WorldWideScience

Sample records for artificially structured nonlinear

  1. Artificial Nonlinearity Generated from Electromagnetic Coupling Metamolecule

    Science.gov (United States)

    Wen, Yongzheng; Zhou, Ji

    2017-04-01

    A purely artificial mechanism for optical nonlinearity is proposed based on a metamaterial route. The mechanism is derived from classical electromagnetic interaction in a metamolecule consisting of a cut-wire meta-atom nested within a split-ring meta-atom. Induced by the localized magnetic field in the split-ring meta-atom, the magnetic force drives an anharmonic oscillation of free electrons in the cut-wire meta-atom, generating an intrinsically nonlinear electromagnetic response. An explicit physical process of a second-order nonlinear behavior is adequately described, which is perfectly demonstrated with a series of numerical simulations. Instead of "borrowing" from natural nonlinear materials, this novel mechanism of optical nonlinearity is artificially dominated by the metamolecule geometry and possesses unprecedented design freedom, offering fascinating possibilities to the research and application of nonlinear optics.

  2. Artificial muscle using nonlinear elastomers

    Science.gov (United States)

    Ratna, Banahalli

    2002-03-01

    Anisotropic freestanding films or fibers of nematic elastomers from laterally attached side-chain polymers show muscle-like mechanical properties. The orientational order of the liquid crystal side groups imposes a conformational anisotropy in the polymer backbone. When a large change in the order parameter occurs, as at the nematic-isotropic phase transition, there is a concomitant loss of order in the backbone which results in a contraction of the film in the direction of the director orientation. The crosslinked network imposes a symmetry-breaking field on the nematic and drives the nematic-isotropic transition towards a critical point with the application of external stress. Isostrain studies on these nonlinear elastomers, show that there are large deviations from ideal classical rubber elasticity and the contributions from total internal energy to the elastic restoring force cannot be ignored. The liquid crystal elastomers exhibiting anisoptopic contraction/extension coupled with a graded strain response to an applied external stimulus provide an excellent framework for mimicking muscular action. Liquid crystal elastomers by their very chemical nature have a number of ‘handles’ such as the liquid crystalline phase range, density of crosslinking, flexibility of the backbone, coupling between the backbone and the mesogen and the coupling between the mesogen and the external stimulus, that can be tuned to optimize the mechanical properties. We have demonstrated actuation in nematic elastomers under thermal and optical stimuli. We have been able to dope the elastomers with dyes to make them optically active. We have also doped them with carbon nanotubes in order to increase the thermal and electrical conductivity of the elastomer.

  3. Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole

    2011-01-01

    It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is able...

  4. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  5. Artificial structures on Mars

    Science.gov (United States)

    Van Flandern, T.

    2002-05-01

    Approximately 70,000 images of the surface of Mars at a resolution of up to 1.4 meters per pixel, taken by the Mars Global Surveyor spacecraft, are now in public archives. Approximately 1% of those images show features that can be broadly described as `special shapes', `tracks, trails, and possible vegetation', `spots, stripes, and tubes', `artistic imagery', and `patterns and symbols'. Rather than optical illusions and tricks of light and shadow, most of these have the character that, if photographed on Earth, no one would doubt that they were the products of large biology and intelligence. In a few cases, relationships, context, and fulfillment of a priori predictions provide objective evidence of artificiality that is exempt from the influence of experimenter biases. Only controlled test results can be trusted because biases are strong and operate both for and against artificiality.

  6. Identification and control of non-linear time-varying dynamical systems using artificial neural networks

    OpenAIRE

    Dror, Shahar

    1992-01-01

    Approved for public release; distribution is unlimited Identification and control of non-linear dynamical systems is a very complex task which requires new methods of approaching. This research addresses the problem of emulation and control via the use of distributed parallel processing, namely artificial neural networks. Four models for describing non-linear MIMO dynamical systems are presented. Based on these models a combined feedforward and recurrent neural networks are structured t...

  7. Multi-scale nonlinear constitutive models using artificial neural networks

    Science.gov (United States)

    Kim, Hoan-Kee

    This study presents a new approach for nonlinear multi-scale constitutive models using artificial neural networks (ANNs). Three ANN classes are proposed to characterize the nonlinear multi-axial stress-strain behavior of metallic, polymeric, and fiber reinforced polymeric (FRP) materials, respectively. Load-displacement responses from nanoindentation of metallic and polymeric materials are used to train new generation of dimensionless ANN models with different micro-structural properties as additional variables to the load-deflection. The proposed ANN models are effective in inverse-problems set to back-calculate in-situ material parameters from given overall nanoindentation test data with/without time-dependent material behavior. Towards that goal, nanoindentation tests have been performed for silicon (Si) substrate with/without a copper (Cu) film. Nanoindentation creep test data, available in the literature for Polycarbonate substrate, are used in these inverse problems. The predicted properties from the ANN models can also be used to calibrate classical constitutive parameters. The third class of ANN models is used to generate the effective multi-axial stress-strain behavior of FRP composites under plane-stress conditions. The training data are obtained from coupon tests performed in this study using off-axis tension/compression and pure shear tests for pultruded FRP E-glass/polyester composite systems. It is shown that the trained nonlinear ANN model can be directly coupled with finite-element (FE) formulation as a material model at the Gaussian integration points of each layered-shell element. This FE-ANN modeling approach is applied to simulate an FRP plate with an open-hole and compared with experimental results. Micromechanical nonlinear ANN models with damage formulation are also formulated and trained using simulated FE modeling of the periodic microstructure. These new multi-scale ANN constitutive models are effective and can be extended by including

  8. Artificially structured materials

    International Nuclear Information System (INIS)

    Cho, A.Y.

    1988-01-01

    Recent developments in crystal growth methods such as molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) allow us to artifically structure new materials on an atomic scale. These structures may have electrical or optical properties that cannot be obtained in bulk crystals. There has been a dramatic increase in the study of layered structures during the past decade which has led to the discovery of many unexpected physical phenomena and opened a completely new branch of device physics. Since the advanced crystal growth techniques can tailor the compositions and doping profiles of the material to atomic scales, it pushes the frontier of devices to the ultimate imagination of device physicists and engineers. It is likely that for the next century the new generation of devices will rely heavily on artifically structured materials. This article will be limited to a discussion of recent developments in the area of semiconductor thin epitaxial films which may have technological impact. 21 refs., 12 figs

  9. Nonlinear Structural Analysis

    Indian Academy of Sciences (India)

    This special issue of Sadhana is a collection of five papers selected from those presented at the Eighth National Seminar on Aerospace Structures (8th NASAS) organised by and held at the Indian Institute of Technology Madras, Chennai, on 9±10 October 1998. The Structures Panel of the Aeronautics Research and ...

  10. Nonlinear Structural Analysis

    Indian Academy of Sciences (India)

    at the Indian Institute of Technology Madras, Chennai, on 9±10 October 1998. The Structures Panel of the ... have pushed frontiers of technology to such extents that linear theories no longer suffice. This is the case in ... In the second paper, Krishnam Raju and Nagabhushanam extend the Integrated Force. Method (IFM) of ...

  11. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    International Nuclear Information System (INIS)

    Hocking, Erica G; Wereley, Norman M

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30–80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible. (paper)

  12. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    Science.gov (United States)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  13. Developing an active artificial hair cell using nonlinear feedback control

    Science.gov (United States)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2015-09-01

    The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.

  14. Analysis of Nonlinear Dynamic Structures

    African Journals Online (AJOL)

    Bheema

    work a two degrees of freedom nonlinear system with zero memory was simulated, modeled and analyzed to show ... polynomial stiffness and damping, clearance, impacts, friction and saturation effect (Worden and. Tomlinson ..... one frequency as shown for the regions of green and red colors or around the tip of the curved.

  15. Chaos and Structures in Nonlinear Plasmas

    Science.gov (United States)

    Chen, James

    In recent decades, the concepts and applications of chaos, complexity, and nonlinear dynamics have profoundly influenced scientific as well as literary thinking. Some aspects of these concepts are used in almost all of the geophysical disciplines. Chaos and Structures in Nonlinear Plasmas, written by two respected plasma physicists, focuses on nonlinear phenomena in laboratory and space plasmas, which are rich in nonlinear and complex collective effects. Chaos is treated only insofar as it relates to some aspects of nonlinear plasma physics.At the outset, the authors note that plasma physics research has made fundamental contributions to modern nonlinear sciences. For example, the Poincare surface of section technique was extensively used in studies of stochastic field lines in magnetically confined plasmas and turbulence. More generally, nonlinearity in plasma waves and wave-wave and wave-particle interactions critically determines the propagation of energy through a plasma medium. The book also makes it clear that the importance of understanding nonlinear waves goes beyond plasma physics, extending to such diverse fields as solid state physics, fluid dynamics, atmospheric physics, and optics. In space physics, non-linear plasma physics is essential for interpreting in situ as well as remote-sensing data.

  16. Nonlinear joint angle control for artificially stimulated muscle

    NARCIS (Netherlands)

    Veltink, Petrus H.; Chizeck, Howard J.; Crago, Patrick E.; El-Bialy, Ahmed

    1992-01-01

    Designs of both open- and closed-loop controllers of electrically stimulated muscle that explicitly depend on a nonlinear mathematical model of muscle input-output properties are presented and evaluated. The muscle model consists of three factors: a muscle activation dynamics factor, an angle-torque

  17. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  18. Structural stability of nonlinear population dynamics

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  19. Evaluation of ultrasonic nonlinear characteristics in artificially aged Al6061-T6

    International Nuclear Information System (INIS)

    Lee, Jong Beom; Lee, Kyoung Jun; Jhang, Kyung Young; Kim, Chung Seok

    2014-01-01

    Generally, the nonlinearity of ultrasonic waves is measured using a nonlinear parameter β, which is defined as the ratio of the second harmonic's magnitude to the power of the fundamental frequency component after the ultrasonic wave propagates through a material. Nonlinear parameter β is recognized as an effective parameter for evaluating material degradation. In this paper, we evaluated the nonlinear parameter of Al6061-T6 which had been subjected to an artificial aging heat treatment. The measurement was using the transmitted signal obtained from contact-type transducers. After the ultrasonic test, a micro Vickers hardness test was conducted. From the result of the ultrasonic nonlinear parameter, the microstructural changes resulting from the heat treatment were estimated and the hardness test proved that these estimates were reasonable. Experimental results showed a correlation between the ultrasonic nonlinear parameter and microstructural changes produced by precipitation behavior in the material. These results suggest that the evaluation of mechanical properties using ultrasonic nonlinear parameter β can be used to monitor variations in the mechanical hardness of aluminum alloys in response to an artificial aging heat-treatment.

  20. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-06-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering

  1. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-01-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)

  2. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...

  3. Non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1984-01-01

    The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt

  4. Structural analysis consultation using artificial intelligence

    Science.gov (United States)

    Melosh, R. J.; Marcal, P. V.; Berke, L.

    1978-01-01

    The primary goal of consultation is definition of the best strategy to deal with a structural engineering analysis objective. The knowledge base to meet the need is designed to identify the type of numerical analysis, the needed modeling detail, and specific analysis data required. Decisions are constructed on the basis of the data in the knowledge base - material behavior, relations between geometry and structural behavior, measures of the importance of time and temperature changes - and user supplied specifics characteristics of the spectrum of analysis types, the relation between accuracy and model detail on the structure, its mechanical loadings, and its temperature states. Existing software demonstrated the feasibility of the approach, encompassing the 36 analysis classes spanning nonlinear, temperature affected, incremental analyses which track the behavior of structural systems.

  5. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting.

    Science.gov (United States)

    Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.

  6. Ensemble Nonlinear Autoregressive Exogenous Artificial Neural Networks for Short-Term Wind Speed and Power Forecasting

    Science.gov (United States)

    Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian

    2014-01-01

    Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an “optimal” weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds. PMID:27382627

  7. Robust nonlinear autoregressive moving average model parameter estimation using stochastic recurrent artificial neural networks

    DEFF Research Database (Denmark)

    Chon, K H; Hoyer, D; Armoundas, A A

    1999-01-01

    In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...... of significant amounts of either dynamic or measurement noise in the output signal. The comparison between the deterministic and stochastic recurrent neural network approaches is furthered by applying both approaches to experimentally obtained renal blood pressure and flow signals....

  8. The structural diversity of artificial genetic polymers.

    Science.gov (United States)

    Anosova, Irina; Kowal, Ewa A; Dunn, Matthew R; Chaput, John C; Van Horn, Wade D; Egli, Martin

    2016-02-18

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Nonlinearity in structural and electronic materials

    International Nuclear Information System (INIS)

    Bishop, A.R.; Beardmore, K.M.; Ben-Naim, E.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project strengthens a nonlinear technology base relevant to a variety of problems arising in condensed matter and materials science, and applies this technology to those problems. In this way the controlled synthesis of, and experiments on, novel electronic and structural materials provide an important focus for nonlinear science, while nonlinear techniques help advance the understanding of the scientific principles underlying the control of microstructure and dynamics in complex materials. This research is primarily focused on four topics: (1) materials microstructure: growth and evolution, and porous media; (2) textures in elastic/martensitic materials; (3) electro- and photo-active polymers; and (4) ultrafast photophysics in complex electronic materials. Accomplishments included the following: organization of a ''Nonlinear Materials'' seminar series and international conferences including ''Fracture, Friction and Deformation,'' ''Nonequilibrium Phase Transitions,'' and ''Landscape Paradigms in Physics and Biology''; invited talks at international conference on ''Synthetic Metals,'' ''Quantum Phase Transitions,'' ''1996 CECAM Euroconference,'' and the 1995 Fall Meeting of the Materials Research Society; large-scale simulations and microscopic modeling of nonlinear coherent energy storage at crack tips and sliding interfaces; large-scale simulation and microscopic elasticity theory for precursor microstructure and dynamics at solid-solid diffusionless phase transformations; large-scale simulation of self-assembling organic thin films on inorganic substrates; analysis and simulation of smoothing of rough atomic surfaces; and modeling and analysis of flux pattern formation in equilibrium and nonequilibrium Josephson junction arrays and layered superconductors

  10. Asymmetrical transverse structures in nonlinear interferometers

    CERN Document Server

    Romanov, O G

    2003-01-01

    The work presents a novel type of optical instability, which leads to the spontaneous formation of a stationary or pulsating asymmetrical structure in the problem of interaction between two counterpropagating waves in a ring cavity with Kerr-like nonlinearity. Linear stability analysis of interferometer transmission stationary states enabled: (1) to mark out typical bifurcations for this system: self- and cross-modulational instabilities, (2) to determine the range of parameters for which the symmetry breaking of transverse structures and complex temporal behaviour of the light field could be observed. The predictions of linear stability analysis have been verified with numerical modelling of coupled-modes equations.

  11. Waves and Structures in Nonlinear Nondispersive Media General Theory and Applications to Nonlinear Acoustics

    CERN Document Server

    Gurbatov, S N; Saichev, A I

    2012-01-01

    "Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...

  12. 4th International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    2018-01-01

    This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi–Pasta–Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers a...

  13. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  14. Second Order Nonlinear Hydroelastic Analyses of Floating Bodies - the Primary Consideration of Nonlinear Structure

    DEFF Research Database (Denmark)

    Chen, X.; Cui, W.; Jensen, Jørgen Juncher

    2003-01-01

    The theory and typical numerical results of a second order nonlinear hydroelastic analysis of floating bodies are presented in a series of papers in which only nonlinearity in fluids is considered. Under the assumption of linear fluid, the hydroelastic analysis methods of nonlinear structure are ...

  15. Comparative nonlinear modeling of renal autoregulation in rats: Volterra approach versus artificial neural networks

    DEFF Research Database (Denmark)

    Chon, K H; Holstein-Rathlou, N H; Marsh, D J

    1998-01-01

    In this paper, feedforward neural networks with two types of activation functions (sigmoidal and polynomial) are utilized for modeling the nonlinear dynamic relation between renal blood pressure and flow data, and their performance is compared to Volterra models obtained by use of the leading...... kernel estimation method based on Laguerre expansions. The results for the two types of artificial neural networks and the Volterra models are comparable in terms of normalized mean square error (NMSE) of the respective output prediction for independent testing data. However, the Volterra models obtained...... via the Laguerre expansion technique achieve this prediction NMSE with approximately half the number of free parameters relative to either neural-network model. However, both approaches are deemed effective in modeling nonlinear dynamic systems and their cooperative use is recommended in general....

  16. Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle.

    Science.gov (United States)

    Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Anderson, Sean R; Porrill, John; Dean, Paul

    2016-09-01

    Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. © 2016 The Authors.

  17. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  18. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  19. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence of the imp......We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  20. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze ...... in fi…xed income pricing with nonlinear relationships between the state vector and the observations, such as the estimation of term structure models using coupon bonds and the estimation of quadratic term structure models....

  1. Output-only identification of civil structures using nonlinear finite element model updating

    Science.gov (United States)

    Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.

    2015-03-01

    This paper presents a novel approach for output-only nonlinear system identification of structures using data recorded during earthquake events. In this approach, state-of-the-art nonlinear structural FE modeling and analysis techniques are combined with Bayesian Inference method to estimate (i) time-invariant parameters governing the nonlinear hysteretic material constitutive models used in the FE model of the structure, and (ii) the time history of the earthquake ground motion. To validate the performance of the proposed framework, the simulated responses of a bridge pier to an earthquake ground motion is polluted with artificial output measurement noise and used to jointly estimate the unknown material parameters and the time history of the earthquake ground motion. This proof-of-concept example illustrates the successful performance of the proposed approach even in the presence of high measurement noise.

  2. Gradient-based optimization in nonlinear structural dynamics

    DEFF Research Database (Denmark)

    Dou, Suguang

    , frequency stabilization, and disk resonator gyroscope. For advanced design of these structures, it is of considerable value to extend current optimization in linear structural dynamics into nonlinear structural dynamics. In this thesis, we present a framework for modelling, analysis, characterization......The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider...... coefficients are calculated directly from a nonlinear finite element model. Based on the analysis and the characterization, a new class of optimization problems is studied. In the optimization, design sensitivity analysis is performed by using the adjoint method which is suitable for large-scale structural...

  3. The study on the non-linear soil structure interaction for nuclear power plants

    International Nuclear Information System (INIS)

    Tetsuya Hagiwara; Yoshio Kitada

    2005-01-01

    1. Introduction: JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2(The extreme design earthquake). Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen together with the surrounding soil on the earthquake response evaluation of the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. Under this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coal mine company in the U.S.A. indicates that the works performed in the surface coal mine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test will be to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper, we introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. 2. Conclusion: It was confirmed that the artificial ground motions generated by blasting works have enough acceleration level

  4. Nonlinear structural damage detection using support vector machines

    Science.gov (United States)

    Xiao, Li; Qu, Wenzhong

    2012-04-01

    An actual structure including connections and interfaces may exist nonlinear. Because of many complicated problems about nonlinear structural health monitoring (SHM), relatively little progress have been made in this aspect. Statistical pattern recognition techniques have been demonstrated to be competitive with other methods when applied to real engineering datasets. When a structure existing 'breathing' cracks that open and close under operational loading may cause a linear structural system to respond to its operational and environmental loads in a nonlinear manner nonlinear. In this paper, a vibration-based structural health monitoring when the structure exists cracks is investigated with autoregressive support vector machine (AR-SVM). Vibration experiments are carried out with a model frame. Time-series data in different cases such as: initial linear structure; linear structure with mass changed; nonlinear structure; nonlinear structure with mass changed are acquired.AR model of acceleration time-series is established, and different kernel function types and corresponding parameters are chosen and compared, which can more accurate, more effectively locate the damage. Different cases damaged states and different damage positions have been recognized successfully. AR-SVM method for the insufficient training samples is proved to be practical and efficient on structure nonlinear damage detection.

  5. Robust nonlinear autoregressive moving average model parameter estimation using stochastic recurrent artificial neural networks

    DEFF Research Database (Denmark)

    Chon, K H; Hoyer, D; Armoundas, A A

    1999-01-01

    In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... error is obtained by subtracting the corrupt signal of the estimated ARMA model obtained via the deterministic estimation step from the system output response. We present computer simulation examples to show the efficacy of the proposed stochastic recurrent neural network approach in obtaining accurate...... model predictions. Furthermore, we compare the performance of the new approach to that of the deterministic recurrent neural network approach. Using this simple two-step procedure, we obtain more robust model predictions than with the deterministic recurrent neural network approach despite the presence...

  6. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Pacini, Benjamin Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayes, Randall L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roettgen, Daniel R [Univ. of Wisconsin, Madison, WI (United States)

    2015-10-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.

  7. Introducing artificial intelligence into structural optimization programs

    International Nuclear Information System (INIS)

    Jozwiak, S.F.

    1987-01-01

    Artificial Intelligence /AI/ is defined as the branch of the computer science concerned with the study of the ideas that enable computers to be intelligent. The main purpose of the application of AI in engineering is to develop computer programs which function better as tools for engineers and designers. Many computer programs today have properties which make them inconvenient to their final users and the research carried within the field of AI provides tools and techniques so that these restriction can be removed. The continuous progress in computer technology has lead to developing efficient computer systems which can be applied to more than simple solving sets of equations. (orig.)

  8. A comparative study between nonlinear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

    Science.gov (United States)

    Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...

  9. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  10. Nonlinear Control Structure of Grid Connected Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza

    2017-01-01

    This paper implements nonlinear control structure based on Adaptive Fuzzy Sliding Mode (AFSM) Current Control and Unscented Kalman Filter (UKF) to estimate the capacitor voltages from the measurement of arm currents of Modular Multilevel Converter (MMC). UKF use nonlinear unscented transforms in ...

  11. Protection of Marine Structures by Artificial Islands

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Ottesen Hansen, N.E.

    1998-01-01

    protection of the bridge and of the grounding ships aspects like erosion of the islands and hydraulic resistance to the water flow through the belt must also be considered. The paper is focused on the design aspects related to ship grounding. It presents a theoretical model, which predicts the ship motions......The theoretical background for the ship protection islands for the Great Belt suspension bridge in Denmark is presented. The islands protect two anchor blocks and five approach bridge piers of the Great Belt Suspension Bridge in Denmark. The design is a complex multi-discipline task. Besides......, the loads and the deformations during a ship grounding event on a soft sea bed. The models applied to determine the shapes of the artificial islands, which most efficiently protect the bridge from ship impact while posing minimum risk of damage to the grounding ships, requiring the least amount of building...

  12. Physical structure of artificial seagrass affects macrozoobenthic community recruitment

    Science.gov (United States)

    Ambo-Rappe, R.; Rani, C.

    2018-03-01

    Seagrass ecosystems are important in supporting marine biodiversity. However, the worldwide decline in seagrass areas due to anthropogenic factors leads to a decrease in the marine biodiversity they can support. There is growing awareness of the need for concepts to conserve and/or rehabilitate seagrass ecosystems. One option is to create artificial seagrass to provide a physical structure for the marine organisms to colonize. The objective of this research was to analyze the effect of some artificial seagrasses and seagrass transplants on marine biodiversity, with a focus on the macrozoobenthic community. The experimental design compared two types of artificial seagrass (polypropylene ribbons and shrub-shaped plastic leaves), and seagrass transplants from nearby seagrass meadows. The experimental plots were 4 x 4 m2 with 3 replicates. Macrozoobenthic communities were sampled fortnightly for 3.5 months. At the end of the experiment, makrozoobenthos were also sampled from a natural seagrass bed nearby. Of 116 macrozoobenthic species in the artificial seagrass plots, 91 were gastropods. The density of the macrobenthic fauna increased from the beginning to the end of the study in all treatments, but the increase was only significant for the artificial seagrass treatment (i.e. shrub-like plastic leaves). There was a distinct separation between the macrozoobenthic community structure found in the restoration plots (artificial seagrass and transplanted seagrass) compared to natural seagrass beds.

  13. Nonlinear and stochastic dynamics of coherent structures

    DEFF Research Database (Denmark)

    Rasmussen, Kim

    1997-01-01

    considered in the discrete model. Finally, nonlinear Schrödinger continuum and discrete models with nonlocal d ispersion are investigated. In the introductory chapter the physical situation of energy transport on molecular aggregates in which the results applies is discussed in detail. This chapter also...... introduces the nonlinear Schrödinger model in one and two dimensions, discussing the soliton solutions in one dimension and the collapse phenomenon in two dimensions. Also various analytical methods are described. Then a derivation of the nonlinear Schrödinger equation is given, based on a Davydov like...... phenomenon. We find numerically and analytically that the collapse can be delayed and ultimatively arrested by the fluctuations. Allowing the system to reach thermal equilibrium we further augment the model by a nonlineardamping term and find that this prohibits collapse in the strict mathematical se nse...

  14. Nonlinear Phononic Periodic Structures and Granular Crystals

    Science.gov (United States)

    2012-02-10

    in crystalline solids. Physical Review B, 2001. 64(6): p. 064302. 18. Maris, H.J. and S. Tamura, Propagation of acoustic phonon solitons in... mathematics . American Scientist, 2009. 97(6). 28. Duncan, D.B., et al., SOLITONS ON LATTICES. Physica D, 1993. 68(1): p. 1-11. 29. Kartashov, Y.V., B.A...Malomed, and L. Torner, Solitons in nonlinear lattices. Reviews of Modern Physics , 2011. 83(1): p. 247. 30. Kevrekidis, P.G., Non-linear waves in

  15. Nonlinear growth of structure in cosmological simulations

    Science.gov (United States)

    Lukic, Zarija

    2008-06-01

    Upcoming cosmological observations (South Pole Telescope, Atacama Cosmology Telescope, Baryon Oscillation Spectroscopic Survey, and Planck) will allow for accurately probing structures and their growth, some into highly nonlinear regimes. These observations, in combination with already very accurate measurements of the expansion rate of the universe, will not only constrain cosmological parameters to a percent level, but will also answer what is the theory of gravity on the largest scales. In order to obtain theoretical predictions for different measurables (like the distribution of masses, spatial correlations), large numerical simulations have to be carried out. In this context, their main goal is to quantify how are such measurables affected by a change of cosmological parameters. The promised high accuracy of observations make the simulation task very demanding, as the theoretical predictions have to be at least as accurate as the observations. In this thesis, we study the formation and evolution of dark matter halos in ACDM models over a wide range of cosmological epochs, from redshift z=20 to the present. First, we focus on the halo mass function, likely a key probe of cosmological growth of structure. By performing a large suite (60 simulations) of nested- box N-body simulations with careful convergence and error controls, we determine the mass function and its evolution with excellent statistical and systematic errors, reaching a few percent over most of the considered redshift and mass range. Our results are consistent with a 'universal' form for the mass function, and are in a good agreement with the Warren et al. analytic fit. Next, we study the structure of halos and ramification of different halo mass definitions. This analysis is important for connecting structure formation theory with observations, and also impacts the widely used approaches of assigning visible galaxies to dark matter halos - the halo occupancy distribution models. We find that the

  16. Multiwave nonlinear couplings in elastic structures

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This short contribution considers the essentials of nonlinear wave properties in typical mechanical systems such as an infinite straight bar, a circular ring, and a flat plate. It is found that nonlinear resonance is experienced in all the systems exhibiting continuous and discrete spectra, respectively. Multiwave interactions and the stability of coupled modes with respect to small perturbations are discussed. The emphasis is placed on mechanical phenomena, for example, stress amplification, although some analogies with some nonlinear optical systems are also obvious. The nonlinear resonance coupling in a plate within the Kirchhoff-Love approximation is selected as a two-dimensional example exhibiting a rich range of resonant wave phenomena. This is originally examined by use of Whitham's averaged Lagrangian method. In particular, the existence of three basic resonant triads between longitudinal, shear, and bending modes is shown. Some of these necessarily enter cascade wave processes related to the instability of some mode components of the triad under small perturbations.

  17. Second Order Nonlinear Hydroelastic Analyses of Floating Bodies - the Primary Consideration of Nonlinear Structure

    DEFF Research Database (Denmark)

    Chen, X.; Cui, W.; Jensen, Jørgen Juncher

    2003-01-01

    The theory and typical numerical results of a second order nonlinear hydroelastic analysis of floating bodies are presented in a series of papers in which only nonlinearity in fluids is considered. Under the assumption of linear fluid, the hydroelastic analysis methods of nonlinear structure...... are introduced in this paper. With the examples of the motion and displacement reponses of a floating plate undergoing large vertical deflections in multidirectional waves, the analysis method of the couple action between the vertical deflections in multidirectional waves, the analysis method of the couple...

  18. International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    CSNDD 2012; CSNDD 2014

    2015-01-01

    This book, which presents the peer-reviewed post-proceedings of CSNDD 2012 and CSNDD 2014, addresses the important role that relevant concepts and tools from nonlinear and complex dynamics could play in present and future engineering applications. It includes 22 chapters contributed by outstanding researchers and covering various aspects of applications, including: structural health monitoring, diagnosis and damage detection, experimental methodologies, active vibration control and smart structures, passive control of structures using nonlinear energy sinks, vibro-impact dynamic MEMS/NEMS/AFM, energy-harvesting materials and structures, and time-delayed feedback control, as well as aspects of deterministic versus stochastic dynamics and control of nonlinear phenomena in physics.  Researchers and engineers interested in the challenges posed and opportunities offered by nonlinearities in the development of passive and active control strategies, energy harvesting, novel design criteria, modeling and characteriz...

  19. Detecting nonlinear structure in time series

    International Nuclear Information System (INIS)

    Theiler, J.

    1991-01-01

    We describe an approach for evaluating the statistical significance of evidence for nonlinearity in a time series. The formal application of our method requires the careful statement of a null hypothesis which characterizes a candidate linear process, the generation of an ensemble of ''surrogate'' data sets which are similar to the original time series but consistent with the null hypothesis, and the computation of a discriminating statistic for the original and for each of the surrogate data sets. The idea is to test the original time series against the null hypothesis by checking whether the discriminating statistic computed for the original time series differs significantly from the statistics computed for each of the surrogate sets. While some data sets very cleanly exhibit low-dimensional chaos, there are many cases where the evidence is sketchy and difficult to evaluate. We hope to provide a framework within which such claims of nonlinearity can be evaluated. 5 refs., 4 figs

  20. Automatic Assessing of Tremor Severity Using Nonlinear Dynamics, Artificial Neural Networks and Neuro-Fuzzy Classifier

    Directory of Open Access Journals (Sweden)

    GEMAN, O.

    2014-02-01

    Full Text Available Neurological diseases like Alzheimer, epilepsy, Parkinson's disease, multiple sclerosis and other dementias influence the lives of patients, their families and society. Parkinson's disease (PD is a neurodegenerative disease that occurs due to loss of dopamine, a neurotransmitter and slow destruction of neurons. Brain area affected by progressive destruction of neurons is responsible for controlling movements, and patients with PD reveal rigid and uncontrollable gestures, postural instability, small handwriting and tremor. Commercial activity-promoting gaming systems such as the Nintendo Wii and Xbox Kinect can be used as tools for tremor, gait or other biomedical signals acquisitions. They also can aid for rehabilitation in clinical settings. This paper emphasizes the use of intelligent optical sensors or accelerometers in biomedical signal acquisition, and of the specific nonlinear dynamics parameters or fuzzy logic in Parkinson's disease tremor analysis. Nowadays, there is no screening test for early detection of PD. So, we investigated a method to predict PD, based on the image processing of the handwriting belonging to a candidate of PD. For classification and discrimination between healthy people and PD people we used Artificial Neural Networks (Radial Basis Function - RBF and Multilayer Perceptron - MLP and an Adaptive Neuro-Fuzzy Classifier (ANFC. In general, the results may be expressed as a prognostic (risk degree to contact PD.

  1. Colonisation and community structure of benthic diatoms on artificial ...

    African Journals Online (AJOL)

    This was undertaken using tiles as artificial substrates so that we could study how the communities developed after the flood disturbance. The diatom community structure was assessed over a 28-day period following a flood event in October 2012. The Mann Whitney test indicated that there was a statistically significant ...

  2. Combinatorial structure and iconicity in artificial whistled languages

    NARCIS (Netherlands)

    Verhoef, T.; Kirby, S.; de Boer, B.; Knauff, M.; Pauen, M.; Sebanz, N.; Wachsmuth, I.

    2013-01-01

    This article reports on an experiment in which artificial languages with whistle words for novel objects are culturally transmitted in the laboratory. The aim of this study is to investigate the origins and evolution of combinatorial structure in speech. Participants learned the whistled language

  3. Nonlinear vibration with control for flexible and adaptive structures

    CERN Document Server

    Wagg, David

    2015-01-01

    This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader ...

  4. Nonlinear screening of dust grains and structurization of dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tsytovich, V. N., E-mail: tsytov@lpi.ru; Gusein-zade, N. G. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

    2013-07-15

    A review of theoretical ideas on the physics of structurization instability of a homogeneous dusty plasma, i.e., the formation of zones with elevated and depressed density of dust grains and their arrangement into different structures observed in laboratory plasma under microgravity conditions, is presented. Theoretical models of compact dust structures that can form in the nonlinear stage of structurization instability, as well as models of a system of voids (both surrounding a compact structure and formed in the center of the structure), are discussed. Two types of structures with very different dimensions are possible, namely, those smaller or larger than the characteristic mean free path of ions in the plasma flow. Both of them are characterized by relatively regular distributions of dust grains; however, the first ones usually require external confinement, while the structures of the second type can be self-sustained (which is of particular interest). In this review, they are called dust clusters and self-organized dust structures, respectively. Both types of the structures are characterized by new physical processes that take place only in the presence of the dust component. The role of nonlinearities in the screening of highly charged dust grains that are often observed in modern laboratory experiments turns out to be great, but these nonlinearities have not received adequate study as of yet. Although structurization takes place upon both linear and nonlinear screening, it can be substantially different under laboratory and astrophysical conditions. Studies on the nonlinear screening of large charges in plasma began several decades ago; however, up to now, this effect was usually disregarded when interpreting the processes occurring in laboratory dusty plasma. One of the aims of the present review was to demonstrate the possibility of describing the nonlinear screening of individual grains and take it into account with the help of the basic equations for the

  5. Nonlinear Time Reversal Tomography of Structural Defects

    Czech Academy of Sciences Publication Activity Database

    Vejvodová, Šárka; Převorovský, Zdeněk; Dos Santos, S.

    2009-01-01

    Roč. 3, č. 1 (2009), 045003-045010 ISSN N. [ICNEM /14/. Lisabon, 01.06.2009 - 06.06.2009] R&D Projects: GA ČR GA106/07/1393; GA MPO(CZ) FR-TI1/198 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonlinear elastic wave spectroscopy (NEWS) * DORT method * time reversal (TR) Subject RIV: BI - Acoustics http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PMARCW000003000001045003000001&idtype=cvips&gifs=yes

  6. Nonlinear wave forces on large ocean structures

    Science.gov (United States)

    Huang, Erick T.

    1993-04-01

    This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.

  7. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    Science.gov (United States)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  8. Unit roots, nonlinearities and structural breaks

    DEFF Research Database (Denmark)

    Haldrup, Niels; Kruse, Robinson; Teräsvirta, Timo

    One of the most influential research fields in econometrics over the past decades concerns unit root testing in economic time series. In macro-economics much of the interest in the area originate from the fact that when unit roots are present, then shocks to the time series processes have...... a selective review of contributions to the field of unit root testing over the past three decades. We discuss the nature of stochastic and deterministic trend processes, including break processes, that are likely to affect unit root inference. A range of the most popular unit root tests are presented...... and their modifications to situations with breaks are discussed. We also review some results on unit root testing within the framework of non-linear processes....

  9. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    Force method in the pre-computer era was the popular analysis tool for civil, mechanical and aerospace engineering structures. This popularity can be attributed to its ability to determine accurate estimates of forces in the structure. During the formulative period of structural analysis by matrix methods, earnest research was ...

  10. Nonlinear Structures Optimization for Flexible Flapping Wing MAVs

    Science.gov (United States)

    2009-02-01

    nonlinear optimization, flapping wing, fluid structure interaction, micro -air vehicles, flexible wing, flapping mechanism 16. SECURITY... Structures Optimization for Flexible Flapping Wing Micro -Air Vehicles” was funded with Chief Scientist Innovative Research funds. This project was divided...predict a 10% resisting load to the model, and Python Scripting to wrap around everything. 2 Building the Model in Abaqus CAE The flapping wing

  11. Nonlinear deterministic structures and the randomness of protein sequences

    CERN Document Server

    Huang Yan Zhao

    2003-01-01

    To clarify the randomness of protein sequences, we make a detailed analysis of a set of typical protein sequences representing each structural classes by using nonlinear prediction method. No deterministic structures are found in these protein sequences and this implies that they behave as random sequences. We also give an explanation to the controversial results obtained in previous investigations.

  12. Nonlinear aspects of structural fatigue damage assessment and accumulation

    International Nuclear Information System (INIS)

    Leis, B.N.

    1977-01-01

    The present paper reviews a recently developed concept for structural fatigue analysis which is capable of accounting for nonlinearities in both the above noted transformations. It is shown that, for cases where the local stressing and straining is proportional, the multiplicity of initiation sites and mechanisms observed to dominate structural fatigue resistance can be explained in terms of these additional nonlinearities. The ability of current concepts for structural fatigue analysis which account for nonlinear action to handle situaions where nonproportional stressing occurs in fatigue critical locations is next examined. Limitations in the assumptions made in fatigue analysis are shown to essentially preclude the application of present technology to that class of problems. A new approach whereby the present fatigue analysis procedures based on a deformation-type plasticity analysis can be extended to handle the nonproportional cycling by their application on a 'memory event' by 'memory event' basis is postulated and discussed in the context of a simple component

  13. Dynamical soil-structure interactions: influence of soil behaviour nonlinearities

    International Nuclear Information System (INIS)

    Gandomzadeh, Ali

    2011-01-01

    The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in

  14. Nonlinear Aerodynamic ROM-Structural ROM Methodology for Inflatable Aeroelasticity in Hypersonic Atmospheric Entry, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an innovative nonlinear structural reduced order model (ROM) - nonlinear aerodynamic ROM methodology for the inflatable...

  15. Parallel processors and nonlinear structural dynamics algorithms and software

    Science.gov (United States)

    Belytschko, Ted

    1989-01-01

    A nonlinear structural dynamics finite element program was developed to run on a shared memory multiprocessor with pipeline processors. The program, WHAMS, was used as a framework for this work. The program employs explicit time integration and has the capability to handle both the nonlinear material behavior and large displacement response of 3-D structures. The elasto-plastic material model uses an isotropic strain hardening law which is input as a piecewise linear function. Geometric nonlinearities are handled by a corotational formulation in which a coordinate system is embedded at the integration point of each element. Currently, the program has an element library consisting of a beam element based on Euler-Bernoulli theory and trianglar and quadrilateral plate element based on Mindlin theory.

  16. Nonlinear Aerodynamic and Nonlinear Structures Interations (NANSI) Methodology for Ballute/Inflatable Aeroelasticity in Hypersonic Atmospheric Entry, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA proposes a phase II effort to fully develop a comprehensive methodology for aeroelastic predictions of the nonlinear aerodynamic/aerothermodynamic - structure...

  17. Nonlinear stability analysis of the frame structures

    Directory of Open Access Journals (Sweden)

    Ćorić Stanko

    2016-01-01

    Full Text Available In this paper the phenomenon of instability of frames in elasto-plastic domain was investigated. Numerical analysis was performed by the finite element method. Stiffness matrices were derived using the trigonometric shape functions related to exact solution of the differential equation of bending according to the second order theory. When the buckling of structure occurs in plastic domain, it is necessary to replace the constant modulus of elasticity E with the tangent modulus Et. Tangent modulus is stress dependent function and takes into account the changes of the member stiffness in the inelastic range. For the purposes of numerical investigation in this analysis, part of the computer program ALIN was created in a way that this program now can be used for elastic and elasto-plastic stability analysis of frame structures. This program is developed in the C++ programming language. Using this program, it is possible to calculate the critical load of frames in the elastic and inelastic domain. In this analysis, the algorithm for the calculation of buckling lengths of compressed columns of the frames was also established. The algorithm is based on the calculation of the global stability analysis of frame structures. Results obtained using this algorithm were compared with the approximate solutions from the European (EC3 and national (JUS standards for the steel structures. By the given procedure in this paper it is possible to follow the behavior of the plane frames in plastic domain and to calculate the real critical load in that domain.

  18. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    During the formulative period of structural analysis by matrix methods, earnest research was directed to automate the force ... (1973) for the analysis of discrete and continuous systems. IFM is a force method of .... (Nagabhushanam & Patnaik 1989) are being developed, which helps the use of efficient solution techniques for ...

  19. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.

    Science.gov (United States)

    Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun

    2018-04-04

    Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery. Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  20. Case-Deletion Diagnostics for Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Lu, Bin

    2003-01-01

    In this article, a case-deletion procedure is proposed to detect influential observations in a nonlinear structural equation model. The key idea is to develop the diagnostic measures based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. An one-step pseudo approximation is proposed to reduce the…

  1. Local Influence Analysis of Nonlinear Structural Equation Models

    Science.gov (United States)

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  2. Time-domain seismic reliability of nonlinear structures

    Indian Academy of Sciences (India)

    Abstract. A novel reliability analysis technique is presented to estimate the reli- ability of real structural systems. Its unique feature is that the dynamic loadings can be applied in time domain. It is a nonlinear stochastic finite element logarithm combined with the response surface method (RSM). It generates the response sur-.

  3. Nonlinear plasticity model for structural alloys at elevated temperature. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D N

    1978-11-01

    A nonlinear, time-independent plasticity model is presented which incorporates some aspects of both isotropic and kinematic hardening. The model characterizes a material with limited memory, i.e., in the sense that part of the deformation history as recorded in the internal dislocation structure is erased at stress reversals. This feature ensures that the predicted response eventually reaches a limit cycle under cyclic stressing, even in the presence of creep and relaxation. The model is intended as a candidate for replacing the nonlinear model now residing in Sect. 4.3.6 of RDT Standard F9-5T.

  4. Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Leblouba

    2016-01-01

    Full Text Available Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model comprises three spring elements: nonlinear horizontal, nonlinear rotational, and linear vertical springs. The proposed macroelement model was verified using experimental test results from large-scale model foundations subjected to small and large cyclic loading cases.

  5. Linking structure and activity in nonlinear spiking networks.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  6. Mathematical models for suspension bridges nonlinear structural instability

    CERN Document Server

    Gazzola, Filippo

    2015-01-01

    This work provides a detailed and up-to-the-minute survey of the various stability problems that can affect suspension bridges. In order to deduce some experimental data and rules on the behavior of suspension bridges, a number of historical events are first described, in the course of which several questions concerning their stability naturally arise. The book then surveys conventional mathematical models for suspension bridges and suggests new nonlinear alternatives, which can potentially supply answers to some stability questions. New explanations are also provided, based on the nonlinear structural behavior of bridges. All the models and responses presented in the book employ the theory of differential equations and dynamical systems in the broader sense, demonstrating that methods from nonlinear analysis can allow us to determine the thresholds of instability.

  7. Nonlinear analysis of reinforced concrete structures using software package abaqus

    Directory of Open Access Journals (Sweden)

    Marković Nemanja

    2014-01-01

    Full Text Available Reinforced concrete (AB is characterized by huge inhomogeneity resulting from the material characteristics of the concrete, then, quasi-brittle behavior during failure. These and other phenomena require the introduction of material nonlinearity in the modeling of reinforced concrete structures. This paper presents the modeling reinforced concrete in the software package ABAQUS. A brief theoretical overview is presented of methods such as: Concrete Damage Plasticity (CDP, Smeared Concrete Cracking (CSC, Cap Plasticity (CP and Drucker-Prager model (DPM. We performed a nonlinear analysis of two-storey reinforced concrete frame by applying CDP method for modeling material nonlinearity of concrete. We have analyzed damage zones, crack propagation and loading-deflection ratio.

  8. Effects of structural nonlinearity and foundation sliding on probabilistic response of a nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Alidad, E-mail: sahashem@bechtel.com; Elkhoraibi, Tarek; Ostadan, Farhang

    2015-12-15

    Highlights: • Probabilistic SSI analysis including structural nonlinearity and sliding are shown. • Analysis is done for a soil and a rock site and probabilistic demands are obtained. • Structural drift ratios and In-structure response spectra are evaluated. • Structural nonlinearity significantly impacts local demands in the structure. • Sliding generally reduces seismic demands and can be accommodated in design. - Abstract: This paper examines the effects of structural nonlinearity and foundation sliding on the results of probabilistic structural analysis of a typical nuclear structure where structural nonlinearity, foundation sliding and soil-structure interaction (SSI) are explicitly included. The evaluation is carried out for a soil and a rock site at 10{sup 4}, 10{sup 5}, and 10{sup 6} year return periods (1E − 4, 1E − 5, and 1E − 6 hazard levels, respectively). The input motions at each considered hazard level are deaggregated into low frequency (LF) and high frequency (HF) motions and a sample size of 30 is used for uncertainty propagation. The statistical distribution of structural responses including story drifts, and in-structure response spectra (ISRS) as well as foundation sliding displacements are examined. The probabilistic implementation of explicit structural nonlinearity and foundation sliding in combination with the SSI effects are demonstrated using nonlinear response history analysis (RHA) of the structure with the foundation motions obtained from elastic SSI analyses, which are applied as input to fixed-base inelastic analyses. This approach quantifies the expected structural nonlinearity and sliding for the particular structural configuration and provides a robust analytical basis for the estimation of the probabilistic distribution of selected demands parameters both at the design level and beyond design level seismic input. For the subject structure, the inclusion of foundation sliding in the analysis is found to have

  9. Effects of structural nonlinearity and foundation sliding on probabilistic response of a nuclear structure

    International Nuclear Information System (INIS)

    Hashemi, Alidad; Elkhoraibi, Tarek; Ostadan, Farhang

    2015-01-01

    Highlights: • Probabilistic SSI analysis including structural nonlinearity and sliding are shown. • Analysis is done for a soil and a rock site and probabilistic demands are obtained. • Structural drift ratios and In-structure response spectra are evaluated. • Structural nonlinearity significantly impacts local demands in the structure. • Sliding generally reduces seismic demands and can be accommodated in design. - Abstract: This paper examines the effects of structural nonlinearity and foundation sliding on the results of probabilistic structural analysis of a typical nuclear structure where structural nonlinearity, foundation sliding and soil-structure interaction (SSI) are explicitly included. The evaluation is carried out for a soil and a rock site at 10 4 , 10 5 , and 10 6 year return periods (1E − 4, 1E − 5, and 1E − 6 hazard levels, respectively). The input motions at each considered hazard level are deaggregated into low frequency (LF) and high frequency (HF) motions and a sample size of 30 is used for uncertainty propagation. The statistical distribution of structural responses including story drifts, and in-structure response spectra (ISRS) as well as foundation sliding displacements are examined. The probabilistic implementation of explicit structural nonlinearity and foundation sliding in combination with the SSI effects are demonstrated using nonlinear response history analysis (RHA) of the structure with the foundation motions obtained from elastic SSI analyses, which are applied as input to fixed-base inelastic analyses. This approach quantifies the expected structural nonlinearity and sliding for the particular structural configuration and provides a robust analytical basis for the estimation of the probabilistic distribution of selected demands parameters both at the design level and beyond design level seismic input. For the subject structure, the inclusion of foundation sliding in the analysis is found to have reduced both

  10. A nonlinear cointegration approach with applications to structural health monitoring

    Science.gov (United States)

    Shi, H.; Worden, K.; Cross, E. J.

    2016-09-01

    One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.

  11. Permeability studies of artificial and natural cancellous bone structures.

    Science.gov (United States)

    Syahrom, Ardiyansyah; Abdul Kadir, Mohammed Rafiq; Abdullah, Jaafar; Öchsner, Andreas

    2013-06-01

    In the development of artificial cancellous bones, two major factors need to be considered: the integrity of the overall structure and its permeability. Whilst there have been many studies analysing the mechanical properties of artificial and natural cancellous bones, permeability studies, especially those using numerical simulation, are scarce. In this study, idealised cancellous bones were simulated from the morphological indices of natural cancellous bone. Three different orientations were also simulated to compare the anisotropic nature of the structure. Computational fluid dynamics methods were used to analyse fluid flow through the cancellous structures. A constant mass flow rate was used to determine the intrinsic permeability of the virtual specimens. The results showed similar permeability of the prismatic plate-and-rod model to the natural cancellous bone. The tetrakaidecahedral rod model had the highest permeability under simulated blood flow conditions, but the plate counterpart had the lowest. Analyses on the anisotropy of the virtual specimens showed the highest permeability for the horizontal orientation. Linear relationships were found between permeability and the two physical properties, porosity and bone surface area. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Analysis of vibrating structures with localized nonlinearities using nonlinear normal modes

    International Nuclear Information System (INIS)

    Moussi, E.H.

    2013-01-01

    This work is a collaboration between EDF R and D and the Laboratory of Mechanics and Acoustics. The objective is to develop theoretical and numerical tools to compute nonlinear normal modes (NNMs) of structures with localized nonlinearities. We use an approach combining the harmonic balance and the asymptotic numerical methods, known for its robustness principally for smooth systems. Regularization techniques are used to apply this approach for the study of non-smooth problems. Moreover, several aspects of the method are improved to allow the computation of NNMs for systems with a high number of degrees of freedom (DOF). Finally, the method is implemented in Code-Aster, an open-source finite element solver developed by EDF R and D. The nonlinear normal modes of a two degrees-of-freedom system are studied and some original characteristics are observed. These observations are then used to develop a methodology for the study of systems with a high number of DOFs. The developed method is finally used to compute the NNMs for a model U-tube of a nuclear plant steam generator. The analysis of the NNMs reveals the presence of an interaction between an out-of-plane (low frequency) and an in-plane (high frequency) modes, a result also confirmed by the experiment. This modal interaction is not possible using linear modal analysis and confirms the interest of NNMs as a diagnostic tool in structural dynamics. (author) [fr

  13. Development and Testing of Building Energy Model Using Non-Linear Auto Regression Artificial Neural Networks

    Science.gov (United States)

    Arida, Maya Ahmad

    In 1972 sustainable development concept existed and during The years it became one of the most important solution to save natural resources and energy, but now with rising energy costs and increasing awareness of the effect of global warming, the development of building energy saving methods and models become apparently more necessary for sustainable future. According to U.S. Energy Information Administration EIA (EIA), today buildings in the U.S. consume 72 percent of electricity produced, and use 55 percent of U.S. natural gas. Buildings account for about 40 percent of the energy consumed in the United States, more than industry and transportation. Of this energy, heating and cooling systems use about 55 percent. If energy-use trends continue, buildings will become the largest consumer of global energy by 2025. This thesis proposes procedures and analysis techniques for building energy system and optimization methods using time series auto regression artificial neural networks. The model predicts whole building energy consumptions as a function of four input variables, dry bulb and wet bulb outdoor air temperatures, hour of day and type of day. The proposed model and the optimization process are tested using data collected from an existing building located in Greensboro, NC. The testing results show that the model can capture very well the system performance, and The optimization method was also developed to automate the process of finding the best model structure that can produce the best accurate prediction against the actual data. The results show that the developed model can provide results sufficiently accurate for its use in various energy efficiency and saving estimation applications.

  14. Optimal Tuned Mass Damper for Nonlinear Structure under Different Earthquakes

    Directory of Open Access Journals (Sweden)

    K. Shakeri

    2015-07-01

    Full Text Available Since there is no closed-form formula for designing TMD (Tuned Mass Damper for nonlinear structures, some researchers have proposed numerical optimization procedures such as a genetic algorithm to obtain the optimal values of TMD parameters for nonlinear structures. These methods are based on determining the optimal values of TMD parameters to minimize the maximum response (e.g. inter story drift of the controlled structure subjected to a specific earthquake record. Therefore, the performance of TMD that has been designed using a specific record strongly depends on the characteristics of the earthquake record. By changing the characteristics of the input earthquake record, the efficiency of TMD is changed and in some cases, it is possible that the response of the controlled structure is increased. To overcome the shortcomings of the previous researches, in this paper, an efficient method for designing optimal TMD on nonlinear structures is proposed, in which the effect of different ground motion records is considered in the design procedure. In the proposed method, the optimal value of the TMD parameters are determined so that the average maximum response (e.g. inter story drift resulting from different records in the controlled structure is minimized. To illustrate the procedure of the propose method, the method is used to design optimal TMD for a sample structure. The results of numerical simulations show that the average maximum response of controlled structure resulting from different records is reduced significantly. Hence, it can be concluded that the proposed method for designing optimal TMD under different earthquakes is effective.

  15. Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures

    Science.gov (United States)

    2016-08-03

    Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures E. Kim,1 F. Li,1 C. Chong,2 G. Theocharis ,3 J. Yang,1 and P.G. Kevrekidis2...Kevrekidis, IMA J. Appl. Math. 76, 389 (2011). [4] G. Theocharis , N. Boechler, and C. Daraio, in Phononic Crystals and Metamaterials, Ch. 6, Springer...9] N. Boechler, G. Theocharis , and C. Daraio, Nature Ma- terials 10, 665 (2011). [10] F. Li, P. Anzel, J. Yang, P.G. Kevrekidis, and C. Daraio, Nat

  16. Nonlinear Tamm states and surface effects in periodic photonic structures

    International Nuclear Information System (INIS)

    Kivshar, Yu S

    2008-01-01

    We present a brief overview of the basic concepts and important experimental observations of the effect of light localization near the surfaces of truncated periodic photonic structures. In particular, we discuss the formation of nonlinear localized modes and discrete surface solitons near the edges of nonlinear optical waveguide arrays and two-dimensional photonic lattices. We draw an analogy between the nonlinear surface optical modes and the surface Tamm states known in the electronic theory. We discuss the crossover between discrete solitons in the array and surface solitons at the edge of the array by analyzing the families of even and odd nonlinear localized modes located at finite distances from the edge of a waveguide array. We discuss various generalization of this concept including surface solitons in chirped lattices, multi-gap vector surface solitons, polychromatic surface states generated by a supercontinuum source, surface modes in two-dimensional photonic lattices, and spatiotemporal surface solitons. Finally, we discuss briefly several other related concepts including the enhanced beaming of light from subwavelength waveguides in photonic crystals

  17. Nonlinear shock structure in a weakly ionised magnetoplasma

    Directory of Open Access Journals (Sweden)

    C. B. Dwivedi

    1994-12-01

    Full Text Available The formation of a neutral induced weak nonlinear shock structure in a weakly ionised magnetoplasma has been analytically investigated. Using the reductive perturbation method, basic dynamical equations of a three-component (electron, ion and neutral plasma have been reduced to a well-known Burger equation which can support a weak shock solution. Its stationary and initial value solutions have been derived to describe the characteristics of the weak shock profile. Asymptotic behaviour of the Burger solution results in a saw-tooth structure which has a practical implication to predict the nonlinear steepened structure of the nighttime irregularity in the lower portion of the Earth's ionosphere. Accordingly, it is suggested that the observation of saw-tooth shape of nighttime irregularity at 92 km could be attributed to the nonlinear saturation of the NILF mode instability as proposed by Dwivedi and Das in 1992. However, exact experimental verification of this suggestion requires more data on nighttime irregularity in the mesosphere and lower thermosphere (80-95 km for a wide range of scale sizes extending up to about 1 km and above.

  18. Potential biocontrol agents for biofouling on artificial structures.

    Science.gov (United States)

    Atalah, Javier; Newcombe, Emma M; Hopkins, Grant A; Forrest, Barrie M

    2014-09-01

    The accumulation of biofouling on coastal structures can lead to operational impacts and may harbour problematic organisms, including non-indigenous species. Benthic predators and grazers that can supress biofouling, and which are able to be artificially enhanced, have potential value as augmentative biocontrol agents. The ability of New Zealand native invertebrates to control biofouling on marina pontoons and wharf piles was tested. Caging experiments evaluated the ability of biocontrol to mitigate established biofouling, and to prevent fouling accumulation on defouled surfaces. On pontoons, the gastropods Haliotis iris and Cookia sulcata reduced established biofouling cover by >55% and largely prevented the accumulation of new biofouling over three months. On wharf piles C. sulcata removed 65% of biofouling biomass and reduced its cover by 73%. C. sulcata also had better retention and survival rates than other agents. Augmentative biocontrol has the potential to be an effective method to mitigate biofouling on marine structures.

  19. Augmented Nonlinear Controller for Maximum Power-Point Tracking with Artificial Neural Network in Grid-Connected Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Suliang Ma

    2016-11-01

    Full Text Available Photovoltaic (PV systems have non-linear characteristics that generate maximum power at one particular operating point. Environmental factors such as irradiance and temperature variations greatly affect the maximum power point (MPP. Diverse offline and online techniques have been introduced for tracking the MPP. Here, to track the MPP, an augmented-state feedback linearized (AFL non-linear controller combined with an artificial neural network (ANN is proposed. This approach linearizes the non-linear characteristics in PV systems and DC/DC converters, for tracking and optimizing the PV system operation. It also reduces the dependency of the designed controller on linearized models, to provide global stability. A complete model of the PV system is simulated. The existing maximum power-point tracking (MPPT and DC/DC boost-converter controller techniques are compared with the proposed ANN method. Two case studies, which simulate realistic circumstances, are presented to demonstrate the effectiveness and superiority of the proposed method. The AFL with ANN controller can provide good dynamic operation, faster convergence speed, and fewer operating-point oscillations around the MPP. It also tracks the global maxima under different conditions, especially irradiance-mutating situations, more effectively than the conventional methods. Detailed mathematical models and a control approach for a three-phase grid-connected intelligent hybrid system are proposed using MATLAB/Simulink.

  20. Nonlinear optics of light induced structural transitions in confined gallium

    International Nuclear Information System (INIS)

    MacDonald, Kevin Francis

    2002-01-01

    An ultra-high-vacuum system has been constructed to facilitate atomic-beam deposition of gallium on cryogenically cooled substrates, including optical fibre tips. Alongside this, a fibre-optic pump-probe diagnostic system, based on semiconductor lasers, has been developed to perform in-situ measurements of the linear and transient nonlinear optical properties of gallium nanostructures, both during and after deposition. This unique combination of deposition and optical diagnostic techniques has provided a new means of studying the growth and optical characteristics of gallium nanostructures under highly controlled conditions. The linear and nonlinear optical properties of a new material structure, namely gallium/glass interfaces prepared by ultrafast pulsed laser deposition (UPLD), have been studied for the first time. The reflectivity characteristics of these high-quality interfaces were measured under varying conditions of temperature and light intensity at 810 nm: At temperatures several degrees below gallium's melting point T m , excitation intensities of just a few kW.cm -2 were seen to induce reflectivity changes of more than 30%. Experiments performed with a nanosecond optical parametric oscillator have illustrated that UPLD gallium/silica interfaces show a nonlinear response to optical excitation in the 440-680 nm wavelength range: Fluences of less than 10 mJ.cm -2 were seen to induce reflectivity changes of up to 35%, even at temperatures 15 deg below T m . It has been found that low power (17 μW average) laser illumination of cryogenically cooled substrates during atomic-beam deposition of gallium leads to the formation of uniformly sized gallium nanoparticles. This phenomenon is believed to be the result of a non-thermal light-assisted particle self-assembly process. Gallium nanoparticles have been seen to show a strongly temperature-dependent nonlinear response to low intensity, infrared (1550 nm) optical excitation: 1 μs pulses with peak intensities

  1. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  2. Structural Health Monitoring under Nonlinear Environmental or Operational Influences

    Directory of Open Access Journals (Sweden)

    Jyrki Kullaa

    2014-01-01

    Full Text Available Vibration-based structural health monitoring is based on detecting changes in the dynamic characteristics of the structure. It is well known that environmental or operational variations can also have an influence on the vibration properties. If these effects are not taken into account, they can result in false indications of damage. If the environmental or operational variations cause nonlinear effects, they can be compensated using a Gaussian mixture model (GMM without the measurement of the underlying variables. The number of Gaussian components can also be estimated. For the local linear components, minimum mean square error (MMSE estimation is applied to eliminate the environmental or operational influences. Damage is detected from the residuals after applying principal component analysis (PCA. Control charts are used for novelty detection. The proposed approach is validated using simulated data and the identified lowest natural frequencies of the Z24 Bridge under temperature variation. Nonlinear models are most effective if the data dimensionality is low. On the other hand, linear models often outperform nonlinear models for high-dimensional data.

  3. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1997-01-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...

  4. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  5. Stochastic collocation-based finite element of structural nonlinear dynamics with application in composite structures

    Directory of Open Access Journals (Sweden)

    Sepahvand K.

    2016-01-01

    Full Text Available Stochastic analysis of structures having nonlinearity by means of sampling methods leads to expensive cost in term of computational time. In contrast, non-sampling methods based on the spectral representation of uncertainty are very efficient with comparable accurate results. In this pa- per, the application of spectral methods to nonlinear dynamics of structures with random parameters is investigated. The impact of the parameter randomness on structural responses has been consid- ered. To this end, uncertain parameters and the structure responses are represented using the gPC expansions with unknown deterministic coefficients and random orthogonal polynomial basis. The deterministic finite element model of the structure is used as black-box and it is executed on a set of random collocation points. As the sample structure responses are estimated, a nonlinear optimization process is employed to calculate the unknown coefficients. The method has this main advantage that can be used for complicated nonlinear structural dynamic problems for which the deterministic FEM model has been already developed. Furthermore, it is very time efficient in comparison with sampling methods, as MC simulations. The application of the method is applied to the nonlinear transient analysis of composite beam structures including uncertain quadratic random damping. The results show that the proposed method can capture the large range of uncertainty in input parameters as well as in structural dynamic responses while it is too time-efficient.

  6. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    Energy Technology Data Exchange (ETDEWEB)

    Biyanto, Totok R. [Department of Engineering Physics, Institute Technology of Sepuluh Nopember Surabaya, Surabaya, Indonesia 60111 (Indonesia)

    2016-06-03

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model are flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.

  7. Nonlinear Thermo-mechanical Finite Element Analysis of Polymer Foam Cored Sandwich Structures including Geometrical and Material Nonlinearity

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi

    In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations...

  8. Artificially Structured Semiconductors to Model Novel Quantum Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Pinczuk, Aron [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics; Wind, Shalom J. [Columbia Univ., New York, NY (United States). Dept. of Applied Physics and Applied Mathematics

    2018-01-13

    Award Period: September 1st, 2013 through February 15th, 2017 Submitted to the USDOE Office of Basic Energy Sciences By Aron Pinczuk and Shalom J. Wind Department of Applied Physics and Applied Mathematics Columbia University New York, NY 10027 January 2017 Award # DE-SC0010695 ABSTRACT Research in this project seeks to design, create and study a class of tunable artificial quantum structures in order to extend the range and scope of new and exciting physical phenomena and to explore the potential for new applications. Advanced nanofabrication was used to create an external potential landscape that acts as a lattice of confinement sites for electrons (and/or holes) in a two-dimensional electron gas in a high perfection semiconductor in such a manner that quantum interactions between different sites dictate the significant physics. Our current focus is on ‘artificial graphene’ (AG) in which a set of quantum dots (or sites) are patterned in a honeycomb lattice. The combination of leading edge nanofabrication with ultra-pure semiconductor materials in this project extends the frontier for small period, low-disorder AG systems, enabling the exploration of graphene physics in a semiconductor platform. TECHNICAL DESCRIPTION Contemporary condensed matter science has entered an era of discovery of new low-dimensional materials, such as graphene and other atomically thin materials, that exhibit exciting new physical phenomena that were previously inaccessible. Concurrent with the discovery and development of these new materials are impressive advancements in nanofabrication, which offer an ever-expanding toolbox for creating a myriad of high quality patterns at nanoscale dimensions. This project started about four years ago. Among its major achievements are the realizations of very small period artificial lattices with honeycomb topology in GaAs quantum wells. In our most recent work the periods of the ‘artificial graphene’ (AG) lattices extend down to 40 nm. These

  9. Application of a robust linear control design to a truss structure with nonlinear joints

    Science.gov (United States)

    Webster, Mark; Vander Velde, Wallace

    1991-01-01

    An efficient nonlinear equivalent beam finite-element method for the application of a full state feedback design is described, which is robust to plant uncertainties to a beamlike truss structure with nonlinear elements. The method may be extended to model nonlinear structures with other types of control systems, such as model-based compensators.

  10. Applications of Artificial Neural Networks in Structural Engineering with Emphasis on Continuum Models

    Science.gov (United States)

    Kapania, Rakesh K.; Liu, Youhua

    1998-01-01

    The use of continuum models for the analysis of discrete built-up complex aerospace structures is an attractive idea especially at the conceptual and preliminary design stages. But the diversity of available continuum models and hard-to-use qualities of these models have prevented them from finding wide applications. In this regard, Artificial Neural Networks (ANN or NN) may have a great potential as these networks are universal approximators that can realize any continuous mapping, and can provide general mechanisms for building models from data whose input-output relationship can be highly nonlinear. The ultimate aim of the present work is to be able to build high fidelity continuum models for complex aerospace structures using the ANN. As a first step, the concepts and features of ANN are familiarized through the MATLAB NN Toolbox by simulating some representative mapping examples, including some problems in structural engineering. Then some further aspects and lessons learned about the NN training are discussed, including the performances of Feed-Forward and Radial Basis Function NN when dealing with noise-polluted data and the technique of cross-validation. Finally, as an example of using NN in continuum models, a lattice structure with repeating cells is represented by a continuum beam whose properties are provided by neural networks.

  11. Experimental quantum control landscapes: Inherent monotonicity and artificial structure

    International Nuclear Information System (INIS)

    Roslund, Jonathan; Rabitz, Herschel

    2009-01-01

    Unconstrained searches over quantum control landscapes are theoretically predicted to generally exhibit trap-free monotonic behavior. This paper makes an explicit experimental demonstration of this intrinsic monotonicity for two controlled quantum systems: frequency unfiltered and filtered second-harmonic generation (SHG). For unfiltered SHG, the landscape is randomly sampled and interpolation of the data is found to be devoid of landscape traps up to the level of data noise. In the case of narrow-band-filtered SHG, trajectories are taken on the landscape to reveal a lack of traps. Although the filtered SHG landscape is trap free, it exhibits a rich local structure. A perturbation analysis around the top of these landscapes provides a basis to understand their topology. Despite the inherent trap-free nature of the landscapes, practical constraints placed on the controls can lead to the appearance of artificial structure arising from the resultant forced sampling of the landscape. This circumstance and the likely lack of knowledge about the detailed local landscape structure in most quantum control applications suggests that the a priori identification of globally successful (un)constrained curvilinear control variables may be a challenging task.

  12. Nonlinear phononics and structural control of strongly correlated materials

    Energy Technology Data Exchange (ETDEWEB)

    Mankowsky, Roman

    2016-01-20

    Mid-infrared light pulses can be used to resonantly excite infrared-active vibrational modes for the phase control of strongly correlated materials on subpicosecond timescales. As the energy is transferred directly into atomic motions, dissipation into the electronic system is reduced, allowing for the emergence of unusual low energy collective properties. Light-induced superconductivity, insulator-metal transitions and melting of magnetic order demonstrate the potential of this method. An understanding of the mechanism, by which these transitions are driven, is however missing. The aim of this work is to uncover this process by investigating the nonlinear lattice dynamics induced by the excitation and to elucidate their contribution to the modulation of collective properties of strongly correlated materials. The first signature of nonlinear lattice dynamics was reported in the observation of coherent phonon oscillations, resonant with the excitation of an infrared-active phonon mode in a manganite. This nonlinear phononic coupling can be described within a model, which predicts not only oscillatory coherent phonons dynamics but also directional atomic displacements along the coupled modes on average, which could cause the previously observed transitions. We verified this directional response and quantified the anharmonic coupling constant by tracing the atomic motions in a time-resolved hard X-ray diffraction experiment with sub-picometer spatial and femtosecond temporal resolution. In a subsequent study, we investigated the role of nonlinear lattice dynamics in the emergence of superconductivity far above the equilibrium transition temperature, an intriguing effect found to follow lattice excitation of YBa{sub 2}Cu{sub 3}O{sub 6+x}. By combining density functional theory (DFT) calculations of the anharmonic coupling constants with time-resolved X-ray diffraction experiments, we identified a structural rearrangement, which appears and decays with the same temporal

  13. Hysteresis Nonlinearity Identification Using New Preisach Model-Based Artificial Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zakerzadeh

    2011-01-01

    Full Text Available Preisach model is a well-known hysteresis identification method in which the hysteresis is modeled by linear combination of hysteresis operators. Although Preisach model describes the main features of system with hysteresis behavior, due to its rigorous numerical nature, it is not convenient to use in real-time control applications. Here a novel neural network approach based on the Preisach model is addressed, provides accurate hysteresis nonlinearity modeling in comparison with the classical Preisach model and can be used for many applications such as hysteresis nonlinearity control and identification in SMA and Piezo actuators and performance evaluation in some physical systems such as magnetic materials. To evaluate the proposed approach, an experimental apparatus consisting one-dimensional flexible aluminum beam actuated with an SMA wire is used. It is shown that the proposed ANN-based Preisach model can identify hysteresis nonlinearity more accurately than the classical one. It also has powerful ability to precisely predict the higher-order hysteresis minor loops behavior even though only the first-order reversal data are in use. It is also shown that to get the same precise results in the classical Preisach model, many more data should be used, and this directly increases the experimental cost.

  14. A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure

    International Nuclear Information System (INIS)

    Yu Fajun

    2011-01-01

    Some integrable coupling systems of existing papers are linear integrable couplings. In the Letter, beginning with Lax pairs from special non-semisimple matrix Lie algebras, we establish a scheme for constructing real nonlinear integrable couplings of continuous soliton hierarchy. A direct application to the AKNS spectral problem leads to a novel nonlinear integrable couplings, then we consider the Hamiltonian structures of nonlinear integrable couplings of AKNS hierarchy with the component-trace identity. - Highlights: → We establish a scheme to construct real nonlinear integrable couplings. → We obtain a novel nonlinear integrable couplings of AKNS hierarchy. → Hamiltonian structure of nonlinear integrable couplings AKNS hierarchy is presented.

  15. Nonlinear, distortive phenomena in solids: Martensitic, crack, and multiscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.A.; Sethna, J.P.

    1992-01-01

    This ongoing program, from the beginning of the first three year grant 1988--1991 and now in the first year of the second phase 1991--1994, has been directed at developing both an understanding of the physics underlying structural transformations in real (alloy) materials as well as new theoretical methods which adequately describe the large (nonlinear) distortions which characterize such processes. We have had a particular interest in martensitic systems, first (1988--1991) in the equilibrium limits, and now (below) in phenomena associated with the transformation process.

  16. Control of non-linear actuator of artificial muscles for the use in low-cost robotics prosthetics limbs

    Science.gov (United States)

    Anis Atikah, Nurul; Yeng Weng, Leong; Anuar, Adzly; Chien Fat, Chau; Sahari, Khairul Salleh Mohamed; Zainal Abidin, Izham

    2017-10-01

    Currently, the methods of actuating robotic-based prosthetic limbs are moving away from bulky actuators to more fluid materials such as artificial muscles. The main disadvantages of these artificial muscles are their high cost of manufacturing, low-force generation, cumbersome and complex controls. A recent discovery into using super coiled polymer (SCP) proved to have low manufacturing costs, high force generation, compact and simple controls. Nevertheless, the non-linear controls still exists due to the nature of heat-based actuation, which is hysteresis. This makes position control difficult. Using electrically conductive devices allows for very quick heating, but not quick cooling. This research tries to solve the problem by using peltier devices, which can effectively heat and cool the SCP, hence giving way to a more precise control. The peltier device does not actively introduce more energy to a volume of space, which the coiled heating does; instead, it acts as a heat pump. Experiments were conducted to test the feasibility of using peltier as an actuating method on different diameters of nylon fishing strings. Based on these experiments, the performance characteristics of the strings were plotted, which could be used to control the actuation of the string efficiently in the future.

  17. Nonlinear Aerodynamics-Structure Time Simulation for HALE Aircraft Design/Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Time simulation of a nonlinear aerodynamics model (NA) developed at Virginia Tech coupled with a nonlinear structure model (NS) is proposed as a design/analysis...

  18. Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems

    Science.gov (United States)

    Agarwal, S.; Wettlaufer, J. S.

    2014-12-01

    We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.

  19. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-06-01

    Full Text Available In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.

  20. On the Capability of Artificial Neural Networks to Compensate Nonlinearities in Wavelength Sensing

    Science.gov (United States)

    Hafiane, Mohamed Lamine; Dibi, Zohir; Manck, Otto

    2009-01-01

    An intelligent sensor for light wavelength readout, suitable for visible range optical applications, has been developed. Using buried triple photo-junction as basic pixel sensing element in combination with artificial neural network (ANN), the wavelength readout with a full-scale error of less than 1.5% over the range of 400 to 780 nm can be achieved. Through this work, the applicability of the ANN approach in optical sensing is investigated and compared with conventional methods, and a good compromise between accuracy and the possibility for on-chip implementation was thus found. Indeed, this technique can serve different purposes and may replace conventional methods. PMID:22574051

  1. Nonlinear dynamic soil-structure interaction in earthquake engineering

    International Nuclear Information System (INIS)

    Nieto-Ferro, Alex

    2013-01-01

    The present work addresses a computational methodology to solve dynamic problems coupling time and Laplace domain discretizations within a domain decomposition approach. In particular, the proposed methodology aims at meeting the industrial need of performing more accurate seismic risk assessments by accounting for three-dimensional dynamic soil-structure interaction (DSSI) in nonlinear analysis. Two subdomains are considered in this problem. On the one hand, the linear and unbounded domain of soil which is modelled by an impedance operator computed in the Laplace domain using a Boundary Element (BE) method; and, on the other hand, the superstructure which refers not only to the structure and its foundations but also to a region of soil that possibly exhibits nonlinear behaviour. The latter sub-domain is formulated in the time domain and discretized using a Finite Element (FE) method. In this framework, the DSSI forces are expressed as a time convolution integral whose kernel is the inverse Laplace transform of the soil impedance matrix. In order to evaluate this convolution in the time domain by means of the soil impedance matrix (available in the Laplace domain), a Convolution Quadrature-based approach called the Hybrid Laplace-Time domain Approach (HLTA), is thus introduced. Its numerical stability when coupled to Newmark time integration schemes is subsequently investigated through several numerical examples of DSSI applications in linear and nonlinear analyses. The HLTA is finally tested on a more complex numerical model, closer to that of an industrial seismic application, and good results are obtained when compared to the reference solutions. (author)

  2. C code generation applied to nonlinear model predictive control for an artificial pancreas

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Jørgensen, John Bagterp

    2017-01-01

    This paper presents a method to generate C code from MATLAB code applied to a nonlinear model predictive control (NMPC) algorithm. The C code generation uses the MATLAB Coder Toolbox. It can drastically reduce the time required for development compared to a manual porting of code from MATLAB to C...... of glucose regulation for people with type 1 diabetes as a case study. The average computation time when using generated C code is 0.21 s (MATLAB: 1.5 s), and the maximum computation time when using generated C code is 0.97 s (MATLAB: 5.7 s). Compared to the MATLAB implementation, generated C code can run...

  3. Nonlinear Stability and Structure of Compressible Reacting Mixing Layers

    Science.gov (United States)

    Day, M. J.; Mansour, N. N.; Reynolds, W. C.

    2000-01-01

    The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.

  4. Evaluation of time integration methods for transient response analysis of nonlinear structures

    International Nuclear Information System (INIS)

    Park, K.C.

    1975-01-01

    Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)

  5. Structure-based control of complex networks with nonlinear dynamics

    Science.gov (United States)

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-01-01

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework’s applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances. PMID:28655847

  6. Structure-based control of complex networks with nonlinear dynamics

    Science.gov (United States)

    Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka

    What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.

  7. Application of Nonlinear Analysis Methods for Identifying Relationships Between Microbial Community Structure and Groundwater Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, Jack C.; Brandt, Craig C.; Pfiffner, Susan M.; Palumbo, A V.; Peacock, Aaron D.; White, David C.; McKinley, James P.; Long, Philip E.

    2006-02-01

    The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.

  8. Artificial Inductance Concept to Compensate Nonlinear Inductance Effects in the Back EMF-Based Sensorless Control Method for PMSM

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Lei, Xiao; Blaabjerg, Frede

    2013-01-01

    at different loading conditions due to saturation effects. In this paper, a new concept of using a constant artificial inductance to replace the actual varying machine inductance for position estimation is introduced. This facilitates greatly the analysis of the influence of inductance variation......The back EMF-based sensorless control method is very popular for permanent magnet synchronous machines (PMSMs) in the medium- to high-speed operation range due to its simple structure. In this speed range, the accuracy of the estimated position is mainly affected by the inductance, which varies...... on the estimated position error, and gives a deep insight into this problem. It also provides a simple approach to achieve a globally minimized position error. A proper choice of the artificial machine inductance may reduce the maximum position error by 50% without considering the actual inductance variation...

  9. Nonlinear femtosecond near infrared laser structuring in oxide glasses

    Science.gov (United States)

    Royon, Arnaud

    Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first axis consists in characterizing the linear and nonlinear optical properties of bulk vitreous materials in order to optimize their composition with a particular application in view. Within this context, the nonlinear optical properties, their physical origins (electronic and nuclear) as well as their characteristic response times (from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses containing different concentrations in niobium oxide have been studied. Results show that the nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant when the concentration of niobium oxide exceeds 30%. The second axis is based on the structuring of materials. Three commercially available fused silica samples presenting different fabrication conditions (therefore distinct impurity levels) and irradiated with a near infrared femtosecond laser have been studied. The laser induced defects have been identified by means of several spectroscopic techniques. They show the formation of color centers as well as a densification inside the irradiated area. Their linear refractive index and

  10. Neutron scattering studies of nanomagnetism and artificially structured materials

    International Nuclear Information System (INIS)

    Fitzsimmons, M.R.; Bader, S.D.; Borchers, J.A.; Felcher, G.P.; Furdyna, J.K.; Hoffmann, A.; Kortright, J.B.; Schuller, Ivan K.; Schulthess, T.C.; Sinha, S.K.; Toney, M.F.; Weller, D.; Wolf, S.

    2004-01-01

    Nanostructured magnetic materials are intensively investigated due to their unusual properties and promise for possible applications. The key issue for these materials is to understand the limits between their physical properties (transport, magnetism, mechanical, etc.) and their chemical-physical structure. In principle, a detailed knowledge of the chemical and physical structures allows calculation of their physical properties. Theoretical and computational methods are rapidly evolving so that magnetic properties of nanostructured materials might soon be predicted. Success in this endeavor requires detailed quantitative understanding of magnetic structure at the microscopic level. Neutron scattering is a well-developed technique that can determine magnetic structure at the atomic length scale in samples of ever diminishing size. This has opened up the use of neutron scattering to nanostructured materials prepared by thin film and lithographic techniques. Many interesting and unexpected results have emerged from the application of elastic neutron scattering to nanostructured magnetic thin films such as superlattices and multilayers. These include, distinguishing between magnetic and chemical boundaries, observing the spatial dependence of the magnetization vector in nonuniform materials, unusual coupling mechanisms across nonmagnetic materials, unexpected magnetic phase diagrams, etc. Extension of elastic neutron scattering to nanostructured arrays and three-dimensional magnetic composites will allow future determination of magnetic structure with unprecedented resolution. In this review, we discuss the impact of neutron scattering to the study of magnetic nanostructures, i.e., magnetic materials that are artificially structured at nanometer length scales, such as magnetic thin films, multilayers and nanodot arrays. The basic interactions and different length scales relevant to these systems as well as the basic issues and phenomena of interest are briefly

  11. Neutron scattering studies of nanomagnetism and artificially structured materials

    Science.gov (United States)

    Fitzsimmons, M. R.; Bader, S. D.; Borchers, J. A.; Felcher, G. P.; Furdyna, J. K.; Hoffmann, A.; Kortright, J. B.; Schuller, Ivan K.; Schulthess, T. C.; Sinha, S. K.; Toney, M. F.; Weller, D.; Wolf, S.

    2004-04-01

    Nanostructured magnetic materials are intensively investigated due to their unusual properties and promise for possible applications. The key issue for these materials is to understand the limits between their physical properties (transport, magnetism, mechanical, etc.) and their chemical-physical structure. In principle, a detailed knowledge of the chemical and physical structures allows calculation of their physical properties. Theoretical and computational methods are rapidly evolving so that magnetic properties of nanostructured materials might soon be predicted. Success in this endeavor requires detailed quantitative understanding of magnetic structure at the microscopic level. Neutron scattering is a well-developed technique that can determine magnetic structure at the atomic length scale in samples of ever diminishing size. This has opened up the use of neutron scattering to nanostructured materials prepared by thin film and lithographic techniques. Many interesting and unexpected results have emerged from the application of elastic neutron scattering to nanostructured magnetic thin films such as superlattices and multilayers. These include, distinguishing between magnetic and chemical boundaries, observing the spatial dependence of the magnetization vector in nonuniform materials, unusual coupling mechanisms across nonmagnetic materials, unexpected magnetic phase diagrams, etc. Extension of elastic neutron scattering to nanostructured arrays and three-dimensional magnetic composites will allow future determination of magnetic structure with unprecedented resolution. In this review, we discuss the impact of neutron scattering to the study of magnetic nanostructures, i.e., magnetic materials that are artificially structured at nanometer length scales, such as magnetic thin films, multilayers and nanodot arrays. The basic interactions and different length scales relevant to these systems as well as the basic issues and phenomena of interest are briefly

  12. Nonlinear analysis for high-temperature multilayered fiber composite structures. M.S. Thesis; [turbine blades

    Science.gov (United States)

    Hopkins, D. A.

    1984-01-01

    A unique upward-integrated top-down-structured approach is presented for nonlinear analysis of high-temperature multilayered fiber composite structures. Based on this approach, a special purpose computer code was developed (nonlinear COBSTRAN) which is specifically tailored for the nonlinear analysis of tungsten-fiber-reinforced superalloy (TFRS) composite turbine blade/vane components of gas turbine engines. Special features of this computational capability include accounting of; micro- and macro-heterogeneity, nonlinear (stess-temperature-time dependent) and anisotropic material behavior, and fiber degradation. A demonstration problem is presented to mainfest the utility of the upward-integrated top-down-structured approach, in general, and to illustrate the present capability represented by the nonlinear COBSTRAN code. Preliminary results indicate that nonlinear COBSTRAN provides the means for relating the local nonlinear and anisotropic material behavior of the composite constituents to the global response of the turbine blade/vane structure.

  13. Variable modulus cellular structures using pneumatic artificial muscles

    Science.gov (United States)

    Pontecorvo, Michael E.; Niemiec, Robert J.; Gandhi, Farhan S.

    2014-04-01

    This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction with all three muscles pressurized to the same value over a pressure range up to 758 kPa. A change in cell modulus by a factor of 1.33 and a corresponding change in cell angle of 0.41° are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 2068 kPa can change the cell modulus in the horizontal direction by a factor of 6.83 with a change in cell angle of only 2.75°. Both experiment and simulation show that this concept provides a way to decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles.

  14. Nonlinear eigen-mode structures in complex astroclouds

    International Nuclear Information System (INIS)

    Karmakar, P K; Haloi, A

    2017-01-01

    The evolutionary dynamics of strongly nonlinear waves (of arbitrary amplitude) in an inhomogeneous complex astrophysical viscous cloud is investigated without recourse to any kind of swindle. It consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neural hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method transforms the analytic model into a conjugated pair of intermixed non-integrable energy integral laws. A natural excitation of electrostatic quasi-monotonic compressive dispersive shock-like eigen-modes is numerically demonstrated. In contrast, the self-gravitational waves grow purely as non-monotonic compressive oscillatory shock-like structures. The unique features of both the distinct classes are depicted. Their non-trivial significance in the astro-context is emphasized. (paper)

  15. Nonlinear eigen-mode structures in complex astroclouds

    Science.gov (United States)

    Karmakar, P. K.; Haloi, A.

    2017-05-01

    The evolutionary dynamics of strongly nonlinear waves (of arbitrary amplitude) in an inhomogeneous complex astrophysical viscous cloud is investigated without recourse to any kind of swindle. It consists of warm lighter electrons and ions (Boltzmanian); and cold massive bi-polar dust grains (inertial fluids) alongside vigorous neutral dynamics in quasi-neural hydrodynamic equilibrium. Application of the Sagdeev pseudo-potential method transforms the analytic model into a conjugated pair of intermixed non-integrable energy integral laws. A natural excitation of electrostatic quasi-monotonic compressive dispersive shock-like eigen-modes is numerically demonstrated. In contrast, the self-gravitational waves grow purely as non-monotonic compressive oscillatory shock-like structures. The unique features of both the distinct classes are depicted. Their non-trivial significance in the astro-context is emphasized.

  16. Robust artificial neural network for reliability and sensitivity analyses of complex non-linear systems.

    Science.gov (United States)

    Oparaji, Uchenna; Sheu, Rong-Jiun; Bankhead, Mark; Austin, Jonathan; Patelli, Edoardo

    2017-12-01

    Artificial Neural Networks (ANNs) are commonly used in place of expensive models to reduce the computational burden required for uncertainty quantification, reliability and sensitivity analyses. ANN with selected architecture is trained with the back-propagation algorithm from few data representatives of the input/output relationship of the underlying model of interest. However, different performing ANNs might be obtained with the same training data as a result of the random initialization of the weight parameters in each of the network, leading to an uncertainty in selecting the best performing ANN. On the other hand, using cross-validation to select the best performing ANN based on the ANN with the highest R 2 value can lead to biassing in the prediction. This is as a result of the fact that the use of R 2 cannot determine if the prediction made by ANN is biased. Additionally, R 2 does not indicate if a model is adequate, as it is possible to have a low R 2 for a good model and a high R 2 for a bad model. Hence, in this paper, we propose an approach to improve the robustness of a prediction made by ANN. The approach is based on a systematic combination of identical trained ANNs, by coupling the Bayesian framework and model averaging. Additionally, the uncertainties of the robust prediction derived from the approach are quantified in terms of confidence intervals. To demonstrate the applicability of the proposed approach, two synthetic numerical examples are presented. Finally, the proposed approach is used to perform a reliability and sensitivity analyses on a process simulation model of a UK nuclear effluent treatment plant developed by National Nuclear Laboratory (NNL) and treated in this study as a black-box employing a set of training data as a test case. This model has been extensively validated against plant and experimental data and used to support the UK effluent discharge strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Is Artificial Neural Network Suitable for Damage Level Determination of Rc- Structures?

    OpenAIRE

    Baltacıoğlu, A. K.; Öztürk, B.; Civalek, Ö.; Akgöz, B.

    2010-01-01

    In the present study, an artificial neural network (ANN) application is introduced for estimation of damage level of reinforced concrete structures. Back-propagation learning algorithm is adopted. A typical neural network architecture is proposed and some conclusions are presented. Applicability of artificial neural network (ANN) for the assessment of earthquake related damage is investigated

  18. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Aboul-Magd Mohammed O

    2009-07-01

    Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input

  19. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)

    2013-12-15

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.

  20. Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs

    Directory of Open Access Journals (Sweden)

    Jaime Buitrago

    2017-01-01

    Full Text Available Short-term load forecasting is crucial for the operations planning of an electrical grid. Forecasting the next 24 h of electrical load in a grid allows operators to plan and optimize their resources. The purpose of this study is to develop a more accurate short-term load forecasting method utilizing non-linear autoregressive artificial neural networks (ANN with exogenous multi-variable input (NARX. The proposed implementation of the network is new: the neural network is trained in open-loop using actual load and weather data, and then, the network is placed in closed-loop to generate a forecast using the predicted load as the feedback input. Unlike the existing short-term load forecasting methods using ANNs, the proposed method uses its own output as the input in order to improve the accuracy, thus effectively implementing a feedback loop for the load, making it less dependent on external data. Using the proposed framework, mean absolute percent errors in the forecast in the order of 1% have been achieved, which is a 30% improvement on the average error using feedforward ANNs, ARMAX and state space methods, which can result in large savings by avoiding commissioning of unnecessary power plants. The New England electrical load data are used to train and validate the forecast prediction.

  1. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  2. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    Science.gov (United States)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2012-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  3. Contributions of non-intrusive coupling in nonlinear structural mechanics

    International Nuclear Information System (INIS)

    Duval, Mickael

    2016-01-01

    This PhD thesis, part of the ANR ICARE project, aims at developing methods for complex analysis of large scale structures. The scientific challenge is to investigate very localised areas, but potentially critical as of mechanical systems resilience. Classically, representation models, discretizations, mechanical behaviour models and numerical tools are used at both global and local scales for simulation needs of graduated complexity. Global problem is handled by a generic code with topology (plate formulation, geometric approximation...) and behaviour (homogenization) simplifications while local analysis needs implementation of specialized tools (routines, dedicated codes) for an accurate representation of the geometry and behaviour. The main goal of this thesis is to develop an efficient non-intrusive coupling tool for multi-scale and multi-model structural analysis. Constraints of non-intrusiveness result in the non-modification of the stiffness operator, connectivity and the global model solver, allowing to work in a closed source software environment. First, we provide a detailed study of global/local non-intrusive coupling algorithm. Making use of several relevant examples (cracking, elastic-plastic behaviour, contact...), we show the efficiency and the flexibility of such coupling method. A comparative analysis of several optimisation tools is also carried on, and the interacting multiple patches situation is handled. Then, non-intrusive coupling is extended to globally non-linear cases, and a domain decomposition method with non-linear re-localization is proposed. Such methods allowed us to run a parallel computation using only sequential software, on a high performance computing cluster. Finally, we apply the coupling algorithm to mesh refinement with patches of finite elements. We develop an explicit residual based error estimator suitable for multi-scale solutions arising from the non-intrusive coupling, and apply it inside an error driven local mesh

  4. Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures

    Science.gov (United States)

    Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent

    2018-03-01

    Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.

  5. Engineering Synthesis of Nonlinear Spatial Selection with Artificial Intelligence Elements to Suppress Critical Interference of Background in Aviation and Space-Based Opto-Electronic Devices

    Directory of Open Access Journals (Sweden)

    V. L. Levshin

    2015-01-01

    Full Text Available The previous authors’ works have shown that the system of quasi-optimal linear spatial filtering, due to the restriction of this class of filters, related to the superposition principle, has very limited capacity to suppress the most critical interference spatially inhomogeneous background. Such partial suppression does not meet extreme approach requirements for providing high probability characteristics to detect small targets in the most difficult background conditions.In this regard, there is a conclusion that it is necessary to find a different approach, in which the result of the system operation in complex background does not depend on the level of the background noise at the input. This article performs an engineering synthesis of the system with the artificial visual intelligence elements, which recognizes a class of the small-sized radiating objects with the suppression of the most critical interference through nonlinear topological selection.Consideration of this problem begins with the formation of the filter-discriminator aperture, which is a basis for this theory, «echoing» with the theory of optimal nonlinear filtering spatial Poisson processes. Thus, formation of the optimized nonlinear filter structure is based on the optimal linear filter (Wiener filter structure. As a result, there are three versions of filter apertures (4-, 8- and 16-connected ones, with one of which later providing operations of the object shape discrimination. The focus of the article is, mainly, on the 8-connected aperture, as the average in balance of efficiency and complexity option.The article pays considerable attention to development of signs and algorithms to select the objects by size and shape. It shows that selection on a uniform background is possible by the maximum value of the first derivative and to separate the most critical form of Markov’s field inhomogeneities and background brightness, as the fragments of component boundaries of

  6. Finite-element based perturbation analysis of wave propagation in nonlinear periodic structures

    Science.gov (United States)

    Manktelow, Kevin; Narisetti, Raj K.; Leamy, Michael J.; Ruzzene, Massimo

    2013-08-01

    Wave propagation in continuous, periodic structures subject to weak nonlinearities is studied using a finite-element discretization of a single unit cell followed by a perturbation analysis. The dispersion analysis is integrated with commercial finite-element analysis (FEA) software to expedite nonlinear analysis of geometrically-complex unit cells. A simple continuous multilayer system is used to illustrate the principle aspects of the procedure. A periodic structure formed by membrane elements on nonlinear elastic supports is used to demonstrate the versatility of the procedure. Weakly nonlinear band diagrams are generated in which amplitude-dependent bandgaps and group velocities are identified. The nonlinear dispersion analysis procedure described, coupled with commercial FEA software, should facilitate the study of wave propagation in a wide-variety of geometrically-complex, nonlinear periodic structures.

  7. A Novel Rational Design Method for Laminated Composite Structures Exhibiting Complex Geometrically Nonlinear Buckling Behaviour

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2012-01-01

    This paper presents a novel FEM-based approach for fiber angle optimal design of laminated composite structures exhibiting complicated nonlinear buckling behavior, thus enabling design of lighter and more cost-effective structures. The approach accounts for the geometrically nonlinear behavior of...

  8. A novel nonlinear damage resonance intermodulation effect for structural health monitoring

    Science.gov (United States)

    Ciampa, Francesco; Scarselli, Gennaro; Meo, Michele

    2017-04-01

    This paper is aimed at developing a theoretical model able to predict the generation of nonlinear elastic effects associated to the interaction of ultrasonic waves with the steady-state nonlinear response of local defect resonance (LDR). The LDR effect is used in nonlinear elastic wave spectroscopy to enhance the excitation of the material damage at its local resonance, thus to dramatically increase the vibrational amplitude of material nonlinear phenomena. The main result of this work is to prove both analytically and experimentally the generation of novel nonlinear elastic wave effects, here named as nonlinear damage resonance intermodulation, which correspond to a nonlinear intermodulation between the driving frequency and the LDR one. Beside this intermodulation effect, other nonlinear elastic wave phenomena such as higher harmonics of the input frequency and superharmonics of LDR frequency were found. The analytical model relies on solving the nonlinear equation of motion governing bending displacement under the assumption of both quadratic and cubic nonlinear defect approximation. Experimental tests on a damaged composite laminate confirmed and validated these predictions and showed that using continuous periodic excitation, the nonlinear structural phenomena associated to LDR could also be featured at locations different from the damage resonance. These findings will provide new opportunities for material damage detection using nonlinear ultrasounds.

  9. A Modal Model to Simulate Typical Structural Dynamic Nonlinearity [PowerPoint

    Energy Technology Data Exchange (ETDEWEB)

    Mayes, Randall L.; Pacini, Benjamin Robert; Roettgen, Dan

    2016-01-01

    Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combination with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.

  10. Advanced Seismic Fragility Modeling using Nonlinear Soil-Structure Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talaat, Mohamed [Simpson-Gupertz & Heger, Waltham, MA (United States); Hashimoto, Philip [Simpson-Gupertz & Heger, Waltham, MA (United States)

    2015-09-01

    The goal of this effort is to compare the seismic fragilities of a nuclear power plant system obtained by a traditional seismic probabilistic risk assessment (SPRA) and an advanced SPRA that utilizes Nonlinear Soil-Structure Interaction (NLSSI) analysis. Soil-structure interaction (SSI) response analysis for a traditional SPRA involves the linear analysis, which ignores geometric nonlinearities (i.e., soil and structure are glued together and the soil material undergoes tension when the structure uplifts). The NLSSI analysis will consider geometric nonlinearities.

  11. A Study on the nonlinear relationship between two-way FDI and industrial structure in China

    Science.gov (United States)

    Nisha, Jia; Yifan, Zhao

    2017-11-01

    This paper further studied the relationship between Chinese two-way FDI and its industrial structure effect by using the Nonlinear Granger Causal Test. It shows that, the one-way nonlinear Granger relationship dose exist from FDI to the industrial structure. Meanwhile, it also exists that the one-way nonlinear relationship from Chinese OFDI to the upgrade of industrial structure, with an obvious time-lag. This phenomenon illustrates that the industrial structure effect from OFDI will be prominent increasingly, while not obvious at present.

  12. Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity

    Science.gov (United States)

    2015-08-13

    application of the nonlinear elasticity complex is in developing mixed finite element methods for large deformations, which will be pursued in a future...framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors. As some applications of these...conditions. 15.  SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION

  13. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    International Nuclear Information System (INIS)

    Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh; Khajeh, Khosro

    2005-01-01

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k i values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%

  14. Structural analysis of composite wind turbine blades nonlinear mechanics and finite element models with material damping

    CERN Document Server

    Chortis, Dimitris I

    2013-01-01

    This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...

  15. Artificial Intelligence and Semantics through the Prism of Structural, Post-Structural and Transcendental Approaches.

    Science.gov (United States)

    Gasparyan, Diana

    2016-12-01

    There is a problem associated with contemporary studies of philosophy of mind, which focuses on the identification and convergence of human and machine intelligence. This is the problem of machine emulation of sense. In the present study, analysis of this problem is carried out based on concepts from structural and post-structural approaches that have been almost entirely overlooked by contemporary philosophy of mind. If we refer to the basic definitions of "sign" and "meaning" found in structuralism and post-structuralism, we see a fundamental difference between the capabilities of a machine and the human brain engaged in the processing of a sign. This research will exemplify and provide additional evidence to support distinctions between syntactic and semantic aspects of intelligence, an issue widely discussed by adepts of contemporary philosophy of mind. The research will demonstrate that some aspect of a number of ideas proposed in relation to semantics and semiosis in structuralism and post-structuralism are similar to those we find in contemporary analytical studies related to the theory and philosophy of artificial intelligence. The concluding part of the paper offers an interpretation of the problem of formalization of sense, connected to its metaphysical (transcendental) properties.

  16. Artificial selection for structural color on butterfly wings and comparison with natural evolution

    OpenAIRE

    Wasik, Bethany R.; Liew, Seng Fatt; Lilien, David A.; Dinwiddie, April J.; Noh, Heeso; Cao, Hui; Monteiro, Antónia

    2014-01-01

    Despite significant efforts to study structural colors in nature, little is known about how such colors and structures evolved in the first place. To address this key question, we performed the first artificial selection (to our knowledge) on a structural color using butterflies. We demonstrated rapid evolution of violet structural color from ultra-violet brown scales in Bicyclus anynana butterflies with only six generations of selection. Furthermore, we identified the structural changes resp...

  17. Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2016-01-01

    Devices that exploit essential nonlinear behavior such as hardening/softening and inter-modal coupling effects are increasingly used in engineering and fundamental studies. Based on nonlinear normal modes, we present a gradient-based structural optimization method for tailoring the hardening....../softening behavior of nonlinear mechanical systems. The iterative optimization procedure consists of calculation of nonlinear normal modes, solving an adjoint equation system for sensitivity analysis and an update of design variables using a mathematical programming tool. We demonstrate the method with examples...

  18. Integration of system identification and finite element modelling of nonlinear vibrating structures

    Science.gov (United States)

    Cooper, Samson B.; DiMaio, Dario; Ewins, David J.

    2018-03-01

    The Finite Element Method (FEM), Experimental modal analysis (EMA) and other linear analysis techniques have been established as reliable tools for the dynamic analysis of engineering structures. They are often used to provide solutions to small and large structures and other variety of cases in structural dynamics, even those exhibiting a certain degree of nonlinearity. Unfortunately, when the nonlinear effects are substantial or the accuracy of the predicted response is of vital importance, a linear finite element model will generally prove to be unsatisfactory. As a result, the validated linear FE model requires further enhancement so that it can represent and predict the nonlinear behaviour exhibited by the structure. In this paper, a pragmatic approach to integrating test-based system identification and FE modelling of a nonlinear structure is presented. This integration is based on three different phases: the first phase involves the derivation of an Underlying Linear Model (ULM) of the structure, the second phase includes experiment-based nonlinear identification using measured time series and the third phase covers augmenting the linear FE model and experimental validation of the nonlinear FE model. The proposed case study is demonstrated on a twin cantilever beam assembly coupled with a flexible arch shaped beam. In this case, polynomial-type nonlinearities are identified and validated with force-controlled stepped-sine test data at several excitation levels.

  19. Nonlinear seismic soil-structure interaction analysis of nuclear power plant structures

    International Nuclear Information System (INIS)

    Khanna, J.K.; Setlur, A.V.; Pathak, D.V.

    1977-01-01

    The heterogeneous and nonlinear soil medium and the detailed three-dimensional structure are synthesized to determine the seismic response to soil-structure systems. The approach is particularly attractive in a design office environment since it: a) leads to interactive motion at the soil-structure interface; b) uses existing public domain programs such as SAPIV, LUSH and FLUSH with marginal modifications; and c) meets current regulatory requirements for soil-structure interaction analysis. Past methods differ from each other depending on the approach adopted for soil and structure representations and procedures for solving the governing differential equations. Advantages and limitations of these methods are reviewed. In the current approach, the three-dimensional structure is represented by the dynamic characteristics of its fixed base condition. This representation is ideal when structures are designed to be within elastic range. An important criterion is the design of the nuclear power plant structures. Model damping coefficients are varied to reflect the damping properties of different structural component materials. The detailed structural model is systematically reduced to reflect important dynamic behavior with simultaneous storing of intermediate information for retrieval of detailed structural response. Validity of the approach has been established with simple numerical experiments. (Auth.)

  20. Nanometric artificial structuring of semiconductor surfaces for crystalline growth

    Science.gov (United States)

    Eymery, J.; Biasiol, G.; Kapon, E.; Ogino, T.

    2005-01-01

    The coupling of standard self-organization methods with surface artificial nanostructuring has recently emerged as a promising technique in semiconductor materials to control simultaneously the size distribution, the density and the position of epitaxial nanostructures. Some physical aspects of the morphology and elastic strain engineering are reviewed in this article. The emphasis is on the effects of capillarity, growth rate anisotropy, strain relaxation and entropy of mixing for alloys. The interplay among these driving forces is first illustrated by III-V compound semiconductor growth on lithographically patterned surfaces, then by germanium growth on implanted substrates and nanopatterned templates obtained by chemical etching of buried strain dislocation networks. To cite this article: J. Eymery et al., C. R. Physique 6 (2005).

  1. The peak response distributions of structure-DVA systems with nonlinear damping

    Science.gov (United States)

    Love, J. S.; Tait, M. J.

    2015-07-01

    Dynamic vibration absorbers (DVAs) with nonlinear damping are often modelled using a power-law equivalent viscous damping relationship. There is currently not a method available to predict the peak response of this type of nonlinear DVA without resorting to computationally expensive nonlinear simulations. Since the peak response of the DVA is required during the design process, it is advantageous to have a simplified method to estimate the peak response. In this study, statistical linearization is employed to represent the nonlinear damping as amplitude-dependent viscous damping and predict the rms response of the structure-DVA system. Subsequently, statistical nonlinearization is used to describe the probability density function of the DVA response amplitude. A probability density function is developed, which enables the peak response expected during an interval of time (e.g. 1-h) to be estimated from the rms response of the structure-DVA system. Higher power-law damping exponents are shown to result in smaller peak factors. Results of nonlinear simulations reveal that the model can estimate the peak structural and DVA responses with acceptable accuracy. A plot is developed to show the peak factors for nonlinear DVAs as a function of the number of system cycles for several power-law damping exponents. This plot can be used to estimate the peak response of a nonlinear DVA as a function of its rms response.

  2. An investigation on structural, vibrational and nonlinear optical ...

    Indian Academy of Sciences (India)

    Thermodynamical parameters along with the nonlinear optical (NLO) behavior of the title molecule are also discussed. The lower value of frontier orbital energy gap and a higher value of dipole moment suggest that the title compound is highly reactive. The NLO behavior of the title compound has been achieved by dipole ...

  3. Canonical structure of evolution equations with non-linear ...

    Indian Academy of Sciences (India)

    The dispersion produced is compensated by non-linear effects resulting in the formation of exponentially localized .... determining the values of Lagrange's multipliers αis. We postulate that a slightly .... c3 «w2x -v. (36). To include the effect of the secondary constraint c3 in the total Hamiltonian H we modify. (33) as. 104.

  4. Long term structural dynamics of mechanical systems with local nonlinearities

    NARCIS (Netherlands)

    Fey, R.H.B.; Campen, D.H. van; Kraker, A. de

    1996-01-01

    This paper deals with the long term behavior of periodically excited mechanical systems consisting of linear components and local nonlinearities. The number of degrees of freedom of the linear components is reduced by applying a component mode synthesis technique. Lyapunov exponents are used to

  5. Parametric localized modes in quadratic nonlinear photonic structures

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole

    2001-01-01

    interfaces, we derive an effective discrete model for the amplitudes of the fundamental and second-harmonic waves at the interfaces (the so-called discrete chi2 equations) and find, numerically and analytically, the spatially localized solutions-discrete gap solitons. For a single nonlinear interface...

  6. Localization and identification of structural nonlinearities using cascaded optimization and neural networks

    Science.gov (United States)

    Koyuncu, A.; Cigeroglu, E.; Özgüven, H. N.

    2017-10-01

    In this study, a new approach is proposed for identification of structural nonlinearities by employing cascaded optimization and neural networks. Linear finite element model of the system and frequency response functions measured at arbitrary locations of the system are used in this approach. Using the finite element model, a training data set is created, which appropriately spans the possible nonlinear configurations space of the system. A classification neural network trained on these data sets then localizes and determines the types of all nonlinearities associated with the nonlinear degrees of freedom in the system. A new training data set spanning the parametric space associated with the determined nonlinearities is created to facilitate parametric identification. Utilizing this data set, initially, a feed forward regression neural network is trained, which parametrically identifies the classified nonlinearities. Then, the results obtained are further improved by carrying out an optimization which uses network identified values as starting points. Unlike identification methods available in literature, the proposed approach does not require data collection from the degrees of freedoms where nonlinear elements are attached, and furthermore, it is sufficiently accurate even in the presence of measurement noise. The application of the proposed approach is demonstrated on an example system with nonlinear elements and on a real life experimental setup with a local nonlinearity.

  7. High-order finite difference solution for 3D nonlinear wave-structure interaction

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2010-01-01

    This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...

  8. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    2014-01-01

    The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... performs well when compared with the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may be a good approach for a variety of problems in fixed-income pricing....

  9. Mathematical Modeling of Linear and Non-Linear Aircraft Structures.

    Science.gov (United States)

    1980-07-01

    7 A-A OBO 439 LISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT--ETC F IG 1/2 MATHENATICAL MODELING OF LINEAR AND NON-LINEAR AIRCRAFT STRUCTu...theoretical model. (see Fig.1): Continuum Physical Model Mathematical Model Numerical computation ] Analytical treatment (Discretization)Ft Fig.: 1...this model neglecting unessential details. This "Mathematical Model" is usually solved by numerical computation , which means that a discretization of

  10. Structure, Electronic and Nonlinear Optical Properties of Furyloxazoles and Thienyloxazoles

    International Nuclear Information System (INIS)

    Dagli, Ozlem; Gok, Rabia; Bahat, Mehmet; Ozbay, Akif

    2016-01-01

    Geometry optimization, electronic and nonlinear optical properties of isomers of furyloxazole and thienyloxazole molecules are carried out at the B3LYP/6-311++G(2d,p) level. The conformational analysis of 12 compounds have been studied as a function of torsional angle between rings. Electronic and NLO properties such as dipole moment, energy gap, polarizability and first hyperpolarizability were also calculated. (paper)

  11. Entrainment of a spatially extended nonlinear structure under selective forcing.

    Science.gov (United States)

    Henriot, Michel; Burguete, Javier; Ribotta, Roland

    2003-09-05

    The response of a nonlinear state to a variable forcing periodic in space is studied in an extended dynamical system consisting of a liquid crystal layer driven to convection. Both the statics and the dynamics of the entrainment and the locking effects are analyzed. The dynamics of the evolution are controlled by topological singularities that allow a diffusion of the phase. The mechanisms involved are related to the role of the defects in systems undergoing spontaneous symmetry breakings.

  12. Artificial breakwaters as garbage bins: Structural complexity enhances anthropogenic litter accumulation in marine intertidal habitats.

    Science.gov (United States)

    Aguilera, Moisés A; Broitman, Bernardo R; Thiel, Martin

    2016-07-01

    Coastal urban infrastructures are proliferating across the world, but knowledge about their emergent impacts is still limited. Here, we provide evidence that urban artificial reefs have a high potential to accumulate the diverse forms of litter originating from anthropogenic activities around cities. We test the hypothesis that the structural complexity of urban breakwaters, when compared with adjacent natural rocky intertidal habitats, is a driver of anthropogenic litter accumulation. We determined litter abundances at seven sites (cities) and estimated the structural complexity in both urban breakwaters and adjacent natural habitats from northern to central Chile, spanning a latitudinal gradient of ∼15° (18°S to 33°S). Anthropogenic litter density was significantly higher in coastal breakwaters when compared to natural habitats (∼15.1 items m(-2) on artificial reefs versus 7.4 items m(-2) in natural habitats) at all study sites, a pattern that was temporally persistent. Different litter categories were more abundant on the artificial reefs than in natural habitats, with local human population density and breakwater extension contributing to increase the probabilities of litter occurrence by ∼10%. In addition, structural complexity was about two-fold higher on artificial reefs, with anthropogenic litter density being highest at intermediate levels of structural complexity. Therefore, the spatial structure characteristic of artificial reefs seems to enhance anthropogenic litter accumulation, also leading to higher residence time and degradation potential. Our study highlights the interaction between coastal urban habitat modification by establishment of artificial reefs, and pollution. This emergent phenomenon is an important issue to be considered in future management plans and the engineering of coastal ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Study of nonlinear structures in electrostatic flute type fluctuations

    International Nuclear Information System (INIS)

    Prasad, G.; Bora, D.; Saxena, Y.C.; Sethia, G.C.

    1993-01-01

    Techniques of analysing the time series with the concept of modes substituted by quantities such as dimension, Lyapunov exponent and the Kolmogorov entropy have developed in recent years. These are few tools of nonlinear dynamical system analysis. They have similar analog in plasma physics. For example, dimension analysis of turbulent fluctuations (continuous power spectrum) in fusion devices and in laboratory devices suggest that for the coherent fluctuations the calculated correlation dimension is low (nearly equal to the number of modes excited) while it is large for turbulent state. The dimension calculated is nearly equal to number of competing modes. Similarly in plasma physics we speak of unstable (growing) and damped (decaying) waves. It is analogous to Lyapunov exponent which determines the divergence (for positive Lyapunov exponent) or convergence (for negative Lyapunov exponent) of neighboring trajectories exponentially in a time series. Number of Lyapunov exponent is same as the dimension of phase space. Matric entropy of the system is sum of the positive Lyapunov exponents which determines overall stability of the system. During the study of low frequency instabilities in toroidal device we have observed that the density and potential fluctuations makes a transition from coherent multimode state (exhibiting a considerable nonlinearity as seen from the bicoherence spectrum) to a turbulent state with increase in magnetic field. We have applied the tools of non-linear dynamical system analysis on density fluctuations obtained at different magnetic field. The results of the analysis are presented. (author) 9 refs., 11 figs

  14. PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual

    Science.gov (United States)

    Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.

    1977-01-01

    The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.

  15. Nonlinear model of a rotating hub-beams structure: Equations of motion

    Science.gov (United States)

    Warminski, Jerzy

    2018-01-01

    Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.

  16. Brief Overview of Using Nonlinear Seismology in Analysis of the Soil Deposits Effects on Structure Location

    Science.gov (United States)

    Florin Balan, Stefan; Apostol, Bogdan Felix; Ionescu, Constantin

    2017-12-01

    The purpose of the paper is to show the great influence of nonlinear seismology in the analysis of the soil deposit response. Some elements about nonlinear seismology, the complexity of the seismic phenomenon are presented, and how we perceive seismic input for constructions at the surface of the earth. Further is presented the nonlinear behaviour of soil deposits during strong earthquakes as it results from resonant column tests (in laboratory) and from the spectral amplification factors (in situ records). The resonance phenomenon between natural period of a structure and soil deposit during strong earthquakes is analysed. All these studies have in common nonlinear behaviour of the soil deposit during strong earthquakes, in fact, the site where a new construction is built or an old one is rehabilitated and needs an optional assessment for mitigation seismic risk. All these studies stand up in supporting nonlinear seismology, the seismology of the XXI-st century.

  17. Neutron Scattering Studies of Nanomagnetism and Artificially Structured Materials

    Energy Technology Data Exchange (ETDEWEB)

    Fitzsimmons, M.R.; Bader, S.D.; Borchers, J.A.; Felcher, G.P.; Furdyna, J.K.; Hoffmann, A.; Kortright, J.B.; Schuller, Ivan K.; Schulthess, T.C.; Sinha, S.K.; Toney, M.F.; Weller, D.; Wolf, S.

    2003-02-01

    Nanostructured magnetic materials are intensively studied due to their unusual properties and promise for possible applications. The key issues in these materials relate to the connection between their physical properties (transport, magnetism, mechanical, etc.) and their chemical-physical structure. In principle, a detailed knowledge of the chemical and physical structure allows calculation of their physical properties. Theoretical and computational methods are rapidly evolving so that magnetic properties of nanostructured materials might soon be predicted. Success in this endeavor requires detailed quantitative understanding of the magnetic structure and properties.

  18. Mineral composition and charcoal determine the bacterial community structure in artificial soils.

    Science.gov (United States)

    Ding, Guo-Chun; Pronk, Geertje Johanna; Babin, Doreen; Heuer, Holger; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    To study the influence of the clay minerals montmorillonite (M) and illite (I), the metal oxides ferrihydrite (F) and aluminum hydroxide (A), and charcoal (C) on soil bacterial communities, seven artificial soils with identical texture provided by quartz (Q) were mixed with sterilized manure as organic carbon source before adding a microbial inoculant derived from a Cambisol. Bacterial communities established in artificial soils after 90 days of incubation were compared by DGGE analysis of bacterial and taxon-specific 16S rRNA gene amplicons. The bacterial community structure of charcoal-containing soils highly differed from the other soils at all taxonomic levels studied. Effects of montmorillonite and illite were observed for Bacteria and Betaproteobacteria, but not for Actinobacteria or Alphaproteobacteria. A weak influence of metal oxides on Betaproteobacteria was found. Barcoded pyrosequencing of 16S rRNA gene amplicons done for QM, QI, QIF, and QMC revealed a high bacterial diversity in the artificial soils. The composition of the artificial soils was different from the inoculant, and the structure of the bacterial communities established in QMC soil was most different from the other soils, suggesting that charcoal provided distinct microenvironments and biogeochemical interfaces formed. Several populations with discriminative relative abundance between artificial soils were identified. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  19. Multi-scale Quantitative Precipitation Forecasting Using Nonlinear and Nonstationary Teleconnection Signals and Artificial Neural Network Models

    Science.gov (United States)

    Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals...

  20. A preliminary study of the nonlinearity of adhesive point-fixings in structural glass facades

    Directory of Open Access Journals (Sweden)

    Jonas Dispersyn

    2014-06-01

    Full Text Available Corresponding author: Jonas Dispersyn, Laboratory for Research on Structural Models (LMO, Department of Structural Engineering, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium. Tel.: +32 9 264 54 84; Fax: +32 9 264 58 38; E-mail: jonas.dispersyn@UGent.be The recent demand for architectural transparency has drastically increased the use of glass material for structural purpose. However, connections between structural glass members represent one of the most critical aspects of glass engineering, due to the fragile behaviour of this material. In that respect, research activities on adhesive point-fixings are currently on-going. The mechanical behaviour of adhesive point-fixings is affected by large nonlinearities, which are usually investigated by nonlinear Finite Element Analysis (FEA. This paper focuses on the geometrical and the material nonlinearities of adhesive point-fixings for glass structures. Firstly, the nonlinear material behaviour of two selected adhesives are investigated by means of uniaxial tension and compression tests on the bulk material. The production of specimens, test methodology and displacement rate dependency are discussed. Secondly, the nonlinear stress distribution occurring in the adhesive and the joint stiffness is investigated by means of nonlinear FEA. The effects of several parameters on the mechanical behaviour of adhesive point-fixings, such as the connection dimensions and adhesive elastic properties, are studied. The adhesive stress-strain curves resulting from the experimental campaign show that the adhesives exhibit a large nonlinear behaviour. The results show that the stress and strain at failure reduce as the displacement rate is reduced. From the numerical investigations it is concluded that large nonlinearity involves the mechanical behaviour of adhesive point-fixing which cannot be neglected. The stress distribution within the adhesive deviates from uniform nominal stresses

  1. Nonlinear lattice structures based on families of complex nondiffracting beams

    International Nuclear Information System (INIS)

    Rose, Patrick; Boguslawski, Martin; Denz, Cornelia

    2012-01-01

    We present a new concept for the generation of optical lattice waves. For all four families of nondiffracting beams, we are able to realize corresponding nondiffracting intensity patterns in a single setup. The potential of our approach is shown by demonstrating the optical induction of complex photonic discrete, Bessel, Mathieu and Weber lattices in a nonlinear photorefractive medium. However, our technique itself is very general and can be transferred to optical lattices in other fields such as atom optics or cold gases in order to add such complex optical potentials as a new concept to these areas as well. (paper)

  2. Cultural evolution of combinatorial structure in ongoing artificial speech learning experiments: technical report

    NARCIS (Netherlands)

    Verhoef, T.; de Boer, B.; del Giudice, A.; Padden, C.; Kirby, S.

    2011-01-01

    Speech sounds are organized: they are both categorical and combinatorial and there are constraints on how elements can be recombined. To investigate the origins of this structure, we conducted an iterated learning experiment with humans, studying the transmission of artificial systems of sounds. In

  3. Cultural emergence of combinatorial structure in an artificial whistled language

    NARCIS (Netherlands)

    Verhoef, T.; Kirby, S.; Padden, C.; Carlson, L.; Hoelscher, C.; Shipley, T.F.

    2011-01-01

    Speech sounds within a linguistic system are both categorical and combinatorial and there are constraints on how elements can be recombined. To investigate the origins of this combinatorial structure, we conducted an iterated learning experiment with human participants, studying the transmission of

  4. Nonlinear optical properties of biomineral and biomimetical nanocomposite structures

    Science.gov (United States)

    Kulchin, Yu. N.; Bezverbny, A. V.; Bukin, O. A.; Voznesensky, S. S.; Golik, S. S.; Mayor, A. Yu.; Shchipunov, Yu. A.; Nagorny, I. G.

    2011-03-01

    The transmission of laser femtosecond pulses by spicules of marine glass sponges and monolithic amorphous nanocomposite silica biomaterials synthesized on the basis of natural polysaccharides has been experimentally investigated. The strong non-linear optical properties of these biominerals have been revealed in spectral characteristics of transmitted ultra-short pulses (USP). Comparative analysis of the transmission spectra of USP reveals that spicules exhibit much stronger non-linear optical properties than quartz optical fibers. Recently new monolithic nanocomposite silica biomaterials were synthesized on the basis of various natural polysaccharides and completely water-soluble Si-precursor. The shape of transmitted spectrums through both spicules and new nanocomposite biomaterials demonstrates major changes indicating the broadening with formation markedly strong anti-Stokes component in the output spectrum with generation of supercontinuum spectra. The carried out studies have showed that the nature combination of spongin protein with silicon dioxide extracted from seawater by silicatein protein in glass sponge spicules and monolithic nanocomposite silica biomaterials are biological and biomimetical nanocomposite materials with unique optical properties.

  5. Characterizing the structure of nonlinear systems using gradual wavelet reconstruction

    Directory of Open Access Journals (Sweden)

    C. J. Keylock

    2010-11-01

    Full Text Available In this paper, classical surrogate data methods for testing hypotheses concerning nonlinearity in time-series data are extended using a wavelet-based scheme. This gives a method for systematically exploring the properties of a signal relative to some metric or set of metrics. A signal continuum is defined from a linear variant of the original signal (same histogram and approximately the same Fourier spectrum to the exact replication of the original signal. Surrogate data are generated along this continuum with the wavelet transform fixing in place an increasing proportion of the properties of the original signal. Eventually, chaotic or nonlinear behaviour will be preserved in the surrogates. The technique permits various research questions to be answered and examples covered in the paper include identifying a threshold level at which signals or models for those signals may be considered similar on some metric, analysing the complexity of the Lorenz attractor, characterising the differential sensitivity of metrics to the presence of multifractality for a turbulence time-series, and determining the amplitude of variability of the Hölder exponents in a multifractional Brownian motion that is detectable by a calculation method. Thus, a wide class of analyses of relevance to geophysics can be undertaken within this framework.

  6. Characterizing the structure of nonlinear systems using gradual wavelet reconstruction

    Science.gov (United States)

    Keylock, C. J.

    2010-11-01

    In this paper, classical surrogate data methods for testing hypotheses concerning nonlinearity in time-series data are extended using a wavelet-based scheme. This gives a method for systematically exploring the properties of a signal relative to some metric or set of metrics. A signal continuum is defined from a linear variant of the original signal (same histogram and approximately the same Fourier spectrum) to the exact replication of the original signal. Surrogate data are generated along this continuum with the wavelet transform fixing in place an increasing proportion of the properties of the original signal. Eventually, chaotic or nonlinear behaviour will be preserved in the surrogates. The technique permits various research questions to be answered and examples covered in the paper include identifying a threshold level at which signals or models for those signals may be considered similar on some metric, analysing the complexity of the Lorenz attractor, characterising the differential sensitivity of metrics to the presence of multifractality for a turbulence time-series, and determining the amplitude of variability of the Hölder exponents in a multifractional Brownian motion that is detectable by a calculation method. Thus, a wide class of analyses of relevance to geophysics can be undertaken within this framework.

  7. Environmental assessment of the hydraulic structures by various artificialization parameters

    OpenAIRE

    Marković Milica; Marković-Branković Jelena

    2014-01-01

    The natural rivers and their flood areas are among the most complex and diverse ecosystems in the world. Traditional structural solutions in river training works are focused on basic requirements as flood protection, littoral zone protection, river bed protection, providing the space for economic development. In this study a method of anticipated assessment of certain physical impact of designed river training works is presented, perceived as global effect ...

  8. A dynamic load estimation method for nonlinear structures with unscented Kalman filter

    Science.gov (United States)

    Guo, L. N.; Ding, Y.; Wang, Z.; Xu, G. S.; Wu, B.

    2018-02-01

    A force estimation method is proposed for hysteretic nonlinear structures. The equation of motion for the nonlinear structure is represented in state space and the state variable is augmented by the unknown the time history of external force. Unscented Kalman filter (UKF) is improved for the force identification in state space considering the ill-condition characteristic in the computation of square roots for the covariance matrix. The proposed method is firstly validated by a numerical simulation study of a 3-storey nonlinear hysteretic frame excited by periodic force. Each storey is supposed to follow a nonlinear hysteretic model. The external force is identified and the measurement noise is considered in this case. Then a case of a seismically isolated building subjected to earthquake excitation and impact force is studied. The isolation layer performs nonlinearly during the earthquake excitation. Impact force between the seismically isolated structure and the retaining wall is estimated with the proposed method. Uncertainties such as measurement noise, model error in storey stiffness and unexpected environmental disturbances are considered. A real-time substructure testing of an isolated structure is conducted to verify the proposed method. In the experimental study, the linear main structure is taken as numerical substructure while the one of the isolations with additional mass is taken as the nonlinear physical substructure. The force applied by the actuator on the physical substructure is identified and compared with the measured value from the force transducer. The method proposed in this paper is also validated by shaking table test of a seismically isolated steel frame. The acceleration of the ground motion as the unknowns is identified by the proposed method. Results from both numerical simulation and experimental studies indicate that the UKF based force identification method can be used to identify external excitations effectively for the nonlinear

  9. Permeability of rapid prototyped artificial bone scaffold structures.

    Science.gov (United States)

    Lipowiecki, Marcin; Ryvolová, Markéta; Töttösi, Ákos; Kolmer, Niels; Naher, Sumsun; Brennan, Stephen A; Vázquez, Mercedes; Brabazon, Dermot

    2014-11-01

    In this work, various three-dimensional (3D) scaffolds were produced via micro-stereolithography (µ-SLA) and 3D printing (3DP) techniques. This work demonstrates the advantages and disadvantages of these two different rapid prototyping methods for production of bone scaffolds. Compared to 3DP, SLA provides for smaller feature production with better dimensional resolution and accuracy. The permeability of these structures was evaluated experimentally and via numerical simulation utilizing a newly derived Kozeny-Carman based equation for intrinsic permeability. Both experimental and simulation studies took account of porosity percentage, pore size, and pore geometry. Porosity content was varied from 30% to 70%, pore size from 0.34 mm to 3 mm, and pore geometries of cubic and hexagonal closed packed were examined. Two different fluid viscosity levels of 1 mPa · s and 3.6 mPa · s were used. The experimental and theoretical results indicated that permeability increased when larger pore size, increased fluid viscosity, and higher percentage porosity were utilized, with highest to lowest degree of significance following the same order. Higher viscosity was found to result in permeabilities 2.2 to 3.3 times higher than for water. This latter result was found to be independent of pore morphology type. As well as demonstrating method for determining design parameters most beneficial for scaffold structure design, the results also illustrate how the variations in patient's blood viscosity can be extremely important in allowing for permeability through the bone and scaffold structures. © 2014 Wiley Periodicals, Inc.

  10. Modeling Broadband Microwave Structures by Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    V. Otevrel

    2004-06-01

    Full Text Available The paper describes the exploitation of feed-forward neural networksand recurrent neural networks for replacing full-wave numerical modelsof microwave structures in complex microwave design tools. Building aneural model, attention is turned to the modeling accuracy and to theefficiency of building a model. Dealing with the accuracy, we describea method of increasing it by successive completing a training set.Neural models are mutually compared in order to highlight theiradvantages and disadvantages. As a reference model for comparisons,approximations based on standard cubic splines are used. Neural modelsare used to replace both the time-domain numeric models and thefrequency-domain ones.

  11. Artificial membranes for membrane protein purification, functionality and structure studies.

    Science.gov (United States)

    Parmar, Mayuriben J; Lousa, Carine De Marcos; Muench, Stephen P; Goldman, Adrian; Postis, Vincent L G

    2016-06-15

    Membrane proteins represent one of the most important targets for pharmaceutical companies. Unfortunately, technical limitations have long been a major hindrance in our understanding of the function and structure of such proteins. Recent years have seen the refinement of classical approaches and the emergence of new technologies that have resulted in a significant step forward in the field of membrane protein research. This review summarizes some of the current techniques used for studying membrane proteins, with overall advantages and drawbacks for each method. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Effects of Artificial Ligaments with Different Porous Structures on the Migration of BMSCs

    Directory of Open Access Journals (Sweden)

    Chun-Hui Wang

    2015-01-01

    Full Text Available Polyethylene terephthalate- (PET- based artificial ligaments (PET-ALs are commonly used in anterior cruciate ligament (ACL reconstruction surgery. The effects of different porous structures on the migration of bone marrow mesenchymal stem cells (BMSCs on artificial ligaments and the underlying mechanisms are unclear. In this study, a cell migration model was utilized to observe the migration of BMSCs on PET-ALs with different porous structures. A rabbit extra-articular graft-to-bone healing model was applied to investigate the in vivo effects of four types of PET-ALs, and a mechanical test and histological observation were performed at 4 weeks and 12 weeks. The BMSC migration area of the 5A group was significantly larger than that of the other three groups. The migration of BMSCs in the 5A group was abolished by blocking the RhoA/ROCK signaling pathway with Y27632. The in vivo study demonstrated that implantation of 5A significantly improved osseointegration. Our study explicitly demonstrates that the migration ability of BMSCs can be regulated by varying the porous structures of the artificial ligaments and suggests that this regulation is related to the RhoA/ROCK signaling pathway. Artificial ligaments prepared using a proper knitting method and line density may exhibit improved biocompatibility and clinical performance.

  13. Electrostriction in Field-Structured Composites: Basis for a Fast Artificial Muscle?

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.A.; Martin, J.E.

    1999-01-27

    The electrostriction of composites consisting of dielectric particles embedded in a gel or elastomer is discussed. It is shown that when these particles are organized by a uniaxial field before gelation, the resulting field-structured composites are expected to exhibit enhanced electrostriction in a uniform field applied along the same axis as the structuring field. The associated stresses might be large enough to form the basis of a polymer-based fast artificial muscle.

  14. Using nonlinearity and spatiotemporal property modulation to control effective structural properties: dynamic rods

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Blekhman, Iliya I.

    2007-01-01

    What are the effective properties of a generally nonlinear material or structure, whose local properties are modulated in both space and time? It has been suggested to use spatiotemporal modulation of structural properties to create materials and structures with adjustable effective properties......, and exemplified. Then simple approximate analytical expressions are derived for the effective wave speed and natural frequencies for one-dimensional wave propagation in a nonlinear elastic rod, where the spatiotemporal modulation is imposed as a high-frequency standing wave, supposed to be given. Finally the more...

  15. A Novel Rational Design Method for Laminated Composite Structures Exhibiting Complex Geometrically Nonlinear Buckling Behaviour

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2012-01-01

    This paper presents a novel FEM-based approach for fiber angle optimal design of laminated composite structures exhibiting complicated nonlinear buckling behavior, thus enabling design of lighter and more cost-effective structures. The approach accounts for the geometrically nonlinear behavior...... of the structure by utilizing path tracing response analysis up until the buckling point. The method simultaneously includes loss of stability due to bifurcation and limiting behavior and thereby avoids problems related to mode or stability type switching during optimization. The optimization formulation...

  16. A preliminary study of the nonlinearity of adhesive point-fixings in structural glass facades

    Directory of Open Access Journals (Sweden)

    Jonas Dispersyn

    2015-05-01

    Full Text Available The recent demand for architectural transparency has drastically increased the use of glass material for structural purpose. However, connections between structural glass members represent one of the most critical aspects of glass engineering, due to the fragile behaviour of this material. In that respect, research activities on adhesive point-fixings are currently on-going. The mechanical behaviour of adhesive point-fixings is affected by large nonlinearities, which are usually investigated by nonlinear Finite Element Analysis (FEA. This paper focuses on the geometrical and the material nonlinearities of adhesive point-fixings for glass structures. Firstly, the nonlinear material behaviour of two selected adhesives are investigated by means of uniaxial tension and compression tests on the bulk material. The production of specimens, test methodology and displacement rate dependency are discussed. Secondly, the nonlinear stress distribution occurring in the adhesive and the joint stiffness is investigated by means of nonlinear FEA. The effects of several parameters on the mechanical behaviour of adhesive point-fixings, such as the connection dimensions and adhesive elastic properties, are studied. The adhesive stress-strain curves resulting from the experimental campaign show that the adhesives exhibit a large nonlinear behaviour. The results show that the stress and strain at failure reduce as the displacement rate is reduced. From the numerical investigations it is concluded that large nonlinearity involves the mechanical behaviour of adhesive point-fixing which cannot be neglected. The stress distribution within the adhesive deviates from uniform nominal stresses, even in case of simple load condition, with stress peaks up to four times higher than nominal stresses.

  17. Nonlinear dynamics of breathers in the spiral structures of magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, V. V., E-mail: kiselev@imp.uran.ru; Raskovalov, A. A. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-06-15

    The structure and properties of pulsating solitons (breathers) in the spiral structures of magnets are analyzed within the sine-Gordon model. The breather core pulsations are shown to be accompanied by local shifts and oscillations of the spiral structure with the formation of “precursors” and “tails” in the moving soliton. The possibilities for the observation and excitation of breathers in the spiral structures of magnets and multiferroics are discussed.

  18. Nonlinear Finite Element Analysis of a Composite Non-Cylindrical Pressurized Aircraft Fuselage Structure

    Science.gov (United States)

    Przekop, Adam; Wu, Hsi-Yung T.; Shaw, Peter

    2014-01-01

    The Environmentally Responsible Aviation Project aims to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration are not sufficient to achieve the desired metrics. One of the airframe concepts that might dramatically improve aircraft performance is a composite-based hybrid wing body configuration. Such a concept, however, presents inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses a nonlinear finite element analysis of a large-scale test article being developed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. There are specific reasons why geometrically nonlinear analysis may be warranted for the hybrid wing body flat panel structure. In general, for sufficiently high internal pressure and/or mechanical loading, energy related to the in-plane strain may become significant relative to the bending strain energy, particularly in thin-walled areas such as the minimum gage skin extensively used in the structure under analysis. To account for this effect, a geometrically nonlinear strain-displacement relationship is needed to properly couple large out-of-plane and in-plane deformations. Depending on the loading, this nonlinear coupling mechanism manifests itself in a distinct manner in compression- and tension-dominated sections of the structure. Under significant compression, nonlinear analysis is needed to accurately predict loss of stability and postbuckled deformation. Under significant tension, the nonlinear effects account for suppression of the out-of-plane deformation due to in-plane stretching. By comparing the present results with the previously

  19. Nonlinear Dynamics of Deployable and Maneuverable Space Structures

    Science.gov (United States)

    1993-12-10

    arm structure, 5) completed the structural modelling, attribute assignment and visulization capabilities of an interactive graphic 3-D system for...structural component such as an edge or surface element. An Inquiry menu page has been implemented to satisfy such queries. with the associated information

  20. Nonlinear soil-structure interaction analysis of SIMQUAKE II. Final report

    International Nuclear Information System (INIS)

    Vaughan, D.K.; Isenberg, J.

    1982-04-01

    This report describes an analytic method for modeling of soil-structure interaction (SSI) for nuclear power plants in earthquakes and discusses its application to SSI analyses of SIMQUAKE II. The method is general and can be used to simulate a three-dimensional structural geometry, nonlinear site characteristics and arbitrary input ground shaking. The analytic approach uses the soil island concept to reduce SSI models to manageable size and cost. Nonlinear constitutive behavior of the soil is represented by the nonlinear, kinematic cap model. In addition, a debonding-rebonding soil-structure interface model is utilized to represent nonlinear effects which singificantly alter structural response in the SIMQUAKE tests. STEALTH, an explicit finite difference code, is used to perform the dynamic, soil-structure interaction analyses. Several two-dimensional posttest SSI analyses of model containment structures in SIMQUAKE II are performed and results compared with measured data. These analyses qualify the analytic method. They also show the importance of including debonding-rebonding at the soil-structure interface. Sensitivity of structural response to compaction characteristics of backfill material is indicated

  1. Non-linear finite element analyses applicable for the design of large reinforced concrete structures

    NARCIS (Netherlands)

    Engen, M; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik

    2017-01-01

    In order to make non-linear finite element analyses applicable during assessments of the ultimate load capacity or the structural reliability of large reinforced concrete structures, there is need for an efficient solution strategy with a low modelling uncertainty. A solution strategy comprises

  2. Experimental demonstration of non-reciprocal transmission in a nonlinear photonic-crystal Fano structure

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao

    2015-01-01

    We suggest and experimentally demonstrate a photonic-crystal structure with more than 30 dB difference between forward and backward transmission levels. The non-reciprocity relies on the combination of ultrafast carrier nonlinearities and spatial symmetry breaking in a Fano structure employing a ...

  3. Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure

    Science.gov (United States)

    Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris

    2017-02-01

    Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.

  4. All together now: concurrent learning of multiple structures in an artificial language.

    Science.gov (United States)

    Romberg, Alexa R; Saffran, Jenny R

    2013-01-01

    Natural languages contain many layers of sequential structure, from the distribution of phonemes within words to the distribution of phrases within utterances. However, most research modeling language acquisition using artificial languages has focused on only one type of distributional structure at a time. In two experiments, we investigated adult learning of an artificial language that contains dependencies between both adjacent and non-adjacent words. We found that learners rapidly acquired both types of regularities and that the strength of the adjacent statistics influenced learning of both adjacent and non-adjacent dependencies. Additionally, though accuracy was similar for both types of structure, participants' knowledge of the deterministic non-adjacent dependencies was more explicit than their knowledge of the probabilistic adjacent dependencies. The results are discussed in the context of current theories of statistical learning and language acquisition. © 2013 Cognitive Science Society, Inc.

  5. Joint nonlinearity effects in the design of a flexible truss structure control system

    Science.gov (United States)

    Mercadal, Mathieu

    1986-01-01

    Nonlinear effects are introduced in the dynamics of large space truss structures by the connecting joints which are designed with rather important tolerances to facilitate the assembly of the structures in space. The purpose was to develop means to investigate the nonlinear dynamics of the structures, particularly the limit cycles that might occur when active control is applied to the structures. An analytical method was sought and derived to predict the occurrence of limit cycles and to determine their stability. This method is mainly based on the quasi-linearization of every joint using describing functions. This approach was proven successful when simple dynamical systems were tested. Its applicability to larger systems depends on the amount of computations it requires, and estimates of the computational task tend to indicate that the number of individual sources of nonlinearity should be limited. Alternate analytical approaches, which do not account for every single nonlinearity, or the simulation of a simplified model of the dynamical system should, therefore, be investigated to determine a more effective way to predict limit cycles in large dynamical systems with an important number of distributed nonlinearities.

  6. Structure Detection of Nonlinear Aeroelastic Systems with Application to Aeroelastic Flight Test Data. Part 2

    Science.gov (United States)

    Kukreja, Sunil L.; Brenner, martin J.

    2006-01-01

    This viewgraph presentation reviews the 1. Motivation for the study 2. Nonlinear Model Form 3. Structure Detection 4. Least Absolute Shrinkage and Selection Operator (LASSO) 5. Objectives 6. Results 7. Assess LASSO as a Structure Detection Tool: Simulated Nonlinear Models 8. Applicability to Complex Systems: F/A-18 Active Aeroelastic Wing Flight Test Data. The authors conclude that 1. this is a novel approach for detecting the structure of highly over-parameterised nonlinear models in situations where other methods may be inadequate 2. that it is a practical significance in the analysis of aircraft dynamics during envelope expansion and could lead to more efficient control strategies and 3. this could allow greater insight into the functionality of various systems dynamics, by providing a quantitative model which is easily interpretable

  7. An Ensemble Nonlinear Model Predictive Control Algorithm in an Artificial Pancreas for People with Type 1 Diabetes

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Hagdrup, Morten; Mahmoudi, Zeinab

    2016-01-01

    This paper presents a novel ensemble nonlinear model predictive control (NMPC) algorithm for glucose regulation in type 1 diabetes. In this approach, we consider a number of scenarios describing different uncertainties, for instance meals or metabolic variations. We simulate a population of 9...

  8. Artificial Leaks in Container Closure Integrity Testing: Nonlinear Finite Element Simulation of Aperture Size Originated by a Copper Wire Sandwiched between the Stopper and the Glass Vial.

    Science.gov (United States)

    Nieto, Alejandra; Roehl, Holger; Brown, Helen; Adler, Michael; Chalus, Pascal; Mahler, Hanns-Christian

    2016-01-01

    Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against possible contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the container closure system with microorganisms under specified testing conditions. Physical CCI uses surrogate endpoints, such as coloration by dye solution ingress or gas flow (helium leakage testing). In order to correlate microbial CCI and physical CCI test methods and to evaluate the methods' capability to detect a given leak, artificial leaks are being introduced into the container closure system in a variety of different ways. In our study, artificial leaks were generated using inserted copper wires between the glass vial opening and rubber stopper. However, the insertion of copper wires introduces leaks of unknown size and shape. With nonlinear finite element simulations, the aperture size between the rubber stopper and the glass vial was calculated, depending on wire diameter and capping force. The dependency of the aperture size on the copper wire diameter was quadratic. With the data obtained, we were able to calculate the leak size and model leak shape. Our results suggest that the size as well as the shape of the artificial leaks should be taken into account when evaluating critical leak sizes, as flow rate does not, independently, correlate to hole size. Capping force also affected leak size. An increase in the capping force from 30 to 70 N resulted in a reduction of the aperture (leak size) by approximately 50% for all wire diameters. From 30 to 50 N, the reduction was approximately 33%. Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the

  9. Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong

    2002-02-01

    The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB

  10. Nonlinear structures: Explosive, soliton, and shock in a quantum electron-positron-ion magnetoplasma

    Science.gov (United States)

    Sabry, R.; Moslem, W. M.; Haas, F.; Ali, S.; Shukla, P. K.

    2008-12-01

    Theoretical and numerical studies are performed for the nonlinear structures (explosive, solitons, and shock) in quantum electron-positron-ion magnetoplasmas. For this purpose, the reductive perturbation method is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining extended quantum Zakharov-Kuznetsov equation. The latter has been solved using the generalized expansion method to obtain a set of analytical solutions, which reflects the possibility of the propagation of various nonlinear structures. The relevance of the present investigation to the white dwarfs is highlighted.

  11. Mixed integer non-linear programming and Artificial Neural Network based approach to ancillary services dispatch in competitive electricity markets

    International Nuclear Information System (INIS)

    Canizes, Bruno; Soares, João; Faria, Pedro; Vale, Zita

    2013-01-01

    Highlights: • Ancillary services market management. • Ancillary services requirements forecast based on Artificial Neural Network. • Ancillary services clearing mechanisms without complex bids and with complex bids. - Abstract: Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids

  12. Epifaunal colonization of the Loch Linnhe artificial reef: influence of substratum on epifaunal assemblage structure.

    Science.gov (United States)

    Brown, Craig J

    2005-01-01

    A one-year study was carried out off the west coast of Scotland to compare the epifaunal colonization of concrete material used in the construction of the Loch Linnhe artificial reef with that on four other types of artificial substrata (preservative treated wood, rubber, steel and PVC). Settlement panels made from each of the materials were submerged in a vertical orientation during four seasonal exposure periods. There were clear seasonal trends across the four exposure periods with higher epifaunal biodiversity on all types of panel in the spring and summer exposure periods. Epifaunal assemblage structure was significantly different between the five types of material after each three-month exposure period. Concrete, preservative treated wood and PVC tended to have the highest species diversities. A successional study was also carried out. Over a 12-month exposure period epifaunal biodiversity increased on all five materials. After 12 months of exposure, the epifaunal assemblage structure was still significantly different between materials but had become more similar indicating a successional change towards a stable assemblage on all panels. The results indicate that material type and season have a significant effect on epifaunal assemblage structure after short (three-month) periods of submersion but that these effects are reduced with increasing length of exposure. The study concludes that the choice of construction material for an artificial reef will have little effect on the long-term epifaunal community structure, as long as the material is physically stable, non-toxic and offers a high degree of habitat complexity.

  13. Structural and nonlinear optical properties of as-grown and annealed metallophthalocyanine thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zawadzka, A., E-mail: azawa@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Płóciennik, P.; Strzelecki, J. [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Pranaitis, M.; Dabos-Seignon, S.; Sahraoui, B. [LUNAM Université, Université d' Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 bd Lavoisier, 49045 Angers cedex (France)

    2013-10-31

    The paper presents the Third Harmonic Generation investigation of four metallophtalocyanine (MPc, M = Cu, Co, Mg and Zn) thin films. The investigated films were fabricated by Physical Vapor Deposition in high vacuum onto quartz substrates. MPc thin films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 150 °C or 250 °C. The Third Harmonic Generation spectra were measured to investigate the nonlinear optical properties and their dependence on the structure of the thin film after the annealing process. This approach allowed us to determine the electronic contribution of the third-order nonlinear optical susceptibility χ{sup <3>}{sub elec} of these MPc films and to investigate two theoretical models for explanation of the observed results. We find that the annealing process significantly changes the optical and structural properties of MPc thin films. - Highlights: • Metallophtalocyanine thin films were grown by Physical Vapor Deposition technique. • MPcs thin films were undergone an annealing process in ambient atmosphere. • Third Harmonic spectra were measured to investigate nonlinear optical properties. • The third order nonlinear optical susceptibility χ{sup <3>}{sub elec} was determined. • We report changing both nonlinear optical and structural properties of thin films.

  14. Some aspects of floor spectra of 1DOF nonlinear primary structures

    International Nuclear Information System (INIS)

    Politopoulos, I.; Feau, C.

    2007-01-01

    In this paper the influence of the nonlinear behaviour of the primary structure on floor spectra is investigated by means of simple models. The general trends of floor spectra for different types of nonlinear behaviour of one degree of freedom (1DOF) primary structure are shown and we point out their common futures and their differences. A special attention is given to the cases of elastoplastic and nonlinear elastic behaviours and methods to determine an equivalent linear oscillator are proposed. The properties (frequency and damping) of this equivalent linear oscillator are quite different from the properties of equivalent linear oscillators commonly considered in practice. In particular, in the case of elastoplastic behaviour, there is no frequency shift and damping is smaller than assumed by other methods commonly used. In the case of nonlinear elastic behaviour, the concept of an equivalent frequency which is a random variable is used. Finally, a design floor spectrum of primary structures, exhibiting energy dissipating nonlinear behaviour is proposed. (authors)

  15. Simulating Nonlinear Dynamics of Deployable Space Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To support NASA's vital interest in developing much larger solar array structures over the next 20 years, MotionPort LLC's Phase I SBIR project will strengthen...

  16. Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools

    Science.gov (United States)

    Januszkiewicz, Krystyna; Banachowicz, Marta

    2017-10-01

    The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.

  17. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Christopher T., E-mail: c.t.haynes@qmul.ac.uk; Burgess, David; Sundberg, Torbjorn [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Camporeale, Enrico [Multiscale Dynamics, Centrum Wiskunde and Informatica (CWI), Amsterdam (Netherlands)

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  18. Impact of artificially seismic loading on the response of building structure in various site classifications

    Directory of Open Access Journals (Sweden)

    Sandy I. Yansiku

    2017-10-01

    Spectral matching process using Etabs yields better average spectral curves than using Seismomatch. This, however, relies upon the scaling method and number of iterations. Structural analysis results show that the artificial records of Lacc North, Friuli, Petrolia and Trinidad create extreme story displacement and story acceleration for site class B, C, D and E in that order. Artificial load of Friuli, Lucerne and Sylmarf yield the largest base reactions whereas maximum story shear is caused by the artificial ground motion of Chichi, Laccnorth, Petrolia and Trinidad for the ordered site classes. The average displacement at the top story of matched accelerogram or site B is 50% below the displacement by the original El Centro record while for site C the displacement reduces 10% and remains stabled in site D but increases 7% in site E. The base reaction falls about 20%–30% in site B, C and D and rises 14% in site E. Pier moment due to matched records decreases up to 6% as compared to the influence of reference record in all sites while story acceleration experienced 17% increase in site B. The artificial time history records adversely affect on the story shear response up to 51% higher than El Centro record. The result of F.TEST shows 77% difference between both techniques. The selection of correct, appropriate and sufficient ground motion records may produce ideal artificial accelerations and it is, therefore, profound to select such records since the possible difference may affect the final design of the building structure using linear time history analysis.

  19. Improving stability and strength characteristics of framed structures with nonlinear behavior

    Science.gov (United States)

    Pezeshk, Shahram

    1990-01-01

    In this paper an optimal design procedure is introduced to improve the overall performance of nonlinear framed structures. The design methodology presented here is a multiple-objective optimization procedure whose objective functions involve the buckling eigenvalues and eigenvectors of the structure. A constant volume with bounds on the design variables is used in conjunction with an optimality criterion approach. The method provides a general tool for solving complex design problems and generally leads to structures with better limit strength and stability. Many algorithms have been developed to improve the limit strength of structures. In most applications geometrically linear analysis is employed with the consequence that overall strength of the design is overestimated. Directly optimizing the limit load of the structure would require a full nonlinear analysis at each iteration which would be prohibitively expensive. The objective of this paper is to develop an algorithm that can improve the limit-load of geometrically nonlinear framed structures while avoiding the nonlinear analysis. One of the novelties of the new design methodology is its ability to efficiently model and design structures under multiple loading conditions. These loading conditions can be different factored loads or any kind of loads that can be applied to the structure simultaneously or independently. Attention is focused on optimal design of space framed structures. Three-dimensional design problems are more complicated to carry out, but they yield insight into real behavior of the structure and can help avoiding some of the problems that might appear in planar design procedure such as the need for out-of-plane buckling constraint. Although researchers in the field of structural engineering generally agree that optimum design of three-dimension building frames especially in the seismic regions would be beneficial, methods have been slow to emerge. Most of the research in this area has dealt

  20. Comparative study of linear and nonlinear ultrasonic techniques for evaluation thermal damage of tube like structures

    International Nuclear Information System (INIS)

    Li, Weibin; Cho, Younho; Li, Xianqiang

    2013-01-01

    Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro damages in a tube like structure

  1. Higher-Order Spectral Analysis to Identify Quadratic Nonlinearities in Fluid-Structure Interaction

    Directory of Open Access Journals (Sweden)

    Imran Akhtar

    2018-01-01

    Full Text Available Hydrodynamic forces on a structure are the manifestation of fluid-structure interaction. Since this interaction is nonlinear, these forces consist of various frequencies: fundamental, harmonics, excitation, sum, and difference of these frequencies. To analyze this phenomenon, we perform numerical simulations of the flow past stationary and oscillating cylinders at low Reynolds numbers. We compute the pressure, integrate it over the surface, and obtain the lift and drag coefficients for the two configurations: stationary and transversely oscillating cylinders. Higher-order spectral analysis is performed to investigate the nonlinear interaction between the forces. We confirmed and investigated the quadratic coupling between the lift and drag coefficients and their phase relationship. We identify additional frequencies and their corresponding energy present in the flow field that appear as the manifestation of quadratic nonlinear interaction.

  2. Optimization Formulations for the Maximum Nonlinear Buckling Load of Composite Structures

    DEFF Research Database (Denmark)

    Lindgaard, Esben; Lund, Erik

    2011-01-01

    This paper focuses on criterion functions for gradient based optimization of the buckling load of laminated composite structures considering different types of buckling behaviour. A local criterion is developed, and is, together with a range of local and global criterion functions from literature......, benchmarked on a number of numerical examples of laminated composite structures for the maximization of the buckling load considering fiber angle design variables. The optimization formulations are based on either linear or geometrically nonlinear analysis and formulated as mathematical programming problems...... solved using gradient based techniques. The developed local criterion is formulated such it captures nonlinear effects upon loading and proves useful for both analysis purposes and as a criterion for use in nonlinear buckling optimization. © 2010 Springer-Verlag....

  3. Temporal structure and gain/loss asymmetry for real and artificial stock indices

    OpenAIRE

    Siven, Johannes Vitalis; Lins, Jeffrey Todd

    2009-01-01

    We demonstrate that the gain/loss asymmetry observed for stock indices vanishes if the temporal dependence structure is destroyed by scrambling the time series. We also show that an artificial index constructed by a simple average of a number of individual stocks display gain/loss asymmetry - this allows us to explicitly analyze the dependence between the index constituents. We consider mutual information and correlation based measures and show that the stock returns indeed have a higher degr...

  4. Effect of Artificial Saliva on the Apatite Structure of Eroded Enamel

    International Nuclear Information System (INIS)

    Wang, X.; Mihailova, B.; Heidrich, S.; Bismayer, U.; Wang, X.; Klocke, A.; Klocke, A.

    2011-01-01

    Citric acid-induced changes in the structure of the mineral component of enamel stored in artificial saliva were studied by attenuated total reflectance infrared spectroscopy as well as complementary electron probe microanalysis and scanning electron microscopy. The results indicate that the application of artificial saliva for several hours (the minimum time period proved is 4 h) leads to slight, partial recovering of the local structure of eroded enamel apatite. However, artificial saliva surrounding cannot stop the process of loosening and breaking of P-O-Ca atomic linkages in enamel subjected to multiple citric acid treatments. Irreversible changes in the atomic bonding within 700 nm thick enamel surface layer are observed after three times exposure for 1 min to aqueous solution of citric acid having a ph value of 2.23, with a 24-hour interval between the individual treatments. The additional treatment with basic fluoride-containing solutions (1.0% NaF) did not demonstrate a protective effect on the enamel apatite structure per se.

  5. Effect of Artificial Saliva on the Apatite Structure of Eroded Enamel

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2011-01-01

    Full Text Available Citric acid-induced changes in the structure of the mineral component of enamel stored in artificial saliva were studied by attenuated total reflectance infrared spectroscopy as well as complementary electron probe microanalysis and scanning electron microscopy. The results indicate that the application of artificial saliva for several hours (the minimum time period proved is 4 h leads to slight, partial recovering of the local structure of eroded enamel apatite. However, artificial saliva surrounding cannot stop the process of loosening and breaking of P–O–Ca atomic linkages in enamel subjected to multiple citric acid treatments. Irreversible changes in the atomic bonding within 700 nm thick enamel surface layer are observed after three times exposure for 1 min to aqueous solution of citric acid having a pH value of 2.23, with a 24-hour interval between the individual treatments. The additional treatment with basic fluoride-containing solutions (1.0% NaF did not demonstrate a protective effect on the enamel apatite structure per se.

  6. On Newton-Raphson formulation and algorithm for displacement based structural dynamics problem with quadratic damping nonlinearity

    Directory of Open Access Journals (Sweden)

    Koh Kim Jie

    2017-01-01

    Full Text Available Quadratic damping nonlinearity is challenging for displacement based structural dynamics problem as the problem is nonlinear in time derivative of the primitive variable. For such nonlinearity, the formulation of tangent stiffness matrix is not lucid in the literature. Consequently, ambiguity related to kinematics update arises when implementing the time integration-iterative algorithm. In present work, an Euler-Bernoulli beam vibration problem with quadratic damping nonlinearity is addressed as the main source of quadratic damping nonlinearity arises from drag force estimation, which is generally valid only for slender structures. Employing Newton-Raphson formulation, tangent stiffness components associated with quadratic damping nonlinearity requires velocity input for evaluation purpose. For this reason, two mathematically equivalent algorithm structures with different kinematics arrangement are tested. Both algorithm structures result in the same accuracy and convergence characteristic of solution.

  7. Band structure features of nonlinear optical yttrium aluminium borate crystal

    Czech Academy of Sciences Publication Activity Database

    Reshak, Ali H; Auluck, S.; Majchrowski, A.; Kityk, I. V.

    2008-01-01

    Roč. 10, č. 10 (2008), s. 1445-1448 ISSN 1293-2558 Institutional research plan: CEZ:AV0Z60870520 Keywords : Electronic structure * DFF * FPLAPW * LDA Subject RIV: BO - Biophysics Impact factor: 1.742, year: 2008

  8. Necessary Conditions for Nonlinear Ultrasonic Modulation Generation Given a Localized Fatigue Crack in a Plate-Like Structure

    Directory of Open Access Journals (Sweden)

    Hyung Jin Lim

    2017-02-01

    Full Text Available It has been shown that nonlinear ultrasonics can be more sensitive to local incipient defects, such as a fatigue crack, than conventional linear ultrasonics. Therefore, there is an increasing interest in utilizing nonlinear ultrasonics for structural health monitoring and nondestructive testing applications. While the conditions, which are the necessary conditions that should be satisfied for the generation of nonlinear harmonic components, are extensively studied for distributed material nonlinearity, little work has been done to understand the necessary conditions at the presence of a localized nonlinear source such as a fatigue crack. In this paper, the necessary conditions of nonlinear ultrasonic modulation generation in a plate-like structure are formulated specifically for a localized nonlinear source. Then, the correctness of the formulated necessary conditions is experimentally verified using ultrasounds obtained from aluminum plates.

  9. Residual mode correction in calibrating nonlinear damper for vibration control of flexible structures

    Science.gov (United States)

    Sun, Limin; Chen, Lin

    2017-10-01

    Residual mode correction is found crucial in calibrating linear resonant absorbers for flexible structures. The classic modal representation augmented with stiffness and inertia correction terms accounting for non-resonant modes improves the calibration accuracy and meanwhile avoids complex modal analysis of the full system. This paper explores the augmented modal representation in calibrating control devices with nonlinearity, by studying a taut cable attached with a general viscous damper and its Equivalent Dynamic Systems (EDSs), i.e. the augmented modal representations connected to the same damper. As nonlinearity is concerned, Frequency Response Functions (FRFs) of the EDSs are investigated in detail for parameter calibration, using the harmonic balance method in combination with numerical continuation. The FRFs of the EDSs and corresponding calibration results are then compared with those of the full system documented in the literature for varied structural modes, damper locations and nonlinearity. General agreement is found and in particular the EDS with both stiffness and inertia corrections (quasi-dynamic correction) performs best among available approximate methods. This indicates that the augmented modal representation although derived from linear cases is applicable to a relatively wide range of damper nonlinearity. Calibration of nonlinear devices by this means still requires numerical analysis while the efficiency is largely improved owing to the system order reduction.

  10. Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model

    Science.gov (United States)

    Vila, J.; Fernández-Sáez, J.; Zaera, R.

    2018-04-01

    In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.

  11. Structurally stable design of output regulation for a class of nonlinear systems

    Czech Academy of Sciences Publication Activity Database

    Villanueva-Novelo, C.; Čelikovský, Sergej; Castillo-Toledo, B.

    2001-01-01

    Roč. 37, č. 5 (2001), s. 517-561 ISSN 0023-5954 R&D Projects: GA ČR GA102/99/1368 Institutional research plan: AV0Z1075907 Keywords : nonlinear systems * structural stability * output regulation Subject RIV: BC - Control Systems Theory Impact factor: 0.316, year: 2001

  12. Photon-pair generation in nonlinear metal-dielectric one-dimensional photonic structures

    Czech Academy of Sciences Publication Activity Database

    Javůrek, D.; Svozilík, J.; Peřina ml., Jan

    2014-01-01

    Roč. 90, č. 5 (2014), "053813-1"-"053813-14" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * nonlinear metal -dielectric * one-dimensional photonic structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014

  13. Structural Observability and Sensor Node Selection for Complex Networks Governed by Nonlinear Balance Equations

    NARCIS (Netherlands)

    Kawano, Yu; Cao, Ming

    2017-01-01

    We define and then study the structural observability for a class of complex networks whose dynamics are governed by the nonlinear balance equations. Although related notions of observability of such complex networks have been studied before and in particular, necessary conditions have been reported

  14. Experimental validation for calcul methods of structures having shock non-linearity

    International Nuclear Information System (INIS)

    Brochard, D.; Buland, P.

    1987-01-01

    For the seismic analysis of non-linear structures, numerical methods have been developed which need to be validated on experimental results. The aim of this paper is to present the design method of a test program which results will be used for this purpose. Some applications to nuclear components will illustrate this presentation [fr

  15. Non-linear membrane finite-element analysis for lightweight structure enveloppe design

    OpenAIRE

    Muttin, Frédéric; Adés, Claude; Cousin, Philippe; Pallu de la Barrière, Philippe

    1994-01-01

    International audience; Lightweight and textile structures can be modelized by means of the small strains and great displacements non-linear membrane model. Two kinds of finite-element solvers, named explicit and implicit, have been implemented in a software program for a PC computer. Numerical tests and results applied to sail design are presented.

  16. Parallel processing techniques for finite element analysis of nonlinear large truss structures

    Science.gov (United States)

    Chien, L. S.; Sun, C. T.

    1989-01-01

    Methods were developed for parallel processing of finite element solutions of large truss structures. The parallel processing techniques were implemented in two stages, i.e., the repeated forming of the nonlinear global stiffness matrix and the solving of the global system of equations. The Sequent Balance 21000 parallel computer was employed to demonstrate the procedures and the speed-up.

  17. Practical Soil-Shallow Foundation Model for Nonlinear Structural Analysis

    OpenAIRE

    Moussa Leblouba; Salah Al Toubat; Muhammad Ekhlasur Rahman; Omer Mugheida

    2016-01-01

    Soil-shallow foundation interaction models that are incorporated into most structural analysis programs generally lack accuracy and efficiency or neglect some aspects of foundation behavior. For instance, soil-shallow foundation systems have been observed to show both small and large loops under increasing amplitude load reversals. This paper presents a practical macroelement model for soil-shallow foundation system and its stability under simultaneous horizontal and vertical loads. The model...

  18. Highly parallel methods for numerical simulation in nonlinear structural mechanics

    OpenAIRE

    Negrello, Camille

    2017-01-01

    This thesis is aimed to contribute to the adoption of virtual testing, an industrial practice still embryonic which consists in optimizing and certifying by numerical simulations the dimensioning of critical industrial structures. The virtual testing will allow colossal savings in the design of mechanical parts and a greater respect for the environment, thanks to optimized designs. In order to achieve this goal, new calculation methods must be implemented, satisfying more requirements concern...

  19. Simulation of a pulsatile total artificial heart: Development of a partitioned Fluid Structure Interaction model

    Science.gov (United States)

    Sonntag, Simon J.; Kaufmann, Tim A. S.; Büsen, Martin R.; Laumen, Marco; Linde, Torsten; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2013-04-01

    Heart disease is one of the leading causes of death in the world. Due to a shortage in donor organs artificial hearts can be a bridge to transplantation or even serve as a destination therapy for patients with terminal heart insufficiency. A pusher plate driven pulsatile membrane pump, the Total Artificial Heart (TAH) ReinHeart, is currently under development at the Institute of Applied Medical Engineering of RWTH Aachen University.This paper presents the methodology of a fully coupled three-dimensional time-dependent Fluid Structure Interaction (FSI) simulation of the TAH using a commercial partitioned block-Gauss-Seidel coupling package. Partitioned coupling of the incompressible fluid with the slender flexible membrane as well as a high fluid/structure density ratio of about unity led inherently to a deterioration of the stability (‘artificial added mass instability’). The objective was to conduct a stable simulation with high accuracy of the pumping process. In order to achieve stability, a combined resistance and pressure outlet boundary condition as well as the interface artificial compressibility method was applied. An analysis of the contact algorithm and turbulence condition is presented. Independence tests are performed for the structural and the fluid mesh, the time step size and the number of pulse cycles. Because of the large deformation of the fluid domain, a variable mesh stiffness depending on certain mesh properties was specified for the fluid elements. Adaptive remeshing was avoided. Different approaches for the mesh stiffness function are compared with respect to convergence, preservation of mesh topology and mesh quality. The resulting mesh aspect ratios, mesh expansion factors and mesh orthogonalities are evaluated in detail. The membrane motion and flow distribution of the coupled simulations are compared with a top-view recording and stereo Particle Image Velocimetry (PIV) measurements, respectively, of the actual pump.

  20. Nonlinear Time Domain Seismic Soil-Structure Interaction (SSI) Deep Soil Site Methodology Development

    International Nuclear Information System (INIS)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-01-01

    Currently the Department of Energy (DOE) and the nuclear industry perform seismic soil-structure interaction (SSI) analysis using equivalent linear numerical analysis tools. For lower levels of ground motion, these tools should produce reasonable in-structure response values for evaluation of existing and new facilities. For larger levels of ground motion these tools likely overestimate the in-structure response (and therefore structural demand) since they do not consider geometric nonlinearities (such as gaping and sliding between the soil and structure) and are limited in the ability to model nonlinear soil behavior. The current equivalent linear SSI (SASSI) analysis approach either joins the soil and structure together in both tension and compression or releases the soil from the structure for both tension and compression. It also makes linear approximations for material nonlinearities and generalizes energy absorption with viscous damping. This produces the potential for inaccurately establishing where the structural concerns exist and/or inaccurately establishing the amplitude of the in-structure responses. Seismic hazard curves at nuclear facilities have continued to increase over the years as more information has been developed on seismic sources (i.e. faults), additional information gathered on seismic events, and additional research performed to determine local site effects. Seismic hazard curves are used to develop design basis earthquakes (DBE) that are used to evaluate nuclear facility response. As the seismic hazard curves increase, the input ground motions (DBE's) used to numerically evaluation nuclear facility response increase causing larger in-structure response. As ground motions increase so does the importance of including nonlinear effects in numerical SSI models. To include material nonlinearity in the soil and geometric nonlinearity using contact (gaping and sliding) it is necessary to develop a nonlinear time domain methodology. This

  1. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    Science.gov (United States)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  2. Artificial selection for structural color on butterfly wings and comparison with natural evolution.

    Science.gov (United States)

    Wasik, Bethany R; Liew, Seng Fatt; Lilien, David A; Dinwiddie, April J; Noh, Heeso; Cao, Hui; Monteiro, Antónia

    2014-08-19

    Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales' structural color via slight modifications to the scales' physical dimensions.

  3. Coherent nonlinear structures in dense electron—positron plasma

    Science.gov (United States)

    Khan, S. A.; Wazir, Z.

    2013-02-01

    It is shown that rarefactive-type double layer structures exist in ultradense electron—positron plasma. For this purpose, an extended Korteweg de Vries equation is derived and solved analytically in the low amplitude limit by employing the appropriate fluid equations. A strong influence of quantum degeneracy pressure of electrons and positrons, quantum diffraction effects and concentration of background positive ions on double layer is noticed. It is also pointed out that the amplitude and steepness of the double layer increases with an increase in ion concentration or ion charge number. The results are examined numerically for some interesting cases of dense plasmas with illustrations.

  4. Poles tracking of weakly nonlinear structures using a Bayesian smoothing method

    Science.gov (United States)

    Stephan, Cyrille; Festjens, Hugo; Renaud, Franck; Dion, Jean-Luc

    2017-02-01

    This paper describes a method for the identification and the tracking of poles of a weakly nonlinear structure from its free responses. This method is based on a model of multichannel damped sines whose parameters evolve over time. Their variations are approximated in discrete time by a nonlinear state space model. States are estimated by an iterative process which couples a two-pass Bayesian smoother with an Expectation-Maximization (EM) algorithm. The method is applied on numerical and experimental cases. As a result, accurate frequency and damping estimates are obtained as a function of amplitude.

  5. A note on the prolongation structure of the cubically nonlinear integrable Camassa-Holm type equation

    Energy Technology Data Exchange (ETDEWEB)

    Stalin, S. [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Senthilvelan, M., E-mail: velan@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2011-10-17

    In this Letter, we formulate an exterior differential system for the newly discovered cubically nonlinear integrable Camassa-Holm type equation. From the exterior differential system we establish the integrability of this equation. We then study Cartan prolongation structure of this equation. We also discuss the method of identifying conservation laws and Baecklund transformation for this equation from the identified exterior differential system. -- Highlights: → An exterior differential system for a cubic nonlinear integrable equation is given. → The conservation laws from the exterior differential system is derived. → The Baecklund transformation from the Cartan-Ehresmann connection is obtained.

  6. Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures

    International Nuclear Information System (INIS)

    Marinković, D; Köppe, H; Gabbert, U

    2008-01-01

    Active piezoelectric thin-walled structures, especially those with a notably higher membrane than bending stiffness, are susceptible to large rotations and transverse deflections. Recent investigations conducted by a number of researchers have shown that the predicted behavior of piezoelectric structures can be significantly influenced by the assumption of large displacements and rotations of the structure, thus demanding a geometrically nonlinear formulation in order to investigate it. This paper offers a degenerated shell element and a simplified formulation that relies on small incremental steps for the geometrically nonlinear analysis of piezoelectric composite structures. A set of purely mechanical static cases is followed by a set of piezoelectric coupled static cases, both demonstrating the applicability of the proposed formulation

  7. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao

    2015-01-01

    Nanostructures that feature nonreciprocal light trans- mission are highly desirable building blocks for realizing photonic integrated circuits. Here, a simple and ultracompact photonic-crystal structure, where a waveguide is coupled to a single nanocavity, is proposed and experimentally demon......- strated, showing very efficient optical diode functionality. The key novelty of the structure is the use of cavityenhanced material nonlinearities in combination with spatial symmetry breaking and a Fano resonance to realize nonreciprocal propagation effects at ultralow power and with good wavelength...

  8. Computational Error Estimates and Adaptive Processes for Some Nonlinear Structural Problems.

    Science.gov (United States)

    1981-07-01

    24] H. B. Keller, Global Homotopies and Newton Methods ,in "Recent Advances in Numerical Analysis " ed. by C. deBoor, G. H. Golub, Academic Press...649-662. [34] W. Rheinboldt, Numerical Analysis of Continuation Methods for Nonlinear Structural Problems, Computers and Structures 13, 1981, 103-114...type interest centers on an analysis of the shape and features of the equilibrium surface. After some general remarks about such surfaces and the

  9. Nonlinear control system for optical interferometry based on variable structure control and sliding modes.

    Science.gov (United States)

    Martin, Roberta I; Sakamoto, João M S; Teixeira, Marcelo C M; Martinez, Guilherme A; Pereira, Fernando C; Kitano, Cláudio

    2017-03-20

    This work presents a novel nonlinear control system designed for interferometry based on variable structure control and sliding modes. This approach can fully compensate the nonlinear behavior of the interferometer and lead to high accuracy control for large disturbances, featuring low cost, ease of implementation and high robustness, without a reset circuit (when compared with a linear control system). A deep stability analysis was accomplished and the global asymptotic stability of the system was proved. The results showed that the nonlinear control is able to keep the interferometer in the quadrature point and suppress signal fading for arbitrary signals, sinusoidal signals, or zero input signal, even under strong external disturbances. The system showed itself suitable to characterize a multi-axis piezoelectric flextentional actuator, which displacements that are much smaller than half wavelength. The high robustness allows the system to be embedded and to operate in harsh environments as factories, bringing the interferometry outside the laboratory.

  10. Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Danxia Wang

    2015-01-01

    Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l‍(ux2dxuxx-ϕ(∫0l‍(ux2dxuxxt=q(x, in  [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.

  11. Structure-guided recombination creates an artificial family of cytochromes P450.

    Directory of Open Access Journals (Sweden)

    Christopher R Otey

    2006-05-01

    Full Text Available Creating artificial protein families affords new opportunities to explore the determinants of structure and biological function free from many of the constraints of natural selection. We have created an artificial family comprising 3,000 P450 heme proteins that correctly fold and incorporate a heme cofactor by recombining three cytochromes P450 at seven crossover locations chosen to minimize structural disruption. Members of this protein family differ from any known sequence at an average of 72 and by as many as 109 amino acids. Most (>73% of the properly folded chimeric P450 heme proteins are catalytically active peroxygenases; some are more thermostable than the parent proteins. A multiple sequence alignment of 955 chimeras, including both folded and not, is a valuable resource for sequence-structure-function studies. Logistic regression analysis of the multiple sequence alignment identifies key structural contributions to cytochrome P450 heme incorporation and peroxygenase activity and suggests possible structural differences between parents CYP102A1 and CYP102A2.

  12. Nonlinear Reduced Order Random Response Analysis of Structures with Shallow Curvature

    Science.gov (United States)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.

  13. A simple method for the design of tension structures combining topological mapping and nonlinear structural analysis

    Directory of Open Access Journals (Sweden)

    Jurado-Piña, R.

    2014-12-01

    Full Text Available When designing a tension structure the shape is not known at the beginning of the process. Form-finding methods allow the designer to obtain an initial shape from given boundary conditions. Several form-finding methods for tension structures are already available in the technical literature; all of them posses certain limitations and drawbacks and no single method is optimal for all problems. The engineer may select the proper combination of methods best suited to the designer’s needs. In this paper it is proposed a combined method to achieve satisfactory equilibrium configurations for fabric tension structures. The force density method (FDM implemented with topological mapping (TM is used as a search engine for the preliminary design, and a procedure that employs nonlinear structural analysis is proposed for final refinement of the initial equilibrium configuration hence allowing the use of the same analysis tool for both refinement of the solution and analysis under loading.Al diseñar una estructura tensada la forma inicial es normalmente desconocida. Los métodos de búsqueda de forma permiten al ingeniero obtener una geometría inicial dadas unas condiciones de contorno. Existen diferentes métodos de búsqueda de formas de equilibrio, pero todos tienen limitaciones y no existe uno único óptimo para cualquier tipo de problema. El ingeniero debe elegir la combinación de métodos que mejor se adapte a sus necesidades. En este artículo se propone un método combinado para generar configuraciones de equilibrio satisfactorias en estructuras tensadas. Como motor de búsqueda para el diseño preliminar se emplea el método de las densidades de fuerza (FDM implementado con mallado en topología (TM, y se propone un procedimiento basado en análisis no lineal de estructuras para el refinamiento de la configuración inicial de equilibrio, permitiéndose así el empleo de las mismas herramientas tanto para el refinamiento de la solución inicial

  14. Structure dynamics with regard to non-linear support behavior; Dynamische Strukturberechnung unter Beruecksichtigung nichtlinearen Lagerverhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, W. [Technischer Ueberwachungs-Verein Nord e.V., Hamburg (Germany)

    2000-07-01

    Because of modifications to a feed-water line of a power plant structural calculations of the pipework were performed. As a result of a linear (modal) analysis very high restraint forces on the supports were calculated. In order to reduce conservatisms in the calculation the model was optimized with regard to the support stiffnesses and nonlinear behavior of slide bearings, guides and shock absorbers were taken into account. The main result of the non-linear analysis, which was performed by methods of direct-integration, was that nonlinearity yields evident differences in structural frequencies and in energy dissipation (damping) in comparison to the linear analysis. The high restraint forces on the supports became smaller for most of the supports but at some points the forces of the non-linear analysis were even higher. So the conservatism of the linear analysis is not fully valid for the whole structure. The relevance of the non-linear effects in dynamic piping calculations is shown by comparing the calculation result with measurements which were performed on structures in the plant. (orig.) [German] Im Rahmen der Aenderung der Speisewasserleitung einer Kraftwerksanlage wurde die Struktur neu berechnet. Die Analysen mit einem linearen Modell (modal), das ueblicherweise verwendet wird, ergaben hohe Lasten an Halterungen. Zum Abbau von Konservativitaeten wurde eine realistischere Modellierung durch die Beruecksichtigung des nichtlinearen Verhaltens der in der Anlage befindlichen Gleitlager, Fuehrungen und Stossbremsen in der Berechnung vorgenommen. Die Untersuchungen haben ergeben, dass durch die Nichtlinearitaet das Frequenzverhalten der Struktur und die Dissipation von Energie durch Reibvorgaenge wesentlich beeinflusst werden. Des Weiteren ist festzustellen, dass aus linearen Analysen nicht uneingeschraenkt konservative Ergebnisse gewonnen werden. Die Relevanz der Beruecksichtigung des nichtlinearen Lagerverhaltens bei einer dynamischen Strukturberechnung wird

  15. Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction

    Directory of Open Access Journals (Sweden)

    E. Çelebi

    2012-11-01

    Full Text Available The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.

  16. Effects of weak nonlinearity on dispersion relations and frequency band-gaps of periodic structures

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    The analysis of the behaviour of linear periodic structures can be traced back over 300 years, to Sir Isaac Newton, and still attracts much attention. An essential feature of periodic struc-tures is the presence of frequency band-gaps, i.e. frequency ranges in which waves cannot propagate....... Determination of band-gaps and the corresponding attenuation levels is an im-portant practical problem. Most existing analytical methods in the field are based on Floquet theory; e.g. this holds for the classical Hill’s method of infinite determinants, and the method of space-harmonics. However, application....... The present work deals with analytically predicting dynamic responses for nonlinear continuous elastic periodic structures. Specifically, the effects of weak nonlinearity on the dispersion re-lation and frequency band-gaps of a periodic Bernoulli-Euler beam performing bending os-cillations are analyzed...

  17. Nonlinear evolution of single spike structure and vortex in Richtmeyer-Meshkov instability

    International Nuclear Information System (INIS)

    Fukuda, Yuko O.; Nishihara, Katsunobu; Okamoto, Masayo; Nagatomo, Hideo; Matsuoka, Chihiro; Ishizaki, Ryuichi; Sakagami, Hitoshi

    1999-01-01

    Nonlinear evolution of single spike structure and vortex in the Richtmyer-Meshkov instability is investigated for two dimensional case, and axial symmetric and non axial symmetric cases with the use of a three-dimensional hydrodynamic code. It is shown that singularity appears in the vorticity left by transmitted and reflected shocks at a corrugated interface. This singularity results in opposite sign of vorticity along the interface that causes double spiral structure of the spike. Difference of nonlinear growth rate and double spiral structure among three cases is also discussed by visualization of simulation data. In a case that there is no slip-off of initial spike axis, vorticity ring is relatively stable, but phase rotation occurs. (author)

  18. EEMD-MUSIC-Based Analysis for Natural Frequencies Identification of Structures Using Artificial and Natural Excitations

    Directory of Open Access Journals (Sweden)

    David Camarena-Martinez

    2014-01-01

    Full Text Available This paper presents a new EEMD-MUSIC- (ensemble empirical mode decomposition-multiple signal classification- based methodology to identify modal frequencies in structures ranging from free and ambient vibration signals produced by artificial and natural excitations and also considering several factors as nonstationary effects, close modal frequencies, and noisy environments, which are common situations where several techniques reported in literature fail. The EEMD and MUSIC methods are used to decompose the vibration signal into a set of IMFs (intrinsic mode functions and to identify the natural frequencies of a structure, respectively. The effectiveness of the proposed methodology has been validated and tested with synthetic signals and under real operating conditions. The experiments are focused on extracting the natural frequencies of a truss-type scaled structure and of a bridge used for both highway traffic and pedestrians. Results show the proposed methodology as a suitable solution for natural frequencies identification of structures from free and ambient vibration signals.

  19. Polarization Selectivity of Artificial Anisotropic Structures Based on DNA-Like Helices

    International Nuclear Information System (INIS)

    Semchenko, I. V.; Khakhomov, S. A.; Balmakov, A. P.

    2010-01-01

    Currently, 2D and 3D structures of different symmetries can be formed from DNA molecules. The electromagnetic properties of this new natural chiral material can be changed by metalizing DNA. Spatial structures of this type can be used in nanotechnology to prepare metamaterials for the far-UV region. It is shown by the example of an octahedron and a cube composed of DNA-like helices that these structures may exhibit polarization selectivity to electromagnetic radiation. In addition, it is suggested that the effect of the polarization selectivity of DNA-like artificial structures may also occur in the soft X-ray region for all living organisms in nature due to the universal DNA form.

  20. 3D non-linear time domain FEM–BEM approach to soil–structure interaction problems

    OpenAIRE

    Romero Ordóñez, Antonio; Galvín, Pedro; Domínguez Abascal, José

    2013-01-01

    Dynamic soil-structure interaction is concerned with the study of structures supported on flexible soils and subjected to dynamic actions. Methods combining the finite element method (FEM) and the boundary element method (BEM) are well suited to address dynamic soil-structure interaction problems. Hence, FEM-BEM models have been widely used. However, non-linear contact conditions and non-linear behaviour of the structures have not usually been considered in the analyses. This paper ...

  1. Perception of Sexual Orientation from Facial Structure: A Study with Artificial Face Models.

    Science.gov (United States)

    González-Álvarez, Julio

    2017-07-01

    Research has shown that lay people can perceive sexual orientation better than chance from face stimuli. However, the relation between facial structure and sexual orientation has been scarcely examined. Recently, an extensive morphometric study on a large sample of Canadian people (Skorska, Geniole, Vrysen, McCormick, & Bogaert, 2015) identified three (in men) and four (in women) facial features as unique multivariate predictors of sexual orientation in each sex group. The present study tested the perceptual validity of these facial traits with two experiments based on realistic artificial 3D face models created by manipulating the key parameters and presented to Spanish participants. Experiment 1 included 200 White and Black face models of both sexes. The results showed an overall accuracy (0.74) clearly above chance in a binary hetero/homosexual judgment task and significant differences depending on the race and sex of the face models. Experiment 2 produced five versions of 24 artificial faces of both sexes varying the key parameters in equal steps, and participants had to rate on a 1-7 scale how likely they thought that the depicted person had a homosexual sexual orientation. Rating scores displayed an almost perfect linear regression as a function of the parameter steps. In summary, both experiments demonstrated the perceptual validity of the seven multivariate predictors identified by Skorska et al. and open up new avenues for further research on this issue with artificial face models.

  2. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    Science.gov (United States)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  3. Nonlinear analysis of reinforced concrete structures subjected to high temperature and external load

    International Nuclear Information System (INIS)

    Sugawara, Y.; Goto, M.; Saito, K.; Suzuki, N.; Muto, A.; Ueda, M.

    1993-01-01

    A quarter of a century has passed since the finite element method was first applied to nonlinear problems concerning reinforced concrete structures, and the reliability of the analysis at ordinary temperature has been enhanced accordingly. By contrast, few studies have tried to deal with the nonlinear behavior of reinforced concrete structures subjected to high temperature and external loads simultaneously. It is generally known that the mechanical properties of concrete and steel are affected greatly by temperature. Therefore, in order to analyze the nonlinear behavior of reinforced concrete subjected to external loads at high temperature, it is necessary to construct constitutive models of the materials reflecting the influence of temperature. In this study, constitutive models of concrete and reinforcement that can express decreases in strength and stiffness at high temperature have been developed. A two-dimensional nonlinear finite element analysis program has been developed by use of these material models. The behavior of reinforced concrete beams subjected simultaneously to high temperature and shear forces were simulated using the developed analytical method. The results of the simulation agreed well with the experimental results, evidencing the validity of the developed material models and the finite element analysis program

  4. Adaptive variable structure hierarchical fuzzy control for a class of high-order nonlinear dynamic systems.

    Science.gov (United States)

    Mansouri, Mohammad; Teshnehlab, Mohammad; Aliyari Shoorehdeli, Mahdi

    2015-05-01

    In this paper, a novel adaptive hierarchical fuzzy control system based on the variable structure control is developed for a class of SISO canonical nonlinear systems in the presence of bounded disturbances. It is assumed that nonlinear functions of the systems be completely unknown. Switching surfaces are incorporated into the hierarchical fuzzy control scheme to ensure the system stability. A fuzzy soft switching system decides the operation area of the hierarchical fuzzy control and variable structure control systems. All the nonlinearly appeared parameters of conclusion parts of fuzzy blocks located in different layers of the hierarchical fuzzy control system are adjusted through adaptation laws deduced from the defined Lyapunov function. The proposed hierarchical fuzzy control system reduces the number of rules and consequently the number of tunable parameters with respect to the ordinary fuzzy control system. Global boundedness of the overall adaptive system and the desired precision are achieved using the proposed adaptive control system. In this study, an adaptive hierarchical fuzzy system is used for two objectives; it can be as a function approximator or a control system based on an intelligent-classic approach. Three theorems are proven to investigate the stability of the nonlinear dynamic systems. The important point about the proposed theorems is that they can be applied not only to hierarchical fuzzy controllers with different structures of hierarchical fuzzy controller, but also to ordinary fuzzy controllers. Therefore, the proposed algorithm is more general. To show the effectiveness of the proposed method four systems (two mechanical, one mathematical and one chaotic) are considered in simulations. Simulation results demonstrate the validity, efficiency and feasibility of the proposed approach to control of nonlinear dynamic systems. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  5. On the Response of a Nonlinear Structure to High Kurtosis Non-Gaussian Random Loadings

    Science.gov (United States)

    Rizzi, Stephen A.; Przekop, Adam; Turner, Travis L.

    2011-01-01

    This paper is a follow-on to recent work by the authors in which the response and high-cycle fatigue of a nonlinear structure subject to non-Gaussian loadings was found to vary markedly depending on the nature of the loading. There it was found that a non-Gaussian loading having a steady rate of short-duration, high-excursion peaks produced essentially the same response as would have been incurred by a Gaussian loading. In contrast, a non-Gaussian loading having the same kurtosis, but with bursts of high-excursion peaks was found to elicit a much greater response. This work is meant to answer the question of when consideration of a loading probability distribution other than Gaussian is important. The approach entailed nonlinear numerical simulation of a beam structure under Gaussian and non-Gaussian random excitations. Whether the structure responded in a Gaussian or non-Gaussian manner was determined by adherence to, or violations of, the Central Limit Theorem. Over a practical range of damping, it was found that the linear response to a non-Gaussian loading was Gaussian when the period of the system impulse response is much greater than the rate of peaks in the loading. Lower damping reduced the kurtosis, but only when the linear response was non-Gaussian. In the nonlinear regime, the response was found to be non-Gaussian for all loadings. The effect of a spring-hardening type of nonlinearity was found to limit extreme values and thereby lower the kurtosis relative to the linear response regime. In this case, lower damping gave rise to greater nonlinearity, resulting in lower kurtosis than a higher level of damping.

  6. An ERP study of structural anomalies in native and semantic free artificial grammar: evidence for shared processing mechanisms.

    Science.gov (United States)

    Tabullo, Ángel; Sevilla, Yamila; Segura, Enrique; Zanutto, Silvano; Wainselboim, Alejandro

    2013-08-21

    Artificial grammars have been widely applied to the study of sequential learning in language, but few studies have directly compared the neural correlates of artificial and native grammar processing. In this study, we examined Event Related Potentials (ERPs) elicited by structural anomalies in semantic-free artificial grammar sequences and sentences in the subjects' native language (Spanish). Although ERPs differed during early stages, we observed similar posterior negativities (N400) and P600 effects in a late stage. We interpret these results as evidence of at least partially shared neural mechanisms for processing of language and artificial grammars. We suggest that in both the natural and artificial grammars, the N400 and P600 components we observed can be explained as the result of unfulfilled predictions about incoming stimuli. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Structural Investigation of Biological and Semiconductor Nanostructures with Nonlinear Multicontrast Microscopy

    Science.gov (United States)

    Cisek, Richard

    Physical and functional properties of advanced nano-composite materials and biological structures are determined by self-organized atoms and molecules into nanostructures and in turn by microscopic organization of the nanostructures into assemblies of higher structural complexity. Therefore, microscopes are indispensable tools for structural investigations at various levels of organization. In this work, novel nonlinear optical microscopy methods were developed to non-invasively study structural organization at the nanoscopic and microscopic levels. Atomic organization of semiconductor nanowires, molecular organization of amylose biocrystallites in starch granules, and microscopic organization of several photosynthetic organisms was elucidated. The structure of ZnSe nanowires, key components in many modern nanodevices, was investigated using polarization harmonic generation microscopy. Based on nonlinear optical properties of the different crystal lattices, zinc blende and wurtzite nanowires were differentiated, and the three-dimensional orientation of the zinc blende nanowires could be found. The structure of starch granules, a model biocrystal, important in food as well as health sciences, was also investigated using polarization harmonic microscopy. The study was combined with ab initio calculations using the crystal structures of amylose A and B, revealing that second harmonic signals originate from the hydroxide and hydrogen bonds in the starch granules. Visualization of several photosynthetic organisms including the green algae, Chlamydomonas reinhardtii, two species of cyanobacteria, Leptolyngbya sp. and Anabaena sp., aggregates of light-harvesting pigment-protein complexes as well as chloroplasts from green plants were also explored, revealing that future nonlinear microscopy applications could include structural studies of cell walls, the Chlamydomonas eyespot, and photosynthetic membranes. In this study, several nonlinear optical microscopy modalities

  8. Model Reduction of Nonlinear Problems in Structural Mechanics: Towards a Finite Element Tyre Model for Multibody Simulation

    OpenAIRE

    Herkt, Sabrina

    2008-01-01

    This thesis shows an approach to combine the advantages of MBS tyre models and FEM models for the use in full vehicle simulations. The procedure proposed in this thesis aims to describe a nonlinear structure with a Finite Element approach combined with nonlinear model reduction methods. Unlike most model reduction methods - as the frequently used Craig-Bampton approach - the method of Proper Orthogonal Decomposition (POD) offers a projection basis suitable for nonlinear models. For the linear...

  9. Nonlinear optical properties and nonlinear optical probes of organic materials

    Science.gov (United States)

    Meredith, Gerald R.

    1992-02-01

    Nonlinear optical processes and electro-optical effects are expected to have increasing importance as the information age matures and photonics augment electronics in various high density and high bandwidth technologies. Whereas for electronics the emphasis is in construction of smaller device structures from a few parent materials, for organic materials the direction of materials research has been reversed. For some time it's been known that some molecular structures engender exceptionally large molecular nonlinear-polarization responses. If such molecules could be assembled in convenient, versatile, and reliable ways, the resulting materials would be very useful or even enabling in various photonics applications. The mature science and art of chemistry allows very good control over molecular composition and structure and, as will be illustrated in this talk, our knowledge of hyperpolarizability structure- property relationships is advancing rapidly. However, the science of fabrication and arrangement in molecular ensembles and polymers is rather primitive. Thus the goal to develop the appropriately structured materials for utilization in nonlinear and electro-optics has fostered the widespread use of nonlinear optical processes to probe the nature of supramolecular order and assembly. Examples of intrinsic and artificially assembled structures of crystals, molecular aggregates, polymeric orientational electrets and molecular mono- and multi-layer thin films will be shown. Nonlinear optical processes, primarily second-harmonic generation, provide unique probes of these structures, their assembly, and evolution.

  10. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    Directory of Open Access Journals (Sweden)

    Li-Yang Zheng

    2013-10-01

    Full Text Available We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  11. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    KAUST Repository

    Zheng, L.-Y.

    2013-10-18

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  12. Molecular studies and plastic optical fiber device structures for nonlinear optical applications

    Science.gov (United States)

    Dirk, Carl W.; Nagarur, Aruna R.; Lu, Jin J.; Zhang, Lixia; Kalamegham, Priya; Fonseca, Joe; Gopalan, Saytha; Townsend, Scott; Gonzalez, Gabriel; Craig, Patrick; Rosales, Monica; Green, Leslie; Chan, Karen; Twieg, Robert J.; Ermer, Susan P.; Leung, Doris S.; Lovejoy, Steven M.; Lacroix, Suzanne; Godbout, Nicolas; Monette, Etienne

    1995-10-01

    Summarized are two project areas: First, the development of a quantitative structure property relationship for analyzing thermal decomposition differential scanning calorimetry data of electro-optic dyes is presented. The QSPR relationship suggest that thermal decomposition can be effectively correlated with structure by considering the kinds of atoms, their hybridization, and their nearest neighbor bonded atoms. Second, the simple preparation of clad plastic optical fibers (POF) is discussed with the intention of use for nonlinear optical applications. We discuss preparation techniques for single core and multiple core POF, and present some recent data on index profiles and the optimization of thermal stability in acrylate-based POF structures.

  13. Laser-induced generation of surface periodic structures in media with nonlinear diffusion

    Science.gov (United States)

    Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.

    2017-12-01

    A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.

  14. Nonlinear ultrasonic guided waves for stress monitoring in prestressing tendons for post-tensioned concrete structures

    Science.gov (United States)

    Bartoli, Ivan; Nucera, Claudio; Srivastava, Ankit; Salamone, Salvatore; Phillips, Robert; Lanza di Scalea, Francesco; Coccia, Stefano; Sikorsky, Charles S.

    2009-03-01

    Many bridges, including 90% of the California inventory, are post-tensioned box-girders concrete structures. Prestressing tendons are the main load-carrying components of these and other post-tensioned structures. Despite their criticality, much research is needed to develop and deploy techniques able to provide real-time information on the level of prestress in order to detect dangerous stress losses. In collaboration with Caltrans, UCSD is investigating the combination of ultrasonic guided waves and embedded sensors to provide both prestress level monitoring and defect detection capabilities in concrete-embedded PS tendons. This paper presents a technique based on nonlinear ultrasonic guided waves in the 100 kHz - 2 MHz range for monitoring prestress levels in 7-wire PS tendons. The technique relies on the fact that an axial stress on the tendon generates a proportional radial stress between adjacent wires (interwire stress). In turn, the interwire stress modulates nonlinear effects in ultrasonic wave propagation through both the presence of finite strains and the interwire contact. The nonlinear ultrasonic behavior of the tendon under changing levels of prestress is monitored by tracking higher-order harmonics at (nω) arising under a fundamental guided-wave excitation at (ω). Experimental results will be presented to identify (a) ranges of fundamental excitations at (ω) producing maximum nonlinear response, and (b) optimum lay-out of the transmitting and the receiving transducers within the test tendons. Compared to alternative methods based on linear ultrasonic features, the proposed nonlinear ultrasonic technique appears more sensitive to prestress levels and more robust against changing excitation power at the transmitting transducer or changing transducer/tendon bond conditions.

  15. A study on identification of nonlinear structure by experimental modal analysis

    International Nuclear Information System (INIS)

    Sone, Akira; Suzuki, Kohei; Nakamura, Hajime.

    1990-01-01

    In this paper, identification techniques based on the experimental modal analysis for the equivalent modal parameters of nonlinear structures are examined from a practical viewpoint. First, using a simple cantilever model with gap or friction at the supported end, the gain characteristics of transfer function are evaluated through the sinusoidal sweep test and random wave test. Second, the equivalent modal parameters such as natural frequency and damping ratio are estimated by two types of identification techniques: ARMA (autoregressive/moving average) model fitting and curve fitting with iterative calculations. From the comparison of the response of the model obtained by the random excitation test and numerical calculation using the equivalent modal parameters, it has been clarified that the ARMA model fitting can be applied to linearized modal parameter identification for nonlinear structures. (author)

  16. An explicit method in non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1981-01-01

    The explicit method of analysis in the time domain is ideally suited for the solution of transient dynamic non-linear problems. Though the method is not new, its application to seismic soil-structure interaction is relatively new and deserving of public discussion. This paper describes the principles of the explicit approach in soil-structure interaction and it presents a simple algorithm that can be used in the development of explicit computer codes. The paper also discusses some of the practical considerations like non-reflecting boundaries and time steps. The practicality of the method is demonstrated using a computer code, PRESS, which is used to compare the treatment of strain-dependent properties using average strain levels over the whole time history (the equivalent linear method) and using the actual strain levels at every time step to modify the soil properties (non-linear method). (orig.)

  17. Numerical analysis of nonlinear behavior of steel-concrete composite structures

    Directory of Open Access Journals (Sweden)

    Í.J.M. LEMES

    Full Text Available Abstract This paper presents the development of an effective numerical formulation for the analysis of steel-concrete composite structures considering geometric and materials nonlinear effects. Thus, a methodology based on Refined Plastic Hinge Method (RPHM was developed and the stiffness parameters were obtained by homogenization of cross-section. The evaluation of structural elements strength is done through the Strain Compatibility Method (SCM. The Newton-Raphson Method with path-following strategies is adopted to solve nonlinear global and local (in cross-section level equations. The results are compared with experimental and numerical database presents in literature and a good accuracy is observed in composite cross sections, composite columns, and composite portal frames.

  18. The Lie-Poisson structure of integrable classical non-linear sigma models

    International Nuclear Information System (INIS)

    Bordemann, M.; Forger, M.; Schaeper, U.; Laartz, J.

    1993-01-01

    The canonical structure of classical non-linear sigma models on Riemannian symmetric spaces, which constitute the most general class of classical non-linear sigma models known to be integrable, is shown to be governed by a fundamental Poisson bracket relation that fits into the r-s-matrix formalism for non-ultralocal integrable models first discussed by Maillet. The matrices r and s are computed explicitly and, being field dependent, satisfy fundamental Poisson bracket relations of their own, which can be expressed in terms of a new numerical matrix c. It is proposed that all these Poisson brackets taken together are representation conditions for a new kind of algebra which, for this class of models, replaces the classical Yang-Baxter algebra governing the canonical structure of ultralocal models. The Poisson brackets for the transition matrices are also computed, and the notorious regularization problem associated with the definition of the Poisson brackets for the monodromy matrices is discussed. (orig.)

  19. Nonlinear analysis techniques for use in the assessment of high-level waste tank structures

    International Nuclear Information System (INIS)

    Moore, C.J.; Julyk, L.J.; Fox, G.L.; Dyrness, A.D.

    1991-01-01

    Reinforced concrete in combination with a steel liner has had a wide application to structures containing hazardous material. The buried double-shell waste storage tanks at the US Department of Energy's Hanford Site use this construction method. The generation and potential ignition of combustible gases within the primary tank is postulated to develop beyond-design-basis internal pressure and possible impact loading. The scope of this paper includes the illustration of analysis techniques for the assessment of these beyond-design-basis loadings. The analysis techniques include the coupling of the gas dynamics with the structural response, the treatment of reinforced concrete in regimes of inelastic behavior, and the treatment of geometric nonlinearities. The techniques and software tools presented provide a powerful nonlinear analysis capability for storage tanks

  20. Stationary solutions to a system of size-structured populations with nonlinear growth rate.

    Science.gov (United States)

    Kato, Nobuyuki

    2012-01-01

    We study stationary solutions to a system of size-structured population models with nonlinear growth rate. Several characterizations of stationary solutions are provided. It is shown that the steady-state problem can be converted into different problems such as two types of eigenvalue problems and a fixed-point problem. In the two-species case, we give an existence result of nonzero stationary solutions by using the fixed-point problem.

  1. DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Hesthaven, Jan; Bingham, Harry B.

    2008-01-01

    equations in complex and curvilinear geometries which amends the application range of previous numerical models that have been based on structured Cartesian grids. The Boussinesq method provides the basis for the accurate description of fully nonlinear and dispersive water waves in both shallow and deep...... and absorbed in the interior of the computational domain using a flexible relaxation technique applied on the free surface variables....

  2. [Nonlinear effects on population dynamics related to age structure and fishery impact].

    Science.gov (United States)

    Frisman, E Ia; Last, E V

    2005-01-01

    Population dynamics of commercial fish populations with an age structure was studied by the example of salmons. The relationship between the amount of catch on fishing efforts and total abundance of a stock fished is described by a nonlinear "trophic" function. Special attention is given to the analysis of population dynamics stability under conditions for maximum profit. Simulation results are compared to statistical data on the catch of Pacific salmon species in the Bering Sea.

  3. Choice of Measurement Locations of Nonlinear Structures Using Proper Orthogonal Modes and Effective Independence Distribution Vector

    Directory of Open Access Journals (Sweden)

    T. G. Ritto

    2014-01-01

    Full Text Available This paper proposes a methodology to automatically choose the measurement locations of a nonlinear structure/equipment that needs to be monitored while operating. The response of the computational model (or experimental data is used to construct the proper orthogonal modes applying the proper orthogonal decomposition (POD, and the effective independence distribution vector (EIDV procedure is employed to eliminate, iteratively, locations that contribute less for the independence of the target proper orthogonal modes.

  4. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Chen, J.H.; Van Dyck, D.

    2010-01-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  5. NONSAP, Finite Element Calculation for Nonlinear Static and Dynamic Analysis of Complex Structures

    International Nuclear Information System (INIS)

    Bathe, K.J.; Wilson, E.L.; Iding, R.H.

    1978-01-01

    1 - Description of problem or function: NONSAP is a general finite element program for the nonlinear static and dynamic analysis of complex structures. The program is very flexible and was designed to be extended and modified by the user. In particular the program can easily be modified to use a different formulation of the equations of motions, different time integration operators and other additional options. 2 - Method of solution: The system response is calculated using an incremental solution of the equations of equilibrium with the Wilson theta or Newmark time integration scheme. Before the time integration is carried out, the constant structure matrices, namely the linear effective stiffness matrix, the linear stiffness, mass and damping matrices, whichever is applicable, and the load vectors are assembled and stored on low-speed storage. During the step-by- step solution the linear effective stiffness matrix is updated for the nonlinearities in the system. Therefore, only the nonlinearities are dealt with in the time integration. The program presently contains the following element types: a) three-dimensional truss element; b) two-dimensional plane stress and plane strain element; c) two-dimensional axisymmetric shell or solid element; d) three-dimensional solid element; e) three-dimensional thick shell element. The nonlinearities may be due to large displacements, large strains, and nonlinear material behaviour. The material descriptions presently available are: (for the truss elements) a) linear elastic; b) nonlinear elastic; (for the two-dimensional elements) a) isotropic linear elastic; b) orthotropic linear elastic; c) Mooney-Rivlin material; d) elastic-plastic materials, von Mises or Drucker-Prager yield conditions; e) variable tangent moduli model; f) curve description model (with tension cut-off); (for the three-dimensional elements) a) isotropic linear elastic; b) curve description model. Input data consists of the global coordinates and degrees of

  6. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  7. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2014-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  8. Control of polarization rotation in nonlinear propagation of fully structured light

    Science.gov (United States)

    Gibson, Christopher J.; Bevington, Patrick; Oppo, Gian-Luca; Yao, Alison M.

    2018-03-01

    Knowing and controlling the spatial polarization distribution of a beam is of importance in applications such as optical tweezing, imaging, material processing, and communications. Here we show how the polarization distribution is affected by both linear and nonlinear (self-focusing) propagation. We derive an analytical expression for the polarization rotation of fully structured light (FSL) beams during linear propagation and show that the observed rotation is due entirely to the difference in Gouy phase between the two eigenmodes comprising the FSL beams, in excellent agreement with numerical simulations. We also explore the effect of cross-phase modulation due to a self-focusing (Kerr) nonlinearity and show that polarization rotation can be controlled by changing the eigenmodes of the superposition, and physical parameters such as the beam size, the amount of Kerr nonlinearity, and the input power. Finally, we show that by biasing cylindrical vector beams to have elliptical polarization, we can vary the polarization state from radial through spiral to azimuthal using nonlinear propagation.

  9. Flow-induced vibration study by exploiting inherent nonlinearity of structure

    Science.gov (United States)

    Seyed-Aghazadeh, Banafsheh; Samandari, Hamed

    2017-11-01

    Elastically mounted prismatic structures placed in flow can undergo Flow-Induced Vibration (FIV). Flow forces acting on these structures consist of a main frequency, close to the natural frequency of the system, as well as its higher harmonic components. Mostly in FIV studies, the structural stiffness is provided through linear springs. The linearity of the structure limits occurrence of potential large amplitude oscillations at higher harmonics of the main frequency. In this study, we propose implementing an inherently nonlinear structure in FIV study of a prismatic structure. Through this unique design, excitation of higher harmonics and coupling between those and natural frequencies of the system can be achieved. A square cross-section prism was mounted on the upstream tip of an elastic beam with inherent nonlinearity and was placed in the test-section of a subsonic wind tunnel. The tests were conducted in a Reynolds number range of 150structural configurations for coupling between the higher harmonics and natural frequencies of the system. This project was funded by Office for the Advancement of Research & Scholarship, Miami University and James R. Myers Endowment fund.

  10. DIESYS—dynamically non-linear dielectric elastomer energy generating synergetic structures: perspectives and challenges

    International Nuclear Information System (INIS)

    Antoniadis, I A; Venetsanos, D T; Papaspyridis, F G

    2013-01-01

    Dielectric elastomer based generators (DEGs) offer some unique properties over energy generators based on other materials. These properties include high energy density, high efficiency over a broad range of frequencies, low compliance, the ability to produce high strain, large area, low cost films with no toxic materials and wide range environmental tolerance. As further shown in this paper, DEG materials can also exhibit a non-linear dynamic behavior, enhancing broad-band energy transfer. More specifically, dielectric elastomer (DE) energy generating synergetic structures (DIESYS) are considered as dynamic energy absorbers. Two elementary characteristic DIESYS design concepts are examined, leading to a typical antagonistic configuration for in-plane oscillations and a typical synagonistic configuration for out-of-plane oscillations. Originally, all the DE elements of the structure are assumed to be always in tension during all the phases of the harvesting cycle, conforming to the traditional concept of operation of DE structures. As shown in this paper, the traditional always-in-tension concept results in a linear dynamic system response, despite the fact that the implemented (DE) parts are considered to have been made of a non-linear (hyperelastic) material. In contrast, the proposed loose-part concept ensures the appearance of a non-linear broad-band system response, enhancing energy transfer from the environmental source. (paper)

  11. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    Science.gov (United States)

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Near-field soil-structure interaction analysis using nonlinear hybrid modeling

    International Nuclear Information System (INIS)

    Katayama, I.; Chen, C.; Lee, Y.J.; Jean, W.Y.; Penzien, J.

    1989-01-01

    The hybrid modeling method (Gupta and Penzien 1980) and associated analysis procedure for solving a three-dimensional soil-structure interaction problem was developed by Gupta and Penzien (1981) and Gupta et al.(1982). Subsequently, successive modifications have been made to the original modeling method and analysis procedure allowing more general treatment of the SSI problem (Penzien, 1988). Through many correlation studies of field test data obtained under forced-vibration and earthquake-excitation conditions, it has been shown that the HASSI programs can effectively predict the dynamic response of a soil-structure system, if realistic soil parameters are adopted. In the above, the entire structure-foundation system is considered to respond in a linear fashion. Since the reflected three-dimensional waves at the soil-structure interface decays very rapidly with distance away from the structure (Katayama, 1987 (a)), the response of the soil close to the base of the structure may greatly affect its response; therefore, proper modeling of the non-linear soil behavior characteristic is essential. The nonlinear behavior of near-field soil has been taken into consideration in HASSI-7 by the standard equivalent linearization procedures used in programs SHAKE and FLUSH

  13. Earthquake response analysis of embedded reactor building considering soil-structure separation and nonlinearity of soil

    International Nuclear Information System (INIS)

    Ichikawa, T.; Hayashi, Y.; Nakai, S.

    1987-01-01

    In the earthquake response analysis for a rigid and massive structure as a nuclear reactor building, it is important to estimate the effect of soil-structure interaction (SSI) appropriately. In case of strong earthquakes, the nonlinearity, such as the wall-ground separation, the base mat uplift of sliding, makes the behavior of the soil-structure system complex. But, if the nuclear reactor building is embedded in a relatively soft ground with surface layer, the wall-ground separation plays the most important role in the response of soil-structure system. Because, it is expected that the base uplift and slide would be less significant due to the effect of the embedment, and the wall-ground friction is usually neglected in design. But, the nonlinearity of ground may have some effect on the wall-ground separation and the response of the structure. These problems have been studied by use of FEM. Others used joint elements between the ground and the structure which does not resist tensile force. Others studied the effect of wall-ground separation with non-tension springs. But the relationship between the ground condition and the effect of the separation has not been clarified yet. To clarify the effect the analyses by FE model and lumped mass model (sway-rocking model) are performed and compared. The key parameter is the ground profile, namely the stiffness of the side soil

  14. Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives

    KAUST Repository

    Jeong, Hoon Eui

    2009-08-01

    An overview of the recent progress in the development of gecko-inspired synthetic dry adhesives is presented, with particular emphasis on two major structural elements of nanohairs and nanotubes. With the advance of nanofabrication techniques, recently developed dry adhesives made of nanohairs and nanotubes show excellent adhesion strength, smart directional adhesion as well as rough surface adaptability by better mimicking gecko foot hairs. After a brief description of the requirements for high-performance artificial dry adhesives, a variety of synthetic adhesives are described based on materials and structural features of the gecko-inspired nanostructures. In addition, current challenges and future directions towards an optimized synthetic dry adhesive are presented. © 2009 Elsevier Ltd. All rights reserved.

  15. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    Science.gov (United States)

    Bainbridge, Matthew B.; Webb, John K.

    2017-06-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one `artificial intelligence' process: a genetic algorithm (Genetic Voigt Profile FIT, gvpfit); non-linear least-squares with parameter constraints (vpfit); and Bayesian model averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. gvpfit is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. and King et al.

  16. Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations

    Science.gov (United States)

    Sotoudeh, Zahra

    2011-07-01

    Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis. This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables. In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research. This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.

  17. On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts

    Science.gov (United States)

    Osmane, Adnane; Wilson, Lynn B., III; Blum, Lauren; Pulkkinen, Tuija I.

    2016-01-01

    Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave-particle interactions. We show that wave parameters, consistent with large amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (greater than 1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles Theta (sub k)B greater than 50 degrees and phase-speeds v(sub phi) greater than or equal to c/9. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons (E greater than or equal to 100 keV) on kinetic timescales, which is much faster than previously inferred.

  18. Prediction of the Fundamental Period of Infilled RC Frame Structures Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Panagiotis G. Asteris

    2016-01-01

    Full Text Available The fundamental period is one of the most critical parameters for the seismic design of structures. There are several literature approaches for its estimation which often conflict with each other, making their use questionable. Furthermore, the majority of these approaches do not take into account the presence of infill walls into the structure despite the fact that infill walls increase the stiffness and mass of structure leading to significant changes in the fundamental period. In the present paper, artificial neural networks (ANNs are used to predict the fundamental period of infilled reinforced concrete (RC structures. For the training and the validation of the ANN, a large data set is used based on a detailed investigation of the parameters that affect the fundamental period of RC structures. The comparison of the predicted values with analytical ones indicates the potential of using ANNs for the prediction of the fundamental period of infilled RC frame structures taking into account the crucial parameters that influence its value.

  19. Artificial neural networks aided conceptual stage design of water harvesting structures

    Directory of Open Access Journals (Sweden)

    Vinay Chandwani

    2016-09-01

    Full Text Available The paper presents artificial neural networks (ANNs based methodology for ascertaining the structural parameters of water harvesting structures (WHS at the conceptual stage of design. The ANN is trained using exemplar patterns generated using an in-house MSExcel based design program, to draw a functional relationship between the five inputs design parameters namely, peak flood discharge, safe bearing capacity of strata, length of structure, height of structure and silt factor and four outputs namely, top width, bottom width, foundation depth and flood lift representing the structural parameters of WHS. The results of the study show that, the structural parameters of the WHS predicted using ANN model are in close agreement with the actual field parameters. The versatility of ANN to map complex or complex unknown relationships has been proven in the study. A parametric sensitivity study is also performed to assess the most significant design parameter. The study holistically presents a neural network based decision support tool that can be used to accurately estimate the major design parameters of the WHS at the conceptual stage of design in quick time, aiding the engineer-in-charge to conveniently forecast the budget requirements and minimize the labor involved during the subsequent phases of analysis and design.

  20. A 3-NODE PIEZOELECTRIC SHELL ELEMENT FOR LINEAR AND GEOMETRICALLY NONLINEAR DYNAMIC ANALYSIS OF SMART STRUCTURES

    Directory of Open Access Journals (Sweden)

    Gil Rama

    2017-04-01

    Full Text Available Composite laminates consisting of passive and multi-functional materials represent a powerful material system. Passive layers could be made of isotropic materials or fiber-reinforced composites, while piezoelectric ceramics are considered here as a multi-functional material. The paper is focused on  linear and geometrically nonlinear dynamic analysis of smart structures made of such a material system. For this purpose, a linear 3-node shell element is used. It employs the Mindlin-Reissner kinematics and the discrete shear gap (DSG technique to alleviate the transverse shear locking effects. The electric potential is assumed to vary linearly through the thickness for each piezoelectric layer. A co-rotational formulation is used to handle the geometrically nonlinear effects. A number of examples involving actuator and sensor application of piezoelectric layers are considered. For the validation purposes, the results available in the literature and those computed in Abaqus are used as a reference.

  1. Nonlinear acoustoelectric interactions in GaAs/LiNbO3 structures

    Science.gov (United States)

    Rotter, M.; Wixforth, A.; Govorov, A. O.; Ruile, W.; Bernklau, D.; Riechert, H.

    1999-08-01

    Surface acoustic waves accompanied by very large piezoelectric fields can be created in a semiconductor/piezoelectric hybrid system. Such intense waves interact with the mobile carries in semiconductor quantum well structures in a manner being strongly governed by nonlinear effects. At high sound intensities, a formerly homogeneous two-dimensional electron system breaks up into well confined stripes surfing the wave. As a result, we observe a strong reduction of electronic sound attenuation. On the other hand, large momentum transfer between the electron system and the wave results in nonlinear acoustoelectric effects and acoustoelectric amplification. We describe our experimental findings in terms of a generalized theory of the acoustoelectric effect and discuss the importance for possible device applications.

  2. Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures with Trial Vector Derivatives

    Directory of Open Access Journals (Sweden)

    Wolfgang Witteveen

    2014-01-01

    Full Text Available The mechanical response of multilayer sheet structures, such as leaf springs or car bodies, is largely determined by the nonlinear contact and friction forces between the sheets involved. Conventional computational approaches based on classical reduction techniques or the direct finite element approach have an inefficient balance between computational time and accuracy. In the present contribution, the method of trial vector derivatives is applied and extended in order to obtain a-priori trial vectors for the model reduction which are suitable for determining the nonlinearities in the joints of the reduced system. Findings show that the result quality in terms of displacements and contact forces is comparable to the direct finite element method but the computational effort is extremely low due to the model order reduction. Two numerical studies are presented to underline the method’s accuracy and efficiency. In conclusion, this approach is discussed with respect to the existing body of literature.

  3. On the new soliton and optical wave structures to some nonlinear evolution equations

    Science.gov (United States)

    Bulut, Hasan; Sulaiman, Tukur Abdulkadir; Baskonus, Haci Mehmet

    2017-11-01

    In this study, with the aid of the Wolfram Mathematica software, the powerful sine-Gordon expansion method is utilized to search for the solutions to some important nonlinear mathematical models arising in nonlinear sciences, namely, the (2 + 1) -dimensional Zakharov-Kuznetsov modified equal width equation, the cubic Boussinesq equation and the modified regularized long wave equation. We successfully obtain some new soliton, singular soliton, singular periodic waves and kink-type solutions with complex hyperbolic structures to these equations. We also present the two- and three-dimensional shapes of all the solutions obtained in this study. We further give the physical meaning of all the obtained solutions. We compare our results with the existing results in the literature.

  4. Multistable Microactuators Functioning on the Basis of Electromagnetic Lorentz Force: Nonlinear Structural and Electrothermal Analyses

    International Nuclear Information System (INIS)

    Han, Jeong Sam

    2010-01-01

    In this paper, the design and nonlinear simulation of a multistable electromagnetic microactuator, which provides four stable equilibrium positions within its operating range, have been discussed. Quadstable actuator motion has been made possible by using both X- and Y-directional bistable structures with snapping curved beams. Two pairs of the curved beams are attached to an inner frame in both X- and Y-directions to realize independent bistable behavior in each direction. For the actuation of the actuator at the micrometer scale, an electromagnetic actuation method in which Lorentz force is taken into consideration was used. By using this method, micrometer-stroke quadstability in a plane parallel to a substrate was possible. The feasibility of designing an actuator that can realize quadstable motion by using the electromagnetic actuation method has been thoroughly clarified by performing nonlinear static and dynamic analyses and electrothermal coupled-field analysis of the multistable microactuator

  5. Pulse carving using nanocavity-enhanced nonlinear effects in photonic crystal Fano structures

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Yu, Yi; Hu, Hao

    2018-01-01

    We experimentally demonstrate the use of a photonic crystal Fano resonance for carving-out short pulses from long-duration input pulses. This is achieved by exploiting an asymmetric Fano resonance combined with carrier-induced nonlinear effects in a photonic crystal membrane structure. The use...... of a nanocavity concentrates the input field to a very small volume leading to an efficient nonlinear resonance shift that carves a short pulse out of the input pulse. Here, we demonstrate shortening of ∼500  ps and ∼100  ps long pulses to ∼30  ps and ∼20  ps pulses, respectively. Furthermore, we demonstrate...

  6. Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure

    Science.gov (United States)

    Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.

    2013-01-01

    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.

  7. Experimental investigation of the seismic control of a nonlinear soil-structure system using MR dampers

    International Nuclear Information System (INIS)

    Li, Hui; Wang, Jian

    2011-01-01

    This paper reports the results of an experimental study conducted to demonstrate the feasibility and capability of magnetorheological (MR) dampers commanded by a decentralized control algorithm for seismic control of nonlinear civil structures considering soil-structure interaction (SSI). A two-story reinforced concrete (RC) frame resting in a laminar soil container is employed as the test specimen, and two MR dampers equipped in the first story are used to mitigate the response of this frame subjected to various intensity seismic excitations. A hyperbolic tangent function is used to represent the hysteretic behavior of the MR damper and a decentralized control approach for commanding MR dampers is proposed and implemented in the shaking table tests. Only the response of the first story is feedback for control command calculation of the MR dampers. The results indicate that the MR damper can effectively reduce the response of the soil-structure system, even when the soil-structure system presents complex nonlinear hysteretic behavior. The robustness of the proposed decentralized control algorithm is validated through the shaking table tests on the soil-structure system with large uncertainty. The most interesting findings in this paper are that MR dampers not only mitigate the superstructure response, but also reduce the soil response, pile response and earth pressure on the pile foundation

  8. Non-reciprocal wave propagation in one-dimensional nonlinear periodic structures

    Directory of Open Access Journals (Sweden)

    Benbiao Luo

    2018-01-01

    Full Text Available We study a one-dimensional nonlinear periodic structure which contains two different spring stiffness and an identical mass in each period. The linear dispersion relationship we obtain indicates that our periodic structure has obvious advantages compared to other kinds of periodic structures (i.e. those with the same spring stiffness but two different mass, including its increased flexibility for manipulating the band gap. Theoretically, the optical cutoff frequency remains unchanged while the acoustic cutoff frequency shifts to a lower or higher frequency. A numerical simulation verifies the dispersion relationship and the effect of the amplitude-dependent signal filter. Based upon this, we design a device which contains both a linear periodic structure and a nonlinear periodic structure. When incident waves with the same, large amplitude pass through it from opposite directions, the output amplitude of the forward input is one order magnitude larger than that of the reverse input. Our devised, non-reciprocal device can potentially act as an acoustic diode (AD without an electrical circuit and frequency shifting. Our result represents a significant step forwards in the research of non-reciprocal wave manipulation.

  9. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  10. Evaluation of crack status in a meter-size concrete structure using the ultrasonic nonlinear coda wave interferometry.

    Science.gov (United States)

    Legland, Jean-Baptiste; Zhang, Yuxiang; Abraham, Odile; Durand, Olivier; Tournat, Vincent

    2017-10-01

    The field of civil engineering is in need of new methods of non-destructive testing, especially in order to prevent and monitor the serious deterioration of concrete structures. In this work, experimental results are reported on fault detection and characterization in a meter-scale concrete structure using an ultrasonic nonlinear coda wave interferometry (NCWI) method. This method entails the nonlinear mixing of strong pump waves with multiple scattered probe (coda) waves, along with analysis of the net effect using coda wave interferometry. A controlled damage protocol is implemented on a post-tensioned, meter-scale concrete structure in order to generate cracking within a specific area being monitored by NCWI. The nonlinear acoustic response due to the high amplitude of acoustic modulation yields information on the elastic nonlinearities of concrete, as evaluated by two specific nonlinear observables. The increase in nonlinearity level corresponds to the creation of a crack with a network of microcracks localized at its base. In addition, once the crack closes as a result of post-tensioning, the residual nonlinearities confirm the presence of the closed crack. Last, the benefits and applicability of this NCWI method to the characterization and monitoring of large structures are discussed.

  11. Effect of structural changes in sesquifulvalene on the intramolecular charge transfer and nonlinear polarizations a theoretical study

    Science.gov (United States)

    Nandi, P. K.; Mandal, K.; Kar, T.

    2003-11-01

    Ab initio HF calculations of the ground state structural parameters, and the time dependent HF (TDHF) calculations of static nonlinear polarizabilities have been performed for a number of sesquifulvalene derivatives. The calculated NLO parameters show a good correlation with the hardness parameters. The nature of hetero-atoms and their positions can strongly influence the intramolecular charge transfer (ICT) interactions and the nonlinear polarizations of sesquifulvalene. Nonlinear polarizabilities in the twisted structures have been found to depend both on the energy barrier to twist and the transition energy corresponding to the twisted ICT (TICT) state characterized by the HOMO → LUMO transition.

  12. Cyclic stress-strain behavior of polymeric nonwoven structures for the use as artificial leaflet material for transcatheter heart valve prostheses

    Directory of Open Access Journals (Sweden)

    Arbeiter Daniela

    2017-09-01

    Full Text Available Xenogenic leaflet material, bovine and porcine pericardium, is widely used for the fabrication of surgically implanted and transcatheter heart valve prostheses. As a biological material, long term durability of pericardium is limited due to calcification, degeneration and homogeneity. Therefore, polymeric materials represent a promising approach for a next generation of artificial heart valve leaflets with improved durability. Within the current study we analyzed the mechanical performance of polymeric structures based on elastomeric materials. Polymeric cast films were prepared and nonwovens were manufactured in an electrospinning process. Analysis of cyclic stress-strain behavior was performed, using a universal testing machine. The uniaxial cyclic tensile experiments of the elastomeric samples yielded a non-linear elastic response due to viscoelastic behavior with hysteresis. Equilibrium of stress-strain curves was found after a specific number of cycles, for cast films and nonwovens, respectively. In conclusion, preconditioning was found obligatory for the evaluation of the mechanical performance of polymeric materials for the use as artificial leaflet material for heart valve prostheses.

  13. Synthesis, structure, and nonlinear optical activity of K, Rb, and Cs tris(crotonato)uranylates(VI)

    Energy Technology Data Exchange (ETDEWEB)

    Savchenkov, Anton V.; Serezhkina, Larisa B.; Pushkin, Denis V.; Serezhkin, Viktor N. [Inorganic Chemistry Department, Samara State University, 1 Ak. Pavlova st.Samara, 443011 (Russian Federation); Vologzhanina, Anna V. [Laboratory for X-ray Diffraction Studies, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova st.Moscow, 119991 (Russian Federation); Stefanovich, Sergey Yu. [Department of Chemical Technology and New Materials, Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 119991 (Russian Federation)

    2015-05-15

    Three uranyl crotonate complexes with composition RUO{sub 2}(C{sub 3}H{sub 5}COO){sub 3} [R = K (I), Rb (II), Cs (III)] were studied using FT-IR spectroscopy and X-ray diffraction analyses. The structures of I-III are constructed of typical anionic tris(carboxylato)uranylate complexes [UO{sub 2}(C{sub 3}H{sub 5}COO){sub 3}]{sup -}. Cubic crystals of I and II have 3D framework structure, whereas triclinic crystals of III have layered structure. In the structure of III uranyl ions are nonlinear and non equal-arm due to uranyl-cation UO{sub 2}{sup 2+}-Cs{sup +} interactions. Nonlinear optical activity of noncentrosymmetric uranyl carboxylates was estimated by second harmonic generation measurements. Uranyl crotonate complexes show about twice higher SHG ability than uranyl butyrate and valerate complexes. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  15. Deflection determination of concrete structures considering nonlinearity based on long-gauge strain sensors

    Science.gov (United States)

    Hong, Wan; Lv, Kui; Li, Bing; Jiang, Yuchen; Hu, Xiamin; Qu, Qizhong

    2017-10-01

    Deflection determination of concrete structures using distributed long-gauge strain sensors is investigated in this paper. Firstly, the relationship between deflection and distributed long-gauge strain of concrete beams is presented, and the method is independent of external load and takes account of structural nonlinearity. The deflection distribution along the span of a beam-like structure can be predicted from strain response for the whole process of loading (elastic stage, concrete cracking stage and steel yielding stage). Secondly, experiment of a reinforced concrete beam has been conducted to verify the accuracy of the method. Experimental results show that the relative error between the estimated and actual deflection can be controlled within about 5% while the error can reach up to about 70% if structural nonlinearity is not considered. Finally, the influence of error of material parameters and sensor gauge length on deflection estimation has been analyzed. The error of concrete compression strength has a limited influence on deflection prediction while the contribution of tensile concrete should be considered before concrete cracking. The error of area of tensile bars will affect the deflection accuracy after concrete cracking.

  16. Structural and nonlinear optical characterizations of ZnS/ PVP nanocomposites synthesized by pulsed laser ablation

    Science.gov (United States)

    Divyasree, M. C.; Chandrasekharan, K.

    2017-05-01

    ZnS/Poly Vinyl Pyrrolidone nanocomposites were synthesized by pulsed laser ablation at ambient conditions using an Nd: YAG laser at 532 nm wavelength and 7ns pulse width. Linear optical characterizations were done using UV-Vis spectrophotometer and fluorometer. Both absorption and emission peaks were found to be blue shifted, which could be due to quantum confinement effect. Spherical morphology and the purity in the elemental composition of the sample were confirmed by scanning electron microscope and energy dispersive X-ray spectrometer respectively. Average particle size of the ZnS nanoparticles was found to be 13.45 nm from the Gaussian fitted histogram of transmission electron Microscopy image and the structure was confirmed as hexagonal wurtzite by X-ray diffraction analysis. The nonlinear optical parameters were figured out by z scan analysis with the same laser system. The nanocomposite showed good absorptive and refractive properties in the nonlinear optical regime. Detailed study of the nanocomposite revealed its potential applications in optoelectronics and nonlinear optical device fabrication.

  17. Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation

    Science.gov (United States)

    Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid

    2017-01-01

    In this paper, two quadratic solid-shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a 20-node hexahedral solid-shell element, denoted SHB20, and its 15-node prismatic counterpart, denoted SHB15. The formulation of these elements is extended in this work to include geometric and material nonlinearities, for application to problems involving large displacements and rotations as well as plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-plastic constitutive equations for metallic materials. Although based on a purely three-dimensional approach, several modifications are introduced in the formulation of these elements to provide them with interesting shell features. In particular, a special direction is chosen to represent the thickness, along which a user-defined number of integration points are located. Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane reduced-integration scheme is adopted. The resulting formulations are implemented into the finite element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear benchmark problems are investigated. Attention is then focused on the simulation of various complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-sided contact. From all simulation results, it appears that the SHB elements represent an interesting alternative to traditional shell and solid elements, due to their versatility and capability of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal forming processes.

  18. Nonlinearly deformed W∞ algebra and second hamiltonian structure of KP hierarchy

    International Nuclear Information System (INIS)

    Yu Feng; Wu Yongshi

    1992-01-01

    The characteristic nonlinearity of W N algebras, appropriate for their many applications in two-dimensional quantum physics, is lost in the usual large-N limits. In this paper we search for nonlinear extensions of the Virasoro algebra that incorporate all higher-spin currents with spin s≥2. We show that under certain natural homogeneity requirements, the Jacobi identities lead to a unique nonlinear, centerless deformation of classical w ∞ and W ∞ . The latter, which we call dW/dt ∞ , constitutes a universal W-algebra which is very likely to contain all W N algebras by reduction. Also it is closely related to the linear W 1+∞ by a set of interesting recursion relations, which suggests the isomorphism of dW/dt ∞ to the second hamiltonian structure of the KP hierarchy proposed by Dickey. The implications for the symmetries in two-dimensional quantum gravity and noncritical c≤1 strings in the context of the KP approach are discussed. (orig.)

  19. Non-linear analysis of the structure of variability in midfoot kinematics.

    Science.gov (United States)

    Rathleff, M S; Olesen, C G; Moelgaard, C M; Jensen, K; Madeleine, P; Olesen, J L

    2010-03-01

    Evaluation of structural variability in biological time series through measures such as sample entropy (SaEn) has provided important information in neurology and cardiology. This has contributed to the development of the "loss of complexity hypothesis" where high variability has been described as healthy flexibility and low variability associated with pathology. The purpose of this study was to calculate sample entropy (SaEn) to establish normal values of non-linear variability and to examine which factors are associated with SaEn in midfoot kinematics. Static foot posture was measured using Foot Posture Index. A video sequence analysis system was used to quantify midfoot kinematics during walking in the sagittal plane. SaEn was calculated for navicular drop during stand phase as an expression of the dynamic complexity. A significant difference was observed between the three major foot types and between genders (pdynamic navicular drop (dND) were both associated with SaEn. This study confirmed that non-linear analysis is of relevance in the interpretation of kinematic data. Pronated foot posture, large navicular drop and women were characterized by low values of non-linear variability. Future studies should investigate if measurements of SaEn are capable of identifying subjects with an increased risk of injury. Copyright 2010 Elsevier B.V. All rights reserved.

  20. On the origin of the second-order nonlinearity in strained Si-SiN structures

    Science.gov (United States)

    Khurgin, J. B.; Stievater, T. H.; Pruessner, M. W.; Rabinovich, W. S.

    2015-12-01

    The development of efficient low-loss electro-optic and nonlinear components based on silicon or its related compounds, such as nitrides and oxides, is expected to dramatically enhance silicon photonics by eliminating the need for non-CMOS-compatible materials. While bulk Si is centrosymmetric and thus displays no second-order (\\c{hi}(2)) effects, a body of experimental evidence accumulated in the last decade demonstrates that when a strain gradient is present, a significant \\c{hi}(2) and Pockels coefficient can be observed. In this work we connect a strain-gradient-induced \\c{hi}(2) with another strain-gradient-induced phenomenon, the flexoelectric effect. We show that even in the presence of an extremely strong strain gradient, the degree by which a nonpolar material like Si can be altered cannot possibly explain the order of magnitude of observed chi^(2) phenomena. At the same time, in a polar material like SiN, each bond has a large nonlinear polarizability, so when the inversion symmetry is broken by a strain gradient, a small (few degrees) re-orientation of bonds can engender chi^(2) of the magnitude observed experimentally. It is our view therefore that the origin of the nonlinear and electro-optic effects in strained Si structures lies in not in the Si itself, but in the material providing the strain: the silicon nitride cladding.

  1. Temporal structure and gain-loss asymmetry for real and artificial stock indices.

    Science.gov (United States)

    Siven, Johannes Vitalis; Lins, Jeffrey Todd

    2009-11-01

    Previous research has shown that for stock indices, the most likely time until a return of a particular size has been observed is longer for gains than for losses. We demonstrate that this so-called gain-loss asymmetry vanishes if the temporal dependence structure is destroyed by scrambling the time series. We also show that an artificial index constructed by a simple average of a number of individual stocks display gain-loss asymmetry-this allows us to explicitly analyze the dependence between the index constituents. We consider mutual information and correlation-based measures and show that the stock returns indeed have a higher degree of dependence in times of market downturns than upturns.

  2. The relationship between strategic control and conscious structural knowledge in artificial grammar learning.

    Science.gov (United States)

    Norman, Elisabeth; Scott, Ryan B; Price, Mark C; Dienes, Zoltan

    2016-05-01

    We address Jacoby's (1991) proposal that strategic control over knowledge requires conscious awareness of that knowledge. In a two-grammar artificial grammar learning experiment all participants were trained on two grammars, consisting of a regularity in letter sequences, while two other dimensions (colours and fonts) varied randomly. Strategic control was measured as the ability to selectively apply the grammars during classification. For each classification, participants also made a combined judgement of (a) decision strategy and (b) relevant stimulus dimension. Strategic control was found for all types of decision strategy, including trials where participants claimed to lack conscious structural knowledge. However, strong evidence of strategic control only occurred when participants knew or guessed that the letter dimension was relevant, suggesting that strategic control might be associated with - or even causally requires - global awareness of the nature of the rules even though it does not require detailed knowledge of their content. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Recent ARPES experiments on quasi-1D bulk materials and artificial structures.

    Science.gov (United States)

    Grioni, M; Pons, S; Frantzeskakis, E

    2009-01-14

    The spectroscopy of quasi-one-dimensional (1D) systems has been a subject of strong interest since the first experimental observations of unusual line shapes in the early 1990s. Angle-resolved photoemission (ARPES) measurements performed with increasing accuracy have greatly broadened our knowledge of the properties of bulk 1D materials and, more recently, of artificial 1D structures. They have yielded a direct view of 1D bands, of open Fermi surfaces, and of characteristic instabilities. They have also provided unique microscopic evidence for the non-conventional, non-Fermi-liquid, behavior predicted by theory, and for strong and singular interactions. Here we briefly review some of the remarkable experimental results obtained in the last decade.

  4. Natural and artificial binders of polyriboadenylic acid and their effect on RNA structure

    Directory of Open Access Journals (Sweden)

    Giovanni N. Roviello

    2015-06-01

    Full Text Available The employment of molecular tools with nucleic acid binding ability to specifically control crucial cellular functions represents an important scientific area at the border between biochemistry and pharmaceutical chemistry. In this review we describe several molecular systems of natural or artificial origin, which are able to bind polyriboadenylic acid (poly(rA both in its single-stranded or structured forms. Due to the fundamental role played by the poly(rA tail in the maturation and stability of mRNA, as well as in the initiation of the translation process, compounds able to bind this RNA tract, influencing the mRNA fate, are of special interest for developing innovative biomedical strategies mainly in the field of anticancer therapy.

  5. Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    Science.gov (United States)

    Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.

    1980-01-01

    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.

  6. Damping characteristic identification of non-linear soil-structural system interaction by phase resonance

    International Nuclear Information System (INIS)

    Poterasu, V.F.

    1984-01-01

    It is presented a method and the phase resonance for damping characteristic identification of non-linear soil-structural interaction. The algorithm can be applied in case of any, not necessarily, damping characteristic of the system examined. For the identification, the system is harmonically excited and are considered the super-harmonic amplitudes for odd and even powers of the x. The response of shear beam system for different levels of base excitation and for different locations of the load is considered. (Author) [pt

  7. Nonlinear properties of double and triple barrier resonant tunneling structures in the sub-THz range

    International Nuclear Information System (INIS)

    Karuzskij, A.L.; Perestoronin, A.V.; Volchkov, N.A.

    2012-01-01

    The high-frequency nonlinear properties of GaAs/AlAs resonant tunneling diode (RTD) nanostructures and perspectives of implementation of the quantum regime of amplification in such structures, which is especially efficient in the range of sub-THz and THz ranges, are investigated. It is shown that in a triple barrier RTD the symmetry between the processes of amplification and dissipation can be avoided because of the interaction of an electromagnetic wave with both of resonant states in two quantum wells, that results in the significant growth of an RTD efficiency [ru

  8. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    to estimate the probability of exceeding a critical event, defined by a so-called limit state function. The limit state function is obtained implicitly by non-linear FEM analysis from a realization of random material properties. As the latter can be modeled as random fields varying continuously over...... the structure, a discretisation into random elements/variables is introduced. To this purpose, both the Midpoint (MP) and the Spatial Average (SA) approach are considered. The failure probability is obtained iteratively based on a first order Taylor series expansion of the limit state function. Thus...

  9. A family of solution algorithms for nonlinear structural analysis based on relaxation equations

    Science.gov (United States)

    Park, K. C.

    1981-01-01

    A family of hierarchical algorithms for nonlinear structural equations are presented. The algorithms are based on the Davidenko-Branin type homotopy and shown to yield consistent hierarchical perturbation equations. The algorithms appear to be particularly suitable to problems involving bifurcation and limit point calculations. An important by-product of the algorithms is that it provides a systematic and economical means for computing the stepsize at each iteration stage when a Newton-like method is employed to solve the systems of equations. Some sample problems are provided to illustrate the characteristics of the algorithms.

  10. A quasi-Newton versus a homotopy method for nonlinear structural analysis

    Science.gov (United States)

    Kamat, M. P.; Watson, L. T.; Venkayya, V. B.

    1983-01-01

    The globally convergent quasi-Newton minimization algorithm and the homotopy algorithms are discussed in detail and their effectiveness in solving certain classes of highly nonlinear problems of structural analysis is demonstrated. The application of the double dogleg strategy controls the directions and step-lengths of the quasi-Newtonian algorithm and overcomes the problem of nonpositive definite Hessians being produced during the iteration process. The algorithms are applied to a centrally loaded clamped beam, the snap-through of a shallow arch, and a shallow reticulated dome.

  11. Nonlinear, distortive phenomena in solids: Martensitic, crack, and multiscale structures. Progress report, 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Krumhansl, J.A.; Sethna, J.P.

    1992-08-01

    This ongoing program, from the beginning of the first three year grant 1988--1991 and now in the first year of the second phase 1991--1994, has been directed at developing both an understanding of the physics underlying structural transformations in real (alloy) materials as well as new theoretical methods which adequately describe the large (nonlinear) distortions which characterize such processes. We have had a particular interest in martensitic systems, first (1988--1991) in the equilibrium limits, and now (below) in phenomena associated with the transformation process.

  12. Structure formation in turbulent plasmas - test of nonlinear processes in plasma experiments

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, Masatoshi; Inagaki, Shigeru

    2009-01-01

    Full text: Recent developments in plasma physics, either in the fusion research in a new era of ITER, or in space and in astro-physics, the world-wide and focused research has been developed on the subject of structural formation in turbulent plasma being associated with electro-magnetic field formation. Keys for the progress were a change of the physics view from the 'linear, local and deterministic' picture to the description based on 'nonlinear instability, nonlocal interaction and probabilistic excitation' for the turbulent state, and the integration of the theory-simulation-experiment. In this presentation, we first briefly summarize the theory of microscopic turbulence and mesoscale fluctuations and selection rules. In addition, the statistical formation of large-scale structure/deformation by turbulence is addressed. Then, the experimental measurements of the mesoscale structures (e.g., zonal flows, zonal fields, streamer and transport interface) and of the nonlinear interactions among them in turbulent plasmas are reported. Confirmations by, and new challenges from, the experiments are overviewed. Work supported by the Grant-in-Aid for Specially-Promoted Research (16002005). (author)

  13. Structure-induced nonlinear viscoelasticity of non-woven fibrous matrices.

    Science.gov (United States)

    Rizvi, Mohd Suhail; Pal, Anupam; Das, Sovan Lal

    2016-12-01

    Fibrous materials are widely utilized as tissue engineering scaffolds for tissue regeneration and other bioengineering applications. The structural as well as mechanical characteristics of the fibrous matrices under static and dynamic mechanical loading conditions influence the response of the cells. In this paper, we study the mechanical response of the non-woven fibrous matrices under oscillatory loading conditions and its dependence on the structural properties of fibrous matrix. We demonstrate that under oscillatory shear and elongation, the fibrous matrices demonstrate nonlinear viscoelasticity at all strain amplitudes. This is contrary to the behavior of other soft polymeric materials for which nonlinearity in the viscoelastic response vanishes for small strains. These observations suggest that despite their prevalence, the measures of linear viscoelasticity (e.g., storage and loss moduli) are inadequate for the general description of the viscoelastic nature of the fibrous materials. It was, however, found that linear viscoelastic nature of fibrous matrices for small amplitudes is restored when a pre-stretch is applied to the fibrous matrix along with oscillatory strains. Further, we also explored the influence of the structural properties of the fibrous matrices (fiber orientation, alignment and curvature) on their viscoelastic nature.

  14. Numerical combination for nonlinear analysis of structures coupled to layered soils

    Directory of Open Access Journals (Sweden)

    Wagner Queiroz Silva

    Full Text Available This paper presents an alternative coupling strategy between the Boundary Element Method (BEM and the Finite Element Method (FEM in order to create a computational code for the analysis of geometrical nonlinear 2D frames coupled to layered soils. The soil is modeled via BEM, considering multiple inclusions and internal load lines, through an alternative formulation to eliminate traction variables on subregions interfaces. A total Lagrangean formulation based on positions is adopted for the consideration of the geometric nonlinear behavior of frame structures with exact kinematics. The numerical coupling is performed by an algebraic strategy that extracts and condenses the equivalent soil's stiffness matrix and contact forces to be introduced into the frame structures hessian matrix and internal force vector, respectively. The formulation covers the analysis of shallow foundation structures and piles in any direction. Furthermore, the piles can pass through different layers. Numerical examples are shown in order to illustrate and confirm the accuracy and applicability of the proposed technique.

  15. Diagnostic tool for structural health monitoring: effect of material nonlinearity and vibro-impact process

    Science.gov (United States)

    Hiwarkar, V. R.; Babitsky, V. I.; Silberschmidt, V. V.

    2013-07-01

    Numerous techniques are available for monitoring structural health. Most of these techniques are expensive and time-consuming. In this paper, vibration-based techniques are explored together with their use as diagnostic tools for structural health monitoring. Finite-element simulations are used to study the effect of material nonlinearity on dynamics of a cracked bar. Additionally, several experiments are performed to study the effect of vibro-impact behavior of crack on its dynamics. It was observed that a change in the natural frequency of the cracked bar due to crack-tip plasticity and vibro-impact behavior linked to interaction of crack faces, obtained from experiments, led to generation of higher harmonics; this can be used as a diagnostic tool for structural health monitoring.

  16. Diagnostic tool for structural health monitoring: effect of material nonlinearity and vibro-impact process

    International Nuclear Information System (INIS)

    Hiwarkar, V R; Babitsky, V I; Silberschmidt, V V

    2013-01-01

    Numerous techniques are available for monitoring structural health. Most of these techniques are expensive and time-consuming. In this paper, vibration-based techniques are explored together with their use as diagnostic tools for structural health monitoring. Finite-element simulations are used to study the effect of material nonlinearity on dynamics of a cracked bar. Additionally, several experiments are performed to study the effect of vibro-impact behavior of crack on its dynamics. It was observed that a change in the natural frequency of the cracked bar due to crack-tip plasticity and vibro-impact behavior linked to interaction of crack faces, obtained from experiments, led to generation of higher harmonics; this can be used as a diagnostic tool for structural health monitoring

  17. Fitting correlated residual error structures in nonlinear mixed-effects models using SAS PROC NLMIXED.

    Science.gov (United States)

    Harring, Jeffrey R; Blozis, Shelley A

    2014-06-01

    Nonlinear mixed-effects (NLME) models remain popular among practitioners for analyzing continuous repeated measures data taken on each of a number of individuals when interest centers on characterizing individual-specific change. Within this framework, variation and correlation among the repeated measurements may be partitioned into interindividual variation and intraindividual variation components. The covariance structure of the residuals are, in many applications, consigned to be independent with homogeneous variances, [Formula: see text], not because it is believed that intraindividual variation adheres to this structure, but because many software programs that estimate parameters of such models are not well-equipped to handle other, possibly more realistic, patterns. In this article, we describe how the programmatic environment within SAS may be utilized to model residual structures for serial correlation and variance heterogeneity. An empirical example is used to illustrate the capabilities of the module.

  18. [Nonlinear population dynamics: complication in the age structure influences transition-to-chaos scenarios].

    Science.gov (United States)

    Zhdanova, O L; Frisman, E Ia

    2011-01-01

    The work continues a series of studies on the evolution of a natural population of explicitly seasonal organisms. Model analyses have revealed relationships between the duration of ontogenesis and the pattern of temporal dynamics in size of an isolated population (i.e., the structure and dimensionality of the chaotic attractors). For nonlinear models of age-structured population dynamics (under long-lasting ontogenesis), increase in the reproductive potential is shown to result in the chaotic attractors whose structure and dimensionality changes in response to variations in the model parameters. When the ontogenesis becomes longer and more complicated, it does not, "on the average", augment the level of chaos in the attractors observed. There are wide enough regions in the space of the birth and death parameter values that provide for windows in the chaotic dynamics where the total or partial regularization occurs.

  19. Nonlinear Shell Modeling of Thin Membranes with Emphasis on Structural Wrinkling

    Science.gov (United States)

    Tessler, Alexander; Sleight, David W.; Wang, John T.

    2003-01-01

    Thin solar sail membranes of very large span are being envisioned for near-term space missions. One major design issue that is inherent to these very flexible structures is the formation of wrinkling patterns. Structural wrinkles may deteriorate a solar sail's performance and, in certain cases, structural integrity. In this paper, a geometrically nonlinear, updated Lagrangian shell formulation is employed using the ABAQUS finite element code to simulate the formation of wrinkled deformations in thin-film membranes. The restrictive assumptions of true membranes, i.e. Tension Field theory (TF), are not invoked. Two effective modeling strategies are introduced to facilitate convergent solutions of wrinkled equilibrium states. Several numerical studies are carried out, and the results are compared with recent experimental data. Good agreement is observed between the numerical simulations and experimental data.

  20. Aseismic optimization of nonlinear joint elements in boiler plant structures based on substructure synthesis method

    International Nuclear Information System (INIS)

    Nishida, E.; Suzuki, K.; Yasuda, T.; Ohwa, Y.

    1993-01-01

    This paper deals with an optimum design method for joint elements in boiler plant structures which are excited by earthquakes. Characteristics of joint elements which connect the boiler and its supporting structure, are supposed to be viscoelastic, elasto-plastic, or a combination of both. Considering the expansion of this study to an active or semi-active aseismic structural control of joint elements, the structures are modeled with the aid of block diagram. In order to improve the efficiency of calculation, substructure synthesis method is introduced. Time-domain optimization is carried out using a nonlinear programming technique. To prevent seismic damage of pipes and ducts, limitations for relative displacements between the boiler and its supporting structure is introduced is inequality constraints. Elasto-plasticity and viscoelasticity of joint elements are simulated by a combination of a spring, a Coulomb friction, and a dashpot. These joint element characteristics are optimized to minimize seismic time-response of the structures. This method is applied to actual boiler plant structures and has proven to be effective and practical for aseismic designs of boiler plant structures

  1. Vibration Control of Structures using Vibro-Impact Nonlinear Energy Sinks

    Directory of Open Access Journals (Sweden)

    M. Ahmadi

    2016-09-01

    Full Text Available Using Vibro-Impact Nonlinear Energy Sinks (VI NESs is one of the novel strategies to control structural vibrations and mitigate their seismic response. In this system, a mass is tuned on the structure floor, so that it has a specific distance from an inelastic constraint connected to the floor mass. In case of structure stimulation, the displaced VI NES mass collides with the  inelastic constraint and upon impacts, energy is dissipated. In the present work, VI NES is studied when its parameters, including clearance and stiffness ratio, are simultaneously optimized. Harmony search as a recent meta-heuristic algorithm is efficiently specialized and utilized for the aforementioned continuous optimization problem. The optimized attached VI NES is thus shown to be capable of interacting with the primary structure over a wide range of frequencies. The resulting controlled response is then investigated, in a variety of low and medium rise steel moment frames, via nonlinear dynamic time history analyses. Capability of the VI NES to dissipate siesmic input energy of earthquakes and their capabilitiy in reducing response of srtructures effectively, through vibro-impacts between the energy sink’s mass and the floor mass, is discussed by extracting several performance indices and the corresponding Fourier spectra. Results of the numerical simulations done on some structural model examples reveal that the optimized VI NES has caused successive redistribution of energy from low-frequency high-amplitude vibration modes to high-frequency low-amplitude modes, bringing about the desired attenuation of the structural responses.

  2. Creation and structure determination of an artificial protein with three complete sequence repeats

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Motoyasu, E-mail: adachi.motoyasu@jaea.go.jp; Shimizu, Rumi; Kuroki, Ryota [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Blaber, Michael [Japan Atomic Energy Agency, Shirakatashirane 2-4, Nakagun Tokaimura, Ibaraki 319-1195 (Japan); Florida State University, Tallahassee, FL 32306-4300 (United States)

    2013-11-01

    An artificial protein with three complete sequence repeats was created and the structure was determined by X-ray crystallography. The structure showed threefold symmetry even though there is an amino- and carboxy-terminal. The artificial protein with threefold symmetry may be useful as a scaffold to capture small materials with C3 symmetry. Symfoil-4P is a de novo protein exhibiting the threefold symmetrical β-trefoil fold designed based on the human acidic fibroblast growth factor. First three asparagine–glycine sequences of Symfoil-4P are replaced with glutamine–glycine (Symfoil-QG) or serine–glycine (Symfoil-SG) sequences protecting from deamidation, and His-Symfoil-II was prepared by introducing a protease digestion site into Symfoil-QG so that Symfoil-II has three complete repeats after removal of the N-terminal histidine tag. The Symfoil-QG and SG and His-Symfoil-II proteins were expressed in Eschericha coli as soluble protein, and purified by nickel affinity chromatography. Symfoil-II was further purified by anion-exchange chromatography after removing the HisTag by proteolysis. Both Symfoil-QG and Symfoil-II were crystallized in 0.1 M Tris-HCl buffer (pH 7.0) containing 1.8 M ammonium sulfate as precipitant at 293 K; several crystal forms were observed for Symfoil-QG and II. The maximum diffraction of Symfoil-QG and II crystals were 1.5 and 1.1 Å resolution, respectively. The Symfoil-II without histidine tag diffracted better than Symfoil-QG with N-terminal histidine tag. Although the crystal packing of Symfoil-II is slightly different from Symfoil-QG and other crystals of Symfoil derivatives having the N-terminal histidine tag, the refined crystal structure of Symfoil-II showed pseudo-threefold symmetry as expected from other Symfoils. Since the removal of the unstructured N-terminal histidine tag did not affect the threefold structure of Symfoil, the improvement of diffraction quality of Symfoil-II may be caused by molecular characteristics of

  3. Static compressive strength prediction of open-hole structure based on non-linear shear behavior and micro-mechanics

    Science.gov (United States)

    Li, Wangnan; Cai, Hongneng; Li, Chao

    2014-11-01

    This paper deals with the characterization of the strength of the constituents of carbon fiber reinforced plastic laminate (CFRP), and a prediction of the static compressive strength of open-hole structure of polymer composites. The approach combined with non-linear analysis in macro-level and a linear elastic micromechanical failure analysis in microlevel (non-linear MMF) is proposed to improve the prediction accuracy. A face-centered cubic micromechanics model is constructed to analyze the stresses in fiber and matrix in microlevel. Non-interactive failure criteria are proposed to characterize the strength of fiber and matrix. The non-linear shear behavior of the laminate is studied experimentally, and a novel approach of cubic spline interpolation is used to capture significant non-linear shear behavior of laminate. The user-defined material subroutine UMAT for the non-linear share behavior is developed and combined in the mechanics analysis in the macro-level using the Abaqus Python codes. The failure mechanism and static strength of open-hole compressive (OHC) structure of polymer composites is studied based on non-linear MMF. The UTS50/E51 CFRP is used to demonstrate the application of theory of non-linear MMF.

  4. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Tanaka, Hajime

    2018-01-02

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  5. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids

    Science.gov (United States)

    Ingebrigtsen, Trond S.; Tanaka, Hajime

    2018-01-01

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  6. Free Vibration Response of a Frame Structural Model Controlled by a Nonlinear Active Mass Driver System

    Directory of Open Access Journals (Sweden)

    Ilaria Venanzi

    2014-01-01

    Full Text Available Active control devices, such as active mass dampers, are mainly employed for the reduction of wind-induced vibrations in high-rise buildings, with the final aim of satisfying vibration serviceability limit state requirements and of meeting appropriate comfort criteria. When such active devices, normally operating under wind loads associated with short return periods, are subjected to seismic events, they can experience large amplitude vibrations and exceed stroke limits. This may lead to a reduced performance of the control system that can even worsen the performance of the whole structure. In this paper, a nonlinear control strategy based on a modified direct velocity feedback algorithm is proposed for handling stroke limits of an active mass driver (AMD system. In particular, a suitable nonlinear braking term proportional to the relative AMD velocity is included in the control law in order to slowdown the device in the proximity of the stroke limits. Experimental and numerical free vibration tests are carried out on a scaled-down five-story frame structure equipped with an AMD to demonstrate the effectiveness of the proposed control strategy.

  7. A Model for Periodic Nonlinear Electric Field Structures in Space Plasmas

    International Nuclear Information System (INIS)

    Qureshi, M.N.S.; Shi Jiankui; Liu Zhenxing

    2009-01-01

    In this study, we present a physical model to explain the generation mechanism of nonlinear periodic waves with a large amplitude electric field structures propagating obliquely and exactly parallel to the magnetic field. The 'Sagdeev potential' from the MHD equations is derived and the nonlinear electric field waveforms are obtained when the Mach number, direction of propagation, and the initial electric field satisfy certain plasma conditions. For the parallel propagation, the amplitude of the electric field waves with ion-acoustic mode increases with the increase of initial electric field and Mach number but its frequency decreases with the increase of Mach number. The amplitude and frequency of the electric field waves with ion-cyclotron mode decrease with the increase of Mach number and become less spiky, and its amplitude increases with the increase of initial electric field. For the oblique propagation, only periodic electric field wave with an ion-cyclotron mode obtained, its amplitude and frequency increase with the increase of Mach number and become spiky. From our model the electric field structures show periodic, spiky, and saw-tooth behaviours corresponding to different plasma conditions.

  8. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.

  9. Computation of Large-Scale Structure Jet Noise Sources With Weak Nonlinear Effects Using Linear Euler

    Science.gov (United States)

    Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.

    2003-01-01

    An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.

  10. Kelvin Viscoelasticity and Lagrange Multipliers Applied to the Simulation of Nonlinear Structural Vibration Control

    Directory of Open Access Journals (Sweden)

    Raphael Henrique Madeira

    Full Text Available Abstract This study proposes a new pure numerical way to model mass / spring / damper devices to control the vibration of truss structures developing large displacements. It avoids the solution of local differential equations present in traditional convolution approaches to solve viscoelasticity. The structure is modeled by the geometrically exact Finite Element Method based on positions. The introduction of the device's mass is made by means of Lagrange multipliers that imposes its movement along the straight line of a finite element. A pure numerical Kelvin/Voigt like rheological model capable of nonlinear large deformations is originally proposed here. It is numerically solved along time to accomplish the damping parameters of the device. Examples are solved to validate the formulation and to show the practical possibilities of the proposed technique

  11. Effect of the Use of Metakaolin Artificial Lightweight Aggregate on the Properties of Structural Lightweight Concrete

    Directory of Open Access Journals (Sweden)

    Puput Risdanareni

    2017-09-01

    Full Text Available This paper investigates the effect of using metakaolin Artificial Lightweight Aggre­gates (ALWA as a substitute for coarse aggregates to produce structural lightweight concrete. A combination of 10M NaOH solution and sodium silicate solution was used as alkali activator. The ratio between the metakaolin binder and the alkali activator used in producing metakaolin ALWA is 48%:52%, by mass. It is shown that metakaolin ALWA has higher abrasion and water absorption, and lower bulk density values compared to normal aggregates. To determine the effect of using metakaolin ALWA as coarse aggregates in concrete, three variations of ALWA dosages were used, i.e. 0%, 50%, and 100% of the total coarse aggregates, by volume. The results show that the compressive strength of concrete decreased along with the increase of ALWA content in the mixture. However, concrete using 100% ALWA as coarse aggregates meets the requirements of compressive strength and density of structural light weight concrete.

  12. Effects of structural components of artificial turf on the transmission of impacts in football players.

    Science.gov (United States)

    Encarnación-Martínez, Alberto; García-Gallart, Antonio; Gallardo, Ana M; Sánchez-Sáez, Juan A; Sánchez-Sánchez, Javier

    2017-02-24

    The third generation of artificial turf systems (ATS) has matched the mechanical behaviour of natural grass, but today a high heterogeneity at structural level and mechanical behaviour in the new ATS also exists. The objective was to analyse the effect of the structural components of ATS football pitches and running speed on the capacity of impact attenuation. A total of 12 athletes were evaluated at three speed conditions (3.33 m/s, 4 m/s and maximum speed) on four different ATS, classifying them by their components (length of fibre, type of in-fill and sub-base). Impact attenuation was significantly higher in ATS3, characterised by longer fibre compared to other ATS with less fibre length. The ATS4 with a higher length fibre and built on compacted granular material proportioned significantly lower values in the maximum peaks of tibia acceleration. Finally, as speed increases, the peak tibia impacts were significantly higher. Longer fibre length and the capacity to accommodate a higher quantity of infill facilitate higher impact attenuation. Equally, a compacted granular sub-base is related to lower magnitude of maximum tibia peaks. Finally, the magnitude of the tibia acceleration peaks is dependent of running speed for all ATS analysed, being higher as speed increases.

  13. Influence of Perceptual Saliency Hierarchy on Learning of Language Structures: An Artificial Language Learning Experiment

    Science.gov (United States)

    Gong, Tao; Lam, Yau W.; Shuai, Lan

    2016-01-01

    Psychological experiments have revealed that in normal visual perception of humans, color cues are more salient than shape cues, which are more salient than textural patterns. We carried out an artificial language learning experiment to study whether such perceptual saliency hierarchy (color > shape > texture) influences the learning of orders regulating adjectives of involved visual features in a manner either congruent (expressing a salient feature in a salient part of the form) or incongruent (expressing a salient feature in a less salient part of the form) with that hierarchy. Results showed that within a few rounds of learning participants could learn the compositional segments encoding the visual features and the order between them, generalize the learned knowledge to unseen instances with the same or different orders, and show learning biases for orders that are congruent with the perceptual saliency hierarchy. Although the learning performances for both the biased and unbiased orders became similar given more learning trials, our study confirms that this type of individual perceptual constraint could contribute to the structural configuration of language, and points out that such constraint, as well as other factors, could collectively affect the structural diversity in languages. PMID:28066281

  14. Evaluation of design parameters in soil-structure systems through artificial intelligence

    International Nuclear Information System (INIS)

    Cremonini, M.G.; Vardanega, C.; Parvis, E.

    1989-01-01

    This study refers to development of an artificial intelligence tool to evaluate design parameters for a soil-structure system as the foundations of Class 1 buildings of a nuclear power plant (NPP). This is based on an expert analysis of a large amount of information, collected during a comprehensive program of site investigations and laboratory tests and stored on a computer data-bank. The methodology comprises the following steps: organization of the available information on the site characteristics in a data-base; implementation and extensive use of a specific knowledge based expert system (KBES) devoted to both the analysis, interpretation and check of the information in the data-base, and to the evaluation of the design parameters; determination of effective access criteria to the data-base, for purposes of reordering the information and extracting design properties from a large number of experimental data; development of design profiles for both index properties and strength/strain parameters; and final evaluation of the design parameters. Results are obtained in the form of: local and general site stratigraphy; summarized soil index properties, detailing the site setting; static and dynamic stress-strain parameters, G/G max behavior and damping factors; condolidation parameters and OCR ratio; spatial distribution of parameters on site area; identification of specific local conditions; and cross correlation of parameters, thus covering the whole range of design parameters for NPP soil-structure systems

  15. Optimal Brain Surgeon on Artificial Neural Networks in

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Job, Jonas Hultmann; Klyver, Katrine

    2012-01-01

    It is shown how the procedure know as optimal brain surgeon can be used to trim and optimize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network, and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick ...

  16. Quantitative structure-retention relationships of flavonoids unraveled by immobilized artificial membrane chromatography.

    Science.gov (United States)

    Santoro, Adriana Leandra; Carrilho, Emanuel; Lanças, Fernando Mauro; Montanari, Carlos Alberto

    2016-06-10

    The pharmacokinetic properties of flavonoids with differing degrees of lipophilicity were investigated using immobilized artificial membranes (IAMs) as the stationary phase in high performance liquid chromatography (HPLC). For each flavonoid compound, we investigated whether the type of column used affected the correlation between the retention factors and the calculated octanol/water partition (log Poct). Three-dimensional (3D) molecular descriptors were calculated from the molecular structure of each compound using i) VolSurf software, ii) the GRID method (computational procedure for determining energetically favorable binding sites in molecules of known structure using a probe for calculating the 3D molecular interaction fields, between the probe and the molecule), and iii) the relationship between partition and molecular structure, analyzed in terms of physicochemical descriptors. The VolSurf built-in Caco-2 model was used to estimate compound permeability. The extent to which the datasets obtained from different columns differ both from each other and from both the calculated log Poct and the predicted permeability in Caco-2 cells was examined by principal component analysis (PCA). The immobilized membrane partition coefficients (kIAM) were analyzed using molecular descriptors in partial least square regression (PLS) and a quantitative structure-retention relationship was generated for the chromatographic retention in the cholesterol column. The cholesterol column provided the best correlation with the permeability predicted by the Caco-2 cell model and a good fit model with great prediction power was obtained for its retention data (R(2)=0.96 and Q(2)=0.85 with four latent variables). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Adaptive nonlinear polynomial neural networks for control of boundary layer/structural interaction

    Science.gov (United States)

    Parker, B. Eugene, Jr.; Cellucci, Richard L.; Abbott, Dean W.; Barron, Roger L.; Jordan, Paul R., III; Poor, H. Vincent

    1993-01-01

    The acoustic pressures developed in a boundary layer can interact with an aircraft panel to induce significant vibration in the panel. Such vibration is undesirable due to the aerodynamic drag and structure-borne cabin noises that result. The overall objective of this work is to develop effective and practical feedback control strategies for actively reducing this flow-induced structural vibration. This report describes the results of initial evaluations using polynomial, neural network-based, feedback control to reduce flow induced vibration in aircraft panels due to turbulent boundary layer/structural interaction. Computer simulations are used to develop and analyze feedback control strategies to reduce vibration in a beam as a first step. The key differences between this work and that going on elsewhere are as follows: that turbulent and transitional boundary layers represent broadband excitation and thus present a more complex stochastic control scenario than that of narrow band (e.g., laminar boundary layer) excitation; and secondly, that the proposed controller structures are adaptive nonlinear infinite impulse response (IIR) polynomial neural network, as opposed to the traditional adaptive linear finite impulse response (FIR) filters used in most studies to date. The controllers implemented in this study achieved vibration attenuation of 27 to 60 dB depending on the type of boundary layer established by laminar, turbulent, and intermittent laminar-to-turbulent transitional flows. Application of multi-input, multi-output, adaptive, nonlinear feedback control of vibration in aircraft panels based on polynomial neural networks appears to be feasible today. Plans are outlined for Phase 2 of this study, which will include extending the theoretical investigation conducted in Phase 2 and verifying the results in a series of laboratory experiments involving both bum and plate models.

  18. Tunable band (pass and stop) filters based on plasmonic structures using Kerr-type nonlinear rectangular nanocavity

    Science.gov (United States)

    Arianfard, Hamed; Khajeheian, Bahareh; Ghayour, Rahim

    2017-12-01

    We have proposed and numerically investigated two plasmonic structures for bandpass and band-stop filters. The bandpass filter is composed of two metal-insulator-metal (MIM) waveguides coupled to each other by a nonlinear rectangular nanocavity. The band-stop filter consists of an MIM waveguide side coupled to a Kerr-type nonlinear rectangular nanocavity. The optical filtering effect is verified by two-dimensional (2-D) finite-difference time-domain (FDTD) simulations. It is demonstrated that based on optical nonlinearity we can easily make the proposed filters tunable by properly adjusting the intensity of incident light without changing the dimensions of the structures. The simulation results revealed that within the transmission spectrum, the selected central wavelength and the bandwidth of the filter can be tuned by the input signal intensity. The proposed structures are suitable to be used as highly dense integrated optical circuits, where limitations on the dimensions of the filter structure are vital.

  19. Nonlinear Dynamic Behavior of a Flexible Structure to Combined External Acoustic and Parametric Excitation

    Directory of Open Access Journals (Sweden)

    Paulo S. Varoto

    2006-01-01

    Full Text Available Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results

  20. Nonlinear dynamic analysis of multi-base seismically isolated structures with uplift potential II: verification examples

    Science.gov (United States)

    Roussis, Panayiotis C.; Tsopelas, Panos C.; Constantinou, Michael C.

    2010-03-01

    The work presented in this paper serves as numerical verification of the analytical model developed in the companion paper for nonlinear dynamic analysis of multi-base seismically isolated structures. To this end, two numerical examples have been analyzed using the computational algorithm incorporated into program 3D-BASIS-ME-MB, developed on the basis of the newly-formulated analytical model. The first example concerns a seven-story model structure that was tested on the earthquake simulator at the University at Buffalo and was also used as a verification example for program SAP2000. The second example concerns a two-tower, multi-story structure with a split-level seismic-isolation system. For purposes of verification, key results produced by 3D-BASIS-ME-MB are compared to experimental results, or results obtained from other structural/finite element programs. In both examples, the analyzed structure is excited under conditions of bearing uplift, thus yielding a case of much interest in verifying the capabilities of the developed analysis tool.

  1. Data-Interpretation Methodologies for Non-Linear Earthquake Response Predictions of Damaged Structures

    Directory of Open Access Journals (Sweden)

    Yves Reuland

    2017-07-01

    Full Text Available Seismic exposure of buildings presents difficult engineering challenges. The principles of seismic design involve structures that sustain damage and still protect inhabitants. Precise and accurate knowledge of the residual capacity of damaged structures is essential for informed decision-making regarding clearance for occupancy after major seismic events. Unless structures are permanently monitored, modal properties derived from ambient vibrations are most likely the only source of measurement data that are available. However, such measurement data are linearly elastic and limited to a low number of vibration modes. Structural identification using hysteretic behavior models that exclusively relies on linear measurement data is a complex inverse engineering task that is further complicated by modeling uncertainty. Three structural identification methodologies that involve probabilistic approaches to data interpretation are compared: error-domain model falsification, Bayesian model updating with traditional assumptions as well as modified Bayesian model updating. While noting the assumptions regarding uncertainty definitions, the accuracy and robustness of identification and subsequent predictions are compared. A case study demonstrates limits on non-linear parameter identification performance and identification of potentially wrong prediction ranges for inappropriate model uncertainty distributions.

  2. The nonlinear ambipolar drift and periodic structure of non-self-sustained discharge

    International Nuclear Information System (INIS)

    Dem'yanov, A.V.; Mazalov, D.A.; Napartovich, A.P.

    1995-01-01

    Gas discharge is well known to be strongly nonlinear self-organizing system. The diverse nonlinear structures, observed at different conditions (arc, stationary and non-stationary strata, hot spot patterns on the electrodes and so on), are usually explained by the theory taking into account the processes of diffusion and thermoconductivity. In plasma of high pressure discharge these processes become negligible within the characteristic intervals. At these conditions electron drift becomes the main process. Owing to the continuity of full current and plasma quasineutrality there appear effective flows of convective type with the rate depending on the concentration of charged particles. It is this reason that is responsible for the observed structure of the non-moving luminous layers in non-self-sustained discharge in 10%H 2 +Ar mixture under p≥l atm. The present report shows the results of detail experimental and theoretical study of this phenomenon. The experiments have been carried out on the setup with the discharge gap of about 1 cm or of much greater size. Mach-Zender interferometer and an image-converter intensifier operating as a strip or framing camera. The experiments have been carried out under the pressure 1-3 atm. They show that the stationary layers sequentially appear one after another along the direction from the cathode to the anode. Interferometry shows that there is a gas density modulation corresponding to the periodical structure of fringes. The picture of Fig.1 is a typical interferogram, and that of Fig.2 is a gas density distribution restored from it

  3. Nonlinear magnetoelectric effects in a composite ferromagnetic-piezoelectric structure under harmonic and noise magnetic pumping

    Science.gov (United States)

    Burdin, D. A.; Chashin, D. V.; Ekonomov, N. A.; Fetisov, Y. K.; Stashkevich, A.

    2018-03-01

    Low-frequency nonlinear magnetoelectric effects in a composite structure comprised of a piezoelectric langatate slab sandwiched between two Metglas amorphous alloy magnetostrictive layers under simultaneous harmonic and noise magnetic pumping have been investigated. It is shown that the frequency fp of harmonic pumping is linearly reproduced in the piezoelectric voltage spectrum accompanied by its higher harmonics. Similarly, narrow-band magnetic noise with a central frequency fN is present in the output piezoelectric voltage along with two noise peaks in the vicinity of a double 2fN and zero frequency. Simultaneous application of harmonic and noise magnetic fields produces a noticeably more complex output voltage spectrum containing additional noise satellite lines at frequencies fp ±fN , 2fp ±fN etc. as well as a noise "pedestal". Amplitudes of voltage spectral components depend on the applied constant bias magnetic field, scaling as magnetostriction derivatives with respect to this field. The effects observed are well described by the theory of magnetic field mixing in magnetoelectric composites with nonlinear dependence of magnetostriction on applied fields.

  4. Nonlinear Dynamic Analysis of Telescopic Mechanism for Truss Structure Bridge Inspection Vehicle Under Pedestrian Excitation

    Directory of Open Access Journals (Sweden)

    Wenwen Sui

    Full Text Available Abstract Nonlinear dynamic analysis of an axially moving telescopic mechanism for truss structure bridge inspection vehicle under pedestrian excitation is carried out. A biomechanically inspired inverted-pendulum model is utilized to simplify the pedestrian. The nonlinear equations of motion for the beam-pedestrian system are derived using the Hamilton's principle. The equations are transformed into two ordinary differential equations by applying the Galerkin's method at the first two orders. The solutions to the equations are acquired by using the Newmark-β method associated with the Newton-Raphson method. The time-dependent feature of the eigenfunctions for the two beams are taken into consideration in the solutions. Accordingly, the equations of motion for a simplified system, in which the pedestrian is regarded as moving cart, are given. In the numerical examples, dynamic responses of the telescopic mechanism in eight conditions of different beam-telescoping and pedestrian-moving directions are simulated. Comparisons between the vibrations of the beams under pedestrian excitation and corresponding moving cart are carried out to investigate the influence of the pedestrian excitation on the telescopic mechanism. The results show that the displacement of the telescopic mechanism under pedestrian excitation is smaller than that under moving cart especially when the pedestrian approaches the beams end. Additionally, compared with moving cart, the pedestrian excitation can effectively strengthen the vibration when the beam extension is small or when the pedestrian is close to the beams end.

  5. Non-Linear Three Dimensional Finite Elements for Composite Concrete Structures

    Directory of Open Access Journals (Sweden)

    O. Kohnehpooshi

    Full Text Available Abstract The current investigation focused on the development of effective and suitable modelling of reinforced concrete component with and without strengthening. The modelling includes physical and constitutive models. New interface elements have been developed, while modified constitutive law have been applied and new computational algorithm is utilised. The new elements are the Truss-link element to model the interaction between concrete and reinforcement bars, the interface element between two plate bending elements and the interface element to represent the interfacial behaviour between FRP, steel plates and concrete. Nonlinear finite-element (FE codes were developed with pre-processing. The programme was written using FORTRAN language. The accuracy and efficiency of the finite element programme were achieved by analyzing several examples from the literature. The application of the 3D FE code was further enhanced by carrying out the numerical analysis of the three dimensional finite element analysis of FRP strengthened RC beams, as well as the 3D non-linear finite element analysis of girder bridge. Acceptable distributions of slip, deflection, stresses in the concrete and FRP plate have also been found. These results show that the new elements are effective and appropriate to be used for structural component modelling.

  6. Study on Nonlinear Phenomena in Buck-Boost Converter with Switched-Inductor Structure

    Directory of Open Access Journals (Sweden)

    Hongchen Liu

    2013-01-01

    Full Text Available The switched-inductor structure can be inserted into a traditional Buck-Boost converter to get a high voltage conversion ratio. Nonlinear phenomena may occur in this new converter, which might well lead the system to be unstable. In this paper, a discrete iterated mapping model is established when the new Buck-Boost converter is working at continuous conduction current-controlled mode. On the basis of the discrete model, the bifurcation diagrams and Poincare sections are drawn and then used to analyze the effects of the circuit parameters on the performances. It can be seen clearly that various kinds of nonlinear phenomena are easy to occur in this new converter, including period-doubling bifurcation, border collision bifurcation, tangent bifurcation, and intermittent chaos. Value range of the circuit parameters that may cause bifurcations and chaos are also discussed. Finally, the time-domain waveforms, phase portraits, and power spectrum are obtained by using Matlab/Simulink, which validates the theoretical analysis results.

  7. Structural, electronic, linear, and nonlinear optical properties of ZnCdTe{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Ouahrani, Tarik [Laboratoire de Physique Theorique, Universite de Tlemcen, B.P. 230, Tlemcen 13000 (Algeria); Reshak, Ali H. [Institute of Physical Biology, South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Microelectronic Engineering, University of Malaysia Perlis (UniMAP), Block A, Kompleks Pusat Pengajian, 02600 Arau Jejawi, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Baltache, H.; Amrani, B. [Laboratoire de Physique Quantique et de Modelisation Mathematique, Universite de Mascara, Mascara 29000 (Algeria); Bouhemadou, A. [Department of Physics and Astronomy, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Faculty of Sciences, Department of Physics, University of Setif, Setif 19000 (Algeria)

    2011-03-15

    We report results of first-principles density functional calculations using the full-potential linearized augmented plane wave method. The generalized gradient approximation (GGA) and the Engel-Vosko-GGA (EV-GGA) formalism were used for the exchange-correlation energy to calculate the structural, electronic, linear, and nonlinear optical properties of the chalcopyrite ZnCdTe{sub 2} compound. The valence band maximum and the conduction band minimum are located at the {gamma}-point, resulting in a direct band gap of about 0.71 eV for GGA and 1.29 eV for EV-GGA. The results of bulk properties, such as lattice parameters (a, c, and u), bulk modulus B, and its pressure derivative B' are evaluated. The optical properties of this compound, namely the real and the imaginary parts of the dielectric function, reflectivity, and refractive index, show a considerable anisotropy as a consequence ZnCdTe{sub 2} posseses a strong birefringence. In addition, the extinction coefficient, the electron energy loss function, and the nonlinear susceptibility are calculated and their spectra are analyzed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Current flow instability and nonlinear structures in dissipative two-fluid plasmas

    Science.gov (United States)

    Koshkarov, O.; Smolyakov, A. I.; Romadanov, I. V.; Chapurin, O.; Umansky, M. V.; Raitses, Y.; Kaganovich, I. D.

    2018-01-01

    The current flow in two-fluid plasma is inherently unstable if plasma components (e.g., electrons and ions) are in different collisionality regimes. A typical example is a partially magnetized E ×B plasma discharge supported by the energy released from the dissipation of the current in the direction of the applied electric field (perpendicular to the magnetic field). Ions are not magnetized so they respond to the fluctuations of the electric field ballistically on the inertial time scale. In contrast, the electron current in the direction of the applied electric field is dissipatively supported either by classical collisions or anomalous processes. The instability occurs due to a positive feedback between the electron and ion current coupled by the quasi-neutrality condition. The theory of this instability is further developed taking into account the electron inertia, finite Larmor radius and nonlinear effects. It is shown that this instability results in highly nonlinear quasi-coherent structures resembling breathing mode oscillations in Hall thrusters.

  9. Geometrically and material non-linear analysis of bubble condenser steel structure

    International Nuclear Information System (INIS)

    Gyoergyi, J.; Lenkei, P.

    2003-01-01

    In frame of the project funded by the European Commission (EC) through the Phare and Tacis Programmes experimentally investigate the behaviour of the bubble condenser system (BCS) during phenomena induced by postulated design basis accidents (DBA). The bubble condenser steel structure consists of 12 trays. To enable the Bubble Condenser Test Prototype to be representative of the majority of trays and sections, it was decided to model a typical tray. The test results demonstrate the integrity of the standard tray pressure retaining boundary (side wall, face wall, ceiling and bottom) against a differential pressure (30 kPa). The stability of the side wall and the face wall of tray level 12 was not assured for this differential pressure. The thermal-hydraulic tests demonstrate that the maximum differential pressure across the tray walls in the case of Large Break Loss of Coolant Accident (LBLOCA) is 20 kPa. We have got from the experiences the differential pressure in function of time. The results of the approximate calculations showed the effect of nonlinearly. In case of calculation by FEM model we have done the elastic and linear analyses, and calculated with the geometrically and material non-linearity. (author)

  10. A nonlinear structural subgrid-scale closure for compressible MHD. I. Derivation and energy dissipation properties

    Energy Technology Data Exchange (ETDEWEB)

    Vlaykov, Dimitar G., E-mail: Dimitar.Vlaykov@ds.mpg.de [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Dynamik und Selbstorganisation, Am Faßberg 17, D-37077 Göttingen (Germany); Grete, Philipp [Institut für Astrophysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Schmidt, Wolfram [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany); Schleicher, Dominik R. G. [Departamento de Astronomía, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160-C (Chile)

    2016-06-15

    Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.

  11. Response analysis of a nuclear containment structure with nonlinear soil-structure interaction under bi-directional ground motion

    Science.gov (United States)

    Kumar, Santosh; Raychowdhury, Prishati; Gundlapalli, Prabhakar

    2015-06-01

    Design of critical facilities such as nuclear power plant requires an accurate and precise evaluation of seismic demands, as any failure of these facilities poses immense threat to the community. Design complexity of these structures reinforces the necessity of a robust 3D modeling and analysis of the structure and the soil-foundation interface. Moreover, it is important to consider the multiple components of ground motion during time history analysis for a realistic simulation. Present study is focused on investigating the seismic response of a nuclear containment structure considering nonlinear Winkler-based approach to model the soil-foundation interface using a distributed array of inelastic springs, dashpots and gap elements. It is observed from this study that the natural period of the structure increases about 10 %, whereas the force demands decreases up to 24 % by considering the soil-structure interaction. Further, it is observed that foundation deformations, such as rotation and sliding are affected by the embedment ratio, indicating an increase of up to 56 % in these responses for a reduction of embedment from 0.5 to 0.05× the width of the footing.

  12. Folding pathways explored with artificial potential functions

    International Nuclear Information System (INIS)

    Ulutaş, B; Bozma, I; Haliloglu, T

    2009-01-01

    This paper considers the generation of trajectories to a given protein conformation and presents a novel approach based on artificial potential functions—originally proposed for multi-robot navigation. The artificial potential function corresponds to a simplified energy model, but with the novelty that—motivated by work on robotic navigation—a nonlinear compositional scheme of constructing the energy model is adapted instead of an additive formulation. The artificial potential naturally gives rise to a dynamic system for the protein structure that ensures collision-free motion to an equilibrium point. In cases where the equilibrium point is the native conformation, the motion trajectory corresponds to the folding pathway. This framework is used to investigate folding in a variety of protein structures, and the results are compared with those of other approaches including experimental studies

  13. Repetitive Identification of Structural Systems Using a Nonlinear Model Parameter Refinement Approach

    Directory of Open Access Journals (Sweden)

    Jeng-Wen Lin

    2009-01-01

    Full Text Available This paper proposes a statistical confidence interval based nonlinear model parameter refinement approach for the health monitoring of structural systems subjected to seismic excitations. The developed model refinement approach uses the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a least-squares regression setting. When the parameters' confidence interval covers the zero value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. This newly developed model refinement approach is implemented for the series models of multivariable polynomial expansions: the linear, the Taylor series, and the power series model, leading to a more accurate identification as well as a more controllable design for system vibration control. Because the statistical regression based model refinement approach is intrinsically used to process a “batch” of data and obtain an ensemble average estimation such as the structural stiffness, the Kalman filter and one of its extended versions is introduced to the refined power series model for structural health monitoring.

  14. Implicit three-dimensional finite-element formulation for the nonlinear structural response of reactor components

    International Nuclear Information System (INIS)

    Kulak, R.F.; Belytschko, T.B.

    1975-09-01

    The formulation of a finite-element procedure for the implicit transient and static analysis of plate/shell type structures in three-dimensional space is described. The triangular plate/shell element can sustain both membrane and bending stresses. Both geometric and material nonlinearities can be treated, and an elastic-plastic material law has been incorporated. The formulation permits the element to undergo arbitrarily large rotations and translations; but, in its present form it is restricted to small strains. The discretized equations of motion are obtained by a stiffness method. An implicit integration algorithm based on trapezoidal integration formulas is used to integrate the discretized equations of motion in time. To ensure numerical stability, an iterative solution procedure with equilibrium checks is used

  15. Response and reliability analysis of nonlinear uncertain dynamical structures by the probability density evolution method

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.; Peng, Yongbo; Sichani, Mahdi Teimouri

    2016-01-01

    The paper deals with the response and reliability analysis of hysteretic or geometric nonlinear uncertain dynamical systems of arbitrary dimensionality driven by stochastic processes. The approach is based on the probability density evolution method proposed by Li and Chen (Stochastic dynamics...... of structures, 1st edn. Wiley, London, 2009; Probab Eng Mech 20(1):33–44, 2005), which circumvents the dimensional curse of traditional methods for the determination of non-stationary probability densities based on Markov process assumptions and the numerical solution of the related Fokker–Planck and Kolmogorov......–Feller equations. The main obstacle of the method is that a multi-dimensional convolution integral needs to be carried out over the sample space of a set of basic random variables, for which reason the number of these need to be relatively low. In order to handle this problem an approach is suggested, which...

  16. Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis

    CERN Document Server

    Vetyukov, Yury

    2014-01-01

    This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...

  17. A general-purpose contact detection algorithm for nonlinear structural analysis codes

    Energy Technology Data Exchange (ETDEWEB)

    Heinstein, M.W.; Attaway, S.W.; Swegle, J.W.; Mello, F.J.

    1993-05-01

    A new contact detection algorithm has been developed to address difficulties associated with the numerical simulation of contact in nonlinear finite element structural analysis codes. Problems including accurate and efficient detection of contact for self-contacting surfaces, tearing and eroding surfaces, and multi-body impact are addressed. The proposed algorithm is portable between dynamic and quasi-static codes and can efficiently model contact between a variety of finite element types including shells, bricks, beams and particles. The algorithm is composed of (1) a location strategy that uses a global search to decide which slave nodes are in proximity to a master surface and (2) an accurate detailed contact check that uses the projected motions of both master surface and slave node. In this report, currently used contact detection algorithms and their associated difficulties are discussed. Then the proposed algorithm and how it addresses these problems is described. Finally, the capability of the new algorithm is illustrated with several example problems.

  18. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  19. Self-trapping waveguiding structures in nonlinear photorefractive media based on Plexiglas with phenanthrenequinone molecules

    Science.gov (United States)

    Tolstik, Elen; Romanov, Oleg; Matusevich, Vladislav Y.; Tolstik, Alexei L.; Kowarschik, Richard M.

    2012-06-01

    The paper presents theoretical and experimental investigations of light beam self-trapping in a photorefractive medium based on Plexiglas (polymethylmethacrylate, PMMA) with photosensitive phenanthrenequinone (PQ)- molecules. It is shown that the self-trapping of a laser beam is generated due to the self-interaction of the propagating light wave under the conditions of a well balanced concurrence of the effects of light diffraction and nonlinear focusing. A new method for controlling the waveguide cross-section by changing the ratio of two competing mechanisms of the nonlinear refractive-index variation (namely the formation of the photoproducts and the heating of the medium while varying the power of the light beam) is proposed. The recording of self-trapping structures implemented in PQ-PMMA layers has been realized with two laser sources (405 nm and 514.5 nm) with an average power of several mW. It is shown that the photoattachment of the PQ-molecules to the polymeric chains and the formation of the photoproduct play the decisive role for the light-induced increase of the refractive index. Besides, the formation of the waveguide is strongly influenced by heating of the medium, which results in an additional thermal defocusing of the light beam. It has been established that the parameters of the waveguide (cross-section and length) are strongly dependent on the wavelength and the power of the laser radiation, as well as on the concentration of the PQ-molecules. Waveguiding structures with a diameter of 100 μm were recorded in samples with a high PQ-concentration (up to 4 mol.%) for the wavelength of 514.5 nm. Reducing the dye-concentration by one order requires shorter (blue) wavelengths (405 nm). The dependence of the waveguide parameters and the optimal laser wavelength on the concentration of PQ-molecules is confirmed by the numerical calculation including a 3D-model of the light self-trapping.

  20. Nonlinear oscillatory rheology and structure of wormlike micellar solutions and colloidal suspensions

    Science.gov (United States)

    Gurnon, Amanda Kate

    this constitutive model are tested by comparison with experiments on model WLM solutions. Further comparisons to the nonlinear oscillatory shear responses measured from colloidal suspensions establishes this analysis as a promising, quantitative method for understanding the underlying mechanisms responsible for the nonlinear dynamic response of complex fluids. A new experimental technique is developed to measure the microstructure of complex fluids during steady and transient shear flow using small-angle neutron scattering (SANS). The Flow-SANS experimental method is now available to the broader user communities at the NIST Center for Neutron Research, Gaithersburg, MD and the Institut Laue-Langevin, Grenoble, France. Using this new method, a model shear banding WLM solution is interrogated under steady and oscillatory shear. For the first time, the flow-SANS methods identify new metastable states for shear banding WLM solutions, thus establishing the method as capable of probing new states not accessible using traditional steady or linear oscillatory shear methods. The flow-induced three-dimensional microstructure of a colloidal suspension under steady and dynamic oscillatory shear is also measured using these rheo- and flow-SANS methods. A new structure state is identified in the shear thickening regime that proves critical for defining the "hydrocluster" microstructure state of the suspension that is responsible for shear thickening. For both the suspensions and the WLM solutions, stress-SANS rules with the measured microstructures define the individual stress components arising separately from conservative and hydrodynamic forces and these are compared with the macroscopic rheology. Analysis of these results defines the crucial length- and time-scales of the transient microstructure response. The novel dynamic microstructural measurements presented in this dissertation provide new insights into the complexities of shear thickening and shear banding flow phenomena

  1. The texture, structure and nutrient availability of artificial soil on cut slopes restored with OSSS - Influence of restoration time.

    Science.gov (United States)

    Huang, Zhiyu; Chen, Jiao; Ai, Xiaoyan; Li, Ruirui; Ai, Yingwei; Li, Wei

    2017-09-15

    Outside soil spray seeding (OSSS) is widely used to restore cut slopes in southwest of China, and artificial soil is often sprayed onto cut slopes to establish a soil layer for revegetation. The stability of artificial soil layer and its supply of water and nutrients for plants is crucial for successful restoration. To evaluate the long-term effectiveness of OSSS, the texture, structure and nutrient availability of artificial soil were studied, various soil samples were obtained from three cut slopes with different restoration time (restored with OSSS in 1996, 2003 and 2007 respectively) and one natural developed slope (NS). The properties measured including soil particle size distribution (PSD), texture, fractal dimension of PSD (D m ), the bias (C S ) and peak convex (C E ) coefficients of aggregate size distribution, structure failure rate, bulk density, moisture, pH, soil organic carbon (SOC), calcium carbonate content, Available nitrogen (N A ), Available phosphorus (P A ), and Available potassium (K A ). The results showed that different restoration time resulted in significant differences in soil PSD, D m , C S , C E , structure failure rate, bulk density, moisture, pH, N A , and K A . And these properties improved with increasing restoration age. However, there is still a huge disparity in soil texture, structure, and the availability of nutrients and moisture between the cut slopes and NS over a restoration period of up to 17 years, and this is caused by the little fine particles and the lack of slow release fertilizers and organic fertilizers in the artificial soil, resulting in poorer soil structure stability, retention and availability of moisture and nutrients on the cut slopes. Overall, the OSSS technique shows a long-term effectiveness in southwest of China, but there is still room for improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of uncertainties in soil-structure interaction models on nonlinear seismic responses of nuclear reactor buildings

    International Nuclear Information System (INIS)

    Mizuno, J.; Namba, H.; Komura, T.; Tuchiya, Y.; Saitoh, M.

    1993-01-01

    Effects of uncertainties in materials and modeling on seismic responses of nuclear reactor buildings are relatively small if responses remain in the elastic range of structures. However, under extremely severe earthquakes, responses are expected to go into nonlinear ranges, and responses may exhibit wider scatters due to the uncertainties and variabilities in materials and nonlinear characteristics of shear walls. Thus, it may be quite important to evaluate the effects of the uncertainties on nonlinear responses, especially, the maximum shear strain response, which is one of the most critical responses to the seismic safety of reinforced concrete shear walls and to reactor buildings as a whole. To this end, the sensitivities of nonlinear responses, mainly shear strain responses, to the uncertainties and variabilities of materials and nonlinear characteristics of shear walls arc evaluated for a reactor building of BWR Mark I type; then, the variabilities of nonlinear responses due to the uncertainties and variabilities are evaluated on the basis of the first-order approximation of response statistics as well as numerical simulations

  3. Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure.

    Science.gov (United States)

    El-Nagar, Ahmad M

    2018-01-01

    In this study, a novel structure of a recurrent interval type-2 Takagi-Sugeno-Kang (TSK) fuzzy neural network (FNN) is introduced for nonlinear dynamic and time-varying systems identification. It combines the type-2 fuzzy sets (T2FSs) and a recurrent FNN to avoid the data uncertainties. The fuzzy firing strengths in the proposed structure are returned to the network input as internal variables. The interval type-2 fuzzy sets (IT2FSs) is used to describe the antecedent part for each rule while the consequent part is a TSK-type, which is a linear function of the internal variables and the external inputs with interval weights. All the type-2 fuzzy rules for the proposed RIT2TSKFNN are learned on-line based on structure and parameter learning, which are performed using the type-2 fuzzy clustering. The antecedent and consequent parameters of the proposed RIT2TSKFNN are updated based on the Lyapunov function to achieve network stability. The obtained results indicate that our proposed network has a small root mean square error (RMSE) and a small integral of square error (ISE) with a small number of rules and a small computation time compared with other type-2 FNNs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Visualization of soil structure and pore structure modifications by pioneering ground beetles (Cicindelidae) in surface sediments of an artificial catchment

    Science.gov (United States)

    Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter

    2010-05-01

    An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively

  5. How many mechanisms are needed to analyze speech? A connectionist simulation of structural rule learning in artificial language acquisition.

    Science.gov (United States)

    Laakso, Aarre; Calvo, Paco

    2011-01-01

    Some empirical evidence in the artificial language acquisition literature has been taken to suggest that statistical learning mechanisms are insufficient for extracting structural information from an artificial language. According to the more than one mechanism (MOM) hypothesis, at least two mechanisms are required in order to acquire language from speech: (a) a statistical mechanism for speech segmentation; and (b) an additional rule-following mechanism in order to induce grammatical regularities. In this article, we present a set of neural network studies demonstrating that a single statistical mechanism can mimic the apparent discovery of structural regularities, beyond the segmentation of speech. We argue that our results undermine one argument for the MOM hypothesis. Copyright © 2011 Cognitive Science Society, Inc.

  6. Nonlinear eigen-structures in star-forming gyratory nonthermal complex molecular clouds

    Science.gov (United States)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2018-01-01

    This paper deals with the nonlinear gravito-electrostatic fluctuations in star-forming rotating complex partially ionized dust molecular clouds, evolutionarily well-governed by a derived pair of the Korteweg-de Vries (KdV) equations of a unique analytical shape, in a bi-fluidic-model fabric. The lighter constituent species, such as electrons and ions, are considered thermo-statistically as the nonthermal ones in nature, governed by the anti-equilibrium kappa-distribution laws, due to inherent nonlocal gradient effects stemming from large-scale inhomogeneity. The heavier species, such as the constitutive identical neutral and charged dust micro-spheres, are treated as separate turbulent viscous fluids in the Larson logatropic tapestry. Application of a standard technique of multiple scale analysis over the nonlinearly perturbed cloud procedurally yields the pair KdV system. It comprises of the gravitational KdV and electrostatic KdV equations with exclusive constructs of diversified multi-parametric coefficients. A numerical constructive platform is provided to see the excitation and propagatory dynamics of gravitational rarefactive periodic soliton-trains and electrostatic rarefactive aperiodic damped soliton-trains of distinctive patterns as the pair-KdV-supported discrete coherent eigen-mode structures illustratively. The varied key stabilizing and tonality destabilizing factors behind the cloud dynamics are identified. An elaborated contrast of the eigen-mode conjugacy is reconnoitered. The main implications and applications of the semi-analytical results explored here are summarily outlined in the real astro-space-cosmic statuses.

  7. Effect of temperature on the structural, linear, and nonlinear optical properties of MgO-doped graphene oxide nanocomposites

    Science.gov (United States)

    Kimiagar, Salimeh; Abrinaei, Fahimeh

    2018-01-01

    Magnesium oxide (MgO)-graphene oxide (GO) nanocomposites were prepared by the hydrothermal method at different temperatures. The effect of growth temperature on the structural, linear, and nonlinear optical (NLO) parameters was investigated. The decoration of MgO on GO sheets was confirmed by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and UV-visible (UV-vis) spectroscopy analyses. The energy band-gaps of MgO-GO nanocomposites were calculated from UV-vis spectrum using Tauc plot. The NLO parameters of MgO-GO nanocomposites were calculated for the first time by the simple Z-scan technique with nanosecond Nd:YAG laser at 532 nm. The nonlinear absorption coefficient β and nonlinear refractive index n2 for MgO-GO nanocomposites at the laser intensity of 1.1×108 W/cm2 were measured to be in the order of 10-7 cm/W and 10-12 cm2/W, respectively. The third-order NLO susceptibility of MgO-GO nanocomposites was measured in the order of 10-9 esu. The results showed that MgO-GO structures have negative nonlinearity as well as good nonlinear two-photon absorption at 532 nm. Furthermore, the NLO parameters increased by the enhancement of the growth temperature. As the investigation of new materials plays an important role in the advancement of optoelectronics, MgO-GO nanocomposites possess potential applications in NLO devices.

  8. The physico-chemical properties and structural characteristics of artificial soil for cut slope restoration in Southwestern China

    Science.gov (United States)

    Chen, Shunan; Ai, Xiaoyan; Dong, Tengyun; Li, Binbin; Luo, Ruihong; Ai, Yingwei; Chen, Zhaoqiong; Li, Chuanren

    2016-02-01

    Cut slopes are frequently generated by construction work in hilly areas, and artificial soil is often sprayed onto them to promote ecological rehabilitation. The artificial soil properties are very important for effective management of the slopes. This paper uses fractal and moment methods to characterize soil particle size distribution (PSD) and aggregates composition. The fractal dimension (D) showed linear relationships between clay, silt, and sand contents, with coefficients of determination from 0.843 to 0.875, suggesting that using of D to evaluate the PSD of artificial soils is reasonable. The bias (CS) and peak convex (CE) coefficients showed significant correlations with structure failure rate, moisture content, and total porosity, which validated the moment method to quantitatively describe soil structure. Railway slope (RS) soil has lower organic carbon and soil moisture, and higher pH than natural slope soil. Overall, RS exhibited poor soil structure and physicochemical properties, increasing the risk of soil erosion. Hence, more effective management measures should be adopted to promote the restoration of cut slopes.

  9. Langmuir-Blodgett films of amylose-esters and chiral azo-dyes : structure and second order nonlinear optical behaviour

    NARCIS (Netherlands)

    Schoondorp, Monique Annette

    1992-01-01

    This thesis describes the structure and second order nonlinear optical behaviour of several Langmuir-Blodgett films. Langmuir-Blodgett (LB) films are ultra thin films produced by the Langmuir-Blodgett technique, named after their inventors (Irving Langmuir and Katharina Blodgett).

  10. Langmuir-Blodgett films of amylose-esters and chiral azo-dyes: structure and second order nonlinear optical behaviour

    OpenAIRE

    Schoondorp, Monique Annette

    1992-01-01

    This thesis describes the structure and second order nonlinear optical behaviour of several Langmuir-Blodgett films. Langmuir-Blodgett (LB) films are ultra thin films produced by the Langmuir-Blodgett technique, named after their inventors (Irving Langmuir and Katharina Blodgett).

  11. Linear Text vs. Non-Linear Hypertext in Handheld Computers: Effects on Declarative and Structural Knowledge, and Learner Motivation

    Science.gov (United States)

    Son, Chanhee; Park, Sanghoon; Kim, Minjeong

    2011-01-01

    This study compared linear text-based and non-linear hypertext-based instruction in a handheld computer regarding effects on two different levels of knowledge (declarative and structural knowledge) and learner motivation. Forty four participants were randomly assigned to one of three experimental conditions: linear text, hierarchical hypertext,…

  12. The SR Approach: a new Estimation Method for Non-Linear and Non-Gaussian Dynamic Term Structure Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Christensen, Bent Jesper

    This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...

  13. Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone

    Science.gov (United States)

    Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng

    2017-05-01

    A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.

  14. Influence of structural flexibility on the nonlinear stiffness of hydraulic system

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2016-08-01

    Full Text Available Hydraulic system has been widely used in many mechatronic systems. Accurate identification of the hydraulic stiffness is critical to the design and control of such kind of system. It is widely recognized that the nonlinear hydraulic stiffness is influenced by many factors such as the compressibility of the fluid, the flexibility of the fluid supply circular tube, and the working status of the system. It is very difficult to accurately formulate the hydraulic stiffness due to the complex coupling effects. In this article, the concept of the volume modulus is first introduced to characterize the flexibility of the structure as a container. A hydraulic cylinder consisting of flexible circular tubes is used as an example to illustrate the relationship between the volume modulus and Young’s modulus of the circular tube. A novel formulation of the hydraulic stiffness is then proposed by taking into account the structural flexibility via the volume modulus of the circular tube. Finally, the influences of the circular tube parameters on the hydraulic stiffness are analyzed. Experiments are also carried out to verify the presented formulation. The proposed method can be used to design hydraulic system for achieving desired static and dynamic performances.

  15. Theoretical and experimental investigation of the nonlinear structural dynamics of Fast Breeder Reactor fuel elements

    International Nuclear Information System (INIS)

    Liebe, R.

    1978-04-01

    This study describes theoretical and experimental investigations of the dynamic deformation behavior of single and clustered fuel elements under local fault conditions in a Fast Breeder Reactor core. In particular an energetic molten-fuel-coolant-interaction (FCI) is assumed in one subassembly with corresponding pressure pulses, which may rupture the wrapper and load the adjacent fuel elements impulsively. Associated coherent structural deformation may exceed tolerable and damage the control rods. To attack the outlined coupled fluid-structure-interaction problem it is assumed, that the loading at the structures is known in space and time, and that there is no feedback from the deformation response. Then current FCI-knowledge and experience from underwater core model explosion tests is utilized to estimate upper limits of relevant pulse characteristics. As a first step the static carrying capacity of the rigid-plastic hexagonal wrapper tube is calculated using the methods of limit analysis. Then for a general dynamic simulation of the complete elastoplastic subassembly response the concept of a discrete nonlinear hinge is introduced. A corresponding physical lumped parameter hinge model is presented, and general equations of motion are derived using D'Alembert's principle. Application to the static and dynamic analysis of a single complete fuel element includes the semiempirical modelling of the fuel-pin bundle by a homogeneous compressible medium. Most important conclusions are concerning the capability of the theoretical models, the failure modes and threshold load levels of single as well as clustered SNR-300 fuel elements and the safety relevant finding, that only limited deformations are found in the first row around the incident element. This shows in agreement with explosion test results that the structured and closely spaced fuel elements constitute an effective, inherent barrier against extreme dynamic loadings. (orig.) [de

  16. Abundance of non-native crabs in intertidal habitats of New England with natural and artificial structure

    Directory of Open Access Journals (Sweden)

    Christina M. Lovely

    2015-09-01

    Full Text Available Marine habitats containing complex physical structure (e.g., crevices can provide shelter from predation for benthic invertebrates. To examine effects of natural and artificial structure on the abundance of intertidal juvenile crabs, 2 experiments were conducted in Kingston Bay, Massachusetts, USA, from July to September, 2012. In the first experiment, structure was manipulated in a two-factor design that was placed in the high intertidal for 3 one-week periods to test for both substrate type (sand vs. rock and the presence or absence of artificial structure (mesh grow-out bags used in aquaculture, ∼0.5 m2 with 62 mm2 mesh openings. The Asian shore crab, Hemigrapsus sanguineus, and small individuals of the green crab, Carcinus maenas, were observed only in the treatments of rocks and mesh bag plus rocks. Most green crabs were small (<6 mm in carapace width whereas H. sanguineus occurred in a wide range of sizes. In the second experiment, 3 levels of oyster-shell treatments were established using grow-out bags placed on a muddy sand substrate in the low intertidal zone: mesh grow-out bags without shells, grow-out bags with oyster shells, and grow-out bags containing live oysters. Replicate bags were deployed weekly for 7 weeks in a randomized complete block design. All crabs collected in the bags were juvenile C. maenas (1–15 mm carapace width, and numbers of crabs differed 6-fold among treatments, with most crabs present in bags with live oysters (29.5 ± 10.6 m−2 [mean ± S.D.] and fewest in bags without shells (4.9 ± 3.7 m−2. Both C. maenas and H. sanguineus occurred in habitats with natural structure (cobble rocks. The attraction of juvenile C. maenas to artificial structure consisting of plastic mesh bags containing both oyster shells and living oysters could potentially impact oyster aquaculture operations.

  17. The band structures of three-dimensional nonlinear plasma photonic crystals

    Science.gov (United States)

    Zhang, Hai-Feng

    2018-01-01

    In this paper, the properties of the photonic band gaps (PBGs) for three-dimensional (3D) nonlinear plasma photonic crystals (PPCs) are theoretically investigated by the plane wave expansion method, whose equations for calculations also are deduced. The configuration of 3D nonlinear PPCs is the Kerr nonlinear dielectric spheres (Kerr effect is considered) inserted in the plasma background with simple-cubic lattices. The inserted dielectric spheres are Kerr nonlinear dielectrics whose relative permittivities are the functions of the external light intensity. Three different Kerr nonlinear dielectrics are considered, which can be expressed as the functions of space coordinates. The influences of the parameters for the Kerr nonlinear dielectrics on the PBGs also are discussed. The calculated results demonstrate that the locations, bandwidths and number of PBGs can be manipulated with the different Kerr nonlinear dielectrics. Compared with the conventional 3D dielectric PCs and PPCs with simple-cubic lattices, the more PBGs or larger PBG can be achieved in the 3D nonlinear PPCs. Those results provide a new way to design the novel devices based on the PPCs.

  18. The band structures of three-dimensional nonlinear plasma photonic crystals

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2018-01-01

    Full Text Available In this paper, the properties of the photonic band gaps (PBGs for three-dimensional (3D nonlinear plasma photonic crystals (PPCs are theoretically investigated by the plane wave expansion method, whose equations for calculations also are deduced. The configuration of 3D nonlinear PPCs is the Kerr nonlinear dielectric spheres (Kerr effect is considered inserted in the plasma background with simple-cubic lattices. The inserted dielectric spheres are Kerr nonlinear dielectrics whose relative permittivities are the functions of the external light intensity. Three different Kerr nonlinear dielectrics are considered, which can be expressed as the functions of space coordinates. The influences of the parameters for the Kerr nonlinear dielectrics on the PBGs also are discussed. The calculated results demonstrate that the locations, bandwidths and number of PBGs can be manipulated with the different Kerr nonlinear dielectrics. Compared with the conventional 3D dielectric PCs and PPCs with simple-cubic lattices, the more PBGs or larger PBG can be achieved in the 3D nonlinear PPCs. Those results provide a new way to design the novel devices based on the PPCs.

  19. Blow-up in nonlinear Schroedinger equations. II. Similarity structure of the blow-up singularity

    DEFF Research Database (Denmark)

    Rypdal, K.; Juul Rasmussen, Jens

    1986-01-01

    invariance and generalizations of the latter. This generalized "quasi-invariance" reveals the nature of the blow-up singularity and resolves an old controversy. Most of the previous work has been done on the cubic nonlinearity. We generalize the results to an arbitrary power nonlinearity....

  20. Estimation of nonlinearities from pseudodynamic and dynamic responses of bridge structures using the Delay Vector Variance method

    Science.gov (United States)

    Jaksic, Vesna; Mandic, Danilo P.; Karoumi, Raid; Basu, Bidroha; Pakrashi, Vikram

    2016-01-01

    Analysis of the variability in the responses of large structural systems and quantification of their linearity or nonlinearity as a potential non-invasive means of structural system assessment from output-only condition remains a challenging problem. In this study, the Delay Vector Variance (DVV) method is used for full scale testing of both pseudo-dynamic and dynamic responses of two bridges, in order to study the degree of nonlinearity of their measured response signals. The DVV detects the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. The pseudo-dynamic data is obtained from a concrete bridge during repair while the dynamic data is obtained from a steel railway bridge traversed by a train. We show that DVV is promising as a marker in establishing the degree to which a change in the signal nonlinearity reflects the change in the real behaviour of a structure. It is also useful in establishing the sensitivity of instruments or sensors deployed to monitor such changes.

  1. Comparison of linear spectral and nonlinear dynamic calculation method for tie frame building structure in case of earthquakes

    Directory of Open Access Journals (Sweden)

    Mkrtychev Oleg Vartanovich

    2016-01-01

    Full Text Available An earthquake is a rapid highly nonlinear process. In effective normative documents there is a coefficient K1, which takes into account limit damage of building structures, i.e. non-linear work of building materials and structures during seismic load. Its value depends on the building constructive layout. However, because of the development of construction and new constructive solutions this coefficient should be defined according to design-basis justification. The article considers the five-storey building calculation on seismic impact by linear-spectral and direct dynamic methods. Our research shows that the coefficient K1 for this building is 0.4, which was calculated using nonlinear dynamic method. According to effective normative documents K1 is 0.25…0.3 for buildings of this type. Thus we get a lack of seismic stability of bearing structures by 1.5…2 times. In order to ensure the seismic safety of buildings and facilities, especially of unique objects, the coefficient K1 should be determined by calculations with sufficient scientific justification, particularly with the use of non-linear dynamic methods.

  2. Finite Element Modeling and Analysis of Nonlinear Impact and Frictional Motion Responses Including Fluid—Structure Coupling Effects

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    1997-01-01

    Full Text Available A nonlinear three dimensional (3D single rack model and a nonlinear 3D whole pool multi-rack model are developed for the spent fuel storage racks of a nuclear power plant (NPP to determine impacts and frictional motion responses when subjected to 3D excitations from the supporting building floor. The submerged free standing rack system and surrounding water are coupled due to hydrodynamic fluid-structure interaction (FSI using potential theory. The models developed have features that allow consideration of geometric and material nonlinearities including (1 the impacts of fuel assemblies to rack cells, a rack to adjacent racks or pool walls, and rack support legs to the pool floor; (2 the hydrodynamic coupling of fuel assemblies with their storing racks, and of a rack with adjacent racks, pool walls, and the pool floor; and (3 the dynamic motion behavior of rocking, twisting, and frictional sliding of rack modules. Using these models 3D nonlinear time history dynamic analyses are performed per the U.S. Nuclear Regulatory Commission (USNRC criteria. Since few such modeling, analyses, and results using both the 3D single and whole pool multiple rack models are available in the literature, this paper emphasizes description of modeling and analysis techniques using the SOLVIA general purpose nonlinear finite element code. Typical response results with different Coulomb friction coefficients are presented and discussed.

  3. In plants, expression breadth and expression level distinctly and non-linearly correlate with gene structure

    Directory of Open Access Journals (Sweden)

    Yang Hangxing

    2009-11-01

    Full Text Available Abstract Background Compactness of highly/broadly expressed genes in human has been explained as selection for efficiency, regional mutation biases or genomic design. However, highly expressed genes in flowering plants were shown to be less compact than lowly expressed ones. On the other hand, opposite facts have also been documented that pollen-expressed Arabidopsis genes tend to contain shorter introns and highly expressed moss genes are compact. This issue is important because it provides a chance to compare the selectionism and the neutralism views about genome evolution. Furthermore, this issue also helps to understand the fates of introns, from the angle of gene expression. Results In this study, I used expression data covering more tissues and employ new analytical methods to reexamine the correlations between gene expression and gene structure for two flowering plants, Arabidopsis thaliana and Oryza sativa. It is shown that, different aspects of expression pattern correlate with different parts of gene sequences in distinct ways. In detail, expression level is significantly negatively correlated with gene size, especially the size of non-coding regions, whereas expression breadth correlates with non-coding structural parameters positively and with coding region parameters negatively. Furthermore, the relationships between expression level and structural parameters seem to be non-linear, with the extremes of structural parameters possibly scale as power-laws or logrithmic functions of expression levels. Conclusion In plants, highly expressed genes are compact, especially in the non-coding regions. Broadly expressed genes tend to contain longer non-coding sequences, which may be necessary for complex regulations. In combination with previous studies about other plants and about animals, some common scenarios about the correlation between gene expression and gene structure begin to emerge. Based on the functional relationships between

  4. Nonlinear reconstruction

    Science.gov (United States)

    Zhu, Hong-Ming; Yu, Yu; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2017-12-01

    We present a direct approach to nonparametrically reconstruct the linear density field from an observed nonlinear map. We solve for the unique displacement potential consistent with the nonlinear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to the nonlinear scale (rδrδL>0.5 for k ≲1 h /Mpc ) with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully nonlinear fields, potentially substantially expanding the baryon acoustic oscillations and redshift space distortions information content of dense large scale structure surveys, including for example SDSS main sample and 21 cm intensity mapping initiatives.

  5. Generative Artificial Intelligence : Philosophy and Theory of Artificial Intelligence

    NARCIS (Netherlands)

    van der Zant, Tijn; Kouw, Matthijs; Schomaker, Lambertus; Mueller, Vincent C.

    2013-01-01

    The closed systems of contemporary Artificial Intelligence do not seem to lead to intelligent machines in the near future. What is needed are open-ended systems with non-linear properties in order to create interesting properties for the scaffolding of an artificial mind. Using post-structuralistic

  6. Fluid-structure interaction of three-dimensional magnetic artificial cilia

    NARCIS (Netherlands)

    Khaderi, S. N.; Onck, P. R.

    2012-01-01

    A numerical model is developed to analyse the interaction of artificial cilia with the surrounding fluid in a three-dimensional setting in the limit of vanishing fluid inertia forces. The cilia are modelled using finite shell elements and the fluid is modelled using a boundary element approach. The

  7. Nonlinear modeling of activated sludge process using the Hammerstein-Wiener structure

    Directory of Open Access Journals (Sweden)

    Frącz Paweł

    2016-01-01

    Full Text Available The paper regards to physical model of the Activated Sludge Process, which is a part of the wastewater treatment. The aim of the study was to describe nitrogen transformation process and the demand of chemical fractions, involved in the ASP process. Moreover, the non-linear relationship between the flow of wastewater and the consumed electrical energy, used by the blowers, was determined. Such analyses are important from the economical and environmental point of view. Assuming that the total power does not change the blower is charging during a year an energy amount of approx. 613 MW. This illustrates in particular the scale of the demand for energy consumption in the biological aeration unit. The aim is to minimize the energy consumption through first building a model of ASP and then through optimization of the overall process by modifying chosen parameter in numerical simulations. In this paper example measurement and analysis results of nitrite and ammonium nitrogen concentrations in the aeration reactor and the active power consumed by blowers for the aeration process were presented. Further the ASP modeling procedure, which uses the Hammerstein-Wiener structure and example verification results were presented. Based on the achieved results it was stated that the developed set of methodologies may be used to improve and expand the overriding control system for system for wastewater treatment plant.

  8. Some remarks on the influence of temperature-variations, non-linearities, repeatability and ageing on modal-analysis for structural health monitoring of real bridges

    Directory of Open Access Journals (Sweden)

    Maas Stefan

    2015-01-01

    Full Text Available Structural Health Monitoring (SHM intends to identify damage by changes of characteristics as for instance the modal parameters. The eigenfrequencies, mode-shapes and damping-values are either directly used as damage indicators or the changes of derived parameters are analysed, such as e.g. flexibilities or updated finite element models. One common way is a continuous monitoring under environmental excitation forces, such as wind or traffic, i.e. the so-called output-only modal analysis. Alternatively, a forced measured external excitation in distinct time-intervals may be used for input-output modal analysis. Both methods are limited by the precision or the repeatability under real-life conditions at site. The paper will summarize several field tests of artificially step-by-step damaged bridges prior to their final demolishment and it will show the changes of eigenfrequencies due to induced artificial damage. Additionally, some results of a monitoring campaign of a healthy bridge in Luxembourg are presented. Reinforced concrete shows non-linear behaviour in the sense that modal parameters depend on the excitation force amplitude, i.e. higher forces lead often to lower eigenfrequencies than smaller forces. Furthermore, the temperature of real bridges is neither constant in space nor in time, while for instance the stiffness of asphalt is strongly dependant on it. Finally, ageing as such can also change a bridge’s stiffness and its modal parameters, e.g. because creep and shrinkage of concrete or ageing of elastomeric bearing pads influence their modulus of elasticity. These effects cannot be considered as damage, though they influence the measurement of modal parameters and hinder damage detection.

  9. An ecological model of the artificial ecosystem (northern Hangzhou Bay, China): analysis of ecosystem structure and fishing impacts

    Science.gov (United States)

    Chen, Zuozhi; Xu, Shannan; He, Peimin

    2011-06-01

    The artificial ecosystem is a large-scale enclosure in northern Hangzhou Bay, China. Using the Ecopath with Ecosim software, a trophic structure model is constructed for 2006-2007 to characterize the food web structure, functioning, and describing the ecosystem impacts of fishing. Input information for the model were gathered from published and unpublished reports and from our own estimates during the period 2006-2007. Pedigree work and simple sensitivity analysis were carried out to evaluate the quality and the uncertainty of the model. Results show that the food web in the enclosed sea area was dominated by a detritus pathway. The trophic levels of the groups varied from 1.00 for primary producers and detritus to 3.90 for piscivorous fish in the artificial system. Using network analysis, the system network was mapped into a linear food chain, and five discrete trophic levels were found with a mean transfer efficiency of 9.8% from detritus, 9.4% from primary producer within the ecosystem. The geometric mean of the trophic transfer efficiencies was 9.5%. Detritus contributed 57% of the total energy flux, and the other 43% came from primary producers. The ecosystem maturity indices-TPP/TR (total primary production/total respiration), FCI (Finn cycling index), A (ascendancy) and TB/TDET were 2.672, 25%, 31.5%, and 0.013, respectively, showing that the artificial system is at developmental stage according to Odum's theory of ecosystem development. The `Keystoneness' result indicates that herbivorous zooplankton was identified as keystone species in this system. Furthermore, a simple dynamical simulation was preformed for varying fishing mortality over 10 years. The biomass of most fish groups has a small increase when the fishing mortality at current level. Increasing fishing mortality by twofold resulted in a marked decrease in biomass of piscivorous fish accompanied by an increase in that of other fish groups, notable zooplanktivorous fish. Generally, this study

  10. Synthesis, crystal structure, spectroscopic characterization and nonlinear optical properties of Co(II)- picolinate complex

    Energy Technology Data Exchange (ETDEWEB)

    Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avcı, Davut; Atalay, Yusuf

    2015-11-15

    A cobalt(II) complex of picolinate was synthesized, and its structure was fully characterized by the applying of X-ray diffraction method as well as FT-IR, FT-Raman and UV–vis spectroscopies. In order to both support the experimental results and convert study to more advanced level, density functional theory calculations were performed by using B3LYP level. Single crystal X-ray structural analysis shows that cobalt(II) ion was located to the center of distorted octahedral geometry. The C=O, C=C and C=N stretching vibrations were found as highly active and strong peaks, inducing the molecular charge transfer within Co(II) complex. The small energy gap between frontier molecular orbital energies was another indicator of molecular charge transfer interactions within Co(II) complex. The nonlinear optical properties of Co(II) complex were investigated at DFT/B3LYP level, and the hypepolarizability parameter was found to be decreased due to the presence of inversion symmetry. The natural bond orbital (NBO) analysis was performed to investigate molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength for Co(II) complex. Finally, molecular electrostatic potential (MEP) and spin density distributions for Co(II) complex were evaluated. - Highlights: • Co(II) complex of picolinate was prepared. • Its FT-IR, FT-Raman and UV–vis spectra were measured. • DFT calculations were performed to support experimental results. • Small HOMO-LUMO energy gap is an indicator of molecular charge transfer. • Spin density localized on Co(II) as well as O and N atoms.

  11. Application of nonlinear rheology to assess the effect of secondary nanofiller on network structure of hybrid polymer nanocomposites

    Science.gov (United States)

    Kamkar, Milad; Aliabadian, Ehsan; Shayesteh Zeraati, Ali; Sundararaj, Uttandaraman

    2018-02-01

    Carbon nanotube (CNT)/polymer nanocomposites exhibit excellent electrical properties by forming a percolated network. Adding a secondary filler can significantly affect the CNTs' network, resulting in changing the electrical properties. In this work, we investigated the effect of adding manganese dioxide nanowires (MnO2NWs) as a secondary nanofiller on the CNTs' network structure inside a poly(vinylidene fluoride) (PVDF) matrix. Incorporating MnO2NWs to PVDF/CNT samples produced a better state of dispersion of CNTs, as corroborated by light microscopy and transmission electron microscopy. The steady shear and oscillatory shear flows were employed to obtain a better insight into the nanofiller structure and viscoelastic behavior of the nanocomposites. The transient response under steady shear flow revealed that the stress overshoot of hybrid nanocomposites (two-fillers), PVDF/CNT/MnO2NWs, increased dramatically in comparison to binary nanocomposites (single-filler), PVDF/CNT and PVDF/MnO2NWs. This can be attributed to microstructural changes. Large amplitude oscillatory shear characterization was also performed to further investigate the effect of the secondary nanofiller on the nonlinear viscoelastic behavior of the samples. The nonlinear rheological observations were explained using quantitative nonlinear parameters [strain-stiffening ratio (S) and shear-thickening ratio (T)] and Lissajous-Bowditch plots. Results indicated that a more rigid nanofiller network was formed for the hybrid nanocomposites due to the better dispersion state of CNTs and this led to a more nonlinear viscoelastic behavior.

  12. Engineering characterization of ground motion. Task II. Effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects. Volume 2

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Kincaid, R.H.; Short, S.A.

    1985-03-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics on structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5

  13. Roughness Encoding in Human and Biomimetic Artificial Touch: Spatiotemporal Frequency Modulation and Structural Anisotropy of Fingerprints

    Directory of Open Access Journals (Sweden)

    Maria Chiara Carrozza

    2011-05-01

    Full Text Available The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. In parallel, human microneurography experiments were performed and a selection of results is included in this work in order to support the significance of the biorobotic study with the artificial tactile system.

  14. The relationship between strategic control and conscious structural knowledge in artificial grammar learning

    OpenAIRE

    Norman, Elisabeth; Scott, Ryan B; Price, Mark; Dienes, Zoltan

    2016-01-01

    We address Jacoby’s (1991) proposal that strategic control over knowledge requires conscious awareness of that knowledge. In a two-grammar artificial grammar learning experiment all participants were trained on two grammars, consisting of a regularity in letter sequences, while two other dimensions (colours and fonts) varied randomly. Strategic control was measured as the ability to selectively apply the grammars during classification. For each classification, participants also made a combine...

  15. Asymmetric bistable reflection and polarization switching in a magnetic nonlinear multilayer structure

    DEFF Research Database (Denmark)

    Tuz, Vladimir R.; Novitsky, Denis V.; Prosvirnin, Sergey L.

    2014-01-01

    , while light reflected from the other side has its polarization unchanged. Using the nonlinear transfer matrix calculations in the frequency domain, it is demonstrated that defect resonances in the nonlinear reflection spectra undergo bending, resulting in polarization bistability of reflected light....... This bistability is shown to result in abrupt switching between linear polarization of the output reflected light when the input intensity is varied. This switching is confirmed in finite-difference time-domain simulations, and its hysteresis character is established....

  16. A Nonlinear Transmission Line Model of the Cochlea With Temporal Integration Accounts for Duration Effects in Threshold Fine Structure

    DEFF Research Database (Denmark)

    Verhey, Jesko L.; Mauermann, Manfred; Epp, Bastian

    2017-01-01

    than for long signals. The present study demonstrates how this effect can be captured by a nonlinear and active model of the cochlear in combination with a temporal integration stage. Since this cochlear model also accounts for fine structure and connected level dependent effects, it is superior......For normal-hearing listeners, auditory pure-tone thresholds in quiet often show quasi periodic fluctuations when measured with a high frequency resolution, referred to as threshold fine structure. Threshold fine structure is dependent on the stimulus duration, with smaller fluctuations for short...

  17. Structural investigation and simulation of acoustic properties of some tellurite glasses using artificial intelligence technique

    Energy Technology Data Exchange (ETDEWEB)

    Gaafar, M.S., E-mail: mohamed_s_gaafar@hotmail.com [Ultrasonic Department, National Institute for Standards, Giza (Egypt); Physics Department, Faculty of Science, Majmaah University, Zulfi (Saudi Arabia); Abdeen, Mostafa A.M., E-mail: mostafa_a_m_abdeen@hotmail.com [Dept. of Eng. Math. and Physics, Faculty of Eng., Cairo University, Giza (Egypt); Marzouk, S.Y., E-mail: samir_marzouk2001@yahoo.com [Arab Academy of Science and Technology, Al-Horria, Heliopolis, Cairo (Egypt)

    2011-02-24

    Research highlights: > Simulation the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). > The glass network is strengthened by enhancing the linkage of Te-O chains. The tellurite network will also come to homogenization, because of uniform distribution of Nb{sup 5+} ions among the Te-O chains, though some of the tellurium-oxide polyhedra still link each other in edge sharing. > Excellent agreements between the measured values and the predicted values were obtained for over 50 different tellurite glass compositions. > The model we designed gives a better agreement as compared with Makishima and Machenzie model. - Abstract: The developments in the field of industry raise the need for simulating the acoustic properties of glass materials before melting raw material oxides. In this paper, we are trying to simulate the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). The artificial neural network (ANN) technique is introduced in the current study to simulate and predict important parameters such as density, longitudinal and shear ultrasonic velocities and elastic moduli (longitudinal and shear moduli). The ANN results were found to be in successful good agreement with those experimentally measured parameters. Then the presented ANN model is used to predict the acoustic properties of some new tellurite glasses. For this purpose, four glass systems xNb{sub 2}O{sub 5}-(1 - x)TeO{sub 2}, 0.1PbO-xNb{sub 2}O{sub 5}-(0.9 - x)TeO{sub 2}, 0.2PbO-xNb{sub 2}O{sub 5}-(0.8 - x)TeO{sub 2} and 0.05Bi{sub 2}O{sub 3}-xNb{sub 2}O{sub 5}-(0.95 - x)TeO{sub 2} were prepared using melt quenching technique. The results of ultrasonic velocities and elastic moduli showed that the addition of Nb{sub 2}O{sub 5} as a network modifier provides oxygen ions to change [TeO{sub 4}] tbps into [TeO{sub 3}] tps.

  18. Structural investigation and simulation of acoustic properties of some tellurite glasses using artificial intelligence technique

    International Nuclear Information System (INIS)

    Gaafar, M.S.; Abdeen, Mostafa A.M.; Marzouk, S.Y.

    2011-01-01

    Research highlights: → Simulation the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). → The glass network is strengthened by enhancing the linkage of Te-O chains. The tellurite network will also come to homogenization, because of uniform distribution of Nb 5+ ions among the Te-O chains, though some of the tellurium-oxide polyhedra still link each other in edge sharing. → Excellent agreements between the measured values and the predicted values were obtained for over 50 different tellurite glass compositions. → The model we designed gives a better agreement as compared with Makishima and Machenzie model. - Abstract: The developments in the field of industry raise the need for simulating the acoustic properties of glass materials before melting raw material oxides. In this paper, we are trying to simulate the acoustic properties of some tellurite glasses using one of the artificial intelligence techniques (artificial neural network). The artificial neural network (ANN) technique is introduced in the current study to simulate and predict important parameters such as density, longitudinal and shear ultrasonic velocities and elastic moduli (longitudinal and shear moduli). The ANN results were found to be in successful good agreement with those experimentally measured parameters. Then the presented ANN model is used to predict the acoustic properties of some new tellurite glasses. For this purpose, four glass systems xNb 2 O 5 -(1 - x)TeO 2 , 0.1PbO-xNb 2 O 5 -(0.9 - x)TeO 2 , 0.2PbO-xNb 2 O 5 -(0.8 - x)TeO 2 and 0.05Bi 2 O 3 -xNb 2 O 5 -(0.95 - x)TeO 2 were prepared using melt quenching technique. The results of ultrasonic velocities and elastic moduli showed that the addition of Nb 2 O 5 as a network modifier provides oxygen ions to change [TeO 4 ] tbps into [TeO 3 ] tps.

  19. Semianalytic Design Sensitivity Analysis of Nonlinear Structures With a Commercial Finite Element Package

    International Nuclear Information System (INIS)

    Lee, Tae Hee; Yoo, Jung Hun; Choi, Hyeong Cheol

    2002-01-01

    A finite element package is often used as a daily design tool for engineering designers in order to analyze and improve the design. The finite element analysis can provide the responses of a system for given design variables. Although finite element analysis can quite well provide the structural behaviors for given design variables, it cannot provide enough information to improve the design such as design sensitivity coefficients. Design sensitivity analysis is an essential step to predict the change in responses due to a change in design variables and to optimize a system with the aid of the gradient-based optimization techniques. To develop a numerical method of design sensitivity analysis, analytical derivatives that are based on analytical differentiation of the continuous or discrete finite element equations are effective but analytical derivatives are difficult because of the lack of internal information of the commercial finite element package such as shape functions. Therefore, design sensitivity analysis outside of the finite element package is necessary for practical application in an industrial setting. In this paper, the semi-analytic method for design sensitivity analysis is used for the development of the design sensitivity module outside of a commercial finite element package of ANSYS. The direct differentiation method is employed to compute the design derivatives of the response and the pseudo-load for design sensitivity analysis is effectively evaluated by using the design variation of the related internal nodal forces. Especially, we suggest an effective method for stress and nonlinear design sensitivity analyses that is independent of the commercial finite element package is also discussed. Numerical examples are illustrated to show the accuracy and efficiency of the developed method and to provide insights for implementation of the suggested method into other commercial finite element packages

  20. On the study of a nonlinear higher order dispersive wave equation: its mathematical physical structure and anomaly soliton phenomena

    Science.gov (United States)

    Lee, C. T.; Lee, C. C.

    2015-04-01

    This paper introduces a systematic approach to investigate a higher order nonlinear dispersive wave equation for modeling different wave modes. We present both the conventional KdV-type soliton and anomaly type solitons for the equation. We also show the conservation laws and Hamiltonian structures for the equation. Our results suggest that the underlying equation has more interacting soliton phenomena than one would have known for the classical KdV and Boussinesq equation.

  1. Multiple fault detection and diagnosis in a gas turbine using nonlinear principal component analysis and structured residuals

    OpenAIRE

    Rincon-Charris, Amilcar; Quevedo Casín, Joseba Jokin

    2013-01-01

    Multiple fault detection and diagnosis is a challenging problem because the number of candidates grows exponentially in the number of faults. In add ition, multiple faults in dynamic systems may be hard to detect, because they can mask or compensate each other’s effects. This paper presents the study of the detection and diagnosis of multiple faults in a SR-30 Gas Turbine using nonlinear principal component analys is as the detection method and structured residua...

  2. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  3. Study on the contact ratio of base mat of reactor buildings considering nonlinear soil-structure interaction effects

    International Nuclear Information System (INIS)

    Aihara, S.; Atsumi, K.; Ujiie, K.; Emori, K.; Odajima, M.; Masuda, K.

    1983-01-01

    The objective of this paper is to evaluate the nonlinear soil-structure interaction effects resulting from base mat uplift for static lateral loads. Nonlinear soil-structure interaction effects are modeled through the use of equivalent soil-structure interaction frictional and axial springs, which properties are determined by results of experimental data. It is assumed that normal stresses in compression and corresponding shear stresses, and friction, can occur in the area of contact between the embedded structure and soil. The remaining parts of the structure and soil are based on elastic analysis. A two-dimensional finite element method with incremental loadings is applied. The substructuring technique is used to reduce computation time. The results of this method with respect to the contact ratio of the base mat are compared with the values obtained by static elastic calculation which is simply derived from an overturning moment and a vertical load of the structure. This analytical concept will be developed into dynamic problems, and then it will be possible to state whether or not this concept can represent a true alternative for the contact ratio of the base mat of a structure. (orig./HP)

  4. How simple can nonlinear finite element modelling be for structural concrete?

    Directory of Open Access Journals (Sweden)

    Argirova, G.

    2014-12-01

    Full Text Available This paper discusses on the required level of simplicity for suitable modelling of structural concrete. Traditional equilibrium- based approaches (as strut-and-tie models are too coarse in some cases, as they account for the cracking state of concrete in a sometimes excessively simplified manner. The alternative of complex nonlinear numerical modelling is also not always satisfactory for design as the number of parameters required, their definition and the sensitivity of the structural response to them is complex and requires a high level of experience. Contrary to these approaches, this paper introduces the elastic plastic stress field method. This method is grounded on the theory of plasticity but allows considering deformation compatibility. The results are consistent both in terms of the strength and deformation field of the member. It also has the advantage of requiring only two physical material properties (modulus of elasticity and plastic strength which can be easily determined by designers.Este artículo discute sobre el nivel de sencillez ideal para un análisis no lineal de elementos de hormigón estructural. Los métodos de cálculo basados únicamente en condiciones de equilibrio (como los modelos de bielas-y-tirantes no son siempre adecuados ya que el estado de fisuración del hormigón se considera a veces de una manera excesivamente simplificada. Los análisis no lineales complejos tampoco son siempre adecuados, ya que el número de parámetros requeridos, su definición y la sensibilidad de la respuesta del elemento a sus variaciones requieren una gran experiencia. Como alternativa, se presenta el método de los campos de tensiones elasto-plásticos. Este método se basa en la teoría de la plasticidad pero incorporando condiciones de compatibilidad. Los resultados son coherentes en términos de resistencia y de deformaciones. Además, sólo necesita la definición de dos parámetros mecánicos (módulo de elasticidad y

  5. Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food.

    Science.gov (United States)

    Steijven, Karin; Spaethe, Johannes; Steffan-Dewenter, Ingolf; Härtel, Stephan

    2017-01-01

    Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a

  6. Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food

    Directory of Open Access Journals (Sweden)

    Karin Steijven

    2017-10-01

    Full Text Available Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus

  7. A displacement-based approach for determining non-linear effects on pre-tensioned-cable cross-braced structures

    Science.gov (United States)

    Giaccu, Gian Felice; Caracoglia, Luca

    2017-04-01

    Pre-tensioned-cable bracing systems are widely employed in structural engineering to limit lateral deflections and stabilize structures. A suitable configuration of the pre-tensioned-cable bracing systems in a structure is an important issue since the internal force distribution, emerging from the interaction with the existing structure, significantly affects the structural dynamic behavior. The design, however, is often based on the intuition and the previous experience of the engineer. In recent years, the authors have been investigating the non-linear dynamic response of cable systems, installed on cable-stayed bridges, and in particular the so-called "cable-cross-tie systems" forming a cable network. The bracing cables (cross-ties) can exhibit slackening or snapping. Therefore, a non-linear unilateral model, combined with the taut-cable theory, is required to simulate the incipient slackening conditions in the stays. Capitalizing from this work on non-linear cable dynamics, this paper proposes a new approach to analyze, in laterally- braced truss structures, the unilateral effects and dynamic response accounting for the loss in the pre-tensioning force imparted to the bracing cables. This effect leads to non-linear vibration of the structure. In this preliminary study, the free vibrations of the structure are investigated by using the "Equivalent Linearization Method". A performance coefficient, a real positive number between 0.5 and 1.0, is defined and employed to monitor the relative reduction in the apparent stiffness of the braces during structural vibration, "mode by mode". It is shown that the system can exhibit alternate unilateral behavior of the cross-braces. A reduction of the performance coefficient close to fifty percent is observed in the braces when the initial pre-tensioning force is small. On the other hand the performance coefficient tends to one in the case of a high level of pre-stress. It is concluded that the performance coefficient may

  8. Predicting free-space occupancy on novel artificial structures by an invasive intertidal barnacle using a removal experiment.

    Directory of Open Access Journals (Sweden)

    Sally A Bracewell

    Full Text Available Artificial structures can create novel habitat in the marine environment that has been associated with the spread of invasive species. They are often located in areas of high disturbance and can vary significantly in the area of free space provided for settlement of marine organisms. Whilst correlation between the amount of free space available and recruitment success has been shown in populations of several marine benthic organisms, there has been relatively little focus on invasive species, a group with the potential to reproduce in vast numbers and colonise habitats rapidly. Invasion success following different scales of disturbance was examined in the invasive acorn barnacle, Austrominiusmodestus, on a unique art installation located in Liverpool Bay. Population growth and recruitment success were examined by comparing recruitment rates within disturbance clearings of 4 different sizes and by contrasting population development with early recruitment rates over a 10 week period. Disturbed areas were rapidly recolonised and monocultures of A. modestus formed within 6 weeks. The size of patch created during disturbance had no effect on the rate of recruitment, while a linear relationship between recruit density and patch size was observed. Density-dependent processes mediated initial high recruitment resulting in population stability after 8-10 weeks, but densities continued to greatly exceed those reported in natural habitats. Given that artificial structures are likely to continue to proliferate in light of climate change projections, free-space is likely to become more available more frequently in the future supporting the expansion of fast-colonising species.

  9. Nonlinear structures: Cnoidal, soliton, and periodical waves in quantum semiconductor plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tolba, R. E., E-mail: tolba-math@yahoo.com; El-Bedwehy, N. A., E-mail: nab-elbedwehy@yahoo.com [Department of Mathematics, Faculty of Science Damietta University, New Damietta 34517 (Egypt); Moslem, W. M., E-mail: wmmoslem@hotmail.com [Department of Physics, Faculty of Science Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); El-Labany, S. K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science Damietta University, New Damietta 34517 (Egypt); Yahia, M. E., E-mail: meyahia@gmail.com [Faculty of Engineering and Natural Sciences, International University of Sarajevo (IUS), 71210 Ilidža, Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegovina)

    2016-01-15

    Properties and emerging conditions of various nonlinear acoustic waves in a three dimensional quantum semiconductor plasma are explored. A plasma fluid model characterized by degenerate pressures, exchange correlation, and quantum recoil forces is established and solved. Our analysis approach is based on the reductive perturbation theory for deriving the Kadomtsev-Petviashvili equation from the fluid model and solving it by using Painlevé analysis to come up with different nonlinear solutions that describe different pulse profiles such as cnoidal, soliton, and periodical pulses. The model is then employed to recognize the possible perturbations in GaN semiconductor.

  10. Vibrational contributions to the second-order nonlinear optical properties of {pi}-conjugated structure acetoacetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, C. [Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram-695 015, Kerala (India); Hubert Joe, I., E-mail: hubertjoe@gmail.com [Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram-695 015, Kerala (India); Sajan, D. [Centre for Molecular and Biophysics Research, Department of Physics, Mar Ivanios College, Thiruvananthapuram-695 015, Kerala (India)

    2010-03-24

    FT-Raman and IR spectra of the nonlinear optic (NLO) crystal, acetoacetanilide have been recorded and analyzed. The detailed interpretation of the vibrational spectra has been carried out with the aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. The various intramolecular interactions that is responsible for the stabilization of the molecule was revealed by natural bond orbital analysis. The Kurtz and Perry powder reflection technique appeared to be very effective in studies of second-order nonlinear optical properties of the molecule.

  11. Bistable states of TM polarized non-linear waves guided by symmetric layered structures

    International Nuclear Information System (INIS)

    Mihalache, D.

    1985-04-01

    Dispersion relations for TM polarized non-linear waves propagating in a symmetric single film optical waveguide are derived. The system consists of a layer of thickness d with dielectric constant epsilon 1 bounded at two sides by a non-linear medium characterized by the diagonal dielectric tensor epsilon 11 =epsilon 22 =epsilon 0 , epsilon 33 =epsilon 0 +α|E 3 | 2 , where E 3 is the normal electric field component. For sufficiently large d/lambda (lambda is the wavelength) we predict bistable states of both symmetric and antisymmetric modes provided that the power flow is the control parameter. (author)

  12. Microfiber-based, highly nonlinear graphene saturable absorber for formation of versatile structural soliton molecules in a fiber laser.

    Science.gov (United States)

    Luo, Ai-Ping; Zhu, Peng-Fei; Liu, Hao; Zheng, Xu-Wu; Zhao, Nian; Liu, Meng; Cui, Hu; Luo, Zhi-Chao; Xu, Wen-Cheng

    2014-11-03

    We reported on the generation of versatile soliton molecules in a fiber laser mode-locked by a microfiber-based graphene saturable absorber (GSA). By virtue of the highly nonlinear effect of the microfiber-based GSA, the soliton molecules could be easily observed. In addition to regular soliton molecules, it is found that the "soliton atoms" in molecules could exhibit different characteristics and show ultra-narrow pulse separations, which was termed as 'structural soliton molecule'. The pulse profiles of 'structural soliton molecules' were further reconstructed theoretically. The obtained results would give further insight towards understanding the dynamics of soliton molecules in fiber lasers.

  13. Improving Stiffness-to-weight Ratio of Spot-welded Structures based upon Nonlinear Finite Element Modelling

    Science.gov (United States)

    Zhang, Shengyong

    2017-07-01

    Spot welding has been widely used for vehicle body construction due to its advantages of high speed and adaptability for automation. An effort to increase the stiffness-to-weight ratio of spot-welded structures is investigated based upon nonlinear finite element analysis. Topology optimization is conducted for reducing weight in the overlapping regions by choosing an appropriate topology. Three spot-welded models (lap, doubt-hat and T-shape) that approximate “typical” vehicle body components are studied for validating and illustrating the proposed method. It is concluded that removing underutilized material from overlapping regions can result in a significant increase in structural stiffness-to-weight ratio.

  14. Nonlinear, tunable and active metamaterials

    CERN Document Server

    Lapine, Mikhail; Kivshar, Yuri

    2015-01-01

    Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.

  15. Simulation of 3D parachute fluid–structure interaction based on nonlinear finite element method and preconditioning finite volume method

    Directory of Open Access Journals (Sweden)

    Fan Yuxin

    2014-12-01

    Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.

  16. Robust monetary policy, structural breaks, and nonlinearities in the reaction function of the Central Bank of Brazil

    Directory of Open Access Journals (Sweden)

    Gabriela Bezerra de Medeiros

    2016-01-01

    Full Text Available In this work, we seek to investigate the existence of nonlinearities in the reaction function of the Central Bank of Brazil arising from this policymaker's uncertainties about the effects of the output gap on inflation. Theoretically, we follow Tillmann (2011 to obtain a nonlinear optimal monetary policy rule that is robust to uncertainty about the output-inflation trade-off of the Phillips Curve. In addition, we perform structural break tests to assess possible changes in the conduct of the Brazilian monetary policy during the inflation-targeting regime. The results indicate that: (i the uncertainties about the slope in the Phillips curve implied nonlinearities in the Central Bank of Brazil's reaction function; (ii we cannot reject the hypothesis of a structural break in the monetary rule parameters occurring in the third quarter of 2003; (iii there was an increase in the response of the Selic rate to output gap and a weaker response to the current inflation gap in Meirelles–Tombini's administration; and (iv the Central Bank of Brazil has also reacted to the exchange rate in Meirelles–Tombini's administration.

  17. Crystal structure, growth and nonlinear optical studies of isonicotinamide p-nitrophenol: A new organic crystal for optical limiting applications

    Science.gov (United States)

    Vijayalakshmi, A.; Vidyavathy, B.; Vinitha, G.

    2016-08-01

    Isonicotinamide p-nitrophenol (ICPNP), a new organic material, was synthesized using methanol solvent. Single crystals of ICPNP were grown using a slow evaporation solution growth technique. Crystal structure of ICPNP is elucidated by single crystal X-ray diffraction analysis. It belongs to monoclinic crystal system with space group of P21/c. It forms two dimensional networks by O-H…O, N-H…O and C-H…O hydrogen bonds. The molecular structure of ICPNP was further confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance range and the lower cut-off wavelength (421 nm) with the optical band gap (2.90 eV) of the ICPNP crystal were determined by UV-vis-NIR spectral study. Thermal behavior of ICPNP was studied by thermo gravimetric and differential thermal analyses (TG/DTA). The relative dielectric permittivity was calculated for various temperature ranges. Laser damage threshold of ICPNP crystal was found to be 1.9 GW/cm2 using an Nd:YAG laser. A Z-scan technique was employed to measure the nonlinear absorption coefficient, nonlinear refractive index and nonlinear optical susceptibility. Optical limiting behavior of ICPNP was observed at 35 mW input power.

  18. Reduced-order computational model in nonlinear structural dynamics for structures having numerous local elastic modes in the low-frequency range. Application to fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Batou, A., E-mail: anas.batou@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Soize, C., E-mail: christian.soize@univ-paris-est.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Brie, N., E-mail: nicolas.brie@edf.fr [EDF R and D, Département AMA, 1 avenue du général De Gaulle, 92140 Clamart (France)

    2013-09-15

    Highlights: • A ROM of a nonlinear dynamical structure is built with a global displacements basis. • The reduced order model of fuel assemblies is accurate and of very small size. • The shocks between grids of a row of seven fuel assemblies are computed. -- Abstract: We are interested in the construction of a reduced-order computational model for nonlinear complex dynamical structures which are characterized by the presence of numerous local elastic modes in the low-frequency band. This high modal density makes the use of the classical modal analysis method not suitable. Therefore the reduced-order computational model is constructed using a basis of a space of global displacements, which is constructed a priori and which allows the nonlinear dynamical response of the structure observed on the stiff part to be predicted with a good accuracy. The methodology is applied to a complex industrial structure which is made up of a row of seven fuel assemblies with possibility of collisions between grids and which is submitted to a seismic loading.

  19. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    Science.gov (United States)

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  20. Fast response of the optical nonlinearity in a GaAs/AlGaAs asymmetric triple quantum well structure

    CERN Document Server

    Ahn, S H; Sawaki, N

    1999-01-01

    The time response of the optical nonlinear behavior in a GaAs/AlGaAs asymmetric triple quantum well structure is estimated by using a picosecond pump-probe method at 77 K. From the results of the transmission of the probe pulse as a function of the delay time at the excitation wavelengths, a rise time of 5 approx 10 ps and a fall time of 8 approx 16 ps are obtained. The nonlinear behavior is attributed to the triple resonance of the electronic states due to the build-up of the internal field induced by the separation of photo-excited electrons and holes. It is found that the rise time is determined by the tunneling transfer time of the electrons in the narrowest well to an adjacent well separated by a thin potential barrier.

  1. Advances in nonlinear vibration analysis of structures. Part-I. Beams

    Indian Academy of Sciences (India)

    Unknown

    1990b). Various types of solutions to the nonlinear equation of motion such as Galerkin, harmonic balance method and simple harmonic oscillations based method were proposed and analysed by Pillai & Rao (1992) while solutions by the method of multiple scales and ultra-spherical polynomial approximation method have ...

  2. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  3. Influence of copper ions on structural and non-linear optical properties in manganese ferrite nanomaterials

    Science.gov (United States)

    Yuvaraj, S.; Manikandan, N.; Vinitha, G.

    2017-11-01

    A series of Mn1-xCuxFe2O4 (x = 0, 0.15, 0.30, 0.45, 0.60 and 1) particles were prepared using chemical co-precipitation method with metal nitrates as precursor materials. Samples were synthesized under various annealing temperatures and 800 °C was found to be the optimal temperature for phase formation. Powder XRD analyses confirm the formation of spinel manganese ferrites along with the α-Fe2O3 phase which got reduced with increase in copper concentration. Samples were characterized using spectroscopic and microscopic techniques. UV-Diffuse reflectance spectroscopy was employed to calculate the band gap which varied between 1.51 eV and 1.83 eV. HR-SEM images reveal the spherical nature of the particles. Ferromagnetic nature of these materials was confirmed from vibrating sample magnetometer (VSM) measurements. Z-scan technique was employed to measure the non-linear optical properties. The non-linear refraction, non-linear absorption and non-linear susceptibility are found to be of the order of 10-8 cm2/W, 10-4 cm/W and 10-6 esu respectively. The samples showed a defocusing effect which was utilized to explain the optical limiting behavior at the same wavelength using the continuous-wave laser beam. The results show that these materials have potential for exploitation towards device applications like optical limiting and switching.

  4. A nonlinear problem for age-structured population dynamics with spatial diffusion

    OpenAIRE

    Nakoulima, Ousseynou; Omrane, Abdennebi; Velin, Jean

    2001-01-01

    We consider a nonlinear model for age-dependent population dynamics subject to a density dependent factor which regulates the selection of newborn at age zero. The initial-boundary value problem is studied using a vanishing viscosity method (in the age direction) together with the fixed point theory. Existence and uniqueness are obtained, and also the positivity of the solution to the problem.

  5. Experimental identification of nonlinear dynamic properties of built-up structures

    Czech Academy of Sciences Publication Activity Database

    Heller, Luděk; Foltete, E.; Piranda, J.

    2009-01-01

    Roč. 327, 1-2 (2009), 183-196 ISSN 0022-460X Institutional research plan: CEZ:AV0Z10100520 Keywords : nonlinear damping * equivalent modal parameters * wavelet transformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.414, year: 2009

  6. A refined element-based Lagrangian shell element for geometrically nonlinear analysis of shell structures

    Directory of Open Access Journals (Sweden)

    Woo-Young Jung

    2015-04-01

    Full Text Available For the solution of geometrically nonlinear analysis of plates and shells, the formulation of a nonlinear nine-node refined first-order shear deformable element-based Lagrangian shell element is presented. Natural co-ordinate-based higher order transverse shear strains are used in present shell element. Using the assumed natural strain method with proper interpolation functions, the present shell element generates neither membrane nor shear locking behavior even when full integration is used in the formulation. Furthermore, a refined first-order shear deformation theory for thin and thick shells, which results in parabolic through-thickness distribution of the transverse shear strains from the formulation based on the third-order shear deformation theory, is proposed. This formulation eliminates the need for shear correction factors in the first-order theory. To avoid difficulties resulting from large increments of the rotations, a scheme of attached reference system is used for the expression of rotations of shell normal. Numerical examples demonstrate that the present element behaves reasonably satisfactorily either for the linear or for geometrically nonlinear analysis of thin and thick plates and shells with large displacement but small strain. Especially, the nonlinear results of slit annular plates with various loads provided the benchmark to test the accuracy of related numerical solutions.

  7. Advances in nonlinear vibration analysis of structures. Part-I. Beams

    Indian Academy of Sciences (India)

    Unknown

    J. Sound Vib. 123: 517–527. Evensen D A 1968 Nonlinear vibrations of beams with various boundary conditions. AIAA J. 6: 370–372. Heyliger P R, Reddy J N 1988 A higher order beam finite element for bending and vibration problems. J. Sound Vib. 126: 309–326. Kapania R K, Raciti S 1989a Recent advances in analysis ...

  8. Pushing the Boundaries : Level-set Methods and Geometrical Nonlinearities in Structural Topology Optimization

    NARCIS (Netherlands)

    Van Dijk, N.P.

    2012-01-01

    This thesis aims at understanding and improving topology optimization techniques focusing on density-based level-set methods and geometrical nonlinearities. Central in this work are the numerical modeling of the mechanical response of a design and the consistency of the optimization process itself.

  9. Aeroelastic oscillations of a cantilever with structural nonlinearities: theory and numerical simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Brandon [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Rocha da Costa, Leandro Jose [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering; Poirel, Dominique [Royal Military College of Canada, Kingston (Canada). Dept. of Mechanical and Aerospace Engineering; Pettit, Chris [US Naval Academy, Annapolis, MD (United States). Dept. of Mechanical and Aerospace Engineering; Khalil, Mohammad [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sarkar, Abhijit [Carleton Univ., Ottawa, ON (Canada). Dept. of Civil and Environmental Engineering

    2017-09-01

    Our study details the derivation of the nonlinear equations of motion for the axial, biaxial bending and torsional vibrations of an aeroelastic cantilever undergoing rigid body (pitch) rotation at the base. The primary attenstion is focussed on the geometric nonlinearities of the system, whereby the aeroelastic load is modeled by the theory of linear quasisteady aerodynamics. This modelling effort is intended to mimic the wind-tunnel experimental setup at the Royal Military College of Canada. While the derivation closely follows the work of Hodges and Dowell [1] for rotor blades, this aeroelastic system contains new inertial terms which stem from the fundamentally different kinematics than those exhibited by helicopter or wind turbine blades. Using the Hamilton’s principle, a set of coupled nonlinear partial differential equations (PDEs) and an ordinary differential equation (ODE) are derived which describes the coupled axial-bending-bending-torsion-pitch motion of the aeroelastic cantilever with the pitch rotation. The finite dimensional approximation of the coupled system of PDEs are obtained using the Galerkin projection, leading to a coupled system of ODEs. Subsequently, these nonlinear ODEs are solved numerically using the built-in MATLAB implicit ODE solver and the associated numerical results are compared with those obtained using Houbolt’s method. It is demonstrated that the system undergoes coalescence flutter, leading to a limit cycle oscillation (LCO) due to coupling between the rigid body pitching mode and teh flexible mode arising from the flapwise bending motion.

  10. Classification of Forest Vertical Structure in South Korea from Aerial Orthophoto and Lidar Data Using an Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Soo-Kyung Kwon

    2017-10-01

    Full Text Available Every vegetation colony has its own vertical structure. Forest vertical structure is considered as an important indicator of a forest’s diversity and vitality. The vertical structure of a forest has typically been investigated by field survey, which is the traditional method of forest inventory. However, this method is very time- and cost-consuming due to poor accessibility. Remote sensing data such as satellite imagery, aerial photography, and lidar data can be a viable alternative to the traditional field-based forestry survey. In this study, we classified forest vertical structures from red-green-blue (RGB aerial orthophotos and lidar data using an artificial neural network (ANN, which is a powerful machine learning technique. The test site was Gongju province in South Korea, which contains single-, double-, and triple-layered forest structures. The performance of the proposed method was evaluated by comparing the results with field survey data. The overall accuracy achieved was about 70%. It means that the proposed approach can classify the forest vertical structures from the aerial orthophotos and lidar data.

  11. Different foraging preferences of hummingbirds on artificial and natural flowers reveal mechanisms structuring plant-pollinator interactions.

    Science.gov (United States)

    Maglianesi, María A; Böhning-Gaese, Katrin; Schleuning, Matthias

    2015-05-01

    In plant-pollinator networks, the floral morphology of food plants is an important determinant of the interaction niche of pollinators. Studies on foraging preferences of pollinators combining experimental and observational approaches may help to understand the mechanisms behind patterns of interactions and niche partitioning within pollinator communities. In this study, we tested whether morphological floral traits were associated with foraging preferences of hummingbirds for artificial and natural flower types in Costa Rica. We performed field experiments with artificial feeders, differing in length and curvature of flower types, to quantify the hummingbirds' interaction niche under unlimited nectar resources. To quantify the interaction niche under real-world conditions of limited nectar resources, we measured foraging preferences of hummingbirds for a total of 34 plant species. Artificial feeders were visited by Eupherusa nigriventris and Phaethornis guy in the pre-montane forest, and Lampornis calolaemus in the lower montane forest. Under experimental conditions, all three hummingbird species overlapped their interaction niches and showed a preference for the short artificial flower type over the long-straight and the long-curved flower types. Under natural conditions, the two co-occurring hummingbird species preferred to feed on plant species with floral traits corresponding to their bill morphology. The short-billed hummingbird E. nigriventris preferred to feed on short and straight flowers, whereas the long- and curved-billed P. guy preferred long and curved natural flowers. The medium-size billed species L. calolaemus preferred to feed on flowers of medium length and did not show preferences for plant species with specific corolla curvature. Our results show that floral morphological traits constrain access by short-billed hummingbird species to nectar resources. Morphological constraints, therefore, represent one important mechanism structuring trophic

  12. Identification of an Equivalent Linear Model for a Non-Linear Time-Variant RC-Structure

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.; Brincker, Rune

    damage indicator robust estimates of the fundamental eigenfrequency of the equivalent linear structure is required. Among many methods available for system identification application the Recursive Prediction Error Method (RPEM) and the Recursive Least Square (RLS) estimation using ARMAX models...... are investigated and compared with ARMAX models used on a running window. The techniques are evaluated using simulated data generated by the non-linear finite element program SARCOF modeling a 10-storey 3-bay concrete structure subjected to amplitude modulated Gaussian white noise filtered through a Kanai......This paper considers estimation of the maximum softening for a RC-structure subjected to earthquake excitation. The so-called Maximum Softening damage indicator relates the global damage state of the RC-structure to the relative decrease of the fundamental eigenfrequency in an equivalent linear...

  13. Nonlinear Landau damping and formation of Bernstein-Greene-Kruskal structures for plasmas with q-nonextensive velocity distributions

    Science.gov (United States)

    Raghunathan, M.; Ganesh, R.

    2013-03-01

    In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma (q = 1) has been simulated numerically. The controversy over the nonlinear fate of such electrostatic perturbations was resolved by Manfredi [Phys. Rev. Lett. 79, 2815-2818 (1997)] using long-time simulations up to t = 1600 ωp - 1 . The oscillations were found to continue indefinitely leading to Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as "BGK structures"). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau damping in 1D plasma described by toy q-distributions for long times, up to t = 3000 ωp - 1 . We show that BGK structures are found only for a certain range of q-values around q = 1. Beyond this window, for the generic parameters, no BGK structures were observed. We observe that for values of q 1 where distribution has a sharp fall in velocity, the formation of BGK structures is rendered difficult due to high wave number damping imposed by the steep velocity profile, which had not been previously reported. Wherever relevant, we compare our results with past work.

  14. Global search for low-lying crystal structures using the artificial force induced reaction method: A case study on carbon

    Science.gov (United States)

    Takagi, Makito; Taketsugu, Tetsuya; Kino, Hiori; Tateyama, Yoshitaka; Terakura, Kiyoyuki; Maeda, Satoshi

    2017-05-01

    We propose an approach to perform the global search for low-lying crystal structures from first principles, by combining the artificial force induced reaction (AFIR) method and the periodic boundary conditions (PBCs). The AFIR method has been applied extensively to molecular systems to elucidate the mechanism of chemical reactions such as homogeneous catalysis. The present PBC/AFIR approach found 274 local minima for carbon crystals in the C8 unit cell described by the generalized gradient approximation-Perdew-Burke-Ernzerhof functional. Among many newly predicted structures, three low-lying structures, which exhibit somewhat higher energy compared with those previously predicted, such as Cco -C8 (Z -carbon) and M -carbon, are further discussed with calculations of phonon and band dispersion curves. Furthermore, approaches to systematically explore two- or one-dimensional periodic structures are proposed and applied to the C8 unit cell with the slab model. These results suggest that the present approach is highly promising for predicting crystal structures.

  15. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  16. Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers

    Science.gov (United States)

    Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan

    2018-03-01

    Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.

  17. An Artificial Neural Network Controller for Intelligent Transportation Systems Applications

    Science.gov (United States)

    1996-01-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems appli...

  18. Quasistatic thermal and nonlinear processes of photoconversion of high-density optical radiation by multilayer structures

    Directory of Open Access Journals (Sweden)

    Blank Arkadiy

    2017-01-01

    Full Text Available The results of the systematic experimental analysis of the thermal nonlinear electro-optic properties of photoelectric converters with silicon vertical cells in comparison with solar elements and elements on the basis of In/Ga/As are presented. The parameters of the linear and quadratic approximations for the investigated dependences are determined, that allows constructing a scalable analytic model of the converter with a given type of the working elements switching.

  19. Quasistatic thermal and nonlinear processes of photoconversion of high-density optical radiation by multilayer structures

    Science.gov (United States)

    Blank, Arkadiy; Razuvaev, Anton; Suhareva, Natalia; Tugaenko, Vjatcheslav

    2017-10-01

    The results of the systematic experimental analysis of the thermal nonlinear electro-optic properties of photoelectric converters with silicon vertical cells in comparison with solar elements and elements on the basis of In/Ga/As are presented. The parameters of the linear and quadratic approximations for the investigated dependences are determined, that allows constructing a scalable analytic model of the converter with a given type of the working elements switching.

  20. Experimental and numerical investigation of the nonlinear dynamics of compliant mechanisms for deployable structures

    Science.gov (United States)

    Dewalque, Florence; Schwartz, Cédric; Denoël, Vincent; Croisier, Jean-Louis; Forthomme, Bénédicte; Brüls, Olivier

    2018-02-01

    This paper studies the dynamics of tape springs which are characterised by a highly geometrical nonlinear behaviour including buckling, the formation of folds and hysteresis. An experimental set-up is designed to capture these complex nonlinear phenomena. The experimental data are acquired by the means of a 3D motion analysis system combined with a synchronised force plate. Deployment tests show that the motion can be divided into three phases characterised by different types of folds, frequencies of oscillation and damping behaviours. Furthermore, the reproducibility quality of the dynamic and quasi-static results is validated by performing a large number of tests. In parallel, a nonlinear finite element model is developed. The required model parameters are identified based on simple experimental tests such as static deformed configurations and small amplitude vibration tests. In the end, the model proves to be well correlated with the experimental results in opposite sense bending, while in equal sense, both the experimental set-up and the numerical model are particularly sensitive to the initial conditions.

  1. Nonlinear waves and coherent structures in quasi-neutral plasmas excited by external electromagnetic radiation

    Science.gov (United States)

    Tzenov, Stephan I.

    2017-12-01

    Starting from the Vlasov-Maxwell equations describing the dynamics of various species in a quasi-neutral plasma, an exact relativistic hydrodynamic closure for a special type of water-bag distribution satisfying the Vlasov equation has been derived. It has been shown that the set of equations for the macroscopic hydrodynamic variables coupled to the wave equations for the self-consistent electromagnetic field is fully equivalent to the Vlasov-Maxwell system. Based on the method of multiple scales, a system comprising a vector nonlinear Schrodinger equation for the transverse envelopes of the self-consistent plasma wakefield, coupled to a scalar nonlinear Schrodinger equation for the electron current velocity envelope, has been derived. Using the method of formal series of Dubois-Violette, a traveling wave solution of the derived set of coupled nonlinear Schrodinger equations in the case of circular wave polarization has been obtained. This solution is represented as a ratio of two formal Volterra series. The terms of these series can be calculated explicitly to every desired order.

  2. Chemical construction and structural permutation of potent cytotoxin polytheonamide B: discovery of artificial peptides with distinct functions.

    Science.gov (United States)

    Itoh, Hiroaki; Inoue, Masayuki

    2013-07-16

    Polytheonamide B (1), isolated from the marine sponge Theonella swinhoei, is a posttranslationally modified ribosomal peptide (MW 5030 Da) that displays extraordinary cytotoxicity. Among its 48 amino acid residues, this peptide includes a variety D- and L-amino acids that do not occur in proteins, and the chiralities of these amino acids alternate in sequence. These structural features induce the formation of a stable β6.3-helix, giving rise to a tubular structure of over 4 nm in length. In the biological setting, this fold is believed to transport cations across the lipid bilayer through a pore, thereby acting as an ion channel. In this Account, we discuss the construction and structural permutations of this potent cytotoxin. First we describe the 161-step chemical construction of this unusual peptide 1. By developing a synthetic route to 1, we established the chemical basis for subsequent SAR studies to pinpoint the proteinogenic and nonproteinogenic building blocks within the molecule that confer its toxicity and channel function. Using fully synthetic 1, we generated seven analogues with point mutations, and studies of their activity revealed the importance of the N-terminal moiety. Next, we simplified the structure of 1 by substituting six amino acid residues of 1 to design a more synthetically accessible analogue 9. This dansylated polytheonamide mimic 9 was synthesized in 127 total steps, and we evaluated its function to show that it can emulate the toxic and ion channel activities of 1 despite its multiple structural modifications. Finally, we applied a highly automated synthetic route to 48-mer 9 to generate 13 substructures of 27-39-mers. The 37-mer 12 exhibited nanomolar level toxicity through a potentially distinct mode of action from 1 and 9. The SAR studies of polytheonamide B and the 21 artificial analogues have deepened our understanding of the precise structural requirements for the biological functions of 1. They have also led to the discovery of

  3. Community structure and palaeoecological implications of calcareous encrusters on artificial substrates across a Mexican Caribbean reef

    Science.gov (United States)

    Hepburn, L. J.; Blanchon, P.; Murphy, G.; Cousins, L.; Perry, C. T.

    2015-03-01

    Calcareous encrusters stabilize and bind reef framework and contribute significantly to reef function and biodiversity. Their calcareous skeletons have good preservation potential which, together with well-constrained habitat preferences, makes them useful indicators of past environmental conditions. However, our knowledge of environmental tolerances and spatial distribution trends of encrusters remains limited. Here, we determine the distributional trends and environmental tolerances of calcareous encrusters and delineate the relevance of particular species/genera for palaeoecological reconstructions. Artificial microhabitats were created to mimic exposed, partially cryptic, and cryptic habitats in various orientations for periods of 1 and 2 yr. Calcareous encruster coverage was high, especially in cryptic habitats (95 %), and clear successional trends were observed over time. Total encruster carbonate production was intermediate (range 72.8-476.3 g m-2 yr-1). Encruster species and growth morphology exhibited a defined zonation in response to reef sub-environment, microhabitat, and environmental factors such as light and wave exposure. Linear regression identified three coralline algae genera, as well as Homotrema rubrum, Planorbulina spp., and cemented bivalves as those most likely to occur in particular habitats. Therefore, the presence of these species may be used with greater confidence in distinguishing palaeomicroenvironments.

  4. Biomineralization of struvite crystals by Proteus mirabilis from artificial urine and their mesoscopic structure

    Energy Technology Data Exchange (ETDEWEB)

    Prywer, J. [Institute of Physics, Technical University of Lodz, ul. Wolczanska 219, 93-005 Lodz (Poland); Torzewska, A. [Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, ul. Banacha 12/16, 90-237 Lodz (Poland)

    2010-12-15

    In order to investigate the mineralization of struvite we performed the experiment of struvite growth process from artificial urine. The crystallization process was induced by Proteus mirabilis, as these bacteria are mainly isolated from infectious stones. The crystallization process occurred at conditions mimicking the real urinary tract infection. Our results show that struvite exhibits polar properties. This feature of struvite crystals is potentially very important in the case of binding additives which may either enhance or inhibit crystallization process. It seems also that the differences in the polarity of opposite faces of c-axis play important role in directing the struvite mesoscopic arrangement. We also described recent developments concerning curcumin - pigment extracted from the roots of turmeric commonly known as a spice added to various food preparations. Curcumin exhibited the effect against Proteus mirabilis inhibiting the activity of urease and consequently decreasing the efficiency of struvite growth. Therefore, curcumin belongs to phytoterapheutic components, which may be the alternative with relation to the antibiotic therapy. The paper concludes with a future outlook and goals in this field of research. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Investigation on the structural and nonlinear optical properties of Pt doped TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Rahulan, K. Mani; Padmanathan, N.; Vinitha, G.; Kanakam, Charles Christopher

    2013-01-01

    Graphical abstract: The open aperture Z-scan traces of Pt doped TiO 2 nanoparticles at different Pt concentrations were carried out at an irradiation wavelength of 532 nm. It was numerically found that, two photon absorption (TPA) type process gives the best fit to the obtained open aperture Z-scan data. The nonlinear transmission was found to be of third order as it fits to a two-photon absorption. The optical limiting performances of nanoparticles were greatly enhanced with increased volume ratio of Pt. Increasing particle size reduced the limiting threshold and enhanced the optical limiting performance. - Highlights: • Pt doped TiO 2 nanoparticles with different concentrations of Pt have been synthesized by sol–gel method. • The average fluorescence lifetime decreases as the volume fraction of Pt dopant increases. • The effects of Pt content on the optical limiting property were investigated by open aperture Z-scan measurements done at 532 nm using 5 ns laser pulses. • The values of the third-order nonlinearities of nanoparticles are interesting from the application point of view which could be used as a potential candidate for the application of nonlinear optical device. - Abstract: Pt doped TiO 2 nanoparticles with different concentrations of Pt were prepared by sol–gel method. X-ray diffraction (XRD) study reveals that the samples have a homogeneous anatase phase tetragonal system and the lattice parameter analysis indicates that Pt ions substitute into the lattice of TiO 2 . The addition of dopant increases the growth of TiO 2 grains, agglomerates them and shifts the absorption band of TiO 2 from ultraviolet to visible region. The incorporation of Pt in TiO 2 is also confirmed by fluorescence quenching and the fluorescence lifetime decreases as the volume fraction of Pt dopant increases. Open aperture Z-scan measurements done at 532 nm using 7 ns laser pulses show nonlinear absorption which arises from an effective two photon absorption process

  6. Numerical simulation of the interaction between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin method

    Czech Academy of Sciences Publication Activity Database

    Kosík, Adam; Feistauer, M.; Hadrava, Martin; Horáček, Jaromír

    2015-01-01

    Roč. 267, September (2015), s. 382-396 ISSN 0096-3003 R&D Projects: GA ČR(CZ) GAP101/11/0207 Institutional support: RVO:61388998 Keywords : discontinuous Galerkin method * nonlinear elasticity * compressible viscous flow * fluid–structure interaction Subject RIV: BI - Acoustics Impact factor: 1.345, year: 2015 http://www. science direct.com/ science /article/pii/S0096300315002453/pdfft?md5=02d46bc730e3a7fb8a5008aaab1da786&pid=1-s2.0-S0096300315002453-main.pdf

  7. Ethyne-linked push-pull chromophores: implications of crystal structure and molecular electronics on the quadric nonlinear activity

    Czech Academy of Sciences Publication Activity Database

    Kautny, P.; Kriegner, H.; Bader, D.; Dušek, Michal; Reider, G.A.; Froehlich, J.; Stoeger, B.

    2017-01-01

    Roč. 17, č. 8 (2017), s. 4124-4136 ISSN 1528-7483 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : ethyne-linked materials * nonlinear optical chromophores * molecular structure * optical activity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 4.055, year: 2016

  8. Bulk growth, structure, optical properties and laser damage threshold of organic nonlinear optical crystals of Imidazolium L-Ascorbate

    Science.gov (United States)

    Saripalli, Ravi Kiran; Bhat, H. L.; Elizabeth, Suja

    2016-09-01

    Bulk, transparent organic nonlinear optical (NLO) single-crystals of imidazolium L-Ascorbate (ImLA) were grown using slow-evaporation. Crystal structure was determined by single crystal X-ray diffraction analysis. Preliminary linear optical measurements through UV-Visible and infrared spectroscopy revealed good optical transmittance and a low near-UV cutoff wavelength at 256 nm. Kurtz and Perry powder test revealed that ImLA is a phase-matchable NLO material with a second harmonic generation (SHG) efficiency of 1.2 times larger than that of standard KH2PO4 (KDP). Laser damage thresholds were determined for ImLA.

  9. Geometric Structure of the Classical Lagrange-d’Alambert Principle and Its Application to Integrable Nonlinear Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Anatolij K. Prykarpatski

    2017-12-01

    Full Text Available The classical Lagrange-d’Alembert principle had a decisive influence on formation of modern analytical mechanics which culminated in modern Hamilton and Poisson mechanics. Being mainly interested in the geometric interpretation of this principle, we devoted our review to its deep relationships to modern Lie-algebraic aspects of the integrability theory of nonlinear heavenly type dynamical systems and its so called Lax-Sato counterpart. We have also analyzed old and recent investigations of the classical M. A. Buhl problem of describing compatible linear vector field equations, its general M.G. Pfeiffer and modern Lax-Sato type special solutions. Especially we analyzed the related Lie-algebraic structures and integrability properties of a very interesting class of nonlinear dynamical systems called the dispersionless heavenly type equations, which were initiated by Plebański and later analyzed in a series of articles. As effective tools the AKS-algebraic and related R -structure schemes are used to study the orbits of the corresponding co-adjoint actions, which are intimately related to the classical Lie-Poisson structures on them. It is demonstrated that their compatibility condition coincides with the corresponding heavenly type equations under consideration. It is also shown that all these equations originate in this way and can be represented as a Lax-Sato compatibility condition for specially constructed loop vector fields on the torus. Typical examples of such heavenly type equations, demonstrating in detail their integrability via the scheme devised herein, are presented.

  10. Modeling Distillation Column Using ARX Model Structure and Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza Pirmoradi

    2012-04-01

    Full Text Available Distillation is a complex and highly nonlinear industrial process. In general it is not always possible to obtain accurate first principles models for high-purity distillation columns. On the other hand the development of first principles models is usually time consuming and expensive. To overcome these problems, empirical models such as neural networks can be used. One major drawback of empirical models is that the prediction is valid only inside the data domain that is sufficiently covered by measurement data. Modeling distillation columns by means of neural networks is reported in literature by using recursive networks. The recursive networks are proper for modeling purpose, but such models have the problems of high complexity and high computational cost. The objective of this paper is to propose a simple and reliable model for distillation column. The proposed model uses feed forward neural networks which results in a simple model with less parameters and faster training time. Simulation results demonstrate that predictions of the proposed model in all regions are close to outputs of the dynamic model and the error in negligible. This implies that the model is reliable in all regions.

  11. A GPU-Based Parallel Procedure for Nonlinear Analysis of Complex Structures Using a Coupled FEM/DEM Approach

    Directory of Open Access Journals (Sweden)

    Lixiang Wang

    2013-01-01

    Full Text Available This study reports the GPU parallelization of complex three-dimensional software for nonlinear analysis of concrete structures. It focuses on coupled thermomechanical analysis of complex structures. A coupled FEM/DEM approach (CDEM is given from a fundamental theoretical viewpoint. As the modeling of a large structure by means of FEM/DEM may lead to prohibitive computation times, a parallelization strategy is required. With the substantial development of computer science, a GPU-based parallel procedure is implemented. A comparative study between the GPU and CPU computation results is presented, and the runtimes and speedups are analyzed. The results show that dramatic performance improvements are gained from GPU parallelization.

  12. Structural elucidation of main ozonation products of the artificial sweeteners cyclamate and acesulfame.

    Science.gov (United States)

    Scheurer, Marco; Godejohann, Markus; Wick, Arne; Happel, Oliver; Ternes, Thomas A; Brauch, Heinz-Jürgen; Ruck, Wolfgang K L; Lange, Frank Thomas

    2012-05-01

    The two artificial sweeteners cyclamate (CYC) and acesulfame (ACE) have been detected in wastewater and drinking water treatment plants. As in both facilities ozonation might be applied, it is important to find out if undesired oxidation products (OPs) are formed. For the separation and detection of the OPs, several analytical techniques, including nuclear magnetic resonance experiments, were applied. In order to distinguish between direct ozone reaction and a radical mechanism, experiments were carried out at different pH values with and without scavenging OH radicals. Kinetic experiments were used for confirmation that the OPs are formed during short ozone contact time applied in waterworks. Samples from a waterworks using bank filtrate as raw water were analyzed in order to prove that the identified OPs are formed in real and full-scale ozone applications. In the case of CYC, oxidation mainly occurs at the carbon atom, where the sulfonamide moiety is bound to the cyclohexyl ring. Consequently, amidosulfonic acid and cyclohexanone are formed as main OPs of CYC. When ozone reacts at another carbon atom of the ring a keto moiety is introduced into the CYC molecule. Acetic acid and the product ACE OP170, an anionic compound with m/z=170 and an aldehyde hydrate moiety, were identified as the main OPs for ACE. The observed reaction products suggest an ozone reaction according to the Criegee mechanism due to the presence of a C=C double bond. ACE OP170 was also detected after the ozonation unit of a full-scale drinking water treatment plant which uses surface water-influenced bank filtrate as raw water. Acesulfame can be expected to be found in anthropogenic-influenced raw water used for drinking water production. However, when ACE OP170 is formed during ozonation, it is not expected to cause any problem for drinking water suppliers, because the primary findings suggest its removal in subsequent treatment steps, such as activated carbon filters.

  13. An artificial intelligence-based structural health monitoring system for aging aircraft

    Science.gov (United States)

    Grady, Joseph E.; Tang, Stanley S.; Chen, K. L.

    1993-01-01

    To reduce operating expenses, airlines are now using the existing fleets of commercial aircraft well beyond their originally anticipated service lives. The repair and maintenance of these 'aging aircraft' has therefore become a critical safety issue, both to the airlines and the Federal Aviation Administration. This paper presents the results of an innovative research program to develop a structural monitoring system that will be used to evaluate the integrity of in-service aerospace structural components. Currently in the final phase of its development, this monitoring system will indicate when repair or maintenance of a damaged structural component is necessary.

  14. Investigations of the role of nonlinear couplings in structure formation and transport regulation: Experiment, simulation, and theory

    International Nuclear Information System (INIS)

    Holland, C.; Kim, E.J.; Champeaux, S.; Gurcan, O.; Rosenbluth, M.N.; Diamond, P.H.; Tynan, G.R.; Nevins, W.; Candy, J.

    2003-01-01

    Understanding the physics of shear flow and structure formation in plasmas is a central problem for the advancement of magnetic fusion because of the roles such flows are believed to play in regulating turbulence and transport levels. In this paper, we report on integrated experimental, computational, and theoretical studies of sheared zonal flows and radially extended convective cells, with the aim of assessing the results of theory experiment and theory-simulation comparisons. In particular, simulations are used as test beds for verifying analytical predictions and demonstrating the suitability of techniques such as bispectral analysis for isolating nonlinear couplings in data. Based on intriguing initial results suggesting increased levels of nonlinear coupling occur during L-H transitions, we have undertaken a comprehensive study of bispectral quantities in fluid and gyrokinetic simulations, and compared these results with theoretical expectations. Topics of study include locality and directionality of energy transfer, amplitude scaling, and parameter dependences. Techniques for inferring nonlinear coupling coefficients from data are discussed, and initial results from experimental data are presented. Future experimental studies are motivated. We also present work investigating the role of structures in transport. Analysis of simulation data indicates that the turbulent heat flux can be represented as an ensemble of 'heat pulses' of varying sizes, with a power law distribution. The slope of the power law is shown to determine global transport scaling (i.e. Bohm or gyro-Bohm). Theoretical work studying the dynamics of the largest cells (termed 'streamers') is presented, as well as results from ongoing analysis studying connections between heat pulse distribution and bispectral quantities. (author)

  15. Structural characterizations, Hirshfeld surface analyses, and third-order nonlinear optical properties of two novel chalcone derivatives

    Science.gov (United States)

    Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng

    2018-01-01

    We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.

  16. The production of phantom partials due to nonlinearities in the structural components of the piano.

    Science.gov (United States)

    Rokni, Eric; Neldner, Lauren M; Adkison, Camille; Moore, Thomas R

    2017-10-01

    Phantom partials are anomalous overtones in the spectrum of the piano sound that occur at sum and difference frequencies of the natural overtones of the string. Although they are commonly assumed to be produced by forced longitudinal waves in the string, analysis of the sound of a piano produced by mechanically vibrating the soundboard while all the strings are damped indicates that phantom partials can occur in the absence of string motion. The magnitude of the effect leads to the conclusion that nonlinearity in the non-string components may be responsible for some of the power in the phantom partials.

  17. Growth, structural, optical, thermal and mechanical studies on 4-Aminopyridinium monophthalate: A novel nonlinear optical crystal

    Science.gov (United States)

    Marudhu, G.; Krishnan, S.; Palanichamy, M.

    2016-03-01

    A novel nonlinear optical crystal of 4-Aminopyridinium monophthalate (4-APMP) was grown by slow evaporation technique using methanol as solvent. Single crystal X-ray diffraction analysis confirms that the grown crystal belongs to orthorhombic system. The presence of functional groups was qualitatively determined by FTIR analysis. The optical absorption studies reveal very low absorption in the entire visible region. The fluorescence emission spectrum shows the emission is in blue region. The thermal stability of the grown crystal is found to be around 197.2 °C. The SHG efficiency of the grown crystal is found to be 1.1 times than that of KDP crystals.

  18. Enhancement of Optical Nonlinearities in Composite Media and Structures via Local Fields and Electromagnetic Coupling Effects

    Science.gov (United States)

    Smith, David D.

    2002-01-01

    This talk will review the linear and nonlinear optical properties of metal nanoparticles and dielectric microparticles, with an emphasis on local field effects, and whispering gallery modes (WGMs), as well as the conjunction of these two effects for enhanced Raman. In particular, enhanced optical properties that result from electromagnetic coupling effects will be discussed in the context of Mie scattering from concentric spheres and bispheres. Predictions of mode splitting and photonic bandgaps in micro-spheres will be presented and will be shown to be analogous to effects that occur in coupled resonator optical waveguides (CROW). Slow and fast light in SCISSOR / CROW configurations will also be discussed.

  19. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    International Nuclear Information System (INIS)

    Barrett, Ronald M; Barrett, Cassandra M

    2014-01-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad −1 . Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  20. Biomimetic FAA-certifiable, artificial muscle structures for commercial aircraft wings

    Science.gov (United States)

    Barrett, Ronald M.; Barrett, Cassandra M.

    2014-07-01

    This paper is centered on a new form of adaptive material which functions much in the same way as skeletal muscle tissue, is structurally modeled on plant actuator cells and capable of rapidly expanding or shrinking by as much as an order of magnitude in prescribed directions. Rapid changes of plant cell shape and sizes are often initiated via ion-transport driven fluid migration and resulting turgor pressure variation. Certain plant cellular structures like those in Mimosa pudica (sensitive plant), Albizia julibrissin (Mimosa tree), or Dionaea muscipula (Venus Flytrap) all exhibit actuation physiology which employs such turgor pressure manipulation. The paper begins with dynamic micrographs of a sectioned basal articulation joint from A. julibrissin. These figures show large cellular dimensional changes as the structure undergoes foliage articulation. By mimicking such structures in aircraft flight control mechanisms, extremely lightweight pneumatic control surface actuators can be designed. This paper shows several fundamental layouts of such surfaces with actuator elements made exclusively from FAA-certifiable materials, summarizes their structural mechanics and shows actuator power and energy densities that are higher than nearly all classes of conventional adaptive materials available today. A sample flap structure is shown to possess the ability to change its shape and structural stiffness as its cell pressures are manipulated, which in turn changes the surface lift-curve slope when exposed to airflows. Because the structural stiffness can be altered, it is also shown that the commanded section lift-curve slope can be similarly controlled between 1.2 and 6.2 rad-1. Several aircraft weight reduction principles are also shown to come into play as the need to concentrate loads to pass through point actuators is eliminated. The paper concludes with a summary of interrelated performance and airframe-level improvements including enhanced gust rejection, load

  1. Controlling the molecular structure and physical properties of artificial honeybee silk by heating or by immersion in solvents.

    Directory of Open Access Journals (Sweden)

    Mickey G Huson

    Full Text Available Honeybee larvae produce silken cocoons that provide mechanical stability to the hive. The silk proteins are small and non-repetitive and therefore can be produced at large scale by fermentation in E. coli. The recombinant proteins can be fabricated into a range of forms; however the resultant material is soluble in water and requires a post production stabilizing treatment. In this study, we describe the structural and mechanical properties of sponges fabricated from artificial honeybee silk proteins that have been stabilized in aqueous methanol baths or by dry heating. Aqueous methanol treatment induces formation of ß-sheets, with the amount of ß-sheet dictated by methanol concentration. Formation of ß-sheets renders sponges insoluble in water and generates a reversibly compressible material. Dry heat treatments at 190°C produce a water insoluble material, that is stiffer than the methanol treated equivalent but without significant secondary structural changes. Honeybee silk proteins are particularly high in Lys, Ser, Thr, Glu and Asp. The properties of the heat treated material are attributed to generation of lysinoalanine, amide (isopeptide and/or ester covalent cross-links. The unique ability to stabilize material by controlling secondary structure rearrangement and covalent cross-linking allows us to design recombinant silk materials with a wide range of properties.

  2. Application of Nonlinear Seismic Soil-Structure Interaction Analysis for Identification of Seismic Margins at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Amit H. [Stanex, LLC, West Lafeyette, IN (United States); Seo, Jungil [Stanex, LLC, West Lafeyette, IN (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    Seismic probabilistic risk assessment (SPRA) methods and approaches at nuclear power plants (NPP) were first developed in the 1970s and aspects of them have matured over time as they were applied and incrementally improved. SPRA provides information on risk and risk insights and allows for some accounting for uncertainty and variability. As a result, SPRA is now used as an important basis for risk-informed decision making for both new and operating NPPs in the US and in an increasing number of countries globally. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach contains large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). INL has an advanced SPRA research and development (R&D) activity that will identify areas in the calculation process that contain significant uncertainties. One current area of focus is the use of nonlinear soil-structure interaction (NLSSI) analysis methods to accurately capture: 1) nonlinear soil behavior and 2) gapping and sliding between the NPP and soil. The goal of this study is to compare numerical NLSSI analysis results with recorded earthquake ground motions at Fukushima Daichii (Great Tohuku Earthquake) and evaluate the sources of nonlinearity contributing to the observed reduction in peak acceleration. Comparisons are made using recorded data in the free-field (soil column with no structural influence) and recorded data on the NPP basemat (in-structure response). Results presented in this study should identify areas of focus for future R&D activities with the goal of minimizing uncertainty in SPRA calculations. This is not a validation activity since there are too many sources of uncertainty that a numerical analysis would need

  3. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2017-10-03

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition Q(0)(x,a)≽ 0. To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  4. Nonlinear Development of Unstable Modes and Formation of Coherent Vortex Structures in Weakly Supercritical Zonal Shear Flows

    Science.gov (United States)

    Shagalov, S. V.; Rybushkina, G. V.

    This study explores the nonlinear development of the barotropic instability in weakly supercritical horizontally sheared zonal currents in the presence of vertical stratification. The energy exchange between unstable normal modes and the flow is shown to be confined to the common critical layer-region where the modal wave speed matches the flow velocity. A closed system of equations governing the evolution of instability wave amplitudes and critical layer vorticity distributions is derivedwith the aid of an asymptotic procedure. The dependence of the evolutionary scenarios of the flow on the values of the supercriticality and dissipation parameters is examined within the framework of qualitative and numerical analysis of the obtained equations. Nonlinear growth and saturation of the unstable barotropic and baroclinic modes lead to development of periodic coherent structures in the vorticity distribution inside the common modal critical layer. These structures take on the appearance of two-dimensional vortex chain or three-dimensional baroclinic vortex pattern depending on the flow regime at the stage of the instability equilibration.

  5. Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system

    Science.gov (United States)

    Avitabile, D.; Desroches, M.; Knobloch, E.; Krupa, M.

    2017-11-01

    A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.

  6. Composition Feature of the Element Tangent Stiffness Matrix of Geometrically Nonlinear 2D Frame Structures

    Directory of Open Access Journals (Sweden)

    Romanas Karkauskas

    2011-04-01

    Full Text Available The expressions of the finite element method tangent stiffness matrix of geometrically nonlinear constructions are not fully presented in publications. The matrixes of small displacements stiffness are usually presented only. To solve various problems of construction analysis or design and to specify the mode of the real deflection of construction, it is necessary to have a fully described tangent matrix analytical expression. This paper presents a technique of tangent stiffness matrix generation using discrete body total potential energy stationary conditions considering geometrically nonlinear 2D frame element taking account of interelement interaction forces only. The obtained vector-function derivative of internal forces considering nodal displacements is the tangent stiffness matrix. The analytical expressions having nodal displacements of matrixes forming the content of the 2D frame construction element tangent stiffness matrix are presented in the article. The suggested methodology has been checked making symbolical calculations in the medium of MatLAB calculation complex. The analytical expression of the stiffness matrix has been obtained.Article in Lithuanian

  7. Analysis of the Nonlinear Static and Dynamic Behavior of Offshore Structures

    KAUST Repository

    Alfosail, Feras

    2015-07-01

    Understanding static and dynamic nonlinear behavior of pipes and risers is crucial for the design aspects in offshore engineering fields. In this work, we examine two nonlinear problems in offshore engineering field: vortex Induced vibration of straight horizontal pipes, and boundary layer static solution of inclined risers. In the first study, we analyze the effect of the internal velocity of straight horizontal pipe and obtain the vortex induced vibration forces via coupling the pipe equation of motion with the recently modified Van Der Pol oscillator governing the lift coefficient. Our numerical results are obtained for two different pipe configurations: hinged-hinged, and clamped- clamped. The results show that the internal velocity reduces the vibration and the oscillation amplitudes. Also, it is shown that the clamped-clamped pipe configuration offers a wider range of internal velocities before buckling instability occurs. The results also demonstrate the effect of the end condition on the amplitudes of vibration. In the second study, we develop a boundary layer perturbation static solution to govern and simulate the static behavior of inclined risers. In the boundary layer analysis, we take in consideration the effects of the axial stretch, applied tension, and internal velocity. Our numerical simulation results show good agreement with the exact solutions for special cases. In addition, our developed method overcomes the mathematical and numerical limitations of the previous methods used before.

  8. A theoretical study of structural, opto-electronic and nonlinear properties of arylboroxine derivatives

    Science.gov (United States)

    Islam, Nasarul; Pandith, Altaf Hussain

    2018-01-01

    Density functional theory at CAM-B3LYP/6-311G++ (2d, 2p) level was employed to study the Triphenylboroxine derivatives ( TB) containing electron donating and electron substituents, for their charge transfer and nonlinear optical properties. The results reveal that electron donating groups facilitate the rapid electron injection as compared to unsubstituted TB. It was observed that upon substitution with electron donating groups, the TB derivatives show an increased double bond character in the B3-C18 bond indicating an increase in the degree of conjugation. The Frontier molecular orbital studies indicate that highest occupied molecular orbitals of the neutral molecules delocalize primarily over the three phenyl rings and bridging oxygen atoms, whereas the lowest unoccupied molecular orbitals localize largely on the two phenyl rings and the boron atoms. Further, the TD-DFT studies indicate that the maximum absorption band results from the electron transitions from the initial states that are contributed by the HOMO and HOMO-1 to the final states that are mainly contributed by the LUMOs. In addition, we have observed that the introduction of electron donating group to the TB-7 leads to more active nonlinear performance.

  9. Artificial-neural-network-based classification of mammographic microcalcifications using image structure features

    Science.gov (United States)

    Dhawan, Atam P.; Chitre, Yateen S.; Moskowitz, Myron

    1993-07-01

    Mammography associated with clinical breast examination and self-breast examination is the only effective and viable method for mass breast screening. It is however, difficult to distinguish between benign and malignant microcalcifications associated with breast cancer. Most of the techniques used in the computerized analysis of mammographic microcalcifications segment the digitized gray-level image into regions representing microcalcifications. We present a second-order gray-level histogram based feature extraction approach to extract microcalcification features. These features, called image structure features, are computed from the second-order gray-level histogram statistics, and do not require segmentation of the original image into binary regions. Several image structure features were computed for 100 cases of `difficult to diagnose' microcalcification cases with known biopsy results. These features were analyzed in a correlation study which provided a set of five best image structure features. A feedforward backpropagation neural network was used to classify mammographic microcalcifications using the image structure features. The network was trained on 10 cases of mammographic microcalcifications and tested on additional 85 `difficult-to-diagnose' microcalcifications cases using the selected image structure features. The trained network yielded good results for classification of `difficult-to- diagnose' microcalcifications into benign and malignant categories.

  10. Site-specific local structure of Mn in artificial manganese ferrite films

    International Nuclear Information System (INIS)

    Kravtsov, E.; Haskel, D.; Cady, A.; Yang, A.; Vittoria, C.; Harris, V. G.; Zuo, X.

    2006-01-01

    Diffraction anomalous fine structure (DAFS) spectroscopy has been applied to resolve site-specific Mn local structure in manganese ferrite films grown under nonequilibrium conditions. The DAFS spectra were measured at a number of Bragg reflections in the vicinity of the Mn absorption K edge. The DAFS data analysis done with an iterative Kramers-Kroenig algorithm made it possible to solve separately the local structure around crystallographically inequivalent Mn sites in the unit cell with nominal octahedral and tetrahedral coordination. The strong preference for Mn to be tetrahedrally coordinated in this compound is not only manifested in the relative site occupancies but also in a strong reduction in coordination number for Mn ions at nominal octahedral sites

  11. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database

    Science.gov (United States)

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-01-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158

  12. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database.

    Science.gov (United States)

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-03-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513.

  13. Influence of the aircraft crash induced local nonlinearities on the overall dynamic response of a RC structure through a parametric study

    International Nuclear Information System (INIS)

    Rouzaud, C.; Gatuingt, F.; Hervé, G.; Moussallam, N.; Dorival, O.

    2016-01-01

    Highlights: • Structures could resist to the induced accelerations which they might undergo. • The characterization of non-linearities in the signal of an aircraft impact. • The non linear impact area are studied through a sensitivity analysis. • This analysis should allow to achieve a link between aircraft impact parameters. - Abstract: In the process of nuclear power plant design, the safety of structures is an important aspect. Civil engineering structures have to resist the accelerations induced by, for example, seismic loads or shaking loads resulting from the aircraft impact. This is even more important for the in-structures equipments that have also to be qualified against the vibrations generated by this kind of hazards. In the case of aircraft crash, as a large variety of scenarios has to be envisaged, it is necessary to use methods that are less CPU-time consuming and that consider appropriately the nonlinearities. The analysis presented in this paper deals with the problem of the characterization of nonlinearities (damaged area, transmitted force) in the response of a structure subjected to an aircraft impact. The purpose of our study is part of the development of a new decoupled nonlinear and elastic way for calculating the shaking of structures following an aircraft impact which could be very numerically costly if studied with classical finite element methods. The aim is to identify which parameters control the dimensions of the nonlinear zone and so will have a direct impact on the induced vibrations. In a design context, several load cases (and simulations) are analyzed in order to consider a wide range of impact (different loading surfaces, momentum) and data sets of the target (thickness, reinforcements). In this work, the nonlinear area generated by the impact is localized and studied through a parametric analysis associated with a sensitivity analysis to identify the boundaries between the elastic domain and this nonlinear area.

  14. Combined, nonlinear aerodynamic and structural method for the aeroelastic design of a three-dimensional wing in supersonic flow

    Science.gov (United States)

    Pittman, J. L.; Giles, G. L.

    1986-01-01

    An iterative procedure for the static aeroelastic design of a flexible wing at supersonic speeds has been developed. The procedure combines a nonlinear, full-potential solver (NCOREL) with an equivalent plate structural analysis method. The NCOREL method yields significantly improved aerodynamic estimates compared to linear theory. The equivalent plate structural analysis method demonstrates an order of magnitude reduction in computer memory and execution time compared to finite-element methods. A highly swept wing is analyzed at high lift using this aeroelastic procedure. The results indicate that the wing deforms favorably due to aerodynamic loading and, consequently, that the inviscid drag levels do not vary at the required lift coefficient although the angle of attack varies significantly. A sensitivity analysis of the type required for optimization studies was also performed with the aeroelastic design procedure.

  15. Structured modelling and nonlinear analysis of PEM fuel cells; Strukturierte Modellierung und nichtlineare Analyse von PEM-Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Hanke-Rauschenbach, R.

    2007-10-26

    In the first part of this work a model structuring concept for electrochemical systems is presented. The application of such a concept for the structuring of a process model allows it to combine different fuel cell models to form a whole model family, regardless of their level of detail. Beyond this the concept offers the opportunity to flexibly exchange model entities on different model levels. The second part of the work deals with the nonlinear behaviour of PEM fuel cells. With the help of a simple, spatially lumped and isothermal model, bistable current-voltage characteristics of PEM fuel cells operated with low humidified feed gases are predicted and discussed in detail. The cell is found to exhibit current-voltage curves with pronounced local extrema in a parameter range that is of practical interest when operated at constant feed gas flow rates. (orig.)

  16. An Optimized Elasto-Plastic Subgrade Reaction For Modeling The Response Of A Nonlinear Foundation For A Structural Analysis

    Directory of Open Access Journals (Sweden)

    Ray Richard Paul

    2015-09-01

    Full Text Available Geotechnical and structural engineers are faced with a difficult task when their designs interact with each other. For complex projects, this is more the norm than the exception. In order to help bridge that gap, a method for modeling the behavior of a foundation using a simple elasto-plastic subgrade reaction was developed. The method uses an optimization technique to position 4-6 springs along a pile foundation to produce similar load deflection characteristics that were modeled by more sophisticated geotechnical finite element software. The methodology uses an Excel spreadsheet for accepting user input and delivering an optimized subgrade spring stiffness, yield, and position along the pile. In this way, the behavior developed from the geotechnical software can be transferred to the structural analysis software. The optimization is achieved through the solver add-in within Excel. Additionally, a beam on a nonlinear elastic foundation model is used to compute deflections of the optimized subgrade reaction configuration.

  17. Structure and composition of woody vegetation around permanent-artificial and ephemeral-natural water points in northern Gonarezhou National Park, Zimbabwe

    NARCIS (Netherlands)

    Gandiwa, E.; Tupulu, N.; Zisadza-Gandiwa, P.; Muvengwi, J.

    2012-01-01

    The main objective of this study was to compare woody vegetation structure and composition along a distance gradient from permanent-artificial and ephemeral-natural water points in northern Gonarezhou National Park (GNP), Zimbabwe. Woody plants were sampled in May 2010 using a stratified systematic

  18. Extending the robustness and efficiency of artificial compressibility for partitioned fluid-structure interactions

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2015-01-01

    Full Text Available fluid field solver, including most commercial solvers. Once included, both the modified fluid solver and structural solver can be treated as "black-box" field operators. AC is however limited to the class of problems it can effectively be applied to...

  19. Artificial intelligence approach to planning the robotic assembly of large tetrahedral truss structures

    Science.gov (United States)

    Homemdemello, Luiz S.

    1992-01-01

    An assembly planner for tetrahedral truss structures is presented. To overcome the difficulties due to the large number of parts, the planner exploits the simplicity and uniformity of the shapes of the parts and the regularity of their interconnection. The planning automation is based on the computational formalism known as production system. The global data base consists of a hexagonal grid representation of the truss structure. This representation captures the regularity of tetrahedral truss structures and their multiple hierarchies. It maps into quadratic grids and can be implemented in a computer by using a two-dimensional array data structure. By maintaining the multiple hierarchies explicitly in the model, the choice of a particular hierarchy is only made when needed, thus allowing a more informed decision. Furthermore, testing the preconditions of the production rules is simple because the patterned way in which the struts are interconnected is incorporated into the topology of the hexagonal grid. A directed graph representation of assembly sequences allows the use of both graph search and backtracking control strategies.

  20. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

    Science.gov (United States)

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.