the EuO islands in STM images. We interpret the work function increase to result from the additional surface dipole created by the polar EuO(111) surface.

  14. Irène Jacob visits CERN

    CERN Document Server

    CERN Bulletin

    2010-01-01

    French actress Irène Jacob, the daughter of physicist Maurice Jacob, visited the ATLAS and CMS control rooms on Monday 17 May together with Italian theatre actor-director Pippo Delbono, in search of inspiration for a short film. The film will be screened at the “nuit des particules” event accompanying this year’s ICHEP.   Pippo Delbono et Irène Jacob discussing their project. “La nuit des particules” (night of the particles) is an event open to the general public that is being organised for the evening of Tuesday, 27 July, to accompany the 35th International Conference on High Energy Physics (ICHEP). ICHEP is a major highlight in every physicist’s calendar, and this year’s edition is being held in Paris from 22 to 28 July. The short film will be screened during the evening, which will include a lecture and a show at the legendary Parisian cinema Le Grand Rex, with a colossal seating capacity of 2 700 spe...

  15. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  16. IR camera temperature resolution enhancing using computer processing of IR image

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2016-05-01

    As it is well-known, application of the IR camera for the security problems is very promising way. In previous papers, we demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. For proof of validity of our statement we make the similar physical experiment using the IR camera. We show a possility of viewing the temperature trace on a human body skin, caused by temperature changing inside the human body due to water drinking. We use new approach, based on usung a correlation function, for computer processing of IR images. Its application results in a temperature resolution enhancing of cameras. We analyze IR images of a person, which drinks water. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments were made with measurements of a body temperature covered by shirt. We try to see a human body temperature changing in physical experiments under consideration. Shown phenomena are very important for the detection of forbidden objects, cancelled under clothes or inside the human body, by using non-destructive control without using X-rays.

  17. Organic/IR-Semiconductor heterojunctions for low-cost, high temperature IR arrays

    Science.gov (United States)

    Jones, Colin E.

    1992-08-01

    This program evaluated a new technology for producing infrared photo-diodes in HgCdTe and InSb using evaporated organic heterojunctions. High quantum-efficiency IR detectors were demonstrated with the organic process comparable to commercial IR detectors. The organic photodiodes at room temperature were better than commercial detectors. They had lower leakage currents and higher resistance-area products (RoAs). Detector arrays made with the organics can operate at higher temperatures than the current detectors. Initial data at low temperatures were poorer than commercial detectors with lower RoAs and slightly higher 1/f noise. This comparison at low temperature may change with further optimization of the organic process. The organic diode process is very simple, low cost and non-damaging to the HgCdTe or InSb. It involves thermal evaporation of the organic onto the HgCdTe or InSb followed by evaporation of metal contacts through a shadow mask. Phase 1 demonstrated organic/HaCdTe IR detectors with quantum efficiencies similar to commercial devices operating at higher temperatures. The technology is ready for a Phase 2 to further optimize the processing for IR arrays and to increase yields.

  18. No Evolution in the IR-Radio Relation for IR-Luminous Galaxies at z<2 in the COSMOS Field

    CERN Document Server

    Sargent, Mark T; Murphy, E; Carilli, C L; Helou, G; Aussel, H; Le Floc'h, E; Frayer, D T; Ilbert, O; Oesch, P; Salvato, M; Smolcic, V; Kartaltepe, J; Sanders, D B

    2010-01-01

    Previous observational studies of the infrared (IR)-radio relation out to high redshift employed any detectable star forming systems at a given redshift within the restricted area of cosmological survey fields. Consequently, the evolution inferred relies on a comparison between the average IR/radio properties of (i) very IR-luminous high-z sources and (ii) more heterogeneous low(er)-z samples that often lack the strongest IR emitters. In this report we consider populations of objects with comparable luminosities over the last 10 Gyr by taking advantage of deep IR (esp. Spitzer 24 micron) and VLA 1.4 GHz observations of the COSMOS field. Consistent with recent model predictions, both Ultra Luminous Infrared Galaxies (ULIRGs) and galaxies on the bright end of the evolving IR luminosity function do not display any change in their average IR/radio ratios out to z~2 when corrected for bias. Uncorrected data suggested ~0.3 dex of positive evolution.

  19. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martinez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-29

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  20. Buffer Zone——Site Specific Artworks at Sydney Olympic Park%中间地带——悉尼奥林匹克公园的独特地景艺

    Institute of Scientific and Technical Information of China (English)

    王梦佳

    2011-01-01

    作为国际一流的运动场地,悉尼奥林匹克公园也因其最早提出"绿色"奥林匹克理念而闻名于世。人们对这里进行了残余污染物的清理,对自然环境进行了修复和保护,目前这里的部分场地使用了太阳能。但是悉尼奥林匹克公园所做的远不只如此。这里的场地很大,有100公顷,包含复杂的内部生态环境、文化和历史,有赖于悉尼奥林匹克公园管理局(SOPA)的精心维护和加强。例如,位于悉尼奥林匹克公园北部边缘,在巴拉玛特河沿岸%The Buffer Zone exhibition which bases on the idea that the environs of Sydney Olympic Park is a buffer zone protecting from future change precious ecosystems and the layered traces of human impact,was conceived by Allan Giddy, Director of the Environmental Research Initiative for Art (ERIA) at the College of Fine Arts (COFA), University of New South Wales (UNSW). Sydney Olympic Park Authority, in partnership with ERIA, supported the exhibition as part of its strong cultural program, which began in 2000 with the installation of public sculpture around the Olympic Park precinct. The curators, Allan Giddy and IhorHolubizky, (Senior Curator , McMaster Museum of Art, Hamilton, Canada), selected Australian and international artists whose work engages with themes suggested by the venue’s rich context. The artworks in Buffer Zone explore diverse ideas, yet together they make free associations that combine the artists’ research, imagery and processes of making. The viewer’s experience of the artworks is transitory, but memories of the encounter linger. The artists launch their ideas out into the serendipitous world of the curious stranger passing by. This is the value of public art. We encounter during a care free excursion the unknown, the unpredicted, the contestable, the inconceivable, the true.

  1. Multiplication of Rice Sterile Line IR58025A%IR58025A的繁殖

    Institute of Scientific and Technical Information of China (English)

    周宗岳; 莫志军; 胡继银

    2004-01-01

    IR58025A是一个很优越的不育系,由它配制的Mestizo,在菲律宾种子供不应求.但是应用面积一直不能扩大.IR58025A纯度低、繁殖制种产量低是重要的制约因素.作者在菲律宾SL Agritech Corp工作期间,对IR58025A&B群体进行了观察分析,确认IR58025A纯度低的原因是混杂,于是繁殖田不喷赤霉素、严格除杂.同时运用异交力学说,分析繁殖制种低产的原因主要是柱头活力低、传粉效率低等,采取选择适宜地域季节、喷硼酸、父本双行改单行、加强父本培育、改进赤霉素喷施技术、竹杆赶粉改绳索赶粉……等对策,使产量成倍提高.运用科学理论,抓住症结,因地制宜,针对性地采取简便易行对策,迅速扫除了障碍.2002年10月在菲律宾22ha繁殖田收获IR58025A种子的纯度超过99.9%,平均产量1.77t/ha.

  2. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  3. Charge-Coupled Scanned IR Imaging Sensors

    Science.gov (United States)

    1974-07-15

    34- —- . imjiiMwmimTimfm ■ ■liliil« III 11.1 II 1 . ■ ’""""■l" i.1 i.’ *sppi» pnp »ppnn^mipipi — ’" • ’■■ ’i- •*mm ^■tl UNCLASSIFIED SECURITY CLASSlFi...showing the floating diffusion (21), the MOS transistor (22), the reset gate (23), and the drain (24) n 3. (a) Photograph through the microscope of the...spectral response 22 12. Characteristics of setting circuit of IR-CCD chip run as an MOS transistor . The bias is C.2 V/step; tht. transconductance (gm

  4. Tellurium halide IR fibers for remote spectroscopy

    Science.gov (United States)

    Zhang, Xhang H.; Ma, Hong Li; Blanchetiere, Chantal; Le Foulgoc, Karine; Lucas, Jacques; Heuze, Jean; Colardelle, P.; Froissard, P.; Picque, D.; Corrieu, G.

    1994-07-01

    The new family of IR transmitting glasses, the TeX glasses, based on the association of tellurium and halide (Cl, Br, or I) are characterized by a wide optical window extending from 2 to 18 micrometers and a strong stability towards devitrification. Optical fibers drawn from these glasses exhibit low losses in the 7 - 10 micrometers range (less than 1 dB/m for single index fibers, 1 - 2 dB/m for fibers having a core-clad structure). The TeX glass fibers have been used in a remote analysis set-up which is mainly composed of a FTIR spectrometer coupled with a HgCdTe detector. This prototype system permits qualitative and quantitative analysis in a wide wavelength region lying from 3 to 13 micrometers , covering the fundamental absorption of more organic species. The evolution of a lactic and an alcoholic fermentation has been monitored by means of this set-up.

  5. ATF2 tests and CLIC IR study

    CERN Document Server

    Angal-Kalinin, D; Jones, J; Scarfe, A; Tygier, S

    2013-01-01

    This task covered three separate subtasks dealing with ILC and CLIC beam delivery system and Interaction region studies as well as testing the tuning procedures at ATF2 final focus test facility. The proposed local chromaticity correction final focus system for both ILC as well as CLIC is being tested experimentally for the first time at ATF2, various tuning procedures have been applied to study the applicability of various procedures to the ILC and CLIC to optimize the interaction region. The CLIC IR region was studied in detail, and the impact and mitigation of CLIC detector solenoid effects on the beam orbit, coupling and extraction have been considered. The work programme of this task concentrated on central region integration of the ILC following the design changes proposed during the technical design phase of the ILC, participation in ATF2 beam tuning studies and CLIC interaction region studies.

  6. Pre-Starbursts in Luminous IR Galaxies?

    CERN Document Server

    Gao, Y; Hwang, C Y; Lo, K Y; Veilleux, S; Gao, Yu; Gruendl, Robert A.

    1997-01-01

    We present first results of our on-going BIMA Key Project: imaging the CO(1-0) emission from a sample of 10 luminous IR galaxies (LIRGs) that are at various merging stages, with special emphasis on systems apparently in the early/intermediate stages of merging. We present here CO images with $\\sim 5''$ resolution. An important result is the recognition of a plausible pre-starburst phase in some early LIRG mergers (e.g., Arp 302 and NGC 6670). Our initial analysis suggests that a merger-induced starburst phase may not begin before the nuclear separation between the merging galaxies reaches roughly 10 kpc. The surface gas density seems to increase from a few times $10^2 \\Msun pc^{-2} to >10^3 \\Msun pc^{-2}$ while the prominent CO extent systematically decreases as merging progresses.

  7. Micro cryogenic coolers for IR imaging

    Science.gov (United States)

    Lewis, Ryan; Wang, Yunda; Cooper, Jill; Lin, Martin M.; Bright, Victor M.; Lee, Y. C.; Bradley, Peter E.; Radebaugh, Ray; Huber, Marcia L.

    2011-06-01

    Joule-Thomson micro cryogenic coolers (MCCs) are a preferred approach for small and low power cryocoolers. With the same heat lift, MCC's power input can be only 1/10 of a thermoelectric cooler's input, and MCC's size can be only 1/10 of a Stirling cooler's size. With futuristic planar MCC and with high frequency MEMS compressors to be developed, its size can be reduced another order of magnitude. Such "invisible" cryocoolers may revolutionize future IR imaging systems. We will review our studies on the feasibility of MCC with an emphasis on: 1) high thermal isolation levels reaching 89,000 K/W; 2) custom-designed gas mixtures with refrigeration capabilities increased by 10X and pressure ratio reduced to only 4:1; 3) compressors with low pressure ratios; and 4) excellent scalability for further size reduction.

  8. Cobalt sites in zeolites FAU - IR investigations

    Science.gov (United States)

    Góra-Marek, Kinga; Mrowiec, Halina; Walas, Stanisław

    2009-04-01

    The properties of Co 2+ in zeolites CoX and CoY and their interaction with CO, NO, and propene were followed. The IR experiments of CO and NO informed on the electron acceptor properties of Co 2+ sites and the influence of framework composition and of geometry of Co 2+ environment on the properties of Co 2+. It has been found, that the activation of CO and NO is realized mostly by π back donation, on the other hand, the activation of C dbnd C double bond in propene is realized by π donation. The strength of molecules to Co 2+ bonding was followed in desorption experiments. It has been found, that σ donation in the case of CO and π donation has more important impact to the strength of molecule to Co 2+ bonding.

  9. Microresonator-based mid-IR devices

    Science.gov (United States)

    Jain, Ravinder K.; Hossein-Zadeh, Mani

    2013-03-01

    High optical quality (high-Q) whispering-gallery mode (WGM) microresonators are key enablers for numerous highperformance photonic devices, including ultrasensitive molecular detectors and advanced light sources such as narrowlinewidth lasers and comb generators. For sensing applications, the unique characteristics of such WGM devices appear to be particularly relevant in the mid-IR (MIR) spectral region because of the stronger molecular absorption bands in this spectral region. However, most current WGM-based passive and active devices function in the near-IR (NIR) spectral region. We propose the development of reproducible high-Q WGM microresonators for the MIR by using low phonon energy glasses (such as fluorides, chalcogenides, and tellurides) along with an elegant and reproducible microsphere fabrication technique based on the use of novel state-of-the-art microheaters. In this paper, we first review the current state-of-the-art of WGM MIR microresonators and related optoelectronic devices, and then present recent results of our work on fabrication and characterization of high-Q WGM optical microresonators with several fluoride (ZBLAN, InF3 and AlF3) glasses. Intrinsic quality factors in excess of ten million have been measured in the NIR regime in the fluoridebased microspheres fabricated in our lab with the proposed -- highly reliable and reproducible - microheater fabrication method, and similar or better performances are expected from similar microspheres at MIR wavelengths between 2 to 5 microns. We next discuss potential applications of these microresonators, notably for low-threshold and narrowlinewidth MIR lasers and MIR comb applications.

  10. VLT near- to mid-IR imaging and spectroscopy of the M17 UC1-IRS5 region

    CERN Document Server

    Chen, Zhiwei; Chini, Rolf; Jiang, Zhibo; Fang, Min

    2015-01-01

    We investigate the surroundings of the hypercompact HII region M17 UC1 to probe the physical properties of the associated young stellar objects and the environment of massive star formation. Five of the seven point sources in this region show $L$-band excess emission. Geometric match is found between the H_2 emission and near-IR polarized light in the vicinity of IRS5A, and between the diffuse mid-IR emission and near-IR polarization north of UC1. The H_2 emission is typical for dense PDRs, which are FUV pumped initially and repopulated by collisional de-excitation. The spectral types of IRS5A and B273A are B3-B7 V/III and G4-G5 III, respectively. The observed infrared luminosity L_IR in the range 1-20 micron is derived for three objects; we obtain 2.0x10^3 L_\\sun for IRS5A, 13 L_\\sun for IRS5C, and 10 L_\\sun for B273A. IRS5 might be a young quadruple system. Its primary star IRS5A is confirmed to be a high-mass protostellar object (~ 9 M_\\sun, ~1x10^5 yrs); it might have terminated accretion due to the feedb...

  11. Endurance test on IR rig for RI production

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Heung June; Youn, Y. J.; Han, H. S.; Hong, S. B.; Cho, Y. G.; Ryu, J. S

    2000-12-01

    This report presents the pressure drop, vibration and endurance test results for IR rig for RI production which were desigened and fabricated by KAERI. From the pressure drop test results, it is noted that the flow rate through the IR rig corresponding to the pressure drop of 200 kPa is measured to be about 3.12 kg/sec. Vibration frequency for the IR rig ranges from 13 to 17 Hz. RMS(Root Mean Square) displacement for the IR rig is less than 30 {mu}m, and the maximum displacement is less than 110{mu}m. These experimental results show that the design criteria of IR rig meet the HANARO limit conditions. Endurance test results show that the appreciable fretting wear for the IR rig does not occur, however tiny trace of wear between contact points is observed.

  12. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  13. Matrixisolation und IR-spektroskopische Charakterisierung fluorierter Dehydrophenylnitrene

    OpenAIRE

    Cakir, Bayram

    2011-01-01

    In dieser Arbeit wurden iodierte-Fluorbenzolazide untersucht. Die ortho-, meta- und para-iodierte Fluorbenzolazide wurden unter Matrixbedingungen mit verschiedenen Lichtquellen bestrahlt. Die Matrixtemperatur betrug in Neon 3.5 K und in Argon 3.5 K. Nach den Bestrahlungen erfolgte immer eine IR-Aufnahme. Charakterisiert wurden die entstandenen Photoprodukte durch Vergleich der IR-Aufnahmen mit den theoretisch berechneten IR-Spektren, vorwiegend mit (U)B(3)LYP/6- 311G(d,p)-Rechnung...

  14. The Project of Medical IR Materials Passed Argumentation

    Institute of Scientific and Technical Information of China (English)

    Qian Bozhang

    2012-01-01

    Research Project on the Key Technologies for Medical IR Materials and Products declared by Puyang Linshi Chemical New Materials Co., Ltd. passed the expert argumentation organized by Henan Science and Technology Department in April 2012, and was listed in the significant scientific and technological special projects of Henan Province. This project, with the re- search basis of medical IR development, will form the production capacity of 150 million pairs of medical IR surgical gloves after achieving the designed capacity.

  15. A combined IR/IR and IR/UV spectroscopy study on the proton transfer coordinate of isolated 3-hydroxychromone in the electronic ground and excited state.

    Science.gov (United States)

    Stamm, A; Weiler, M; Brächer, A; Schwing, K; Gerhards, M

    2014-10-21

    In this paper the excited state proton transfer (ESPT) of isolated 3-hydroxychromone (3-HC), the prototype of the flavonols, is investigated for the first time by combined IR/UV spectroscopy in molecular beam experiments. The IR/UV investigations are performed both for the electronically excited and electronic ground state indicating a spectral overlap of transitions of the 3-HC monomer and clusters with water in the electronic ground state, whereas in the excited state only the IR frequencies of the proton-transferred monomer structure are observed. Due to the loss of isomer and species selectivity with respect to the UV excitations IR/IR techniques are applied in order to figure out the assignment of the vibrational transitions in the S0 state. In this context the quadruple resonance IR/UV/IR/UV technique (originally developed to distinguish different isomers in the electronically excited state) could be applied to identify the OH stretching vibration of the monomer in the electronic ground state. In agreement with calculations the OH stretching frequency differs significantly from the corresponding values of substituted hydroxychromones.

  16. Spitzer/IRS Mapping of Local Luminous Infrared Galaxies

    CERN Document Server

    Pereira-Santaella, Miguel; Rieke, George H; Colina, Luis

    2008-01-01

    We present results of our program Spitzer/IRS Mapping of local Luminous Infrared Galaxies (LIRGs). The maps cover the central 20"x20" or 30"x 30" regions of the galaxies, and use all four IRS modules to cover the full 5-38 microns spectral range. We have built spectral maps of the main mid-IR emission lines, continuum and PAH features, and extracted 1D spectra for regions of interest in each galaxy. The final goal is to fully characterize the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts.

  17. Role of IRS-2 in insulin and cytokine signalling.

    Science.gov (United States)

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  18. Komandinio ir grupinio darbo įtaka organizacijos veiklai

    OpenAIRE

    Mizeikytė, Jolanta

    2014-01-01

    MIZEIKYTĖ, Jolanta. (2009) Komandinio ir grupinio darbo įtaka organizacijos veiklai. Magistro baigiamasis darbas. Kaunas: Vilniaus universiteto, Kauno humanitarinis fakultetas. 72 p. SANTRAUKA Pastaruoju metu vis dažniau tenka išgirsti sąvoką komandinis ir grupinis darbas. Taip yra todėl, kad pastarosios sąvokos tampa nuolatiniu šiuolaikinio verslo palydovu, teikiančiu konkurencinį pranašumą. Darbo objektas – komandinis ir grupinis darbas. Darbo tikslas – ištirti komandinio ir grupinio darbo ...

  19. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    The most sensitive IR detectors today are based on exotic semicoductor technology such as indium antimonide or mercury cadmium telluride. High quality detectors of these sorts are expensive and suffer from high dark currents. Dark current can be somewhat alleviated by extreme cooling. Comparing...... in the near-IR. Conventional detection schemes for IR radiation include microbolometers, which rely on minute temperature changes induced in a 2D nanophotonic sensor device when IR radiation is adsorbed. Microbolometers exist both as cryogenically cooled and uncooled devices. The wavelength upconversion...

  20. Medicare Modernization Act (MMA) IRS Medicare Part D

    Data.gov (United States)

    Social Security Administration — SSA uses the Internal Revenue Service (IRS) information in determing the eligibility of Medicare recipients to receive subsidy payments for Medicare premiums. SSA...

  1. Mechanical properties of Pt-Ir and Ni-Ir binary alloys for glass-molding dies coating.

    Science.gov (United States)

    Tseng, Shih-Feng; Lee, Chao-Te; Huang, Kuo-Cheng; Chiang, Donyau; Huang, Chien-Yao; Chou, Chang-Pin

    2011-10-01

    In this study, the different compositions of Pt-Ir and Ni-Ir alloys were deposited by utilizing ion source assisted magnetron sputtering system (ISAMSS). The surface roughness and crystallite size of the Pt-Ir and Ni-Ir coatings were analyzed by atomic force microscopy (AFM) and X-ray diffraction (XRD), respectively. In addition, coatings were soaked at 700 degrees and maintained 10 min under N2 atmosphere using a glass-molding machine. The annealed coatings for oxidation test were examined by energy dispersive X-ray spectrometry (EDS) and for microhardness and reduced modulus test were evaluated by nanoindentation instrucment. The cross-sectional structures between the Pt-Ir and Ni-Ir coating layer and substrates were also examined by field emission scanning electron microscope (FESEM). The results show that surface roughness Ra from 1.25 nm to 3.426 nm was observed with increasing the Ni elements. However, the Ra is less than 2 nm measured in Ir-based coatings doped with Pt concentrations under this study. With increasing Pt and Ni doping, the microhardness of both coatings decreased significantly and the values of reduced modulus of Pt-Ir alloys are larger than that of Ni-Ir alloys. After oxidation process, the oxygen concentration of Pt-Ir coatings is less than that of Ni-Ir coatings and the Pt-Ir coatings exhibit superior properties including oxidation resistance, low surface roughness and high reduced modulus over Ni-Ir coatings, especially for the high Pt concentration coatings such as Pt-Ir 2 (55.25 at.% Pt) and Pt-Ir 3 (79.42 at.% Pt) coatings. The surface roughnesses of all specimens annealed at 700 degrees C were slightly larger than as-deposited coatings. Moreover, due to the serious oxidation occurred in Ni-Ir 3 (73.45 at.% Ni) coatings, the value of reduced modulus of this specimen coating is the lowest and the corrsponding Ra value is the largest compared with the rest of Ir-based coatings in the oxidation testing.

  2. AGN and starburst in bright Seyfert galaxies: from IR photometry to IR spectroscopy

    CERN Document Server

    Spinoglio, Luigi; Malkan, Matthew A

    2009-01-01

    Infrared photometry and later infrared spectroscopy provided powerful diagnostics to distinguish between the main emission mechanisms in galaxies: AGN and Starburst. After the pioneering work on infrared photometry with IRAS in the far-IR and the S.Pedro Martir and ESO ground-based work in the near-IR, ISO photometry extended up to 200um the coverage of the galaxies energy distributions. Then Spitzer collected accurate mid-infrared spectroscopy on different samples of galaxies. We will review the work done on the 12um galaxy sample since the times of IRAS photometry to the new Spitzer spectroscopy. The main results on the multifrequency data of 12um selected Seyfert galaxies are presented and discussed in the light of unification and evolution models. The spectroscopic work of Spitzer will soon be complemented at longer wavelengths by the Herschel spectrometers and in the future by SPICA at higher redshift.

  3. Microprobing the molecular spatial distribution and structural architecture of feed-type sorghum seed tissue (Sorghum Bicolor L.) using the synchrotron radiation infrared microspectroscopy technique.

    Science.gov (United States)

    Yu, Peiqiang

    2011-09-01

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at ∼1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure α-helix), 1628 (protein secondary structure β-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH(3) anti-symmetric), 2929 (CH(2) anti-symmetric), 2877 (CH(3) symmetric) and 2848 cm(-1) (CH(2) asymmetric)]. The relative protein secondary structure α-helix to β-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH(3) to CH(2) ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop specific cereal grain varieties with targeted food and

  4. Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique

    Energy Technology Data Exchange (ETDEWEB)

    P Yu

    2011-12-31

    Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular images were systematically recorded from the outside to the inside of the seed tissue under various chemical functional groups and their ratios [peaks at {approx}1725 (carbonyl C=O ester), 1650 (amide I), 1657 (protein secondary structure {alpha}-helix), 1628 (protein secondary structure {beta}-sheet), 1550 (amide II), 1515 (aromatic compounds of lignin), 1428, 1371, 1245 (cellulosic compounds in plant seed tissue), 1025 (non-structural CHO, starch granules), 1246 (cellulosic material), 1160 (CHO), 1150 (CHO), 1080 (CHO), 930 (CHO), 860 (CHO), 3350 (OH and NH stretching), 2960 (CH{sub 3} anti-symmetric), 2929 (CH{sub 2} anti-symmetric), 2877 (CH{sub 3} symmetric) and 2848 cm{sup -1} (CH{sub 2} asymmetric)]. The relative protein secondary structure {alpha}-helix to {beta}-sheet ratio image, protein amide I to starch granule ratio image, and anti-symmetric CH{sub 3} to CH{sub 2} ratio image were also investigated within the intact sorghum seed tissue. The results showed unique cell architecture, and the molecular spatial distribution and intensity in the sorghum seed tissue (which were analyzed through microprobe molecular imaging) were generated using SR-IMS. This imaging technique and methodology has high potential and could be used for scientists to develop

  5. The Mid-IR Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy

    CERN Document Server

    Brandl, B R; Spoon, H W W; Devost, D; Sloan, G C; Guilles, S; Wu, Y; Houck, J R; Armus, L; Weedman, D W; Charmandaris, V; Appleton, P N; Soifer, B T; Hao, L; Marshall, J A; Higdon, S J; Herter, T L

    2006-01-01

    We present 5-38um mid-infrared spectra at a spectral resolution of R~65-130 of a large sample of 22 starburst nuclei taken with the Infrared Spectrograph IRS on board the Spitzer Space Telescope. The spectra show a vast range in starburst SEDs. The silicate absorption ranges from essentially no absorption to heavily obscured systems with an optical depth of tau(9.8um)~5. The spectral slopes can be used to discriminate between starburst and AGN powered sources. The monochromatic continuum fluxes at 15um and 30um enable a remarkably accurate estimate of the total infrared luminosity of the starburst. We find that the PAH equivalent width is independent of the total starburst luminosity L_IR as both continuum and PAH feature scale proportionally. However, the luminosity of the 6.2um feature scales with L_IR and can be used to approximate the total infrared luminosity of the starburst. Although our starburst sample covers about a factor of ten difference in the [NeIII]/[NeII] ratio, we found no systematic correla...

  6. Structural, phase stability, electronic, elastic properties and hardness of IrN{sub 2} and zinc blende IrN: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaobo [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Xiaolong, E-mail: kmzxlong@163.com [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhang, Kunhua [State Key Laboratory of Rare Precious Metals Comprehensive Utilization of New Technologies, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2016-12-15

    First-principle calculations were performed to investigate the structural, phase stability, electronic, elastic properties and hardness of monoclinic structure IrN{sub 2} (m-IrN{sub 2}), orthorhombic structure IrN{sub 2} (o-IrN{sub 2}) and zinc blende structure IrN (ZB IrN). The results show us that only m-IrN{sub 2} is both thermodynamic and dynamic stability. The calculated band structure and density of states (DOS) curves indicate that o-IrN{sub 2} and ZB Ir-N compounds we calculated have metallic behavior while m-IrN{sub 2} has a small band gap of ~0.3 eV, and exist a common hybridization between Ir-5d and N-2p states, which forming covalent bonding between Ir and N atoms. The difference charge density reveals the electron transfer from Ir atom to N atom for three Ir-N compounds, which forming strong directional covalent bonds. Notable, a strong N-N bond appeared in m-IrN{sub 2} and o-IrN{sub 2}. The ratio of bulk to shear modulus (B/G) indicate that three Ir-N compounds we calculated are ductile, and ZB IrN possesses a better ductility than two types IrN{sub 2}. m-IrN{sub 2} has highest Debye temperature (736 K), illustrating it possesses strongest covalent bonding. The hardness of three Ir-N compounds were also calculated, and the results reveal that m-IrN{sub 2} (18.23 GPa) and o-IrN{sub 2} (18.02 GPa) are ultraincompressible while ZB IrN has a negative value, which may be attributed to phase transition at ca. 1.98 GPa.

  7. Development trends in IR detector coolers

    Science.gov (United States)

    Mai, M.; Rühlich, I.; Wiedmann, Th.; Rosenhagen, C.

    2009-05-01

    For different IR application specific cooler requirements are needed to achieve best performance on system level. Handheld applications require coolers with highest efficiency and lowest weight. For application with continuous operation, i.e. border surveillance or homeland security, a very high MTTF is mandatory. Space applications additionally require extremely high reliability. In other application like fighter aircraft sufficient cooling capacity even at extreme high reject temperatures has to be provided. Meeting all this requirements within one cooler design is technically not feasible. Therefore, different coolers designs like integral rotary, split rotary or split linear are being employed. The use of flexure bearings supporting the driving mechanism has generated a new sub-group for the linear coolers; also, the coolers may either use a motor with moving magnet or with moving coil. AIM has mainly focussed on long life linear cooler technology and therefore developed a series of moving magnet flexure bearing compressors which meets MTTF's exceeding 20,000h (up to 50,000h with a Pulse-Tube coldfinger). These compressors have a full flexure bearing support on both sides of the driving mechanism. Cooler designs are being compared in regard to characteristic figures as described above.

  8. Technical specification for IR rig manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Han Hyon Soo; Cho, W. K.; Kim, S. D.; Park, U. J.; Hong, S. B.; Yoo, K. M

    2000-10-01

    IR Rig is one of the equipments are required in HANARO core for a radioisotope target. The various conditions like high radiation, high heat, rapid flow and vibration may cause swelling, Brittleness and acceleration of corrosion in HANARO core. These specific problems can be prevented and the safety of such equipment are prerequisite as well as durableness and surveillance. Therefore, the selection of material has to be made on the basis of small cross-section area, low energy emission by the gamma ray due to the absorption of neutron and short half life. The body is consist of aluminum and Inconel-750 was used for the internal spring(coil) which is known to be durable. The whole production process including the purchase of accessory, mechanical processing, welding and assembly was carried out according to the standard procedure to meet the requirement. A design, manufacture, utilization of reactor core and the other relevant uses were fit to class ''T'' to certify the whole process as general. And design, fabrication, analytical test, materials and accessory were carried out based on the ASME, ASTM, ANSI, AWS, JIS and KS standard.

  9. EXACT DIAGONALIZATION RESULTS FOR MULTIMAGNON IR ABSORPTION IN THE CUPRATES

    NARCIS (Netherlands)

    Lorenzana, J.; Eder, R; Meinders, M.B J; Sawatzky, G.A

    1995-01-01

    Recent measured bands in the mid IR of parent insulating compounds of cuprate superconductors [Perkins et al. Phys. Rev. Lett. 71 1621 (1993)] are interpreted as multimagnon infrared (IR) absorption assisted by phonons. We present results for the coupling constant of light with this excitations and

  10. Bringing NMR and IR Spectroscopy to High Schools

    Science.gov (United States)

    Bonjour, Jessica L.; Hass, Alisa L.; Pollock, David W.; Huebner, Aaron; Frost, John A.

    2017-01-01

    Development of benchtop, portable Fourier transform nuclear magnetic resonance (NMR) and infrared (IR) spectrometers has opened up opportunities for creating university-high school partnerships that provide high school students with hands-on experience with NMR and IR instruments. With recent changes to the international baccalaureate chemistry…

  11. A Simulation Program for Dynamic Infrared (IR) Spectra

    Science.gov (United States)

    Zoerb, Matthew C.; Harris, Charles B.

    2013-01-01

    A free program for the simulation of dynamic infrared (IR) spectra is presented. The program simulates the spectrum of two exchanging IR peaks based on simple input parameters. Larger systems can be simulated with minor modifications. The program is available as an executable program for PCs or can be run in MATLAB on any operating system. Source…

  12. Bringing NMR and IR Spectroscopy to High Schools

    Science.gov (United States)

    Bonjour, Jessica L.; Hass, Alisa L.; Pollock, David W.; Huebner, Aaron; Frost, John A.

    2017-01-01

    Development of benchtop, portable Fourier transform nuclear magnetic resonance (NMR) and infrared (IR) spectrometers has opened up opportunities for creating university-high school partnerships that provide high school students with hands-on experience with NMR and IR instruments. With recent changes to the international baccalaureate chemistry…

  13. A Non-Conventional IR Approach to India's Foreign Policy

    DEFF Research Database (Denmark)

    Schmidt, Johannes Dragsbæk

    Paper presentation for the Panel 'India's international relations: empirical and theoretical perspectives'. EISA Pan-Euro Conference in Warsaw, 18 - 21st September, 2013 Abstract The paper elaborates on a critique of mainstream IR theory - neo-realism and liberal IR - and suggests...

  14. Superconductivity in noncentrosymmetric Mg10Ir19B16

    NARCIS (Netherlands)

    Klimczuk, T.; Xu, Q.; Morosan, E.; Thompson, J.D.; Zandbergen, H.W.; Cava, R.J.

    2006-01-01

    Mg10Ir19B16, a previously unreported compound in the Mg-Ir-B chemical system, is found to be superconducting at temperatures near 5 K. The fact that the compound exhibits a range of superconducting temperatures between 4 and 5 K suggests that a range of stoichiometries is allowed, though no structur

  15. Testing a Model of IR Radiative Losses: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Vignola, F.; Long, C. N.; Reda, I.

    2009-08-01

    Thermopile pyranometers exhibit IR radiative losses that affect global and diffuse shortwave measurements made with first class thermopile based instruments. Pyrgeometers can be used to measure the sky temperature and are used to calculate the pyranometer?s IR radiative losses.

  16. Cross calibration of IRS-P4 OCM satellite sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    The cross calibration of ocean color satellite sensor, IRS-P4 OCM using the radiative transfer code, with SeaWiFS as a reference are presented here. Since the bands of IRS-P4 OCM are identical to those of SeaWiFS and SeaWiFS has been continuously...

  17. Investigation of mid-IR picosecond image upconversion

    DEFF Research Database (Denmark)

    Mathez, Morgan David; Pedersen, Christian; Rodrigo, Peter John

    2017-01-01

    Imaging and spectroscopy in the mid-infrared (Mid-IR) wavelength region have received considerable attention in recent years. The reason is the high Mid-IR spectral specificity of many gases and complex molecules. In this pilot study we focus on picosecond upconversion imaging exploiting the χ(2...

  18. Transitions between the $4f$-core-excited states in Ir$^{16+}$, Ir$^{17+}$, and Ir$^{18+}$ ions for clock applications

    CERN Document Server

    Safronova, U I; Safronova, M S

    2015-01-01

    Iridium ions near $4f$-$5s$ level crossings are the leading candidates for a new type of atomic clocks with a high projected accuracy and a very high sensitivity to the temporal variation of the fine structure constant $\\alpha$. To identify spectra of these ions in experiment accurate calculations of the spectra and electromagnetic transition probabilities should be performed. Properties of the $4f$-core-excited states in Ir$^{16+}$, Ir$^{17+}$, and Ir$^{18+}$ ions are evaluated using relativistic many-body perturbation theory and Hartree-Fock-Relativistic method (COWAN code). We evaluate excitation energies, wavelengths, oscillator strengths, and transition rates. Our large-scale calculations includes the following set of configurations: $4f^{14-k}5s^{m}5p^{n}$ with $(k+m+n)$ equal to 3, 2, and 1 for the Ir$^{16+}$, Ir$^{17+}$, and Ir$^{18+}$ ions, respectively. The $5s-5p$ transitions are illustrated by the synthetic spectra in the 180 - 200 \\AA range. Large contributions of magnetic-dipole transitions to l...

  19. The effect of test dose and first IR stimulation temperature on post-IR IRSL measurements of rock slices

    DEFF Research Database (Denmark)

    Liu, Jinfeng; Murray, Andrew; Sohbati, Reza

    2016-01-01

    lies close to the laboratory saturation levels only for higher first IR stimulation temperatures e.g. 200°C or 250°C. Our data confirm earlier suggestions based on sand-grain measurements that, for older sam-ples, accurate measurements close to saturation require that a higher first IR temperature...

  20. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.

    Science.gov (United States)

    Seitz, Linsey C; Dickens, Colin F; Nishio, Kazunori; Hikita, Yasuyuki; Montoya, Joseph; Doyle, Andrew; Kirk, Charlotte; Vojvodic, Aleksandra; Hwang, Harold Y; Norskov, Jens K; Jaramillo, Thomas F

    2016-09-02

    Oxygen electrochemistry plays a key role in renewable energy technologies such as fuel cells and electrolyzers, but the slow kinetics of the oxygen evolution reaction (OER) limit the performance and commercialization of such devices. Here we report an iridium oxide/strontium iridium oxide (IrOx/SrIrO3) catalyst formed during electrochemical testing by strontium leaching from surface layers of thin films of SrIrO3 This catalyst has demonstrated specific activity at 10 milliamps per square centimeter of oxide catalyst (OER current normalized to catalyst surface area), with only 270 to 290 millivolts of overpotential for 30 hours of continuous testing in acidic electrolyte. Density functional theory calculations suggest the formation of highly active surface layers during strontium leaching with IrO3 or anatase IrO2 motifs. The IrOx/SrIrO3 catalyst outperforms known IrOx and ruthenium oxide (RuOx) systems, the only other OER catalysts that have reasonable activity in acidic electrolyte.

  1. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  2. Synchrotron-based and globar-sourced molecular (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery.

    Science.gov (United States)

    Yang, Ling; Yu, Peiqiang

    2017-01-02

    This paper aimed to review synchrotron-based and globar-sourced molecular infrared (micro)spectroscopy contributions to advances in new hulless barley (with structure alteration) research on molecular structure, molecular nutrition, and nutrient delivery in ruminants. It reviewed recent progress in barley varieties, its utilization for animal and human, inherent structure features and chemical make-up, evaluation and research methodology, breeding progress, rumen degradation, and intestinal digestion. The emphasis of this review was focused on the effect of alteration of carbohydrate traits of newly developed hulless barley on molecular structure changes and nutrient delivery and quantification of the relationship between molecular structure features and changes and truly absorbed nutrient supply to ruminants. This review provides an insight into how inherent structure changes on a molecular basis affect nutrient utilization and availability in ruminants.

  3. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  4. On the use of overtone and combination bands for the analysis of the CaSO4-H2O system by mid-infrared reflection spectroscopy.

    Science.gov (United States)

    Rosi, Francesca; Daveri, Alessia; Doherty, Brenda; Nazzareni, Sabrina; Brunetti, Brunetto G; Sgamellotti, Antonio; Miliani, Costanza

    2010-08-01

    With the aim of characterizing ground preparations of paintings by infrared reflection spectroscopy, the CaSO(4)-H(2)O system (gypsum/bassanite/anhydrite) has been re-investigated, evaluating and assigning the SO(4)(2-) and OH overtone and combination bands, respectively, in the ranges 1900-2700 cm(-1) and 5000-6000 cm(-1) resulting from reflection and high concentration transmission spectra. The second-order modes have been proven to be highly specific, reliable, and less affected by overlap with bands of organic binders and can hence be exploited for the identification of the sulfate hydration phase using infrared (IR) reflection spectroscopy. Subsequently, the characterization and identification of hydration phases in unknown sulfate-based ground preparations on authentic artworks have been carried out noninvasively by fiber-optic reflection IR spectroscopy and on cross-sections by infrared reflection micro-spectroscopy. The spectroscopic data collected both on standards and artworks have been cross-validated by X-ray diffraction.

  5. Far-IR Emission From Dust-Obscured Galaxies

    CERN Document Server

    Calanog, J A; Fu, Hai; Cooray, A; Assef, R J; Bock, J; Casey, C M; Conley, A; Farrah, D; Ibar, E; Kartaltepe, J; Magdis, G; Marchetti, L; Oliver, S J; Perez-Fournon, I; Riechers, D; Rigopoulou, D; Roseboom, I G; Schulz, B; Scott, Douglas; Symeonidis, M; Vaccari, M; Viero, M; Zemcov, M

    2013-01-01

    Dust-obscured galaxies (DOGs) are a UV-faint, IR-bright galaxy population that reside at z~2 and are believed to be in a phase of dusty star-forming and AGN activity. We present far-IR observations of a complete sample of DOGs in the 2 deg^2 of COSMOS. The 3077 DOGs have =1.9+/-0.3 and are selected from 24 um and r+ observations using a color cut of r+ - [24] >= 7.5 (AB mag) and S24 >= 100 uJy. Based on the mid-IR SEDs, 47% are star-formation dominated and 10% are AGN-dominated. We use SPIRE far-IR photometry from HerMES to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 um (>=3sigma). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Detected and undetected DOGs have average IR luminosities of (2.8+/-0.4) x 10^12 L_Sun and (0.77+/-0.08) x 10^12L_Sun, and dust temperatures of 34+/-7 K and 31+/-3 K, respectively. Using far-IR observations, DOGs contribute 30% to the 24 um-select...

  6. Energy Deposition in the LHC Insertion Regions IR1 and IR5

    CERN Document Server

    Hoa, C; Wildner, E

    2008-01-01

    Proton-proton collision debris coming out from the Interaction Point (IP) impacts the superconducting magnets of the insertion region and induces energy deposition in the coils. This is a critical aspect to evaluate regarding quench limit in the superconducting magnets. The study presents an estimation of the energy deposition in the insertion regions IR1 (ATLAS) and IR5 (CMS) for version 6.5 of the LHC layout, with a baseline nominal luminosity of L=1034 s-1 cm-2 for proton-proton collisions at 14 TeV center of mass energy. All essential components in the insertion regions up to 60 m from the interaction point have been implemented with a detailed description of their geometry, material and magnetic field. Total heat loads and power density distributions are evaluated in the components of the inner triplet, including also the TAS absorbers and the corrector magnets. The results are obtained using FLUKA, a Monte Carlo code modelling particle interaction and transport [1-2].

  7. Small pixel pitch MCT IR-modules

    Science.gov (United States)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  8. Arsia Mons Collapse Pits in IR

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form. These collapse pits are found on the flank of Arsia Mons and are related to lava tube collapse. Image information: IR instrument. Latitude -8.8, Longitude 240.4 East (119.6 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was

  9. Patient Safety in Interventional Radiology: A CIRSE IR Checklist.

    LENUS (Irish Health Repository)

    2012-02-01

    Interventional radiology (IR) is an invasive speciality with the potential for complications as with other invasive specialities. The World Health Organization (WHO) produced a surgical safety checklist to decrease the morbidity and mortality associated with surgery. The Cardiovascular and Interventional Society of Europe (CIRSE) set up a task force to produce a checklist for IR. Use of the checklist will, we hope, reduce the incidence of complications after IR procedures. It has been modified from the WHO surgical safety checklist and the RAD PASS from Holland.

  10. Resonant photothermal IR spectroscopy of picogram samples with microstring resonator

    DEFF Research Database (Denmark)

    Yamada, Shoko; Schmid, Silvan; Boisen, Anja

    2013-01-01

    Here, we report a demonstration of resonant photothermal IR spectroscopy using microstrings in mid-infrared region providing rapid identification of picogram samples. In our microelectromechanical resonant photothermal IR spectroscopy system, samples are deposited directly on microstrings using...... an in-situ sampling method and the resonance frequency of the string is measured optically. Resonance frequency shifts, proportional to the absorbed heat, are recorded in real time as monochromatic infrared light is being scanned over the mid-infrared range. These resonant photothermal IR spectroscopy...

  11. Preclinical Study for Application of Fabricated High Activity Ir-192

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Mi Son; Kang, Seung Hee; Oh, Young Taek; Jeong, Chul; Kim, Mi Hwa; Hwang, Jeong Hye; Kim, Hee Seong; Im, Eun Jeong [Ajou University, Suwon (Korea, Republic of)

    2005-10-15

    This study was performed to evaluate the feasibility and safety of high activity Ir-192 sources manufactured by KAERI(Korea Atomic Energy Research Institute) for application to present equipment such as various applicators inserted to patients and PLATO(Nucletron, Netherland) of treatment planning system and to evaluate safety and accuracy of Ir-192 as practical clinic use through in vitro dosimetry of Ir-192. We confirmed the physical and radiobiological safety of KAERI sources to use practical. KAERI sources are applicable to commercial high dose rate brachytherapy machine safely. Then those can be substituted for the imported sources such as sources made by Nucletron, Gammamed and exported to the foreign country

  12. E-2-benzylidenebenzocyclanones. II. IR and mass spectrometric investigations

    Science.gov (United States)

    Tarczay, Gy; Vékey, K.; Ludányi, K.; Perjési, P.; Sohár, P.

    2000-03-01

    A series of E-2-benzylideneindanones (a) -tetralones (b) and -benzosuberones (c) with OCH 3 ( 2- 4), NO 2 ( 5- 7) and F ( 8- 10) substituents in ortho, meta or para position was studied by IR and mass spectrometry. The most important IR bands were assigned and stated correlations between some frequencies and the stereostructure or conjugation feature of the molecules investigated. IR spectra were also analyzed in order to find frequencies characteristic of the size of the alkanone ring. The mass spectrometric investigation aimed at determining fragmentation pathways and finding correlations between them and the ring size of the alkanone ring or the position of the substituents.

  13. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    CERN Document Server

    Kolev, Tsonko

    2011-01-01

    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  14. Thin Film Electrodeposition of Ir(III Cyclometallated Complexes

    Directory of Open Access Journals (Sweden)

    Andreea Ionescu

    2016-01-01

    Full Text Available Novel electropolymerizable Ir(III cyclometallated complexes have been synthesized and characterized. In these complexes the cyclometallated ligands are either 2-phenylpyridine H(PhPy or benzothiazole-triphenylamine H(BzTh-tpa, while the Ir(III coordination sphere is completed by a Schiff base substituted with a triphenylamine fragment. A complete electrochemical study has been conducted on all complexes, in order to verify the feasibility of electropolymerization and to elucidate the role of the specific position of the triphenylamine moiety in the molecular structure. Homogeneous thin films of Ir(III metallopolymers have been successfully obtained through electropolymerization process.

  15. Chlorination of (PheboxIr(mesityl(OAc by Thionyl Chloride

    Directory of Open Access Journals (Sweden)

    Meng Zhou

    2015-06-01

    Full Text Available Pincer (PheboxIr(mesityl(OAc (2 (Phebox = 3,5-dimethylphenyl-2,6-bis(oxazolinyl complex, formed by benzylic C-H activation of mesitylene (1,3,5-trimethylbenzene using (PheboxIr(OAc2OH2 (1, was treated with thionyl chloride to rapidly form 1-(chloromethyl-3,5-dimethylbenzene in 50% yield at 23 °C. A green species was obtained at the end of reaction, which decomposed during flash column chromatography to form (PheboxIrCl2OH2 in 87% yield.

  16. Hipoglikemijos priežastys, diagnostika ir gydymas

    OpenAIRE

    Adukauskienė, Dalia; Borodičienė, Jurgita

    2006-01-01

    Hipoglikemijos diagnostika ir gydymas – tai aktuali problema, nes nuo gliukozės, t. y. pagrindinio energijos šaltinio, priklauso centrinės nervų sistemos veikla. Gliukozės homeostazė – tai dinamiškai sinchronizuota sąveika tarp veiksnių, kurie veikia per nervų sistemą ir kraują. Pirminiai gliukoreguliuojantys organai – tai kasa, kepenys, antinksčiai, hipofizė, o gliukozės homeostazėje dalyvauja insulinas, gliukagonas, katecholaminai, gliukokortikoidai ir augimo hormonas. Hipoglikemija gali vy...

  17. Kinetinės tipografikos raida ir modifikacijos

    OpenAIRE

    Komarovska, Gražina

    2013-01-01

    Šiame darbe aptariamos kinetinės tipografikos atsiradimo prielaidos: klasikinis modernizmas, šrifto įtaigos įteisinimas, kinas. Analizuojami ryšiai tarp kinetinės tipografikos ir naujųjų medijų. Kalbama apie kinetinės tipografikos vizualinę ir stilistinę raišką, estetinius siekius, atsižvelgiant į tipografikos modifikacijas. Įvardijami skirtumai tarp kinetinės tipografikos ir spausdintinės eksperimentinės tipografikos, išryškinama kinetinės tipografikos komunikavimo specifiką. This work di...

  18. Synthesis and characterization of carbazolide-based iridium PNP pincer complexes. Mechanistic and computational investigation of alkene hydrogenation: evidence for an Ir(III)/Ir(V)/Ir(III) catalytic cycle.

    Science.gov (United States)

    Cheng, Chen; Kim, Bong Gon; Guironnet, Damien; Brookhart, Maurice; Guan, Changjian; Wang, David Y; Krogh-Jespersen, Karsten; Goldman, Alan S

    2014-05-07

    New carbazolide-based iridium pincer complexes ((carb)PNP)Ir(C2H4), 3a, and ((carb)PNP)Ir(H)2, 3b, have been prepared and characterized. The dihydride, 3b, reacts with ethylene to yield the cis-dihydride ethylene complex cis-((carb)PNP)Ir(C2H4)(H)2. Under ethylene this complex reacts slowly at 70 °C to yield ethane and the ethylene complex, 3a. Kinetic analysis establishes that the reaction rate is dependent on ethylene concentration and labeling studies show reversible migratory insertion to form an ethyl hydride complex prior to formation of 3a. Exposure of cis-((carb)PNP)Ir(C2H4)(H)2 to hydrogen results in very rapid formation of ethane and dihydride, 3b. DFT analysis suggests that ethane elimination from the ethyl hydride complex is assisted by ethylene through formation of ((carb)PNP)Ir(H)(Et)(C2H4) and by H2 through formation of ((carb)PNP)Ir(H)(Et)(H2). Elimination of ethane from Ir(III) complex ((carb)PNP)Ir(H)(Et)(H2) is calculated to proceed through an Ir(V) complex ((carb)PNP)Ir(H)3(Et) which reductively eliminates ethane with a very low barrier to return to the Ir(III) dihydride, 3b. Under catalytic hydrogenation conditions (C2H4/H2), cis-((carb)PNP)Ir(C2H4)(H)2 is the catalyst resting state, and the catalysis proceeds via an Ir(III)/Ir(V)/Ir(III) cycle. This is in sharp contrast to isoelectronic (PCP)Ir systems in which hydrogenation proceeds through an Ir(III)/Ir(I)/Ir(III) cycle. The basis for this remarkable difference is discussed.

  19. Distinguishing and grading human gliomas by IR spectroscopy.

    Science.gov (United States)

    Steiner, Gerald; Shaw, Anthony; Choo-Smith, Lin-P'ing; Abuid, Mario H; Schackert, Gabriele; Sobottka, Stephan; Steller, Wolfram; Salzer, Reiner; Mantsch, Henry H

    2003-01-01

    As a molecular probe of tissue composition, IR spectroscopy can potentially serve as an adjunct to histopathology in detecting and diagnosing disease. This study demonstrates that cancerous brain tissue (astrocytoma, glioblastoma) is distinguishable from control tissue on the basis of the IR spectra of thin tissue sections. It is further shown that the IR spectra of astrocytoma and glioblastoma affected tissue can be discriminated from one another, thus providing insight into the malignancy grade of the tissue. Both the spectra and the methods employed for their classification reveal characteristic differences in tissue composition. In particular, the nature and relative amounts of brain lipids, including both the gangliosides and phospholipids, appear to be altered in cancerous compared to control tissue. Using a genetic classification approach, classification success rates of up to 89% accuracy were obtained, depending on the number of regions included in the model. The diagnostic potential and practical applications of IR spectroscopy in brain tumor diagnosis are discussed.

  20. Lojalaus vartotojo elgsenos ir įtakos sporto organizacijai vertinimas

    OpenAIRE

    Urbonavičiūtė, Ernesta

    2014-01-01

    Darbo objektas – Lojalių klientų elgsena ir įtaka. Tikslas –Įvertinti lojalaus kliento elgseną ir įtaką „X“ sporto organizacijai. Uždaviniai: 1. Išanalizuoti vartotojų lojalumo raišką, jo stadijas ir sąlygojančius veiksnius; 2. Atskleisti lojalaus kliento teikiamą naudą sporto organizacijai; 3. Nustatyti lojalaus kliento elgseną ir įtaką „X“ sporto organizacijoje Rezultatai: Lojalumą lemia daug įvairių veiksnių tačiau svarbiausios yra žmogaus asmeninės savybės, tokios ...

  1. IR fixed points in $SU(3)$ gauge Theories

    CERN Document Server

    Ishikawa, K -I; Nakayama, Yu; Yoshie, Y

    2015-01-01

    We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the $SU(3)$ gauge theories with $N_f$ fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cut-off, which we cannot remove in the conformal field theories in sharp contrast with the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for $N_f=16, 12, 8 $ and $N_f=7$ and indeed identify the location of the IR fixed points in all cases.

  2. Maximum Principle for Nonlinear Cooperative Elliptic Systems on IR N

    Institute of Scientific and Technical Information of China (English)

    LEADI Liamidi; MARCOS Aboubacar

    2011-01-01

    We investigate in this work necessary and sufficient conditions for having a Maximum Principle for a cooperative elliptic system on the whole (IR)N.Moreover,we prove the existence of solutions by an approximation method for the considered system.

  3. IR wireless cluster synapses of HYDRA very large neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  4. Infrared spectroscopy of radio-luminous OH/IR stars

    Science.gov (United States)

    Jones, Terry Jay; Hyland, A. R.; Fix, John D.; Cobb, Michael L.

    1988-01-01

    Low-resolution 1.5-2.5-micron spectra for 21 radio-luminous OH/IR stars are presented. These spectra divide into two broad classes. Those with very strong water-vapor absorption closely resemble the spectra of classical Mira variables and are classified Type VM. Those with weaker water-vapor absorption, but still showing strong CO absorption, resemble the spectra of true core-burning supergiants and are classified Type SG. Comparison of the classification of 30 radio-luminous OH/IR stars with their Delta(V)s and luminosities suggests this classification is a good indicator of the intrinsic nature of the underlying star. There is some evidence, however, that some true supergiants (massive main-sequence progenitors) develop the pulsation properties and photospheric characteristics of the Mira-like OH/IR stars when they become optically obscured OH/IR stars.

  5. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  6. Laser Induced Fluorescence Spectroscopy of IrN

    Institute of Scientific and Technical Information of China (English)

    H. F. Pang; A. S. C. Cheung

    2009-01-01

    High resolution laser induced fluorescence spectra of IrN in the spectral region between 394and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. Seven new vibronic transition bands were observed and analyzed. TwoΩ=1 and five Ω=0 new states were identified. Least squares fit of rotationally resolved transition lines yielded accurate molecular constants for the upper states. Spectra of isotopic molecules were observed, which provided confirmation for the vibrational assignment. Comparison of the observed electronic states of IrB, IrC, and IrN provides a good understanding of the chemical bonding of this group of molecules.

  7. A new method for compression-rebuilding of IR spectra

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work presents a new spectral data compression-rebuilding technique to translate the full IR spectral data into compact codes based on the analysis and comprehension encoding approach. This method has been successfully applied to a sample set of 505 IR spectra randomly picked from 100 000 spectra. The results show that the compression ratio reaches 12.7:1 under a very weak curve distortion. The choice of the number and shape of the basis functions is flexible. The IR spectra can be compressed in a fixed data size in fulfilling the distortion criteria. The data after compression have no significance in the sense of IR spectra. To recover the original spectra, a specific algorithm must be applied. So the method can be used as a cryptic tool. Furthermore, the method can be applied to the compression of other complex curve by utilizing some of proper basis functions.

  8. Calculation of IR-spectra of structural fragments of lignins

    Science.gov (United States)

    Derkacheva, O. Yu.; Ishankhodzhaeva, M. M.

    2016-12-01

    To study structure of softwood lignins the experimental and theoretical IR-spectra in middle IR-diapason were analyzed. To interpret these data the quantum chemical calculations of IR-spectra of general dimmer fragments of softwood lignins by method of density functional theory (DFT/B3LYP) with 6-31G(d,p) as basis set were carried out. These calculations showed that frequencies of normal vibrations of fragment with β-alkyl-aryl linkage are close to the experimental values of the IR absorption bands of lignin, and infrared spectrum of this structure is similar to the experimental spectrum of lignin. The calculations with accounting for the solvent showed a strong increase in the intensity of the majority of the bands and the solvent effect on the frequencies of vibrations.

  9. Characterization of Momordica charantia Ussing FT-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Attila Keseru

    2016-11-01

    In this paper, because earlier claim shows that the plant used as stomachic, carminative, tonic, antipyretic, antidiabetic, in rheumatoid arthritis and gout, the present investigation was carried to characterized a principal components of plant using FT-IR technique

  10. One-Dimensional Tunable Photonic-Crystal IR Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  11. A study of the Al–Pt–Ir phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Grushko, B., E-mail: b.grushko@fz-juelich.de [MaTecK, 52428 Jülich (Germany); PGI-5, Forschungszentrum Jülich, 52425 Jülich (Germany); Samuha, S. [Dept. Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer-Sheva (Israel); NRCN, P.O. Box 9001, 84190 Beer-Sheva (Israel); Meshi, L. [Dept. Materials Engineering, Ben-Gurion University of the Negev, 84105 Beer-Sheva (Israel)

    2015-10-15

    Phase equilibria in Al–Pt–Ir were studied up to 50 at.% Al at 1100 °C, up to 70 at.% Al at 900 °C and up to 75 at.% Al at 810 °C. At elevated temperatures the isostructural AlIr and high-temperature AlPt β-phases probably form a continuous compositional region. The ternary extensions of the phases Al{sub 4}Pt, Al{sub 21}Pt{sub 8}, Al{sub 3}Pt{sub 2} and low-temperature AlPt were revealed along approximately constant Al concentrations up to 15, 11, 20 and 10 at.% Ir, respectively. The Al–Ir C-phase dissolved up to 12 at.% Pt, and the χ-phase propagated up to almost Al{sub 3}Pt. A new ternary B-phase (I4{sub 1}/acd, a = 0.86250, c = 2.18409 nm) was revealed around Al{sub 69}Pt{sub 7}Ir{sub 24}. Its structural model was derived from the electron diffraction data. - Highlights: • The Al–Pt–Ir phase diagram was studied at 810, 900 and 1100 °C. • The majority of binaries extend widely along about constant Al. • The new ternary B-phase of the Ga{sub 4}Ir{sub 8}B type was revealed at Al{sub 69}Pt{sub 7}Ir{sub 24}. • The structural model of the B-phase was derived from electron diffraction.

  12. Upconversion applied for mid-IR hyperspectral image acquisition

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Kehlet, Louis Martinus; Sanders, Nicolai Højer;

    2015-01-01

    Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered.......Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered....

  13. Results obtained by investigating saffron ussing FT-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Luisa Andronie

    2016-11-01

    Full Text Available The biological activity and the pharmaceutical properties of plants are strongly dependent on their structure. The FT-IR spectra of saffron (commercial have been obtained. The vibrational fundamentals from the IR spectrum, were analyzed  and assigned acoording to the available literature. In the present research work the genus saffron is selected because it is famous in wold as foods and also as medicine.

  14. IR emission from the target during plasma magnetron sputter deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cormier, P.-A. [GREMI, Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orleans Cedex2 (France); Thomann, A.-L., E-mail: anne-lise.thomann@univ-orleans.fr [GREMI, Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orleans Cedex2 (France); Dolique, V. [LMA, Université Claude Bernard Lyon I 7 Avenue Pierre de Coubertin, 69622 Villeurbanne Cedex (France); Balhamri, A. [ChIPS, Université de Mons, 20 Place du Parc, 7000 Mons (Belgium); Université Hassan 1, École Supérieure de Technologie, 218 Berrechid (Morocco); Dussart, R.; Semmar, N.; Lecas, T.; Brault, P. [GREMI, Université d' Orléans, 14 rue d' Issoudun, B.P. 6744, 45067 Orleans Cedex2 (France); Snyders, R. [ChIPS, Université de Mons, 20 Place du Parc, 7000 Mons (Belgium); Materia Nova R and D Center, Avenue Corpernic 1, Mons (Belgium); Konstantinidis, S. [Materia Nova R and D Center, Avenue Corpernic 1, Mons (Belgium)

    2013-10-31

    In this article, energy flux measurements at the substrate location are reported. In particular, the energy flux related to IR radiation emanating from the titanium (10 cm in diam.) target surface is quantified during magnetron sputter deposition processes. In order to modulate the plasma–target surface interaction and the radiative energy flux thereof, the working conditions were varied systematically. The experiments were performed in balanced and unbalanced magnetic field configurations with direct current (DC), pulsed DC and high power impulse magnetron sputtering (HiPIMS) discharges. The power delivered to the plasma was varied too, typically from 100 to 800 W. Our data show that the IR contribution to the total energy flux at the substrate increases with the supplied sputter power and as the discharge is driven in a pulse regime. In the case of HiPIMS discharge generated with a balanced magnetic field, the energy flux associated to the IR radiation produced by the target becomes comparable to the energy flux originating from collisional processes (interaction of plasma particles such as ions, electron, sputtered atoms etc. with the substrate). From IR contribution, it was possible to estimate the rise of the target surface temperature during the sputtering process. Typical values found for a titanium target are in the range 210 °C to 870 °C. - Highlights: • During magnetron sputtering process the heated target emits IR radiation. • We follow in real time the energy transferred to the deposited film by IR radiation. • IR radiation can be the main energy contribution in balanced pulsed processes. • IR radiation might affect the deposition process and the final film properties.

  15. Installation and first light of the BOOTES-IR near-IR camera

    Science.gov (United States)

    Cunniffe, R.; Castro-Tirado, A. J.; Kubánek, P.; Jelínek, M.; Vítek, S.; Gorosabel, J.; de Ugarte Postigo, A.; Riva, A.; Zerbi, F.; Claret, A.; Sánchez-Fernández, C.

    2008-07-01

    BIRCAM is a near-infrared (0.8-2.5um) cryogenic camera based on a 1Kx1K HgCdTe array. It was designed for - and is now mounted at - one of the Nasmyth foci of the fast-slewing 0.6 m BOOTES-IR telescope at the Sierra Nevada Observatory (OSN) in Spain. The primary science mission is prompt Gamma Ray-Burst afterglow research, with an implied demand for extremely time-efficient operation. We describe the challenges of installing a heavy camera on a small high-speed telescope, of integrating the dithering mechanism, the filterwheel, and the array itself into a high-efficiency instrument, the design of the software to meet the requirements.

  16. Serial removal of caries lesions from tooth occlusal surfaces using near-IR image-guided IR laser ablation

    Science.gov (United States)

    Chan, Kenneth H.; Tom, Henry; Darling, Cynthia L.; Fried, Daniel

    2015-02-01

    Previous studies have established that caries lesions can be imaged with high contrast without the interference of stains at near-IR wavelengths greater than 1300-nm. It has been demonstrated that computer controlled laser scanning systems utilizing IR lasers operating at high pulse repetition rates can be used for serial imaging and selective removal of caries lesions. In this study, we report our progress towards the development of algorithms for generating rasterized ablation maps from near-IR reflectance images for the removal of natural lesions from tooth occlusal surfaces. An InGaAs camera and a filtered tungsten-halogen lamp producing near-IR light in the range of 1500-1700-nm were used to collect crosspolarization reflectance images of tooth occlusal surfaces. A CO2 laser operating at a wavelength of 9.3- μm with a pulse duration of 10-15-μs was used for image-guided ablation.

  17. Do Auction Houses Need to Authenticate Artwork?

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    CASH-FLUSH Chinese are casting their eyes in the direction of a new form of investment.The art market is attracting increasing attention,lining up behind real estate and the stock market in the hunt for dividends.However,disputes arising from selling and buying fake artistic works are increasing in frequency in auction business circles due to the exemption clause in China’s Auction Law. According to the law,provided both the auctioneer and the

  18. Stylometrics of artwork: uses and limitations

    Science.gov (United States)

    Hughes, James M.; Graham, Daniel J.; Rockmore, Daniel N.

    2010-02-01

    A number of digital image analysis techniques have been developed in recent years to address art historical questions. These techniques allow non-destructive analyses of art images that can target outstanding problems of attribution, historical ordering, and other stylistic dimensions. However, great care must be taken in designing the comparisons to which these techniques are applied. In this paper, we review recent work by our lab and by others aimed at establishing a toolbox of stylometrics, and we discuss some of the uses and limitations of these methods. We describe a technique that provides robust classification of authentic drawings by Pieter Bruegel the Elder, and we demonstrate new techniques for art historical analysis applied to the works of other masters. Specifically, we demonstrate the use of two low-level statistics (the slope of the log amplitude spectrum and color histogram correlation) to analyze the works of Picasso and Braque. Finally, we show that face detection and recognition techniques may play a useful role in the attribution of works of art. The rationale for employing vision coding-like methods (e.g., sparse coding) in stylometry is also reviewed. We conclude that generic authentication tools are unlikely to provide reliable stylometric predictions but that with careful construction of comparison sets - which we believe must be done in close collaboration with art historians - these techniques provide important predictions that can be weighed against other art historical evidence. We argue further that concurrent predictions derived from analysis of many independent dimensions of image data (e.g., color, luminance, and spatial statistics) provide the strongest evidence for digital stylometric determinations.

  19. Multispectral IR detection modules and applications

    Science.gov (United States)

    Münzberg, M.; Breiter, R.; Cabanski, W.; Lutz, H.; Wendler, J.; Ziegler, J.; Rehm, R.; Walther, M.

    2006-05-01

    promising SL based detectors. Fully integrated IDCAs with a MWIR SL single color device with 256x256 pixels in 40 μm pitch have been integrated and tested. In the next step the pitch was reduced to 24μm in a 384x288 pixel configuration. With this design and further improved technology a very good pixel operabilities with very low cluster sizes (<= 4 pixel) and performances with quantum efficiencies as high as known from MCT is reached in the meantime. A dual color device based on SL technology on the existing 384x288 read-out circuit (ROIC) as used in the dual band QWIP device is available. It combines spectral selective detection in the 3-4.1 μm wavelength range and 4.1-5 μm wavelength range in each pixel with coincident integration in a 384x288x2 format and 40 μm pitch. Excellent thermal resolution with NETD < 17 mK @ F/2, 2.8 ms for the longer wavelength range (red band) and NETD < 30 mK @ F/2, 2.8 ms for the shorter wavelength range (blue band) has been achieved. The pixel outage rates remains below 1% in both colors. The spectral cross talk of the red band to the blue band is estimated below 1%o which is important to reduce significantly the false alarm rate in missile approach warning systems as the primarily intended use of the dual color detector is. Real time analysis of gases, i.e. the detection of toxic or agent gases, by multi spectral detection in the IR used the characteristic infrared emission or absorption lines of different gas types. Spectroscopic systems consisting of a spectrometer with the need for large linear MCT array with small pixel sizes are used in this case. Possibilities are outlined to use long linear arrays, such as the 576x7 MCT detector, to perform spectral selective measurements in the 2-11μm wavelength range. For these applications a 576x7 MCT FPA is integrated in an open dewar cooler assy without window able to operate directly coupled in an evacuated and cooled spectrometer. The sensitivity of the array is consequently not limited

  20. New infrared observations of IRS1, IRS3, and the adjacent nebula in the OMC-2 cluster

    Science.gov (United States)

    Pendleton, Y.; Werner, M.; Capps, R.; Dinerstein, H. L.

    1984-01-01

    Observations of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2) are reported. Results show that the asymmetric distribution of the extended emission seen about IRS1 is another infrared reflection nebula. Energy distributions show that the spectral shape is fairly constant throughout the nebula which indicates there is little internal extinction within this region. Integrated surface brightness values show that the nebula is 5 times brighter than IRS1 at K. Energy distributions show that IRS1 has a more pronounced ice band absorption feature at 3.1 micron; suggesting that there is more extinction along the direct line of sight to IRS1 than along a line from IRS1 to the scattering grains and then to the observer. The distribution of the extended emission around IRS1 is similar to the reflection nebula seen in NGC 7538 (Werner et al. 1979). The asymmetric shapes of the two nebulae are similar and in each case there is excess extinction along line of sight to the illuminating source.

  1. Discrimination of five species of Fritillaria and its extracts by FT-IR and 2D-IR

    Science.gov (United States)

    Li, Dan; Jin, Zhexiong; Zhou, Qun; Chen, Jianbo; Lei, Yu; Sun, Suqin

    2010-06-01

    Bulbus Fritillariae (in Chinese named Beimu), referred to the bulbs of several Fritillaria species ( Liliaceae), is a commonly used anti-tussive and expectorant herb in traditional Chinese medicine (TCM) for more than 2000 years. The objective of this study is to discriminate five species of Beimu herbs and their total alkaloid extracts by Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy, and two-dimensional correlation infrared spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicated that, Beimu and their extract residues contain a large amount of starch, since some characteristic absorption peaks of the starch, such as 1158, 1080, 1015 and 987 cm -1 can be observed. Further more, the characteristic absorption peaks of the sulfate which arouse at 1120 ± 5 and 618 cm -1 in the IR spectra of Beimu aqueous extracts can be find. This validated that people used the sulfur fumigation method in the processing. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.

  2. Rapid discrimination of Panax notogeinseng of different grades by FT-IR and 2DCOS-IR

    Science.gov (United States)

    Ma, Fang; Chen, Jian-bo; Wu, Xian-xue; Zhou, Qun; Sun, Su-qin

    2016-11-01

    The herbal material of Notoginseng (the root of Panax notoginseng) is sold by "Tou" (the number of Notoginseng in every 500 g) to distinguish the grade. Normally the better quality, the few number of the "Tou" and the size of Notoginseng is bigger. In this study, three grades of Notoginseng harvested from Yunnan province were discriminated and identified by Fourier transform infrared spectroscopy (FT-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR)). The correlation coefficient of IR spectra between the three grades of Notoginseng and starch are greater than 0.95 in the range of 1300-800 cm-1, means the main compositions of Notoginseng are starch polysaccharide. Also, when the size of Notoginseng is bigger, it may contain more polysaccharide. There is no difference in range of 815-1000 cm-1 of the 2DCOS-IR synchronous spectra of the three grades means polysaccharides possess good thermal stability. In the range of 1200-1300 cm-1 shows the inverse ration between the thermal sensitivity of C-O and the number of "Tou". Combination with the 2DCOS-IR asynchronous spectra, the response speed of amino acid (1640 cm-1) on the thermal perturbation is the fastest, followed by nitrate (1384 cm-1); the response speed of polysaccharides (1079 cm-1) is the slowest. The result proved that the 2DCOS-IR could discriminate different grades of Notoginseng.

  3. Magnetic polarization of Ir in underdoped nonsuperconducting Eu(Fe 0.94Ir0.06)2As2

    Science.gov (United States)

    Jin, W. T.; Xiao, Y.; Su, Y.; Nandi, S.; Jiao, W. H.; Nisbet, G.; Demirdis, S.; Cao, G. H.; Brückel, Th.

    2016-01-01

    Using polarized neutron diffraction and x-ray resonant magnetic scattering (XRMS) techniques, multiple phase transitions were revealed in an underdoped, nonsuperconducting Eu (Fe1 -xIrx )2As2 (x =0.06 ) single crystal. Compared with the parent compound EuFe2As2 , the tetragonal-to-orthorhombic structural phase transition and the antiferromagnetic order of the Fe+2 moments are significantly suppressed to TS=111 (2 ) K and TN,Fe=85 (2 ) K by 6% Ir doping, respectively. In addition, the Eu+2 spins order within the a b plane in the A-type antiferromagnetic structure similar to the parent compound. However, the order temperature is evidently suppressed to TN,Eu=16.0 (5 ) K by Ir doping. Most strikingly, the XRMS measurements at the Ir L3 edge demonstrates that the Ir 5 d states are also magnetically polarized, with the same propagation vector as the magnetic order of Fe. With TN,Ir=12.0 (5 ) K, they feature a much lower onset temperature compared with TN,Fe. Our observation suggests that the magnetism of the Eu sublattice has a considerable effect on the magnetic nature of the 5 d Ir dopant atoms and there exists a possible interplay between the localized Eu+2 moments and the conduction d electrons on the FeAs layers.

  4. New infrared observations of IRS1, IRS3, and the adjacent nebula in the OMC-2 cluster

    Science.gov (United States)

    Pendleton, Y.; Werner, M.; Capps, R.; Dinerstein, H. L.

    1984-01-01

    Observations of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2) are reported. Results show that the asymmetric distribution of the extended emission seen about IRS1 is another infrared reflection nebula. Energy distributions show that the spectral shape is fairly constant throughout the nebula which indicates there is little internal extinction within this region. Integrated surface brightness values show that the nebula is 5 times brighter than IRS1 at K. Energy distributions show that IRS1 has a more pronounced ice band absorption feature at 3.1 micron; suggesting that there is more extinction along the direct line of sight to IRS1 than along a line from IRS1 to the scattering grains and then to the observer. The distribution of the extended emission around IRS1 is similar to the reflection nebula seen in NGC 7538 (Werner et al. 1979). The asymmetric shapes of the two nebulae are similar and in each case there is excess extinction along line of sight to the illuminating source.

  5. PENDIDIKAN AKHLAK MUSLIMAT MELALUISYA’IR : ANALISIS GENDER ATAS AJARAN SYI’IR MUSLIMAT KARYA NYAI WANIFAH KUDUS

    Directory of Open Access Journals (Sweden)

    Nur Said

    2016-03-01

    Full Text Available Penelitian ini difokuskan pada tiga hal: (1 Apakah karakteristik lingkup isi Syi’ir Muslimat?, (2 Bagai-manakah kondisi sosial budaya pada saat naskah ditulis oleh penulis?, (3 Apa nilai-nilai pendidikan moral bagi perempuan Muslim di isi Syi’ir Muslimat dalam perspektif gender?. Penelitian ini menggunakan pendekatan filologi dengan meningkatkan penggunaan analisis gender. Hasil dari penelitian ini adalah: Pertama, Syi’ir Muslimat ditulis oleh Nyai Wanifah, seorang wanita yang hidup pada zaman kolonial Belanda dipesantren tradisi di Kudus, Jawa Tengah. Kedua, beberapa nilai pendidikan moral di Syi’ir Muslimatantara lain: (1 Pentingnya pendidikan moral, (2 Bahaya perempuan bodoh; (3 Pentingnya belajar bagi perempuan di usia dini, (4 Etika menghias diri; (5 Bahaya materialisme, (6 Etika hubungan keluarga; (7 Dari rumah untuk mencapai surga; (8 Berhati-hatilah dengan tipu iblis; (9 Hindari perzinahan; (10 yang penting dari penutupan aurot; (11 yang ditujukan kepada orang tua. Ketiga, meskipun ada beberapa senyawa yang bias gender dalam Syi’ir Muslimat misalnya: (a Ada penjelasan yang menunjukkan bahwa perempuan lebih rendah dibandingkan laki-laki dalam derajat, (2 Pernyataan bahwa wanita bicara dibandingkan laki-laki, (3 wanita hanya cocok di wilayah domestik; Namun secara umum nasihat di syi’ir masih sangat relafen dalam konteks sekarang, terutama untuk memberikan solusi alternatif dalam merespon krisis moral bangsa terutama pada wanita generasi muda. Kata kunci: Syi’ir Muslimat, Pendidikan Karakter, Analisis Gender. This study focused on three things: (1 What is the characteristics of the scope of contents of Syi’ir Muslimat?, (2 What is the socio-cultural conditions at the time the manuscript was written by the author?, (3 What are the moral education values for Muslim women in the content of Syi’ir Muslimat in the perspective of gender?. This research uses a philological approach with enhanced use of gender analysis. The

  6. Excess mid-IR emission in Cataclysmic Variables

    CERN Document Server

    Dubus, G; Kern, B; Taam, R E; Spruit, H C

    2004-01-01

    We present a search for excess mid-IR emission due to circumbinary material in the orbital plane of cataclysmic variables (CVs). Our motivation stems from the fact that the strong braking exerted by a circumbinary (CB) disc on the binary system could explain several puzzles in our current understanding of CV evolution. Since theoretical estimates predict that the emission from a CB disc can dominate the spectral energy distribution (SED) of the system at wavelengths > 5 microns, we obtained simultaneous visible to mid-IR SEDs for eight systems. We report detections of SS Cyg at 11.7 microns and AE Aqr at 17.6 microns, both in excess of the contribution from the secondary star. In AE Aqr, the IR likely originates from synchrotron-emitting clouds propelled by the white dwarf. In SS Cyg, we argue that the observed mid-IR variability is difficult to reconcile with simple models of CB discs and we consider free-free emission from a wind. In the other systems, our mid-IR upper limits place strong constraints on the...

  7. Short infrared (IR) laser pulses can induce nanoporation

    Science.gov (United States)

    Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Glickman, Randolph D.; Beier, Hope T.

    2016-03-01

    Short infrared (IR) laser pulses on the order of hundreds of microseconds to single milliseconds with typical wavelengths of 1800-2100 nm, have shown the capability to reversibly stimulate action potentials (AP) in neuronal cells. While the IR stimulation technique has proven successful for several applications, the exact mechanism(s) underlying the AP generation has remained elusive. To better understand how IR pulses cause AP stimulation, we determined the threshold for the formation of nanopores in the plasma membrane. Using a surrogate calcium ion, thallium, which is roughly the same shape and charge, but lacks the biological functionality of calcium, we recorded the flow of thallium ions into an exposed cell in the presence of a battery of channel antagonists. The entry of thallium into the cell indicated that the ions entered via nanopores. The data presented here demonstrate a basic understanding of the fundamental effects of IR stimulation and speculates that nanopores, formed in response to the IR exposure, play an upstream role in the generation of AP.

  8. Room temperature mid-IR single photon spectral imaging

    CERN Document Server

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2012-01-01

    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. While modern Quantum cascade lasers have evolved as ideal coherent mid-IR excitation sources, simple, low noise, room temperature detectors and imaging systems still lag behind. We address this need presenting a novel, field-deployable, upconversion system for sensitive, 2-D, mid-IR spectral imaging. Measured room temperature dark noise is 0.2 photons/spatial element/second, which is a billion times below the dark noise level of cryogenically cooled InSb cameras. Single photon imaging and up to 200 x 100 spatial elements resolution is obtained reaching record high continuous wave quantum efficiency of about 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applicat...

  9. Determination of effective resonance energy for the 193Ir(n,γ)194Ir reaction by the cadmium ratio method

    Science.gov (United States)

    Budak, Mustafa Guray; Karadag, Mustafa; Yücel, Haluk

    2016-04-01

    In this work, the effective resonance energy, Ebarr -value for the 193Ir(n,γ)194Ir reaction was measured using cadmium ratio method. A dual monitor (197Au-98Mo), which has convenient resonance properties, was employed for characterization of the irradiation sites. Then analytical grade iridium oxide samples diluted with CaCO3 to lower neutron self-shielding effect stacked in small cylindrical Teflon boxes were irradiated once with a 1 mm thick Cd cylindrical box placed in a thermalized neutron field of an 241Am-Be neutron source then without it. The activities produced in samples during 193Ir(n,γ)194Ir reaction were measured using a p-type HPGe detector γ-ray spectrometer with a 44.8% relative efficiency. The correction factors for thermal, epithermal neutron self-shielding (Gth, Gepi), true coincidence summing (Fcoi) and gamma-ray self-absorption (Fs) effects were determined with appropriate approaches and programs. Thus, the experimental Ebarr -value was determined to be 2.65 ± 0.61 eV for 193Ir target nuclide. The recent data for Q0 and FCd values for Ebarr determination were based on k0-NAA online database. The present experimental Ebarr value was calculated and compared with more recent values for Q0 and FCd for 193Ir. Additionally, the Ebarr -values was theoretically calculated from the up-to-date resonance data obtained from ENDF/B VII library using two different approaches. Since there is no experimentally determined Ebarr -value for the 193Ir isotope, the results are compared with the calculated ones given in the literature.

  10. Fire and Ice: IRS Mid-IR Spectroscopy of IRAS F00183--7111

    CERN Document Server

    Spoon, H W W; Cami, J; Tielens, A G G M; Chiar, J E; Peeters, E; Keane, J V; Charmandaris, V; Appleton, P N; Teplitz, H I; Burgdorf, M J

    2004-01-01

    We report the detection of strong absorption and weak emission features in the 4--27 micron Spitzer-IRS spectrum of the distant ultraluminous infrared galaxy (ULIRG) IRAS F00183--7111 (z=0.327). The absorption features of CO2 and CO gas, water ice, hydrocarbons and silicates are indicative of a strongly obscured (A[9.6]>=5.4; A[V]>=90) and complex line of sight through both hot diffuse ISM and shielded cold molecular clouds towards the nuclear power source. From the profile of the 4.67 micron CO fundamental vibration mode we deduce that the absorbing gas is dense (n~10^6 cm^-3) and warm (720 K) and has a CO column density of ~10^19.5 cm^-2, equivalent to N[H]~10^23.5 cm^-2. The high temperature and density, as well as the small infered size (<0.03pc), locates this absorbing gas close to the power source of this region. Weak emission features of molecular hydrogen, PAHs and Ne+, likely associated with star formation, are detected against the 9.7 micron silicate feature, indicating an origin away from the ab...

  11. 佳能IR1600/IR2000数码复印机的维修

    Institute of Scientific and Technical Information of China (English)

    王志坚

    2004-01-01

    IR1600数码复印机,复印到3万张左右机器前侧复印件出现黑带。拆下左侧盖,解锁拿下感光鼓,看到感光鼓右侧有大量的墨粉,并使机器的同一位置机体内有大量的废粉,并伴有“废粉满”信息(即ASTE TONER FULL)一直不熄灭。打开鼓组件上的两个小白盖倒出废粉,将鼓组件装回到机器上,复印几张又出现上述情况,再次拆下鼓组件,拆除鼓芯发现转矩限制器断下来(见图1)。由于转矩限制器断下,搅拌杆转动时转矩限制器不转动,结果废粉满传感器(PS120)被拨动,

  12. Investigating the Photocatalytic Degradation of Oil Paint using ATR-IR and AFM-IR.

    Science.gov (United States)

    Morsch, Suzanne; van Driel, Birgit A; van den Berg, Klaas Jan; Dik, Joris

    2017-03-22

    As linseed oil has a longstanding and continuing history of use as a binder in artistic paints, developing an understanding of its degradation mechanism is critical to conservation efforts. At present, little can be done to detect the early stages of oil paint deterioration due to the complex chemical composition of degrading paints. In this work, we use advanced infrared analysis techniques to investigate the UV-induced deterioration of model linseed oil paints in detail. Subdiffraction limit infrared analysis (AFM-IR) is applied to identify and map accelerated degradation in the presence of two different grades of titanium white pigment particles (rutile or anatase TiO2). Differentiation between the degradation of these two formulations demonstrates the sensitivity of this approach. The identification of characteristic peaks and transient species residing at the paint surface allows infrared absorbance peaks related to degradation deeper in the film to be extricated from conventional ATR-FTIR spectra, potentially opening up a new approach to degradation monitoring.

  13. On the similarity of IR-bright and IR-dark molecular clouds

    CERN Document Server

    Schneider, N; Klessen, R S; Tremblin, P; Ossenkopf, V; Peretto, N

    2014-01-01

    Are Infrared Dark Clouds (IRDCs) special in terms of their physical properties (mass, temperature, star-formation activity) or do they behave as any other star-forming molecular cloud? In this letter, we display column density and temperature maps derived from Herschel, and ATLASGAL dust continuum observations of a sample of prominent massive IRDCs, i.e. G11.11-0.12 (the 'snake'), G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1-0 (BU-FCRAO GRS) and 12CO 3-2 (JCMT) data, showing that our IRDCs are embedded in massive giant molecular clouds (GMCs). The probability distribution function of column densities (PDF) for all clouds have a power-law tail for high column densities, independent of their evolutionary stage (G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, G28.53-0.25 shows no signs of star-formation), we attribute to self-gravity. This is in contrast with the purely lognormal PDFs reported using near/mid-IR extinction maps. The p...

  14. X-ray magnetic circular dichroism at IrL2,3 edges in Fe100-Ir and Co100-Ir alloys: Magnetism of 5d electronic states

    Indian Academy of Sciences (India)

    V V Krishnamurthy; M Suzuki; N Kawamura; T Ishikawa

    2002-05-01

    The formation of induced 5 magnetic moment on Ir in Fe100-Ir (=3, 10 and 17) and Co100-Ir (=5, 17, 25 and 32) alloys has been investigated by X-ray magnetic circular dichroism (XMCD) at Ir L2,3 absorption edges. Sum rule analysis of the XMCD data show that the orbital moment of Ir is in the range of -0.071(2)B to -0.030(1)B in Fe–Ir alloys and -0.067(2)B to 0.024(1)B in Co–Ir alloys. We find that the total moment of Ir in Fe–Ir alloys is approximately 1/5 of the total 3 moment on Fe at all the three compositions. In contrast, the total moment on Ir in Co–Ir alloys varies between 1/6 to 1/16 of the 3 moment on cobalt. The observed trends of Ir moments and the role of interatomic exchange interactions in 5 moment formation are discussed.

  15. IR Spectroscopy and Photo-Chemistry of Extraterrestrial Ices

    Science.gov (United States)

    Bernstein, Max P.; Mastrapa, Rachel; Elsila, Jamie; Sandford, Scott

    2005-01-01

    Dense molecular clouds from which planetary systems form and the outer Solar System are both cold environments dominated by ices. Infrared (IR) spectroscopy is used to probe these ices, but the IR absorptions of molecules depend on the conditions. As a result appropriate lab data is needed to correctly fit spectra of extraterrestrial ices. Such fits have shown that most of these ices are composed primarily of H2O, but also contain 1-10 percent of other simple molecules such as CO2, CO, CH4, & NH3;. We shall present near IR spectra of ice mixtures of relevance to icy outer Solar System bodies and show that they still hold surprises, such as the Cheshire cat-like CO2 (2v3) overtone near 2.134 micrometers (4685 cm-1) that is absent from spectra of pure CO2 but present in H2O-CO2 mixtures.

  16. Strong-field physics with mid-IR fields

    CERN Document Server

    Wolter, Benjamin; Baudisch, Matthias; Sclafani, Michele; Hemmer, Michaël; Senftleben, Arne; Schröter, Claus Dieter; Ullrich, Joachim; Moshammer, Robert; Biegert, Jens

    2015-01-01

    Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasi-static regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photo-ionization and allowed a discrimination amongst different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: 1) intense mid-IR sources that can create high energy photons and electrons while operating within the quasi-static regime, and 2) detection systems that can detect the generated high energy particles and image the entire momentum space of the interaction in full coincidence. Here we present a unique combination of these two essential ingredients, namely a 160\\~kHz mi...

  17. Comparison of Laboratory Measurements for IR Imaging System Performance

    Institute of Scientific and Technical Information of China (English)

    LI Sheng-cai; XU Zong-chang; XIAO Shun-wang

    2005-01-01

    Sensitivity and human performance are two important parameters for IR imaging system. Noise equivalent temperature difference (NETD) and minimum resolvable temperature difference (MRTD) can describe sensitivity and human performance of IR imaging system. So a lot of engineers apply themselves to studying the methods to measure NETD and MRTD for IR imaging system. The classical laboratory measurement methodologies for NETD and MRTD are introduced. And, two new approaches to three-dimensional (3-D) noise and MRTD/MRC are also portrayed, which can overcome some of the disadvantages existed in classical testing of NETD and MRTD. With the help of the new laboratory measurements, the disadvantages of the classical methods to measure NETD and MRTD can be solved.

  18. The cell growth suppressor, mir-126, targets IRS-1.

    Science.gov (United States)

    Zhang, Jin; Du, Ying-ying; Lin, Yi-feng; Chen, Ya-ting; Yang, Lu; Wang, Hui-jun; Ma, Duan

    2008-12-05

    miRNAs are a family of approximately 22-nuleotide-long noncoding RNAs involved in the formation and progress of tumors. Since traditional methods for the detection of miRNAs expression have many disadvantages, we developed a simple method called polyA RT PCR. With this method, we detected a series of miRNAs and found that mir-126 is one of the miRNAs underexpressed in breast cancer cells. Flow cytometry analysis showed that mir-126 inhibited cell cycle progression from G1/G0 to S. Further studies revealed that mir-126 targeted IRS-1 at the translation level. Knocking down of IRS-1 suppresses cell growth in HEK293 and breast cancer cell MCF-7, which recapitulates the effects of mir-126. In conclusion, we developed a simple method for high-throughput screening of miRNAs and found that mir-126, a cell growth suppressor, targets IRS-1.

  19. IR spectroscopy of gaseous fluorocarbon ions: The perfluoroethyl anion

    Energy Technology Data Exchange (ETDEWEB)

    Crestoni, Maria Elisa; Chiavarino, Barbara [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy); Lemaire, Joel; Maitre, Philippe [Universite Paris Sud, Laboratoire de Chimie Physique - UMR8000 CNRS, Faculte des Sciences - Batiment 350, 91405 Orsay Cedex (France); Fornarini, Simonetta, E-mail: simonetta.fornarini@uniroma1.it [Dipartimento di Chimica e Tecnologie del Farmaco, Universita di Roma ' La Sapienza' , P. le A. Moro 5, I-00185 Roma (Italy)

    2012-04-04

    Highlights: Black-Right-Pointing-Pointer C{sub 2}F{sub 5}{sup -} ions are formed by dissociative electron capture in perfluoropropane. Black-Right-Pointing-Pointer Both their reactivity towards neutrals and IRMPD spectroscopy are investigated. Black-Right-Pointing-Pointer The sampled C{sub 2}F{sub 5}{sup -} ions are best described as covalently bound pentafluoroethyl anions. - Abstract: The first IR spectrum of a perfluorinated carbanion has been obtained in the gas phase by IRMPD spectroscopy. Quantum chemical calculations at the MP2/cc-pVTZ level were performed yielding the optimized geometries and IR spectra for a covalently bound C{sub 2}F{sub 5}{sup -} species and for conceivable loosely bound F{sup -}(C{sub 2}F{sub 4}) complexes. Both the computational results and the IR characterization point to a covalent structure for the assayed species in agreement with the reactivity pattern displayed with selected neutrals.

  20. A Parametric Study of Crack Propagation During Sonic IR Inspection

    Science.gov (United States)

    Chen, J. C.; Kephart, J.; Riddell, W. T.

    2006-03-01

    We have developed an experiment to study the propagation of synthetic cracks under various controlled conditions during sonic IR inspection. The experiment provides for good repeatability in testing. The parameters of interest include the initial crack length, load history (stress intensity and load ratio) during crack generation, geometry of the crack, material, and also the various conditions involving the ultrasonic source. In general, we find that under typical sonic IR inspection conditions, the initial crack will propagate when subjected to sonic IR testing. The crack growth after each inspection event varies and exhibits a distribution in length of propagation. The results show that the average crack propagation decreases with increasing initial crack length and increasing stress intensity.

  1. Electronic transport properties of Ir-decorated graphene.

    Science.gov (United States)

    Wang, Yilin; Xiao, Shudong; Cai, Xinghan; Bao, Wenzhong; Reutt-Robey, Janice; Fuhrer, Michael S

    2015-10-28

    Graphene decorated with 5d transitional metal atoms is predicted to exhibit many intriguing properties; for example iridium adatoms are proposed to induce a substantial topological gap in graphene. We extensively investigated the conductivity of single-layer graphene decorated with iridium deposited in ultra-high vacuum at low temperature (7 K) as a function of Ir concentration, carrier density, temperature, and annealing conditions. Our results are consistent with the formation of Ir clusters of ~100 atoms at low temperature, with each cluster donating a single electronic charge to graphene. Annealing graphene increases the cluster size, reducing the doping and increasing the mobility. We do not observe any sign of an energy gap induced by spin-orbit coupling, possibly due to the clustering of Ir.

  2. Rapid discrimination of extracts of Chinese propolis and poplar buds by FT-IR and 2D IR correlation spectroscopy

    Science.gov (United States)

    Wu, Yan-Wen; Sun, Su-Qin; Zhao, Jing; Li, Yi; Zhou, Qun

    2008-07-01

    The extract of Chinese propolis (ECP) has recently been adulterated with that of poplar buds (EPB), because most of ECP is derived from the poplar plant, and ECP and EPB have almost identical chemical compositions. It is very difficult to differentiate them by using the chromatographic methods such as high performance liquid chromatography (HPLC) and gas chromatography (GC). Therefore, how to effectively discriminate these two mixtures is a problem to be solved urgently. In this paper, a rapid method for discriminating ECP and EPB was established by the Fourier transform infrared (FT-IR) spectra combined with the two-dimensional infrared correlation (2D IR) analysis. Forty-three ECP and five EPB samples collected from different areas of China were analyzed by the FT-IR spectroscopy. All the ECP and EPB samples tested show similar IR spectral profiles. The significant differences between ECP and EPB appear in the region of 3000-2800 cm -1 of the spectra. Based on such differences, the two species were successfully classified with the soft independent modeling of class analogy (SIMCA) pattern recognition technique. Furthermore, these differences were well validated by a series of temperature-dependent dynamic FT-IR spectra and the corresponding 2D IR plots. The results indicate that the differences in these two natural products are caused by the amounts of long-chain alkyl compounds (including long-chain alkanes, long-chain alkyl esters and long chain alkyl alcohols) in them, rather than the flavonoid compounds, generally recognized as the bioactive substances of propolis. There are much more long-chain alkyl compounds in ECP than those in EPB, and the carbon atoms of the compounds in ECP remain in an order Z-shaped array, but those in EPB are disorder. It suggests that FT-IR and 2D IR spectroscopy can provide a valuable method for the rapid differentiation of similar natural products, ECP and EPB. The IR spectra could directly reflect the integrated chemical

  3. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Films

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Seger, Brian; Pedersen, Thomas;

    2014-01-01

    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38.......6 mW/cm2 simulated sunlight irradiation (λ > 635 nm, AM 1.5G) and measurements with quartz crystal microbalances. Films exceeding a thickness of 4 nm were shown to be highly active though metastable due to an amorphous character. By contrast, 2 nm IrOx films were stable, enabling OER at a current...... density of 1 mA/cm2 at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm2 (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p+-n-Si structures not only provide...

  4. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan, E-mail: jan.forbrich@univie.ac.at [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria); Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A. [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  5. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles

    Science.gov (United States)

    Wu, Zhi-Jian; Zhao, Er-Jun; Xiang, Hong-Ping; Hao, Xian-Feng; Liu, Xiao-Juan; Meng, Jian

    2007-08-01

    First principles calculations were performed to investigate the structural, elastic, and electronic properties of IrN2 for various space groups: cubic Fm-3m and Pa-3 , hexagonal P3221 , tetragonal P42/mnm , orthorhombic Pmmn , Pnnm , and Pnn2 , and monoclinic P21/c . Our calculation indicates that the P21/c phase with arsenopyrite-type structure is energetically more stable than the other phases. It is semiconducting (the remaining phases are metallic) and contains diatomic N-N with the bond distance of 1.414Å . These characters are consistent with the experimental facts that IrN2 is in lower symmetry and nonmetallic. Our conclusion is also in agreement with the recent theoretical studies that the most stable phase of IrN2 is monoclinic P21/c . The calculated bulk modulus of 373GPa is also the highest among the considered space groups. It matches the recent theoretical values of 357GPa within 4.3% and of 402GPa within 7.8%, but smaller than the experimental value of 428GPa by 14.7%. Chemical bonding and potential displacive phase transitions are discussed for IrN2 . For IrN3 , cubic skutterudite structure (Im-3) was assumed. Our calculation indicated that it is also promising to be superhard due to the large bulk modulus of 358GPa and shear modulus of 246GPa . The diatomic N-N bond distance is even shorter (1.272Å) .

  6. Design of IR EDM System with a DSP Phase Detector①

    Institute of Scientific and Technical Information of China (English)

    LIUJianguo; WEIQingnong

    1997-01-01

    The design and realization of a new generation of infra-red electronic distance measurement(IR EDM)system are presented.A DSP(Digital Signal Process)phase detector based on high speed analog-to-digital converter and DSP technique has been designed,in order to improve the precision and reliability of IR EDM system.As a result,the EDM system developed with a DSP phase detector has a precision of 3mm in the measuring range of 2 km.

  7. Low Dose IR Creates an Oncogenic Microenvironment by Inducing Premature

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Zhi-Min [Harvard School of Public Health

    2013-04-28

    Introduction Much of the work addressing ionizing radiation-induced cellular response has been carried out mainly with the traditional cell culture technique involving only one cell type, how cellular response to IR is influenced by the tissue microenvironment remains elusive. By use of a three-dimensional (3D) co-culture system to model critical interactions of different cell types with their neighbors and with their environment, we recently showed that low-dose IR-induced extracellular signaling via the tissue environment affects profoundly cellular responses. This proposal aims at determining the response of mammary epithelial cells in a tissue-like setting.

  8. Raman and FT-IR studies of ocular tissues

    Science.gov (United States)

    Ozaki, Yukihiro; Mizuno, Aritake

    1991-05-01

    Two examples of Raman and FT-IR studies of the ocular tissues are reviewed in this paper. The first example treats Raman studies on cataract development cataract-related lens hydration and structural changes in the lens proteins monitored in situ by Raman spectroscopy are described. The second example is concerned with FT-IR studies on the ocular tissues contain ing collagen nondestructive identification of Type I and IV collagen in the tissues and their structural differences elucidated by infrared spectroscopy are discussed. 1 .

  9. New Material System for 3rd Generation IR Applications

    Science.gov (United States)

    2010-12-01

    misfit dislocations need to be generated somewhere in the thin film stack to alleviate this energy which ultimately propagates into the IR-absorbing...Laboratory ARO U.S. Army Research Office As arsenic Cd cadmium CdSe cadmium selenide CdTe cadmium telluride CdZnTe cadmium zinc telluride CHM...Laboratory (ARL) has begun investigating mercury cadmium selenide (HgCdSe) for infrared (IR) applications. Analogous to HgCdTe, HgCdSe is a tunable

  10. Paauglių smurtas mokykloje: situacija ir analizė

    OpenAIRE

    Bagdžiūnienė, Žaneta

    2008-01-01

    Paauglių smurtas mokykloje: situacija ir analizė Vilniaus pedagoginio universiteto, Socialinės komunikacijos instituto, neakivaizdinių studijų socialinio darbo antro kurso studentės Žanetos Bagdžiūnienės magistro darbo „Paauglių smurtas mokykloje: situacija ir analizė“ tyrimu siekiama išsiaiškinti paauglių smurto apraiškas bei paplitimą mokykloje, atskleisti priežastis, prevencijos galimybes. Iškelta hipotezė - manoma, jog vis dar aktuali problema mokykloje yra paauglių fizinis smurtas, ne...

  11. IR laser operated piezooptics in PbTe:Ca crystals

    CERN Document Server

    Roknabad, Mahmoud Rezaee; Razavi, Mohammad; Mollai, Maedeh

    2013-01-01

    IR induced piezo optic effect (POE) in PbTe:Ca crystals was found under the influence of nanosecond pulse CO2 laser with a wavelength of 10.6 micro meters. It was shown that addition of Ca leads to an increase of the POE tensor coefficient. This indicates the appearance of enhanced IR induced static dipole moments caused predominately by Ca impurities. Simultaneously, the variations in time kinetics for the POE in nanosecond time regime were explored. A substantial role of electron phonon subsystem in the observed POE effect was demonstrated. The studies were done both for diagonal as well as off diagonal POE tensor components.

  12. Far-IR spectroscopy towards Sagittarius B2

    OpenAIRE

    Goicoechea, Javier R.; Cernicharo, José

    2004-01-01

    The far-IR is a unique wavelength range for Astrophysical studies, however, it can only be fully sampled from space platforms. The fundamental rotational transitions of light molecules, the high-J transitions of polyatomic species, the bending modes of non-polar molecules, several atomic fine structure lines and many frequencies blocked by the earth atmosphere can only be observed between 50 and 200 um (6.0 and 1.5 THz). In this contribution we present the far-IR spectrum of Sgr B2 at a resol...

  13. A Mid-IR Search for Planetary Nebulae

    Science.gov (United States)

    Wachter, Stefanie

    2015-01-01

    Motivated by the dearth of relatively faint, compact planetary nebulae (PNe) in uncrowded fields that could serve as potential spectral calibration sources for the Euclid Mission, we have conducted a search for PNe at high Galactic latitudes based on WISE data. Previous studies have largely focused on the Galactic Plane or searched for mid-IR counterparts to optically selected PNe. We instead identify the WISE mid-IR color locus of PNe and investigate the cataloged sources fulfilling these color criteria. We will present preliminary results from this study, including new PNe candidates.

  14. A feasibility study of TAC IR-FEL project

    Energy Technology Data Exchange (ETDEWEB)

    Aksakal, Huesnue, E-mail: aksakal@cern.c [Nigde University, Department of Physics, Faculty of Letter and Science, 51240 Nigde (Turkey); Arikan, Ertan [Nigde University, Department of Physics, Faculty of Letter and Science, 51240 Nigde (Turkey)

    2010-08-21

    We have performed preliminary simulation of amplifier mode operation of Turkish accelerator complex (TAC) infrared free electron laser (IR-FEL) facility which is designed to operate in oscillator mode. FEL power values of amplifier mode are explored using 3D SIMPLEX 1.3 (X-ray FEL Practical Simulator) simulation code and it is argued that the same or higher amount of power of TAC IR-FEL planing to obtain in the oscillator mode, could be obtained in the amplifier mode, using same undulator and electron beam parameters with a small modification.

  15. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    modern Quantum cascade lasers have evolved as ideal coherent mid-IR excitation sources, simple, low noise, room temperature detectors and imaging systems still lag behind. We address this need presenting a novel, field-deployable, upconversion system for sensitive, 2-D, mid-IR spectral imaging. Measured...... room temperature dark noise is 0.2 photons/spatial element/second, which is a billion times below the dark noise level of cryogenically cooled InSb cameras. Single photon imaging and up to 200 x 100 spatial elements resolution is obtained reaching record high continuous wave quantum efficiency of about...

  16. Long-term pharmacological kindling increases in vitro release of IR-Met and IR-Leu-enkephalin from amygdala.

    Science.gov (United States)

    Asai, M; Matamoros-Trejo, G; Linares, G

    1998-06-01

    Met-enkephalin release is increased from amygdala and striatum 1 and 15 days after pharmacological kindling with pentylenetetrazol, following potassium-induced depolarization in vitro via a Ca2+ dependent mechanism. Leu-enkephalin release was only enhanced in amygdala and striatum 1 day after the last seizure. IR-Met-enkephalin amygdala tissue content enhanced 1 and 15 days after seizure. In striatum, we found an IR-Met-enkephalin decrease 35 days after the last stimulus. IR-Leu-enkephalin amygdala tissue content enhanced 1 day after the last seizure, and no significant increases were found in striatum 1, 15 and 35 days after the last seizure. In this paper, we show that opioid peptides release is differentially enhanced in rat brain for several days after the last seizure, thus suggesting that opioid peptides may have a protective action against seizure activity.

  17. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    Science.gov (United States)

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz.

  18. Mapping the structural topology of IRS family cascades through computational biology.

    Science.gov (United States)

    Chakraborty, Chiranjib; Doss, C George Priya; Bandyopadhyay, Sanghamitra; Sarkar, Bimal Kumar; Haneef, S A Syed

    2013-01-01

    Structural topologies of proteins play significant roles in analyzing their biological functions. Converting the amino acid data in a protein sequence into structural information to outline the function of a protein is a major challenge in post-genome research which can add an extra room in understanding the protein sequence-structure-function relationships. In this study, we performed a comprehensive bioinformatics analysis of structural topology of the IRS family members such as IRS-1, IRS-2, IRS-3, IRS-4, IRS-5 and IRS-6. Based on this assessment, we found that IRS-2 encloses the highest number of α helices, β sheets and β turns in the secondary structure topology compared to IRS-1 and IRS-6. IRS family members are rich in serine or leucine residues. Among the IRS family members, the highest percentage of serine and leucine was observed in IRS-1 (15%) and IRS-5 (10%), respectively. Notably, the highest number of disulphide bonds was observed in IRS-1 (10) which is responsible for structural stability of the protein. Hydrogen bond pattern in α helices and β sheet was recorded in IRS-1, IRS-2 and IRS-6. By conservation analysis, the longest protein IRS-3 was found to be highly conserved among the IRS family members. The cluster of sequence logo present in the N terminus of these cascades was noted, and highly conserved residues in N-terminal region help in the formation of the two highly conserved domains such as PH domain and PTB domain. Results generated from this analysis will be more beneficial to researchers in understanding more about insulin signalling mechanism(s) as well as insulin resistance pathway. We discuss here that bioinformatics tools utilized in this study can play a vital role in addressing the complexity of structural topology to understand structure-function relationships in insulin signalling cascades.

  19. NGC 7538 : Multiwavelength Study of Stellar Cluster Regions associated with IRS 1-3 and IRS 9 sources

    OpenAIRE

    Mallick, K. K.; Ojha, D. K.; Tamura, M; Pandey, A.K.(Indian Institute of Technology Bombay (IIT), Mumbai, India); Dib, S; S.K Ghosh; Sunada, K.; Zinchenko, I.; Pirogov, L.; Tsujimoto, M

    2014-01-01

    We present deep and high-resolution (FWHM ~ 0.4 arcsec) near-infrared (NIR) imaging observations of the NGC 7538 IRS 1-3 region (in JHK bands), and IRS 9 region (in HK bands) using the 8.2m Subaru telescope. The NIR analysis is complemented with GMRT low-frequency observations at 325, 610, and 1280 MHz, molecular line observations of H13CO+ (J=1-0), and archival Chandra X-ray observations. Using the 'J-H/H-K' diagram, 144 Class II and 24 Class I young stellar object (YSO) candidates are ident...

  20. Reciprocal regulation by the CepIR and CciIR quorum sensing systems in Burkholderia cenocepacia

    Directory of Open Access Journals (Sweden)

    Malott Rebecca J

    2009-09-01

    Full Text Available Abstract Background Burkholderia cenocepacia belongs to a group of closely related organisms called the B. cepacia complex (Bcc which are important opportunistic human pathogens. B. cenocepacia utilizes a mechanism of cell-cell communication called quorum sensing to control gene expression including genes involved in virulence. The B. cenocepacia quorum sensing network includes the CepIR and CciIR regulatory systems. Results Global gene expression profiles during growth in stationary phase were generated using microarrays of B. cenocepacia cepR, cciR and cepRcciIR mutants. This is the first time CciR was shown to be a global regulator of quorum sensing gene expression. CepR was primarily responsible for positive regulation of gene expression while CciR generally exerted negative gene regulation. Many of the genes that were regulated by both quorum sensing systems were reciprocally regulated by CepR and CciR. Microarray analysis of the cepRcciIR mutant suggested that CepR is positioned upstream of CciR in the quorum sensing hierarchy in B. cenocepacia. A comparison of CepIR-regulated genes identified in previous studies and in the current study showed a substantial amount of overlap validating the microarray approach. Several novel quorum sensing-controlled genes were confirmed using qRT-PCR or promoter::lux fusions. CepR and CciR inversely regulated flagellar-associated genes, the nematocidal protein AidA and a large gene cluster on Chromosome 3. CepR and CciR also regulated genes required for iron transport, synthesis of extracellular enzymes and surface appendages, resistance to oxidative stress, and phage-related genes. Conclusion For the first time, the influence of CciIR on global gene regulation in B. cenocepacia has been elucidated. Novel genes under the control of the CepIR and CciIR quorum sensing systems in B. cenocepacia have been identified. The two quorum sensing systems exert reciprocal regulation of many genes likely enabling fine