WorldWideScience

Sample records for artificial skin applications

  1. Artificial ridged skin for slippage speed detection in prosthetic hand applications

    OpenAIRE

    Damian, D.; Martinez, H.; Dermitzakis, K; Hernandez Arieta, A.; Pfeifer, R

    2010-01-01

    The human hand is one of the most complex structures in the body, being involved in dexterous manipulation and fine sensing. Traditional engineering approaches have mostly attempted to match such complexity in robotics without sufficiently stressing on the underlying mechanisms that its morphology encodes. In this work, we propose an artificial skin able to encode, through its morphology, the tactile sense of a robotic hand, characteristic to slippage events. The underlying layout consists of...

  2. Application of Hall element as multimodal sensing device for artificial skin

    Science.gov (United States)

    Yuji, Jun-ichiro; Tanimura, Kaito

    2013-04-01

    In this paper, we reports on a tactile sensor with Hall effect elements, which are generally used as magnetic sensors, for multimodal sensing devices to detect the contact force and the temperature. This tactile sensor consists of Hall elements and a magnet that are embedded in an elastic silicone rubber as the artificial skin. Here, the normal contact force is detected by distance change between a Hall element and a magnet, and the temperature is also detected using the temperature dependence of the Hall element. The temperature dependence of Hall elements depends on the Hall material and the drive circuit to generate the Hall voltage. In this study, two Indium antimonide (InSb) Hall elements and two drive circuits, that is, a constant voltage drive and a constant current drive were used to demonstrate the tactile sensor. Two output Hall voltages were measured in the normal contact force range from 0 to 50N, the temperature range from -10 to 50°C. The inverse response surface to identify the normal contact force and the temperature was formulated using the experimental results. It was possible to detect the contact force and the temperature by obtaining two kinds of Hall voltages.

  3. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications

    Science.gov (United States)

    Someya, Takao; Sekitani, Tsuyoshi; Iba, Shingo; Kato, Yusaku; Kawaguchi, Hiroshi; Sakurai, Takayasu

    2004-07-01

    It is now widely accepted that skin sensitivity will be very important for future robots used by humans in daily life for housekeeping and entertainment purposes. Despite this fact, relatively little progress has been made in the field of pressure recognition compared to the areas of sight and voice recognition, mainly because good artificial "electronic skin" with a large area and mechanical flexibility is not yet available. The fabrication of a sensitive skin consisting of thousands of pressure sensors would require a flexible switching matrix that cannot be realized with present silicon-based electronics. Organic field-effect transistors can substitute for such conventional electronics because organic circuits are inherently flexible and potentially ultralow in cost even for a large area. Thus, integration of organic transistors and rubber pressure sensors, both of which can be produced by low-cost processing technology such as large-area printing technology, will provide an ideal solution to realize a practical artificial skin, whose feasibility has been demonstrated in this paper. Pressure images have been taken by flexible active matrix drivers with organic transistors whose mobility reaches as high as 1.4 cm2/V·s. The device is electrically functional even when it is wrapped around a cylindrical bar with a 2-mm radius.

  4. Optimum Application of Thermal Factors to Artificial Neural Network Models for Improvement of Control Performance in Double Skin-Enveloped Buildings

    National Research Council Canada - National Science Library

    Jin Woo Moon; Kyung-Il Chin; Sooyoung Kim

    2013-01-01

      This study proposes an artificial neural network (ANN)-based thermal control method for buildings with double skin envelopes that has rational relationships between the ANN model input and output...

  5. Validation of artificial skin equivalents as in vitro testing systems

    Science.gov (United States)

    Schmitt, Robert; Marx, Ulrich; Walles, Heike; Schober, Lena

    2011-03-01

    With the increasing complexity of the chemical composition of pharmaceuticals, cosmetics and everyday substances, the awareness of potential health issues and long term damages for humanoid organs is shifting into focus. Artificial in vitro testing systems play an important role in providing reliable test conditions and replacing precarious animal testing. Especially artificial skin equivalents ASEs are used for a broad spectrum of studies like penetration, irritation and corrosion of substances. One major challenge in tissue engineering is the qualification of each individual ASE as in vitro testing system. Due to biological fluctuations, the stratum corneum hornified layer of some ASEs may not fully develop or other defects might occur. For monitoring these effects we developed an fully automated Optical Coherence Tomography device. Here, we present different methods to characterize and evaluate the quality of the ASEs based on image and data processing of OCT B-scans. By analysing the surface structure, defects, like cuts or tears, are detectable. A further indicator for the quality of the ASE is the morphology of the tissue. This allows to determine if the skin model has reached the final growth state. We found, that OCT is a well suited technology for automatically characterizing artificial skin equivalents and validating the application as testing system.

  6. Clinical efficacy of artificial skin combined with vacuum sealing drainage in treating large-area skin defects

    Institute of Scientific and Technical Information of China (English)

    TANG Jin; GUO Wei-chun; YU Ling; ZHAO Sheng-hao

    2010-01-01

    Objective: To observe the clinical efficacy of artificial skin combined with vacuum sealing drainage (VSD) in treating large-area skin defects.Methods: Totally 18 patients with skin defects, treated with artificial skin combined with VSD from September 2008to May 2009 in our hospital, were retrospectively analyzed in this study. There were 15 males and 3 females, aged 7-66years, 34.3 years on average. Among them, 10 cases had skin laceration caused by traffic accidents (7 with open fractures), 1 mangled injury, 1 blast injury, 1 stump infection combined with skin defects after amputation and 5 heel ulcers.Results: All skin grafts in 16 cases survived after being controlled by VSD for one time. For the rest 2 patients,one with skin avulsion on the left foot was given median thickness skin grafts after three times of VSD, the other with open fractures in the left tibia and fibula caused by a traffic accident was given free flap transplantation. Skin grafts of both patients survived, with normal color and rich blood supply.Conclusion: Skin grafting in conjunction with artificial skin and VSD is much more effective than traditional dressing treatment and worth wide application in clinic.

  7. Application of artificial skin to study the effect of ultraviolet ray on skin%人工皮肤在紫外线对皮肤作用中的研究进展

    Institute of Scientific and Technical Information of China (English)

    郑跃; 赖维

    2009-01-01

    As an analogs of normal human skin in biophysiography and physiological function,artificial skin serves as a new model in vitro to study the photobioiogic relationship of ultraviolet ray and skin.In the past five years,artificial skin has been applied mainly to study the morphology,molecular mechanism of hoto-induced skin damage,and to the development of formulations protecting against and repairing photo-induced skin damage.The introduction of artificial skin models with modified structure will provide new ideas for basic and clinical study of ultraviolet ray-induced skin injury.%人工皮肤作为人体皮肤形态及功能的类似物,成为研究紫外线对人体皮肤作用的新型体外模型.近5年来,国内外在光生物学领域主要用其研究皮肤光损伤的形态学、分子机制及开发防护及修复光损伤制剂.同时结构更完善的皮肤模型在该研究领域的引进,为组织工程化皮肤在紫外线皮肤损伤的基础及临床研究提供新思路.

  8. Generation of tactile maps for artificial skin.

    Directory of Open Access Journals (Sweden)

    Simon McGregor

    Full Text Available Prior research has shown that representations of retinal surfaces can be learned from the intrinsic structure of visual sensory data in neural simulations, in robots, as well as by animals. Furthermore, representations of cochlear (frequency surfaces can be learned from auditory data in neural simulations. Advances in hardware technology have allowed the development of artificial skin for robots, realising a new sensory modality which differs in important respects from vision and audition in its sensorimotor characteristics. This provides an opportunity to further investigate ordered sensory map formation using computational tools. We show that it is possible to learn representations of non-trivial tactile surfaces, which require topologically and geometrically involved three-dimensional embeddings. Our method automatically constructs a somatotopic map corresponding to the configuration of tactile sensors on a rigid body, using only intrinsic properties of the tactile data. The additional complexities involved in processing the tactile modality require the development of a novel multi-dimensional scaling algorithm. This algorithm, ANISOMAP, extends previous methods and outperforms them, producing high-quality reconstructions of tactile surfaces in both simulation and hardware tests. In addition, the reconstruction turns out to be robust to unanticipated hardware failure.

  9. Dissolution of materials in artificial skin surface film liquids.

    Science.gov (United States)

    Stefaniak, Aleksandr B; Harvey, Christopher J

    2006-12-01

    The dissolution of chemical constituents from jewelry, textiles, cosmetics, drugs, industrial chemicals, and particles in direct and prolonged contact with human skin is often assessed in vitro using artificial skin surface film liquids (SSFL). To provide meaningful results, the composition of artificial SSFL should accurately mimic human sweat and sebum, and the conditions of the in vitro test system should accurately reflect in vivo skin conditions. We summarized the reported composition of human SSFL and compared it to 45 different formulations of artificial sweat and 18 formulations of artificial sebum (studies published from 1940 to 2005). Conditions of in vitro dissolution test systems were reviewed and compared to in vivo skin conditions. The concentrations of individual constituents and pH of artificial sweat and concentrations of artificial sebum constituents are not always within ranges reported for human SSFL. Nearly all artificial SSFL lack many of the constituents in human SSFL. To develop a comprehensive model SSFL, we propose a standard SSFL, modified from the two best published sweat and sebum formulations. Little is known concerning the influence of test system conditions on dissolution, including SSFL temperature, container material composition, agitation, and physicochemical properties of the test article on dissolution. Thus, both a need and an opportunity exist for standardizing the composition of artificial SSFL and in vitro dissolution test methodologies. To standardize in vitro dissolution test systems, we recommend: maintaining artificial SSFL at a biologically relevant temperature appropriate to the human activity being modeled, carefully selecting test and sample storage containers to avoid bias in dissolution measurements, accounting for friction between a test article and skin in a biologically plausible manner, and physicochemical characterization of the test article or material to better understand mechanisms of dissolution and

  10. Skin friction related behaviour of artificial turf systems.

    Science.gov (United States)

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  11. Optimum Application of Thermal Factors to Artificial Neural Network Models for Improvement of Control Performance in Double Skin-Enveloped Buildings

    Directory of Open Access Journals (Sweden)

    Kyung-Il Chin

    2013-08-01

    Full Text Available This study proposes an artificial neural network (ANN-based thermal control method for buildings with double skin envelopes that has rational relationships between the ANN model input and output. The relationship between the indoor air temperature and surrounding environmental factors was investigated based on field measurement data from an actual building. The results imply that the indoor temperature was not significantly influenced by vertical solar irradiance, but by the outdoor and cavity temperature. Accordingly, a new ANN model developed in this study excluded solar irradiance as an input variable for predicting the future indoor temperature. The structure and learning method of this new ANN model was optimized, followed by the performance tests of a variety of internal and external envelope opening strategies for the heating and cooling seasons. The performance tests revealed that the optimized ANN-based logic yielded better temperature conditions than the non-ANN based logic. This ANN-based logic increased overall comfortable periods and decreased the frequency of overshoots and undershoots out of the thermal comfort range. The ANN model proved that it has the potential to be successfully applied in the temperature control logic for double skin-enveloped buildings. The ANN model, which was proposed in this study, effectively predicted future indoor temperatures for the diverse opening strategies. The ANN-based logic optimally determined the operation of heating and cooling systems as well as opening conditions for the double skin envelopes.

  12. 用于电子皮肤的界面应力传感器的研究%Interfacial Stress Sensor for Artificial Skin Application

    Institute of Scientific and Technical Information of China (English)

    吕晓洲; 卢文科

    2013-01-01

    截肢表面和假肢接口之间的应力分布以及人体足底应力分布对医学研究有着极为重要的意义.为了测量截肢和足底界面应力,本文提出了用平板电容和PDMS超弹塑性材料制作用于电子皮肤的界面应力传感器的方法.对该传感器的测量范围、器件大小、材料选择、机械部分设计、电极耦合和器件制作等问题提出了解决方法.最后,制作出了能够测量0~ 220kPa正压力和0~70kPa剪切力的用于电子皮肤的界面应力传感器.从实验得到传感器在不同正压力和剪切力下输出电容的实验数据,利用实验数据给出了传感器对正压力和剪切力的响应函数和响应曲线.%The interfacial stress distribution between residual limb and prosthetic socket is very important for medical research. To measure the interfacial stress distribution, this paper presents an interfacial stress sensor for artificial skin application based on plate capacitance and PDMS hyper elastic material.lt solves the problems of determining measurement range, sensor size,materials selection,mechanical design, electrode coupling and fabrication. The sensor is capable of measuring 0 ~ 220kPa compressive pressure and 0 ~ 70kPa shear stress simultaneously. An experiment is conducted to obtain the response data of the sensor to compressive pressure and shear stress. The transfer function and fitting curve of the sensor to compressive pressure and shear stress are giving according to the experiment data.

  13. Construction of Tissue Engineering Artificial Cornea with Skin Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Yuan LIU; Yan JIN

    2005-01-01

    @@ 1 Introduction The clinical need for an alternative to donor corneal tissue has encouraged much interests in recent years. An artificial cornea must fulfill the functions of the cornea it replaces. More recently, the idea of a bio-engineered cornea has risen. Corneal equivalents have been reconstructed by tissue engineering method. Aim of this study is to construct an artificial rabbit cornea by employing tissue engineering method and to determine if skin stem cells have a role in tissue engineered cornea construction.

  14. Tribological behaviour of skin equivalents and ex-vivo human skin against the material components of artificial turf in sliding

    NARCIS (Netherlands)

    Morales Hurtado, Marina; Peppelman, P.; Zeng, Xiangqiong; van Erp, P.E.J.; van der Heide, Emile

    2016-01-01

    This research aims to analyse the interaction of three artificial skin equivalents and human skin against the main material components of artificial turf. The tribological performance of Lorica, Silicone Skin L7350 and a recently developed Epidermal Skin Equivalent (ESE) were studied and compared to

  15. Mechanical properties of an artificial vascularized human skin

    Science.gov (United States)

    Passot, A.; Cabodevila, G.

    2011-05-01

    In order to make blood sample tests an artificial skin similar to that of the baby's heel is modeled and realized. The most superficial bloodstream and the two main layers of the skin -epidermis and dermis- have to be recreated. Studies and capillaroscopies of the baby's heel give characteristics of these layers and the bloodstream. The skin is viscohyperelastic, but the choice of materials that will be used is based on the Young's modulus. The epidermis layer is based on a stronger less adhesive silicon rubber Elastosil. The dermis layer is composed of a mixture based on a very soft sticky silicon rubber Silgel and Sylgard. The mixture of Silgel with 5% Sylgard has an elastic modulus of 48 kPa which is similar to that of the dermis. The artificial skin is an assembly of several layers including a layer of Sylgard that is structured by a mold representing the capillary network and adapted to manufacturing processes in a clean room. Each layer is deposited by spin coating and is combined with the other through adhesion. Mechanical tests such as tension are performed to verify the mechanical properties of the artificial skin.

  16. 交原与硅橡胶在人工皮肤上的应用特性及进展%Application of Collagen and Silicone Rubber Materials in Artificial Skin

    Institute of Scientific and Technical Information of China (English)

    黄金; 孙国龙; 李正军; 但卫华

    2012-01-01

    Collagen, as the most abundant protein in animal body, can be widely used in the production of artificial skin. However, the mechanical properties of collagen are required to be improved through physical and chemical modification. Silicone rubber has favorable biomedical performance and applicable mechanical property. Collagen-silicone rubber composite, which shows the beneficial performances of both collagen and silicone rubber, has very broad application prospects in artificial skin.%胶原蛋白是动物体中含量最丰富的蛋白质,可广泛用于制备人工皮肤。但其自身的力学性能不高,必须改性。而硅橡胶具有良好的生物医学性能和较强的力学性能,在与胶原蛋白复合后,能够很好地改善胶原蛋白作为人工皮肤功能上的不足,拥有非常广阔的应用前景。

  17. Construction of Tissue Engineering Artificial Cornea with Skin Stem Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionThe clinical need for an alternative to donor corneal tissue has encouraged much interests in recent years. An artificial cornea must fulfill the functions of the cornea it replaces. More recently, the idea of a bio-engineered cornea has risen. Corneal equivalents have been reconstructed by tissue engineering method. Aim of this study is to construct an artificial rabbit cornea by employing tissue engineering method and to determine if skin stem cells have a role in tissue engineered cornea co...

  18. Prediction of Skin Penetration using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Sangita Saini,

    2010-06-01

    Full Text Available The artificial neural networks (ANN technologies provide on-line capability to analyze many inputs and provide information to multiple outputs, and have the capability to learn or adapt to changing conditions. No doubt that the determination of Skin permeability is a time consuming process; which involves a quite tedious work. Material and method: Software Neurodimension was used for this study. A data set was taken from literature and used to train the network. A set of 20 compounds were used to construct the ANN models for training and 10 compounds used for prediction of skin penetration (n=30, molecular weight>500 da. Skin permeability expressed in log Kp (cm/h. Abraham descriptors of R2 (excess molar refraction, π2 H dipolarity/polarizability, Σα2 H, Σβ2 H (the overall or effective hydrogen-bond acidity and basicity, and Vx (the McGowan haracteristic volume were obtained. Result: The correlation between the skin permeability coefficient and the Abraham descriptors were obtained from the trained neural network. The regression coefficient was 0.856 for training subset and MSE was 0.04. In addition, thepredictability of the neural network model was compared to the experimental data. This paper uses artificial neural network for prediction of Skin permeability study.

  19. Artificial intelligence: Principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, M.

    1986-01-01

    Following the Japanese announcement that they intend to devise, make, and market, in the 1990s, computers incorporating a level of intelligence, a vast amount of energy and expense has been diverted at the field of Artificial Intelligence. Workers for the past 25 years in this discipline have tried to reproduce human behavior on computers and this book presents their achievements and the problems. Subjects include: computer vision, speech processing, robotics, natural language processing expert systems and machine learning. The book also attempts to show the general principles behind the various applications and finally attempts to show their implications for other human endeavors such as philosophy, psychology, and the development of modern society.

  20. Innovative applications of artificial intelligence

    Science.gov (United States)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  1. Preliminary evaluation of the tactile feedback system based on artificial skin and electrotactile stimulation.

    Science.gov (United States)

    Franceschi, M; Seminara, L; Pinna, L; Dosen, S; Farina, D; Valle, M

    2015-08-01

    This research is motivated by the need of integrating cutaneous sensing into a prosthetic device, enabling a bidirectional communication between the amputee and the prosthetic limb. An electronic skin based on piezoelectric polymer sensors transduces mechanical contact into electrical response which is conveyed to the human subject by electrotactile stimulation. Rectangular electrode arrays are placed on each patient's forearm and experiments are conducted on five different subjects to determine how well the orientation, position and direction of single lines are recognized. Overall, subjects discriminate the different touch modalities with acceptable success rates. In particular, the direction is identified at best and longitudinal lines on the patient's skin are recognized with the highest success rates. These preliminary results assess the feasibility of the artificial skin - electrostimulation system for prosthetic applications.

  2. Artificial Skin Ridges Enhance Local Tactile Shape Discrimination

    Directory of Open Access Journals (Sweden)

    Shuzhi Sam Ge

    2011-09-01

    Full Text Available One of the fundamental requirements for an artificial hand to successfully grasp and manipulate an object is to be able to distinguish different objects’ shapes and, more specifically, the objects’ surface curvatures. In this study, we investigate the possibility of enhancing the curvature detection of embedded tactile sensors by proposing a ridged fingertip structure, simulating human fingerprints. In addition, a curvature detection approach based on machine learning methods is proposed to provide the embedded sensors with the ability to discriminate the surface curvature of different objects. For this purpose, a set of experiments were carried out to collect tactile signals from a 2 × 2 tactile sensor array, then the signals were processed and used for learning algorithms. To achieve the best possible performance for our machine learning approach, three different learning algorithms of Naïve Bayes (NB, Artificial Neural Networks (ANN, and Support Vector Machines (SVM were implemented and compared for various parameters. Finally, the most accurate method was selected to evaluate the proposed skin structure in recognition of three different curvatures. The results showed an accuracy rate of 97.5% in surface curvature discrimination.

  3. Thermoregulation: incubators, radiant warmers, artificial skins, and body hoods.

    Science.gov (United States)

    LeBlanc, M H

    1991-09-01

    Keeping babies warm whether using incubator or radiant warmers is important in optimizing their chances of survival. Many design changes have occurred in devices for keeping babies warm, while few controlled studies using clinically important end points have been conducted to assess these changes. Radiant warmers produce larger evaporative heat and water losses and slightly higher basal metabolic rate than incubators. The clinical significance of the higher metabolic rate is uncertain. The water losses create an additional problem in managing infants under radiant warmers. The use of hoods made of thin plastic films to raise local humidity and reduce evaporative water loss helps control this problem. In incubators, humidity may be necessary to provide a warm enough environment for the most immature infants. Artificial skins as yet have not supplanted body hoods for this purpose. Both incubators and radiant warmers produce temperature instability when used as skin servocontrolled devices. There are, however, no data currently available to say how much thermal instability can be well tolerated by a baby. Too much thermal instability produces apnea and increased mortality. Air servocontrolling an incubator reduces environmental temperature instability.

  4. Instructional Applications of Artificial Intelligence.

    Science.gov (United States)

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  5. The Artificial Intelligence Applications to Learning Programme.

    Science.gov (United States)

    Williams, Noel

    1992-01-01

    Explains the Artificial Intelligence Applications to Learning Programme, which was developed in the United Kingdom to explore and accelerate the use of artificial intelligence (AI) technologies in learning in both the educational and industrial sectors. Highlights include program evaluation, marketing, ownership of information, consortia, and cost…

  6. Investigation of the Efficacy of Transdermal Penetration Enhancers Through the Use of Human Skin and a Skin Mimic Artificial Membrane.

    Science.gov (United States)

    Balázs, Boglárka; Vizserálek, Gábor; Berkó, Szilvia; Budai-Szűcs, Mária; Kelemen, András; Sinkó, Bálint; Takács-Novák, Krisztina; Szabó-Révész, Piroska; Csányi, Erzsébet

    2016-03-01

    The aim of this study was to investigate the behavior of promising penetration enhancers through the use of 2 different skin test systems. Hydrogel-based transdermal formulations were developed with ibuprofen as a nonsteroidal anti-inflammatory drug. Transcutol and sucrose esters were used as biocompatible penetration enhancers. The permeability measurements were performed with ex vivo Franz diffusion cell methods and a newly developed Skin Parallel Artificial Membrane Permeability Assays (PAMPA) model. Franz diffusion measurement is commonly used as a research tool in studies of diffusion through synthetic membranes in vitro or penetration through ex vivo human skin, whereas Skin PAMPA involves recently published artificial membrane-based technology for the fast prediction of skin penetration. It is a 96-well plate-based model with optimized artificial membrane structure containing free fatty acid, cholesterol, and synthetic ceramide analog compounds to mimic the stratum corneum barrier function. Transdermal preparations containing 2.64% of different sucrose esters and/or Transcutol and a constant (5%) of ibuprofen were investigated to determine the effects of these penetration enhancers. The study demonstrated the good correlation of the permeability data obtained through use of human skin membrane and the in vitro Skin PAMPA system. The Skin PAMPA artificial membrane serves as quick and relatively deep tool in the early stages of transdermal delivery systems, through which the enhancing efficacy of excipients can be screened so as to facilitate the choice of effective penetration components.

  7. Medical applications of artificial intelligence

    CERN Document Server

    Agah, Arvin

    2013-01-01

    Enhanced, more reliable, and better understood than in the past, artificial intelligence (AI) systems can make providing healthcare more accurate, affordable, accessible, consistent, and efficient. However, AI technologies have not been as well integrated into medicine as predicted. In order to succeed, medical and computational scientists must develop hybrid systems that can effectively and efficiently integrate the experience of medical care professionals with capabilities of AI systems. After providing a general overview of artificial intelligence concepts, tools, and techniques, Medical Ap

  8. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability.

    Science.gov (United States)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-16

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa(-1)) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.

  9. Training Applications of Artificial Intelligence.

    Science.gov (United States)

    1987-03-23

    nearifest tLer,sclvCs in ELO r operatii.L costs in the life C’VclE Of the ef’uijjteft. E F re\\ lously rcntione6 ey~ arrle of usingF the 1lirefineer...Ibid., p. 35. 4. Avron Barr and Edward Feigenbaum, The Handbook of Artificial Intelligence, Vol. 1, p. 2. 5. Wissam W. Ahmed, "Theories of Artificial...Barr, Avron and Geigenbaum, Edward A. ed. The Handbook of Arti- ficial Intelligence. Vol. 1. Stanford: heuristech Press. 1981. Gevartner, William B

  10. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin.

    Science.gov (United States)

    Harada, Shingo; Kanao, Kenichiro; Yamamoto, Yuki; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2014-12-23

    A three-axis tactile force sensor that determines the touch and slip/friction force may advance artificial skin and robotic applications by fully imitating human skin. The ability to detect slip/friction and tactile forces simultaneously allows unknown objects to be held in robotic applications. However, the functionalities of flexible devices have been limited to a tactile force in one direction due to difficulties fabricating devices on flexible substrates. Here we demonstrate a fully printed fingerprint-like three-axis tactile force and temperature sensor for artificial skin applications. To achieve economic macroscale devices, these sensors are fabricated and integrated using only printing methods. Strain engineering enables the strain distribution to be detected upon applying a slip/friction force. By reading the strain difference at four integrated force sensors for a pixel, both the tactile and slip/friction forces can be analyzed simultaneously. As a proof of concept, the high sensitivity and selectivity for both force and temperature are demonstrated using a 3×3 array artificial skin that senses tactile, slip/friction, and temperature. Multifunctional sensing components for a flexible device are important advances for both practical applications and basic research in flexible electronics.

  11. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    Science.gov (United States)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The

  12. VSD联合人工真皮复合自体刃厚皮移植在手足电击伤创面中的应用%Application of VSD combined with artificial dermis composite autologous split-thickness skin graft in electric injury of hands and feet

    Institute of Scientific and Technical Information of China (English)

    宋德恒; 刘继松; 李勇; 章祥洲; 余勇

    2016-01-01

    目的:观察应用负压封闭引流术( VSD)联合人工真皮复合自体刃厚皮移植修复手足电击伤创面的效果。方法:选取2011年1月-2014年12月应用VSD联合人工真皮支架复合自体刃厚皮片移植修复手足电击伤创面的病例,共11例创面,对创面先行扩创+VSD,10 d~3周创面基底肉芽发育良好后行人工真皮移植,2周后进行自体刃厚皮片移植。结果:11处电击伤创面移植皮片全部成活,皮片质地柔软形态饱满、弹性佳,手足关节功能满意,供皮区瘢痕不明显。结论:应用VSD联合人工真皮复合自体刃厚皮片移植修复手足电击伤创面能较好地保护患肢的形态和功能。%Objective:To observe application and effect of VSD combined with artificial dermis composite autologous split-thickness skin graft in the repair of electrically damaged wound of hands and feet.Methods:11cases of wounds of electrically damaged hands and feet were chosen which were treated with VSD combined with artificial dermis composite autologous split-thickness skin graft from Janu-ary 2011 to December 2014.Debridement of the wound was first conducted added with VSD.Artificial dermis transplantation was carried out after 10 days to 3 weeks when granulation tissues were well developed at the wound base.Autologous split-thickness skin grafting was given 2 weeks later.Results:All the 11cases of electrically damaged wounds survived after the surgery.The skin was soft in texture and good in elasticity.The joint function of hands and feet was satisfactory.Scar was not obvious.Conclusion:The application of VSD combined with artificial dermis composite antilogous split-thickness skin graft to repair electrically damaged wound of hands and feet can better protect the form and function of suffered limbs.

  13. Artificial immune system applications in computer security

    CERN Document Server

    Tan, Ying

    2016-01-01

    This book provides state-of-the-art information on the use, design, and development of the Artificial Immune System (AIS) and AIS-based solutions to computer security issues. Artificial Immune System: Applications in Computer Security focuses on the technologies and applications of AIS in malware detection proposed in recent years by the Computational Intelligence Laboratory of Peking University (CIL@PKU). It offers a theoretical perspective as well as practical solutions for readers interested in AIS, machine learning, pattern recognition and computer security. The book begins by introducing the basic concepts, typical algorithms, important features, and some applications of AIS. The second chapter introduces malware and its detection methods, especially for immune-based malware detection approaches. Successive chapters present a variety of advanced detection approaches for malware, including Virus Detection System, K-Nearest Neighbour (KNN), RBF networ s, and Support Vector Machines (SVM), Danger theory, ...

  14. Two-Dimensional and Three-Dimensional Ultrasound of Artificial Skin.

    Science.gov (United States)

    Wortsman, Ximena; Navarrete, Nelson

    2017-01-01

    Wound healing may be a difficult problem, and variable types of artificial skin prototypes have been developed for supporting this process. Using ultrasound, we studied 4 cellulose-derived artificial skin prototypes and assessed their two-dimensional and three-dimensional morphology. These prototypes were identified on ultrasound both on in vitro and in vivo studies. They allowed the sonographic observation of deeper layers on different types of surfaces of the body with good definition on the in vivo examinations performed on healthy skin and cutaneous ulcers. The ultrasound detection of these artificial biomaterials may potentially support the noninvasive monitoring of wound healing. © 2016 by the American Institute of Ultrasound in Medicine.

  15. Implications of VISIDEPtm For Artificial Intelligence Applications

    Science.gov (United States)

    McLaurin, A. P.; Jones, Edwin R.; Cathey, LeConte

    1987-04-01

    VISIDF is a system for generating true three-dimensional displays on flat-screened devices. Hodges and McAllister, in their article, state clearly that this system is the autostereoscopic alternative to PLZT shutter systems for computer-generated graphic appli-cations. This opens the door to consideration of the system as a component of vision for artificial intelligence applications. In order to understand the potentials of VISIDEP one must, in fact, accept several fundamental assumptions. These are: 1. Perception is an intelligent activity rather than purely stimulus/response. 2. Binocular depth cues are of greater importance to accurate depth interpretation than monocular cues. 3. Depth perception does not require object identification. Each of these assumptions is essential to the application of VISIDEP research in practical operations requiring depth interpretation. The relationships between human vision and perception and the parallax induction generated by VISIDEP technology offer depth in real time to artificial intelligence. Through machine operations on incoming data, the perception of depth is generated in much the same way as the stereoptic data enter the human being, thus providing rapidly quantifiable depth interpretation which is very accurate, perhaps more accurate that human perception of depth. The analysis of a mechanical system in relationship to human approaches to depth perceptions offers the potential of many applications of visually competent artificial intelligence. An additional factor is that the system under discussion is user friendly for human operators as well as requiring minimal reconfiguration of existing equipment and relatively simple software.

  16. Design and simulative experiment of an innovative trailing edge morphing mechanism driven by artificial muscles embedded in skin

    Science.gov (United States)

    Li, Hongda; Liu, Long; Xiao, Tianhang; Ang, Haisong

    2016-09-01

    In this paper, conceptual design of a tailing edge morphing mechanism developed based on a new kind of artificial muscle embedded in skin, named Driving Skin, is proposed. To demonstrate the feasibility of this conceptual design, an experiment using ordinary fishing lines to simulate the function of artificial muscles was designed and carried out. Some measures were designed to ensure measurement accuracy. The experiment result shows that the contraction ratio and force required by the morphing mechanism can be satisfied by the new artificial muscles, and a relationship between contraction ratios and morphing angles can be found. To demonstrate the practical application feasibility of this conceptual design, a wing section using ordinary ropes to simulate the function of the Driving Skin mechanism was designed and fabricated. The demonstration wing section, extremely light in weight and capable of changing thickness, performs well, with a -30^\\circ /+30^\\circ morphing angle achieved. The trailing edge morphing mechanism is efficient in re-contouring the wing profile.

  17. Design and Construction of Artificial Extracellular Matrix (aECM) Proteins from Escherichia coli for Skin Tissue Engineering.

    Science.gov (United States)

    Low, Pearlie S J; Tjin, Monica S; Fong, Eileen

    2015-06-11

    Recombinant technology is a versatile platform to create novel artificial proteins with tunable properties. For the last decade, many artificial proteins that have incorporated functional domains derived from nature (or created de novo) have been reported. In particular, artificial extracellular matrix (aECM) proteins have been developed; these aECM proteins consist of biological domains taken from fibronectin, laminins and collagens and are combined with structural domains including elastin-like repeats, silk and collagen repeats. To date, aECM proteins have been widely investigated for applications in tissue engineering and wound repair. Recently, Tjin and coworkers developed integrin-specific aECM proteins designed for promoting human skin keratinocyte attachment and propagation. In their work, the aECM proteins incorporate cell binding domains taken from fibronectin, laminin-5 and collagen IV, as well as flanking elastin-like repeats. They demonstrated that the aECM proteins developed in their work were promising candidates for use as substrates in artificial skin. Here, we outline the design and construction of such aECM proteins as well as their purification process using the thermo-responsive characteristics of elastin.

  18. Artificial neural network applications in ionospheric studies

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    1998-06-01

    Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.

  19. Artificial Skin Ridges Enhance Local Tactile Shape Discrimination

    CERN Document Server

    Salehi, Saba; Ge, Shuzhi Sam; 10.3390/s110908626

    2011-01-01

    One of the fundamental requirements for an artificial hand to successfully grasp and manipulate an object is to be able to distinguish different objects' shapes and, more specifically, the objects' surface curvatures. In this study, we investigate the possibility of enhancing the curvature detection of embedded tactile sensors by proposing a ridged fingertip structure, simulating human fingerprints. In addition, a curvature detection approach based on machine learning methods is proposed to provide the embedded sensors with the ability to discriminate the surface curvature of different objects. For this purpose, a set of experiments were carried out to collect tactile signals from a 2 \\times 2 tactile sensor array, then the signals were processed and used for learning algorithms. To achieve the best possible performance for our machine learning approach, three different learning algorithms of Na\\"ive Bayes (NB), Artificial Neural Networks (ANN), and Support Vector Machines (SVM) were implemented and compared ...

  20. Status and headway of the clinical application of artificial ligaments

    Directory of Open Access Journals (Sweden)

    Tianwu Chen

    2015-01-01

    Full Text Available The authors first reviewed the history of clinical application of artificial ligaments. Then, the status of clinical application of artificial ligaments was detailed. Some artificial ligaments possessed comparable efficacy to, and fewer postoperative complications than, allografts and autografts in ligament reconstruction, especially for the anterior cruciate ligament. At the end, the authors focused on the development of two types of artificial ligaments: polyethylene glycol terephthalate artificial ligaments and tissue-engineered ligaments. In conclusion, owing to the advancements in surgical techniques, materials processing, and weaving methods, clinical application of some artificial ligaments so far has demonstrated good outcomes and will become a trend in the future.

  1. The adhesion and hysteresis effect in friction skin with artificial materials

    Science.gov (United States)

    Subhi, K. A.; Tudor, A.; Hussein, E. K.; Wahad, H. S.

    2017-02-01

    Human skin is a soft biomaterial with a complex anatomical structure and it has a complex material behavior during the mechanical contact with objects and surfaces. The friction adhesion component is defined by means of the theories of Johnson-Kendall-Roberts (JKR), Derjaguin-Muller-Toporov (DMT) and Maugis – Dugdale (MD). We shall consider the human skin entering into contact with a rigid surface. The deformation (hysteresis) component of the skin friction is evaluated with Voigt rheological model for the spherical contact, with the original model, developed in MATHCAD software. The adhesive component of the skin friction is greater than the hysteresis component for all friction parameters (load, velocity, the strength of interface between skin and the artificial material).

  2. Application of artificial intelligence in process control

    CERN Document Server

    Krijgsman, A

    1993-01-01

    This book is the result of a united effort of six European universities to create an overall course on the appplication of artificial intelligence (AI) in process control. The book includes an introduction to key areas including; knowledge representation, expert, logic, fuzzy logic, neural network, and object oriented-based approaches in AI. Part two covers the application to control engineering, part three: Real-Time Issues, part four: CAD Systems and Expert Systems, part five: Intelligent Control and part six: Supervisory Control, Monitoring and Optimization.

  3. The potential of the skin as a readout system to test artificial turf systems: clinical and immunohistological effects of a sliding on natural grass and artificial turf

    NARCIS (Netherlands)

    Peppelman, M.; Eijnde, W.A. van den; Langewouters, A.M.G.; Weghuis, M.O.; Erp, P.E.J. van

    2013-01-01

    The purpose of this study was to investigate the interaction of skin with natural grass and artificial turf at clinical, histological and immunohistochemical level. Therefore, 14 male volunteers performed slidings on dry natural grass, wet natural grass and artificial turf. Directly and 24 h after t

  4. [Application of artificial neural networks in infectious diseases].

    Science.gov (United States)

    Xu, Jun-fang; Zhou, Xiao-nong

    2011-02-28

    With the development of information technology, artificial neural networks has been applied to many research fields. Due to the special features such as nonlinearity, self-adaptation, and parallel processing, artificial neural networks are applied in medicine and biology. This review summarizes the application of artificial neural networks in the relative factors, prediction and diagnosis of infectious diseases in recent years.

  5. Repair of skin defect with autologous head skin graft and artificial dermis graft in 10 children cases%人工真皮联合头部断层薄皮片修复小儿皮肤缺损

    Institute of Scientific and Technical Information of China (English)

    田彭; 周业平

    2012-01-01

    目的 研究并评价人工真皮联合头部薄皮片修复小儿皮肤缺损,为临床治疗提供依据.方法 2009年3月至2011年3月我院烧伤科治疗患儿10例,男8例,女2例,年龄5~12岁,平均(8±2.5)岁,其中3例热烧伤,4例外伤,3例为皮瓣转移供瓣区皮肤缺损.所有皮肤缺损均通过人工真皮移植联合头部薄断层皮片移植两次手术进行修复,观察人工真皮及头部薄断层皮片存活情况,供皮区愈合情况及愈合后外观.结果 所有人工真皮及头部薄皮片均存活,头部供皮区7~10d愈合.随访未发现明显皮片挛缩及瘢痕增生影响肢体功能.结论 人工真皮联合头部薄皮片可以修复小儿皮肤缺损,并达到较好效果,可以为将来手术保留较好的皮源.%Objective This study appraised the application of artificial dermis and autologus head skin graft in repairing skin defects in children.Methods 10 children underwent artificial dermis and autologus head skin transplantation at the Department of Burn and Plastic Surgery,Beijing Jishuitan Hospital from March 2009 to March 2011.The clinical data were collected.After debridement,artificial dermis graft was performed and followed by autologus split thickness skin transplantation,taken from head skin.The survival of artificial demis and autologus head skin graft was observed.Results Artificial dermis and autologus head skin both survived well,and the skin defect was repaired efficiently.No obvious scar occurred.Conclusions This study showed that prompt artificial dermis and autologous head skin graft could help repair skin defects and reserve the skin of limbs and abdomen as donor sites for future operation.

  6. Contracture of skin graft in human burns: effect of artificial dermis.

    Science.gov (United States)

    Hur, Gi-Yeun; Seo, Dong-Kook; Lee, Jong-Wook

    2014-12-01

    Skin grafts with an artificial dermis have been widely used as a part of the efforts to minimize contractures and reduce donor-site scars. We conducted a prospective randomized clinical trial to study the effect of a dermal substitute by measuring the size of the graft after surgery for months. The artificial dermis (Matriderm, Dr. Suwelack Skin and Health Care AG, Billerbeck, Germany) was applied in combination with a split-thickness autograft in 40 patients with acute burn wounds or scar reconstruction. Demographic and medical data were collected on each patient. We directly measured the graft size by using a transparent two-ply film (Visitrak Grid, Smith & Nephew Wound Management, Inc, Largo, FL, USA) intraoperatively and 1, 2, 3, and 6 months postoperatively. For effective data comparison, the size of the graft at the time of surgery was taken to be "100%." Then, the size in each phase was estimated in percentage (%). During the 1st month, the average size was 89%. The figure decreased to 86% and 82% in the 2nd and 3rd months, respectively. In the 6th month, it slightly rebounded to 85% but failed to return to the original state. The size of patients with acute burns was smaller than the size of scar patients as follows: 85-91% in the 2nd month, 81-87% in the 3rd month, and 85-96% in the 6th month. This study examined the progress of skin grafts through the measurement of graft size in the human body. The grafted skin underwent contracture and remodeling for 3-6 months. In terms of skin contraction, an acute burn was more serious than scar reconstruction. The use of an artificial dermis that contains elastin is very effective from the functional and esthetic perspective by minimizing contractures and enhancing skin elasticity. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  7. Advances in artificial olfaction: sensors and applications.

    Science.gov (United States)

    Gutiérrez, J; Horrillo, M C

    2014-06-01

    The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Applications of artificial intelligence to scientific research

    Science.gov (United States)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  9. 3D Tissue Scaffold Printing On Custom Artificial Bone Applications

    OpenAIRE

    Betül ALDEMİR; DİKİCİ, Serkan; ÖZTÜRK, Şükrü; KAHRAMAN, Ozan; Aylin ŞENDEMİR ÜRKMEZ; Oflaz, Hakan, 1980-

    2015-01-01

    Production of defect-matching scaffolds is the most critical step in custom artificial bone applications. Three dimensional printing (3DP) is one of the best techniques particularly for custom designs on artificial bone applications because of the high controllability and design independency. Our long-term aim is to implant an artificial custom bone that is cultured with patient's own mesenchymal stem cells after determining defect architecture on patient's bone by using CT-scan and printing ...

  10. Radioprotective effects of dimethyl sulfoxide in the artificial skin reconstructed with cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Ha; Choi, Karp Shik [College of Dentistry, Kyungpook National University, Daegu (Korea, Republic of); Song, In Hwan [Department of Anatomy, College of Medicine, Yeungnam University, Daegu (Korea, Republic of)

    2002-03-15

    To evaluate cultured human artificial skin as an experimental model for studying radiation effects in vitro. The skin was constructed by culturing keratinocytes over collagen lattice which made by culturing fibroblasts. Two groups were irradiated to gamma rays at single dose of 25 Gy with or without 3.5% of DMSO. Ultrastructures were investigated by electron microscopy after irradiation. The number of epidermal layers and expression of cytokeratin (CK) 14 and 10 were also seem by light microscopy. At 2 days after irradiation in experimental group without DMSO, necrotic cells were rarely found in the spinosal layer and undercornified cells were visible in the horney layer. Similar findings were also found in experimental group with DMSO but in mild form. The number of epidermal layers in experimental group without DMSO were significantly fewer than other group. CK 14 expressed in all the layer excluding horney layer but CK 10 expressed over 3-4 basal layers. Such patterns of CK expression were similar to all groups. It is suggested that structures of the keratinocytes and epidermal formation could be disturbed by irradiation in artificial skin and that DMSO can protect these damages. Therefore this work could be used as an organotypic experimental model in vitro using human cells for studying radiation effect in skin. Furthermore structural findings provided in this study could be used as useful basic data in further study using this model.

  11. Artificial intelligence: contemporary applications and future compass.

    Science.gov (United States)

    Khanna, Sunali

    2010-08-01

    The clinical use of information technology in the dental profession has increased substantially in the past 10 to 20 years. In most developing countries an insufficiency of medical and dental specialists has increased the mortality of patients suffering from various diseases. Employing technology, especially artificial intelligence technology, in medical and dental application could reduce cost, time, human expertise and medical error. This approach has the potential to revolutionise the dental public health scenario in developing countries. Clinical decision support systems (CDSS) are computer programs that are designed to provide expert support for health professionals. The applications in dental sciences vary from dental emergencies to differential diagnosis of orofacial pain, radiographic interpretations, analysis of facial growth in orthodontia to prosthetic dentistry. However, despite the recognised need for CDSS, the implementation of these systems has been limited and slow. This can be attributed to lack of formal evaluation of the systems, challenges in developing standard representations, cost and practitioner scepticism about the value and feasibility of CDSS. Increasing public awareness of safety and quality has accelerated the adoption of generic knowledge based CDSS. Information technology applications for dental practice continue to develop rapidly and will hopefully contribute to reduce the morbidity and mortality of oral and maxillofacial diseases and in turn impact patient care.

  12. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  13. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  14. Unique Applications for Artificial Neural Networks. Phase 1

    Science.gov (United States)

    1991-08-08

    AD-A243 365’ l!1111iLI[li In M aR C ’ PHASE I FINAL REPORT Unique Applications for Artificial Neural Networks DARPA SBIR 90-115 Contract # DAAH01-91...Contents Unique Applications for Artificial Neural Networks Acknowledgments Table of Contents Abstract i 1.0 Introduction 1 2.0 The NGO-VRP Solver 2...34 solution is thus obtained through analogy. Because of this activity, artificial neural networks have emerged as a primary artificial intelligence

  15. Mathematical Model to Predict Skin Concentration after Topical Application of Drugs

    Directory of Open Access Journals (Sweden)

    Hiroaki Todo

    2013-12-01

    Full Text Available Skin permeation experiments have been broadly done since 1970s to 1980s as an evaluation method for transdermal drug delivery systems. In topically applied drug and cosmetic formulations, skin concentration of chemical compounds is more important than their skin permeations, because primary target site of the chemical compounds is skin surface or skin tissues. Furthermore, the direct pharmacological reaction of a metabolically stable drug that binds with specific receptors of known expression levels in an organ can be determined by Hill’s equation. Nevertheless, little investigation was carried out on the test method of skin concentration after topically application of chemical compounds. Recently we investigated an estimating method of skin concentration of the chemical compounds from their skin permeation profiles. In the study, we took care of “3Rs” issues for animal experiments. We have proposed an equation which was capable to estimate animal skin concentration from permeation profile through the artificial membrane (silicone membrane and animal skin. This new approach may allow the skin concentration of a drug to be predicted using Fick’s second law of diffusion. The silicone membrane was found to be useful as an alternative membrane to animal skin for predicting skin concentration of chemical compounds, because an extremely excellent extrapolation to animal skin concentration was attained by calculation using the silicone membrane permeation data. In this chapter, we aimed to establish an accurate and convenient method for predicting the concentration profiles of drugs in the skin based on the skin permeation parameters of topically active drugs derived from steady-state skin permeation experiments.

  16. Artificial Intelligence--Applications in Education.

    Science.gov (United States)

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  17. Texture Classification using Artificial Neural Network for Diagnosis of Skin Cancer

    Directory of Open Access Journals (Sweden)

    Dalia N. Abdul-Wadood

    2014-07-01

    Full Text Available This paper attempts to improve the efficiency of the system that proposed in [1] to determine whether a given skin lesion microscopic image is malignant or benign; in case of malignancy, the system can specify its type; whether it is squamous cell carcinoma or basal cell carcinoma (the two leading skin cancer types. The testing of this system was conducted using 80 microscopic images of skin tissues of the types normal, benign and the two types of skin cancer (squamous and basal; the images have been collected from different hospital pathology departments as part of the research work. Some of the collected samples have been used as training and others as testing materials. The proposed system consists of 3 main steps. First, extraction of a set of textural descriptors to localize the abnormal visual attributes which may appear in the tested skin tissue images. Second, selection of the best discriminating texture features. Third, identify the type of skin tissue images using artificial neural network (ANN. In the training phase, the system was trained using 50 skin tissue images, the textural features extracted from training samples were analyzed and their discrimination powers were evaluated in order to get a list of the most suitable features for auto recognition task. When ANN is trained on co-occurrence features the attained allocation accuracy rates was (%97.71 and the diagnosis accuracy rate was (%98.75. While when using ANN with combinations of different types of textural features; the allocation accuracy rate reached to (%97.90 while the diagnosis accuracy rate became (%98.75

  18. Artificial skin--culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres.

    Directory of Open Access Journals (Sweden)

    Hanna Wendt

    Full Text Available BACKGROUND: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. METHODOLOGY/PRINCIPAL FINDINGS: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E for microscopic analyses. CONCLUSION/SIGNIFICANCE: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration.

  19. Artificial Skin – Culturing of Different Skin Cell Lines for Generating an Artificial Skin Substitute on Cross-Weaved Spider Silk Fibres

    Science.gov (United States)

    Reimers, Kerstin; Kuhbier, Joern W.; Schäfer-Nolte, Franziska; Allmeling, Christina; Kasper, Cornelia; Vogt, Peter M.

    2011-01-01

    Background In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross- sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses. Conclusion/Significance Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration. PMID:21814557

  20. Artificial Skin – Culturing of Different Skin Cell Lines for Generating an Artificial Skin Substitute on Cross-Weaved Spider Silk Fibres

    OpenAIRE

    Hanna Wendt; Anja Hillmer; Kerstin Reimers; Kuhbier, Joern W.; Franziska Schäfer-Nolte; Christina Allmeling; Cornelia Kasper; Vogt, Peter M.

    2011-01-01

    BACKGROUND: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. METHODOLOGY/PRINCIPAL FINDINGS: Native spider draglin...

  1. Artificial Skin - Culturing of Different Skin Cell Lines for Generating an Artificial Skin Substitute on Cross-Weaved Spider Silk Fibres

    OpenAIRE

    Wendt, Hanna; Hillmer, Anja; REIMERS, KERSTIN; Kuhbier, Joern W.; Schaefer-Nolte, Franziska; Allmeling, Christina; Kasper, Cornelia; Vogt, Peter M.

    2011-01-01

    Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings: Native spider draglin...

  2. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  3. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  4. Application of artificial intelligence to the management of urological cancer.

    Science.gov (United States)

    Abbod, Maysam F; Catto, James W F; Linkens, Derek A; Hamdy, Freddie C

    2007-10-01

    Artificial intelligence techniques, such as artificial neural networks, Bayesian belief networks and neuro-fuzzy modeling systems, are complex mathematical models based on the human neuronal structure and thinking. Such tools are capable of generating data driven models of biological systems without making assumptions based on statistical distributions. A large amount of study has been reported of the use of artificial intelligence in urology. We reviewed the basic concepts behind artificial intelligence techniques and explored the applications of this new dynamic technology in various aspects of urological cancer management. A detailed and systematic review of the literature was performed using the MEDLINE and Inspec databases to discover reports using artificial intelligence in urological cancer. The characteristics of machine learning and their implementation were described and reports of artificial intelligence use in urological cancer were reviewed. While most researchers in this field were found to focus on artificial neural networks to improve the diagnosis, staging and prognostic prediction of urological cancers, some groups are exploring other techniques, such as expert systems and neuro-fuzzy modeling systems. Compared to traditional regression statistics artificial intelligence methods appear to be accurate and more explorative for analyzing large data cohorts. Furthermore, they allow individualized prediction of disease behavior. Each artificial intelligence method has characteristics that make it suitable for different tasks. The lack of transparency of artificial neural networks hinders global scientific community acceptance of this method but this can be overcome by neuro-fuzzy modeling systems.

  5. Anisotropic artificial substrates for microwave applications

    Science.gov (United States)

    Shahvarpour, Attieh

    ) with very low-beam squint, which makes it particularly appropriate for applications in wide band point-to-point communication and radar systems. The antenna is constituted of a mushroom type anisotropic magneto-dielectric artificial grounded slab with uniaxially anisotropic permittivity and permeability tensors. A spectral transmission-line model based on Green functions approach is chosen for the analysis of the structure. A rigorous comparison between the isotropic and anisotropic leaky-wave antennas is performed which reveals that as opposed to anisotropic slabs, isotropic slabs show weak performance in leaky-wave antennas. The properties of planar antennas such as low profile, low cost, compatibility with integrated circuits and their conformal nature have made them appropriate antennas for communications systems. In parallel, bandwidth and miniaturization requirements have increased the demand for millimeter-wave wireless systems, such as radar, remote sensors and highspeed local area networks. However, as frequency increases towards millimeter-wave regime, the radiation efficiency of planar antennas becomes an important issue. This is due to the increased electrical thickness of the substrate and therefore increased number of the excited surface modes which carry part of the energy of the system in the substrate without any efficient contribution to radiation. Therefore, these antennas suffer from low radiation efficiency. This has motivated the third contribution of the thesis which is the interpretation and analysis of the radiation efficiency behavior of the planar antennas on electrically thick substrates. A novel substrate dipole approach is introduced for the explanation of the efficiency behavior. This dipole models the substrate and reduces the problem of the horizontal electric source on the substrate to an equivalent dipole radiating in the free-space. In addition, in this work, some efficiency enhancement solutions at the electrical thicknesses where

  6. Cell kinetics in a model of artificial skin. An immunohistochemical and flow cytometric analysis

    Directory of Open Access Journals (Sweden)

    A Casasco

    2009-12-01

    Full Text Available Bioengineered organs raised in vitro are candidate substitutes for natural organs in biological, pharmacological and clinical applications. We have studied cell kinetics in a human skin equivalent (HSE using a combined immunohistochemical and flow cytometric approach. Morphological analysis has shown that, relative to unstimulated natural skin, cell proliferation mainly occurs in the basal layer of the epidermal equivalent. Immunohistochemical and flow cytometric measurements of the growth fraction suggested a cell turnover comparable to that of natural skin. Immunohistochemical labelling indices matched well with flow cytometric data. These observations are consistent with morphological and histochemical data demonstrating normal cell differentiation and tissue architecture in HSE and suggest that such HSE may be a usefull substitute for human skin.

  7. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  8. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    Science.gov (United States)

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas

    2012-06-01

    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts.

  9. Prediction of human skin permeability using artificial neural network (ANN)modeling

    Institute of Scientific and Technical Information of China (English)

    Long-jian CHEN; Guo-ping LIAN; Lu-jia HAN

    2007-01-01

    Aim: To develop an artificial neural network (ANN) model for predicting skin permeability (log Kp) of new chemical entities. Methods: A large dataset of 215experimental data points was compiled from the literature. The dataset was subdi-vided into 5 subsets and 4 of them were used to train and validate an ANN model.The same 4 datasets were also used to build a multiple linear regression (MLR)model. The remaining dataset was then used to test the 2 models. Abraham descriptors were employed as inputs into the 2 models. Model predictions were compared with the experimental results. In addition, the relationship between log Kp and Abraham descriptors were investigated. Results: The regression re-sults of the MLR model were n=215, determination coefficient (R2)=0.699, mean square error (MSE)=0.243, and F=493.556. The ANN model gave improved results with n=215, R2=0.832, MSE=0.136, and F=1050.653. The ANN model suggests that the relationship between log Kp and Abraham descriptors is non-linear. Conclusion:The study suggests that Abraham descriptors may be used to predict skin permeability, and the ANN model gives improved prediction of skin permeability.

  10. In silico risk assessment for skin sensitization using artificial neural network analysis.

    Science.gov (United States)

    Tsujita-Inoue, Kyoko; Atobe, Tomomi; Hirota, Morihiko; Ashikaga, Takao; Kouzuki, Hirokazu

    2015-04-01

    The sensitizing potential of chemicals is usually identified and characterized using in vivo methods such as the murine local lymph node assay (LLNA). Due to regulatory constraints and ethical concerns, alternatives to animal testing are needed to predict the skin sensitization potential of chemicals. For this purpose, an integrated evaluation system employing multiple in vitro and in silico parameters that reflect different aspects of the sensitization process seems promising. We previously reported that LLNA thresholds could be well predicted by using an artificial neural network (ANN) model, designated iSENS ver. 2 (integrating in vitro sensitization tests version 2), to analyze data obtained from in vitro tests focused on different aspects of skin sensitization. Here, we examined whether LLNA thresholds could be predicted by ANN using in silico-calculated descriptors of the three-dimensional structures of chemicals. We obtained a good correlation between predicted LLNA thresholds and reported values. Furthermore, combining the results of the in vitro (iSENS ver. 2) and in silico models reduced the number of chemicals for which the potency category was under-estimated. In conclusion, the ANN model using in silico parameters was shown to be have useful predictive performance. Further, our results indicate that the combination of this model with a predictive model using in vitro data represents a promising approach for integrated risk assessment of skin sensitization potential of chemicals.

  11. Artificial Intelligence Applications to Fire Management

    Science.gov (United States)

    Don J. Latham

    1987-01-01

    Artificial intelligence could be used in Forest Service fire management and land-use planning to a larger degree than is now done. Robots, for example, could be programmed to monitor for fire and insect activity, to keep track of wildlife, and to do elementary thinking about the environment. Catching up with the fast-changing technology is imperative.

  12. Application of double-layered skin phantoms for optical flow imaging during laser tattoo treatments

    Science.gov (United States)

    Lee, Byeong-il; Song, Woosub; Kim, Hyejin; Kang, Hyun Wook

    2016-05-01

    The feasible application of double-layered skin phantoms was evaluated to identify artificial blood flow with a Doppler optical coherence tomography (DOCT) system for laser tattoo treatments. Polydimethylsiloxane (PDMS) was used to fabricate the artificial phantoms with flow channels embedded. A double-integrating sphere system with an inverse adding-doubling method quantified both the absorption and the reduced scattering coefficients for epidermis and dermis phantoms. Both OCT and caliper measurements confirmed the double-layered phantom structure (epidermis = 136 ± 17 µm vs. dermis = 3.0 ± 0.1 mm). The DOCT method demonstrated that high flow rates were associated with high image contrast, visualizing the position and the shape of the flow channel. Application of the channel-embedded skin phantoms in conjunction with DOCT can be a reliable technique to assess dynamic variations in the blood flow during and after laser tattoo treatments.

  13. Artificial intelligence applications in information and communication technologies

    CERN Document Server

    Bouguila, Nizar

    2015-01-01

    This book presents various recent applications of Artificial Intelligence in Information and Communication Technologies such as Search and Optimization methods, Machine Learning, Data Representation and Ontologies, and Multi-agent Systems. The main aim of this book is to help Information and Communication Technologies (ICT) practitioners in managing efficiently their platforms using AI tools and methods and to provide them with sufficient Artificial Intelligence background to deal with real-life problems.  .

  14. IDENTIFICATION OF ERYTHEMATO-SQUAMOUS SKIN DISEASES USING EXTREME LEARNING MACHINE AND ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Sunday Olusanya Olatunji

    2013-10-01

    Full Text Available In this work, a new identification model, based on extreme learning machine (ELM, to better identify Erythemato – Squamous skin diseases have been proposed and implemented and the results compared to that of the classical artificial neural network (ANN. ELMs provide solutions to single- and multi- hidden layer feed-forward neural networks. ELMs can achieve high learning speed, good generalization performance, and ease of implementation. Experimental results indicated that ELM outperformed the classical ANN in all fronts both for the training and testing cases. The effect of varying size of training and testing set on the performance of classifiers were also investigated in this study. The proposed classifier demonstrated to be a viable tool in this germane field of medical diagnosis as indicated by its high accuracy and consistency of result.

  15. A comprehensive overview of the applications of artificial life.

    Science.gov (United States)

    Kim, Kyung-Joong; Cho, Sung-Bae

    2006-01-01

    We review the applications of artificial life (ALife), the creation of synthetic life on computers to study, simulate, and understand living systems. The definition and features of ALife are shown by application studies. ALife application fields treated include robot control, robot manufacturing, practical robots, computer graphics, natural phenomenon modeling, entertainment, games, music, economics, Internet, information processing, industrial design, simulation software, electronics, security, data mining, and telecommunications. In order to show the status of ALife application research, this review primarily features a survey of about 180 ALife application articles rather than a selected representation of a few articles. Evolutionary computation is the most popular method for designing such applications, but recently swarm intelligence, artificial immune network, and agent-based modeling have also produced results. Applications were initially restricted to the robotics and computer graphics, but presently, many different applications in engineering areas are of interest.

  16. Engineering artificial machines from designable DNA materials for biomedical applications.

    Science.gov (United States)

    Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin

    2015-06-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

  17. Advances in Artificial Neural Networks – Methodological Development and Application

    Directory of Open Access Journals (Sweden)

    Yanbo Huang

    2009-08-01

    Full Text Available Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other networks such as radial basis function, recurrent network, feedback network, and unsupervised Kohonen self-organizing network. These networks, especially the multilayer perceptron network with a backpropagation training algorithm, have gained recognition in research and applications in various scientific and engineering areas. In order to accelerate the training process and overcome data over-fitting, research has been conducted to improve the backpropagation algorithm. Further, artificial neural networks have been integrated with other advanced methods such as fuzzy logic and wavelet analysis, to enhance the ability of data interpretation and modeling and to avoid subjectivity in the operation of the training algorithm. In recent years, support vector machines have emerged as a set of high-performance supervised generalized linear classifiers in parallel with artificial neural networks. A review on development history of artificial neural networks is presented and the standard architectures and algorithms of artificial neural networks are described. Furthermore, advanced artificial neural networks will be introduced with support vector machines, and limitations of ANNs will be identified. The future of artificial neural network development in tandem with support vector machines will be discussed in conjunction with further applications to food science and engineering, soil and water relationship for crop management, and decision support for precision agriculture. Along with the network structures and training algorithms, the applications of artificial neural networks will be reviewed as well, especially in the fields of agricultural and biological

  18. 人工真皮结合自体表皮治疗四肢皮肤软组织缺损的应用研究%Application study of artificial dermis combined with the auto-epidermis transplantation for treatment of skin and soft tissue defects limbs

    Institute of Scientific and Technical Information of China (English)

    陈朗; 周国富

    2012-01-01

    目的:评价人工真皮结合自体表皮修复四肢皮肤软组织缺损的临床疗效.方法:本组共10例四肢皮肤软组织缺损患者,其中肌腱外露3例,骨外露1例.一期清创后移植人工真皮,2~3周后待创面良性新生肉芽组织生长,二期移植自体薄层皮片.观察植皮皮片存活情况,外观,质地,瘢痕生长情况,评估临床效果.结果:10例患者所植皮片全部存活,外观均良好,无明显瘢痕.结论:采用人工真皮结合自体表皮移植治疗四肢皮肤软组织缺损操作简便,创面愈合良好,并可在合并肌腱及骨外露创面应用.%Objective To evaluate the curative effects of artificial dermis combined with the auto-epidermis transplantation for treatment of skin and soft tissue defects of limbs. Methods A total of 10 cases of patients with skin and soft tissue defect limbs, including 3 cases with tendon exposure, 1 case with bone exposure. All the patients were performed debridement and artificial dermis firstly for two to three weeks, when the local granulation tissue grew well, followed by split thickness autoskin transplantation. The survival of artificial dermis and split -thickness skin, appearance, texture, scar were observed, evaluate clinical effect. Results All cases had good coverage of wounds, postoperative follow-up of three months, recheck outcome showed skin graft healing was excellent and no obvious skin scar. Conclusion Repair of skin and soft tissue defects with artificial dermis had high quality of wounds healing, simple operation, and can be applied in wounds with tendons and bones exposed.

  19. Artificial intelligence and dynamic systems for geophysical applications

    CERN Document Server

    Gvishiani, Alexei

    2002-01-01

    The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers

  20. Artificial Quantum Solids: Physics, Fabrication and Applications

    Science.gov (United States)

    2007-11-02

    example, J. M. Hvam in Nonlinear Spectroscopy of Solids; Ad- vances and Applications, edited by B. Di Bartolo and B. Bowlby (Plenum, New York, 1994), pp...vances and Applications, edited by B. Di Bartolo and B. Bowlby (Plenum, New York, 1994), pp. 91-149. ’This lack of symmetry is due to the transfer of a

  1. [The experimental application of chitosan membrane for treating chemical burns of the skin].

    Science.gov (United States)

    Pogorielov, M; Kalinkevich, O; Gortinskaya, E; Moskalenko, R; Tkachenko, Yu

    2014-01-01

    The basic method for skin damage treatment, including chemical wounds, is a topical application of different agents. Their objective is to repair structure of the skin and its functions. All dressings for treating wounds are classified as biological, artificial and composites containing both synthetic and natural materials. There are many studies concerning application of chitosan, which is a derivate of natural polymer chitin, as a basis for topical materials to treat burns. However, data are rather limited about application of chitosan for treating acid burns. Thus, the aim of research is to study the morphological futures of skin regeneration after the chemical burn applying chitosan membranes. We performed the experiment on 60 young rats (3 months old) with the chemical burns of third-degree (IIIA degree) to study the morphofunctional features of skin regeneration. Later we applied the chitosan membranes on the burns. We carried out a histologic investigation on the biopsy specimens of wound to determine the morphological features of wound regeneration. The results confirmed that earlier granulation and epithelialization of the skin surface happened as the chitosan membrane was applied on the acid effected surface. The final result of the application of chitosan film is to achieve full epithelialization, preserve the structure of tissues beneath the burn and prevent getting scars.

  2. Application of temporal LNC logic in artificial intelligence

    Science.gov (United States)

    Adamek, Marek; Mulawka, Jan

    2016-09-01

    This paper presents the temporal logic inference engine developed in our university. It is an attempt to demonstrate implementation and practical application of temporal logic LNC developed in Cardinal Stefan Wyszynski University in Warsaw.1 The paper describes the fundamentals of LNC logic, architecture and implementation of inference engine. The practical application is shown by providing the solution for popular in Artificial Intelligence problem of Missionaries and Cannibals in terms of LNC logic. Both problem formulation and inference engine are described in details.

  3. Research on Artificial Neural Network Method for Credit Application

    Institute of Scientific and Technical Information of China (English)

    MingxingLi; PingHeng; PeiwuDong

    2004-01-01

    Considering our country's present situation, in this paper we provide ten evaluation indexes of the credit application management, which is used as the input vector of neural network. Then we set up a three-layer back propagation model for the credit application evaluation based on the artificial neural network. We also analyzed the model using the real data; the testing result indicates that the model is a good method and a good tool.

  4. Pressurized liquid extraction-gas chromatography-mass spectrometry for confirming the photo-induced generation of dioxin-like derivatives and other cosmetic preservative photoproducts on artificial skin.

    Science.gov (United States)

    Alvarez-Rivera, Gerardo; Llompart, Maria; Garcia-Jares, Carmen; Lores, Marta

    2016-04-01

    The stability and photochemical transformations of cosmetic preservatives in topical applications exposed to UV-light is a serious but poorly understood problem. In this study, a high throughput extraction and selective method based on pressurized liquid extraction (PLE) coupled to gas chromatography-mass spectrometry (GC-MS) was validated and applied to investigate the photochemical transformation of the antioxidant butylated hydroxytoluene (BHT), as well as the antimicrobials triclosan (TCS) and phenyl benzoate (PhBz) in an artificial skin model. Two sets of photodegradation experiments were performed: (i) UV-Irradiation (8W, 254nm) of artificial skin directly spiked with the target preservatives, and (ii) UV-irradiation of artificial skin after the application of a cosmetic cream fortified with the target compounds. After irradiation, PLE was used to isolate the target preservatives and their transformation products. The follow-up of the photodegradation kinetics of the parent preservatives, the identification of the arising by-products, and the monitorization of their kinetic profiles was performed by GC-MS. The photochemical transformation of triclosan into 2,8-dichloro-dibenzo-p-dioxin (2,8-DCDD) and other dioxin-like photoproducts has been confirmed in this work. Furthermore, seven BHT photoproducts, and three benzophenones as PhBz by-products, have been also identified. These findings reveal the first evidences of cosmetic ingredients phototransformation into unwanted photoproducts on an artificial skin model.

  5. The Effect of Particles on Electrolytically Polymerized Thin Natural MCF Rubber for Soft Sensors Installed in Artificial Skin

    Directory of Open Access Journals (Sweden)

    Kunio Shimada

    2017-04-01

    Full Text Available The aim of this study is to investigate the effect of particles as filler in soft rubber sensors installed in artificial skin. We examine sensors made of natural rubber (NR-latex that include magnetic particles of Ni and Fe3O4 using magnetic compound fluid (MCF. The 1-mm thickness of the electrolytically polymerized MCF rubber makes production of comparatively thin rubber sensors feasible. We first investigate the effect of magnetic particles Ni and Fe3O4 on the curing of MCF rubber. Next, in order to adjust the electric properties of the MCF rubber, we adopt Al2O3 dielectric particles. We investigate the effect of Al2O3 particles on changes in electric current, voltage and temperature of electrolytically polymerized MCF rubber liquid, and on the electric properties under the application of normal and shear forces. By adjusting the ratio of Ni, Fe3O4, Al2O3 and water in MCF rubber with Al2O3, it is possible to change the electric properties.

  6. Artificial Mitochondria Transfer: Current Challenges, Advances, and Future Applications

    Directory of Open Access Journals (Sweden)

    Andrés Caicedo

    2017-01-01

    Full Text Available The objective of this review is to outline existing artificial mitochondria transfer techniques and to describe the future steps necessary to develop new therapeutic applications in medicine. Inspired by the symbiotic origin of mitochondria and by the cell’s capacity to transfer these organelles to damaged neighbors, many researchers have developed procedures to artificially transfer mitochondria from one cell to another. The techniques currently in use today range from simple coincubations of isolated mitochondria and recipient cells to the use of physical approaches to induce integration. These methods mimic natural mitochondria transfer. In order to use mitochondrial transfer in medicine, we must answer key questions about how to replicate aspects of natural transport processes to improve current artificial transfer methods. Another priority is to determine the optimum quantity and cell/tissue source of the mitochondria in order to induce cell reprogramming or tissue repair, in both in vitro and in vivo applications. Additionally, it is important that the field explores how artificial mitochondria transfer techniques can be used to treat different diseases and how to navigate the ethical issues in such procedures. Without a doubt, mitochondria are more than mere cell power plants, as we continue to discover their potential to be used in medicine.

  7. Effects of the Artificial Skin Thickness on the Subsurface Pressure Profiles of Flat, Curved, and Braille Surfaces

    CERN Document Server

    Cabibihan, John-John; Suresh, Shruthi

    2014-01-01

    The primary interface of contact between a robotic or prosthetic hand and the external world is through the artificial skin. To make sense of that contact, tactile sensors are needed. These sensors are normally embedded in soft, synthetic materials for protecting the subsurface sensor from damage or for better hand-to-object contact. It is important to understand how the mechanical signals transmit from the artificial skin to the embedded tactile sensors. In this paper, we made use of a finite element model of an artificial fingertip with viscoelastic and hyperelastic behaviors to investigate the subsurface pressure profiles when flat, curved, and Braille surfaces were indented on the surface of the model. Furthermore, we investigated the effects of 1, 3 and 5 mm thickness of the skin on the subsurface pressure profiles. The simulation results were experimentally validated using a 25.4 {\\mu}m thin pressure detecting film that was able to follow the contours of a non-planar surface, which is analogous to an ar...

  8. Generation of an artificial skin construct containing a non-degradable fiber mesh: a potential transcutaneous interface

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, Frederick [Biomedical Strategies Inc., San Diego, CA (United States); Kyriakides, Themis R [Vascular Biology and Therapeutics, Yale University, New Haven, CT 06536-9812 (United States)], E-mail: themis.kyriakides@yale.edu

    2008-09-01

    Generation of a stable interface between soft tissues and biomaterials could improve the function of transcutaneous prostheses, primarily by minimizing chronic infections. We hypothesized that inclusion of non-biodegradable biomaterials in an artificial skin substrate would improve integration of the neodermis. In the present study, we compared the biocompatibility of an experimental substrate, consisting of collagen and glycosylaminoglycans, with commercially available artificial skin of similar composition. By utilizing a mouse excisional wound model, we found that the source of collagen (bovine tendon versus hide), extent of injury and wound contraction were critical determinants of inflammation and neodermis formation. Reducing the extent of injury to underlying muscle reduced inflammation and improved remodeling; the improved conditions allowed the detection of a pro-inflammatory effect of hide-derived collagen. To eliminate the complication of wound contraction, subsequent grafts were performed in guinea pigs and showed that inclusion of carbon fibers or non-degradable sutures resulted in increased foreign body response (FBR) and altered remodeling. On the other hand, inclusion of a polyester multi-stranded mesh induced a mild FBR and allowed normal neodermis formation. Taken together, our observations suggest that non-degradable biomaterials can be embedded in an artificial skin construct without compromising its ability to induce neodermis formation.

  9. Recent Progress in Electronic Skin

    OpenAIRE

    Wang, Xiandi; Dong, Lin; Zhang, Hanlu; Yu, Ruomeng; Pan, Caofeng; Wang, Zhong Lin

    2015-01-01

    The skin is the largest organ of the human body and can sense pressure, temperature, and other complex environmental stimuli or conditions. The mimicry of human skin's sensory ability via electronics is a topic of innovative research that could find broad applications in robotics, artificial intelligence, and human–machine interfaces, all of which promote the development of electronic skin (e‐skin). To imitate tactile sensing via e‐skins, flexible and stretchable pressure sensor arrays are co...

  10. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    Science.gov (United States)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  11. Application of Artificial Neural Network in Indicator Diagram

    Institute of Scientific and Technical Information of China (English)

    WuXiaodong; JiangHua; HanGuoqing

    2004-01-01

    Indicator diagram plays an important role in identifying the production state of oil wells. With an ability to reflect any non-linear mapping relationship, the artificial neural network (ANN) can be used in shape identification. This paper illuminates ANN realization in identifying fault kinds of indicator diagrams, including a back-propagation algorithm, characteristics of the indicator diagram and some examples. It is concluded that the buildup of a neural network and the abstract of indicator diagrams are important to successful application.

  12. Artificial Neural Networks in Applications of Industrial Robots

    Institute of Scientific and Technical Information of China (English)

    王克胜; JonathanLienhardt; 袁庆丰; 方明伦

    2004-01-01

    Artificial neural networks (ANNs) have been widely used to solve a number of problems to which analytical solutions are difficult to obtain using traditional mathematical approaches.Such problems exist also in the analysis of industrial robots. This paper presents an overview of ANN applications to robot kinematics, dynamics,control, trajectory and path planning, and sensing. Reasons for using or not using ANNs to industrial robots are explained as well.

  13. One-stage, simultaneous skin grafting with artificial dermis and basic fibroblast growth factor successfully improves elasticity with maturation of scar formation.

    Science.gov (United States)

    Hamuy, Rodrigo; Kinoshita, Naoshi; Yoshimoto, Hiroshi; Hayashida, Kenji; Houbara, Seiji; Nakashima, Masahiro; Suzuki, Keiji; Mitsutake, Norisato; Mussazhanova, Zhanna; Kashiyama, Kazuya; Hirano, Akiyoshi; Akita, Sadanori

    2013-01-01

    The efficacy of one-stage artificial dermis and skin grafting was tested in a nude rat model. Reconstruction with artificial dermis is usually a two-stage procedure with 2- to 3-week intermission. If one-stage use of artificial dermis and split-thickness skin grafting are effective, the overall burden on patients and the medical cost will markedly decrease. The graft take rate, contraction rate, tissue elasticity, histology, morphometric analysis of the dermal thickness, fibroblast counting, immunohistochemistry of α-smooth muscle actin, matrix metalloproteinase-2, CD31, and F4/80, as well as gelatin zymography, real-time reverse transcriptase polymerase chain reaction for matrix metalloproteinase-2, and electron microscopy, were investigated from day 3 to 3 months postoperatively. The graft take rate was good overall in one-stage artificial dermis and skin grafting groups up to 3 weeks, and the contraction rate was greater in the two-staged artificial dermis and skin grafting group than in the skin grafting alone or one stage of artificial dermis and skin grafting groups. Split-thickness skin grafting with artificial dermis and basic fibroblast growth factor at a concentration of 1 μg/cm(2) showed significantly greater elasticity by Cutometer, and the dermal thickness was significantly thinner, fibroblast counting was significantly greater, and the α-smooth muscle actin expression level was more notable with a more mature blood supply in the dermis and more organized dermal fibrils by electron microscopy at 3 weeks. Thus, one-stage artificial dermis and split-thickness skin grafting with basic fibroblast growth factor show a high graft take rate and better tissue elasticity determined by Cutometer analysis, maturity of the dermis, and increased fibroblast number and blood supply compared to a standard two-stage reconstruction.

  14. Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals.

    Science.gov (United States)

    Braga, Rodolpho C; Alves, Vinicius M; Muratov, Eugene N; Strickland, Judy; Kleinstreuer, Nicole; Trospsha, Alexander; Andrade, Carolina Horta

    2017-05-22

    Chemically induced skin sensitization is a complex immunological disease with a profound impact on quality of life and working ability. Despite some progress in developing alternative methods for assessing the skin sensitization potential of chemical substances, there is no in vitro test that correlates well with human data. Computational QSAR models provide a rapid screening approach and contribute valuable information for the assessment of chemical toxicity. We describe the development of a freely accessible web-based and mobile application for the identification of potential skin sensitizers. The application is based on previously developed binary QSAR models of skin sensitization potential from human (109 compounds) and murine local lymph node assay (LLNA, 515 compounds) data with good external correct classification rate (0.70-0.81 and 0.72-0.84, respectively). We also included a multiclass skin sensitization potency model based on LLNA data (accuracy ranging between 0.73 and 0.76). When a user evaluates a compound in the web app, the outputs are (i) binary predictions of human and murine skin sensitization potential; (ii) multiclass prediction of murine skin sensitization; and (iii) probability maps illustrating the predicted contribution of chemical fragments. The app is the first tool available that incorporates quantitative structure-activity relationship (QSAR) models based on human data as well as multiclass models for LLNA. The Pred-Skin web app version 1.0 is freely available for the web, iOS, and Android (in development) at the LabMol web portal ( http://labmol.com.br/predskin/ ), in the Apple Store, and on Google Play, respectively. We will continuously update the app as new skin sensitization data and respective models become available.

  15. The application of artificial intelligence technology to aeronautical system design

    Science.gov (United States)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  16. [Application and potential of genome engineering by artificial enzymes].

    Science.gov (United States)

    Nomura, Wataru

    2015-01-01

    Artificial zinc finger proteins (ZFPs) consist of Cys2-His2-type modules composed of approximately 30 amino acids that adopt a ββα structure and coordinate a zinc ion. ZFPs recognizing specific DNA target sequences can substitute for the binding domains of various DNA-modifying enzymes to create designer nucleases, recombinases, and methylases with programmable sequence specificity. Enzymatic genome editing and modification can be applied to many fields of basic research and medicine. The recent development of new platforms using transcription activator-like effector (TALE) proteins or the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has expanded the range of possibilities for genome-editing technologies. These technologies empower investigators with the ability to efficiently knockout or regulate the functions of genes of interest. In this review, we discuss historical advancements in artificial ZFP applications and important issues that may influence the future of genome editing and engineering technologies. The development of artificial ZFPs has greatly increased the feasibility of manipulating endogenous gene functions through transcriptional control and gene modification. Advances in the ZFP, TALE, and CRISPR/Cas platforms have paved the way for the next generation of genome engineering approaches. Perspectives for the future of genome engineering are also discussed, including applications of targeting specific genomic alleles and studies in synthetic biology.

  17. Applications of human skin in vitro

    OpenAIRE

    Lönnqvist, Susanna

    2016-01-01

    Chronic wounds are a substantial problem in today’s health care and place significant strains on the patient. Successful modelling of the wound healing process is pivotal for the advancement of wound treatment research. Wound healing is a dynamic and multifactorial process involving all constituents of the skin. The progression from haemostasis and inflammation to proliferation of epidermal  keratinocytes and dermal fibroblasts, and final scar maturation can be halted and result in a chronic ...

  18. Applications of artificial neural networks (ANNs) in food science.

    Science.gov (United States)

    Huang, Yiqun; Kangas, Lars J; Rasco, Barbara A

    2007-01-01

    Artificial neural networks (ANNs) have been applied in almost every aspect of food science over the past two decades, although most applications are in the development stage. ANNs are useful tools for food safety and quality analyses, which include modeling of microbial growth and from this predicting food safety, interpreting spectroscopic data, and predicting physical, chemical, functional and sensory properties of various food products during processing and distribution. ANNs hold a great deal of promise for modeling complex tasks in process control and simulation and in applications of machine perception including machine vision and electronic nose for food safety and quality control. This review discusses the basic theory of the ANN technology and its applications in food science, providing food scientists and the research community an overview of the current research and future trend of the applications of ANN technology in the field.

  19. Theory and applications of artificial endocrine system-an overview

    Institute of Scientific and Technical Information of China (English)

    CUI Wei; QIANG Sheng; GAO X Z

    2006-01-01

    Inspired by the biological endocrine system, the Artificial Endocrine System (AES) has been proposed and investigated during the past decade. As a novel branch of computational intelligence methods, it has its unique and distinguishing features. This paper intends to give an overview of the current research work in the AES. The preliminary theory of the AES, which is based on the simplified mathematic models of natural endocrine system, is first introduced here. Some typical AES algorithms and their applications are also briefly discussed. Finally, a few remarks and conclusions are made.

  20. Applications of artificial neural networks in medical science.

    Science.gov (United States)

    Patel, Jigneshkumar L; Goyal, Ramesh K

    2007-09-01

    Computer technology has been advanced tremendously and the interest has been increased for the potential use of 'Artificial Intelligence (AI)' in medicine and biological research. One of the most interesting and extensively studied branches of AI is the 'Artificial Neural Networks (ANNs)'. Basically, ANNs are the mathematical algorithms, generated by computers. ANNs learn from standard data and capture the knowledge contained in the data. Trained ANNs approach the functionality of small biological neural cluster in a very fundamental manner. They are the digitized model of biological brain and can detect complex nonlinear relationships between dependent as well as independent variables in a data where human brain may fail to detect. Nowadays, ANNs are widely used for medical applications in various disciplines of medicine especially in cardiology. ANNs have been extensively applied in diagnosis, electronic signal analysis, medical image analysis and radiology. ANNs have been used by many authors for modeling in medicine and clinical research. Applications of ANNs are increasing in pharmacoepidemiology and medical data mining. In this paper, authors have summarized various applications of ANNs in medical science.

  1. Study on application of optical clearing technique in skin diseases

    Science.gov (United States)

    Shan, Hao; Liang, Yanmei; Wang, Jingyi; Li, Yan

    2012-11-01

    So far, the study of the optical clearing is almost always about healthy tissue. However, the ultimate goal is to detect diseases for clinical application. Optical clearing on diseased skins is explored. The effect is evaluated by applying a combined liquid paraffin and glycerol mixed solution on several kinds of diseased skins in vitro. Scanning experiments from optical coherence tomography show that it has different effects among fibroma, pigmented nevus, and seborrheic keratosis. Based on the results, we conclude that different skin diseases have different compositions and structures, and their optical parameters and biological characteristics should be different, which implies that the optical clearing technique may have selectivity and may not be suitable for all kinds of skin diseases.

  2. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  3. A unified viscous-spring artificial boundary for 3-D static and dynamic applications

    Institute of Scientific and Technical Information of China (English)

    LIU Jingbo; LI Bin

    2005-01-01

    A method to develop unified artificial boundaries for problems coupling static effect and dynamic effect is proposed. Based on the dynamic viscous-spring artificial boundary and the fundamental solution of static problems in elastic half space, a unified viscous-spring artificial boundary for 3-D static and dynamic applications is established.

  4. Efficiency evaluation of mud applications of laser doppler of skin

    Science.gov (United States)

    Kasimova, S. K.; Kondratenko, E. I.; Alykova, O. M.; Lomtieva, N. A.; Alykova, A. F.

    2017-01-01

    The mechanism of the microcirculation’s change of the face skin of the women under the influence of the sulfur silt mud application of the lake Karantinnoe of Astrakhan region was studied. The age particularities of vasorelaxation’s peloid action on the microcirculation of the face skin was installed. Peloid promotes the influx of arterial blood, the improvement of the tissue’s feeding and the reduction of the stagnant events. The prolonged action of the sulfur silt mud application reveals at more mature age.

  5. Artificial neural networks: theoretical background and pharmaceutical applications: a review.

    Science.gov (United States)

    Wesolowski, Marek; Suchacz, Bogdan

    2012-01-01

    In recent times, there has been a growing interest in artificial neural networks, which are a rough simulation of the information processing ability of the human brain, as modern and vastly sophisticated computational techniques. This interest has also been reflected in the pharmaceutical sciences. This paper presents a review of articles on the subject of the application of neural networks as effective tools assisting the solution of various problems in science and the pharmaceutical industry, especially those characterized by multivariate and nonlinear dependencies. After a short description of theoretical background and practical basics concerning the computations performed by means of neural networks, the most important pharmaceutical applications of neural networks, with suitable references, are demonstrated. The huge role played by neural networks in pharmaceutical analysis, pharmaceutical technology, and searching for the relationships between the chemical structure and the properties of newly synthesized compounds as candidates for drugs is discussed.

  6. Shallow Discussion about the Application of L-band Sounding Seconds Data in the Artificial Precipitation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to discuss shallowly the application of L-band sounding seconds data in the artificial precipitation. [Method] The characteristics, getting manner and displaying method of L-band sounding seconds data were introduced briefly. Moreover, its application prospect in the artificial precipitation operation was analyzed initially. We aimed to improve its application rate in the artificial precipitation operation. [Result] L-band sounding seconds data had the great improvement in the...

  7. Desarrollo de un cerrojo artificial para el skin-pass en una línea de acero galvanizado por inmersión en caliente

    Directory of Open Access Journals (Sweden)

    González-Marcos, A.

    2008-02-01

    Full Text Available In this paper, we present the application of data mining techniques to develop an “artificial lock” for the skin-pass in an attempt to solve a problem that can arise during the galvanising manufacturing process: the wrong labelling of the steel grade of a coil. In order to detect these errors and thus to avoid that coils with different properties than expected end up with a client, we propose neural network-based models for on-line predicting the strip elongation in the skin-pass section according to the manufacturing conditions and its chemical composition. Thus, a significant difference between estimated and measured elongation would mean that the coil must be removed from the line for further analyses.

    En este trabajo se presenta la aplicación de técnicas de minería de datos en el desarrollo de un “cerrojo artificial” para el skin-pass, que permita solucionar un problema que puede presentarse en la fabricación de bobinas de acero galvanizado: el etiquetado incorrecto del grado de acero de una bobina. Para tratar de detectar estos errores y evitar así que los clientes reciban bobinas con propiedades distintas de las esperadas, se proponen modelos, basados en redes neuronales, que predicen on-line el alargamiento de las bobinas en el skin-pass en función de las variables del proceso de fabricación y de su composición química. De esta forma, si la diferencia entre el alargamiento que estima el modelo y el medido realmente es significativa, se hace necesario sacar la bobina de la línea para someterla a análisis más exhaustivos.

  8. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    Ali Aytek; M Asce; Murat Alp

    2008-04-01

    This study proposes an application of two techniques of artificial intelligence (AI) for rainfall–runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two different ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods are compared with one EC method, Gene Expression Programming (GEP) which is a new evolutionary algorithm that evolves computer programs. The daily hydrometeorological data of three rainfall stations and one streamflow station for Juniata River Basin in Pennsylvania state of USA are taken into consideration in the model development. Statistical parameters such as average, standard deviation, coefficient of variation, skewness, minimum and maximum values, as well as criteria such as mean square error (MSE) and determination coefficient (2) are used to measure the performance of the models. The results indicate that the proposed genetic programming (GP) formulation performs quite well compared to results obtained by ANNs and is quite practical for use. It is concluded from the results that GEP can be proposed as an alternative to ANN models.

  9. Graphene Tribotronics for Electronic Skin and Touch Screen Applications.

    Science.gov (United States)

    Khan, Usman; Kim, Tae-Ho; Ryu, Hanjun; Seung, Wanchul; Kim, Sang-Woo

    2017-01-01

    Graphene tribotronics is introduced for touch-sensing applications such as electronic skins and touch screens. The devices are based on a coplanar coupling of triboelectrification and current transport in graphene transistors. The touch sensors are ultrasensitive, fast, and stable. Furthermore, they are transparent and flexible, and can spatially map touch stimuli such as movement of a ball, multi-touch, etc.

  10. Skin sensitization risk assessment model using artificial neural network analysis of data from multiple in vitro assays.

    Science.gov (United States)

    Tsujita-Inoue, Kyoko; Hirota, Morihiko; Ashikaga, Takao; Atobe, Tomomi; Kouzuki, Hirokazu; Aiba, Setsuya

    2014-06-01

    The sensitizing potential of chemicals is usually identified and characterized using in vivo methods such as the murine local lymph node assay (LLNA). Due to regulatory constraints and ethical concerns, alternatives to animal testing are needed to predict skin sensitization potential of chemicals. For this purpose, combined evaluation using multiple in vitro and in silico parameters that reflect different aspects of the sensitization process seems promising. We previously reported that LLNA thresholds could be well predicted by using an artificial neural network (ANN) model, designated iSENS ver.1 (integrating in vitro sensitization tests version 1), to analyze data obtained from two in vitro tests: the human Cell Line Activation Test (h-CLAT) and the SH test. Here, we present a more advanced ANN model, iSENS ver.2, which additionally utilizes the results of antioxidant response element (ARE) assay and the octanol-water partition coefficient (LogP, reflecting lipid solubility and skin absorption). We found a good correlation between predicted LLNA thresholds calculated by iSENS ver.2 and reported values. The predictive performance of iSENS ver.2 was superior to that of iSENS ver.1. We conclude that ANN analysis of data from multiple in vitro assays is a useful approach for risk assessment of chemicals for skin sensitization.

  11. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  12. Effects of artificial dawn on sleep inertia, skin temperature, and the awakening cortisol response

    NARCIS (Netherlands)

    van de Werken, Maan; Gimenez, Marina C.; de Vries, Bonnie; Beersma, Domien G. M.; van Someren, Eus J. W.; Gordijn, Marijke C. M.

    P>The effect of artificial dawn during the last 30 min of sleep on subsequent dissipation of sleep inertia was investigated, including possible involvement of cortisol and thermoregulatory processes. Sixteen healthy subjects who reported difficulty with waking up participated in random order in a

  13. An Application of Finite Element Modelling to Pneumatic Artificial Muscle

    Directory of Open Access Journals (Sweden)

    R. Ramasamy

    2005-01-01

    Full Text Available The purpose of this article was to introduce and to give an overview of the Pneumatic Artificial Muscles (PAMs as a whole and to discuss its numerical modelling, using the Finite Element (FE Method. Thus, more information to understand on its behaviour in generating force for actuation was obtained. The construction of PAMs was mainly consists of flexible, inflatable membranes which having orthotropic material behaviour. The main properties influencing the PAMs will be explained in terms of their load-carrying capacity and low weight in assembly. Discussion on their designs and capacity to function as locomotion device in robotics applications will be laid out, followed by FE modelling to represent PAMs overall structural behaviour under any potential operational conditions.

  14. Practical application of artificial neural networks in the neurosciences

    Science.gov (United States)

    Pinti, Antonio

    1995-04-01

    This article presents a practical application of artificial multi-layer perceptron (MLP) neural networks in neurosciences. The data that are processed are labeled data from the visual analysis of electrical signals of human sleep. The objective of this work is to automatically classify into sleep stages the electrophysiological signals recorded from electrodes placed on a sleeping patient. Two large data bases were designed by experts in order to realize this study. One data base was used to train the network and the other to test its generalization capacity. The classification results obtained with the MLP network were compared to a type K nearest neighbor Knn non-parametric classification method. The MLP network gave a better result in terms of classification than the Knn method. Both classification techniques were implemented on a transputer system. With both networks in their final configuration, the MLP network was 160 times faster than the Knn model in classifying a sleep period.

  15. 3D Tissue Scaffold Printing On Custom Artificial Bone Applications

    Directory of Open Access Journals (Sweden)

    Betül ALDEMİR

    2015-01-01

    Full Text Available Production of defect-matching scaffolds is the most critical step in custom artificial bone applications. Three dimensional printing (3DP is one of the best techniques particularly for custom designs on artificial bone applications because of the high controllability and design independency. Our long-term aim is to implant an artificial custom bone that is cultured with patient's own mesenchymal stem cells after determining defect architecture on patient's bone by using CT-scan and printing that defect-matching 3D scaffold with appropriate nontoxic materials. In this study, preliminary results of strength and cytotoxicity measurements of 3D printed scaffolds with modified calcium sulfate compositepowder (MCSCP were presented. CAD designs were created and MCSCP were printed by a 3D printer (3DS, Visijet, PXL Core. Some samples were covered with salt solution in order to harden the samples. MCSCP and salt coated MCSCP were the two experimental groups in this study. Cytotoxicity and mechanical experiments were performed after surface examination withscanning electron microscope (SEM and light microscope. Tension tests were performed for MCSCP and salt coated MCSCP samples. The 3D scaffolds were sterilized with ethylene oxide gas sterilizer, ventilated and conditioned with DMEM (10% FBS. L929 mouse fibroblast cells were cultured on scaffolds (3 repetitive and cell viability was determined using MTT analysis. According to the mechanical results, the MCSCP group stands until average 71,305 N, while salt coated MCSCP group stands until 21,328N. Although the strength difference between two groups is statistically significant (p=0.001, Mann-Whitney U, elastic modulus is not (MCSCP=1,186Pa, salt coated MCSCP=1,169Pa, p=0.445. Cell viability (MTT analysis results on day 1, 3, and 5 demonstrated thatscaffolds hadno toxic effect to the L929 mouse fibroblast cells. Consequently, 3D printed samples with MCSCP could potentially be a strong alternative

  16. A Bio-Hybrid Tactile Sensor Incorporating Living Artificial Skin and an Impedance Sensing Array

    Directory of Open Access Journals (Sweden)

    David Cheneler

    2014-12-01

    Full Text Available The development of a bio-hybrid tactile sensor array that incorporates a skin analogue comprised of alginate encapsulated fibroblasts is described. The electrical properties are modulated by mechanical stress induced during contact, and changes are detected by a ten-channel dual-electrode impedance sensing array. By continuously monitoring the impedance of the sensor array at a fixed frequency, whilst normal and tangential loads are applied to the skin surface, transient mechanotransduction has been observed. The results demonstrate the effectiveness and feasibility of the preliminary prototype bio-hybrid tactile sensor.

  17. Evaluation of foam-skin cables for aerial applications

    Science.gov (United States)

    Samuelson, G. R.

    Since the introduction of foam-skin filled cables, there has been considerable discussion within the Industry, both pro and con, regarding the acceptability of foam-skin filled cables for aerial application. This paper reports on results obtained from a study undertaken to evaluate the changes in transmission properties of such cables in a simulated aerial environment. Cable samples produced by six cable manufacturers using conventional, high-temperature drip-resistant filling compounds with a petrolatum base were subjected to temperature cycling from -40 F to 140 F. Transmission parameters were measured at 1, 150 and 772 kHz and compared to initial values. A solid polypropylene insulated filled cable was included for reference. The results show that foam-skin petrolatum based filled cables exhibit stable electrical characteristics when exposed to cycled temperature extremes.

  18. Applications of artificial neural networks for microbial water quality modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brion, G.M.; Lingireddy, S. [Univ. of Kentucky, Dept. of Civil Engineering, Lexington, Kentucky (United States)]. E-mail: gbrion@engr.uky.edu

    2002-06-15

    There has been a significant shift in the recent past towards protecting chemical and microbial quality of source waters rather than developing advanced methods to treat heavily polluted water. The key to successful best management practices in protecting the source waters is to identify sources of non-point pollution and their collective impact on the quality of water at the intake. This article presents a few successful applications where artificial neural networks (ANN) have proven to be the useful mathematical tools in correlating the nonlinear relationships between routinely measured parameters (such as rainfall, turbidity, fecal coliforms etc.) and quality of source waters and/or nature of fecal sources. These applications include, prediction of peak concentrations of Giardia and Cryptosporidium, sorting of fecal sources (e.g. agricultural animals vs. urban animals), predicting relative ages of the runoff sources, identifying the potential for sewage contamination. The ability of ANNs to work with complex, inter-related multiparameter databases, and provide superior predictive power in non-linear relationships has been the key for their successful application to microbial water quality studies. (author)

  19. Chitosan as a Modifying Component of Artificial Scaffold for Human Skin Tissue Engineering.

    Science.gov (United States)

    Romanova, O A; Grigor'ev, T E; Goncharov, M E; Rudyak, S G; Solov'yova, E V; Krasheninnikov, S T; Saprykin, V P; Sytina, E V; Chvalun, S N; Pal'tsev, M A; Panteleev, A A

    2015-08-01

    We compared the structure and mechanical properties of scaffolds based on pure collagen, pure chitosan, and a mixture of these polymers. The role of the composition and structure of scaffolds in the maintenance of cell functions (proliferation, differentiation, and migration) was demonstrated in two experimental models: homogeneous tissue analogues (scaffold populated by fibroblasts) and complex skin equivalents (fibroblasts and keratinocytes). In contrast to collagen scaffolds, pure chitosan inhibited the growth of fibroblasts that did not form contacts with chitosan fibers, but formed specific cellular conglomerates, spheroids, and lose their ability to synthesize natural extracellular matrix. However, the use of chitosan as an additive stimulated proliferative activity of fibroblasts on collagen, which can be associated with improvement of mechanical properties of the collagen scaffolds. The effectiveness of chitosan as an additional cross-linking agent also manifested in its ability to improve significantly the resistance of collagen scaffolds to fibroblast contraction in comparison with glutaraldehyde treatment. Polymer scaffolds (without cells) accelerated complete healing of skin wounds in vivo irrespective of their composition healing, pure chitosan sponge being most effective. We concluded that the use of chitosan as the scaffold for skin equivalents populated with skin cells is impractical, whereas it can be an effective modifier of polymer scaffolds.

  20. Artificial impedance ground planes for low profile antenna applications

    Science.gov (United States)

    McMichael, Ian T.

    Recent interest in artificial impedance surfaces for low-profile antennas has led to extensive research with the goal of optimizing the ground plane's characteristics for a given antenna configuration and broadening the operational bandwidth, or alternatively creating a multi-band functionality. A method of determining the optimal reflection phase for a low-profile dipole antenna over an electromagnetic band gap (EBG) ground plane has been developed based on image theory and is presented with experimental and numerical validation. A new artificial impedance surface has also been developed, which is composed of an annular slot ring on a thin grounded dielectric. The main difference between the proposed ground plane and a conventional EBG is that the high impedance condition exists only in the vicinity of the slot and is therefore best suited for antennas with a current distribution that has a similar shape as the annular slot ring. It is shown that a loop antenna positioned closely over an annular slot loaded ground plane exhibits approximately the same gain as a loop antenna over a conventional EBG ground plane. The advantage of the new structure is its lack of periodicity, which significantly eases manufacturing. Additionally, it is shown that multiple concentric slot rings can be designed into the ground plane, which excites multiple resonances in low-profile wideband antennas. The result is a multi-band high impedance ground plane constructed using a simple arrangement of annular slots. Finally, a manufacturing technique is presented for the application of arbitrarily configured EBG antennas to handheld dual-sensor landmine detection systems. It is shown that creating an EBG antenna using very thin layers of metal will enable it to be used for ground penetrating radar (GPR) when it is co-located with a low frequency metal detector without compromising the operation of the metal detector. The potential benefit of such an antenna would be a lower profile sensor

  1. Artificial neural nets application in the cotton yarn industry

    Directory of Open Access Journals (Sweden)

    Gilberto Clóvis Antoneli

    2016-06-01

    Full Text Available The competitiveness in the yarn production sector has led companies to search for solutions to attain quality yarn at a low cost. Today, the difference between them, and thus the sector, is in the raw material, meaning processed cotton and its characteristics. There are many types of cotton with different characteristics due to its production region, harvest, storage and transportation. Yarn industries work with cotton mixtures, which makes it difficult to determine the quality of the yarn produced from the characteristics of the processed fibers. This study uses data from a conventional spinning, from a raw material made of 100% cotton, and presents a solution with artificial neural nets that determine the thread quality information, using the fibers’ characteristics values and settings of some process adjustments. In this solution a neural net of the type MultiLayer Perceptron with 11 entry neurons (8 characteristics of the fiber and 3 process adjustments, 7 output neurons (yarn quality and two types of training, Back propagation and Conjugate gradient descent. The selection and organization of the production data of the yarn industry of the cocamar® indústria de fios company are described, to apply the artificial neural nets developed. In the application of neural nets to determine yarn quality, one concludes that, although the ideal precision of absolute values is lacking, the presented solution represents an excellent tool to define yarn quality variations when modifying the raw material composition. The developed system enables a simulation to define the raw material percentage mixture to be processed in the plant using the information from the stocked cotton packs, thus obtaining a mixture that maintains the stability of the entire productive process.

  2. Artificial intelligence approach for spot application project system design

    Science.gov (United States)

    Lefevre, M. J.; Fisse, G.; Martin, E.; de Boissezon, H.; Galaup, M.

    1993-11-01

    Over the past four years, CNES has been engaged in a major programme focusing on the development of SPOT Operational Application Projects. With a total of sixty projects now complete, we can draw a number of meaningful conclusions and identify a number of objectives to be satisfied by advanced remote sensing methodology. One of the main conclusions points to the importance of human vision in studies on natural complex space imagery. This being so, visual recognition must be one of the main phases of the ``Pilot Project for the Application of Remote Sensing to Agricultural Statistics'': only human experts have the ability to make a meaningful analysis of Spot TM imagery. Non-expert operators will not be able to manage the subsequent rational production phase alone. The first part of this paper describes an approach to the formalization and modelling of expert know-how based on the use of artificial intelligence. The second part puts forward a cooperative operator/computer system based on a cognitive structure. Our proposal comprises 1) a specific knowledge base, 2) an ergonomic interface associated with functional software that is based on automatic image enhancement coupled with perception support functions.

  3. Ultra-high-performance liquid chromatography-tandem mass spectrometry measurement of climbazole deposition from hair care products onto artificial skin and human scalp

    NARCIS (Netherlands)

    G. Chen; M. Hoptroff; X. Fei; Y. Su; H.-G. Janssen

    2013-01-01

    A sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the measurement of climbazole deposition from hair care products onto artificial skin and human scalp. Deuterated climbazole was used as the internal st

  4. Ultra-high-performance liquid chromatography-tandem mass spectrometry measurement of climbazole deposition from hair care products onto artificial skin and human scalp

    NARCIS (Netherlands)

    Chen, G.; Hoptroff, M.; Fei, X.; Su, Y.; Janssen, H.-G.

    2013-01-01

    A sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the measurement of climbazole deposition from hair care products onto artificial skin and human scalp. Deuterated climbazole was used as the internal st

  5. [Application of amniotic membrane dressings in patients with skin damage].

    Science.gov (United States)

    Carrera González, Elier; Noa Hernández, Jose Eduardo; Marín Rojo, Carlos A

    2011-01-01

    The application of amniotic membranes in patients diagnosed with skin damage is a valid treatment option. A care plan following the Virginia Henderson model and NANDA, NOC and NIC taxonomy was applied to 36 patients admitted to the Dr. Miguel Enríquez hospital with different cutaneous lesions. This membrane has already been used for years due to its healing properties. These are attributed to antimicrobial properties reducing infection risk and promoting epithelial activity. They can decrease the need for the use of antibiotics, expendable materials, and can be applied during long periods of healing. This decreases the cost of wide spectrum antibiotic treatments, as well as the time patients spend in hospital. We present the results of this application in cases with several types of skin lesions.

  6. Emollients: application of topical treatments to the skin.

    Science.gov (United States)

    Dunning, Gail

    Nurses working in various clinical settings can make a real difference to the clinical effectiveness of topical applications to the skin by increasing their knowledge of the choice and mechanisms involved. This is particularly the case for nurses who are non-medical prescribers when considering first-line therapies for patients with eczema. It is important for all nurses to acknowledge that topical treatments, however simple, are a form of drug therapy and must be given the same considerations for their specific actions whether you are prescribing, applying or reviewing their effect. Emollients have an as important part to play in the treatment of all dry skin conditions. This article focuses on increasing the reader's knowledge of the application of topical emollient therapy, as well as highlighting some practical tips to consider.

  7. A Study on the Effects of Sympathetic Skin Response Parameters in Diagnosis of Fibromyalgia Using Artificial Neural Networks.

    Science.gov (United States)

    Ozkan, Ozhan; Yildiz, Murat; Arslan, Evren; Yildiz, Sedat; Bilgin, Suleyman; Akkus, Selami; Koyuncuoglu, Hasan R; Koklukaya, Etem

    2016-03-01

    Fibromyalgia syndrome (FMS), usually observed commonly in females over age 30, is a rheumatic disease accompanied by extensive chronic pain. In the diagnosis of the disease non-objective psychological tests and physiological tests and laboratory test results are evaluated and clinical experiences stand out. However, these tests are insufficient in differentiating FMS with similar diseases that demonstrate symptoms of extensive pain. Thus, objective tests that would help the diagnosis are needed. This study analyzes the effect of sympathetic skin response (SSR) parameters on the auxiliary tests used in FMS diagnosis, the laboratory tests and physiological tests. The study was conducted in Suleyman Demirel University, Faculty of Medicine, Physical Medicine and Rehabilitation Clinic in Turkey with 60 patients diagnosed with FMS for the first time and a control group of 30 healthy individuals. In the study all participants underwent laboratory tests (blood tests), certain physiological tests (pulsation, skin temperature, respiration) and SSR measurements. The test data and SSR parameters obtained were classified using artificial neural network (ANN). Finally, in the ANN framework, where only laboratory and physiological test results were used as input, a simulation result of 96.51 % was obtained, which demonstrated diagnostic accuracy. This data, with the addition of SSR parameter values obtained increased to 97.67 %. This result including SSR parameters - meaning a higher diagnostic accuracy - demonstrated that SSR could be a new auxillary diagnostic method that could be used in the diagnosis of FMS.

  8. Applications of artificial intelligence technology to wastewater treatment fields in China

    Institute of Scientific and Technical Information of China (English)

    QING Xiao-xia; WANG Bo; MENG De-tao

    2005-01-01

    Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.

  9. Investment Process in China's Mutual Funds and Application of Artificial Intelligence

    OpenAIRE

    Xie, Ningjia

    2008-01-01

    This paper explored the process of investment management in both theory and practice in China's mutual fund industry and reviewed the applications of artificial intelligence including Rule-based Expert Systems, Genetic Algorithms, Artificial Neural Network, and Support Vector Machines in financial forecasting, asset allocation and stocks selection. This study proposed the use of artificial neural network for stock selection which classifies stocks into undervalued stocks (+1), neutral st...

  10. Artificial neural networks: fundamentals, computing, design, and application.

    Science.gov (United States)

    Basheer, I A; Hajmeer, M

    2000-12-01

    Artificial neural networks (ANNs) are relatively new computational tools that have found extensive utilization in solving many complex real-world problems. The attractiveness of ANNs comes from their remarkable information processing characteristics pertinent mainly to nonlinearity, high parallelism, fault and noise tolerance, and learning and generalization capabilities. This paper aims to familiarize the reader with ANN-based computing (neurocomputing) and to serve as a useful companion practical guide and toolkit for the ANNs modeler along the course of ANN project development. The history of the evolution of neurocomputing and its relation to the field of neurobiology is briefly discussed. ANNs are compared to both expert systems and statistical regression and their advantages and limitations are outlined. A bird's eye review of the various types of ANNs and the related learning rules is presented, with special emphasis on backpropagation (BP) ANNs theory and design. A generalized methodology for developing successful ANNs projects from conceptualization, to design, to implementation, is described. The most common problems that BPANNs developers face during training are summarized in conjunction with possible causes and remedies. Finally, as a practical application, BPANNs were used to model the microbial growth curves of S. flexneri. The developed model was reasonably accurate in simulating both training and test time-dependent growth curves as affected by temperature and pH.

  11. Artificial Intelligence Methodologies and Their Application to Diabetes.

    Science.gov (United States)

    Rigla, Mercedes; García-Sáez, Gema; Pons, Belén; Hernando, Maria Elena

    2017-05-01

    In the past decade diabetes management has been transformed by the addition of continuous glucose monitoring and insulin pump data. More recently, a wide variety of functions and physiologic variables, such as heart rate, hours of sleep, number of steps walked and movement, have been available through wristbands or watches. New data, hydration, geolocation, and barometric pressure, among others, will be incorporated in the future. All these parameters, when analyzed, can be helpful for patients and doctors' decision support. Similar new scenarios have appeared in most medical fields, in such a way that in recent years, there has been an increased interest in the development and application of the methods of artificial intelligence (AI) to decision support and knowledge acquisition. Multidisciplinary research teams integrated by computer engineers and doctors are more and more frequent, mirroring the need of cooperation in this new topic. AI, as a science, can be defined as the ability to make computers do things that would require intelligence if done by humans. Increasingly, diabetes-related journals have been incorporating publications focused on AI tools applied to diabetes. In summary, diabetes management scenarios have suffered a deep transformation that forces diabetologists to incorporate skills from new areas. This recently needed knowledge includes AI tools, which have become part of the diabetes health care. The aim of this article is to explain in an easy and plane way the most used AI methodologies to promote the implication of health care providers-doctors and nurses-in this field.

  12. Application of Artificial Intelligence For Euler Solutions Clustering

    Science.gov (United States)

    Mikhailov, V.; Galdeano, A.; Diament, M.; Gvishiani, A.; Agayan, S.; Bogoutdinov, Sh.; Graeva, E.; Sailhac, P.

    Results of Euler deconvolution strongly depend on the selection of viable solutions. Synthetic calculations using multiple causative sources show that Euler solutions clus- ter in the vicinity of causative bodies even when they do not group densely about perimeter of the bodies. We have developed a clustering technique to serve as a tool for selecting appropriate solutions. The method RODIN, employed in this study, is based on artificial intelligence and was originally designed for problems of classification of large data sets. It is based on a geometrical approach to study object concentration in a finite metric space of any dimension. The method uses a formal definition of cluster and includes free parameters that facilitate the search for clusters of given proper- ties. Test on synthetic and real data showed that the clustering technique successfully outlines causative bodies more accurate than other methods of discriminating Euler solutions. In complicated field cases such as the magnetic field in the Gulf of Saint Malo region (Brittany, France), the method provides geologically insightful solutions. Other advantages of the clustering method application are: - Clusters provide solutions associated with particular bodies or parts of bodies permitting the analysis of different clusters of Euler solutions separately. This may allow computation of average param- eters for individual causative bodies. - Those measurements of the anomalous field that yield clusters also form dense clusters themselves. The application of cluster- ing technique thus outlines areas where the influence of different causative sources is more prominent. This allows one to focus on areas for reinterpretation, using different window sizes, structural indices and so on.

  13. Application of optical non-invasive methods in skin physiology

    Science.gov (United States)

    Lademann, J.; Patzelt, A.; Darvin, M.; Richter, H.; Antoniou, C.; Sterry, W.; Koch, S.

    2008-05-01

    In the present paper the application of optical non-invasive methods in dermatology and cosmetology is discussed. Laser scanning microscopy (LSM) and optical coherent tomography (OCT) are the most promising methods for this application. Using these methods, the analysis of different skin parameters like dryness and oiliness of the skin, the barrier function and the structure of furrows and wrinkles are discussed. Additionally the homogeneity of distribution of topically applied creams, as well as their penetration into the skin were investigated. It is shown that these methods are highly valuable in dermatology for diagnostic and therapy control and for basic research, for instance in the field of structure analysis of hair follicles and sweat glands. The vertical images of the tissue produced by OCT can be easily compared with histological sections. Unfortunately, the resolution of the OCT technique is not high enough to carry out measurements on a cellular level, as is possible by LSM. LSM has the advantage that it can be used for the investigation of penetration and storage processes of topically applied substances, if these substances have fluorescent properties or if they are fluorescent-labelled.

  14. Rationalization of thermal injury quantification methods: application to skin burns.

    Science.gov (United States)

    Viglianti, Benjamin L; Dewhirst, Mark W; Abraham, John P; Gorman, John M; Sparrow, Eph M

    2014-08-01

    Classification of thermal injury is typically accomplished either through the use of an equivalent dosimetry method (equivalent minutes at 43 °C, CEM43 °C) or through a thermal-injury-damage metric (the Arrhenius method). For lower-temperature levels, the equivalent dosimetry approach is typically employed while higher-temperature applications are most often categorized by injury-damage calculations. The two methods derive from common thermodynamic/physical chemistry origins. To facilitate the development of the interrelationships between the two metrics, application is made to the case of skin burns. This thermal insult has been quantified by numerical simulation, and the extracted time-temperature results served for the evaluation of the respective characterizations. The simulations were performed for skin-surface exposure temperatures ranging from 60 to 90 °C, where each surface temperature was held constant for durations extending from 10 to 110 s. It was demonstrated that values of CEM43 at the basal layer of the skin were highly correlated with the depth of injury calculated from a thermal injury integral. Local values of CEM43 were connected to the local cell survival rate, and a correlating equation was developed relating CEM43 with the decrease in cell survival from 90% to 10%. Finally, it was shown that the cell survival/CEM43 relationship for the cases investigated here most closely aligns with isothermal exposure of tissue to temperatures of ~50 °C. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  15. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering

    NARCIS (Netherlands)

    Stamatialis, Dimitrios F.; Papenburg, Bernke J.; Gironès, Miriam; Saiful, Saiful; Bettahalli, Srivatsa N.M.; Schmitmeier, Stephanie; Wessling, Matthias

    2008-01-01

    This paper covers the main medical applications of artificial membranes. Specific attention is given to drug delivery systems, artificial organs and tissue engineering which seem to dominate the interest of the membrane community this period. In all cases, the materials, methods and the current stat

  16. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering

    NARCIS (Netherlands)

    Stamatialis, Dimitrios; Papenburg, B.J.; Girones nogue, Miriam; Saiful, S.; Bettahalli Narasimha, M.S.; Schmitmeier, Stephanie; Wessling, Matthias

    2008-01-01

    This paper covers the main medical applications of artificial membranes. Specific attention is given to drug delivery systems, artificial organs and tissue engineering which seem to dominate the interest of the membrane community this period. In all cases, the materials, methods and the current

  17. Artificial olfaction systems: principles and applications to food analysis

    National Research Council Canada - National Science Library

    Antonella Macagnano; Roberto Paolesse; Arnaldo D’Amico; Corrado Di Natale

    2001-01-01

    .... On the other hands, since human senses are strongly involved in the interaction with foods the analysis of food provides an excellent field to compare the performances of natural and artificial olfaction systems...

  18. Artificial exomuscle investigations for applications--metal hydride.

    Science.gov (United States)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bédard, Stéphane

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software.

  19. Artificial exomuscle investigations for applications-metal hydride

    Energy Technology Data Exchange (ETDEWEB)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane [Victhom Human Bionics Inc., Saint-Augustin-de-Desmaures, QC (Canada)

    2007-03-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  20. Application of Artificial Neural Networks to Contraception Study

    Institute of Scientific and Technical Information of China (English)

    周利锋; 高尔生; 金丕焕

    1998-01-01

    As a newly developed border line science, the artificial neural network (ANN)has been applied in many fields. The ANN was used in the selection of contraceptives in the article, and the performances of the artificial neural networks and traditional multivariate logistic regression analysis method were compared with the training data and the testing data by receiver operating characteristic (ROC) curves. The results imply that ANN may be applied and developed further in statistics and medical fields hopefully.

  1. Expanding Applicability of Total Artificial Heart Therapy: The 50-cc SynCardia Total Artificial Heart.

    Science.gov (United States)

    Spiliopoulos, Sotirios; Dimitriou, Alexandros Merkourios; Guersoy, Dilek; Koerfer, Reiner; Tenderich, Gero

    2015-09-01

    The 50-cc SynCardia total artificial heart is designed to facilitate orthotopic replacement of the native ventricles in patients with a body surface area below 1.7 m(2) in need of long-term circulatory support as a result of end-stage biventricular heart failure. We describe the implementation of this technology in a female patient with irreversible cardiogenic shock on the grounds of acute myocardial infarction and chronic ischemic cardiomyopathy.

  2. In Vitro Skin Permeation Enhancement of Sumatriptan by Microneedle Application.

    Science.gov (United States)

    Nalluri, Buchi N; Anusha, Sai Sri V; Bramhini, Sri R; Amulya, J; Sultana, Ashraf S K; Teja, Chandra U; Das, Diganta B

    2015-01-01

    Different dimensions of commercially available microneedle devices, namely, Admin- Patch(®) microneedle arrays (MN) (0.6, 0.9, 1.2 and 1.5 mm lengths) and Dermaroller(®) microneedle rollers (DR) (0.5 and 1mm lengths) were evaluated for their relative efficiency in enhancement of transdermal permeation of Sumatriptan (SMT). Solubility assessment of SMT was carried out using propylene glycol (PG), polyethylene glycol (PEG) in combination with saline (S) at different ratios and the order of solubility was found to be 70:30 > 80:20 > 90:10 %v/v in both PG:S and PEG:S. In vitro skin permeation studies were performed using PG:S (70:30 %v/v) as donor vehicle. A significant increase in cumulative amount of SMT permeated, steady state flux, permeability coefficient and diffusion coefficient values were observed after microneedle treatment, and the values were in the order of 1.5mm MN >1.2mm MN >0.9mm MN >1mm DR >0.6mm MN >0.5mm DR > passive permeation. Lag times were significantly shorter after longer microneedle application (0.24h for 1.5mm MN). Arrays were found to be superior to rollers with similar microneedle lengths in enhancing SMT permeation and may be attributed to higher density of microneedles and force of application onto skin. The in vitro flux values revealed that 2.5cm(2) area patch is sufficient for effective therapy after treatment of skin with 1.5mm MN. It may be inferred that microneedle application significantly enhances the transdermal penetration of SMT and that it may be feasible to deliver clinically relevant therapeutic levels of SMT using microneedle assisted transdermal delivery systems.

  3. An Examination of Application of Artificial Neural Network in Cognitive Radios

    Science.gov (United States)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  4. Introduction to the Special Issue on Innovative Applications of Artificial Intelligence 2015

    OpenAIRE

    Gunning, David; PARC; Yeh, Peter Z.; Nuance Communications

    2016-01-01

    This issue features expanded versions of articles selected from the 2015 AAAI Conference on Innovative Applications of Artificial Intelligence held in Austin, Texas. We present a selection of four articles describing deployed applications plus two more articles that discuss work on emerging applications.

  5. Introduction to the Special Issue on Innovative Applications of Artificial Intelligence

    OpenAIRE

    Porter, Bruce; Cheetham, William

    2007-01-01

    We are very pleased to republish here extended versions of a sample of the papers drawn from the Innovative Applications of Artificial Intelligence Conference (IAAI-06), which was held July 17-20, 2006, in Boston, Massachusetts. Three of these articles describe deployed applications and two describe emerging applications.

  6. Advances in Artificial Neural Networks - Methodological Development and Application

    Science.gov (United States)

    Artificial neural networks as a major soft-computing technology have been extensively studied and applied during the last three decades. Research on backpropagation training algorithms for multilayer perceptron networks has spurred development of other neural network training algorithms for other ne...

  7. Application of artificial intelligence to risk analysis for forested ecosystems

    Science.gov (United States)

    Daniel L. Schmoldt

    2001-01-01

    Forest ecosystems are subject to a variety of natural and anthropogenic disturbances that extract a penalty from human population values. Such value losses (undesirable effects) combined with their likelihoods of occurrence constitute risk. Assessment or prediction of risk for various events is an important aid to forest management. Artificial intelligence (AI)...

  8. Applications of Artificial Intelligence in Education--A Personal View.

    Science.gov (United States)

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  9. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    Energy Technology Data Exchange (ETDEWEB)

    Saffer, Shelley (Sam) I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  10. Application of Artificial Immune System Approach in MRI Classification

    Directory of Open Access Journals (Sweden)

    Gia-Hao Chang

    2008-05-01

    Full Text Available Numerous scholars have submitted the theory and research of artificial immune systems (AISs in recent years. Although AIS has been used in various fields, applying the AIS to medical images is very rare. The purpose of this study is using the clonal selection algorithm (CSA of artificial immune systems for classifying the brain MRI, and displaying a single organism image which can finally offer faster organism reference information to a doctor; hence reducing the time to ascertain large number of images, so that the doctor can diagnose the nidus more efficiently and accurately. In order to verify the feasibility and efficiency of this method, we adopt statistical theory for manifold assessment and compare with the perceptron network of double layers, FCM method. The result proves that the method of this study is both feasible and useful.

  11. Application of the artificial bee colony algorithm for solving the set covering problem.

    Science.gov (United States)

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem.

  12. [The application and development of artificial intelligence in medical diagnosis systems].

    Science.gov (United States)

    Chen, Zhencheng; Jiang, Yong; Xu, Mingyu; Wang, Hongyan; Jiang, Dazong

    2002-09-01

    This paper has reviewed the development of artificial intelligence in medical practice and medical diagnostic expert systems, and has summarized the application of artificial neural network. It explains that a source of difficulty in medical diagnostic system is the co-existence of multiple diseases--the potentially inter-related diseases. However, the difficulty of image expert systems is inherent in high-level vision. And it increases the complexity of expert system in medical image. At last, the prospect for the development of artificial intelligence in medical image expert systems is made.

  13. Extraction and Characterization of Collagen from Buffalo Skin for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Moustafa A. Rizk

    2016-06-01

    Full Text Available Collagen is widely used for biomedical and pharmaceutical applications due to its excellent biocompatibility, biodegradability and weak antigenicity. However, applicability is limited due to its high cost and probability of disease transmission from the current sources, which are bovine and porcine. In the present study, collagen was extracted from 6 months buffalo skins as alternative save sources. Collagen was characterized by different physico-chemical techniques like ATR-FTIR, Raman, SEM, DSC and amino acids analysis. Proline and hydroxyproline contents of buffalo skin collagen were higher than those of calf skin collagen. Thermal stability of buffalo skin collagen is high with respect to that of calf skin collagen. The obtained buffalo skin collagen shows higher stiffness upon cross-linking with glutaraldehyde. Thus buffalo skin collagen can be used for fabrication of high strength bioactive sponge and sheets for medical applications, like scaffold for tissue engineering, drug delivery and wound dressing system.

  14. Application of Artificial Neural Networks for Predicting Generated Wind Power

    OpenAIRE

    Vijendra Singh

    2016-01-01

    This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, gener...

  15. The Application of Artificial Neural Networks to Astronomical Classification

    Science.gov (United States)

    Naim, A.

    1995-12-01

    Galaxies are fundamental to the understanding of the structure and evolution of the universe. They contain stars, gas and dust, and serve as an astrophysical laboratory in which physical processes can be examined. In the context of the large scale structure of the universe galaxies can be viewed as test particles. They are bright and therefore visible at very large distances, and also numerous and so can be used to provide reliable statistics. In previous decades the major obstacle to studying the large scale structure of the universe was the relatively sparse data samples, because obtaining large quantities of galaxian images and spectra requires a lot of observing time, and the accumulation of significant data bases was therefore a slow process. This obstacle is in the process of being removed today, with the advent of large-scale surveys (e.g., the APM galaxy survey, the Sloan Digital Sky Survey and the 2 degree Field survey). The new challenge with which the astronomical community is faced is the management and analysis of the forthcoming extragalactic data bases. On top of the obvious need for better hardware to give large storage volumes and quick access, one needs to devise automated tools for data analysis. The sheer volume of the data renders manual analysis impractical. It would be best if one could somehow transfer the knowledge and expertise accumulated over years of painstaking manual analysis to a machine. This thesis is part of an effort to achieve this goal. I borrowed techniques that have proved useful in other fields (e.g., engineering) and applied them to astronomical datasets. The major tool I used was Artificial Neural Networks (ANNs), which was originally conceived as a simplified computational model for the brain. The scope of methods and algorithms referred to as ANNs is quite wide. In particular, a distinction is made between Supervised Learning algorithms and Unsupervised methods. The former put the emphasis on ``teaching'' a machine to do

  16. Analysis of artificial intelligence application%人工智能应用分析

    Institute of Scientific and Technical Information of China (English)

    韦燕

    2013-01-01

    With the rapid development of computer technology, artificial intelligence is applied more and more widely.This paper analyzes the specific application of the artificial intelligence from several aspects.%  随着计算机技术的快速发展,人工智能的应用越来越广泛。本文分别从几个方面对人工智能的具体应用进行分析。

  17. POSSIBILITIES, LIMITATIONS AND ECONOMIC ASPECTS OF ARTIFICIAL INTELLIGENCE APPLICATIONS IN HEALTCARE

    Directory of Open Access Journals (Sweden)

    Dejan T ILIĆ

    2016-02-01

    Full Text Available The increasing importance of achieving sustainable development is largely positively influenced the emergence and increasing the level of application of artificial intelligence in different spheres of human activity, but especially in the field of health care. It is this trend and initiated that in work devote special attention to precisely to the analysis of potential opportunities, and economic effects of the use of artificial intelligence in the direction of improving efficiency, but the economic effects of health care

  18. Application of low level laser on skin cell lines

    CSIR Research Space (South Africa)

    Ndhundhuma, IM

    2010-01-01

    Full Text Available Lasers have emerged as powerful tools for tissue engineering. To examine cellular growth, and cell to cell interactions, in vitro skin models have been developed combining two major cell types of skin, keratinocytes and fibroblasts. The main...

  19. Aplicaciones de la dermis artificial para la prevención y tratamiento de cicatrices hipertróficas y contracturas Artificial dermis aplications to prevent and treat hypertrofyc scars and skin retractions

    Directory of Open Access Journals (Sweden)

    I. Ferreiro González

    2012-03-01

    hypertrophic scars and contractures. The following variables were evaluated: haematoma, infection and total or partial loss of artificial dermis. The scar quality was reviewed during the postoperative period, using the Vancouver Scar Scale (VSS. Patients´ satisfaction was measured using a 0-10 score survey. None of the areas treated with artificial dermis showed adverse scarring and in patients with prior hypertrophic scars no recurrence was found. We also observed that in acute burns, the areas treated with artificial dermis developed much better scar quality compared with those areas treated with split skin grafts. We achieved satisfactory coverage in areas with tendon exposure. Artificial dermis can be selectively applied to special areas during acute burn injury to prevent scar hypertrophy and contracture. It can also be used as coverage for normally non-graftable structures less than 3 cm where skin flaps are usually required. During the chronic stage, artificial dermis can be useful to treat contractures, as well as hypertrophic scars.

  20. Exploration the Clinical Effect of Artificial Dermis in Treating Skin Avulsion Injury%人工真皮在治疗皮肤撕脱伤的临床应用

    Institute of Scientific and Technical Information of China (English)

    陈柏秋(通讯作者); 彭文要; 邱加崇; 余继超; 刘冰峰; 招伟峰

    2013-01-01

    Objective:To explore the clinical effect of artificial dermis in treating skin avulsion injury .Methods:48 cases of the skin avulsion injury in our hospital from 2008 January to 2013 January was retrospective analysis , we can randomly divide them into 2 groups . 24 cases in the control group was treated with anti -infection, microcirculation improving, dressing treatment, and operating skin graft-ing or flap repairing when the fresh granulation tissue grew .The observation group included 24 cases, treated with anti -infection, mi-crocirculation improving , early debridement and dressing , after fresh granulation tissue grew , external application of artificial dermis (skin Nike), then induced dermal reconstruction, promoted fresh granulation tissue growth, and operated skin grafting when the granula-tion tissue growing satisfactorily .Results:The average hospitalization days of the control group was 38.2 ±1.3 days.Due to the burn area is larger;the scar hyperplasia of 11 cases among the control group was obvious after the wound was repaired by split -thickness skin or mid-thickness skin.In observation group, the average hospital stay 28.4 ±1.1 days, the scar hyperplasia was not obvious or lighter after the wound was healed .Conclusion:The application of artificial dermis in treatment of skin avulsion injury can effectively shorten the days of hospitalization , reduce the operation risk , promote wound healing , plus the simple operation process and no obvious scar hyper-plasia or lighter , it is truly worth further popularization and application in clinic .%目的:探索人工真皮治疗皮肤撕脱伤的临床效果。方法:回顾性分析我院2008年1月~2013年1月48例皮肤撕脱伤的治疗方法。随机分成2组,对照组24例,予抗感染,改善微循环和换药治疗后,待创面有新鲜肉芽组织生长后行植皮或皮瓣修复术。观察组24例,予抗感染,改善微循环,早期清创、换药,创面有新鲜肉芽

  1. Applicability of artificial intelligence to reservoir induced earthquakes

    Science.gov (United States)

    Samui, Pijush; Kim, Dookie

    2014-06-01

    This paper proposes to use least square support vector machine (LSSVM) and relevance vector machine (RVM) for prediction of the magnitude (M) of induced earthquakes based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth (H) are used as input variables of the LSSVM and RVM. The output of the LSSVM and RVM is M. Equations have been presented based on the developed LSSVM and RVM. The developed RVM also gives variance of the predicted M. A comparative study has been carried out between the developed LSSVM, RVM, artificial neural network (ANN), and linear regression models. Finally, the results demonstrate the effectiveness and efficiency of the LSSVM and RVM models.

  2. Excised porcine skin experimental systems to validate quantitative microdialysis methods for determination of drugs in skin after topical application.

    Science.gov (United States)

    Seki, Toshinobu; Wang, Aiping; Yuan, Dan; Saso, Yuko; Hosoya, Osamu; Chono, Sumio; Morimoto, Kazuhiro

    2004-11-24

    Microdialysis is useful as a method to evaluate the disposition of drugs in the skin to design improved transdermal delivery systems (TDDSs). In this study, quantitative microdialysis methods were validated in excised porcine skin experimental systems in vitro. Flurbiprofen (FP), used as a model drug, showed high affinity for the skin tissues in equilibrium states between the medium and skin. The membrane clearances of FP for permeation through the membrane of a dialysis fiber placed in the skin (CL(m in S)) were lower than that in the medium. The adsorption of components in the skin to the membrane surface of the dialysis fiber and accumulation of FP near the dialysis fiber are the most likely reasons for this. When CL(m in S) was used to predict the extracellular FP concentration in skin (C(T)), the value obtained was lower than that expected from the FP concentration in the medium on the dermis side, which should be equal to C(T) at equilibrium. In the zero net flux (ZNF) method, in which the concentration difference of perfusate (DeltaC) between the inflow and outflow were used to obtain C(T), the predicted C(T) was similar to the expected value. In an in vitro skin permeation experiment, the ZNF method was used for the prediction of C(T) near the dialysis fiber. The predicted C(T) was over 10 times higher than the FP concentration in the medium on the dermis side, suggesting a concentration gradient in the dermis. Although the ZNF method is good for predicting the C(T) in skin, the mass balance has to be considered for the quantitative evaluation of the skin permeation of drugs. In this study, the effect of the mass transfer of FP from the perfusate to the skin on the cumulative amount of FP passing through the skin was relatively low because of the use of suitable solutions as perfusate. The perfusion conditions and schedules should be designed carefully for quantitative evaluations using the ZNF method. These results provide useful information for the in

  3. Application of Artificial Neural Networks for Predicting Generated Wind Power

    Directory of Open Access Journals (Sweden)

    Vijendra Singh

    2016-03-01

    Full Text Available This paper addresses design and development of an artificial neural network based system for prediction of wind energy produced by wind turbines. Now in the last decade, renewable energy emerged as an additional alternative source for electrical power generation. We need to assess wind power generation capacity by wind turbines because of its non-exhaustible nature. The power generation by electric wind turbines depends on the speed of wind, flow direction, fluctuations, density of air, generator hours, seasons of an area, and wind turbine position. During a particular season, wind power generation access can be increased. In such a case, wind energy generation prediction is crucial for transmission of generated wind energy to a power grid system. It is advisable for the wind power generation industry to predict wind power capacity to diagnose it. The present paper proposes an effort to apply artificial neural network technique for measurement of the wind energy generation capacity by wind farms in Harshnath, Sikar, Rajasthan, India.

  4. Monte Carlo skin dose simulation in intraoperative radiotherapy of breast cancer using spherical applicators

    Science.gov (United States)

    Moradi, F.; Ung, N. M.; Khandaker, M. U.; Mahdiraji, G. A.; Saad, M.; Malik, R. Abdul; Bustam, A. Z.; Zaili, Z.; Bradley, D. A.

    2017-08-01

    The relatively new treatment modality electronic intraoperative radiotherapy (IORT) is gaining popularity, irradiation being obtained within a surgically produced cavity being delivered via a low-energy x-ray source and spherical applicators, primarily for early stage breast cancer. Due to the spatially dramatic dose-rate fall off with radial distance from the source and effects related to changes in the beam quality of the low keV photon spectra, dosimetric account of the Intrabeam system is rather complex. Skin dose monitoring in IORT is important due to the high dose prescription per treatment fraction. In this study, modeling of the x-ray source and related applicators were performed using the Monte Carlo N-Particle transport code. The dosimetric characteristics of the model were validated against measured data obtained using an ionization chamber and EBT3 film as dosimeters. By using a simulated breast phantom, absorbed doses to the skin for different combinations of applicator size (1.5-5 cm) and treatment depth (0.5-3 cm) were calculated. Simulation results showed overdosing of the skin (>30% of prescribed dose) at a treatment depth of 0.5 cm using applicator sizes larger than 1.5 cm. Skin doses were significantly increased with applicator size, insofar as delivering 12 Gy (60% of the prescribed dose) to skin for the largest sized applicator (5 cm diameter) and treatment depth of 0.5 cm. It is concluded that the recommended 0.5-1 cm distance between the skin and applicator surface does not guarantee skin safety and skin dose is generally more significant in cases with the larger applicators. Highlights: • Intrabeam x-ray source and spherical applicators were simulated and skin dose was calculated. • Skin dose for constant skin to applicator distance strongly depends on applicator size. • Use of larger applicators generally results in higher skin dose. • The recommended 0.5-1 cm skin to applicator distance does not guarantee skin

  5. Application of Artificial Intelligence for Bridge Deterioration Model

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2015-01-01

    Full Text Available The deterministic bridge deterioration model updating problem is well established in bridge management, while the traditional methods and approaches for this problem require manual intervention. An artificial-intelligence-based approach was presented to self-updated parameters of the bridge deterioration model in this paper. When new information and data are collected, a posterior distribution was constructed to describe the integrated result of historical information and the new gained information according to Bayesian theorem, which was used to update model parameters. This AI-based approach is applied to the case of updating parameters of bridge deterioration model, which is the data collected from bridges of 12 districts in Shanghai from 2004 to 2013, and the results showed that it is an accurate, effective, and satisfactory approach to deal with the problem of the parameter updating without manual intervention.

  6. Application of Artificial Intelligence for Optimization in Pavement Management

    Directory of Open Access Journals (Sweden)

    Reus Salini

    2015-07-01

    Full Text Available Artificial intelligence (AI is a group of techniques that have quite a potential to be applied to pavement engineering and management. In this study, we developed a practical, flexible and out of the box approach to apply genetic algorithms to optimizing the budget allocation and the road maintenance strategy selection for a road network. The aim is to provide an alternative to existing software and better fit the requirements of an important number of pavement managers. To meet the objectives, a new indicator, named Road Global Value Index (RGVI, was created to contemplate the pavement condition, the traffic and the economic and political importance for each and every road section. This paper describes the approach and its components by an example confirming that genetic algorithms are very effective for the intended purpose.

  7. Application of Artificial Intelligence for Bridge Deterioration Model.

    Science.gov (United States)

    Chen, Zhang; Wu, Yangyang; Li, Li; Sun, Lijun

    2015-01-01

    The deterministic bridge deterioration model updating problem is well established in bridge management, while the traditional methods and approaches for this problem require manual intervention. An artificial-intelligence-based approach was presented to self-updated parameters of the bridge deterioration model in this paper. When new information and data are collected, a posterior distribution was constructed to describe the integrated result of historical information and the new gained information according to Bayesian theorem, which was used to update model parameters. This AI-based approach is applied to the case of updating parameters of bridge deterioration model, which is the data collected from bridges of 12 districts in Shanghai from 2004 to 2013, and the results showed that it is an accurate, effective, and satisfactory approach to deal with the problem of the parameter updating without manual intervention.

  8. Application of Artificial Intelligence to Reservoir Characterization - An Interdisciplinary Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, B.G.; Gamble, R.F.; Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    2000-01-12

    The primary goal of this project is to develop a user-friendly computer program to integrate geological and engineering information using Artificial Intelligence (AI) methodology. The project is restricted to fluvially dominated deltaic environments. The static information used in constructing the reservoir description includes well core and log data. Using the well core and the log data, the program identifies the marker beds, and the type of sand facies, and in turn, develops correlation's between wells. Using the correlation's and sand facies, the program is able to generate multiple realizations of sand facies and petrophysical properties at interwell locations using geostatistical techniques. The generated petrophysical properties are used as input in the next step where the production data are honored. By adjusting the petrophysical properties, the match between the simulated and the observed production rates is obtained.

  9. Application of artificial neural networks to rainfall forecasting in Queensland, Australia

    Science.gov (United States)

    Abbot, John; Marohasy, Jennifer

    2012-07-01

    In this study, the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland, Australia, was assessed by inputting recognized climate indices, monthly historical rainfall data, and atmospheric temperatures into a prototype stand-alone, dynamic, recurrent, time-delay, artificial neural network. Outputs, as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009, were compared with observed rainfall data using time-series plots, root mean squared error (RMSE), and Pearson correlation coefficients. A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared. The application of artificial neural networks to rainfall forecasting was reviewed. The prototype design is considered preliminary, with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.

  10. MRNA-based skin identification for forensic applications

    NARCIS (Netherlands)

    M. Visser (Mijke); D. Zubakov (Dmitry); K. Ballantyne (Kaye); M.H. Kayser (Manfred)

    2011-01-01

    textabstractAlthough the identification of human skin cells is of important relevance in many forensic cases, there is currently no reliable method available. Here, we present a highly specific and sensitive messenger RNA (mRNA) approach for skin identification, meeting the key requirements in

  11. Applications of artificial intelligence in safe human-robot interactions.

    Science.gov (United States)

    Najmaei, Nima; Kermani, Mehrdad R

    2011-04-01

    The integration of industrial robots into the human workspace presents a set of unique challenges. This paper introduces a new sensory system for modeling, tracking, and predicting human motions within a robot workspace. A reactive control scheme to modify a robot's operations for accommodating the presence of the human within the robot workspace is also presented. To this end, a special class of artificial neural networks, namely, self-organizing maps (SOMs), is employed for obtaining a superquadric-based model of the human. The SOM network receives information of the human's footprints from the sensory system and infers necessary data for rendering the human model. The model is then used in order to assess the danger of the robot operations based on the measured as well as predicted human motions. This is followed by the introduction of a new reactive control scheme that results in the least interferences between the human and robot operations. The approach enables the robot to foresee an upcoming danger and take preventive actions before the danger becomes imminent. Simulation and experimental results are presented in order to validate the effectiveness of the proposed method.

  12. Application of Artificial Neural Networks in Canola Crop Yield Prediction

    Directory of Open Access Journals (Sweden)

    S. J. Sajadi

    2014-02-01

    Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.

  13. Meaningless artificial sound and its application in urban soundscape research

    Science.gov (United States)

    de Coensel, Bert; Botteldooren, Dick

    2004-05-01

    Urban areas are increasingly being overwhelmed with uninteresting (traffic) noise. Designing a more matching soundscape for urban parks, quiet backyards, shopping areas, etc., clearly deserves more attention. Urban planners, being architects rather than musical composers, like to have a set of ``objective'' indicators of the urban soundscape at their disposal. In deriving such indicators, one can assume that the soundscape is appreciated as a conglomerate of sound events, recognized as originating from individual sources by people evaluating it. A more recent line of research assumes that the soundscape as a whole evokes particular emotions. In this research project we follow the latter, more holistic view. Given this choice, the challenge is to create a test setup where subjects are not tempted to react to a sound in a cognitive way, analyzing it to its individual components. Meaningless sound is therefore preferred. After selection of appealing sounds for a given context by subjects, objective indicators can then be extracted. To generate long, complex, but meaningless sound fragments not containing repetition, based on a limited number of parameters, swarm technology is used. This technique has previously been used for creating artificial music and has proved to be very useful.

  14. AN APPLICATION OF SPEAKER RECOGNITION USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Murat CANER

    2006-02-01

    Full Text Available In this study an artificial neural network (ANN is implemented, which has been used frequently as an implementation model in recent years, to recognize speaker identification. Generally, recognition is consist of three stages that, processing of signal, obtaining attributes and comparing them. Speech samples are transformed into digital data according to voice card of PC. In the analysis of voice stage, recurrent periods and white noise of voice data are trimmed by hamming window method and voice attribute part of the digital data is obtained. For obtaining attribute of voice data LPC (linear predictive coding and DFT (discrete fourier transform methods are used. Of those 28 coefficents, that is used for speaker recognition, 16 were obtained by the analysis of DFT and 12 were obtained by the analysis of LPC. The parameters that represent speaker voice, is used for training and test of ANN. Multilayer perceptron model is used as an architecture of ANN and backpropagation algorithm is used for training method. Voices of "a" is taken from 7 different person and their attributes are found. ANN is trained with these features to find the speaker who is the owner of the sample voice. And then using the test data that is not used for training part, recognition achievement of ANN is tested. As a result, good results were obtained with low failure rate.

  15. Artificial Neural Networks: A New Approach for Predicting Application Behavior. AIR 2001 Annual Forum Paper.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    This paper examines how predictive modeling can be used to study application behavior. A relatively new technique, artificial neural networks (ANNs), was applied to help predict which students were likely to get into a large Research I university. Data were obtained from a university in Iowa. Two cohorts were used, each containing approximately…

  16. Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas

    Science.gov (United States)

    The transport of sediment and nutrients from land application areas is an environmental concern. New methods are needed for estimating soil and nutrient concentrations of runoff from cropland areas on which manure is applied. Artificial Neural Networks (ANN) trained with a Backpropagation (BP) algor...

  17. Adaptive Sampling for WSAN Control Applications Using Artificial Neural Networks

    OpenAIRE

    2012-01-01

    Wireless sensor actuator networks are becoming a solution for control applications. Reliable data transmission and real time constraints are the most significant challenges. Control applications will have some Quality of Service (QoS) requirements from the sensor network, such as minimum delay and guaranteed delivery of packets. We investigate variable sampling method to mitigate the effects of time delays in wireless networked control systems using an observer based control system model. Our...

  18. Potential consequences of clinical application of artificial gametes: a systematic review of stakeholder views.

    Science.gov (United States)

    Hendriks, Saskia; Dondorp, Wybo; de Wert, Guido; Hamer, Geert; Repping, Sjoerd; Dancet, Eline A F

    2015-01-01

    Recent progress in the formation of artificial gametes, i.e. gametes generated from progenitors or somatic cells, has led to scientific and societal discussion about their use in medically assisted reproduction. In animals, live births have already been achieved using artificial gametes of varying (cell type) sources and biological research seems to be progressing steadily toward clinical application in humans. Artificial gametes could potentially help not only infertile heterosexual couples of reproductive age of which one or both partners lacks functional gametes, but also post-menopausal women and same-sex couples, to conceive a child who will be genetically related to them. But as clinical application of these new technologies may have wider societal consequences, a proactive consideration of the possible impact seems timely and important. This review aims to contribute to this by providing a systematic overview of the potential consequences of clinical application of artificial gametes anticipated by different stakeholders. The electronic database 'Medline/Pubmed' was systematically searched with medical subject heading terms (MesH) for articles published in English between January 1970 and December 2013. Articles were selected based on eligibility and reference lists of eligible studies were hand searched. The reported potential consequences of clinical application of artificial gametes were extracted from the articles and were grouped into categories by content analysis. Per category, we noted which stakeholders referred to which potential consequences, based on author affiliations and, if applicable, study participants. The systematic search yielded 2424 articles, and 84 studies were included after screening. Nine positive consequences, 21 specific consequences requiring consideration and 22 recommendations referring to clinical application of artificial gametes were documented. All positive consequences, consequences requiring consideration and

  19. Psychosensorial assessment of skin damage caused by a sliding on artificial turf: the development and validation of a skin damage area and severity index

    NARCIS (Netherlands)

    Eijnde, W. van den; Peppelman, M.; Olde Weghuis, M.; Erp, P.E.J. van

    2014-01-01

    OBJECTIVES: Injury prevention is an important reason for the development of performance standards in football. Currently, there is no objective method available to classify sliding induced skin injuries, which includes the perceived sliding friendliness of football pitches. The purpose of this study

  20. Ultra-high-performance liquid chromatography-tandem mass spectrometry measurement of climbazole deposition from hair care products onto artificial skin and human scalp.

    Science.gov (United States)

    Chen, Guoqiang; Hoptroff, Michael; Fei, Xiaoqing; Su, Ya; Janssen, Hans-Gerd

    2013-11-22

    A sensitive and specific ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the measurement of climbazole deposition from hair care products onto artificial skin and human scalp. Deuterated climbazole was used as the internal standard. Atmospheric pressure chemical ionization (APCI) in positive mode was applied for the detection of climbazole. For quantification, multiple reaction monitoring (MRM) transition 293.0>69.0 was monitored for climbazole, and MRM transition 296.0>225.1 for the deuterated climbazole. The linear range ran from 4 to 2000 ng mL(-1). The limit of detection (LOD) and the limit of quantification (LOQ) were 1 ng mL(-1) and 4 ng mL(-1), respectively, which enabled quantification of climbazole on artificial skin and human scalp at ppb level (corresponding to 16 ng cm(-2)). For the sampling of climbazole from human scalp the buffer scrub method using a surfactant-modified phosphate buffered saline (PBS) solution was selected based on a performance comparison of tape stripping, the buffer scrub method and solvent extraction in in vitro studies. Using this method, climbazole deposition in in vitro and in vivo studies was successfully quantified. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Accumulation of sunscreen in human skin after daily applications

    DEFF Research Database (Denmark)

    Bodekær, Mette; Akerström, Ulf; Wulf, Hans Christian

    2012-01-01

    Sunscreen applied to the skin provides a considerable sun protection factor (SPF) even after 8 h. Sunscreen use for consecutive days may therefore result in an accumulation of the product. This study investigated the consequences of accumulation for SPF....

  2. Application of Artificial Neural Networks and Chaos in Chemical Processes

    Science.gov (United States)

    Otawara, Kentaro

    1995-01-01

    An artificial neural network (ANN) and chaos, conceived and developed independently, are beginning to play essential roles in chemical engineering. Nonetheless, the ANN possesses an appreciable number of deficiencies that need be remedied, and the capability of the ANN to explore and tame chaos or an irregularly behaving system is yet to be fully realized. The present dissertation attempts to make substantial progress toward such ends. The problem of controlling the temperature of an industrial reactor carrying out semibatch polymerization has been solved by an innovative adaptive hybrid control system comprising an ANN and fuzzy expert system (FES) complemented by two supervisory ANN's. The system enhances the strength and compensates for the weaknesses of both the ANN and FES. The system, named dual ANN (DANN), has been proposed for characterizing the nonlinear nature of chaotic time -series data. Its capability to approximate the behavior of a chaotic system has been found to far exceed that of a conventional ANN. A novel approach has been devised for training an ANN through the modified interactive training (MIT) mode. This mode of training has been demonstrated to substantially outperform a conventional interactive training (CIT) mode. A method has been established for synchronizing chaos by resorting to an ANN. This method is capable of causing to be coherent the trajectories of systems whose deterministic governing equations are insufficiently known. This requires training the ANN with a time series and a common driving signal or signals. Examples are given for chaos generated by difference as well as differential equations. An alternative to the OGY method has been proposed for controlling chaos; it meticulously perturbs an accessible parameter of the chaotic system. A single, highly precise ANN suffices to render stable any of an infinite number of unstable periodic orbits embedded in a chaotic or strange attractor. A method for estimating sub

  3. Synthetic and Bio-Artificial Tactile Sensing: A Review

    Directory of Open Access Journals (Sweden)

    Maria Chiara Carrozza

    2013-01-01

    Full Text Available This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed.

  4. Application of Artificial Neural Network to Predict the use of Runway at Juanda International Airport

    Science.gov (United States)

    Putra, J. C. P.; Safrilah

    2017-06-01

    Artificial neural network approaches are useful to solve many complicated problems. It solves a number of problems in various areas such as engineering, medicine, business, manufacturing, etc. This paper presents an application of artificial neural network to predict a runway capacity at Juanda International Airport. An artificial neural network model of backpropagation and multi-layer perceptron is adopted to this research to learning process of runway capacity at Juanda International Airport. The results indicate that the training data is successfully recognizing the certain pattern of runway use at Juanda International Airport. Whereas, testing data indicate vice versa. Finally, it can be concluded that the approach of uniformity data and network architecture is the critical part to determine the accuracy of prediction results.

  5. Cografts of artificial dermis matrix and autogenetic split-thickness of repaired skin in severe hand wounds in patients with deep burns

    Directory of Open Access Journals (Sweden)

    Liu Hongqi

    2014-01-01

    Full Text Available The aim of this paper was to evaluate the effect of using artificial dermis matrix plus autologous split-thickness skin (ADM and ASTS in the treatment of deep-burns in hands of severely burned patients.We recruited a total of 58 patients with large area burns greater than 80% that were eschar-excised. Twenty-eight of them were treated with ADM and ASTS (test group; 30 were treated with autologous medium-thickness skin (AMTS (control group. The healing time of the hand wound was noted, clinical and photographic evaluations were performed, and a Jebsen-Taylor hand function test was compared and analyzed in the two groups. The wound healing time in the test group (24.22±3.34 days were longer than that of the control group (13.42±3.36 days and statistically significant. The healing time of skin graft donor sites was shorter than that of the control group (7.14±1.63 vs. 14.28±2.37 days and statistically significant (P<0.05. The 3rd and 6th month follow-up with clinical and functional evaluations revealed no differences between the two groups. In addition, there was no obvious scar formation and less pigmentation in either group. The repair of deeply burned hands with artificial dermis matrix was beneficial to both wound healing and the donor site, and was beneficial to the whole body rehabilitation of severely burned patients.

  6. Accurate skin dose measurements using radiochromic film in clinical applications.

    Science.gov (United States)

    Devic, S; Seuntjens, J; Abdel-Rahman, W; Evans, M; Olivares, M; Podgorsak, E B; Vuong, Té; Soares, Christopher G

    2006-04-01

    Megavoltage x-ray beams exhibit the well-known phenomena of dose buildup within the first few millimeters of the incident phantom surface, or the skin. Results of the surface dose measurements, however, depend vastly on the measurement technique employed. Our goal in this study was to determine a correction procedure in order to obtain an accurate skin dose estimate at the clinically relevant depth based on radiochromic film measurements. To illustrate this correction, we have used as a reference point a depth of 70 micron. We used the new GAFCHROMIC dosimetry films (HS, XR-T, and EBT) that have effective points of measurement at depths slightly larger than 70 micron. In addition to films, we also used an Attix parallel-plate chamber and a home-built extrapolation chamber to cover tissue-equivalent depths in the range from 4 micron to 1 mm of water-equivalent depth. Our measurements suggest that within the first millimeter of the skin region, the PDD for a 6 MV photon beam and field size of 10 x 10 cm2 increases from 14% to 43%. For the three GAFCHROMIC dosimetry film models, the 6 MV beam entrance skin dose measurement corrections due to their effective point of measurement are as follows: 15% for the EBT, 15% for the HS, and 16% for the XR-T model GAFCHROMIC films. The correction factors for the exit skin dose due to the build-down region are negligible. There is a small field size dependence for the entrance skin dose correction factor when using the EBT GAFCHROMIC film model. Finally, a procedure that uses EBT model GAFCHROMIC film for an accurate measurement of the skin dose in a parallel-opposed pair 6 MV photon beam arrangement is described.

  7. Recent Advances and Future Challenges for Artificial Neural Systems in Geotechnical Engineering Applications

    Directory of Open Access Journals (Sweden)

    Mohamed A. Shahin

    2009-01-01

    Full Text Available Artificial neural networks (ANNs are a form of artificial intelligence that has proved to provide a high level of competency in solving many complex engineering problems that are beyond the computational capability of classical mathematics and traditional procedures. In particular, ANNs have been applied successfully to almost all aspects of geotechnical engineering problems. Despite the increasing number and diversity of ANN applications in geotechnical engineering, the contents of reported applications indicate that the progress in ANN development and procedures is marginal and not moving forward since the mid-1990s. This paper presents a brief overview of ANN applications in geotechnical engineering, briefly provides an overview of the operation of ANN modeling, investigates the current research directions of ANNs in geotechnical engineering, and discusses some ANN modeling issues that need further attention in the future, including model robustness; transparency and knowledge extraction; extrapolation; uncertainty.

  8. Internet of Things and Artificial Vision, Performance and Applications: Literature Review

    Directory of Open Access Journals (Sweden)

    Vanessa Alvear-Puertas

    2017-02-01

    Full Text Available Internet of Things (or also known as IoT is one of the technologies most named today because of the ability it envisages to connect all kinds of devices to the Internet. If to the potentialities of IoT we add another technology of high impact as It is the Artificial Vision we have a wide field of innovative applications, where the processing of images and video in real time allow the visualization of large amounts of data on the Internet. The main applications developed with IoT and Artificial Vision can be implemented in education, medicine, intelligent buildings, surveillance systems of people and vehicles, among others. This type of applications improves the quality of life of users, however, for their development an infrastructure is required that allows the convergence of different protocols and devices, but in a special way that can handle the different phases of the acquisition of images. In this work, a review of the beginnings, concepts, technologies and applications related to the Artificial Vision with the Internet of Things has been carried out to be able to understand in a precise way the impact of its application in daily life.

  9. Allogeneic Transplantation of an Adipose-Derived Stem Cell Sheet Combined With Artificial Skin Accelerates Wound Healing in a Rat Wound Model of Type 2 Diabetes and Obesity.

    Science.gov (United States)

    Kato, Yuka; Iwata, Takanori; Morikawa, Shunichi; Yamato, Masayuki; Okano, Teruo; Uchigata, Yasuko

    2015-08-01

    One of the most common complications of diabetes is diabetic foot ulcer. Diabetic ulcers do not heal easily due to diabetic neuropathy and reduced blood flow, and nonhealing ulcers may progress to gangrene, which necessitates amputation of the patient's foot. This study attempted to develop a new cell-based therapy for nonhealing diabetic ulcers using a full-thickness skin defect in a rat model of type 2 diabetes and obesity. Allogeneic adipose-derived stem cells (ASCs) were harvested from the inguinal fat of normal rats, and ASC sheets were created using cell sheet technology and transplanted into full-thickness skin defects in Zucker diabetic fatty rats. The results indicate that the transplantation of ASC sheets combined with artificial skin accelerated wound healing and vascularization, with significant differences observed 2 weeks after treatment. The ASC sheets secreted large amounts of several angiogenic growth factors in vitro, and transplanted ASCs were observed in perivascular regions and incorporated into the newly constructed vessel structures in vivo. These results suggest that ASC sheets accelerate wound healing both directly and indirectly in this diabetic wound-healing model. In conclusion, allogeneic ASC sheets exhibit potential as a new therapeutic strategy for the treatment of diabetic ulcers.

  10. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    Science.gov (United States)

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders.

  11. SKIN TEMPERATURE, COLOUR, and WARMTH FELT, IN HYDROCOLLATOR PACK APPLICATIONS TO THE LUMBAR REGION.

    Science.gov (United States)

    Fyfe, M

    1982-02-01

    The application of hydrocollator packs carries an inherent danger of overheating, which must be avoided. While a variety of temperatures and coverings for the packs has been reported, it has been stated that a bright red skin colour may be indicative of skin damage. It has also been stated that a therapeutically desirable rise in skin temperature would be one to over 40°C during the treatment. In this study hydro-pack applications to the lumbar region of the back were assessed for onset of sensation after application, and at intervals thereafter for skin temperature, skin colour, and subjective sensation of warmth. The lack of co-relation found between these variables suggests that in clinical work an observation of the skin and also a subjective report, should be obtained at frequent intervals for at least the first nine minutes after application. The need for a rise in skin temperature above 40°C is questioned. Copyright © 1982 Australian Physiotherapy Association. Published by . All rights reserved.

  12. Androids: application of EAP as artificial muscles to entertainment industry

    Science.gov (United States)

    Hanson, David F.; Pioggia, Giovanni; Bar-Cohen, Yoseph; De Rossi, Danilo

    2001-07-01

    The classic movie Metropolis (1926), which is nowadays considered a cinema milestone, has shown the possibility to build robots called androids that are science and fiction run together to realize a dream: the human-like robot. In that movie, Dr. Rotwang transforms a simple and cold calculating robot into the body of a beautiful woman. Robots have often been depicted as metal creatures with cold steel bodies, but there is no reason why metals should be the only kind of material for construction of robots. The authors examined the issues related to applying electroactive polymers materials (EAP) to the entertainment industry. EAP are offering attractive characteristics with the potential to produce more realistic models of living creatures at significantly lower cost. This paper seeks to elucidate how EAP might infiltrate and ultimately revolutionize entertainment, showing some applicative examples.

  13. Application of artificial neural networks for decision support in medicine.

    Science.gov (United States)

    Larder, Brendan; Wang, Dechao; Revell, Andy

    2008-01-01

    The emergence of drug resistant pathogens can reduce the efficacy of drugs commonly used to treat infectious diseases. Human immunodeficiency virus (HIV) is particularly sensitive to drug selection pressure, rapidly evolving into drug resistant variants on exposure to anti-HIV drugs. Over 200 mutations within the genetic material of HIV have been shown to be associated with drug resistance to date, and complex mutational patterns have been found in HIV isolates from infected patients exposed to multiple antiretroviral drugs. Genotyping is commonly used in clinical practice as a tool to identify drug resistance mutations in HIV from individual patients. This information is then used to help guide the choice of future therapy for patients whose drug regimen is failing because of the development of drug resistant HIV. Many sets of rules and algorithms are available to predict loss of susceptibility to individual antiretroviral drugs from genotypic data. Although this approach has been helpful, the interpretation of genotypic data remains challenging. We describe here the development and application of ANN models as alternative tools for the interpretation of HIV genotypic drug resistance data. A large amount of clinical and virological data, from around 30,000 patients treated with antiretroviral drugs, has been collected by the HIV Resistance Response Database Initiative (RDI, www.hivrdi.org) in a centralized database. Treatment change episodes (TCEs) have been extracted from these data and used along with HIV drug resistance mutations as the basic input variables to train ANN models. We performed a series of analyses that have helped define the following: (1) the reliability of ANN predictions for HIV patients receiving routine clinical care; (2) the utility of ANN models to identify effective treatments for patients failing therapy; (3) strategies to increase the accuracy of ANN predictions; and (4) performance of ANN models in comparison to the rules-based methods

  14. [THERMOMETRY APPLICATION FOR ESTIMATION OF THE SKIN BURNS DEPTH].

    Science.gov (United States)

    Kovalenko, A O

    2015-04-01

    Determination of the burn wound depth, using noncontact infrared thermometry, permits to predict the burn affection severity, basing on the revealed difference between local, perifocal temperature and temperature in certain nonaffected areas of the body surface. The temperature difference (ΔT) over 1 °C constitutes a strict criterion of the skin burn presence. The temperature 34 °C have been considered a border one for the skin burns. If the burn wound temperature in 24 h after trauma was lower 34 °C and ΔT 2 °C and more, it have witnessed the presence of deep burn of the skin. High sensitivity (87%) and specificity (96%) of thermometric test in 24 h after trauma were established. In epidermal burns the temperature of the burn wounds have constituted (35.9 ± 0.3) °C at average, in superficial burns of the skin--(35.1 ± 0.6) °C, and in the deep burns--(33.6 ± 0.8) °C.

  15. Dosimetric optimization of a conical breast brachytherapy applicator for improved skin dose sparing

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yun; Rivard, Mark J. [Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2010-11-15

    Purpose: Both the AccuBoost D-shaped and round applicators have been dosimetrically characterized and clinically used to treat patients with breast cancer. While the round applicators provide conformal dose coverage, under certain clinical circumstances the breast skin dose may be higher than preferred. The purpose of this study was to modify the round applicators to minimize skin dose while not substantially affecting dose uniformity within the target volume and reducing the treatment time. Methods: In order to irradiate the intended volume while sparing critical structures such as the skin, the current round applicator design has been augmented through the addition of an internal truncated cone (i.e., frustum) shield. Monte Carlo methods and clinical constraints were used to design the optimal cone applicator. With the cone applicator now defined as the entire assembly including the surrounding tungsten-alloy shell holding the HDR {sup 192}Ir source catheter, the applicator height was reduced to diminish the treatment time while minimizing skin dose. Monte Carlo simulation results were validated using both radiochromic film and ionization chamber measurements based on established techniques. Results: The optimal cone applicators diminished the maximum skin dose by 15%-32% (based on the applicator diameter and breast separation) with the tumor dose reduced by less than 3% for a constant exposure time. Furthermore, reduction in applicator height diminished the treatment time by up to 30%. Radiochromic film and ionization chamber dosimetric results in phantom agreed with Monte Carlo simulation results typically within 3%. Larger differences were outside the treatment volume in low dose regions or associated with differences between the measurement and Monte Carlo simulation environments. Conclusions: A new radiotherapy treatment device was developed and dosimetrically characterized. This set of applicators significantly reduces the skin dose and treatment time while

  16. Porosity Estimation By Artificial Neural Networks Inversion . Application to Algerian South Field

    Science.gov (United States)

    Eladj, Said; Aliouane, Leila; Ouadfeul, Sid-Ali

    2017-04-01

    One of the main geophysicist's current challenge is the discovery and the study of stratigraphic traps, this last is a difficult task and requires a very fine analysis of the seismic data. The seismic data inversion allows obtaining lithological and stratigraphic information for the reservoir characterization . However, when solving the inverse problem we encounter difficult problems such as: Non-existence and non-uniqueness of the solution add to this the instability of the processing algorithm. Therefore, uncertainties in the data and the non-linearity of the relationship between the data and the parameters must be taken seriously. In this case, the artificial intelligence techniques such as Artificial Neural Networks(ANN) is used to resolve this ambiguity, this can be done by integrating different physical properties data which requires a supervised learning methods. In this work, we invert the acoustic impedance 3D seismic cube using the colored inversion method, then, the introduction of the acoustic impedance volume resulting from the first step as an input of based model inversion method allows to calculate the Porosity volume using the Multilayer Perceptron Artificial Neural Network. Application to an Algerian South hydrocarbon field clearly demonstrate the power of the proposed processing technique to predict the porosity for seismic data, obtained results can be used for reserves estimation, permeability prediction, recovery factor and reservoir monitoring. Keywords: Artificial Neural Networks, inversion, non-uniqueness , nonlinear, 3D porosity volume, reservoir characterization .

  17. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering*

    Science.gov (United States)

    Han, Chun-mao; Zhang, Li-ping; Sun, Jin-zhang; Shi, Hai-fei; Zhou, Jie; Gao, Chang-you

    2010-01-01

    To create a scaffold that is suitable for the construction of tissue-engineered skin, a novel asymmetric porous scaffold with different pore sizes on either side was prepared by combining a collagen-chitosan porous membrane with fibrin glue. Tissue-engineered skin was fabricated using this asymmetric scaffold, fibroblasts, and a human keratinocyte line (HaCaT). Epidermal cells could be seen growing easily and achieved confluence on the fibrin glue on the upper surface of the scaffold. Scanning electron microscopy showed typical shuttle-like fibroblasts adhering to the wall of the scaffold and fluorescence microscopy showed them growing in the dermal layer of the scaffold. The constructed composite skin substitute had a histological structure similar to that of normal skin tissue after three weeks of culture. The results of our study suggest that the asymmetric scaffold is a promising biologically functional material for skin tissue engineering, with prospects for clinical applications. PMID:20593518

  18. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering.

    Science.gov (United States)

    Han, Chun-mao; Zhang, Li-ping; Sun, Jin-zhang; Shi, Hai-fei; Zhou, Jie; Gao, Chang-you

    2010-07-01

    To create a scaffold that is suitable for the construction of tissue-engineered skin, a novel asymmetric porous scaffold with different pore sizes on either side was prepared by combining a collagen-chitosan porous membrane with fibrin glue. Tissue-engineered skin was fabricated using this asymmetric scaffold, fibroblasts, and a human keratinocyte line (HaCaT). Epidermal cells could be seen growing easily and achieved confluence on the fibrin glue on the upper surface of the scaffold. Scanning electron microscopy showed typical shuttle-like fibroblasts adhering to the wall of the scaffold and fluorescence microscopy showed them growing in the dermal layer of the scaffold. The constructed composite skin substitute had a histological structure similar to that of normal skin tissue after three weeks of culture. The results of our study suggest that the asymmetric scaffold is a promising biologically functional material for skin tissue engineering, with prospects for clinical applications.

  19. Efficacy of two ethanol-based skin antiseptics on the forehead at shorter application times

    Directory of Open Access Journals (Sweden)

    Pitten Frank-Albert

    2007-09-01

    Full Text Available Abstract Background Recent research suggests that alcohol-based skin antiseptics exhibit their efficacy on the resident skin flora of the forehead in less than 10 minutes. That is why we have looked at the efficacy of two ethanol-based skin antiseptics applied for 10, 2.5 and 2 minutes on skin with a high density of sebaceous glands. Each experiment was performed in a reference-controlled cross-over design with at least 20 participants. Application of isopropanol (70%, v/v for 10 minutes to the forehead served as the reference treatment. The clear (skin antiseptic A and coloured preparations (skin antiseptic B contain 85% ethanol (w/w. Pre-values and post-values (immediately after the application and after 30 min were obtained by swabbing a marked area of 5 cm2 for about 10 s. Swabs were vortexed in tryptic soy broth containing valid neutralizing agents. After serial dilution aliquots were spread on tryptic soy agar. Colonies were counted after incubation of plates at 36°C for 48 h. The mean log10 reduction of bacteria was calculated. The Wilcoxon matched-pairs signed-ranks test was used for a comparison of treatments. Results Skin antiseptic A applied for 10 min was significantly more effective than the reference treatment. When applied for 2.5 min (three experiments it was significantly more effective than the reference treatment immediately after application (2.7 versus 2.2 log10 reduction; p 10 reduction; p = 0.053. Skin antiseptic B applied for 2.5 min (three experiments was significantly more effective than the reference treatment both immediately after application (2.3 versus 1.9 log10 reduction; p 10 reduction; p = 0.002. Conclusion The clear and coloured skin antiseptics applied for 2.5 min on the skin of the forehead fulfilled the efficacy requirements for skin antisepsis. The shorter application time on skin with a high density of sebaceous glands will allow to act more efficiently in clinical practice.

  20. Percutaneous characterization of the insect repellent DEET and the sunscreen oxybenzone from topical skin application.

    Science.gov (United States)

    Kasichayanula, Sreeneeranj; House, James D; Wang, Tao; Gu, Xiaochen

    2007-09-01

    The synergistic percutaneous enhancement between insect repellent DEET and sunscreen oxybenzone has been proven in our laboratory using a series of in vitro diffusion studies. In this study, we carried out an in vivo study to characterize skin permeation profiles from topical skin application of three commercially available repellent and sunscreen preparations. The correlation between skin disposition and drug metabolism was attempted by using data collected. Both DEET and oxybenzone permeated across the skin after the application and achieved substantial systemic absorption. Combined use of DEET and oxybenzone significantly enhanced the percutaneous penetration percentages (ranging 36-108%) due to mutual enhancement effects. Skin disposition indicated that DEET produced a faster transdermal permeation rate and higher systemic absorption extent, but oxybenzone formed a concentrated depot within the skin and delivered the content slowly over the time. In vivo AUCP/MRT of DEET and oxybenzone was increased by 37%/17% and 63%/10% when the two compounds were used together. No DEET was detected from the urine samples 48 h after the application. Tape stripping seemed to be a satisfactory approach for quantitative assessment of DEET and oxybenzone penetration into the stratum corneum. It was also concluded that pharmacological and toxicological perspectives from concurrent application of insect repellent and sunscreen products require further evaluation to ensure use efficacy and safety of these common consumer healthcare products.

  1. Effect of topical clay application on the synthesis of collagen in skin: an experimental study.

    Science.gov (United States)

    Valenti, D M Z; Silva, J; Teodoro, W R; Velosa, A P; Mello, S B V

    2012-03-01

    Clay is often used in cosmetic treatments, although little is known about its action. To evaluate the effect of topical clay application on the histoarchitecture of collagen fibres in rat skin. Animals received a daily application of clay and retinoic acid (RA) 0.025% to the dorsal skin over 7 and 14 days, under vaporization at 37 °C for 40 min. Control skin was not vaporized. Samples from each region were excised, and stained with picrosirius red for collagen evaluation. Seven days after clay treatment, an increase in the number of collagen fibres was observed in treated skin compared with control skin (51.74 ± 1.28 vs. 43.39 ± 1.79%, respectively, P Clay application over 14 days did not induce a further increase in skin collagen, whereas treatment with RA did (58.07 ± 1.59%; P = 0.001 vs. control). Clay application promotes an increase in the number of collagen fibres, which may account for its beneficial effects. © The Author(s). CED © 2012 British Association of Dermatologists.

  2. Suction blister skin grafting--a modern application.

    Science.gov (United States)

    Parbhoo, A V; Simpson, M T

    2014-03-01

    The suction blistering technique produces an ultra-thin skin graft with no morbidity at the donor site. Negative pressure using wall suction in outpatients is used to generate a graft that can be used for reconstruction, and it avoids the need for invasive procedures in patients with coexisting conditions. The harvested tissue has a low metabolic demand and survival is excellent. We used it in a patient when previous reconstructions after excision of skin cancer had failed. Graft survival was more than 95% by surface area and there was no donor site morbidity. We have found it particularly useful for grafting over Integra® dermal regeneration template (Integra LifeSciences Corporation, NJ, USA) to produce healing at difficult sites. Patients tolerate the procedure well and the donor site heals quickly. It is useful where recipient vascularity is poor or where coexisting conditions prevent complex procedures. Copyright © 2013. Published by Elsevier Ltd.

  3. Tattoo conductive polymer nanosheets for skin-contact applications.

    Science.gov (United States)

    Zucca, Alessandra; Cipriani, Christian; Sudha; Tarantino, Sergio; Ricci, Davide; Mattoli, Virgilio; Greco, Francesco

    2015-05-01

    Conductive tattoo nanosheets are fabricated on top of decal transfer paper and transferred on target surfaces as temporary transfer tattoos. Circuits are patterned with ink-jet printing. Tattoo nanosheets are envisioned as unperceivable human-device interfaces because of conformal adhesion to complex surfaces including skin. They are tested as dry electrodes for surface electromyography (sEMG), which permits the control of a robotic hand.

  4. Modified plastic compression of collagen hydrogels provides an ideal matrix for clinically applicable skin substitutes.

    Science.gov (United States)

    Braziulis, Erik; Diezi, Mirco; Biedermann, Thomas; Pontiggia, Luca; Schmucki, Marlene; Hartmann-Fritsch, Fabienne; Luginbühl, Joachim; Schiestl, Clemens; Meuli, Martin; Reichmann, Ernst

    2012-06-01

    Tissue engineering of clinically applicable dermo-epidermal skin substitutes is crucially dependent on the three-dimensional extracellular matrix, supporting the biological function of epidermal and dermal cells. This matrix essentially determines the mechanical stability of these substitutes to allow for safe and convenient surgical handling. Collagen type I hydrogels yield excellent biological functionality, but their mechanical weakness and their tendency to contract and degrade does not allow producing clinically applicable transplants of larger sizes. We show here that plastically compressed collagen type I hydrogels can be produced in clinically relevant sizes (7×7 cm), and can be safely and conveniently handled by the surgeon. Most importantly, these dermo-epidermal skin substitutes mature into a near normal skin that can successfully reconstitute full-thickness skin defects in an animal model.

  5. Optimal Solution for an Engineering Applications Using Modified Artificial Immune System

    Science.gov (United States)

    Padmanabhan, S.; Chandrasekaran, M.; Ganesan, S.; patan, Mahamed Naveed Khan; Navakanth, Polina

    2017-03-01

    An Engineering optimization leads a essential role in several engineering application areas like process design, product design, re-engineering and new product development, etc. In engineering, an awfully best answer is achieved by comparison to some completely different solutions by utilization previous downside information. An optimization algorithms provide systematic associate degreed economical ways that within which of constructing and comparison new design solutions so on understand at best vogue, thus on best solution efficiency and acquire the foremost wonderful design impact. In this paper, a new evolutionary based Modified Artificial Immune System (MAIS) algorithm used to optimize an engineering application of gear drive design. The results are compared with existing design.

  6. Tactile perception of skin and skin cream by friction induced vibrations.

    Science.gov (United States)

    Ding, Shuyang; Bhushan, Bharat

    2016-11-01

    Skin cream smooths, softens, and moistens skin by altering surface roughness and tribological properties of skin. Sliding generates vibrations that activate mechanoreceptors located in skin. The brain interprets tactile information to identify skin feel. Understanding the tactile sensing mechanisms of skin with and without cream treatment is important to numerous applications including cosmetics, textiles, and robotics sensors. In this study, frequency spectra of friction force and friction induced vibration signals were carried out to investigate tactile perception by an artificial finger sliding on skin. The influence of normal load, velocity, and cream treatment time were studied. Coherence between friction force and vibration signals were found. The amplitude of vibration decreased after cream treatment, leading to smoother perception. Increasing normal load or velocity between contacting surfaces generated a smoother perception with cream treatment, but rougher perception without treatment. As cream treatment time increases, skin becomes smoother. The related mechanisms are discussed.

  7. Application of Artificial Neural Networks to Rainfall Forecasting in Queensland, Australia

    Institute of Scientific and Technical Information of China (English)

    John ABBOT; Jennifer MAROHASY

    2012-01-01

    In this study,the application of artificial intelligence to monthly and seasonal rainfall forecasting in Queensland,Australia,was assessed by inputting recognized climate indices,monthly historical rainfall data,and atmospheric temperatures into a prototype stand-alone,dynamic,recurrent,time-delay,artificial neural network.Outputs,as monthly rainfall forecasts 3 months in advance for the period 1993 to 2009,were compared with observed rainfall data using time-series plots,root mean squared error (RMSE),and Pearson correlation coefficients.A comparison of RMSE values with forecasts generated by the Australian Bureau of Meteorology's Predictive Ocean Atmosphere Model for Australia (POAMA)-1.5 general circulation model (GCM) indicated that the prototype achieved a lower RMSE for 16 of the 17 sites compared.The application of artificial neural networks to rainfall forecasting was reviewed.The prototype design is considered preliminary,with potential for significant improvement such as inclusion of output from GCMs and experimentation with other input attributes.

  8. Application of Artificial Neural Networks in Aircraft Maintenance, Repair and Overhaul Solutions

    CERN Document Server

    Paul, Soumitra; Jasani, Devashish; Dudhwewala, Rachit; Gowda, Vijay Bore; Nair, T R Gopalakrishnan

    2010-01-01

    This paper reviews application of Artificial Neural Networks in Aircraft Maintenance, Repair and Overhaul (MRO). MRO solutions are designed to facilitate the authoring and delivery of maintenance and repair information to the line maintenance technicians who need to improve aircraft repair turn around time, optimize the efficiency and consistency of fleet maintenance and ensure regulatory compliance. The technical complexity of aircraft systems, especially in avionics, has increased to the point at which it poses a significant troubleshotting and repair challenge for MRO personnel. As per the existing scenario, the MRO systems in place are inefficient. In this paper, we propose the centralization and integration of the MRO database to increase its efficiency. Moreover the implementation of Artificial Neural Networks in this system can rid the system of many of its deficiencies. In order to make the system more efficient we propose to integrate all the modules so as to reduce the efficacy of repair.

  9. Risk assessment of sewer condition using artificial intelligence tools: application to the SANEST sewer system.

    Science.gov (United States)

    Sousa, V; Matos, J P; Almeida, N; Saldanha Matos, J

    2014-01-01

    Operation, maintenance and rehabilitation comprise the main concerns of wastewater infrastructure asset management. Given the nature of the service provided by a wastewater system and the characteristics of the supporting infrastructure, technical issues are relevant to support asset management decisions. In particular, in densely urbanized areas served by large, complex and aging sewer networks, the sustainability of the infrastructures largely depends on the implementation of an efficient asset management system. The efficiency of such a system may be enhanced with technical decision support tools. This paper describes the role of artificial intelligence tools such as artificial neural networks and support vector machines for assisting the planning of operation and maintenance activities of wastewater infrastructures. A case study of the application of this type of tool to the wastewater infrastructures of Sistema de Saneamento da Costa do Estoril is presented.

  10. Advances in Skin Regeneration Using Tissue Engineering

    Science.gov (United States)

    Vig, Komal; Chaudhari, Atul; Tripathi, Shweta; Dixit, Saurabh; Sahu, Rajnish; Pillai, Shreekumar; Dennis, Vida A.; Singh, Shree R.

    2017-01-01

    Tissue engineered skin substitutes for wound healing have evolved tremendously over the last couple of years. New advances have been made toward developing skin substitutes made up of artificial and natural materials. Engineered skin substitutes are developed from acellular materials or can be synthesized from autologous, allograft, xenogenic, or synthetic sources. Each of these engineered skin substitutes has their advantages and disadvantages. However, to this date, a complete functional skin substitute is not available, and research is continuing to develop a competent full thickness skin substitute product that can vascularize rapidly. There is also a need to redesign the currently available substitutes to make them user friendly, commercially affordable, and viable with longer shelf life. The present review focuses on providing an overview of advances in the field of tissue engineered skin substitute development, the availability of various types, and their application. PMID:28387714

  11. γ-H2AX as a biomarker of DNA damage induced by ionizing radiation in human peripheral blood lymphocytes and artificial skin

    Science.gov (United States)

    Redon, Christophe E.; Dickey, Jennifer S.; Bonner, William M.; Sedelnikova, Olga A.

    2009-01-01

    Ionizing radiation (IR) exposure is inevitable in our modern society and can lead to a variety of deleterious effects including cancer and birth defects. A reliable, reproducible and sensitive assessment of exposure to IR and the individual response to that exposure would provide much needed information for the optimal treatment of each donor examined. We have developed a diagnostic test for IR exposure based on detection of the phosphorylated form of variant histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The cell responds to a nascent DSB through the phosphorylation of thousands of H2AX molecules flanking the damaged site. This highly amplified response can be visualized as a γ-H2AX focus in the chromatin that can be detected in situ with the appropriate antibody. Here we assess the usability of γ-H2AX focus formation as a possible biodosimeter for human exposure to IR using peripheral blood lymphocytes irradiated ex vivo and three-dimensional artificial models of human skin biopsies. In both systems, the tissues were exposed to 0.2–5 Gy, doses of IR that might be realistically encountered in various scenarios such as cancer radiotherapies or accidental exposure to radiation. Since the γ-H2AX response is maximal 30 minutes after exposure and declines over a period of hours as the cells repair the damage, we examined the time limitations of the useful detectibility of γ-H2AX foci. We report that a linear response proportional to the initial radiation dose was obtained 48 hours and 24 hours after exposure in blood samples and skin cells respectively. Thus, detection of γ-H2AX formation to monitor DNA damage in minimally invasive blood and skin tests could be useful tools to determine radiation dose exposure and analyze its effects on humans. PMID:20046946

  12. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...

  13. Optimization of Aluminum Stressed Skin Panels in Offshore Applications

    Directory of Open Access Journals (Sweden)

    Dianne van Hove

    2014-09-01

    Full Text Available Since the introduction of general European rules for the design of aluminium structures, specific rules for the design of aluminum stressed skin panels are available. These design rules have been used for the optimization of two extrusion products: one for explosions and wind load governing and one for explosions and floor load governing. The optimized extrusions fulfill Class 3 section properties, leading to weight reductions up to 25% of regularly-used shear panel sections. When the design is based on Class 4 section properties, even more weight reduction may be reached. The typical failure mode of the optimized stressed skin panels depends on the applied height of the hat stiffeners. For sections using relatively high hat stiffeners, failure is introduced by yielding of the heat-affected zone. For this type of cross-section, Eurocode 9 design rules and numerical calculations show very good agreement. For sections using relatively low hat stiffeners, failure is introduced by global buckling. For this type of cross-section, Eurocode 9 gives rather conservative results.

  14. Topical application of probiotics in skin: adhesion, antimicrobial and antibiofilm in vitro assays.

    Science.gov (United States)

    Lopes, E G; Moreira, D A; Gullón, P; Gullón, B; Cardelle-Cobas, A; Tavaria, F K

    2017-02-01

    When skin dysbiosis occurs as a result of skin disorders, probiotics can act as modulators, restoring microbial balance. Several properties of selected probiotics were evaluated so that their topical application could be considered. Adhesion, antimicrobial, quorum sensing and antibiofilm assays were carried out with several probiotic strains and tested against selected skin pathogens. All tested strains displayed significant adhesion to keratin. All lactobacilli with the exception of Lactobacillus delbrueckii, showed antimicrobial activity against skin pathogens, mainly due to organic acid production. Most of them also prevented biofilm formation, but only Propioniferax innocua was able to break down mature biofilms. This study demonstrates that although all tested probiotics adhered to human keratin, they showed limited ability to prevent adhesion of some potential skin pathogens. Most of the tested probiotics successfully prevented biofilm formation, suggesting that they may be successfully used in the future as a complement to conventional therapies in the treatment of a range of skin disorders. The topically used probiotics may be a natural, targeted treatment approach to several skin disorders and a complement to conventional therapies which present many undesirable side effects. © 2016 The Society for Applied Microbiology.

  15. In vivo determination of the diclofenac skin reservoir: comparison between passive, occlusive, and iontophoretic application.

    Science.gov (United States)

    Clijsen, Ron; Baeyens, Jean Pierre; Barel, André Odilon; Clarys, Peter

    2015-01-01

    There is scarce information concerning the pharmacodynamic behavior of topical substances used in the physiotherapy setting. The aim of the present study was to estimate the formation and emptying of the diclofenac (DF) skin reservoir after passive, semiocclusive, and electrically assisted applications of DF. Five different groups of healthy volunteers (ntotal=60, 23 male and 37 female), participated in this study. A 1% DF (Voltaren Emulgel) formulation (12 mg) was applied on the volar forearms on randomized defined circular skin areas of 7 cm(2). DF was applied for 20 minutes under three different conditions at the same time. The presence of DF in the skin results in a reduction of the methyl nicotinate (MN) response. To estimate the bioavailability of DF in the skin, MN responses at different times following initial DF application (1.5, 6, 24, 32, 48, 72, 96, and 120 hours) were analyzed. At 1.5 hours after the initial DF application, a significant decrease in MN response was detected for the occluded and iontophoretic delivery. Passive application resulted in a decrease of the MN response from 6 hours post-DF application. The inhibition remained up to 32 hours post-DF application for the iontophoretic delivery, 48 hours for the occluded application, and 72 hours for the passive delivery. At 96 and 120 hours post-DF application none of the MN responses was inhibited. The formation and emptying of a DF skin reservoir was found to be dependent on the DF-application mode. Penetration-enhanced delivery resulted in a faster emptying of the reservoir.

  16. In vivo determination of the diclofenac skin reservoir: comparison between passive, occlusive, and iontophoretic application

    Directory of Open Access Journals (Sweden)

    Clijsen R

    2015-02-01

    Full Text Available Ron Clijsen,1,2 Jean Pierre Baeyens,2 André Odilon Barel,2 Peter Clarys2 1Department of Health Sciences, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; 2Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium Aim: There is scarce information concerning the pharmacodynamic behavior of topical substances used in the physiotherapy setting. The aim of the present study was to estimate the formation and emptying of the diclofenac (DF skin reservoir after passive, semiocclusive, and electrically assisted applications of DF.Subjects and methods: Five different groups of healthy volunteers (ntotal=60, 23 male and 37 female, participated in this study. A 1% DF (Voltaren Emulgel formulation (12 mg was applied on the volar forearms on randomized defined circular skin areas of 7 cm2. DF was applied for 20 minutes under three different conditions at the same time. The presence of DF in the skin results in a reduction of the methyl nicotinate (MN response. To estimate the bioavailability of DF in the skin, MN responses at different times following initial DF application (1.5, 6, 24, 32, 48, 72, 96, and 120 hours were analyzed.Results: At 1.5 hours after the initial DF application, a significant decrease in MN response was detected for the occluded and iontophoretic delivery. Passive application resulted in a decrease of the MN response from 6 hours post-DF application. The inhibition remained up to 32 hours post-DF application for the iontophoretic delivery, 48 hours for the occluded application, and 72 hours for the passive delivery. At 96 and 120 hours post-DF application none of the MN responses was inhibited.Conclusion: The formation and emptying of a DF skin reservoir was found to be dependent on the DF-application mode. Penetration-enhanced delivery resulted in a faster emptying of the reservoir. Keywords: transdermal drug delivery, passive diffusion, occlusion

  17. [Application of skin and soft tissue expansion in treatment of burn injury].

    Science.gov (United States)

    Wang, N Z; Shen, Z Y; Ma, C X

    2000-09-01

    To evaluate the application of skin and soft tissue expansion in the treatment of deformity due to extensive severe burn injury and repair of severe deep electrical burned scalp and skull with fresh wound. From 1988, 83 cases of application of skin and soft tissue expansion were reported. In those patients with deformity due to severe burn of large area and with whole nasal defect, soft tissue expander was used under the forehead skin graft and venter frontalis, followed by reconstruction of nose with the expanded vascularized skin flap and carved cartilago costalis as nasal frame. In patients of severe deep electrical burned scalp and skull with fresh wound, skin and soft tissue expansion were used to repair the wound simultaneously with scalp burn alopecia, anesthetics and antibiotics injected into the extracapsular space of the expander in case of pain and infection. All of the cases were successfully treated with little pain and minimized infection. Skin and soft tissue expansion in a safe and reliable measure in the treatment of deformity due to extensive severe burn injury and repair of severe deep electrical burned scalp and skull with fresh wound.

  18. Effect of local application of superoxide dismutase on dielectric parameters of cooled skin in rats.

    Science.gov (United States)

    Paramonov, B A; Turkovski, I I; Doroshkevich, O S; Taranova, V N; Pomorski, K P

    2008-11-01

    The effect of on Changes in dielectric parameters of the skin (modulus of complex dielectric permittivity |e| and dielectric loss tangent tgd) were studied on rats with local surface contact cooling followed by treatment with various cream formulations. Addition of antioxidant superoxide dismutase (SOD) to the cream significantly prevented the shifts in these parameters, which attested to less pronounced changes in the water balance in SOD-treated skin. Application of SOD during the early terms after cooling accelerated wound healing. Histological examination performed on posttraumatic day 60 revealed better integrity of the skin structures (hair follicle, sweat and sebaceous gland), which indicates ability of SOD to prevent and ameliorate the degree of cold-induced damage in the skin.

  19. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    Science.gov (United States)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  20. Application of artificial neural network with extreme learning machine for economic growth estimation

    Science.gov (United States)

    Milačić, Ljubiša; Jović, Srđan; Vujović, Tanja; Miljković, Jovica

    2017-01-01

    The purpose of this research is to develop and apply the artificial neural network (ANN) with extreme learning machine (ELM) to forecast gross domestic product (GDP) growth rate. The economic growth forecasting was analyzed based on agriculture, manufacturing, industry and services value added in GDP. The results were compared with ANN with back propagation (BP) learning approach since BP could be considered as conventional learning methodology. The reliability of the computational models was accessed based on simulation results and using several statistical indicators. Based on results, it was shown that ANN with ELM learning methodology can be applied effectively in applications of GDP forecasting.

  1. State-of-the-art review of some artificial intelligence applications in pile foundations

    Institute of Scientific and Technical Information of China (English)

    Mohamed A. Shahin

    2016-01-01

    Geotechnical engineering deals with materials (e.g. soil and rock) that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these materials. Modeling the behavior of such materials in geotechnical engineering applications is complex and sometimes beyond the ability of most traditional forms of physically-based engineering methods. Artificial intelligence (AI) is becoming more popular and particularly amenable to modeling the complex behavior of most geotechnical engineering applications because it has demonstrated superior predictive ability compared to traditional methods. This paper provides state-of-the-art review of some selected AI techniques and their applications in pile foundations, and presents the salient features associated with the modeling development of these AI techniques. The paper also discusses the strength and limitations of the selected AI techniques compared to other available modeling approaches.

  2. Application of artificial intelligence in Geodesy - A review of theoretical foundations and practical examples

    Science.gov (United States)

    Reiterer, Alexander; Egly, Uwe; Vicovac, Tanja; Mai, Enrico; Moafipoor, Shahram; Grejner-Brzezinska, Dorota A.; Toth, Charles K.

    2010-12-01

    Artificial Intelligence (AI) is one of the key technologies in many of today's novel applications. It is used to add knowledge and reasoning to systems. This paper illustrates a review of AI methods including examples of their practical application in Geodesy like data analysis, deformation analysis, navigation, network adjustment, and optimization of complex measurement procedures. We focus on three examples, namely, a geo-risk assessment system supported by a knowledge-base, an intelligent dead reckoning personal navigator, and evolutionary strategies for the determination of Earth gravity field parameters. Some of the authors are members of IAG Sub-Commission 4.2 - Working Group 4.2.3, which has the main goal to study and report on the application of AI in Engineering Geodesy.

  3. Shock wave application to rat skin induces degeneration and reinnervation of sensory nerve fibres.

    Science.gov (United States)

    Ohtori, S; Inoue, G; Mannoji, C; Saisu, T; Takahashi, K; Mitsuhashi, S; Wada, Y; Takahashi, K; Yamagata, M; Moriya, H

    2001-11-23

    There have been several reports on the use of extracorporeal shock waves in the treatment of pseudarthrosis, calcifying tendinitis, and tendinopathies of the elbow. However, the pathomechanism of pain relief has not been clarified. To investigate the analgesic properties of shock wave application, we analyzed whether it produces morphologic changes in cutaneous nerve fibres. In normal rat skin, the epidermis is heavily innervated by nerve fibres immunoreactive for protein gene product (PGP) 9.5 and by some fibres immunoreactive for calcitonin gene-related peptide (CGRP). There was nearly complete degeneration of epidermal nerve fibres in the shock wave-treated skin, as indicated by the loss of immunoreactivity for PGP 9.5 or CGRP. Reinnervation of the epidermis occurred 2 weeks after treatment. These data show that relief of pain after shock wave application to the skin results from rapid degeneration of the intracutaneous nerve fibres.

  4. Paper-Based Bimodal Sensor for Electronic Skin Applications.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Cheong, Haena; Shin, Kwanwoo; Kwon, Oh-Sun; Park, Jong-Jin; Jeon, Sanghun

    2017-08-16

    We present the development of a flexible bimodal sensor using a paper platform and inkjet printing method, which are suited for low-cost fabrication processes and realization of flexible devices. In this study, we employed a vertically stacked bimodal device architecture in which a temperature sensor is stacked on top of a pressure sensor and operated on different principles, allowing the minimization of interference effects. For the temperature sensor placed in the top layer, we used the thermoelectric effect and formed a closed-loop thermocouple composed of two different printable inks (conductive PEDOT:PSS and silver nanoparticles on a flexible paper platform) and obtained temperature-sensing capability over a wide range (150 °C). For the pressure sensor positioned in the bottom layer, we used microdimensional pyramid-structured poly(dimethylsiloxane) coated with multiwall carbon nanotube conducting ink. Our pressure sensor exhibits a high-pressure sensitivity over a wide range (100 Pa to 5 kPa) and high-endurance characteristics of 10(5). Our 5 × 5 bimodal sensor array demonstrates negligible interference, high-speed responsivity, and robust sensing characteristics. We believe that the material, process, two-terminal device, and integration scheme developed in this study have a great value that can be widely applied to electronic skin.

  5. Artificial neural network, genetic algorithm, and logistic regression applications for predicting renal colic in emergency settings.

    Science.gov (United States)

    Eken, Cenker; Bilge, Ugur; Kartal, Mutlu; Eray, Oktay

    2009-06-03

    Logistic regression is the most common statistical model for processing multivariate data in the medical literature. Artificial intelligence models like an artificial neural network (ANN) and genetic algorithm (GA) may also be useful to interpret medical data. The purpose of this study was to perform artificial intelligence models on a medical data sheet and compare to logistic regression. ANN, GA, and logistic regression analysis were carried out on a data sheet of a previously published article regarding patients presenting to an emergency department with flank pain suspicious for renal colic. The study population was composed of 227 patients: 176 patients had a diagnosis of urinary stone, while 51 ultimately had no calculus. The GA found two decision rules in predicting urinary stones. Rule 1 consisted of being male, pain not spreading to back, and no fever. In rule 2, pelvicaliceal dilatation on bedside ultrasonography replaced no fever. ANN, GA rule 1, GA rule 2, and logistic regression had a sensitivity of 94.9, 67.6, 56.8, and 95.5%, a specificity of 78.4, 76.47, 86.3, and 47.1%, a positive likelihood ratio of 4.4, 2.9, 4.1, and 1.8, and a negative likelihood ratio of 0.06, 0.42, 0.5, and 0.09, respectively. The area under the curve was found to be 0.867, 0.720, 0.715, and 0.713 for all applications, respectively. Data mining techniques such as ANN and GA can be used for predicting renal colic in emergency settings and to constitute clinical decision rules. They may be an alternative to conventional multivariate analysis applications used in biostatistics.

  6. Architecture and biological applications of artificial neural networks: a tuberculosis perspective.

    Science.gov (United States)

    Darsey, Jerry A; Griffin, William O; Joginipelli, Sravanthi; Melapu, Venkata Kiran

    2015-01-01

    Advancement of science and technology has prompted researchers to develop new intelligent systems that can solve a variety of problems such as pattern recognition, prediction, and optimization. The ability of the human brain to learn in a fashion that tolerates noise and error has attracted many researchers and provided the starting point for the development of artificial neural networks: the intelligent systems. Intelligent systems can acclimatize to the environment or data and can maximize the chances of success or improve the efficiency of a search. Due to massive parallelism with large numbers of interconnected processers and their ability to learn from the data, neural networks can solve a variety of challenging computational problems. Neural networks have the ability to derive meaning from complicated and imprecise data; they are used in detecting patterns, and trends that are too complex for humans, or other computer systems. Solutions to the toughest problems will not be found through one narrow specialization; therefore we need to combine interdisciplinary approaches to discover the solutions to a variety of problems. Many researchers in different disciplines such as medicine, bioinformatics, molecular biology, and pharmacology have successfully applied artificial neural networks. This chapter helps the reader in understanding the basics of artificial neural networks, their applications, and methodology; it also outlines the network learning process and architecture. We present a brief outline of the application of neural networks to medical diagnosis, drug discovery, gene identification, and protein structure prediction. We conclude with a summary of the results from our study on tuberculosis data using neural networks, in diagnosing active tuberculosis, and predicting chronic vs. infiltrative forms of tuberculosis.

  7. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy.

    Science.gov (United States)

    Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy.

  8. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy

    Science.gov (United States)

    Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy. PMID:27274231

  9. Advances in studies of phospholipids as carriers in skin topical application

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:This article provides an overview of characteristics of phospholipids,the characteristics and influential factors of liposome and microemulsion as carriers for skin delivery of drugs,and the latest advances of the phospholipids carriers in transdermal delivery systems.The perspective is that phospholipids carriers may be capable of a wide range of applications in the transdermal defivery system.

  10. In vivo Raman spectroscopy of biochemical changes in human skin by cosmetic application

    Science.gov (United States)

    Tosato, Maira Gaspar; dos Santos, Edson Pereira; Alves, Rani de Souza; Raniero, Leandro; Menezes, Priscila Fernanda C.; Kruger, Odivânia; Praes, Carlos Eduardo O.; Martin, Airton Abrahão

    2010-02-01

    The skin aging process is mainly accelerated by external agents such as sunlight, air humidity and surfactants action. Changes in protein structures and hydration during the aging process are responsible for skin morphological variations. In this work the human skin was investigated by in vivo Raman spectroscopy before and after the topical applications of a cosmetic on 17 healthy volunteers (age 60 to 75). In vivo Raman spectra of the skin were obtained with a Spectrometer SpectraPro- 2500i (Pi-Acton), CCD detector and a 785 nm laser excitation source, collected at the beginning of experiment without cream (T0), after 30 (T30) and 60 (T60) days using the product. The primary changes occurred in the following spectral regions: 935 cm-1 (νCC), 1060 cm-1 (lipids), 1174 to 1201 cm-1 (tryptofan, phenylalanine and tyrosine), 1302 cm-1 (phospholipids), 1520 to 1580 cm-1 (C=C) and 1650 cm-1 (amide I). These findings indicate that skin positive effects were enhanced by a continuous cream application.

  11. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  12. 14th International Conference on Software Engineering, Artificial Intelligence Research, Management and Applications

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 14th International Conference on Software Engineering, Artificial Intelligence Research, Management and Applications (SERA 2016) held on June 8-10, 2016 at Towson University, USA. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication capture...

  13. Application of artificial intelligence to characterize naturally fractured zones in Hassi Messaoud Oil Field, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    El Ouahed, Abdelkader Kouider; Mazouzi, Amine [Sonatrach, Rue Djenane Malik, Hydra, Algiers (Algeria); Tiab, Djebbar [Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, 100 East Boyd Street, SEC T310, Norman, OK, 73019 (United States)

    2005-12-15

    In highly heterogeneous reservoirs classical characterization methods often fail to detect the location and orientation of the fractures. Recent applications of Artificial Intelligence to the area of reservoir characterization have made this challenge a possible practice. Such a practice consists of seeking the complex relationship between the fracture index and some geological and geomechanical drivers (facies, porosity, permeability, bed thickness, proximity to faults, slopes and curvatures of the structure) in order to obtain a fracture intensity map using Fuzzy Logic and Neural Network. This paper shows the successful application of Artificial Intelligence tools such as Artificial Neural Network and Fuzzy Logic to characterize naturally fractured reservoirs. A 2D fracture intensity map and fracture network map in a large block of Hassi Messaoud field have been developed using Artificial Neural Network and Fuzzy Logic. This was achieved by first building the geological model of the permeability, porosity and shale volume using stochastic conditional simulation. Then by applying some geomechanical concepts first and second structure directional derivatives, distance to the nearest fault, and bed thickness were calculated throughout the entire area of interest. Two methods were then used to select the appropriate fracture intensity index. In the first method well performance was used as a fracture index. In the second method a Fuzzy Inference System (FIS) was built. Using this FIS, static and dynamic data were coupled to reduce the uncertainty, which resulted in a more reliable Fracture Index. The different geological and geomechanical drivers were ranked with the corresponding fracture index for both methods using a Fuzzy Ranking algorithm. Only important and measurable data were selected to be mapped with the appropriate fracture index using a feed forward Back Propagation Neural Network (BPNN). The neural network was then used to obtain a fracture intensity

  14. Extraction and Characterization of Collagen from Buffalo Skin for Biomedical Applications

    OpenAIRE

    Moustafa A. Rizk; Nasser Y. Mostafa

    2016-01-01

    Collagen is widely used for biomedical and pharmaceutical applications due to its excellent biocompatibility, biodegradability and weak antigenicity. However, applicability is limited due to its high cost and probability of disease transmission from the current sources, which are bovine and porcine. In the present study, collagen was extracted from 6 months buffalo skins as alternative save sources. Collagen was characterized by different physico-chemical techniques like ATR-FTIR, Raman, SEM...

  15. Application of numerical methods for diffusion-based modeling of skin permeation.

    Science.gov (United States)

    Frasch, H Frederick; Barbero, Ana M

    2013-02-01

    The application of numerical methods for mechanistic, diffusion-based modeling of skin permeation is reviewed. Methods considered here are finite difference, method of lines, finite element, finite volume, random walk, cellular automata, and smoothed particle hydrodynamics. First the methods are briefly explained with rudimentary mathematical underpinnings. Current state of the art numerical models are described, and then a chronological overview of published models is provided. Key findings and insights of reviewed models are highlighted. Model results support a primarily transcellular pathway with anisotropic lipid transport. Future endeavors would benefit from a fundamental analysis of drug/vehicle/skin interactions.

  16. Smart hydrogel-functionalized textile system with moisture management property for skin application

    Science.gov (United States)

    Wang, Xiaowen; Hu, Huawen; Yang, Zongyue; He, Liang; Kong, Yeeyee; Fei, Bin; Xin, John H.

    2014-12-01

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ɛ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world.

  17. Effects of Cosmetic Formulations Containing Hydroxyacids on Sun-Exposed Skin: Current Applications and Future Developments

    Directory of Open Access Journals (Sweden)

    Andrija Kornhauser

    2012-01-01

    Full Text Available This paper describes recent data on the effects of various skin formulations containing hydroxyacids (HAs and related products on sun-exposed skin. The most frequently used classes of these products, such as α- and β-hydroxyacids, polyhydroxy acids, and bionic acids, are reviewed, and their application in cosmetic formulations is described. Special emphasis is devoted to the safety evaluation of these formulations, particularly on the effects of their prolonged use on sun-exposed skin. We also discuss the important contribution of cosmetic vehicles in these types of studies. Data on the effects of HAs on melanogenesis and tanning are also included. Up-to-date methods and techniques used in those explorations, as well as selected future developments in the cosmetic area, are presented.

  18. Carcinogenicity of syncrudes relative to natural petroleum as assessed by repetative mouse skin application

    Energy Technology Data Exchange (ETDEWEB)

    Holland, J.M.; Whitaker, M.S.; Wesley, J.W.

    1978-01-01

    The relative carcinogenicities of coal and shale derived liquid crudes was compared with a composite blend of natural petroleum using discontinuous exposure of mouse skin. All of the syncrudes were carcinogenic while the natural crude composite was negative following three times weekly application of 50% w/v solutions for 22 wks followed by a 22 wk observation period. In addition to eliciting progressive squamous carcinomas the syncrudes were also capable of inducing persistent ulcerative dermatitis. This inflammatory or necrotizing potential appeared to be inversely proportional to the carcinogenicity of the material. A measure of the relative solubility of the materials in mouse skin was obtained by quantitation of native fluorescence in frozen sections of skin. There appeared to be a general, although non-quantitative association between fluorescence intensity in sebaceous glands and carcinogenicity in epidermal cells, however it will be necessary to examine a greater number of samples to establish such a correlation.

  19. A different and safe method of split thickness skin graft fixation: medical honey application.

    Science.gov (United States)

    Emsen, Ilteris Murat

    2007-09-01

    Honey has been used for medicinal purposes since ancient times. Its antibacterial effects have been established during the past few decades. Still, modern medical practitioners hesitate to apply honey for local treatment of wounds. This may be because of the expected messiness of such local application. Hence, if honey is to be used for medicinal purposes, it has to meet certain criteria. The authors evaluated its use for the split thickness skin graft fixation because of its adhesive and other beneficial effects in 11 patients. No complications such as graft loss, infection, and graft rejection were seen. Based on these results, the authors advised honey as a new agent for split thickness skin graft fixation. In recent years there has been a renewed interest in honey wound management. There are a range of regulated wound care products that contain honey available on the Drug Tariff. This article addresses key issues associated with the use of honey, outlining how it may be best used, in which methods of split thickness skin graft fixations it may be used, and what clinical outcomes may be anticipated. For this reason, 11 patients who underwent different diagnosis were included in this study. In all the patients same medical honey was used for the fixation of the skin graft. No graft loss was seen during both the first dressing and the last view of the grafted areas. As a result, it has been shown that honey is also a very effective agent for split thickness skin graft fixations. Because it is a natural agent, it can be easily used in all skin graft operation for the fixation of the split thickness skin grafts.

  20. Safety evaluation of topical applications of ethanol on the skin and inside the oral cavity

    Directory of Open Access Journals (Sweden)

    Lachenmeier Dirk W

    2008-11-01

    Full Text Available Abstract Ethanol is widely used in all kinds of products with direct exposure to the human skin (e.g. medicinal products like hand disinfectants in occupational settings, cosmetics like hairsprays or mouthwashes, pharmaceutical preparations, and many household products. Contradictory evidence about the safety of such topical applications of the alcohol can be found in the scientific literature, yet an up-to-date risk assessment of ethanol application on the skin and inside the oral cavity is currently lacking. The first and foremost concerns of topical ethanol applications for public health are its carcinogenic effects, as there is unambiguous evidence for the carcinogenicity of ethanol orally consumed in the form of alcoholic beverages. So far there is a lack of evidence to associate topical ethanol use with an increased risk of skin cancer. Limited and conflicting epidemiological evidence is available on the link between the use of ethanol in the oral cavity in the form of mouthwashes or mouthrinses and oral cancer. Some studies pointed to an increased risk of oral cancer due to locally produced acetaldehyde, operating via a similar mechanism to that found after alcoholic beverage ingestion. In addition, topically applied ethanol acts as a skin penetration enhancer and may facilitate the transdermal absorption of xenobiotics (e.g. carcinogenic contaminants in cosmetic formulations. Ethanol use is associated with skin irritation or contact dermatitis, especially in humans with an aldehyde dehydrogenase (ALDH deficiency. After regular application of ethanol on the skin (e.g. in the form of hand disinfectants relatively low but measurable blood concentrations of ethanol and its metabolite acetaldehyde may occur, which are, however, below acute toxic levels. Only in children, especially through lacerated skin, can percutaneous toxicity occur. As there might be industry bias in many studies about the safety of topical ethanol applications, as well

  1. Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications.

    Science.gov (United States)

    Ahmed, Furqan; Dutta, Naba K; Zannettino, Andrew; Vandyke, Kate; Choudhury, Namita Roy

    2014-04-14

    The aim of this investigation was to understand and engineer the interactions between endothelial cells and the electrospun (ES) polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofiber surfaces and evaluate their potential for endothelialization. Elastomeric PVDF-HFP samples were electrospun to evaluate their potential use as small diameter artificial vascular graft scaffold (SDAVG) and compared with solvent cast (SC) PVDF-HFP films. We examined the consequences of fibrinogen adsorption onto the ES and SC samples for endothelialisation. Bone marrow derived endothelial cells (BMEC) of human origin were incubated with the test and control samples and their attachment, proliferation, and viability were examined. The nature of interaction of fibrinogen with SC and ES samples was investigated in detail using ELISA, XPS, and FTIR techniques. The pristine SC and ES PVDF-HFP samples displayed hydrophobic and ultrahydrophobic behavior and accordingly, exhibited minimal BMEC growth. Fibrinogen adsorbed SC samples did not significantly enhance endothelial cell binding or proliferation. In contrast, the fibrinogen adsorbed electrospun surfaces showed a clear ability to modulate endothelial cell behavior. This system also represents an ideal model system that enables us to understand the natural interaction between cells and their extracellular environment. The research reported shows potential of ES surfaces for artificial vascular graft applications.

  2. A novel artificial immune algorithm for spatial clustering with obstacle constraint and its applications.

    Science.gov (United States)

    Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji

    2014-01-01

    An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  3. Application of an Artificial Intelligence Method for Velocity Calibration and Events Location in Microseismic Monitoring

    Science.gov (United States)

    Yang, Y.; Chen, X.

    2013-12-01

    Good quality hydraulic fracture maps are heavily dependent upon the best possible velocity structure. Particle Swarm Optimization inversion scheme, an artificial intelligence technique for velocity calibration and events location could serve as a viable option, able to produce high quality data. Using perforation data to recalibrate the 1D isotropic velocity model derived from dipole sonic logs (or even without them), we are able to get the initial velocity model used for consequential events location. Velocity parameters can be inverted, as well as the thickness of the layer, through an iterative procedure. Performing inversion without integrating available data is unlikely to produce reliable results; especially if there are only one perforation shot and a single poor-layer-covered array along with low signal/noise ratio signal. The inversion method was validated via simulations and compared to the Fast Simulated Annealing approach and the Conjugate Gradient method. Further velocity model refinement can be accomplished while calculating events location during the iterative procedure minimizing the residuals from both sides. This artificial intelligence technique also displays promising application to the joint inversion of large-scale seismic activities data.

  4. Artificial neural networks in gynaecological diseases: current and potential future applications.

    Science.gov (United States)

    Siristatidis, Charalampos S; Chrelias, Charalampos; Pouliakis, Abraham; Katsimanis, Evangelos; Kassanos, Dimitrios

    2010-10-01

    Current (and probably future) practice of medicine is mostly associated with prediction and accurate diagnosis. Especially in clinical practice, there is an increasing interest in constructing and using valid models of diagnosis and prediction. Artificial neural networks (ANNs) are mathematical systems being used as a prospective tool for reliable, flexible and quick assessment. They demonstrate high power in evaluating multifactorial data, assimilating information from multiple sources and detecting subtle and complex patterns. Their capability and difference from other statistical techniques lies in performing nonlinear statistical modelling. They represent a new alternative to logistic regression, which is the most commonly used method for developing predictive models for outcomes resulting from partitioning in medicine. In combination with the other non-algorithmic artificial intelligence techniques, they provide useful software engineering tools for the development of systems in quantitative medicine. Our paper first presents a brief introduction to ANNs, then, using what we consider the best available evidence through paradigms, we evaluate the ability of these networks to serve as first-line detection and prediction techniques in some of the most crucial fields in gynaecology. Finally, through the analysis of their current application, we explore their dynamics for future use.

  5. Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression.

    Science.gov (United States)

    Aksu, Buket; Paradkar, Anant; de Matas, Marcel; Ozer, Ozgen; Güneri, Tamer; York, Peter

    2012-12-01

    The publication of the International Conference of Harmonization (ICH) Q8, Q9, and Q10 guidelines paved the way for the standardization of quality after the Food and Drug Administration issued current Good Manufacturing Practices guidelines in 2003. "Quality by Design", mentioned in the ICH Q8 guideline, offers a better scientific understanding of critical process and product qualities using knowledge obtained during the life cycle of a product. In this scope, the "knowledge space" is a summary of all process knowledge obtained during product development, and the "design space" is the area in which a product can be manufactured within acceptable limits. To create the spaces, artificial neural networks (ANNs) can be used to emphasize the multidimensional interactions of input variables and to closely bind these variables to a design space. This helps guide the experimental design process to include interactions among the input variables, along with modeling and optimization of pharmaceutical formulations. The objective of this study was to develop an integrated multivariate approach to obtain a quality product based on an understanding of the cause-effect relationships between formulation ingredients and product properties with ANNs and genetic programming on the ramipril tablets prepared by the direct compression method. In this study, the data are generated through the systematic application of the design of experiments (DoE) principles and optimization studies using artificial neural networks and neurofuzzy logic programs.

  6. A Novel Artificial Immune Algorithm for Spatial Clustering with Obstacle Constraint and Its Applications

    Directory of Open Access Journals (Sweden)

    Liping Sun

    2014-01-01

    Full Text Available An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  7. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    Science.gov (United States)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  8. Artificial intelligence metamodel comparison and application to wind turbine airfoil uncertainty analysis

    Directory of Open Access Journals (Sweden)

    Yaping Ju

    2016-05-01

    Full Text Available The Monte Carlo simulation method for turbomachinery uncertainty analysis often requires performing a huge number of simulations, the computational cost of which can be greatly alleviated with the help of metamodeling techniques. An intensive comparative study was performed on the approximation performance of three prospective artificial intelligence metamodels, that is, artificial neural network, radial basis function, and support vector regression. The genetic algorithm was used to optimize the predetermined parameters of each metamodel for the sake of a fair comparison. Through testing on 10 nonlinear functions with different problem scales and sample sizes, the genetic algorithm–support vector regression metamodel was found more accurate and robust than the other two counterparts. Accordingly, the genetic algorithm–support vector regression metamodel was selected and combined with the Monte Carlo simulation method for the uncertainty analysis of a wind turbine airfoil under two types of surface roughness uncertainties. The results show that the genetic algorithm–support vector regression metamodel can capture well the uncertainty propagation from the surface roughness to the airfoil aerodynamic performance. This work is useful to the application of metamodeling techniques in the robust design optimization of turbomachinery.

  9. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications.

    Science.gov (United States)

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-08-11

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure-Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron-Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  10. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    Directory of Open Access Journals (Sweden)

    Lucas Antón Pastur-Romay

    2016-08-01

    Full Text Available Over the past decade, Deep Artificial Neural Networks (DNNs have become the state-of-the-art algorithms in Machine Learning (ML, speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs. All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS, Quantitative Structure–Activity Relationship (QSAR research, protein structure prediction and genomics (and other omics data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron–Astrocyte Networks (DANAN could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  11. Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications.

    Science.gov (United States)

    Karahaliloğlu, Zeynep; Ercan, Batur; Chung, Stanley; Taylor, Erik; Denkbaş, Emir B; Webster, Thomas J

    2014-12-01

    Major issues faced with the use of today's skin grafts are infection, scar tissue formation, insufficient keratinocyte (or skin producing cells) proliferation and high production costs. To overcome these limitations, we propose here for the first time, a nanofeatured poly(lactide-co-glycolide) (PLGA) membrane as a next generation antibacterial skin graft material. An alkaline surface treatment method was used to create random nanofeatures on PLGA membranes where sodium hydroxide (NaOH) concentration and exposure times were altered to control surface morphology. Most significantly, and without the use of antibiotics, results showed a decrease in Staphylococcus aureus (a dangerous pathogen infecting skin grafts) growth for up to ∼40% after 2 days of culture on nanofeatured PLGA membranes compared to untreated controls. Results also showed that while bacteria growth was stunted, mammalian cell growth was not. Specifically, cell culture results showed an increase in human epidermal keratinocyte density, while the density of scar tissue forming human dermal fibroblasts, did not change on nanofeatured PLGA surfaces compared to the untreated controls after 3 days of culture. These findings indicate that the alkaline treatment of PLGA membranes is a promising quick and effective manner to limit scar tissue formation and bacterial invasion while increasing skin cell proliferation for improving numerous wound-healing applications.

  12. Application of Artificial Intelligent For Armour Vehicle Detection Using Digital Image Processing For Aerial Application

    Directory of Open Access Journals (Sweden)

    Kamaruddin Abd Ghani

    2011-01-01

    Full Text Available This paper will presents a new automatic target recognition (ATR algorithm to detect targets such as battle tanks and armoured personal carriers especially that been used by Malaysia Armed Forces from air-to- ground scenario. Numerous friendly-fire incidents justify the need for identification of armour vehicle in both command control and weapon systems. Rapid and reliable identification of the targets at maximum surveillance is a challenging problem. In this paper work, the reliable method to segregate the potential target from the background scene such as Fourier Transform is applied before the extracted target will be process in order to get the detail of edges and boundaries using Hough Transform. The edges will provide sufficient information for the system to generate training data for Artificial Neural Network simulation to recognize the potential target image.

  13. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vinicius M. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Muratov, Eugene [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Laboratory of Theoretical Chemistry, A.V. Bogatsky Physical-Chemical Institute NAS of Ukraine, Odessa 65080 (Ukraine); Fourches, Denis [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States); Strickland, Judy; Kleinstreuer, Nicole [ILS/Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), P.O. Box 13501, Research Triangle Park, NC 27709 (United States); Andrade, Carolina H. [Laboratory of Molecular Modeling and Design, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-220 (Brazil); Tropsha, Alexander, E-mail: alex_tropsha@unc.edu [Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2015-04-15

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  14. A NEW FABRICATION PROCESS FOR A FLEXIBLE SKIN WITH TEMPERATURE SENSOR ARRAY AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    LEE Gwo-Bin; HUANG Fu-Chun; Lee Chia-Yen; Mian Jiun-Jih

    2004-01-01

    This paper reports a novel technique for fabrication of a flexible skin with a temperature sensor array (40 × 1 sensors). A simplified MEMS technology using platinum resistors as sensing materials, which are sandwiched between two polyimide layers as flexible substrates is developed. The two polyimide layers are deposited on top of a thin aluminum layer, which serves as a sacrificial layer such that the flexible skin can be released by metal etching and peeled off easily. The flexible skin with a temperature sensor array has a high mechanical flexibility and can be handily attached on a highly curved surface to detect tiny temperature distribution inside a small area. The sensor array shows a linear output and has a sensitivity of 7.SmV/℃ (prior to amplifiers) at a drive current of 1 mA. To demonstrate its applications, two examples have been demonstrated, including measurement of temperature distribution around a micro heater of a micro PCR (polymerase chain reaction) chip for DNA amplification and detection of separation point for flow over a circular cylinder. The development of the flexible skin with a temperature sensor array may be crucial for measuring temperature distribution on any curved surface in the fields of aerodynamics, space exploration, auto making and biomedical applications etc.

  15. Application of Artificial Neural Network into the Water Level Modeling and Forecast

    Directory of Open Access Journals (Sweden)

    Marzenna Sztobryn

    2013-06-01

    Full Text Available The dangerous sea and river water level increase does not only destroy the human lives, but also generate the severe flooding in coastal areas. The rapidly changes in the direction and velocity of wind and associated with them sea level changes could be the severe threat for navigation, especially on the fairways of small fishery harbors located in the river mouth. There is the area of activity of two external forcing: storm surges and flood wave. The aim of the work was the description of an application of Artificial Neural Network (ANN methodology into the water level forecast in the case study field in Swibno harbor located is located at 938.7 km of the Wisla River and at a distance of about 3 km up the mouth (Gulf of Gdansk - Baltic Sea.

  16. Artificial Tongue-Placed Tactile Biofeedback for perceptual supplementation: application to human disability and biomedical engineering

    CERN Document Server

    Vuillerme, Nicolas; Moreau-Gaudry, Alexandre; Demongeot, Jacques; Payan, Yohan

    2007-01-01

    The present paper aims at introducing the innovative technologies, based on the concept of "sensory substitution" or "perceptual supplementation", we are developing in the fields of human disability and biomedical engineering. Precisely, our goal is to design, develop and validate practical assistive biomedical and/technical devices and/or rehabilitating procedures for persons with disabilities, using artificial tongue-placed tactile biofeedback systems. Proposed applications are dealing with: (1) pressure sores prevention in case of spinal cord injuries (persons with paraplegia, or tetraplegia); (2) ankle proprioceptive acuity improvement for driving assistance in older and/or disabled adults; and (3) balance control improvement to prevent fall in older and/or disabled adults. This paper presents results of three feasibility studies performed on young healthy adults.

  17. Application of feedback connection artificial neural network to seismic data filtering

    CERN Document Server

    Djarfour, Noureddine; Baddari, Kamel; Mihoubi, Abdelhafid; Ferahtia, Jalal; 10.1016/j.crte.2008.03.003

    2008-01-01

    The Elman artificial neural network (ANN) (feedback connection) was used for seismic data filtering. The recurrent connection that characterizes this network offers the advantage of storing values from the previous time step to be used in the current time step. The proposed structure has the advantage of training simplicity by a back-propagation algorithm (steepest descent). Several trials were addressed on synthetic (with 10% and 50% of random and Gaussian noise) and real seismic data using respectively 10 to 30 neurons and a minimum of 60 neurons in the hidden layer. Both an iteration number up to 4000 and arrest criteria were used to obtain satisfactory performances. Application of such networks on real data shows that the filtered seismic section was efficient. Adequate cross-validation test is done to ensure the performance of network on new data sets.

  18. Application of artificial neural network to predict Vickers microhardness of AA6061 friction stir welded sheets

    Institute of Scientific and Technical Information of China (English)

    Vahid Moosabeiki Dehabadi; Saeede Ghorbanpour; Ghasem Azimi

    2016-01-01

    The application of friction stir welding (FSW) is growing owing to the omission of difficulties in traditional welding processes. In the current investigation, artificial neural network (ANN) technique was employed to predict the microhardness of AA6061 friction stir welded plates. Specimens were welded employing triangular and tapered cylindrical pins. The effects of thread and conical shoulder of each pin profile on the microhardness of welded zone were studied using tow ANNs through the different distances from weld centerline. It is observed that using conical shoulder tools enhances the quality of welded area. Besides, in both pin profiles threaded pins and conical shoulders increase yield strength and ultimate tensile strength. Mean absolute percentage error (MAPE) for train and test data sets did not exceed 5.4% and 7.48%, respectively. Considering the accurate results and acceptable errors in the models’ responses, the ANN method can be used to economize material and time.

  19. A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish

    Directory of Open Access Journals (Sweden)

    Guijie Liu

    2016-01-01

    Full Text Available Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed.

  20. Implementation of recurrent artificial neural networks for nonlinear dynamic modeling in biomedical applications.

    Science.gov (United States)

    Stošovic, Miona V Andrejevic; Litovski, Vanco B

    2013-11-01

    Simulation is indispensable during the design of many biomedical prostheses that are based on fundamental electrical and electronic actions. However, simulation necessitates the use of adequate models. The main difficulties related to the modeling of such devices are their nonlinearity and dynamic behavior. Here we report the application of recurrent artificial neural networks for modeling of a nonlinear, two-terminal circuit equivalent to a specific implantable hearing device. The method is general in the sense that any nonlinear dynamic two-terminal device or circuit may be modeled in the same way. The model generated was successfully used for simulation and optimization of a driver (operational amplifier)-transducer ensemble. This confirms our claim that in addition to the proper design and optimization of the hearing actuator, optimization in the electronic domain, at the electronic driver circuit-to-actuator interface, should take place in order to achieve best performance of the complete hearing aid.

  1. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    Science.gov (United States)

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    gas-sensing devices and has enabled stable sensor operation within aqueous media. Furthermore, careful tuning of the chemical composition of the dielectric layer has provided a means to operate the sensor in real time within an aqueous environment and without the need for encapsulation layers. The integration of such devices as electronic mimics of skin will require the incorporation of biocompatible or biodegradable components. Toward this goal, OFETs may be fabricated with >99% biodegradable components by weight, and the devices are robust and stable, even in aqueous environments. Collectively, progress to date suggests that OFETs may be integrated within a single substrate to function as an electronic mimic of human skin, which could enable a large range of sensing-related applications from novel prosthetics to robotic surgery.

  2. THE STUDY OF CLINICAL APPLICATION OF ARTIFICIAL HEART%人工心脏临床应用研究

    Institute of Scientific and Technical Information of China (English)

    陈国涵; 刘中民; 卢蓉; 郭建华; 范慧敏; 刘泳; 李高平; 施巍巍; 李健

    2002-01-01

    Objective:To summarize practical experiences of clinical application of artificial heart and discuss its indications and prevention of complications. Methods: Before operation, all the four patients underwent regular treatment of internal medicine, and after its failure they were implanted with artificial hearts. Operations were performed under general anesthesia and external circulation at low temperature. Left ventricle assistant devices (LVAD) were used for three patients, and double ventricle assistant device (DVAP) for one. Two patients were embeded with Berlin artificial hearts (Melipot company). The other two were implanted with Medos artificial hearts ( Medos company). Results:All the patients had no infection and haemorrhage, while their cardiac functions were restored apparently. Three to five days after operation, patients could take off- bed activities. Two had been taken away their artificial hearts on 52th and 53th postoperative day, and arrhythmia disappeared. Half year follow- up revealed favorable results. One died,on 271st day,of bleeding from congenital cerebrovascular deformity. One died, on 10th postoperative day, of renal dysfunction and DIC. Conclusion: Artificial heart or Ventricle assistant devices (VAD) could be used as temporary substitute for heart transplantation, and used in emergent heart attacks in order to restore cardiac function.

  3. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation.

    Science.gov (United States)

    Du, Tingsong; Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.

  4. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy

    Directory of Open Access Journals (Sweden)

    Ganesan P

    2016-05-01

    Full Text Available Palanivel Ganesan,1,2 Dong-Kug Choi1,2 1Department of Applied Life Science, Nanotechnology Research Center, 2Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea Abstract: Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower penetration and high compound instability of various cosmetic products for sustained and enhanced compound delivery to the beauty-based skin therapy. To overcome these disadvantages, nanosized delivery technologies are currently in use for sustained and enhanced delivery of phyto-derived bioactive compounds in cosmeceutical sectors and products. Nanosizing of phytocompounds enhances the aseptic feel in various cosmeceutical products with sustained delivery and enhanced skin protecting activities. Solid lipid nanoparticles, transfersomes, ethosomes, nanostructured lipid carriers, fullerenes, and carbon nanotubes are some of the emerging nanotechnologies currently in use for their enhanced delivery of phytocompounds in skin care. Aloe vera, curcumin, resveratrol, quercetin, vitamins C and E, genistein, and green tea catechins were successfully nanosized using various delivery technologies and incorporated in various gels, lotions, and creams for skin, lip, and hair care for their sustained effects. However, certain delivery agents such as carbon nanotubes need to be studied for their roles in toxicity. This review broadly focuses on the usage of phytocompounds in various cosmeceutical products, nanodelivery technologies used in the delivery of phytocompounds to various cosmeceuticals, and various nanosized phytocompounds used in the development of novel nanocosmeceuticals to enhance skin-based therapy. Keywords: nanodelivery technologies, skincare

  5. Metal Complexes Containing Natural and and Artificial Radioactive Elements and Their Applications

    Directory of Open Access Journals (Sweden)

    Oxana V. Kharissova

    2014-07-01

    Full Text Available Recent advances (during the 2007–2014 period in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium, are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O, N,S-, P-containing ligands, as well π-organometallics are discussed from the view point of their synthesis, properties, and main applications. On the basis of their properties, several mono-, bi-, tri-, tetra- or polydentate ligands have been designed for specific recognition of some particular radionuclides, and can be used in the processes of nuclear waste remediation, i.e., recycling of nuclear fuel and the separation of actinides and fission products from waste solutions or for analytical determination of actinides in solutions; actinide metal complexes are also usefulas catalysts forcoupling gaseous carbon monoxide,as well as antimicrobial and anti-fungi agents due to their biological activity. Radioactive labeling based on the short-lived metastable nuclide technetium-99m (99mTc for biomedical use as heart, lung, kidney, bone, brain, liver or cancer imaging agents is also discussed. Finally, the promising applications of technetium labeling of nanomaterials, with potential applications as drug transport and delivery vehicles, radiotherapeutic agents or radiotracers for monitoring metabolic pathways, are also described.

  6. Artificial neural network applications in the calibration of spark-ignition engines: An overview

    Directory of Open Access Journals (Sweden)

    Richard Fiifi Turkson

    2016-09-01

    Full Text Available Emission legislation has become progressively tighter, making the development of new internal combustion engines very challenging. New engine technologies for complying with these regulations introduce an exponential dependency between the number of test combinations required for obtaining optimum results and the time and cost outlays. This makes the calibration task very expensive and virtually impossible to carry out. The potential use of trained neural networks in combination with Design of Experiments (DoE methods for engine calibration has been a subject of research activities in recent times. This is because artificial neural networks, compared with other data-driven modeling techniques, perform better in satisfying a majority of the modeling requirements for engine calibration including the curse of dimensionality; the use of DoE for obtaining few measurements as practicable, with the aim of reducing engine calibration costs; the required flexibility that allows model parameters to be optimized to avoid overfitting; and the facilitation of automated online optimization during the engine calibration process that eliminates the need for user intervention. The purpose of this review is to give an overview of the various applications of neural networks in the calibration of spark-ignition engines. The identified and discussed applications include system identification for rapid prototyping, virtual sensing, use of neural networks as look-up table surrogates, emerging control strategies and On-Board Diagnostic (OBD applications. The demerits of neural networks, future possibilities and alternatives were also discussed.

  7. An Application of Artificial Intelligence to the Implementation of Electronic Commerce

    Science.gov (United States)

    Srivastava, Anoop Kumar

    In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.

  8. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy

    OpenAIRE

    Ganesan P.; Choi DK

    2016-01-01

    Palanivel Ganesan,1,2 Dong-Kug Choi1,2 1Department of Applied Life Science, Nanotechnology Research Center, 2Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea Abstract: Phytocompounds have been used in cosmeceuticals for decades and have shown potential for beauty applications, including sunscreen, moisturizing and antiaging, and skin-based therapy. The major concerns in the usage of phyto-based cosmeceuticals are lower pene...

  9. Application of an artificial neural network in the enumeration of yeasts and bacteria adhering to solid substrata

    NARCIS (Netherlands)

    Wit, P; Busscher, HJ

    1998-01-01

    Artificial neural networks (ANNs) combined with automated image processing are bring used in a growing number of applications, ranging from car license plate identification to speech recognition. ANN analysis is capable of handling complicated images that cannot be dealt with using conventional imag

  10. Application of artificial neural network model for groundwater level forecasting in a river island with artificial influencing factors

    Science.gov (United States)

    Lee, Sanghoon; Yoon, Heesung; Park, Byeong-Hak; Lee, Kang-Kun

    2017-04-01

    Groundwater use has been increased for various purposes like agriculture, industry or drinking water in recent years, the issue related to sustainability on the groundwater use also has been raised. Accordingly, forecasting the groundwater level is of great importance for planning sustainable use of groundwater. In a small island surrounded by the Han River, South Korea, seasonal fluctuation of the groundwater level is characterized by multiple factors such as recharge/discharge event of the Paldang dam, Water Curtain Cultivation (WCC) during the winter season, operation of Groundwater Heat Pump System (GWHP). For a period when the dam operation is only occurred in the study area, a prediction of the groundwater level can be easily achieved by a simple cross-correlation model. However, for a period when the WCC and the GWHP systems are working together, the groundwater level prediction is challenging due to its unpredictable operation of the two systems. This study performed Artificial Neural Network (ANN) model to forecast the groundwater level in the river area reflecting the various predictable/unpredictable factors. For constructing the ANN models, two monitoring wells, YSN1 and YSO8, which are located near the injection and abstraction wells for the GWHP system were selected, respectively. By training with the groundwater level data measured in January 2015 to August 2015, response of groundwater level by each of the surface water level, the WCC and the GWHP system were evaluated. Consequentially, groundwater levels in December 2015 to March 2016 were predicted by ANN models, providing optimal fits in comparison to the observed water levels. This study suggests that the ANN model is a useful tool to forecast the groundwater level in terms of the management of groundwater. Acknowledgement : Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003) This research was

  11. IN VIVO EVALUATION OF SKIN IRRITATION POTENTIAL, MELASMA AND SEBUM CONTENT FOLLOWING LONG TERM APPLICATION OF SKIN CARE CREAM IN HEALTHY ADULTS, USING NON-INVASIVE BIOMETROLOGICAL TECHNIQUES.

    Science.gov (United States)

    Arshad, Atif I; Khan, Shoaib H M; Akhtar, Naveed; Mahmood, Asif; Sarfraz, Rai Muhammad

    2016-01-01

    The present investigation was conducted to evaluate non-invasively, various functional skin parameters i.e., irritation potential, melasma and sebum contents following long term application of topical cream (w/o) loaded with 2% methanolic extract of Ananas comosus L. versus placebo control (base) in healthy adults. Healthy human volunteers (n = 11, aged 20-30 years) were recruited for investigation and written informed consent was taken from each volunteer. In this single blinded study every volunteer applied formulation on one side of face and placebo on the other side of face twice daily for a period of 12 weeks (three months). Different skin parameters i.e., skin irritancy, melasma, and sebum contents were measured on both sides of face at baseline and after two weeks interval, using photometric device Mexameter and Sebumeter in a draught free room with modulated conditions of temperature (22-25°C) and humidity (55-60%). It was evident from the results that no primary skin irritancy was observed with patch test. Besides, statistical interpretation indicates that treatment with formulation is superior to placebo because it significantly (p ≤ 0.05) reduced the skin irritancy, melasma and sebum secretions throughout the study and reaching maximum -20.76 ± 0.89, -54.2 ± 0.37 and -40.71 ± 0.75%, respectively, at the end of study period. Antioxidant activity of extract was 92% compared to standard antioxidant. Conclusively, active cream loaded with fruit extract was well tolerated by all the volunteers and suitable to treat contact dermatitis, greasy skin, acne and seborrheic dermatitis and augmenting beauty and attraction by depigmentation of human skin. So, in the future, there is need to clinically evaluate these formulations in patients with compromised skin functions i.e., contact dermatitis, melasma, and acne vulgaris in order to explore the actual potential of this fruit.

  12. Staining of skin with dihydroxyacetone.

    Science.gov (United States)

    WITTGENSTEIN, E; BERRY, H K

    1960-09-30

    The reaction of skin with dihydroxyacetone to produce a brown "artificial tan" appears to proceed through combination with free amino groups in skin proteins, and particularly by combination of dihydroxyacetone with the free guanido group in arginine.

  13. ETHYLENE APPLICATION AFTER COLD STORAGE IMPROVES SKIN COLOR OF ‘VALENCIA’ ORANGES

    Directory of Open Access Journals (Sweden)

    MARIA LUIZA LYE JOMORI

    Full Text Available ABSTRACT Degreening is a postharvest technique that consists of applying ethylene to oranges fresh fruits to improve skin color. In Brazil, this technique is still not widely applied due to a lack of specific research, resulting in poor fruit coloration, which limits the oranges’ exportation. The objective of this study was to investigate the de-greening effect of ethylene application after cold storage in ‘Valencia’ oranges. The ethylene treatments (0; 5 and 10 µL L-1 for 96 h at 22°C were applied after storage for 30 days at 5°C. After ethylene application, the fruit were stored for three days at 22°C to simulate a shelf life. The skin color rate enhanced after ethylene treatment due to increased chlorophyllase activity. The content of carotenoids did not change, nor did the soluble solids, titratable acidity, ratio, percentage of juice and ascorbic acid content. The levels of acetaldehyde and ethanol in the juice were also assessed, and unpleasant odors or flavors did not occur despite a small increase in the acetaldehyde content. Therefore, the ethylene application after cold storage is efficient to improve the skin color of ‘Valencia’ orange without changing the internal quality.

  14. Enhancement of skin radical scavenging activity and stratum corneum lipids after the application of a hyperforin-rich cream.

    Science.gov (United States)

    Haag, S F; Tscherch, K; Arndt, S; Kleemann, A; Gersonde, I; Lademann, J; Rohn, S; Meinke, M C

    2014-02-01

    Hyperforin is well-known for its anti-inflammatory, anti-tumor, anti-bacterial, and antioxidant properties. The application of a hyperforin-rich verum cream could strengthen the skin barrier function by reducing radical formation and stabilizing stratum corneum lipids. Here, it was investigated whether topical treatment with a hyperforin-rich cream increases the radical protection of the skin during VIS/NIR irradiation. Skin lipid profile was investigated applying HPTLC on skin lipid extracts. Furthermore, the absorption- and scattering coefficients, which influence radical formation, were determined. 11 volunteers were included in this study. After a single cream application, VIS/NIR-induced radical formation could be completely inhibited by both verum and placebo showing an immediate protection. After an application period of 4weeks, radical formation could be significantly reduced by 45% following placebo application and 78% after verum application showing a long-term protection. Furthermore, the skin lipids in both verum and placebo groups increased directly after a single cream application but only significantly for ceramide [AP], [NP1], and squalene. After long-term cream application, concentration of cholesterol and the ceramides increased, but no significance was observed. These results indicate that regular application of the hyperforin-rich cream can reduce radical formation and can stabilize skin lipids, which are responsible for the barrier function. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application.

    Science.gov (United States)

    Chandika, Pathum; Ko, Seok-Chun; Oh, Gun-Woo; Heo, Seong-Yeong; Nguyen, Van-Tinh; Jeon, You-Jin; Lee, Bonggi; Jang, Chul Ho; Kim, GeunHyung; Park, Won Sun; Chang, Wonseok; Choi, Il-Whan; Jung, Won-Kyo

    2015-11-01

    An emerging paradigm in wound healing techniques is that a tissue-engineered skin substitute offers an alternative approach to create functional skin tissue. Here we developed a fish collagen/alginate (FCA) sponge scaffold that was functionalized by different molecular weights of chitooligosaccharides (COSs) with the use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as a cross-linking agent. The effects of cross-linking were analyzed by Fourier transform infrared spectroscopy. The results indicate that the homogeneous materials blending and cross-linking intensity were dependent on the molecular weights of COSs. The highly interconnected porous architecture with 160-260μm pore size and over 90% porosity and COS's MW driven swelling and retention capacity, tensile property and in vitro biodegradation behavior guaranteed the FCA/COS scaffolds for skin tissue engineering application. Further improvement of these properties enhanced the cytocompatibility of all the scaffolds, especially the scaffolds containing COSs with MW in the range of 1-3kDa (FCA/COS1) showed the best cytocompatibility. These physicochemical, mechanical, and biological properties suggest that the FCA/COS1 scaffold is a superior candidate that can be used for skin tissue regeneration.

  16. Topical PDT in the Treatment of Benign Skin Diseases: Principles and New Applications

    Directory of Open Access Journals (Sweden)

    Miri Kim

    2015-09-01

    Full Text Available Photodynamic therapy (PDT uses a photosensitizer, light energy, and molecular oxygen to cause cell damage. Cells exposed to the photosensitizer are susceptible to destruction upon light absorption because excitation of the photosensitizing agents leads to the production of reactive oxygen species and, subsequently, direct cytotoxicity. Using the intrinsic cellular heme biosynthetic pathway, topical PDT selectively targets abnormal cells, while preserving normal surrounding tissues. This selective cytotoxic effect is the basis for the use of PDT in antitumor treatment. Clinically, PDT is a widely used therapeutic regimen for oncologic skin conditions such as actinic keratosis, squamous cell carcinoma in situ, and basal cell carcinoma. PDT has been shown, under certain circumstances, to stimulate the immune system and produce antibacterial, and/or regenerative effects while protecting cell viability. Thus, it may be useful for treating benign skin conditions. An increasing number of studies support the idea that PDT may be effective for treating acne vulgaris and several other inflammatory/infective skin diseases, including psoriasis, rosacea, viral warts, and aging-related changes. This review provides an overview of the clinical investigations of PDT and discusses each of the essential aspects of the sequence: its mechanism of action, common photosensitizers, light sources, and clinical applications in dermatology. Of the numerous clinical trials of PDT in dermatology, this review focuses on those studies that have reported remarkable therapeutic benefits following topical PDT for benign skin conditions such as acne vulgaris, viral warts, and photorejuvenation without causing severe side effects.

  17. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin.

    Directory of Open Access Journals (Sweden)

    Tao Tong

    Full Text Available Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression.These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue.

  18. Influence of Topical, Systemic and Combined Application of Antioxidants on the Barrier Properties of the Human Skin.

    Science.gov (United States)

    Lademann, Juergen; Vergou, Theognosia; Darvin, Maxim E; Patzelt, Alexa; Meinke, Martina C; Voit, Christiane; Papakostas, Dimitrios; Zastrow, Leonhard; Sterry, Wolfram; Doucet, Olivier

    2016-01-01

    The formation of free radicals in human skin by solar ultraviolet radiation is considered to be the main reason for extrinsic skin aging. The antioxidants in human tissue represent an efficient protection system against the destructive action of these reactive free radicals. In this study, the parameters of the skin, epidermal thickness, stratum corneum moisture, elasticity and wrinkle volume, were determined before and after the treatment with antioxidant- or placebo-containing tablets and creams. The study included 5 groups of 15 volunteers each, who were treated for 2 months with antioxidant-containing or placebo tablets, creams or a combination of antioxidant-containing tablets and cream. The skin parameters were measured at time point 0 and at week 8 utilizing ultrasound for the determination of epidermal thickness, a corneometer for stratum corneum moisture measurements, skin profilometry for quantifying the wrinkle volume and a cutometer for determining the elasticity. The verum cream had a positive influence on epidermal thickness, elasticity and skin moisture, but the verum tablets improved the epidermal thickness only. The combined application of verum tablets and creams led to a significant improvement of all investigated skin parameters, whereas the application of placebo tablets or cream did not influence any parameters. The topical and oral supplementation of antioxidants can be an instrument to improve several skin parameters and potentially counteract or decelerate the process of extrinsic skin aging. © 2016 S. Karger AG, Basel.

  19. Topical application of ochratoxin A causes DNA damage and tumor initiation in mouse skin.

    Directory of Open Access Journals (Sweden)

    Rahul Kumar

    Full Text Available Skin cancer is one of the most common forms of cancer and 2-3 million new cases are being diagnosed globally each year. Along with UV rays, environmental pollutants/chemicals including mycotoxins, contaminants of various foods and feed stuffs, could be one of the aetiological factors of skin cancer. In the present study, we evaluated the DNA damaging potential and dermal carcinogenicity of a mycotoxin, ochratoxin A (OTA, with the rationale that dermal exposure to OTA in workers may occur during their involvement in pre and post harvest stages of agriculture. A single topical application of OTA (20-80 µg/mouse resulted in significant DNA damage along with elevated γ-H2AX level in skin. Alteration in oxidative stress markers such as lipid peroxidation, protein carbonyl, glutathione content and antioxidant enzymes was observed in a dose (20-80 µg/mouse and time-dependent (12-72 h manner. The oxidative stress was further emphasized by the suppression of Nrf2 translocation to nucleus following a single topical application of OTA (80 µg/mouse after 24 h. OTA (80 µg/mouse application for 12-72 h caused significant enhancement in- (a reactive oxygen species generation, (b activation of ERK1/2, p38 and JNK MAPKs, (c cell cycle arrest at G0/G1 phase (37-67%, (d induction of apoptosis (2.0-11.0 fold, (e expression of p53, p21/waf1, (f Bax/Bcl-2 ratio, (g cytochrome c level, (h activities of caspase 9 (1.2-1.8 fold and 3 (1.7-2.2 fold as well as poly ADP ribose polymerase cleavage. In a two-stage mouse skin tumorigenesis protocol, it was observed that a single topical application of OTA (80 µg/mouse followed by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate for 24 week leads to tumor formation. These results suggest that OTA has skin tumor initiating property which may be related to oxidative stress, MAPKs signaling and DNA damage.

  20. Embedded Control in Wearable Medical Devices: Application to the Artificial Pancreas

    Directory of Open Access Journals (Sweden)

    Stamatina Zavitsanou

    2016-09-01

    Full Text Available Significant increases in processing power, coupled with the miniaturization of processing units operating at low power levels, has motivated the embedding of modern control systems into medical devices. The design of such embedded decision-making strategies for medical applications is driven by multiple crucial factors, such as: (i guaranteed safety in the presence of exogenous disturbances and unexpected system failures; (ii constraints on computing resources; (iii portability and longevity in terms of size and power consumption; and (iv constraints on manufacturing and maintenance costs. Embedded control systems are especially compelling in the context of modern artificial pancreas systems (AP used in glucose regulation for patients with type 1 diabetes mellitus (T1DM. Herein, a review of potential embedded control strategies that can be leveraged in a fully-automated and portable AP is presented. Amongst competing controllers, emphasis is provided on model predictive control (MPC, since it has been established as a very promising control strategy for glucose regulation using the AP. Challenges involved in the design, implementation and validation of safety-critical embedded model predictive controllers for the AP application are discussed in detail. Additionally, the computational expenditure inherent to MPC strategies is investigated, and a comparative study of runtime performances and storage requirements among modern quadratic programming solvers is reported for a desktop environment and a prototype hardware platform.

  1. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development.

    Science.gov (United States)

    Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana

    2016-01-01

    This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.

  2. Enriching the Symmetry of Maxwell Equations through Unprecedented Magnetic Responses of Artificial Metamaterials and Their Revolutionary Applications

    Directory of Open Access Journals (Sweden)

    Ta-Jen Yen

    2011-06-01

    Full Text Available The major issue regarding magnetic response in nature—“negative values for the permeability μ of material parameters, especially in terahertz or optical region” makes the electromagnetic properties of natural materials asymmetric. Recently, research in metamaterials has grown in significance because these artificial materials can demonstrate special and, indeed, extraordinary electromagnetic phenomena such as the inverse of Snell’s law and novel applications. A critical topic in metamaterials is the artificial negative magnetic response, which can be designed in the higher frequency regime (from microwave to optical range. Artificial magnetism illustrates new physics and new applications, which have been demonstrated over the past few years. In this review, we present recent developments in research on artificial magnetic metamaterials including split-ring resonator structures, sandwich structures, and high permittivity-based dielectric composites. Engineering applications such as invisibility cloaking, negative refractive index medium, and slowing light fall into this category. We also discuss the possibility that metamaterials can be suitable for realizing new and exotic electromagnetic properties.

  3. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments.

    Science.gov (United States)

    Mutlu, Ilven; Oktay, Enver

    2013-04-01

    Highly porous 17-4 PH stainless steel foam for biomedical applications was produced by space holder technique. Metal release and weight loss from 17-4 PH stainless steel foams was investigated in simulated body fluid and artificial saliva environments by static immersion tests. Inductively coupled plasma-mass spectrometer was employed to measure the concentrations of various metal ions released from the 17-4 PH stainless steel foams into simulated body fluids and artificial saliva. Effect of immersion time and pH value on metal release and weight loss in simulated body fluid and artificial saliva were determined. Pore morphology, pore size and mechanical properties of the 17-4 PH stainless steel foams were close to human cancellous bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. [Research and development of artificial retina material].

    Science.gov (United States)

    Hu, Ning; Yang, Jun; Peng, Chenglin; Wang, Xing; Zhang, Sijie; Zhang, Ying; Zheng, Erxin

    2008-04-01

    The application of artificial retina was introduced. The principal characteristics of artificial retina material were reviewed in particular. Moreover, the recent research development and application prospect were discussed.

  5. 人工神经网络的发展及应用%Application and prospect of Artificial Neural Network

    Institute of Scientific and Technical Information of China (English)

    毛健; 赵红东; 姚婧婧

    2011-01-01

    人工神经网络是人工智能的重要分支,具有自适应、自组织和自学习的特点。回顾了人工神经网络理论的发展历史.并介绍了其在信息、医学、经济、控制等领域的应用及研究现状。随着人们对人工神经网络不断地探索和研究,并将其与一些传统方法相结合,将推动人工智能的发展,在以后的生产生活中发挥更大的作用。%As an important branch of artificial intelligence, artificial neural network own the characteristics of self-adaption, self-organization and self-learning. Review the development history of artificial neural network theory and its application and research status in the field of information, medicine, economic, control and others are introduced. As continuous exploring and researching the combination of artificial neural network and some traditional methods will promote the development of artificial intelligence and play a bigger role in the production and living later.

  6. The application of artificial intelligence for the identification of the maceral groups and mineral components of coal

    Science.gov (United States)

    Mlynarczuk, Mariusz; Skiba, Marta

    2017-06-01

    The correct and consistent identification of the petrographic properties of coal is an important issue for researchers in the fields of mining and geology. As part of the study described in this paper, investigations concerning the application of artificial intelligence methods for the identification of the aforementioned characteristics were carried out. The methods in question were used to identify the maceral groups of coal, i.e. vitrinite, inertinite, and liptinite. Additionally, an attempt was made to identify some non-organic minerals. The analyses were performed using pattern recognition techniques (NN, kNN), as well as artificial neural network techniques (a multilayer perceptron - MLP). The classification process was carried out using microscopy images of polished sections of coals. A multidimensional feature space was defined, which made it possible to classify the discussed structures automatically, based on the methods of pattern recognition and algorithms of the artificial neural networks. Also, from the study we assessed the impact of the parameters for which the applied methods proved effective upon the final outcome of the classification procedure. The result of the analyses was a high percentage (over 97%) of correct classifications of maceral groups and mineral components. The paper discusses also an attempt to analyze particular macerals of the inertinite group. It was demonstrated that using artificial neural networks to this end makes it possible to classify the macerals properly in over 91% of cases. Thus, it was proved that artificial intelligence methods can be successfully applied for the identification of selected petrographic features of coal.

  7. Application of 2-um wavelength holmium lasers for treatment of skin diseases

    Science.gov (United States)

    Shcherbakov, Ivan A.; Klimov, Igor V.; Tsvetkov, Vladimir B.; Nerobeev, Alexander I.; Sadovnikova, Lija B.; Eliseenko, Vladimir I.

    1994-09-01

    Theoretical and experimental analysis of the efficiency of application of 2 micrometers pulsed holmium laser for cosmetic and plastic surgery and dermatology is carried out. Preliminary experiments were carried out on rats. Solid state 2 micrometers pulsed laser was allowed to operate in free running mode with pulse energy up to 1.5 J and pulse repetition rate up to 5 Hz. To deliver emission to the object a flexible quartz fiber without further focusing of 2.5 m in length and 400 micrometers of the core diameter was used. The effect of the different power density emission on the skin was studied. The second stage was the study of the influence of 2 micrometers emission on human skin. The results of the removal of hemangioma, papilloma, telangiectasia, nevus, nevus acantholytic, xanthelasma palpebral, verruca, chloasma, pigmental spots, tattoos, etc. are presented. Precision, simplicity, efficiency, and the high cosmetic effect of these operations is noted.

  8. Aromatic DNA adducts in human white blood cells and skin after dermal application of coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Godschalk, R.W.L.; Ostertag, J.U.; Moonen, E.J.C.; Neumann, H.A.M.; Kleinjans, J.C.S.; Schooten, F.J. van [University of Maastricht, Maastricht (Netherlands). Dept. of Health Risk Analysis and Toxicology

    1998-09-01

    A group of eczema patients topically treated with coal tar (CT) ointments was used as a model population to examine the applicability of DNA adducts in white blood cell (WBC) subpopulations as a measure of dermal exposure to polycyclic aromatic hydrocarbons (PAHs). Aromatic DNA adducts were examined by {sup 32}P-postlabeling in exposed skin and WBC subsets, and urinary excretion of PAH metabolites was determined to assess the whole-body burden. The median urinary excretion of 1-hydroxypyrene and 3-hydroxybenzo(a)pyrene was 0.39 and 0.01 {mu}mol/mol creatinine respectively, before the dermal application of CT ointments. After treatment for 1 week, these levels increased to 139.7 and 1.18 {mu}mol/mol creatinine respectively, indicating that considerable amounts of PAHs were absorbed. Median aromatic DNA adduct levels were significantly increased in skin from 2.9 adduct/10{sup 8} nucleotides before treatment to 63.3 adducts/10{sup 8} nt after treatment with CT, in monocytes from 0.28 to 0.86 adducts/10{sup 8} nt, in lymphocytes from 0.33 to 0.89 adducts/10{sup 8} nt and in granulocytes from 0.28 to 0.54 adducts/10{sup 8} nt. A week after stopping the CT treatment, the DNA adduct levels in monocytes and granulocytes were reduced to 0.38 and 0.38 adducts/10{sup 8} nt respectively, whereas the adduct levels in lymphocytes remained enhanced. Total DNA adduct levels in skin correlated with the adduct levels in monocytes and lymphocytes. Excretion of urinary metabolites during the first week of treatment was correlated with the percentage of the skin surface treated with CT ointment and decreased within a week after the cessation of treatment. 3-Hydroxybenzo(a)pyrene excretion, correlated with the levels of DNA adducts in skin that comigrated with benzo(a)pyrene-diol-epoxide-DNA. This study indicates that the DNA adduct levels in mononuclear WBCs can possibly be used as a surrogate for skin DNA after dermal exposure to PAHs. 34 refs., 4 figs., 1 tab.

  9. A Novel Application of Artificial Neural Network for the Solution of Inverse Kinematics Controls of Robotic Manipulators

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Nanda

    2012-08-01

    Full Text Available In robotic applications and research, inverse kinematics is one of the most important problems in terms of robot kinematics and control. Consequently, finding the solution of Inverse Kinematics in now days is considered as one of the most important problems in robot kinematics and control. As the intricacy of robot manipulator increases, obtaining the mathematical, statistical solutions of inverse kinematics are difficult and computationally expensive. For that reason, now soft-computing based highly intelligent based model applications should be adopted to getting appropriate solution for inverse kinematics. In this paper, a novel application of artificial neural network is used for controlling a robotic manipulator. The proposed methods are based on the establishments of the non-linear mapping between Cartesian and joint coordinates using multi layer perceptron and functional link artificial neural network.

  10. Relative bioavailability of salicylic acid following dermal application of a 30% salicylic acid skin peel preparation.

    Science.gov (United States)

    Fung, Wing; Orak, Deborah; Re, Thomas A; Haughey, David B

    2008-03-01

    A single-center, single-sequence, two-period crossover study was performed to compare the systemic exposure to salicylic acid (SA) following facial application of a 30% SA cosmetic skin peel formulation applied for 5 min and an oral dose of 650 mg aspirin in nine healthy male and female subjects. The mean (SD) maximum SA concentration (Cmax) was 0.81 (0.32) microg/mL and 56.4 (14.2) microg/mL. The AUC-based safety margin ratio was 50:1. A depot effect was observed during topical application of the skin peel solution as the absorption of SA continued beyond the 5-min application period. Plasma SA Cmax values were achieved from 1.4 to 3.5 h after topical application and from 0.5 to 1.5 h after oral aspirin. The plasma concentrations in the present study (30%; 5 min) were similar to that of a low concentration (2%) applied in a leave-on product to the same body surface area. In conclusion, our results suggest that the use of this SA facial peel should not pose any significant systemic health risks.

  11. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    Science.gov (United States)

    Darvin, M. E.; Richter, H.; Zhu, Y. J.; Meinke, M. C.; Knorr, F.; Gonchukov, S. A.; Koenig, K.; Lademann, J.

    2014-07-01

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted.

  12. Comparison of in vivo and ex vivo laser scanning microscopy and multiphoton tomography application for human and porcine skin imaging

    Energy Technology Data Exchange (ETDEWEB)

    Darvin, M E; Richter, H; Zhu, Y J; Meinke, M C; Knorr, F; Lademann, J [Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venerology and Allergology, Charité - Universitätsmedizin Berlin (Germany); Gonchukov, S A [National Research Nuclear University ' ' MEPhI' ' (Russian Federation); Koenig, K [JenLab GmbH, Schillerstr. 1, 07745 Jena (Germany)

    2014-07-31

    Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)

  13. Hyperthermia on skin immune system and its application in the treatment of HPV-infected skin diseases

    Institute of Scientific and Technical Information of China (English)

    Gao Xinghua; Chen Hongduo

    2014-01-01

    In this paper,the effects of hyperthermia on cells and immune system are introduced briefly. The mechanism of action of hyperthermia on human papilloma virus (HPV)-infected skin diseases was elaborated as an example in this paper. Many studies have proved that hyperthermia affects a number of cellular and molecu-lar constitutes in the skin immune system,involving both innate and adaptive immune responses;the efficacy of hyperthermia in treating some infectious and cancerous conditions has been validated and applied in clinics, while molecular mechanisms of hyperthermia affecting the immunereaction is still unclear.

  14. Hyperthermia on skin immune system and its application in the treatment of HPV-infected skin diseases

    Institute of Scientific and Technical Information of China (English)

    Gao Xinghua; Chen Hongduo

    2014-01-01

    In this paper, the effects of hyperthermia on cells and immune system are introduced briefly. The mechanism of action of hyperthermia on human papilloma virus (HPV)-infected skin diseases was elaborated as an example in this paper. Many studies have proved that hyperthermia affects a number of cellular and molecu- lar constitutes in the skin immune system, involving both innate and adaptive immune responses; the efficacy of hyperthermia in treating some infectious and cancerous conditions has been validated and applied in clinics, while molecular mechanisms of hyperthermia affecting the immunereaction is still unclear.

  15. The application of artificial intelligence in the optimal design of mechanical systems

    Science.gov (United States)

    Poteralski, A.; Szczepanik, M.

    2016-11-01

    The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.

  16. Degradation and antibacterial properties of magnesium alloys in artificial urine for potential resorbable ureteral stent applications.

    Science.gov (United States)

    Lock, Jaclyn Y; Wyatt, Eric; Upadhyayula, Srigokul; Whall, Andrew; Nuñez, Vicente; Vullev, Valentine I; Liu, Huinan

    2014-03-01

    This article presents an investigation on the effectiveness of magnesium and its alloys as a novel class of antibacterial and biodegradable materials for ureteral stent applications. Magnesium is a lightweight and biodegradable metallic material with beneficial properties for use in medical devices. Ureteral stent is one such example of a medical device that is widely used to treat ureteral canal blockages clinically. The bacterial colony formation coupled with the encrustation on the stent surface from extended use often leads to clinical complications and contributes to the failure of indwelling medical devices. We demonstrated that magnesium alloys decreased Escherichia coli viability and reduced the colony forming units over a 3-day incubation period in an artificial urine (AU) solution when compared with currently used commercial polyurethane stent. Moreover, the magnesium degradation resulted in alkaline pH and increased magnesium ion concentration in the AU solution. The antibacterial and degradation properties support the potential use of magnesium-based materials for next-generation ureteral stents. Further studies are needed for clinical translation of biodegradable metallic ureteral stents.

  17. Application of textured YBCO bulks with artificial holes for superconducting magnetic bearing

    Science.gov (United States)

    Dias, D. H. N.; Sotelo, G. G.; Moysés, L. A.; Telles, L. G. T.; Bernstein, P.; Kenfaui, D.; Aburas, M.; Chaud, X.; Noudem, J. G.

    2015-07-01

    The levitation force between a superconductor and a permanent magnet has been investigated for the development of superconducting magnetic bearings (SMBs). Depending on the proposed application, the SMBs can be arranged with two kinds of symmetries: rotational or linear. The SMBs present passive operation, low level of noise and no friction, but they need a cooling system for their operation. Nowadays the cooling problem may be easily solved by the use of a commercial cryocooler. The levitation force of SMBs is directly related to the quality of the superconductor material (which depends on its critical current density) and the permanent magnet arrangement. Also, research about the YBa2Cu3Ox (Y123) bulk materials has shown that artificial holes enhance the superconducting properties, in particular the magnetic trapped field. In this context, this work proposes the investigation of the levitation force of a bulk Y123 sample with multiple holes and the comparison of its performances with those of conventional plain Y123 superconductors.

  18. Modeling of a corrugated dielectric elastomer actuator for artificial muscle applications

    Science.gov (United States)

    Kadooka, Kevin; Taya, Minoru; Naito, Keishi; Saito, Makoto

    2015-04-01

    Dielectric elastomer actuators have many advantages, including light weight, simplicity, high energy density, and silent operation. These features make them suitable to replace conventional actuators and transducers, especially in artificial muscle applications where large contractile strains are necessary for lifelike motions. This paper will introduce the concept of a corrugated dielectric elastomer actuator (DEA), which consists of dielectric elastomer (DE) laminated to a thin elastic layer to induce bending motion at each of the corrugations, resulting in large axial deformation. The location of the DE and elastic layers can be configured to provide tensile or compressive axial strain. Such corrugated DE actuators are also highly scalable: linking multiple actuators in series results in greater deformation, whereas multiple actuators in parallel results in larger force output. Analytical closed-form solutions based on linear elasticity were derived for the displacement and force output of curved unimorph and corrugated DEA, both consisting of an arbitrary number of lamina. A total strain energy analysis and Castigiliano's theorem were used to predict the nonlinear force-displacement behavior of the corrugated actuator. Curved unimorph and corrugated DEA were fabricated using VHB F9469PC as the DE material. Displacement of the actuators observed during testing agreed well with the modeling results. Large contractile strain (25.5%) was achieved by the corrugated DEA. Future work includes investigating higher performance DE materials such as plasticized PVDF terpolymers, processed by thin film deposition methods.

  19. Biomedical, Artificial Intelligence, and DNA Computing Photonics Applications and Web Engineering, Wilga, May 2012

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2012-05-01

    This paper is the fifth part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Biomedical, Artificial Intelligence and DNA Computing technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].

  20. Artificial Neural Networks for Processing Graphs with Application to Image Understanding: A Survey

    Science.gov (United States)

    Bianchini, Monica; Scarselli, Franco

    In graphical pattern recognition, each data is represented as an arrangement of elements, that encodes both the properties of each element and the relations among them. Hence, patterns are modelled as labelled graphs where, in general, labels can be attached to both nodes and edges. Artificial neural networks able to process graphs are a powerful tool for addressing a great variety of real-world problems, where the information is naturally organized in entities and relationships among entities and, in fact, they have been widely used in computer vision, f.i. in logo recognition, in similarity retrieval, and for object detection. In this chapter, we propose a survey of neural network models able to process structured information, with a particular focus on those architectures tailored to address image understanding applications. Starting from the original recursive model (RNNs), we subsequently present different ways to represent images - by trees, forests of trees, multiresolution trees, directed acyclic graphs with labelled edges, general graphs - and, correspondingly, neural network architectures appropriate to process such structures.

  1. Application of Artificial Bee Colony Algorithm to Maximum Likelihood DOA Estimation

    Institute of Scientific and Technical Information of China (English)

    Zhicheng Zhang; Jun Lin; Yaowu Shi

    2013-01-01

    Maximum Likelihood (ML) method has an excellent performance for Direction-Of-Arrival (DOA) estimation,but a multidimensional nonlinear solution search is required which complicates the computation and prevents the method from practical use.To reduce the high computational burden of ML method and make it more suitable to engineering applications,we apply the Artificial Bee Colony (ABC) algorithm to maximize the likelihood function for DOA estimation.As a recently proposed bio-inspired computing algorithm,ABC algorithm is originally used to optimize multivariable functions by imitating the behavior of bee colony finding excellent nectar sources in the nature environment.It offers an excellent alternative to the conventional methods in ML-DOA estimation.The performance of ABC-based ML and other popular meta-heuristic-based ML methods for DOA estimation are compared for various scenarios of convergence,Signal-to-Noise Ratio (SNR),and number of iterations.The computation loads of ABC-based ML and the conventional ML methods for DOA estimation are also investigated.Simulation results demonstrate that the proposed ABC based method is more efficient in computation and statistical performance than other ML-based DOA estimation methods.

  2. Recent advances in knowledge-based paradigms and applications enhanced applications using hybrid artificial intelligence techniques

    CERN Document Server

    Jain, Lakhmi

    2014-01-01

    This book presents carefully selected contributions devoted to the modern perspective of AI research and innovation. This collection covers several areas of applications and motivates new research directions. The theme across all chapters combines several domains of AI research , Computational Intelligence and Machine Intelligence including an introduction to  the recent research and models. Each of the subsequent chapters reveals leading edge research and innovative solution that employ AI techniques with an applied perspective. The problems include classification of spatial images, early smoke detection in outdoor space from video images, emergent segmentation from image analysis, intensity modification in images, multi-agent modeling and analysis of stress. They all are novel pieces of work and demonstrate how AI research contributes to solutions for difficult real world problems that benefit the research community, industry and society.

  3. The three moments of skin cream application: an evidence-based proposal for use of skin creams in the prevention of irritant contact dermatitis in the workplace.

    Science.gov (United States)

    Hines, J; Wilkinson, S M; John, S M; Diepgen, T L; English, J; Rustemeyer, T; Wassilew, S; Kezic, S; Maibach, H I

    2017-01-01

    Contact dermatitis is one of the most common occupational diseases, with serious impact on quality of life, lost days at work and a condition that may be chronically relapsing. Regular prophylactic skin cream application is widely acknowledged to be an effective prevention strategy against occupational contact dermatitis; however, compliance rates remain low. To present a simple programme for skin cream application in the workplace with focus on implementation to drive down the rate of occupational irritant contact dermatitis, an expert panel of eight international dermatologists combined personal experience with extensive literature review. The recommendations are based on clinical experience as supported by evidence-based data from interventional studies. The authors identified three moments for skin cream application in the work place: (i) before starting a work period; (ii) after washing hands; and (iii) after work. Affecting behaviour change requires systematic communications, monitoring and reporting, which is proposed through Kotter's principles of organizational change management. Measurement tools are provided in the appendix. Interventional data based on application of this proposal is required to demonstrate its effectiveness. © 2016 The Authors. Journal of the European Academy of Dermatology and Venereology published by John Wiley & Sons Ltd on behalf of European Academy of Dermatology and Venereology.

  4. Application of an artificial neural network to ready-mixed concretes mix design

    Directory of Open Access Journals (Sweden)

    Setién, J.

    2003-06-01

    Full Text Available This paper presents the practical application of cm artificial neural network (ANN to the problem of concrete mix in a factory. After a brief introduction to the complex problem of concrete mixes design and a quick review of the fundamental basis of neurocomputation, an optimal neural network model has been developed to cope with such a problem. For training the net, several control mixes have been fabricated recording in all cases both the characteristic 28 days compressive strength and the workability measured in terms of the slump of the Abrams' cone. After the training process of the net, the power of its predictive ability is checked by comparison of the results obtained with those corresponding to four reference mixes; in this way, it is shown that the considered approach can be used in multicriterial search for optimal concrete mixes.

    En este trabajo se presenta la aplicación práctica de una red neuronal artificial (ANN al problema de la dosificación de hormigones en planta. Tras una breve introducción a la compleja problemática de la dosificación de hormigones y un repaso a los fundamentos de la neurocomputación, se diseña un modelo de red neuronal óptimo para abordar el problema. Para entrenar dicha red, se realizan varias amasadas de prueba, registrándose para cada una de ellas la trabajabilidad, mediante la medida del asiento del cono de Abrams, y ¡a resistencia característica a los 28 días. Una vez entrenada la red, se pone a prueba su carácter predictivo comparando los resultados que proporciona con los de cuatro amasadas de referencia, demostrándose que esta aproximación puede ser utilizada como método multicriterial para la obtención de mezclas óptimas de hormigón.

  5. Artificial intelligence applications in the nuclear field: Achievements and prospects: The new challenge

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.B. (Service d' Etudes de Reacteurs et de Mathematiques Appliquees, Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France))

    1993-04-01

    Applications of Artificial Intelligence in the nuclear field started by developing expert systems dedicated to off-line problems of diagnosis, maintenance. It demonstrated the capability of solving limited but complex problems by use of explicit symbolic knowledge driven by simple logic of early 'inference engines'. A second step aimed at solving more ambitious problems related to plant design and operation, with improved methodologies and tools, generalized: Combining objects and first order logic, developing deep knowledge representation of plants, structuring the knowledge bases, extending the reasoning models towards time and assumption based truth maintenance. New limits did appear: For instance, the validation problem became critical. In order to work out problems faced in late eighties, powerful principles and methods are available: - Integrating available knowledge bases and developing background knowledge bases gathering conceptual knowledge used in several fields of applications. - Carrying on the development of high level reusable reasoning models and of distributed intelligence models and tools; - providing the systems with a self-assessment and self-criticism capability, by the cooperation of several agents reasoning at different levels. - Bringing in the neural networks and connecting them to knowledge base systems. The previous developments require extensive resources. Big projects that can bear their costs exist in the following areas: - 'Knowledge Aided Supercomputing', where the supervision of the computing process by intelligent software could ensure the synergy between modern, highly modular and versatile software, supercomputing capabilities, and the end user in charge of the specifications of the computation. In the field of Reactor Physics, a project of extended integration is specified in CEA (CARENE), in order to improve the connection between methods and numerical schemes available in APOLLO2, CRONOS2...

  6. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation

    Directory of Open Access Journals (Sweden)

    Tingsong Du

    2015-01-01

    Full Text Available An improved quantum artificial fish swarm algorithm (IQAFSA for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA, the basic artificial fish swarm algorithm (BAFSA, and the global edition artificial fish swarm algorithm (GAFSA to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA.

  7. Diagnosis Applications of Non-Crystalline Diffraction of Collagen Fibres: Breast Cancer and Skin Diseases

    Science.gov (United States)

    Costa, M.; Benseny-Cases, N.; Cócera, M.; Teixeira, C. V.; Alsina, M.; Cladera, J.; López, O.; Fernández, M.; Sabés, M.

    In previous chapters, the basis of SAXS for the study of biological systems like proteins in solution have been presented. The SAXS patterns of proteins in solution present, in general, broad dependences with the scattering vector, and the interpretation requires a huge component of modelling. In this chapter and in the following one, it is shown how SAXS technique can be used to study biological systems that are partially crystalline and with a large crystalline cells. This is done by analysing the diffraction obtained from these systems at small angles. In this chapter, a new approach to the application of small-angle X-ray scattering (SAXS) for diagnosis using the diffraction pattern of collagen is presented. This chapter shows the development of a new strategy in the preventive diagnosis of breast cancer following changes on collagen from breast connective tissue. SAXS profiles are related to different features in cutaneous preparations and to the supra-molecular arrangement of skin layers (stratum corneum, epidermis and dermis), in order to introduce objective values on the diagnosis of different skin pathologies. Working parameters (size, thickness) and methods (freezing, paraffin embedment) have been established. The results suggest that collagen diffraction patterns could be used as diagnostic indicators; especially for breast cancer and preliminary results obtained with skin collagen are promising too.

  8. High-Resolution Microscopy-Coil MR Imaging of Skin Tumors: Techniques and Novel Clinical Applications.

    Science.gov (United States)

    Budak, Matthew J; Weir-McCall, Jonathan R; Yeap, Phey M; White, Richard D; Waugh, Shelley A; Sudarshan, Thiru A P; Zealley, Ian A

    2015-01-01

    High-resolution magnetic resonance (MR) imaging performed with a microscopy coil is a robust radiologic tool for the evaluation of skin lesions. Microscopy-coil MR imaging uses a small surface coil and a 1.5-T or higher MR imaging system. Simple T1- and T2-weighted imaging protocols can be implemented to yield high-quality, high-spatial-resolution images that provide an excellent depiction of dermal anatomy. The primary application of microscopy-coil MR imaging is to delineate the deep margins of skin tumors, thereby providing a preoperative road map for dermatologic surgeons. This information is particularly useful for surgeons who perform Mohs micrographic surgery and in cases of nasofacial neoplasms, where the underlying anatomy is complex. Basal cell carcinoma is the most common nonmelanocytic skin tumor and has a predilection to manifest on the face, where it can be challenging to achieve complete surgical excision while preserving the cosmetic dignity of the patient. Microscopy-coil MR imaging provides dermatologic surgeons with valuable preoperative anatomic information that is not available at conventional clinical examination. ©RSNA, 2015.

  9. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process.

    Science.gov (United States)

    Witek-Krowiak, Anna; Chojnacka, Katarzyna; Podstawczyk, Daria; Dawiec, Anna; Pokomeda, Karol

    2014-05-01

    A review on the application of response surface methodology (RSM) and artificial neural networks (ANN) in biosorption modelling and optimization is presented. The theoretical background of the discussed methods with the application procedure is explained. The paper describes most frequently used experimental designs, concerning their limitations and typical applications. The paper also presents ways to determine the accuracy and the significance of model fitting for both methodologies described herein. Furthermore, recent references on biosorption modelling and optimization with the use of RSM and the ANN approach are shown. Special attention was paid to the selection of factors and responses, as well as to statistical analysis of the modelling results.

  10. Skin-effect down hole electric heater for heavy oil and high wax content oil applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chenglin; Wang, Hui; Liu, Yanhua [Liaoning Huafu Petroleum High-Tech Co., Ltd. (China); Xiao, Jon H; Klotz, Eric [ANDMIR Environmental Group Canada Inc. (Canada)

    2011-07-01

    With the increased production of oil and the depletion of conventional reserves, operators have started to exploit heavy oil and high wax content oil. Adequate production of such oils is difficult to achieve due to viscosity increase and mobility decrease during lifting as a result of heat loss. The down-hole electric heater has been developed to resolve these issues with the application of skin-effect electric heating technology. The aim of this paper is to present how this technology improves the production of heavy oil and waxy oil. Applications of the technology to wells in Chinese oilfields are studied. Results proved the technology to be efficient while being based on a simple process and operating in an easy and safe manner. This paper showed that the down-hole electric heater is a breakthrough technology, resolving the issues encountered in the heavy oil and waxy oil exploitation field, with broad application prospects.

  11. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer.

    Science.gov (United States)

    Gay-Mimbrera, Jesús; García, Maria Carmen; Isla-Tejera, Beatriz; Rodero-Serrano, Antonio; García-Nieto, Antonio Vélez; Ruano, Juan

    2016-06-01

    Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer.

  12. Application of Artificial Bee Colony in Model Parameter Identification of Solar Cells

    Directory of Open Access Journals (Sweden)

    Rongjie Wang

    2015-07-01

    Full Text Available The identification of values of solar cell parameters is of great interest for evaluating solar cell performances. The algorithm of an artificial bee colony was used to extract model parameters of solar cells from current-voltage characteristics. Firstly, the best-so-for mechanism was introduced to the original artificial bee colony. Then, a method was proposed to identify parameters for a single diode model and double diode model using this improved artificial bee colony. Experimental results clearly demonstrate the effectiveness of the proposed method and its superior performance compared to other competing methods.

  13. Application of artificial neural networks for modelling correlations in age hardenable aluminium alloys

    Directory of Open Access Journals (Sweden)

    F. Musharavati

    2010-07-01

    Full Text Available Purpose: This paper discusses some of the preliminary results of an ongoing research on the applications of artificial neural networks (ANNs in modelling, predicting and simulating correlations between mechanical properties of age hardenable aluminium alloys as a function of alloy composition.Design/methodology/approach: Appropriate combinations of inputs and outputs were selected for neural network modelling. Multilayer feedforward networks were created and trained using datasets from public literature. Influences of alloying elements, alloy composition and processing parameters on mechanical properties of aluminium alloys were predicted and simulated using ANNs models.Two sample t-tests were used to analyze the prediction accuracy of the trained ANNs.Findings: Good performances of the neural network models were achieved. The models were able to predict mechanical properties within acceptable margins of error and were able to provide relevant simulated data for correlating alloy composition and processing parameters with mechanical properties. Therefore, ANNs models are convenient and powerful tools that can provide useful information which can be used to identify desired properties in new aluminium alloys for practical applications in new and/or improved aluminium products.Research limitations/implications: Few public data bases are available for modelling properties. Minor contradictions on the experimental values of properties and alloy compositions were also observed. Future work will include further development of simulated data into property charts.Practical implications: Correlations between mechanical properties and alloy compositions can help in identifying a suitable alloy for a new or improved aluminum product application. In addition, availability of simulated structure-process-property data or charts assists in reducing the time and costs of trial and error experimental approaches by providing near-optimal values that can be used

  14. Development and application of edible skin coatings to improve the quality of kinnow during storage

    Directory of Open Access Journals (Sweden)

    Ahmad Din

    2015-01-01

    Full Text Available This study aimed to develop and investigate the effect of application of indigenous skin coating materials for kinnow fruit, which surely would have superior effect on shelf stability and an attractive alternate for inedible coatings. Economical and underutilized sources were explored for this purpose. Eight different formulations were developed to check their suitability through various physico-chemical analyses. It was concluded that edible coating prepared from corn starch, stearic acid, jojoba oil and monoglycerides (T8 was observed best in terms of physico-chemical properties of fruits and significantly increased the shelf life.

  15. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring

    Science.gov (United States)

    Schwartz, Gregor; Tee, Benjamin C.-K.; Mei, Jianguo; Appleton, Anthony L.; Kim, Do Hwan; Wang, Huiliang; Bao, Zhenan

    2013-05-01

    Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa-1, a fast response time of 15,000 cycles and a low power consumption of health monitoring and remote diagnostics in cardiovascular medicine.

  16. 天然色素和人工色素对肉仔鸡皮肤和脚胫颜色影响的研究%Effects of natural pigment and artificial pigment on the foot and skin color in broilers

    Institute of Scientific and Technical Information of China (English)

    王慧文; 孙丰梅; 杨曙明

    2012-01-01

    A trial was carried on to compare the effects of natural pigment (maize) and artificial pigment (carophyll red) in diets on the color of skin and shank skin in broilers. The results showed that: AA broilers fed maize containing natural pigment or artificial pigment (carophyll red) in diets could improve the color of skin and shank skin. In artificial pigment group, with the increasing carophyll red, the RCF value increased. When adding carophyll red of 30 mg/kg or 60 mg/kg, the RCF value had significant difference (P<0. 05) compared with the control group. In the first period of the experient in natural pigment group, with the increasing maize, the RCF value of every treatment had increased too. When adding 50% (w/w) or 70% (w/w)maize, the RCF value had significant difference (P<0. 05) compared with the control group. Adding carophyll red of 60 mg/kg, RCF value of skin and shank skin was consistent with that of adding 50% (w/w) maize in diets; In the late experient period, RCF value of skin and shank skin of treatment one, two in artificial pigment group was consistent with that of treatment six that adding 30% (w/w) maize.%研究在日粮中添加含天然色素的玉米和人工色素的加丽素红对AA肉仔鸡皮肤和脚胫颜色的影响.结果表明:AA肉仔鸡饲喂含天然色素的玉米和含人工色素的加丽素红的日粮都能改善AA肉仔鸡皮肤、脚胫颜色.人工色素组,随着加丽素红添加量的提高,各处理的RCF值提高,30 mg/kg、60 mg/kg组RCF值较对照组提高显著(P<0.05).天然色素组,试验前期随着玉米添加量的提高,各处理的RCF值提高,50%、70%玉米组较对照组提高显著(P<0.05).人工色素组加丽素红添加量为60 mg/kg时,AA肉仔鸡皮肤和脚胫的RCF值与天然色素组日粮中玉米添加量为50%的着色程度一致.试验后期,人工色素组玉米添加量均为30%的处理1、处理2与天然色素组玉米添加量为30%的处理6AA肉仔鸡皮肤和脚胫的RCF值保持一致.

  17. Fabrication and characterization of nano-fibrous bilayer composite for skin regeneration application.

    Science.gov (United States)

    Arasteh, Shaghayegh; Kazemnejad, Somaieh; Khanjani, Sayeh; Heidari-Vala, Hamed; Akhondi, Mohammad Mehdi; Mobini, Sahba

    2016-04-15

    -fibrous bilayer composite based on HAM is a potential substitute for skin regeneration application. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Photophysical studies and in vitro skin permeation/retention of Foscan/nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment.

    Science.gov (United States)

    Primo, Fernando L; Bentley, Maria V L B; Tedesco, Antonio C

    2008-01-01

    In this work we evaluated the photophysical and in vitro properties of Foscan, a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al., based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.

  19. Application of artificial intelligence (AI) methods for designing and analysis of reconfigurable cellular manufacturing system (RCMS)

    CSIR Research Space (South Africa)

    Xing, B

    2009-12-01

    Full Text Available This work focuses on the design and control of a novel hybrid manufacturing system: Reconfigurable Cellular Manufacturing System (RCMS) by using Artificial Intelligence (AI) approach. It is hybrid as it combines the advantages of Cellular...

  20. Applications of Artificial Life and Digital Organisms in the Study of Genetic Evolution

    Directory of Open Access Journals (Sweden)

    Maurice HT Ling

    Full Text Available Testing evolutionary hypothesis in experimental setting is expensive, time consuming, and unlikely to recapitulate evolutionary history if evolution is repeated. Computer simulations of virtual organisms, also known as artificial life or digital organisms ...

  1. Application of artificial neural networks in analysis of CHF experimental data in round tubes

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan-Ping; SHAN Jian-Qiang; CHEN Bing-De; LANG Xue-Mei; JIA Dou-Nan; WANG Xiao-Jun

    2004-01-01

    Artificial neural networks (ANNs) are applied successfully to analyze the critical heat flux (CHF) experimental data from some round tubes in this paper. A set of software adopting artificial neural network method for predicting CHF in round tube and a set of CHF database are gotten. Comparing with common CHF correlations and CHF look-up table, ANN method has stronger ability of allow-wrong and nice robustness. The CHF predicting software adopting artificial neural network technology can improve the predicting accuracy in a wider parameter range,and is easier to update and to use. The artificial neural nefwork method used in this paper can be applied to some similar physical problems.

  2. Seafloor classification using acoustic backscatter echo-waveform - Artificial neural network applications

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; Navelkar, G.S.; Desai, R.G.P.

    In this paper seafloor classifications system based on artificial neural network (ANN) has been designed. The ANN architecture employed here is a combination of Self Organizing Feature Map (SOFM) and Linear Vector Quantization (LVQ1). Currently...

  3. Sagging Skin

    Science.gov (United States)

    ... Skin Scars Skin Growths Skin Lesions Spider Veins Stretch Marks Sun-damaged Skin Unwanted Hair Unwanted Tattoos Varicose ... Skin Scars Skin Growths Skin Lesions Spider Veins Stretch Marks Sun-damaged Skin Unwanted Hair Unwanted Tattoos Varicose ...

  4. Applications of traditional pump design theory to artificial heart and CFD simulation

    Institute of Scientific and Technical Information of China (English)

    Yingpeng WANG; Xinwei SONG; Chuntong YING

    2008-01-01

    A novel heart pump model was obtained by improving the traditional axial pump design theory with the consideration of working and hydraulic situations for artificial hearts. The pump head range and the velocity triangle were introduced and an iterative approach was utilized for the initial model. Moreover, computational fluid dynamics (CFD) simulations were performed to determine relevant model parameters. The results show that this procedure can be used for designing a series of high-efficiency artificial heart pumps.

  5. Application of artificially induced contact dermatitis in dermatology%人为接触性皮炎在皮肤科的应用

    Institute of Scientific and Technical Information of China (English)

    李水凤; 章星琪

    2013-01-01

    人为接触性皮炎是指出于诊断和治疗目的人为主动性诱发引起的接触性皮炎.目前除斑贴试验外,在皮肤科应用最广泛的是由二苯环丙烯酮(DPCP)诱导的人为接触性皮炎,因其具有抑制病理性免疫反应和激发新的免疫反应的功能,可用于斑秃、病毒疣、皮肤肿瘤、白癜风等的治疗.但其作用机制尚未明确,目前存在多种假说,包括抑制自身反应性T细胞、抗原竞争、炎症细胞亚群及细胞因子的改变等.%Artificially induced contact dermatitis is a kind of contact dermatitis actively induced for the purpose of diagnosis and therapy.In addition to patch test,diphenylcyclopropenone (DPCP)-induced contact dermatitis is the most common used in dermatology.Since topical application of DPCP can inhibit pathological immune response and stimulate new immune response,it has been used to treat alopecia areata,viral warts,skin tumor,vitiligo,and so on.The therapeutic mechanism of artificially induced contact dermatitis remains unclear,and there are several hypotheses,including inhibition of autoreactive T cells,antigenic competition,changes of inflammatory cell subsets and cytokines.

  6. A novel system for transcutaneous application of carbon dioxide causing an "artificial Bohr effect" in the human body.

    Directory of Open Access Journals (Sweden)

    Yoshitada Sakai

    Full Text Available BACKGROUND: Carbon dioxide (CO(2 therapy refers to the transcutaneous administration of CO(2 for therapeutic purposes. This effect has been explained by an increase in the pressure of O(2 in tissues known as the Bohr effect. However, there have been no reports investigating the oxygen dissociation of haemoglobin (Hb during transcutaneous application of CO(2in vivo. In this study, we investigate whether the Bohr effect is caused by transcutaneous application of CO2 in human living body. METHODS: We used a novel system for transcutaneous application of CO(2 using pure CO(2 gas, hydrogel, and a plastic adaptor. The validity of the CO(2 hydrogel was confirmed in vitro using a measuring device for transcutaneous CO(2 absorption using rat skin. Next, we measured the pH change in the human triceps surae muscle during transcutaneous application of CO(2 using phosphorus-31 magnetic resonance spectroscopy ((31P-MRS in vivo. In addition, oxy- and deoxy-Hb concentrations were measured with near-infrared spectroscopy in the human arm with occulted blood flow to investigate O2 dissociation from Hb caused by transcutaneous application of CO(2. RESULTS: The rat skin experiment showed that CO(2 hydrogel enhanced CO(2 gas permeation through the rat skin. The intracellular pH of the triceps surae muscle decreased significantly 10 min. after transcutaneous application of CO(2. The NIRS data show the oxy-Hb concentration decreased significantly 4 min. after CO(2 application, and deoxy-Hb concentration increased significantly 2 min. after CO(2 application in the CO(2-applied group compared to the control group. Oxy-Hb concentration significantly decreased while deoxy-Hb concentration significantly increased after transcutaneous CO(2 application. CONCLUSIONS: Our novel transcutaneous CO(2 application facilitated an O(2 dissociation from Hb in the human body, thus providing evidence of the Bohr effect in vivo.

  7. The effects of continuous application of sunscreen on photoaged skin in Japanese elderly people – the relationship with the usage

    Directory of Open Access Journals (Sweden)

    Mizuno M

    2016-04-01

    Full Text Available Makoto Mizuno,1,2 Kayo Kunimoto,1 Eiji Naru,2 Koichi Kameyama,2 Fukumi Furukawa,1 Yuki Yamamoto1,3 1Department of Dermatology, Wakayama Medical University, Wakayama, Japan; 2Fundamental Research Laboratories, KOSÉ Corporation, Tokyo, Japan; 3Department of Cosmetic Dermatology and Photomedicine, Wakayama Medical University, Wakayama, Japan Abstract: Since photoaging of skin is caused by chronic sun exposure, it is well-recognized that regular sunscreen use can help prevent photoaging of skin in fair-skinned people. Therefore, application of sunscreen is recommended for the prevention of photoaging in many countries. However, the relationship between UV exposure and photoaging has rarely been investigated in clinical studies in Japan. In addition, there have been almost no long-term interventional studies in Japanese people. We have previously conducted a study where Japanese actinic keratosis patients were instructed to continuously apply sunscreen. The results indicated that long-term application of sunscreen is effective in suppressing actinic keratosis progression and generation. In the present study, we investigated the effects of sunscreen on photoaged skin in 14 elderly Japanese people. Skin conditions such as water content, transepidermal water loss, the number of spots, wrinkles, and skin color tone uniformity were measured and compared before and after the study. A statistically significant difference was observed only in skin surface hydration. There were large inter-individual differences in amount of sunscreen used throughout the study. The changes in the number of spots and skin color tone uniformity during the 18 months showed good correlation with amount of sunscreen being used. These results suggest an increase in the number of spots and deterioration in skin color tone uniformity in the 18-month non-sunscreen application period, and that such skin conditions improved with increasing use of sunscreen. In this study, we suggested

  8. Advancements in artificial magnetic conductor design for improved performance and antenna applications

    Science.gov (United States)

    Kern, Douglas John

    Artificial magnetic conductors are a class of metamaterials that exhibit a reflection coefficient of unity with phase of zero degrees over a limited frequency range. The artificial magnetic conductor, in this case, consists of a frequency selective surface placed above a PEC ground plane, with a dielectric material in between. Such a structure can be modeled as a parallel LC circuit, which gives rise to a resonant frequency at which the surface impedance of the AMC becomes quite large. It is at this resonant frequency that the FSS structure acts as an AMC surface, with a limited bandwidth that corresponds to the frequency range of high impedance. Although intrinsically narrowband, techniques are presented in this research that allow an increase in operating bandwidth under certain conditions. This is achieved by the use of a genetic algorithm optimization procedure to determine the desired material properties of the structure. One method for increasing the bandwidth is the use of an active load, in this case a negative impedance converter, to effectively change the values of inductance and capacitance, thereby increasing bandwidth dramatically. Additionally, the use of magnetic materials within the substrate also allows for a small increase in operating bandwidth. The advantage of this approach is that multi-band AMC structures benefit at all resonant frequencies by the addition of magnetic material in the substrate. Another method of increasing the bandwidth is to allow the AMC surface to be tunable, thereby creating a smaller instantaneous bandwidth, but providing tunability to cover a very large range of desired frequencies. Research will be presented on creating tunable AMC surfaces by means of a tunable, high dielectric substrate material, as well as incorporating mechanical switches as part of the FSS geometry to provide tunable performance for different screen geometries. These methods will demonstrate the ability to modify the performance of the AMC surface

  9. Commissioning and quality assurance procedures for the HDR Valencia skin applicators.

    Science.gov (United States)

    Granero, Domingo; Candela-Juan, Cristian; Ballester, Facundo; Ouhib, Zoubir; Vijande, Javier; Richart, Jose; Perez-Calatayud, Jose

    2016-10-01

    The Valencia applicators (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) are cup-shaped tungsten applicators with a flattening filter used to collimate the radiation produced by a high-dose-rate (HDR) (192)Ir source, and provide a homogeneous absorbed dose at a given depth. This beam quality provides a good option for the treatment of skin lesions at shallow depth (3-4 mm). The user must perform commissioning and periodic testing of these applicators to guarantee the proper and safe delivery of the intended absorbed dose, as recommended in the standards in radiation oncology. In this study, based on AAPM and GEC-ESTRO guidelines for brachytherapy units and our experience, a set of tests for the commissioning and periodic testing of the Valencia applicators is proposed. These include general considerations, verification of the manufacturer documentation and physical integrity, evaluation of the source-to-indexer distance and reproducibility, setting the library plan in the treatment planning system, evaluation of flatness and symmetry, absolute output and percentage depth dose verification, independent calculation of the treatment time, and visual inspection of the applicator before each treatment. For each test, the proposed methodology, equipment, frequency, expected results, and tolerance levels (when applicable) are provided.

  10. Commissioning and quality assurance procedures for the HDR Valencia skin applicators

    Directory of Open Access Journals (Sweden)

    Domingo Granero

    2016-11-01

    Full Text Available The Valencia applicators (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden are cup-shaped tungsten applicators with a flattening filter used to collimate the radiation produced by a high-dose-rate (HDR 192 Ir source, and provide a homogeneous absorbed dose at a given depth. This beam quality provides a good option for the treatment of skin lesions at shallow depth (3-4 mm. The user must perform commissioning and periodic testing of these applicators to guarantee the proper and safe delivery of the intended absorbed dose, as recommended in the standards in radiation oncology. In this study, based on AAPM and GEC-ESTRO guidelines for brachytherapy units and our experience, a set of tests for the commissioning and periodic testing of the Valencia applicators is proposed. These include general considerations, verification of the manufacturer documentation and physical integrity, evaluation of the source-to-indexer distance and reproducibility, setting the library plan in the treatment planning system, evaluation of flatness and symmetry, absolute output and percentage depth dose verification, independent calculation of the treatment time, and visual inspection of the applicator before each treatment. For each test, the proposed methodology, equipment, frequency, expected results, and tolerance levels (when applicable are provided.

  11. Application of artificial neural network model combined with four biomarkers in auxiliary diagnosis of lung cancer.

    Science.gov (United States)

    Duan, Xiaoran; Yang, Yongli; Tan, Shanjuan; Wang, Sihua; Feng, Xiaolei; Cui, Liuxin; Feng, Feifei; Yu, Songcheng; Wang, Wei; Wu, Yongjun

    2017-08-01

    The purpose of the study was to explore the application of artificial neural network model in the auxiliary diagnosis of lung cancer and compare the effects of back-propagation (BP) neural network with Fisher discrimination model for lung cancer screening by the combined detections of four biomarkers of p16, RASSF1A and FHIT gene promoter methylation levels and the relative telomere length. Real-time quantitative methylation-specific PCR was used to detect the levels of three-gene promoter methylation, and real-time PCR method was applied to determine the relative telomere length. BP neural network and Fisher discrimination analysis were used to establish the discrimination diagnosis model. The levels of three-gene promoter methylation in patients with lung cancer were significantly higher than those of the normal controls. The values of Z(P) in two groups were 2.641 (0.008), 2.075 (0.038) and 3.044 (0.002), respectively. The relative telomere lengths of patients with lung cancer (0.93 ± 0.32) were significantly lower than those of the normal controls (1.16 ± 0.57), t = 4.072, P neural network were 0.670 (0.569-0.761) and 0.760 (0.664-0.840). The AUC of BP neural network was higher than that of Fisher discrimination analysis, and Z(P) was 0.76. Four biomarkers are associated with lung cancer. BP neural network model for the prediction of lung cancer is better than Fisher discrimination analysis, and it can provide an excellent and intelligent diagnosis tool for lung cancer.

  12. Tissue deposition of the insect repellent DEET and the sunscreen oxybenzone from repeated topical skin applications in rats.

    Science.gov (United States)

    Fediuk, Daryl J; Wang, Tao; Raizman, Joshua E; Parkinson, Fiona E; Gu, Xiaochen

    2010-12-01

    Insect repellent N,N-diethyl-m-toluamide (DEET) and sunscreen oxybenzone are capable of enhancing skin permeation of each other when applied simultaneously. We carried out a cellular study in rat astrocytes and neurons to assess cell toxicity of DEET and oxybenzone and a 30-day study in Sprague-Dawley rats to characterize skin permeation and tissue disposition of the compounds. Cellular toxicity occurred at 1 µg/mL for neurons and 7-day treatment for astrocytes and neurons. DEET and oxybenzone permeated across the skin to accumulate in blood, liver, and brain after repeated topical applications. DEET disappeared from the application site faster than oxybenzone. Combined application enhanced the disposition of DEET in liver. No overt sign of behavioral toxicity was observed from several behavioral testing protocols. It was concluded that despite measurable disposition of the study compounds in vivo, there was no evidence of neurotoxicological deficits from repeated topical applications of DEET, oxybenzone, or both.

  13. Pharmacokinetics of ketoprofen in rabbit skin following topical application of lipid nanoparticles

    Science.gov (United States)

    Patel, Umesh

    The purpose of the thesis was to quantify ketoprofen (KTP) in rabbit skin following the topical application of lipid nanoparticles (Nanostructured lipid carriers, NLC). We tested two different types of formulations: one is (G') in which KTP is incorporated within the nanostructured lipid carriers (NLC) and the other is (H') which is a mixture of the nanostructured lipid carriers (NLC) and KTP dissolved in a vehicle (10% glycerol + 1% xanthan gum). Ketoprofen (KTP) is a non-steroidal anti-inflammatory drug administered systemically to treat arthritis. By conventional route severe side effects at the gastrointestinal level have been observed. Topical-application of lipid nanoparticles would be convenient alternative. The project is based on the (1) To study the calibration of microdialysis probes in both environment, in vivo as well as in vitro; (2) To compare two different type of formulation one is (G') with KTP incorporated within the nanostructured lipid carriers (NLC) and the other is (H') a mixture of the nanostructured lipid carriers (NLC) and KTP dissolved in a the vehicle (10% glycerol + 1% xanthan gum). The results of this study show a clear difference between the skin concentration profiles of the two formulations. Time to reach the maximum concentration is similar for both formulations. The formulation H', containing KTP is in external phase had higher Cmax (334ng/ml) than formulation G' containing KTP inside lipid particles (Cmax 32ng/ml).

  14. Raman Microscopy and Imaging: Applications to Skin Pharmacology and Wound Healing

    Science.gov (United States)

    Flach, Carol R.; Zhang, Guojin; Mendelsohn, Richard

    The utility of confocal Raman microscopy to study biological events in skin is demonstrated with three examples. (i) monitoring the spatial and structural differences between native and cultured skin, (ii) tracking the permeation and biochemical transformation in skin of a Vitamin E derivative and (iii) tracking the spatial distribution of three major skin proteins (keratin, collagen, and elastin) during wound healing in an explant skin model.

  15. 平行人工膜渗透模型及其应用进展%Advances in parallel artificial membrane permeability assay and its applications

    Institute of Scientific and Technical Information of China (English)

    吴一凡; 刘晖; 倪京满

    2011-01-01

    With the development of drug discovery, more and more candidate compounds need to be studied. Methods that can screen compound rapidly received significant attention. Parallel artificial membrane permeability assay (PAMPA) as a powerful tool has been applied to drug studies. It uses an artificial lipid membrane to mimic the barrier for drug permeability studies. This article introduces the establishment and characteristics of PAMPA, as well as its applications in screening compounds. It can be used as models (e.g. Predicting the ability of compound in gastro-intestinal absorption, blood-brain barrier transportation and skin penetration) by changing the component of artificial lipid membrane. PAMPA has advantages in high throughput selection of valuable compound with low cost, versatile, low dose, and good reproducibility.%随着新药研发水平的提高,每类药物的候选化合物增多,研究工作量明显增加,对化合物进行快速筛选的方法已经成为研究的重点之一.平行人工膜渗透模型(PAMPPA)作为药物筛选的有力工具,已用于药物研究中.该模型主要以人工磷脂作为生物膜来模拟药物跨膜的屏障,用于药物的膜渗透研究.本文介绍了平行人工膜渗透模型的建立、特点和研究进展,概述了利用PAMPA进行药物筛选等方面内容.通过调整人工磷脂膜的配比,PAMPA能够作为肠道、血脑屏障和皮肤吸收等体外模型.作为药物被动转运模型,PAMPA能够对药物进行高通量快速筛选,具有成本低、灵活、用药量少和重现性好等特点.

  16. DNA genetic artificial fish swarm constant modulus blind equalization algorithm and its application in medical image processing.

    Science.gov (United States)

    Guo, Y C; Wang, H; Zhang, B L

    2015-10-02

    This study proposes use of the DNA genetic artificial fish swarm constant modulus blind equalization algorithm (DNA-G-AFS-CMBEA) to overcome the local convergence of the CMBEA. In this proposed algorithm, after the fusion of the fast convergence of the AFS algorithm and the global search capability of the DNA-G algorithm to drastically optimize the position vector of the artificial fish, the global optimal position vector is obtained and used as the initial optimal weight vector of the CMBEA. The result of application of this improved method in medical image processing demonstrates that the proposed algorithm outperforms the CMBEA and the AFS-CMBEA in removing the noise in a medical image and improving the peak signal to noise ratio.

  17. [The application of artificial protein premixes for nutritive support of patients with chronic renal insufficiency, being treated by perinateal dialysis].

    Science.gov (United States)

    Pichugina, I S; Vetchinnikova, O N; Vereshchagina, V M; Gapparov, M M; Vatazin, A V

    2008-01-01

    As a result of a survey of 56 patients with chronic renal insufficiency, who undergone hemodialysis, it was established, that clinical condition of patients, biochemical and hematological blood indices as well as results of anthropometric research improve upon application of artificial balanced high-protein premixes -"Nutrinil" and "Nutrien-Nefro". Irrespective of way of administration - introperitoneal ("Nutrinil" solution) or enteral ("Nutrien-Nefro" mixture) protein-energetic insufficiency diminishes or totally disappears, body weight, fat and muscle content of the body weight, as well as indices of whole protein, albumine, lymphocytes, haemoglobin, pH approache the norm. Intraperitoneal way of administration of artificial protein premixes increase patients adherence to this procedure, though enteral way of their administration is more preferable from economic point of view.

  18. Application of Artificial Intelligence Methods of Tool Path Optimization in CNC Machines: A Review

    Directory of Open Access Journals (Sweden)

    Khashayar Danesh Narooei

    2014-08-01

    Full Text Available Today, in most of metal machining process, Computer Numerical Control (CNC machine tools have been very popular due to their efficiencies and repeatability to achieve high accuracy positioning. One of the factors that govern the productivity is the tool path travel during cutting a work piece. It has been proved that determination of optimal cutting parameters can enhance the machining results to reach high efficiency and minimum the machining cost. In various publication and articles, scientist and researchers adapted several Artificial Intelligence (AI methods or hybrid method for tool path optimization such as Genetic Algorithms (GA, Artificial Neural Network (ANN, Artificial Immune Systems (AIS, Ant Colony Optimization (ACO and Particle Swarm Optimization (PSO. This study presents a review of researches in tool path optimization with different types of AI methods that show the capability of using different types of optimization methods in CNC machining process.

  19. FPGA for Robotic Applications: from Android/Humanoid Robots to Artificial Men

    Directory of Open Access Journals (Sweden)

    Tole Sutikno

    2011-12-01

    Full Text Available Researches on home robots have been increasing enormously. There has always existed a continuous research effort on problems of anthropomorphic robots which is now called humanoid robots. Currently, robotics has evolved to the point that different branches have reached a remarkable level of maturity, that neural network and fuzzy logic are the main artificial intelligence as intelligent control on the robotics. Despite all this progress, while aiming at accomplishing work-tasks originally charged only to humans, robotic science has perhaps quite naturally turned into the attempt to create artificial men. It is true that artificial men or android humanoid robots open certainly very broad prospects. This “robot” may be viewed as a personal helper, and it will be called a home-robot, or personal robot. This is main reason why the two special sections are issued in the TELKOMNIKA sequentially.

  20. Application of Global Dynamic Reconfiguration in Artificial Neural Network System based on Field Programmable Gate Array

    Institute of Scientific and Technical Information of China (English)

    LI Wei; WANG Wei; MA Yi-mei; WANG Jin-hai

    2008-01-01

    Presented is a global dynamic reconfiguration design of an artificial neural network based on field programmable gate array(FPGA). Discussed are the dynamic reconfiguration principles and methods. Proposed is a global dynamic reconfiguration scheme using Xilinx FPGA and platform flash. Using the revision capabilities of Xilinx XCF32P platform flash, an artificial neural network based on Xilinx XC2V30P Virtex-Ⅱ can be reconfigured dynamically from back propagation(BP) learning algorithms to BP network testing algorithms. The experimental results indicate that the scheme is feasible, and that, using dynamic reconfiguration technology, FPGA resource utilization can be reduced remarkably.

  1. Application of artificial intelligence methods for prediction of steel mechanical properties

    Directory of Open Access Journals (Sweden)

    Z. Jančíková

    2008-10-01

    Full Text Available The target of the contribution is to outline possibilities of applying artificial neural networks for the prediction of mechanical steel properties after heat treatment and to judge their perspective use in this field. The achieved models enable the prediction of final mechanical material properties on the basis of decisive parameters influencing these properties. By applying artificial intelligence methods in combination with mathematic-physical analysis methods it will be possible to create facilities for designing a system of the continuous rationalization of existing and also newly developing industrial technologies.

  2. [Respiratory function tests during artificial ventilation. Application in the choice of apparatus settings (author's transl)].

    Science.gov (United States)

    Thomas, L; Robert, D; Perrin, F

    1978-03-04

    Twenty seven patients on artificial ventilation were studied in terms of gas exchange, respiratory mechanics and haemodynamics. The characteristics of acute respiratory failure (dead space effect, shunt effect, disturbances in respiratory mechanics) may be identified and their severity determined. The effects of adjusting artificial ventilation settings (tidal volume, frequency, inspiration/expiration ratio, inspiratory flow, end expiratory pressure, inspired oxygen fraction) may be studied and better adapted to the individual functional requirements of each patient. An organigram of settings based upon the experience gained in this series is suggested.

  3. Effect of intraoperative platelet-rich plasma and fibrin glue application on skin flap survival.

    Science.gov (United States)

    Findikcioglu, Fulya; Findikcioglu, Kemal; Yavuzer, Reha; Lortlar, Nese; Atabay, Kenan

    2012-09-01

    The experiment was designed to compare the effect of intraoperative platelet-rich plasma (PRP) and fibrin glue application on skin flap survival. In this study, bilateral epigastric flaps were elevated in 24 rats. The right-side flaps were used as the control of the left-side flaps. Platelet-rich plasma, fibrin glue, and thrombin had been applied under the flap sites in groups 1, 2, and 3, respectively. Five days later, all flap pedicles were ligated. Necrotic area measurements, microangiography, and histologic and immunohistochemical evaluations were performed to compare the groups. Platelet-rich plasma reduced necrotic area percentages as compared with other groups. Histologically and microangiographically increased number of arterioles were observed in PRP groups. Thrombin when used alone increased flap necrosis. Vascular endothelial growth factor, platelet-derived growth factor, and transforming growth factor β3 primary antibody staining showed increased neovascularization and reepithelialization in all PRP-applied flaps. This study demonstrated that PRP, when applied intraoperatively under the skin flap, may enhance flap survival. Thrombin used alone was found to be unsuitable in flap surgery.

  4. Application of artificial neural networks for conformity analysis of fuel performed with an optical fiber sensor

    Science.gov (United States)

    Possetti, Gustavo Rafael Collere; Coradin, Francelli Klemba; Côcco, Lílian Cristina; Yamamoto, Carlos Itsuo; de Arruda, Lucia Valéria Ramos; Falate, Rosane; Muller, Marcia; Fabris, José Luís

    2008-04-01

    The liquid fuel quality control is an important issue that brings benefits for the State, for the consumers and for the environment. The conformity analysis, in special for gasoline, demands a rigorous sampling technique among gas stations and other economic agencies, followed by a series of standard physicochemical tests. Such procedures are commonly expensive and time demanding and, moreover, a specialist is often required to carry out the tasks. Such drawbacks make the development of alternative analysis tools an important research field. The fuel refractive index is an additional parameter to help the fuel conformity analysis, besides the prospective optical fiber sensors, which operate like transducers with singular properties. When this parameter is correlated with the sample density, it becomes possible to determine conformity zones that cannot be analytically defined. This work presents an application of artificial neural networks based on Radial Basis Function to determine these zones. A set of 45 gasoline samples, collected in several gas stations and previously analyzed according to the rules of Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, a Brazilian regulatory agency, constituted the database to build two neural networks. The input variables of first network are the samples refractive indices, measured with an Abbe refractometer, and the density of the samples measured with a digital densimeter. For the second network the input variables included, besides the samples densities, the wavelength response of a long-period grating to the samples refractive indices. The used grating was written in an optical fiber using the point-to-point technique by submitting the fiber to consecutive electrical arcs from a splice machine. The output variables of both Radial Basis Function Networks are represented by the conformity status of each sample, according to report of tests carried out following the American Society for Testing and Materials

  5. Application of Artificial Neural Network in Active Vibration Control of Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    SUN Cheng-shun; ZHANG Jian-wu

    2005-01-01

    Artificial Neural Network (ANN) is applied to diesel twostage vibration isolating system and an AVC (Active Vibration Control) system is developed. Both identifier and controller are constructed by three-layer BP neural network. Besides computer simulation, experiment research is carried out on both analog bench and diesel bench. The results of simulation and experiment show a diminished response of vibration.

  6. Application of gray correlation analysis and artificial neural network in rock mass blasting

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong-bing; WU Liang

    2005-01-01

    Studied forecasting and controlling the blasting fragmentation by using artificial neural network for multi-ingredients. At the same time, according to the characteristic of multi-parameters input to network model, the gray correlation theory was employed to find out key factors, which can not only save time of computation and parameters input, but improve the stability of the model.

  7. Artificial Dielectric Layer Based on PECVD Silicon Carbide for Terahertz Sensing Applications

    NARCIS (Netherlands)

    Fiorentino, G.; Syed, W.; Adam, A.; Neto, A.; Sarro, P.M.

    2014-01-01

    The refractive index of a conventional dielectric layer can be enhanced using an Artificial Dielectric Layer (ADL). Here we present the fabrication of low temperature PECVD Silicon Carbide (SiC) membranes with very high refractive index (up to 5 at 1 THz) in the terahertz frequency range. The SiC de

  8. Application of an artificial neural network and morphing techniques in the redesign of dysplastic trochlea.

    Science.gov (United States)

    Cho, Kyung Jin; Müller, Jacobus H; Erasmus, Pieter J; DeJour, David; Scheffer, Cornie

    2014-01-01

    Segmentation and computer assisted design tools have the potential to test the validity of simulated surgical procedures, e.g., trochleoplasty. A repeatable measurement method for three dimensional femur models that enables quantification of knee parameters of the distal femur is presented. Fifteen healthy knees are analysed using the method to provide a training set for an artificial neural network. The aim is to use this artificial neural network for the prediction of parameter values that describe the shape of a normal trochlear groove geometry. This is achieved by feeding the artificial neural network with the unaffected parameters of a dysplastic knee. Four dysplastic knees (Type A through D) are virtually redesigned by way of morphing the groove geometries based on the suggested shape from the artificial neural network. Each of the four resulting shapes is analysed and compared to its initial dysplastic shape in terms of three anteroposterior dimensions: lateral, central and medial. For the four knees the trochlear depth is increased, the ventral trochlear prominence reduced and the sulcus angle corrected to within published normal ranges. The results show a lateral facet elevation inadequate, with a sulcus deepening or a depression trochleoplasty more beneficial to correct trochlear dysplasia.

  9. Gapped sequence alignment using artificial neural networks: application to the MHC class I system

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2016-01-01

    . On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods...

  10. Application of Artificial Neural Network to Predicting Hardenability of Gear Steel

    Institute of Scientific and Technical Information of China (English)

    GAO Xiu-hua; QI Ke-min; DENG Tian-yong; QIU Chun-lin; ZHOU Ping; DU Xian-bin

    2006-01-01

    The prediction of the hardenability and chemical composition of gear steel was studied using artificial neural networks. A software was used to quantitatively forecast the hardenability by its chemical composition or the chemical composition by its hardenability. The prediction result is more precise than that obtained from the traditional method based on the simple mathematical regression model.

  11. Application Of Artificial Neural Networks In Modeling Of Manufactured Front Metallization Contact Resistance For Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Musztyfaga-Staszuk M.

    2015-09-01

    Full Text Available This paper presents the application of artificial neural networks for prediction contact resistance of front metallization for silicon solar cells. The influence of the obtained front electrode features on electrical properties of solar cells was estimated. The front electrode of photovoltaic cells was deposited using screen printing (SP method and next to manufactured by two methods: convectional (1. co-fired in an infrared belt furnace and unconventional (2. Selective Laser Sintering. Resistance of front electrodes solar cells was investigated using Transmission Line Model (TLM. Artificial neural networks were obtained with the use of Statistica Neural Network by Statsoft. Created artificial neural networks makes possible the easy modelling of contact resistance of manufactured front metallization and allows the better selection of production parameters. The following technological recommendations for the screen printing connected with co-firing and selective laser sintering technology such as optimal paste composition, morphology of the silicon substrate, co-firing temperature and the power and scanning speed of the laser beam to manufacture the front electrode of silicon solar cells were experimentally selected in order to obtain uniformly melted structure well adhered to substrate, of a small front electrode substrate joint resistance value. The prediction possibility of contact resistance of manufactured front metallization is valuable for manufacturers and constructors. It allows preserving the customers’ quality requirements and bringing also measurable financial advantages.

  12. Applicability of Artificial Recharge of Groundwater in the Yongding River Alluvial Fan in Beijing through Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    Qichen Hao; Jingli Shao; Yali Cui; Zhenhua Xie

    2014-01-01

    A groundwater transient flow model was developed to evaluate the applicability and ef-fectiveness of artificial recharge scenarios in the middle-upper part of the Yongding River alluvial fan in Beijing. These scenarios were designed by taking into account different types of recharge facilities and their infiltration rate with the Middle Route Project for South-to-North Water Transfer (MRP) as the recharge water source. The simulation results suggest that: (1) the maximum amount of artificial recharge water, for scenario I, would be 127.42×106 m3 with surface infiltration facilities;and would be 243.48×106 m3 for scenario II with surface infiltration and recharge wells under the constraint of the upper limit of groundwater;(2) with preferred pattern of recharge facilities, groundwater levels in both optimized recharge scenarios would not exceed the upper limit within the given recharge period;and (3) implementation of the recharge scenarios would efficiently increase the aquifer replenishment and the groundwater budget will change from-54.11×106 to 70.89×104 and 183.36×104 m3, respectively. In addi-tion, under these two scenarios groundwater level would rise up to 30 and 34 m, respectively, without increasing the amount of evaporation. The simulation results indicate that the proposed recharge sce-narios are practically feasible, and artificial recharge can also contribute to an efficient recovery of groundwater storage in Beijing.

  13. Artificial ribonucleases.

    Science.gov (United States)

    Morrow, J R

    1994-01-01

    Many inorganic and organic compounds promote the reactions catalyzed by RNase A. Both the transesterification step, where a 2',3'-cyclic phosphate is formed with concomitant cleavage of RNA, and the hydrolysis step, where the 2',3'-cyclic phosphate is converted to a phosphate monoester, may be mimicked with compounds that are readily synthesized in the laboratory. Electrophilic activation of the phosphate ester and charge neutralization are generally important means by which artificial RNases promote phosphate diester displacement reactions. Several artificial RNases operate by a bifunctional general acid/general base mechanism, as does RNase A. Provision of an intramolecular nucleophile appears to be an important pathway for metal complex promoted phosphate diester hydrolysis. In contrast to the successful design of compounds that promote the reactions catalyzed by RNase A, there are no artificial nucleases to date that will cleave the 3' P-O bond of RNA or hydrolyze an oligonucleotide of DNA. Artificial RNases based on both metal complexes and organic compounds have been described. Metal complexes may be particularly effective catalysts for both transesterification and hydrolysis reactions of phosphate diesters. Under physiological conditions (37 degrees C and neutral pH), several metal complexes catalyze the transesterification of RNA. Future work should involve the development of metal complexes which are inert to metal ion release but which maintain open coordination sites for catalytic activity. The design of compounds containing multiple amine or imidazole groups that may demonstrate bifunctional catalysis is a promising route to new artificial RNases. Further design of these compounds and careful placement of catalytic groups may yield new RNase mimics that operate under physiological conditions. The attachment of artificial RNases to recognition agents such as oligodeoxynucleotides to create new sequence-specific endoribonucleases is an exciting field of

  14. Tuberculin Skin Tests versus Interferon-Gamma Release Assays in Tuberculosis Screening among Immigrant Visa Applicants

    Directory of Open Access Journals (Sweden)

    Stella O. Chuke

    2014-01-01

    Full Text Available Objective. Use of tuberculin skin tests (TSTs and interferon gamma release assays (IGRAs as part of tuberculosis (TB screening among immigrants from high TB-burden countries has not been fully evaluated. Methods. Prevalence of Mycobacterium tuberculosis infection (MTBI based on TST, or the QuantiFERON-TB Gold test (QFT-G, was determined among immigrant applicants in Vietnam bound for the United States (US; factors associated with test results and discordance were assessed; predictive values of TST and QFT-G for identifying chest radiographs (CXRs consistent with TB were calculated. Results. Of 1,246 immigrant visa applicants studied, 57.9% were TST positive, 28.3% were QFT-G positive, and test agreement was 59.4%. Increasing age was associated with positive TST results, positive QFT-G results, TST-positive but QFT-G-negative discordance, and abnormal CXRs consistent with TB. Positive predictive values of TST and QFT-G for an abnormal CXR were 25.9% and 25.6%, respectively. Conclusion. The estimated prevalence of MTBI among US-bound visa applicants in Vietnam based on TST was twice that based on QFT-G, and 14 times higher than a TST-based estimate of MTBI prevalence reported for the general US population in 2000. QFT-G was not better than TST at predicting abnormal CXRs consistent with TB.

  15. 柔性温度压力仿生皮肤的模块化设计与实现%Modular Design and Implementation of Flexible Artificial Skin with Temperature and Pressure Sensors

    Institute of Scientific and Technical Information of China (English)

    郭小辉; 黄英; 腾珂; 刘平; 刘彩霞; 田合雷

    2015-01-01

    To achieve the modular design of electronic artificial skin, a fully compliant temperature and pressure tactile sensor is designed and used as artificial skin of intelligent robots, which is assembled into a modularized array structure with expandable characteristics. Taking graphene nanoplatelets (GNPs) as the temperature-sensitive material of the sensor, carbon black (CB) filled silicone rubber (SR) as the elastic dielectric, and the silver conductive silicone rubber as the flexible top plate, a capacitive pressure sensitive cell is designed, and the temperature and pressure sensor array is constructed with polyimide (PI) film as the flexible substrate. The structure design, working principle and the signal acquisition and processing system of the flexible temperature/pressure tactile sensor array are introduced. The experimental results of temperature, pressure and the compound perception indicate that the flexible temperature/pressure multifunctional tactile sensor array and the signal extraction system can realize tactile perception, and it provides a design scheme for wearable artificial skin.%为实现电子仿生皮肤的模块化设计,以石墨烯纳米片制备薄膜温敏传感器,同时,以炭黑/硅橡胶复合材料为弹性电介质、有机硅导电银胶为柔性上极板设计电容式力敏传感器,在此基础上,以聚酰亚胺为柔性基体,提出一种可用作智能机器人仿生皮肤的全柔性温度/压力触觉传感器,并设计成具有可拼接特点的模块化阵列结构。介绍柔性温度/压力触觉传感器的结构设计、检测机理以及信号采集与处理系统。通过温度、压力及温度/压力复合感知实验表明,该柔性温度/压力复合式触觉传感阵列及信号提取系统可实现触觉感知功能,为可穿戴式人工皮肤的研究提供了一种设计方案。

  16. Clinical application of multiphoton tomography in combination with high-frequency ultrasound for evaluation of skin diseases.

    Science.gov (United States)

    König, Karsten; Speicher, Marco; Köhler, Martin J; Scharenberg, Rüdiger; Kaatz, Martin

    2010-12-01

    The first-ever application of high-frequency ultrasound combined with multiphoton tomography (MPT) and dermoscopy in a clinical trial is reported. 47 patients with different dermatoses such as benign and malign skin cancers, connective tissue diseases, inflammatory skin diseases, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art and highly sophisticated ultrasound systems for dermatology, (ii) the femtosecond laser multiphoton tomograph and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface with a magnification up to 70 x. Depending on the ultrasonic frequencies from 7.5 MHz to 100 MHz, the signal depth varies from about 1 mm to 80 mm. Vertical ultrasound wide-field images provide fast information on depth and volume of the lesion. The 100 MHz ultrasound allows imaging with resolutions down to 16 μm (axial) and 32 μm (lateral). Multiphoton tomography provides 0.36 x 0.36 x 0.001 mm³ horizontal optical sections of a particular region of interest with submicron resolution down to 200 μm tissue depth. The autofluorescence of mitochondrial coenzymes, keratin, melanin, and elastin as well as the network of collagen structures can be imaged. The combination of ultrasound and MPT opens novel synergistic possibilities in diagnostics of skin diseases with a special focus on the early detection of skin cancer as well as the evaluation of treatments.

  17. A novel artificial fish swarm algorithm for solving large-scale reliability-redundancy application problem.

    Science.gov (United States)

    He, Qiang; Hu, Xiangtao; Ren, Hong; Zhang, Hongqi

    2015-11-01

    A novel artificial fish swarm algorithm (NAFSA) is proposed for solving large-scale reliability-redundancy allocation problem (RAP). In NAFSA, the social behaviors of fish swarm are classified in three ways: foraging behavior, reproductive behavior, and random behavior. The foraging behavior designs two position-updating strategies. And, the selection and crossover operators are applied to define the reproductive ability of an artificial fish. For the random behavior, which is essentially a mutation strategy, the basic cloud generator is used as the mutation operator. Finally, numerical results of four benchmark problems and a large-scale RAP are reported and compared. NAFSA shows good performance in terms of computational accuracy and computational efficiency for large scale RAP.

  18. APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR PREDICTION OF AIR POLLUTION LEVELS IN ENVIRONMENTAL MONITORING

    Directory of Open Access Journals (Sweden)

    Małgorzata Pawul

    2016-09-01

    Full Text Available Recently, a lot of attention was paid to the improvement of methods which are used to air quality forecasting. Artificial neural networks can be applied to model these problems. Their advantage is that they can solve the problem in the conditions of incomplete information, without the knowledge of the analytical relationship between the input and output data. In this paper we applied artificial neural networks to predict the PM 10 concentrations as factors determining the occurrence of smog phenomena. To create these networks we used meteorological data and concentrations of PM 10. The data were recorded in 2014 and 2015 at three measuring stations operating in Krakow under the State Environmental Monitoring. The best results were obtained by three-layer perceptron with back-propagation algorithm. The neural networks received a good fit in all cases.

  19. Application of artificial neural network to calculation of solitary wave run-up

    Directory of Open Access Journals (Sweden)

    You-xing WEI

    2010-09-01

    Full Text Available The prediction of solitary wave run-ups has important practical significance in coastal and ocean engineering. But the precision of calculating is limited from the existing models. Artificial neural network technology has rapidly developed and been widely used in many fields. In this paper, a solitary wave run-up calculation model is established based on artificial neural networks. A BP network with one hidden layer is modified by an additional momentum method and an auto-adjusting learning rate. The correlation coefficients between the model results and the experimental values are 0.9635 and 0.9965, respectively. It is concluded that the neural network model is an appropriate methodology to be applied to solitary wave run-up scenario calculation and analysis.

  20. Application of artificial neural network and information theory to detection of insulators

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Information theory is used to obtain the information gain for each identification feature, and this gain is used as the weight factor for this feature to stress the role of effective feature, and the ART model based on artificial neural network theory is then used for identification thereby forming the detection system for poor insulators. Exper-iments and calculations show this approach is correct and feasible.

  1. Application of Artificial Neural Networks in the Heart Electrical Axis Position Conclusion Modeling

    Science.gov (United States)

    Bakanovskaya, L. N.

    2016-08-01

    The article touches upon building of a heart electrical axis position conclusion model using an artificial neural network. The input signals of the neural network are the values of deflections Q, R and S; and the output signal is the value of the heart electrical axis position. Training of the network is carried out by the error propagation method. The test results allow concluding that the created neural network makes a conclusion with a high degree of accuracy.

  2. Analysis of multicriteria models application for selection of an optimal artificial lift method in oil production

    OpenAIRE

    Crnogorac, Miroslav P.; Danilović, Dušan Š.; Karović-Maričić, Vesna D.; Leković, Branko A.

    2016-01-01

    In the world today for the exploitation of oil reservoirs by artificial lift methods are applied different types of deep pumps (piston, centrifugal, screw, hydraulic), water jet pumps and gas lift (continuous, intermittent and plunger). Maximum values of oil production achieved by these exploitation methods are significantly different. In order to select the optimal exploitation method of oil well, the multicriteria analysis models are used. In this paper is presented an analysis of the multi...

  3. Application of Artificial Neural Network in Predicting the Survival Rate of Gastric Cancer Patients

    OpenAIRE

    Biglarian, A; E. Hajizadeh; Kazemnejad, A; Zali, MR

    2011-01-01

    "nBackground: The aim of this study was to predict the survival rate of Iranian gastric cancer patients using the Cox proportional hazard and artificial neural network models as well as comparing the ability of these approaches in predicting the survival of these patients."nMethods: In this historical cohort study, the data gathered from 436 registered gastric cancer patients who have had surgery between 2002 and 2007 at the Taleghani Hospital (a referral center for gastrointestinal...

  4. Real Estate Site Selection: An Application of Artificial Intelligence for Military Retail Facilities

    Science.gov (United States)

    2006-09-01

    Optimizing these factors should be of utmost importance for real estate site selection. This concept applies to private industry and to the Department of...artificial intelligent algorithms. These algorithms can be applied across many industries such as the retail, restaurant, and banking industries ...Kates, S. (1997). Real Estate Site Selection Using GIS and MCDM : A Case Study of the Toronto Retail Jewelry Industry . Submitted in partial

  5. Event detection challenges, methods, and applications in natural and artificial systems

    OpenAIRE

    Kerman, Mitchell C.; Jiang, Wei; Blumberg, Alan F.; Buttrey, Samuel E.

    2009-01-01

    A system is a combination of elements whose collaborative actions produce results generally not attainable by the elements acting alone, and an event is a significant occurrence or large-scale activity that is unusual relative to normal patterns of behavior. Event detection, or the process of identifying the occurrence of an event, within both natural and artificial (or man-made) systems has long been a topic of research, and a variety of techniques have been developed to address event detec...

  6. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications

    OpenAIRE

    Lucas Antón Pastur-Romay; Francisco Cedrón; Alejandro Pazos; Ana Belén Porto-Pazos

    2016-01-01

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by D...

  7. Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2014-02-01

    Full Text Available Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion significantly increased overall permeation of DEET through human skin (56% compared to Formulation A (oil-in-water emulsion. Formulation B (oil-in-water emulsion with thickening agent xanthan gum significantly decreased the size of oil droplet containing DEET (16%, but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150% when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23% in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%–628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%–338% than that through LDPE.

  8. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology.

    NARCIS (Netherlands)

    Gordon, S.; Daneshian, M.; Bouwstra, J.A.; Caloni, F.; Constant, S.; Davies, D.E.; Dandekar, G.; Guzman, C.A.; Fabian, E.; Haltner, E.; Hartung, T.; Hasiwa, N.; Hayden, P.; Kandarova, H.; Khare, S.; Krug, H.F.; Kneuer, C.; Leist, M.; Lian, G.; Marx, U.; Metzger, M.; Ott, K.; Prieto, P.; Roberts, M.S.; Roggen, E.L.; Tralau, T.; Braak, van den C.; Walles, H.; Lehr, C.M.

    2015-01-01

    Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields,

  9. Photodynamic therapy of murine non-melanoma skin carcinomas with diode laser after topical application of aluminum phthalocyanine chloride

    Science.gov (United States)

    Kyriazi, Maria; Alexandratou, Eleni; Yova, Dido; Rallis, Michail; Trebst, Tilmann

    2007-07-01

    The aim of this work is to study pharmacokinetics and photodynamic efficiency of aluminium phthalocyanine chloride (AlClPc) in dimethylsulfoxide/Tween 80/water solution, after topical application on hairless mice bearing non-melanoma skin carcinomas. The concentration of photosensitizer in normal skin and tumor biopsies 1-6 hours after application was assessed by fluorescence spectroscopy of chemical extractions. The concentration of photosensitizer was 40 times higher in tumor than in normal skin even 1 h after application. For photodynamic therapy (PDT) AlClPc was excited by a diode laser emitting at 670 nm, 1 h after application. Seven different combinations of therapeutic parameters were chosen. The efficiency was assessed as the percentage of complete tumor remission, the tumor growth retardation and the cosmetic outcomes. The highest complete remission 60% was achieved with the combination of 75 mW/cm2 with 150 J/cm2. No recurrence rate was observed in any treatment parameters group and the cosmetic outcome in all completely treated tumors was excellent. The results show that the effectiveness of PDT is highly dependent on fluence rate. In addition, they are promising for further investigation of this PDT scheme in preclinical studies mainly in non-melanoma skin carcinomas up to 7mm.

  10. Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology.

    NARCIS (Netherlands)

    Gordon, S.; Daneshian, M.; Bouwstra, J.A.; Caloni, F.; Constant, S.; Davies, D.E.; Dandekar, G.; Guzman, C.A.; Fabian, E.; Haltner, E.; Hartung, T.; Hasiwa, N.; Hayden, P.; Kandarova, H.; Khare, S.; Krug, H.F.; Kneuer, C.; Leist, M.; Lian, G.; Marx, U.; Metzger, M.; Ott, K.; Prieto, P.; Roberts, M.S.; Roggen, E.L.; Tralau, T.; Braak, van den C.; Walles, H.; Lehr, C.M.

    2015-01-01

    Models of the outer epithelia of the human body - namely the skin, the intestine and the lung - have found valid applications in both research and industrial settings as attractive alternatives to animal testing. A variety of approaches to model these barriers are currently employed in such fields,

  11. Pursuing prosthetic electronic skin

    Science.gov (United States)

    Chortos, Alex; Liu, Jia; Bao, Zhenan

    2016-09-01

    Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

  12. Colour gamuts in polychromatic dielectric elastomer artificial chromatophores

    Science.gov (United States)

    Rossiter, Jonathan; Conn, Andrew; Cerruto, Antonio; Winters, Amy; Roke, Calum

    2014-03-01

    Chromatophores are the colour changing organelles in the skins of animals including fish and cephalopods. The ability of cephalopods in particular to rapidly change their colouration in response to environmental changes, for example to camouflage against a new background, and in social situations, for example to attract a mate or repel a rival, is extremely attractive for engineering, medical, active clothing and biomimetic robotic applications. The rapid response of these chromatophores is possible by the direct coupling of fast acting muscle and pigmented saccules. In artificial chromatophores we are able to mimic this structure using electroactive polymer artificial muscles. In contrast to prior research which has demonstrated monochromatic artificial chromatophores, here we consider a novel multi-colour, multi-layer, artificial chromatophore structure inspired by the complex dermal chromatophore unit in nature and which exploits dielectric elastomer artificial muscles as the electroactive actuation mechanism. We investigate the optical properties of this chromatophore unit and explore the range of colours and effects that a single unit and a matrix of chromatophores can produce. The colour gamut of the multi-colour chromatophore is analysed and shows its suitability for practical display and camouflage applications. It is demonstrated how, by varying actuator strain and chromatophore base colour, the gamut can be shifted through colour space, thereby tuning the artificial chromatophore to a specific environment or application.

  13. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    Science.gov (United States)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than

  14. Human skin gene expression: Natural (trans) resveratrol versus five resveratrol analogs for dermal applications.

    Science.gov (United States)

    Lephart, Edwin D; Andrus, Merritt B

    2017-09-01

    Resveratrol (RV) is a polyphenolic compound naturally produced by plants. Polyphenolic compounds incorporated into medicinal products are beneficial but, RV is rapidly metabolized with an associated decline in biological activity. This study tested RV as the standard and compared five structurally modified RV analogs: butyrate, isobutyrate, palmitoate, acetate, and diacetate (to improve functionality) at 1% concentration(s) for 24 h in epiderm full thickness cultures by gene array/qPCR mRNA analysis. When silent mating type information regulation 2 homolog 1, extracellular elements (collagen1A1, 3A1, 4A1; elastin, tissue inhibitor of matrix metalloproteinase 1, fibrillin 1 laminin beta1 and matrix metalloproteinase 9), anti-aging and aging genes, inflammatory biomarkers (interleukin-1A [IL1A], IL1R2, IL-6 and IL-8), nerve growth factor, and the antioxidants (proliferating cell nuclear antigen, catalase, superoxide dismutase and metallothionein 1H/2H) were evaluated, ranking each from highest-to-lowest for gene expression: butyrate > isobutyrate > diacetate > acetate > palmitoate. This study showed that the butyrate and isobutyrate analogs are more biologically active compared to resveratrol and have potential use in topical applications to improve dermal and other health applications. Impact statement Resveratrol has been reported to have a wide variety of health benefits but its rapid metabolism especially after oral ingestion results in very low bioavailability. Notably, the first human skin gene expression study of resveratrol was not published until 2014. The purpose of this study was to determine if increased stability and biological activity could be obtained by modifying the chemical structure of natural (trans) resveratrol and quantifying human gene expression by qPCR of skin biomarkers that enhance dermal health. Five resveratrol analogs were synthesized that increased their lipophilic index to enhance tissue penetration and augment

  15. A novel elastic liposome for skin delivery of papain and its application on hypertrophic scar.

    Science.gov (United States)

    Chen, Yan-Yan; Lu, Ye-Hui; Ma, Chun-Hua; Tao, Wei-Wei; Zhu, Jing-Juan; Zhang, Xu

    2017-03-01

    This study aims to investigate the therapeutic effects of papain elastic liposomes (PEL) on hypertrophic scar through topical application. PEL were prepared using the reverse-phase evaporation method and optimized by response surface methodology. The transdermal absorption of optimized PEL was tested by vertical Franz diffusion cells in vitro. The effects of PEL were investigated in rabbit model of hypertrophic scar in vivo, histological analysis and scar-related proteins were detected to reveal potential scar repair mechanism. The best formulation of PEL had EE (43.8±1.4%), particle size (100.9±2.2nm), PDI (0.037±0.003), zeta potential (-26.3±1.3mV), and DI (21.9±3.1). PEL gave the cumulative amounts and steady state fluxes in the receiver solution of 381.9±32.4μg/cm(2), 11.4±1.5μg/cm(2)/h, and showed drug deposition in skin of 19.1±3.2% after 24h. After topical application, the scar elevation index, microvascular density, and collagen fiber were significantly decreased with regular arrangement. The expressions of TGF-β1, P-Smad-3, P-NF-κB p65, and P-IKBa in hypertrophic scar were significantly down regulated in contrast with those in model group. PEL were proven as an excellent topical preparation for hypertrophic scar treatment.

  16. Creep-age forming of AA7475 aluminum panels for aircraft lower wing skin application

    Directory of Open Access Journals (Sweden)

    Diego José Inforzato

    2012-08-01

    Full Text Available Creep-age forming (CAF is an interesting process for the airframe industry, as it is able to form or shape panels into smooth, but complex, curvatures. In the CAF process, the ageing cycle of the alloy is used to relax external loads imposed to the part, through creep mechanisms. Those relaxed stresses impose a new curvature to the part. At the end of the process, significant spring back (sometimes about 70% is observed and the success in achieving the desired form depends on how the spring back can be predicted in order to compensate it by tooling changes. Most of the applications relate to simple (non stiffened panels. The present work deals with the CAF of aluminum panels for aircraft wing skin application. CAF was performed using vacuum-bagging autoclave technique in small scale complex shape stiffened panels, machined from an AA7475 alloy plate. An analytical reference model from the literature was employed estimate the spring back effect in such panel geometry. This model that deals with simple plates was adapted to stiffened panels using a geometric simplification, resulting in a semi-empirical model. The results demonstrate that CAF is a promising process to form stiffened panels, and the spring back can be roughly estimated through a simple model and few experiments.

  17. Proposal of abolition of the skin sensitivity test before equine rabies immune globulin application

    Directory of Open Access Journals (Sweden)

    CUPO Palmira

    2001-01-01

    Full Text Available An epizootic outbreak of rabies occurred in 1995 in Ribeirão Preto, SP, with 58 cases of animal rabies (54 dogs, 3 cats and 1 bat confirmed by the Pasteur Institute of São Paulo, and one human death. The need to provide care to a large number of people for the application of equine rabies immune globulin (ERIG prevented the execution of the skin sensitivity test (SST and often also the execution of desensitization, procedures routinely used up to that time at the Emergency Unit of the University Hospital of the Faculty of Medicine of Ribeirão Preto, University of São Paulo (EU-UHFMRP-USP, a reference hospital for the application of heterologous sera. In view of our positive experience of several years with the abolition of SST and of the use of premedication before the application of antivenom sera, we used a similar schedule for ERIG application. Of the 1489 victims of animal bites, 1054 (71% received ERIG; no patient was submitted to SST and all received intravenously anti-histamines (anti-H1 + anti-H2 and corticosteroids before the procedure. The patients were kept under observation for 60 to 180 minutes and no adverse reaction was observed. On the basis of these results, since December 1995 ERIG application has been decentralized in Ribeirão Preto and has become the responsibility of the Emergency Unit of the University Hospital and the Central Basic Health Unit, where the same routine is used. Since then, 4216 patients have received ERIG (1818 at the Basic Health Unit and 2398 at the EU-UHFMRP, with no problems. The ideal would be the routine use of human rabies immune globulin (HRIG in public health programs, but this is problematic, because of their high cost. However, while this does not occur, the use of SST is no longer justified at the time of application of ERIG, in view of the clinical evidence of low predictive value and low sensitivity of SST involving the application of heterologous sera. It is very important to point out

  18. An introduction to artificial neural networks in bioinformatics--application to complex microarray and mass spectrometry datasets in cancer studies.

    Science.gov (United States)

    Lancashire, Lee J; Lemetre, Christophe; Ball, Graham R

    2009-05-01

    Applications of genomic and proteomic technologies have seen a major increase, resulting in an explosion in the amount of highly dimensional and complex data being generated. Subsequently this has increased the effort by the bioinformatics community to develop novel computational approaches that allow for meaningful information to be extracted. This information must be of biological relevance and thus correlate to disease phenotypes of interest. Artificial neural networks are a form of machine learning from the field of artificial intelligence with proven pattern recognition capabilities and have been utilized in many areas of bioinformatics. This is due to their ability to cope with highly dimensional complex datasets such as those developed by protein mass spectrometry and DNA microarray experiments. As such, neural networks have been applied to problems such as disease classification and identification of biomarkers. This review introduces and describes the concepts related to neural networks, the advantages and caveats to their use, examples of their applications in mass spectrometry and microarray research (with a particular focus on cancer studies), and illustrations from recent literature showing where neural networks have performed well in comparison to other machine learning methods. This should form the necessary background knowledge and information enabling researchers with an interest in these methodologies, but not necessarily from a machine learning background, to apply the concepts to their own datasets, thus maximizing the information gain from these complex biological systems.

  19. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  20. Clinical applications of CO2 laser resurfacing in the treatment of various pathologic skin disorders

    Science.gov (United States)

    Giler, Shamai

    1997-12-01

    CO2 laser skin resurfacing devices are widely used in cosmetic surgery for the treatment of facial rhytides, acne scars and aging skin. This technique is also useful in the treatment of various benign and premalignant or multiple pathological skin conditions and disorders originating in the epidermal, dermal and skin appendages, vascular lesions, epidermal nevi, infected wounds and ulcers, and keloids. Various surgical techniques have been developed in our clinic using laser resurfacing in the treatment of more than 2,000 patients with various skin pathologic disorders. We describe our experience with the various techniques used. The precise depth control and ablation properties combined with the hemostatic and sterilizing effects of the CO2 laser beam, reduction of the possibility of bleeding, infection and damage to healthy tissues, make the CO2 laser resurfacing techniques the treatment of choice for cosmetic surgery and treatment of benign, premalignant and multiple pathologic skin conditions.

  1. Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase

    Science.gov (United States)

    Szaleniec, Maciej; Witko, Małgorzata; Tadeusiewicz, Ryszard; Goclon, Jakub

    2006-03-01

    Artificial neural networks (ANNs) are used for classification and prediction of enzymatic activity of ethylbenzene dehydrogenase from EbN1 Azoarcus sp. bacterium. Ethylbenzene dehydrogenase (EBDH) catalyzes stereo-specific oxidation of ethylbenzene and its derivates to alcohols, which find its application as building blocks in pharmaceutical industry. ANN systems are trained based on theoretical variables derived from Density Functional Theory (DFT) modeling, topological descriptors, and kinetic parameters measured with developed spectrophotometric assay. Obtained models exhibit high degree of accuracy (100% of correct classifications, correlation between predicted and experimental values of reaction rates on the 0.97 level). The applicability of ANNs is demonstrated as useful tool for the prediction of biochemical enzyme activity of new substrates basing only on quantum chemical calculations and simple structural characteristics. Multi Linear Regression and Molecular Field Analysis (MFA) are used in order to compare robustness of ANN and both classical and 3D-quantitative structure-activity relationship (QSAR) approaches.

  2. Main Benefits and Applicability of Plant Extracts in Skin Care Products

    OpenAIRE

    Ana Sofia Ribeiro; Marilene Estanqueiro; M. Beatriz Oliveira; José Manuel Sousa Lobo

    2015-01-01

    Natural ingredients have been used for centuries for skin care purposes. Nowadays, they are becoming more prevalent in formulations, due to consumers’ concerns about synthetic ingredients/chemical substances. The main benefits reported for plant extracts, used in skin care, include antioxidant and antimicrobial activities and tyrosinase inhibition effect. In this review, some examples of plants from Portuguese flora, whose extracts have shown good properties for skin care are presented. Howev...

  3. More than skin deep? Potential nicotinamide treatment applications in chronic kidney transplant recipients

    OpenAIRE

    Bostom, Andrew G.; Merhi, Basma; Walker, Joanna; Robinson-Bostom, Leslie

    2016-01-01

    Non-melanoma cutaneous carcinomas, or skin cancers, predominantly squamous cell carcinomas (SCCs), are the most common malignancies occurring in kidney transplant recipients (KTRs). Squamous cell carcinoma risk is dramatically elevated in KTRs, occurring at rates of up 45-250 times those reported in general populations. New non-melanoma skin cancers in KTRs with a prior non-melanoma skin cancer also develop at 3-times the rate reported in non-KTRs with the same clinical history. The unique ag...

  4. More than skin deep? Potential nicotinamide treatment applications in chronic kidney transplant recipients

    OpenAIRE

    Bostom, Andrew G.; Merhi, Basma; Walker, Joanna; Robinson-Bostom, Leslie

    2016-01-01

    Non-melanoma cutaneous carcinomas, or skin cancers, predominantly squamous cell carcinomas (SCCs), are the most common malignancies occurring in kidney transplant recipients (KTRs). Squamous cell carcinoma risk is dramatically elevated in KTRs, occurring at rates of up 45-250 times those reported in general populations. New non-melanoma skin cancers in KTRs with a prior non-melanoma skin cancer also develop at 3-times the rate reported in non-KTRs with the same clinical history. The unique ag...

  5. Application of artificial neural networks to predict the deflections of reinforced concrete beams

    Science.gov (United States)

    Kaczmarek, Mateusz; Szymańska, Agnieszka

    2016-06-01

    Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.

  6. Gapped sequence alignment using artificial neural networks: application to the MHC class I system

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Nielsen, Morten

    2016-01-01

    . On this relatively simple system, we developed a sequence alignment method based on artificial neural networks that allows insertions and deletions in the alignment. Results: We show that prediction methods based on alignments that include insertions and deletions have significantly higher performance than methods...... the length profile of different MHC molecules, and quantified the reduction of the experimental effort required to identify potential epitopes using our prediction algorithm. Availability and implementation: The NetMHC-4.0 method for the prediction of peptide-MHC class I binding affinity using gapped...

  7. Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, M P; Guo, S; Kalinin, S V; Jesse, S [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831 (United States); Reukov, V V; Thompson, G L; Vertegel, A A, E-mail: sergei2@ornl.go [Department of Bioengineering, Clemson University, Clemson, SC 29634 (United States)

    2009-10-07

    Functional recognition imaging in scanning probe microscopy (SPM) using artificial neural network identification is demonstrated. This approach utilizes statistical analysis of complex SPM responses at a single spatial location to identify the target behavior, which is reminiscent of associative thinking in the human brain, obviating the need for analytical models. We demonstrate, as an example of recognition imaging, rapid identification of cellular organisms using the difference in electromechanical activity over a broad frequency range. Single-pixel identification of model Micrococcus lysodeikticus and Pseudomonas fluorescens bacteria is achieved, demonstrating the viability of the method.

  8. Application of Artificial Intelligence technology to the analysis and synthesis of reliable software systems

    Science.gov (United States)

    Wild, Christian; Eckhardt, Dave

    1987-01-01

    The development of a methodology for the production of highly reliable software is one of the greatest challenges facing the computer industry. Meeting this challenge will undoubtably involve the integration of many technologies. This paper describes the use of Artificial Intelligence technologies in the automated analysis of the formal algebraic specifications of abstract data types. These technologies include symbolic execution of specifications using techniques of automated deduction and machine learning through the use of examples. On-going research into the role of knowledge representation and problem solving in the process of developing software is also discussed.

  9. Sugar recognition: designing artificial receptors for applications in biological diagnostics and imaging.

    Science.gov (United States)

    Miron, Caitlin E; Petitjean, Anne

    2015-02-09

    At the cellular level, numerous processes ranging from protein folding to disease development are mediated by a sugar-based molecular information system that is much less well known than its DNA- or protein-based counterparts. The subtle structural diversity of such sugar tags nevertheless offers an excellent, if challenging, opportunity to design receptors for the selective recognition of biorelevant sugars. Over the past 40 years, growing interest in the field of sugar recognition has led to the development of several promising artificial receptors, which could soon find widespread use in medical diagnostics and cell imaging. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Application of artificial neural network for prediction of marine diesel engine performance

    Science.gov (United States)

    Mohd Noor, C. W.; Mamat, R.; Najafi, G.; Nik, W. B. Wan; Fadhil, M.

    2015-12-01

    This study deals with an artificial neural network (ANN) modelling of a marine diesel engine to predict the brake power, output torque, brake specific fuel consumption, brake thermal efficiency and volumetric efficiency. The input data for network training was gathered from engine laboratory testing running at various engine speed. The prediction model was developed based on standard back-propagation Levenberg-Marquardt training algorithm. The performance of the model was validated by comparing the prediction data sets with the measured experiment data. Results showed that the ANN model provided good agreement with the experimental data with high accuracy.

  11. Application of an artificial neural network for evaluation of activity concentration exemption limits in NORM industry.

    Science.gov (United States)

    Wiedner, Hannah; Peyrés, Virginia; Crespo, Teresa; Mejuto, Marcos; García-Toraño, Eduardo; Maringer, Franz Josef

    2016-12-27

    NORM emits many different gamma energies that have to be analysed by an expert. Alternatively, artificial neural networks (ANNs) can be used. These mathematical software tools can generalize "knowledge" gained from training datasets, applying it to new problems. No expert knowledge of gamma-ray spectrometry is needed by the end-user. In this work an ANN was created that is able to decide from the raw gamma-ray spectrum if the activity concentrations in a sample are above or below the exemption limits.

  12. Skin Effect of Reversely Switched Dynistor in Short Pulse Discharge Application

    Institute of Scientific and Technical Information of China (English)

    Lin Liang; Yue-Hui Yu

    2009-01-01

    The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.

  13. Application of dermal microdialysis for the determination of bioavailability of clobetasol propionate applied to the skin of human subjects

    DEFF Research Database (Denmark)

    Au, W L; Skinner, M F; Benfeldt, E

    2012-01-01

    Dermal microdialysis was used to assess the bioavailability of a topical corticosteroid, clobetasol propionate, following application onto the skin of human subjects. The penetration of clobetasol propionate from a 4% m/v ethanolic solution applied onto 4 sites on one forearm of healthy human...... drug of interest. Furthermore, the study clearly demonstrated the application of dermal microdialysis as a valuable tool to assess the bioavailability/bioequivalence of clobetasol propionate penetration into the skin following topical application....... volunteers was studied. A lipid emulsion, Intralipid®, was used as the perfusate and linear microdialysis probes with a 2-kDa cutoff were inserted intradermally at the designated sites. The results indicated that Intralipid could be used as a suitable perfusate for in vivo microdialysis of this lipophilic...

  14. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils.

    Science.gov (United States)

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM.

  15. Artificial coordinating field and its application to motion planning of robots in uncertain dynamic environments

    Institute of Scientific and Technical Information of China (English)

    JING; Xingjian; WANG; Yuechao; TAN; Dalong

    2004-01-01

    Artificial coordinating fields (ACF) are proposed to deal with the motion planning problems of mobile robots in uncertain dynamic environments. An ACF around an obstacle can generate two orthogonal force vectors to a robot: one is called the coordinating force vector which is purposively designed in this paper, and the other is the repulsive force vector which is the same as that in a conventional artificial potential field.The ACF is designed according to the updated motion purpose and the relative states of the robot with respect to its local environment, and it also satisfies the robot's dynamic constraints. The direction of the coordinating force can be determined on line according to an optimal evaluation function. The ACF can effectively remove the local minima, and reduce the oscillation of the planned trajectory between multiple obstacles. Only local knowledge of the environments is needed in the ACF-based motion planning. The properties of the ACF such as controllability, adaptability, safety and reachability are studied and discussed in detail in this paper. Theoretical analysis and simulations are given to illustrate our main results.

  16. Improvement of McKibben Artificial Muscle with Long Stroke Motion and Its Application

    Science.gov (United States)

    Akagi, Tetsuya; Dohta, Shujiro; Kuno, Hiroaki; Ihara, Michinori

    The actuators required for a wearable system need to be flexible so as not to injure the body. The purpose of this study is to develop a flexible and lightweight actuator which can be safe enough to be attached to the human body. In the previous study, a new type of McKibben artificial muscle that had a long stroke of more than 80 % of its original length was proposed and tested. However, the damages on the tube of the actuator were found. They are caused by a large friction between the slide stage and the tube. Therefore, the life time of the actuator becomes shorter. In this paper, the improved McKibben actuator which consists of a McKibben artificial muscle on the market (FESTO Co. Ltd.), steel balls as a cylinder head and two pairs of slide stages is proposed and tested. The slide stage has steel balls set on the inner bore of the stage to decrease the friction. The steel ball in the McKibben actuator is held by two pairs of slide stages from both sides of the ball. As a result, the minimum driving pressure of the improved actuator decreases about 68 % compared with that of the previous one. The actuator can realize both pushing and pulling motion even if it has flexibility. By using these properties of the actuator, the various rehabilitation devices were proposed and tested.

  17. Validation of a 2D multispectral camera: application to dermatology/cosmetology on a population covering five skin phototypes

    Science.gov (United States)

    Jolivot, Romuald; Nugroho, Hermawan; Vabres, Pierre; Ahmad Fadzil, M. H.; Marzani, Franck

    2011-07-01

    This paper presents the validation of a new multispectral camera specifically developed for dermatological application based on healthy participants from five different Skin PhotoTypes (SPT). The multispectral system provides images of the skin reflectance at different spectral bands, coupled with a neural network-based algorithm that reconstructs a hyperspectral cube of cutaneous data from a multispectral image. The flexibility of neural network based algorithm allows reconstruction at different wave ranges. The hyperspectral cube provides both high spectral and spatial information. The study population involves 150 healthy participants. The participants are classified based on their skin phototype according to the Fitzpatrick Scale and population covers five of the six types. The acquisition of a participant is performed at three body locations: two skin areas exposed to the sun (hand, face) and one area non exposed to the sun (lower back) and each is reconstructed at 3 different wave ranges. The validation is performed by comparing data acquired from a commercial spectrophotometer with the reconstructed spectrum obtained from averaging the hyperspectral cube. The comparison is calculated between 430 to 740 nm due to the limit of the spectrophotometer used. The results reveal that the multispectral camera is able to reconstruct hyperspectral cube with a goodness of fit coefficient superior to 0,997 for the average of all SPT for each location. The study reveals that the multispectral camera provides accurate reconstruction of hyperspectral cube which can be used for analysis of skin reflectance spectrum.

  18. Comparison of curative effects between chitosan artificial skin membrane and vaseline gauze in the treatment of medium-thick skin flap donor site%甲壳胺人工皮膜与凡士林纱布治疗中厚层皮片供区的疗效比较

    Institute of Scientific and Technical Information of China (English)

    黄秦邶; 陈陆平; 吕惠玲; 蔡建

    2015-01-01

    目的:比较甲壳胺人工皮膜与凡士林纱布治疗中厚层皮片供区的临床效果。方法骨外科具有完整临床资料以大腿部作为中厚层皮片供区的病例46例作为研究对象,随机分为观察组22例(采取甲壳胺人工皮膜治疗)和对照组24例(采取凡士林纱布治疗),对比两组治疗方法的临床效果。结果经过平均6个月随访,对照组瘙痒、皲裂或者溃疡以及脱屑的发生率为45.8%,高于观察组13.6%;色素脱失或沉着、瘢痕的发生率对照组明显高于观察组,观察组的两点辨别觉亦明显优于对照组,差异有统计学意义(P<0.01)。结论甲壳胺人工皮膜能有效地保护中厚层皮片供区创面,再生皮肤外形良好,质量高,并发症少,疗效确切,值得应用推广。%Objective To compare the curative effects between chitosan artificial skin membrane and vaseline gauze in the treatment of medium-thick skin flap donor site. Methods There were 46 patients with complete clinical data and medium-thick skin flap donor site in thigh as study subjects. They were randomly divided into observation group with 22 cases (received chitosan artificial skin membrane) and control group with 24 cases (received vaseline gauze). Clinical effects of the two groups were compared. Results After follow-up for average 6 months, the control group had higher incidences of pruritus, rahagades, anabrosis and desquamation as 45.8% than 13.6% of the observation group. The control group also had higher incidences of depigmentation, chromatosis, and scar then the observation group. The observation group had much better two-point identification feeling than the control group. Their difference had statistical significance (P<0.01). Conclusion Chitosan artificial skin membrane can effectively protect medium-thick skin flap donor site with good appearance and quality of regenerated skin. This method provides few complications and precise effect, and it is

  19. Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities

    Science.gov (United States)

    Kousari, Mohammad Reza; Hosseini, Mitra Esmaeilzadeh; Ahani, Hossein; Hakimelahi, Hemila

    2015-09-01

    An effective forecast of the drought definitely gives lots of advantages in regard to the management of water resources being used in agriculture, industry, and households consumption. To introduce such a model applying simple data inputs, in this study a regional drought forecast method on the basis of artificial intelligence capabilities (artificial neural networks) and Standardized Precipitation Index (SPI in 3, 6, 9, 12, 18, and 24 monthly series) has been presented in Fars Province of Iran. The precipitation data of 41 rain gauge stations were applied for computing SPI values. Besides, weather signals including Multivariate ENSO Index (MEI), North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), NINO1+2, anomaly NINO1+2, NINO3, anomaly NINO3, NINO4, anomaly NINO4, NINO3.4, and anomaly NINO3.4 were also used as the predictor variables for SPI time series forecast the next 12 months. Frequent testing and validating steps were considered to obtain the best artificial neural networks (ANNs) models. The forecasted values were mapped in verification sector then they were compared with the observed maps at the same dates. Results showed considerable spatial and temporal relationships even among the maps of different SPI time series. Also, the first 6 months forecasted maps showed an average of 73 % agreements with the observed ones. The most important finding and the strong point of this study was the fact that although drought forecast in each station and time series was completely independent, the relationships between spatial and temporal predictions remained. This strong point mainly referred to frequent testing and validating steps in order to explore the best drought forecast models from plenty of produced ANNs models. Finally, wherever the precipitation data are available, the practical application of the presented method is possible.

  20. Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities

    Science.gov (United States)

    Kousari, Mohammad Reza; Hosseini, Mitra Esmaeilzadeh; Ahani, Hossein; Hakimelahi, Hemila

    2017-01-01

    An effective forecast of the drought definitely gives lots of advantages in regard to the management of water resources being used in agriculture, industry, and households consumption. To introduce such a model applying simple data inputs, in this study a regional drought forecast method on the basis of artificial intelligence capabilities (artificial neural networks) and Standardized Precipitation Index (SPI in 3, 6, 9, 12, 18, and 24 monthly series) has been presented in Fars Province of Iran. The precipitation data of 41 rain gauge stations were applied for computing SPI values. Besides, weather signals including Multivariate ENSO Index (MEI), North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), NINO1+2, anomaly NINO1+2, NINO3, anomaly NINO3, NINO4, anomaly NINO4, NINO3.4, and anomaly NINO3.4 were also used as the predictor variables for SPI time series forecast the next 12 months. Frequent testing and validating steps were considered to obtain the best artificial neural networks (ANNs) models. The forecasted values were mapped in verification sector then they were compared with the observed maps at the same dates. Results showed considerable spatial and temporal relationships even among the maps of different SPI time series. Also, the first 6 months forecasted maps showed an average of 73 % agreements with the observed ones. The most important finding and the strong point of this study was the fact that although drought forecast in each station and time series was completely independent, the relationships between spatial and temporal predictions remained. This strong point mainly referred to frequent testing and validating steps in order to explore the best drought forecast models from plenty of produced ANNs models. Finally, wherever the precipitation data are available, the practical application of the presented method is possible.

  1. Role of prostaglandin E2 and leukotriene B4 in skin reaction induced by transdermal application of propranolol.

    Science.gov (United States)

    Kobayashi, I; Hosaka, K; Maruo, H; Saeki, Y; Kamiyama, M; Konno, C; Gemba, M

    2000-02-01

    Dermal application of propranolol (PRL) induced formation of erythema and edema, and pseudoeosinophil infiltration in epidermis and dermis at the application site in guinea pigs. We investigated the production of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) at the application site of PRL and the role of these inflammatory chemical mediators in the occurrence of the skin reactions. PGE2 was found to be produced at the application site slightly after the accumulation of PRL released from the adhesive bandage in the patch test, and the amount of PGE2 increased continuously, with a peak value obtained at 24 h after application. The time-course changes resembled those of delta a* value, the index of erythema formation determined by colorimetric measurement, and edema formation. The production of PGE2 by dermal application of PRL was suppressed by local pretreatment with dexamethasone or indomethacin. However, no notable production of LTB4 was observed at the application site of PRL.

  2. Introduction to artificial intelligence

    Science.gov (United States)

    Cheeseman, P.; Gevarter, W.

    1986-01-01

    This paper presents an introductory view of Artificial Intelligence (AI). In addition to defining AI, it discusses the foundations on which it rests, research in the field, and current and potential applications.

  3. Development, fabrication, and modeling of highly sensitive conjugated polymer based piezoresistive sensors in electronic skin applications

    Science.gov (United States)

    Khalili, Nazanin; Naguib, Hani E.; Kwon, Roy H.

    2016-04-01

    Human intervention can be replaced through development of tools resulted from utilizing sensing devices possessing a wide range of applications including humanoid robots or remote and minimally invasive surgeries. Similar to the five human senses, sensors interface with their surroundings to stimulate a suitable response or action. The sense of touch which arises in human skin is among the most challenging senses to emulate due to its ultra high sensitivity. This has brought forth novel challenging issues to consider in the field of biomimetic robotics. In this work, using a multiphase reaction, a polypyrrole (PPy) based hydrogel is developed as a resistive type pressure sensor with an intrinsically elastic microstructure stemming from three dimensional hollow spheres. Furthermore, a semi-analytical constriction resistance model accounting for the real contact area between the PPy hydrogel sensors and the electrode along with the dependency of the contact resistance change on the applied load is developed. The model is then solved using a Monte Carlo technique and the sensitivity of the sensor is obtained. The experimental results showed the good tracking ability of the proposed model.

  4. The application of skin metabolomics in the context of transdermal drug delivery.

    Science.gov (United States)

    Li, Jinling; Xu, Weitong; Liang, Yibiao; Wang, Hui

    2017-04-01

    Metabolomics is a powerful emerging tool for the identification of biomarkers and the exploration of metabolic pathways in a high-throughput manner. As an administration site for percutaneous absorption, the skin has a variety of metabolic enzymes, except other than hepar. However, technologies to fully detect dermal metabolites remain lacking. Skin metabolomics studies have mainly focused on the regulation of dermal metabolites by drugs or on the metabolism of drugs themselves. Skin metabolomics techniques include collection and preparation of skin samples, data collection, data processing and analysis. Furthermore, studying dermal metabolic effects via metabolomics can provide novel explanations for the pathogenesis of some dermatoses and unique insights for designing targeted prodrugs, promoting drug absorption and controlling drug concentration. This paper reviews current progress in the field of skin metabolomics, with a specific focus on dermal drug delivery systems and dermatosis.

  5. An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications

    Science.gov (United States)

    Tee, Benjamin C.-K.; Wang, Chao; Allen, Ranulfo; Bao, Zhenan

    2012-12-01

    Pressure sensitivity and mechanical self-healing are two vital functions of the human skin. A flexible and electrically conducting material that can sense mechanical forces and yet be able to self-heal repeatably can be of use in emerging fields such as soft robotics and biomimetic prostheses, but combining all these properties together remains a challenging task. Here, we describe a composite material composed of a supramolecular organic polymer with embedded nickel nanostructured microparticles, which shows mechanical and electrical self-healing properties at ambient conditions. We also show that our material is pressure- and flexion-sensitive, and therefore suitable for electronic skin applications. The electrical conductivity can be tuned by varying the amount of nickel particles and can reach values as high as 40 S cm-1. On rupture, the initial conductivity is repeatably restored with ~90% efficiency after 15 s healing time, and the mechanical properties are completely restored after ~10 min. The composite resistance varies inversely with applied flexion and tactile forces. These results demonstrate that natural skin's repeatable self-healing capability can be mimicked in conductive and piezoresistive materials, thus potentially expanding the scope of applications of current electronic skin systems.

  6. Characterization of multifunctional skin-material for morphing leading-edge applications

    Science.gov (United States)

    Geier, Sebastian; Kintscher, Markus; Mahrholz, Thorsten; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin

    2013-04-01

    Former research on morphing droop-nose applications revealed great economical and social ecological advantages in terms of providing gapless surfaces for long areas of laminar flow. Furthermore a droop-nose for laminar flow applications provides a low noise exposing high-lift system at the leading-edge. Various kinematic concepts for the active deployment of such devices are already published but the major challenge is still an open issue: a skin material which meets the compromise of needed stiffness and flexibility. Moreover additional functions have to be added to keep up with standard systems. As a result of several national and European projects the DLR developed a gapless 3D smart droop-nose concept, which was successfully analyzed in a low speed wind tunnel test under relevant loads to prove the functionality and efficiency. The main structure of this concept is made of commercial available glass fiber reinforced plastics (GRFP). This paper presents elementary tests to characterize material lay-ups and their integrity by applying different loads under extreme thermal conditions using aged specimens. On the one hand the presented work is focused on the integrity of material-interfaces and on the other hand the efficiency and feasibility of embedded functions. It can be concluded that different preparations, different adhesives and used materials have their significant influence to the interface stability and mechanical property of the whole lay-up. Especially the laminate design can be optimized due to the e. g. mechanical exploitation of the added systems beyond their main function in order to reduce structural mass.

  7. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  8. Application of Artificial Bee Colony Algorithm to Portfolio Adjustment Problem with Transaction Costs

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-01-01

    Full Text Available Compared with the conventional probabilistic mean-variance methodology, fuzzy number can better describe an uncertain environment with vagueness and ambiguity. In this paper, we discuss a portfolio adjusting problem under the assumption that the returns of risky assets are fuzzy numbers and there exist general transaction costs in portfolio adjusting process. In the proposed model, we take the first possibilistic moment about zero of a portfolio as the investment return and the second possibilistic moment about the possibilistic mean value of the portfolio as the investment risk. To solve the proposed model, a modified artificial bee colony (ABC algorithm is developed for calculating the optimal portfolio adjusting strategy. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and approach.

  9. Optimal Fuzzy PID Controller with Adjustable Factors and Its Application to Intelligent Artificial Legs

    Institute of Scientific and Technical Information of China (English)

    Tan Guanzheng(谭冠政); Xiao Hongfeng; Wang Yuechao

    2004-01-01

    A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on-line fuzzy inference mechanism and another is a conventional PID controller. In the fuzzy inference mechanism, three adjustable factors xp, xi, and xd are introduced. Their function is to further modify and optimize the result of the fuzzy inference to make the controller have the optimal control effect on a given object. The optimal values of these factors are determined based on the ITAE criterion and the flexible polyhedron search algorithm of Nelder and Mead. This PID controller has been used to control a D.C. motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that the design of this controller is very effective and can be widely used to control different kinds of objects and processes.

  10. APPLICATION OF ARTIFICIAL NEURAL NETWORK IN COMPLEX SYSTEMS OF REGIONAL SUSTAINABLE DEVELOPMENT

    Institute of Scientific and Technical Information of China (English)

    SHI Chun; Philip JAMES; GUO Zhong-yang

    2004-01-01

    Meeting the challenge of sustainable development requires substantial advances in understanding the interaction of natural and human systems. The dynamics of regional sustainable development could be addressed in the context of complex system thinking. Three features of complex systems are that they are uncertain, non-linear and self-organizing. Modeling regional development requires a consideration of these features. This paper discusses the feasibility of using the artificial neural networt(ANN) to establish an adjustment prediction model for the complex systems of sustainable development (CSSD). Shanghai Municipality was selected as the research area to set up the model, from which reliable prediction data were produced in order to help regional development planning. A new approach, which could help to manage regional sustainable development, is then explored.

  11. A survey on the design of multiprocessing systems for artificial intelligence applications

    Science.gov (United States)

    Wah, Benjamin W.; Li, Guo Jie

    1989-01-01

    Some issues in designing computers for artificial intelligence (AI) processing are discussed. These issues are divided into three levels: the representation level, the control level, and the processor level. The representation level deals with the knowledge and methods used to solve the problem and the means to represent it. The control level is concerned with the detection of dependencies and parallelism in the algorithmic and program representations of the problem, and with the synchronization and sheduling of concurrent tasks. The processor level addresses the hardware and architectural components needed to evaluate the algorithmic and program representations. Solutions for the problems of each level are illustrated by a number of representative systems. Design decisions in existing projects on AI computers are classed into top-down, bottom-up, and middle-out approaches.

  12. Application of macrobenthic diversity to estimate ecological health of artificial oyster reef in Yangtze Estuary, China.

    Science.gov (United States)

    Lv, Weiwei; Huang, Youhui; Liu, Zhiquan; Yang, Yang; Fan, Bin; Zhao, Yunlong

    2016-02-15

    In this study, several macrobenthic diversity investigations were performed in Yangtze Estuary Oyster Reef, the largest artificial oyster reef in China, from 2012 to 2014. The sampling sites of the south branch showed considerably higher diversity than those of the north branch. The richness measures exhibited a significant increasing trend from low- to high-salinity zone; however, the evenness measures were typically high in the middle-salinity zone. During the past decade, the results were combined with historical data to detect the changes in macrobenthos. The variation in substrate organisms and macrobenthic diversity followed a steady trend after a major fluctuation. Redundancy analysis indicated that the water salinity and substrate factors were the main indicators that influence macrobenthic distribution. All sampling sites in the south branch were protected by a nature reserve. However, the N2 and N6 sites in the north branch were subjected to severe and mild human interventions, respectively.

  13. Application of artificial neural engineering and regression models for forecasting shelf life of instant coffee drink

    Directory of Open Access Journals (Sweden)

    Sumit Goyal

    2011-07-01

    Full Text Available Coffee as beverage is prepared from the roasted seeds (beans of the coffee plant. Coffee is the second most important product in the international market in terms of volume trade and the most important in terms of value. Artificial neural engineering and regression models were developed to predict shelf life of instant coffee drink. Colour and appearance, flavour, viscosity and sediment were used as input parameters. Overall acceptability was used as output parameter. The dataset consisted of experimentally developed 50 observations. The dataset was divided into two disjoint subsets, namely, training set containing 40 observations (80% of total observations and test set comprising of 10 observations (20% of total observations. The network was trained with 500 epochs. Neural network toolbox under Matlab 7.0 software was used for training the models. From the investigation it was revealed that multiple linear regression model was superior over radial basis model for forecasting shelf life of instant coffee drink.

  14. Open source hardware and software platform for robotics and artificial intelligence applications

    Science.gov (United States)

    Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-02-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.

  15. Application of artificial neural networks for response surface modelling in HPLC method development

    Directory of Open Access Journals (Sweden)

    Mohamed A. Korany

    2012-01-01

    Full Text Available This paper discusses the usefulness of artificial neural networks (ANNs for response surface modelling in HPLC method development. In this study, the combined effect of pH and mobile phase composition on the reversed-phase liquid chromatographic behaviour of a mixture of salbutamol (SAL and guaiphenesin (GUA, combination I, and a mixture of ascorbic acid (ASC, paracetamol (PAR and guaiphenesin (GUA, combination II, was investigated. The results were compared with those produced using multiple regression (REG analysis. To examine the respective predictive power of the regression model and the neural network model, experimental and predicted response factor values, mean of squares error (MSE, average error percentage (Er%, and coefficients of correlation (r were compared. It was clear that the best networks were able to predict the experimental responses more accurately than the multiple regression analysis.

  16. Combined application of extracorporeal membrane oxygenation and an artificial pacemaker in fulminant myocarditis in a child.

    Science.gov (United States)

    Ye, Sheng; Zhu, Lvchan; Ning, Botao; Zhang, Chenmei

    2017-06-01

    Fulminant myocarditis is severe and aggressive, but it is self-limited and usually has a favorable prognosis if the patients can survive the acute phase. When drug treatment is not effective, extracorporeal membrane oxygenation technology should be applied to support cardiopulmonary function. Extracorporeal membrane oxygenation can simultaneously support function of the left ventricle, right ventricle, and lungs, and provide stable blood circulation for patients with heart and respiratory failure, which allows sufficient time for the cardiopulmonary system to recover. Fulminant myocarditis affects cardiac systolic function, as well as the function of autorhythmic cells and the conduction system. If severe bradycardia or atrioventricular block appears, a pacemaker needs to be installed. We report a child with fulminant myocarditis who was treated with extracorporeal membrane oxygenation combined with an artificial pacemaker.

  17. Application of Artificial Vision in flow redirection during filling of Liquid Composite Molding processes

    Science.gov (United States)

    Montés, N.; Sanchez, F.; García, J. A.; Falcó, A.; Tornero, J.; Chinesta, F.

    2007-04-01

    The control techniques applied in Liquid Composite Molding processes have been extensively worked out by many different research groups abroad. In this work, the original use of artificial vision technology in order to redirect the flow path during mold filling appears as a major objective of online control strategy. In this study, a process performance index developed in a previous work is used to define the mold gate opening sequence. The Vacuum Assisted Resin Transfer Molding (VARTM) and Vacuum Assisted Resin Infusion (VARI) have been selected as the main processes of study. The expert system will make use of numerical simulation in order to obtain a previous physical understanding of the flow behaviour in different manufacturing conditions. Some examples of the installation are presented and discussed.

  18. Application of Artificial Neural Networks in Modeling Direction Wheelchairs Using Neurosky Mindset Mobile (EEG Device

    Directory of Open Access Journals (Sweden)

    Agus Siswoyo

    2017-07-01

    Full Text Available The implementation of Artificial Neural Network in prediction the direction of electric wheelchair from brain signal input for physical mobility impairment.. The control of the wheelchair as an effort in improving disabled person life quality. The interaction from disabled person is helping in relation to social life with others. Because of the mobility impairment, the wheelchair with brain signal input is made. This wheel chair is purposed to help the disabled person and elderly for their daily activity. ANN helps to develop the mapping from input to target. ANN is developed in 3 level: input level, one hidden level, and output level (6-2-1. There are 6 signal from Neurosky Mindset sensor output, Alpha1, Alpha2, Raw signal, Total time signal, Attention Signal, and Meditation signal. The purpose of this research is to find out the output value from ANN: value in turning right, turning left, and forward. From those outputs, we can prove the relevance to the target. One of the main problem that interfering with success is the problem of proper neural network training. Arduino uno is chosen to implement the learning program algorithm because it is a popular microcontroller that is economic and efficient. The training of artificial neural network in this research uses 21 data package from raw data, Alpha1, Aplha2, Meditation data, Attention data, total time data. At the time of the test there is a value of Mean square Error(MSE at the end of training amounted to 0.92495 at epoch 9958, value a correlation coefficient of 0.92804 shows that accuracy the results of the training process good.     Keywords: Navigation, Neural network, Real-time training, Arduino

  19. Using an Artificial Neural Network Approach for Supplier Evaluation Process and a Sectoral Application

    Directory of Open Access Journals (Sweden)

    A. Yeşim Yayla

    2011-02-01

    Full Text Available In this study, a-three layered feed-forward backpropagation Artificial Neural Network (ANN model is developed for the supplier firms in ceramic sector on the bases of user effectiveness for using concurrent engineering method. The developed model is also questioned for its usability in the supplier evaluation process. The network's independent variables of the developed model are considered as input variables of the network and dependent variables are used as output variables. The values of these variables are determined with factor analysis. For obtaining the date set to be used in the analysis, a questionnaire form with 34 questions explaining the network's input and output variables are prepared and sent out to 52 firms active in related sector. For obtaining more accurate results from the network, the questions having factor load below 0,6 are eliminated from the analysis. With the elimination of the questions from the analysis, the answers given for 22 questions explaining 8 input variables are used for the evaluation the network's inputs, the answers given for 3 questions explaining output variables are used for the evaluation the network's outputs. The data set of the network's are divided into four equal groups with k-fold method in order to get four different alternative network structures. As a conclusion, the forecasted firm scores giving the minimum error from the network test simulation and real firm scores are found to be very close to each other, thus, it is concluded that the developed artificial neural network model can be used effectively in the supplier evaluation process.

  20. Artificial algae algorithm with multi-light source for numerical optimization and applications.

    Science.gov (United States)

    Uymaz, Sait Ali; Tezel, Gulay; Yel, Esra

    2015-12-01

    Artificial algae algorithm (AAA), which is one of the recently developed bio-inspired optimization algorithms, has been introduced by inspiration from living behaviors of microalgae. In AAA, the modification of the algal colonies, i.e. exploration and exploitation is provided with a helical movement. In this study, AAA was modified by implementing multi-light source movement and artificial algae algorithm with multi-light source (AAAML) version was established. In this new version, we propose the selection of a different light source for each dimension that is modified with the helical movement for stronger balance between exploration and exploitation. These light sources have been selected by tournament method and each light source are different from each other. This gives different solutions in the search space. The best of these three light sources provides orientation to the better region of search space. Furthermore, the diversity in the source space is obtained with the worst light source. In addition, the other light source improves the balance. To indicate the performance of AAA with new proposed operators (AAAML), experiments were performed on two different sets. Firstly, the performance of AAA and AAAML was evaluated on the IEEE-CEC'13 benchmark set. The second set was real-world optimization problems used in the IEEE-CEC'11. To verify the effectiveness and efficiency of the proposed algorithm, the results were compared with other state-of-the-art hybrid and modified algorithms. Experimental results showed that the multi-light source movement (MLS) increases the success of the AAA.

  1. The application of artificial neural network model in the non-invasive diagnosis of liver fibrosis

    Directory of Open Access Journals (Sweden)

    Bo LI

    2012-12-01

    Full Text Available Objective  To construct and evaluate an artificial neural network (ANN model as a new non-invasive diagnostic method for clinical assessment of liver fibrosis at early stage. Methods  The model was set up and tested among 683 chronic hepatitis B (CHB patients, with authentic positive clinical biopsy results, proved to have liver fibrosis or cirrhosis, admitted to 302 Hospital of PLA from May 2008 to March 2011. Among 683 samples, 504 samples were diagnosed as cirrhosis as a result of CHB, and 179 liver fibrosis due to other liver diseases. 134 out of 683 patients were included in training group by stratified sampling, and the others for verification. Six items (age, AST, PTS, PLT, GGT and DBil were selected as input layer indexes to set up the model for evaluation. Results  The ANN model for diagnosis of liver fibrosis was set up. The diagnostic accuracy was 77.4%, sensitivity was 76.8%, and specificity was 77.8%. Its Kappa concordance tests showed the diagnosis result of the model was consistent with biopsy result (Kappa index=0.534. The accuracy, sensitivity and specificity of CHB patients were 80.4%, 79.9% and 80.7% (Kappa index=0.598 respectively, and those for other liver diseases were 67.9%, 64.3% and 69.7% (Kappa index=0.316. Conclusion  The artificial neural network model established by the authors demonstrates its high sensitivity and specificity as a new non-invasive diagnostic method for liver fibrosis induced by HBV infection. However, it shows limited diagnostic reliability to fibrosis as a result of other liver diseases.

  2. Skin Diseases: Skin Health and Skin Diseases

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Skin Diseases Skin Health and Skin Diseases Past Issues / Fall 2008 Table of Contents ... acne to wrinkles Did you know that your skin is the largest organ of your body? It ...

  3. Artificial Intelligence.

    Science.gov (United States)

    Waltz, David L.

    1982-01-01

    Describes kinds of results achieved by computer programs in artificial intelligence. Topics discussed include heuristic searches, artificial intelligence/psychology, planning program, backward chaining, learning (focusing on Winograd's blocks to explore learning strategies), concept learning, constraint propagation, language understanding…

  4. Application of glucosylceramide-based liposomes increased the ceramide content in a three-dimensional cultured skin epidermis.

    Science.gov (United States)

    Tokudome, Y; Endo, M; Hashimoto, F

    2014-01-01

    Ceramide is an intercellular lipid of the stratum corneum and is one of the most important components of the epidermal permeability barrier. Glucosylceramide (GlcCer), a ceramide precursor, was applied to three-dimensional skin culture to regulate ceramide. GlcCer/dimyristoylphosphatidylcholine (DMPC) = 4/4 (molar ratio and GlcCer/DMPC/dimyristoylphosphatidylglycerol (DMPG) = 4/4/1(molar ratio) liposomes were prepared by the thin-layer method. The particle diameters of GlcCer/DMPC and GlcCer/DMPC/DMPG liposomes were 124.0 ± 0.6 and 119.3 ± 18.9 nm, and the zeta potentials were 1.3 ± 0.3 and -19.9 ± 0.3 mV, respectively. Stability of these GlcCer liposomes was measured by transmission light scattering. Transmission light scattering of neutrally charged GlcCer (GlcCer/DMPC) liposomes increased in a time dependent manner. In contrast, negatively charged GlcCer (GlcCer/DMPC/DMPG) liposomes were not changed. β-Glucocerebrosidase activity was measured in a cultured human skin model. Results confirmed that the cultured human skin model has β-glucocerebrosidase activity. GlcCer/DMPC/DMPG liposomes were applied to the three-dimensional cultured human skin model, and ceramide NS, NP, AS, and AP were extracted from it. The various extracted ceramides were separated by high-performance thin-layer chromatography and quantified by a densitometer. The amount of ceramide AS only in the cultured skin model was significantly higher with the application of GlcCer-based liposomes than that of the nonapplication group, and was also dose dependent. Thus, GlcCer-based liposomes are useful for enriching the ceramide AS levels in a three-dimensional cultured skin model. © 2013 S. Karger AG, Basel.

  5. Main Benefits and Applicability of Plant Extracts in Skin Care Products

    Directory of Open Access Journals (Sweden)

    Ana Sofia Ribeiro

    2015-04-01

    Full Text Available Natural ingredients have been used for centuries for skin care purposes. Nowadays, they are becoming more prevalent in formulations, due to consumers’ concerns about synthetic ingredients/chemical substances. The main benefits reported for plant extracts, used in skin care, include antioxidant and antimicrobial activities and tyrosinase inhibition effect. In this review, some examples of plants from Portuguese flora, whose extracts have shown good properties for skin care are presented. However, despite the known properties of plant extracts, few studies reported the development of formulations with them. More work in this field can be accomplished to meet consumer demand.

  6. Resolution of overlapping skin auto-fluorescence for development of non-invasive applications

    Science.gov (United States)

    Su, Yu-Zheng; Lin, Li-Wu; Chen, Chuen-Yau; Hung, Min-Wei; Huang, Kuo-Cheng

    2010-08-01

    Skin auto-fluorescence spectra can provide useful biological information, but the obtained spectrum is overlapped and is difficult to distinguish each contributed component. We applied the genetic algorithm to decompose the overlapping spectrum. First, we simulate the overlapping spectral to confirm our feasible algorithm. The skin auto-fluorescence spectra were obtained from the normal human skin with 337 nm excitation light source. The nicotinamide adenine dinucleotid (NADH) and flavin adenine dinucleotide (FAD) are accurately decomposed and demonstrated. The developed algorithm can be widely applied to achieve qualitative and quantitative analysis for overlapping spectra.

  7. 人工智能及其在SEO技术中的应用%Artificial Intelligence and Its Application in SEO Technology

    Institute of Scientific and Technical Information of China (English)

    滕国文; 滕硕

    2012-01-01

    人工智能系统的开发和应用,已经为人类社会创造出丰富的经济效益,人工智能的发展对人类产生了非常深远的影响,这些影响涉及人类的经济利益、社会作用和文化生活等方面.本文对人工智能及其在SEO技术中的应用作一个探讨.%Development and application of artificial intelligence systems has created wealth in society,and the development of artificial intelligence has very far-reaching effects in the human's economic interests,social roles and cultural life.In this paper,artificial intelligence and its application in the SEO technique are discussed.

  8. Structure and Function of Skin: The Application of THz Radiation in Dermatology

    Science.gov (United States)

    Jo, Seong Jin; Kwon, Oh Sang

    Skin, the largest organ of human being, is a soft membrane covering the exterior of the body. It protects the host from mechanical injuries, toxic materials, pathogenic organisms, and so on. Although its basic function is protection from the environment like this, it is not a simple and static shield but a complex and dynamic organ which performs important roles in maintaining the homeostasis of the body. Skin controls evaporation to prevent massive water loss, and regulates body temperature by controlling the blood flow of skin and perspiration [1]. It is responsible for the synthesis of vitamin D and a storage center for lipid and water. In addition, skin contains nerve endings and provides sensation for temperature, touch, pressure, and vibration.

  9. Software tool for resolution of inverse problems using artificial intelligence techniques: an application in neutron spectrometry; Herramienta en software para resolucion de problemas inversos mediante tecnicas de inteligencia artificial: una aplicacion en espectrometria neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, 98000 Zacatecas, Zac. (Mexico); Mendez, R. [CIEMAT, Departamento de Metrologia de Radiaciones Ionizantes, Laboratorio de Patrones Neutronicos, Av. Complutense 22, 28040 Madrid (Spain); Gallego, E. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Sousa L, M. A. [Comision Nacional de Energia Nuclear, Centro de Investigacion de Tecnologia Nuclear, Av. Pte. Antonio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)

  10. Design and evaluation of neural classifiers application to skin lesion classification

    DEFF Research Database (Denmark)

    Hintz-Madsen, Mads; Hansen, Lars Kai; Larsen, Jan

    1995-01-01

    Addresses design and evaluation of neural classifiers for the problem of skin lesion classification. By using Gauss Newton optimization for the entropic cost function in conjunction with pruning by Optimal Brain Damage and a new test error estimate, the authors show that this scheme is capable...... of optimizing the architecture of neural classifiers. Furthermore, error-reject tradeoff theory indicates, that the resulting neural classifiers for the skin lesion classification problem are near-optimal...

  11. A flexible dual-mode proximity sensor based on cooperative sensing for robot skin applications

    Science.gov (United States)

    Huang, Ying; Cai, Xia; Kan, Wenqing; Qiu, Shihua; Guo, Xiaohui; Liu, Caixia; Liu, Ping

    2017-08-01

    A flexible dual-mode proximity sensor has been designed and implemented, which is capable of combining capacitive-resistive detection in this paper. The capacitive type proximity sensor detecting is defined as mode-C, and the resistive type proximity sensor detecting is defined as mode-R. The characteristics of the proximity sensor are as follows: (1) the theoretical mode is developed which indicates that this proximity sensor can reflect proximity information accurately; (2) both sensing modes are vertically integrated into a sandwich-like chip with an 8 mm × 12 mm unit area. The thickness of a mode-R sensing material (graphene nanoplatelets) and mode-C dielectric (the mixture of carbon black and silicone rubber) is 1 mm and 2.5 mm, respectively; (3) for mode-R, the linearity of temperature-resistance curve can achieve 0.998 in the temperature range from 25°C to 65°C. And for mode-C, various materials can be successfully detected with fast response and high reversibility. Meanwhile, the study compensated the influence of object temperature to ensure mode-C properly works. A cooperative sensing test shows that R-C dual modes sense effectively which can enlarge the sensing distance compared with the single mode proximity sensor. The fabrication of this sensor is convenient, and the integrity of a flexible sandwich-like structure based on dual modes is beneficial to form arrays, which is suitable to be used in skin-like sensing applications.

  12. Structure of rat skin after application of electret characterized by DSC

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L L; Tu, Y; Liu, H Y [School of Pharmacy, Second Military Medical University (China); Liang, Y Y; Dong, F J; Ma, L; Jiang, J, E-mail: jjiang@smmu.edu.cn [College of Basic Medical Sciences, Second Military Medical University (China)

    2011-06-23

    Polypropylene (PP) electrets with surface potential of -500V, -1000V and -2000V were prepared by constant voltage corona charging. The electrets were applied to excised rat skin for 2 hours respectively and then the skin samples were analyzed with the differential scanning calorimetry (DSC) technique to study the alteration of lipid organization of the skin. There were three peaks at 63 deg. C, 82.7 deg. C and 115.1 deg. C in the DSC spectra for rat skin untreated, which have been assigned essentially to lipid, lipid-protein and protein alterations. For -500V electret treated-skin sample, only a single peak appeared at 79.1 deg. C. With the increase of electret surface potential from -500V to -2000V, the transition temperature and peak areas at moderate decreased first and then increased. The negative electret could result in the transition of stratum corneum (SC) lipid from gel to liquid crystal and protein transition from {alpha} helix structure to {beta} folding structure. The regulation action of electret to skin mircostructure presented an effect of {sup p}otential window{sup .}

  13. Application of FAHP and Artificial Neural Network on Clothing Plant Location

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Clothing manufacturers' direct investment and joint ventures in developing regions have seen to grow rapidly in the past few decades. Non-optimized selection can contribute to adverse effects affecting the performance of the plants on aspects of productivity, manufacturing and logistics cost. Selection of proper plant location is thus crucial. The conventional approaches to sites location are based on the factors and their weights. However, determining the weight of each factor is very difficult and time consuming. While the situation is changed, all the work must be redone again. This study aims to develop a decision-making system onclothing plant location for Hong Kong clothing manufacturer. The proposed system utilizes artificial neural network to study the relationship between the factors and the suitability index of candidate sites. Firstly, the factors are stratified using the fuzzy analytical hierarchy process (FAHP) by review the related references and interviewing the experts.Secondly, the corresponding data are collected from the experts by questionnaire and the related government publication. Finally, the feedforward neural network with error backpropagation(EBP) learning algorithm is trained and applied to make decision. The results show that the proposed system performs well and has the characteristic of adaptability and plasticity.

  14. Application of Artificial Neural Network to Predict Colour Change, Shrinkage and Texture of Osmotically Dehydrated Pumpkin

    Science.gov (United States)

    Tang, S. Y.; Lee, J. S.; Loh, S. P.; Tham, H. J.

    2017-06-01

    The objectives of this study were to use Artificial Neural Network (ANN) to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin slices. The effects of process variables such as concentration of osmotic solution, immersion temperature and immersion time on the above mentioned physical properties were studied. The colour of the samples was measured using a colorimeter and the net colour difference changes, ΔE were determined. The texture was measured in terms of hardness by using a Texture Analyzer. As for the shrinkage, displacement of volume method was applied and percentage of shrinkage was obtained in terms of volume changes. A feed-forward backpropagation network with sigmoidal function was developed and best network configuration was chosen based on the highest correlation coefficients between the experimental values versus predicted values. As a comparison, Response Surface Methodology (RSM) statistical analysis was also employed. The performances of both RSM and ANN modelling were evaluated based on absolute average deviation (AAD), correlation of determination (R2) and root mean square error (RMSE). The results showed that ANN has higher prediction capability as compared to RSM. The relative importance of the variables on the physical properties were also determined by using connection weight approach in ANN. It was found that solution concentration showed the highest influence on all three physical properties.

  15. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil.

    Science.gov (United States)

    Olawoyin, Richard

    2016-10-01

    The backpropagation (BP) artificial neural network (ANN) is a renowned and extensively functional mathematical tool used for time-series predictions and approximations; which also define results for non-linear functions. ANNs are vital tools in the predictions of toxicant levels, such as polycyclic aromatic hydrocarbons (PAH) potentially derived from anthropogenic activities in the microenvironment. In the present work, BP ANN was used as a prediction tool to study the potential toxicity of PAH carcinogens (PAHcarc) in soils. Soil samples (16 × 4 = 64) were collected from locations in South-southern Nigeria. The concentration of PAHcarc in laboratory cultivated white melilot, Melilotus alba roots grown on treated soils was predicted using ANN model training. Results indicated the Levenberg-Marquardt back-propagation training algorithm converged in 2.5E+04 epochs at an average RMSE value of 1.06E-06. The averagedR(2) comparison between the measured and predicted outputs was 0.9994. It may be deduced from this study that, analytical processes involving environmental risk assessment as used in this study can successfully provide prompt prediction and source identification of major soil toxicants.

  16. Proposed clinical application for tuning fuzzy logic controller of artificial pancreas utilizing a personalization factor.

    Science.gov (United States)

    Mauseth, Richard; Wang, Youqing; Dassau, Eyal; Kircher, Robert; Matheson, Donald; Zisser, Howard; Jovanovic, Lois; Doyle, Francis J

    2010-07-01

    Physicians tailor insulin dosing based on blood glucose goals, response to insulin, compliance, lifestyle, eating habits, daily schedule, and fear of and ability to detect hypoglycemia. We introduce a method that allows a physician to tune a fuzzy logic controller (FLC) artificial pancreas (AP) for a particular patient. It utilizes the physician's judgment and weighing of various factors. The personalization factor (PF) is a scaling of the dose produced by the FLC and is used to customize the dosing. The PF has discrete values of 1 through 5. The proposed method was developed using a database of results from 30 University of Virginia/Padova Metabolic Simulator in silico subjects (10 adults, 10 adolescents, and 10 children). Various meal sizes and timing were used to provide the physician information on which to base an initial dosing regimen and PF. Future decisions on dosing aggressiveness using the PF would be based on the patient's data at follow-up. Three examples of a wide variation in diabetes situations are given to illustrate the physician's thought process when initially configuring the AP system for a specific patient. Fuzzy logic controllers are developed by encoding human expertise into the design of the controller. The FLC methodology allows for the real-time scaling of doses without compromising the integrity of the dosing rules matrix. The use of the PF to individualize the AP system is enabled by the fuzzy logic development methodology. 2010 Diabetes Technology Society.

  17. Application of Artificial Neural Network for Damage Detection in Planetary Gearbox of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Marcin Strączkiewicz

    2016-01-01

    Full Text Available In the monitoring process of wind turbines the utmost attention should be given to gearboxes. This conclusion is derived from numerous summary papers. They reveal that, on the one hand, gearboxes are one of the most fault susceptible elements in the drive-train and, on the other, the most expensive to replace. Although state-of-the-art CMS can usually provide advanced signal processing tools for extraction of diagnostic information, there are still many installations, where the diagnosis is based simply on the averaged wideband features like root-mean-square (RMS or peak-peak (PP. Furthermore, for machinery working in highly changing operational conditions, like wind turbines, those estimators are strongly fluctuating, and this fluctuation is not linearly correlated to operation parameters. Thus, the sudden increase of a particular feature does not necessarily have to indicate the development of fault. To overcome this obstacle, it is proposed to detect a fault development with Artificial Neural Network (ANN and further observation of linear regression parameters calculated on the estimation error between healthy and unknown condition. The proposed reasoning is presented on the real life example of ring gear fault in wind turbine’s planetary gearbox.

  18. Application of Artificial Neural Network in the Research of the Bohai Bay Eutrophication

    Institute of Scientific and Technical Information of China (English)

    WU Qing; ZHAO Xinhua; ZHAO Quan

    2007-01-01

    In order to research the feasibility of artificial neural network (ANN) in the research of eutrophication of the Bohai Bay in China, an ANN model simulating chlorophyll a, b and c concentrations, concerning temperature, dissolved oxygen, salinity, pH value, chemical oxygen demand(COD), PO43- , NO2- and NO3- factors in the Bohai Bay was presented and validated. After experiencing and training by Matlab, the model's validation mean square error (MSE) performance is0.009 985 02. R-squared between estimated and observed concentrations of chlorophyll a, b and care 0.965 7, 0.998 7 and 0.970 7 respectively, indicating that the estimated value agrees with the observed value well, and the model can be used in the prediction of eutrophication of the Bohai Sea. In order to study the influence of model input factors on chlorophyll concentration (I. E. Model outputs), hypothetical scenarios were introduced to show model output responses to variations in in-put factors. The limitation of temperature, salinity and phosphate that induce red tide in the Bohai Bay was also presented.

  19. Disease spread models in wild and feral animal populations: application of artificial life models.

    Science.gov (United States)

    Ward, M P; Laffan, S W; Highfield, L D

    2011-08-01

    The role that wild and feral animal populations might play in the incursion and spread of important transboundary animal diseases, such as foot and mouth disease (FMD), has received less attention than is warranted by the potential impacts. An artificial life model (Sirca) has been used to investigate this issue in studies based on spatially referenced data sets from southern Texas. An incursion of FMD in which either feral pig or deer populations were infected could result in between 698 and 1557 infected cattle and affect an area of between 166 km2 and 455 km2 after a 100-day period. Although outbreak size in deer populations can be predicted bythe size of the local deer population initially infected, the resulting outbreaks in feral pig populations are less predictable. Also, in the case of deer, the size of potential outbreaks might depend on the season when the incursion occurs. The impact of various mitigation strategies on disease spread has also been investigated. The approach used in the studies reviewed here explicitly incorporates the spatial distribution and relationships between animal populations, providing a new framework to explore potential impacts, costs, and control strategies.

  20. Application of artificial intelligence to search ground-state geometry of clusters

    Science.gov (United States)

    Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.

    2002-08-01

    We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.

  1. An Artificial Neural Network Application for Estimation of Natural Frequencies of Beams

    Directory of Open Access Journals (Sweden)

    Mehmet Avcar

    2015-06-01

    Full Text Available In this study, natural frequencies of the prismatical steel beams with various geometrical characteristics under the four different boundary conditions are determined using Artificial Neural Network (ANN technique. In that way, an alternative efficient method is aimed to develop for the solution of the present problem, which provides avoiding loss of time for computing some necessary parameters. In this context, initially, first ten frequency parameters of the beam are found, where Bernoulli-Euler beam theory was adopted, and then natural frequencies are computed theoretically. With the aid of theoretically obtained results, the data sets are formed and ANN models are constructed. Here, 36 models are developed using primary 3 models. The results are found from these models by changing the number and properties of the neurons and input data. The handiness of the present models is examined by comparing the results of these models with theoretically obtained results. The effects of the number of neurons, input data and training function on the models are investigated. In addition, multiple regression models are developed with the data, and adjusted R-square is examined for determining the inefficient input parameters

  2. Fuzzy-GA PID controller with incomplete derivation and its application to intelligent bionic artificial leg

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 李安平

    2003-01-01

    An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.

  3. Artificial-neural-network-based atmospheric correction algorithm: application to MERIS data

    Science.gov (United States)

    Schroeder, Thomas; Fischer, Juergen; Schaale, Michael; Fell, Frank

    2003-05-01

    After the successful launch of the Medium Resolution Imaging Spectrometer (MERIS) on board of the European Space Agency (ESA) Environmental Satellite (ENVISAT) on March 1st 2002, first MERIS data are available for validation purposes. The primary goal of the MERIS mission is to measure the color of the sea with respect to oceanic biology and marine water quality. We present an atmospheric correction algorithm for case-I waters based on the inverse modeling of radiative transfer calculations by artificial neural networks. The proposed correction scheme accounts for multiple scattering and high concentrations of absorbing aerosols (e.g. desert dust). Above case-I waters, the measured near infrared path radiance at Top-Of-Atmosphere (TOA) is assumed to originate from atmospheric processes only and is used to determine the aerosol properties with the help of an additional classification test in the visible spectral region. A synthetic data set is generated from radiative transfer simulations and is subsequently used to train different Multi-Layer-Perceptrons (MLP). The atmospheric correction scheme consists of two steps. First a set of MLPs is used to derive the aerosol optical thickness (AOT) and the aerosol type for each pixel. Second these quantities are fed into a further MLP trained with simulated data for various chlorophyll concentrations to perform the radiative transfer inversion and to obtain the water-leaving radiance. In this work we apply the inversion algorithm to a MERIS Level 1b data track covering the Indian Ocean along the west coast of Madagascar.

  4. Application of artificial neural networks to a study of nursing burnout.

    Science.gov (United States)

    Ladstätter, F; Garrosa, E; Badea, C; Moreno, B

    2010-09-01

    Nursing is generally considered to be a profession with high levels of emotional and physical stress that tend to increase. These high stress levels lead to a high risk of burnout. The objective was to assess whether artificial neural network (ANN) paradigms offer greater predictive accuracy than statistical methodologies, which are commonly used in the field of burnout. A radial basis function (RBF) network and hierarchical stepwise regression was used to assess burnout. The comparison of the two methodologies was carried out by analysing a sample of 462 nurses and student nurses. The subjects were from three hospitals in Madrid (Spain), who completed the 'Nursing Burnout Scale' survey. A RBF network was better suited for the analysis of burnout than hierarchical stepwise regression. The outcomes indicate furthermore that the relationship with the burnout process of the predictive variables age, job status, workload, experience with pain and death, conflictive interaction, role ambiguity and hardy personality is not entirely linear. The usage of ANNs in the field of burnout has been justified due to their superior ability to capture non-linear relationships, which is relevant for theory development. STATEMENT OF RELEVANCE: Due to the superior ability to capture non-linear relationships, ANNs are better suited to explain and predict burnout and its subdimensions than common statistical methods. From this perspective, more specific programmes to prevent burnout and its consequences in the workplace can be designed.

  5. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. Final report, August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    1998-03-01

    The primary goal of the project is to develop a user-friendly computer program to integrate geological and engineering information using Artificial Intelligence (AI) methodology. The project is restricted to fluvially dominated deltaic environments. The static information used in constructing the reservoir description includes well core and log data. Using the well core and the log data, the program identifies the marker beds, and the type of sand facies, and in turn, develops correlations between wells. Using the correlations and sand facies, the program is able to generate multiple realizations of sand facies and petrophysical properties at interwell locations using geostatistical techniques. The generated petrophysical properties are used as input in the next step where the production data are honored. By adjusting the petrophysical properties, the match between the simulated and the observed production rates is obtained. Although all the components within the overall system are functioning, the integration of dynamic data may not be practical due to the single-phase flow limitations and the computationally intensive algorithms. The future work needs to concentrate on making the dynamic data integration computationally efficient.

  6. Introducing a Novel Hybrid Artificial Intelligence Algorithm to Optimize Network of Industrial Applications in Modern Manufacturing

    Directory of Open Access Journals (Sweden)

    Aydin Azizi

    2017-01-01

    Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.

  7. Thermodynamics of competitive molecular channel transport: application to artificial nuclear pores.

    Directory of Open Access Journals (Sweden)

    Wolfgang R Bauer

    Full Text Available In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity of particle transport in a competitive molecular environment. These key parameters are the concentration of particles, solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species increases if its in-channel binding enhances the species' translocation probability when compared to that of the other species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the cost of the transport of inert molecules.

  8. A new artificial immune algorithm and its application for optimization problems

    Institute of Scientific and Technical Information of China (English)

    YU Zhi-gang; SONG Shen-min; DUAN Guan-ren

    2006-01-01

    A new artificial immune algorithm (AIA) simulating the biological immune network system with selfadjustment function is proposed in this paper. AIA is based on the modified immune network model in which two methods of affinity measure evaluated are used, controlling the antibody diversity and the speed of convergence separately. The model proposed focuses on a systemic view of the immune system and takes into account cell-cell interactions denoted by antibody affinity. The antibody concentration defined in the immune network model is responsible directly for its activity in the immune system. The model introduces not only a term describing the network dynamics, but also proposes an independent term to simulate the dynamics of the antigen population. The antibodies' evolutionary processes are controlled in the algorithms by utilizing the basic properties of the immune network. Computational amount and effect is a pair of contradictions. In terms of this problem,the AIA regulating the parameters easily attains a compromise between them. At the same time, AIA can prevent premature convergence at the cost of a heavy computational amount ( the iterative times). Simulation illustrates that AIA is adapted to solve optimization problems, emphasizing multimodal optimization.

  9. An efficient artificial bee colony algorithm with application to nonlinear predictive control

    Science.gov (United States)

    Ait Sahed, Oussama; Kara, Kamel; Benyoucef, Abousoufyane; Laid Hadjili, Mohamed

    2016-05-01

    In this paper a constrained nonlinear predictive control algorithm, that uses the artificial bee colony (ABC) algorithm to solve the optimization problem, is proposed. The main objective is to derive a simple and efficient control algorithm that can solve the nonlinear constrained optimization problem with minimal computational time. Indeed, a modified version, enhancing the exploring and the exploitation capabilities, of the ABC algorithm is proposed and used to design a nonlinear constrained predictive controller. This version allows addressing the premature and the slow convergence drawbacks of the standard ABC algorithm, using a modified search equation, a well-known organized distribution mechanism for the initial population and a new equation for the limit parameter. A convergence statistical analysis of the proposed algorithm, using some well-known benchmark functions is presented and compared with several other variants of the ABC algorithm. To demonstrate the efficiency of the proposed algorithm in solving engineering problems, the constrained nonlinear predictive control of the model of a Multi-Input Multi-Output industrial boiler is considered. The control performances of the proposed ABC algorithm-based controller are also compared to those obtained using some variants of the ABC algorithms.

  10. Application of Artificial Neural Networks for Efficient High-Resolution 2D DOA Estimation

    Directory of Open Access Journals (Sweden)

    M. Agatonović

    2012-12-01

    Full Text Available A novel method to provide high-resolution Two-Dimensional Direction of Arrival (2D DOA estimation employing Artificial Neural Networks (ANNs is presented in this paper. The observed space is divided into azimuth and elevation sectors. Multilayer Perceptron (MLP neural networks are employed to detect the presence of a source in a sector while Radial Basis Function (RBF neural networks are utilized for DOA estimation. It is shown that a number of appropriately trained neural networks can be successfully used for the high-resolution DOA estimation of narrowband sources in both azimuth and elevation. The training time of each smaller network is significantly re¬duced as different training sets are used for networks in detection and estimation stage. By avoiding the spectral search, the proposed method is suitable for real-time ap¬plications as it provides DOA estimates in a matter of seconds. At the same time, it demonstrates the accuracy comparable to that of the super-resolution 2D MUSIC algorithm.

  11. An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Xuanhu He

    2015-03-01

    Full Text Available Optimal power flow (OPF objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.

  12. Application of artificial neural networks for versatile preprocessing of electrocardiogram recordings.

    Science.gov (United States)

    Mateo, J; Rieta, J J

    2012-02-01

    The electrocardiogram (ECG) is the most widely used method for diagnosis of heart diseases, where a good quality of recordings allows the proper interpretation and identification of physiological and pathological phenomena. However, ECG recordings often have interference from noises including thermal, muscle, baseline and powerline noises. These signals severely limit ECG recording utility and, hence, have to be removed. To deal with this problem, the present paper proposes an artificial neural network (ANN) as a filter to remove all kinds of noise in just one step. The method is based on a growing ANN which optimizes both the number of nodes in the hidden layer and the coefficient matrices, which are optimized by means of the Widrow-Hoff delta algorithm. The ANN has been trained with a database comprising all kinds of noise, both from synthesized and real ECG recordings, in order to handle any noise signal present in the ECG. The proposed system improves results yielded by conventional techniques of ECG filtering, such as FIR-based systems, adaptive filtering and wavelet filtering. Therefore, the algorithm could serve as an effective framework to substantially reduce noise in ECG recordings. In addition, the resulting ECG signal distortion is notably more reduced in comparison with conventional methodologies. In summary, the current contribution introduces a new method which is able to suppress all ECG interference signals in only one step with low ECG distortion and a high noise reduction.

  13. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials.

    Science.gov (United States)

    Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar

    2015-08-17

    The effectiveness of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella in vitro and on chicken breast fillets was examined in combination with lauric arginate (LAE) or cetylpyridinium chloride (CPC). In another experiment, a sequential spray application of this bacteriophage (phage) solution on Salmonella inoculated chicken skin after a 20s dip in chemical antimicrobials (LAE, CPC, peracetic acid, or chlorine) was also examined in reducing Salmonella counts on chicken skin. The application of phage in combination with CPC or LAE reduced S. Typhimurium, S. Heidelberg, and S. Enteritidis up to 5 log units in vitro at 4 °C. On chicken breast fillets, phage in combination with CPC or LAE resulted in significant (pSalmonella ranging from 0.5 to 1.3 log CFU/g as compared to control up to 7 days of refrigerated storage. When phage was applied sequentially with chemical antimicrobials, all the treatments resulted in significant reductions of Salmonella. The application of chlorine (30 ppm) and PAA (400 ppm) followed by phage spray (10(9)PFU/ml) resulted in highest Salmonella reductions of 1.6-1.7 and 2.2-2.5l og CFU/cm(2), respectively. In conclusion, the surface applications of phage in combination with LAE or CPC significantly reduced Salmonella counts on chicken breast fillets. However, higher reductions in Salmonella counts were achieved on chicken skin by the sequential application of chemical antimicrobials followed by phage spray. The sequential application of chlorine, PAA, and phage can provide additional hurdles to reduce Salmonella on fresh poultry carcasses or cut up parts.

  14. Ultrasound skin imaging.

    Science.gov (United States)

    Alfageme Roldán, F

    2014-12-01

    The interaction of high-frequency ultrasound waves with the skin provides the basis for noninvasive, fast, and accessible diagnostic imaging. This tool is increasingly used in skin cancer and inflammatory conditions as well as in cosmetic dermatology. This article reviews the basic principles of skin ultrasound and its applications in the different areas of dermatology.

  15. SU-E-T-232: Custom High-Dose-Rate Brachytherapy Surface Mold Applicators: The Importance Source to Skin Distance

    Energy Technology Data Exchange (ETDEWEB)

    Park, S; Demanes, J; Kamrava, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Surface mold applicators can be customized to fit irregular skin surfaces that are difficult to treat with other radiation therapy techniques. Optimal design of customized HDR skin brachytherapy is not well-established. We evaluated the impact of applicator thickness (source to skin distance) on target dosimetry. Methods: 27 patients had 34 treated sites: scalp 4, face 13, extremity 13, and torso 4. Custom applicators were constructed from 5–15 mm thick thermoplastic bolus molded over the skin lesion. A planar array of plastic brachytherapy catheters spaced 5–10 mm apart was affixed to the bolus. CT simulation was used to contour the target volume and to determine the prescription depth. Inverse planning simulated annealing followed by graphical optimization was used to plan and deliver 40–56 Gy in 8–16 fractions. Target coverage parameters (D90, Dmean, and V100) and dose uniformity (V110–200, D0.1cc, D1cc, and D2cc) were studied according to target depth (<5mm vs. ≥5mm) and applicator thickness (5–10mm vs. ≥10mm). Results: The average prescription depth was 4.2±1.5mm. The average bolus thickness was 9.2±2.4mm. The median CTV volume was 10.0 cc (0.2–212.4 cc). Similar target coverage was achieved with prescription depths of <5mm and ≥5mm (Dmean = 113.8% vs. 112.4% and D90 = 100.2% vs. 98.3%). The <5mm prescription depth plans were more uniform (D0.1cc = 131.8% vs. 151.8%). Bolus thickness <10mm vs. ≥10mm plans also had similar target coverage (Dmean = 118.2% vs. 110.7% and D90 = 100.1% vs. 99.0%). Applicators ≥10mm thick, however, provide more uniform target dosimetry (D0.1cc = 146.9% vs. 139.5%). Conclusion: Prescription depth is based upon the thickness of the lesion and upon the clinical needs of the patient. Applicators ≥10mm thick provide more dose uniformity than 5–10mm thick applicators. Applicator thickness is an important variable that should be considered during treatment planning to achieve optimal dose uniformity.

  16. SU-F-BRA-07: Dosimetric Verification of the Valencia Skin Applicator Using Gafchromic EBT3 Film

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, A; Lamberto, M; Chen, H; Sarkar, A; Mourtada, F [Christiana Care Hospital, Newark, DE (United States)

    2015-06-15

    Purpose: The Valencia applicators have recently been introduced for HDR treatment of small and shallow superficial skin lesions (< 20 mm diameter and 3-mm depth). Per AAPM TG 56, any HDR applicator internal dimensions must be verified prior to clinical use. However radiographic and tomographic imaging to validate the Valencia applicators is impractical due to the Tungsten alloy housing and flattening filter. In this study, we propose to use EBT3 film to indirectly confirm the physical integrity of the Valencia applicators. Methods: Treatment plans were created using the Oncentra MasterPlan TPS v4.5 for the H2 (20-mm dia.) and H3 (30-mm dia.) Valencia Applicators. A virtual CT phantom (2-mm slice thickness) was created with one source position in water. The published effective depth method was used for each applicator to delivery 500 cGy to a 3-mm depth using the TG-43 formalism. Film measurements (n=3) at 3-mm depth and vertical plane in solid water were performed for each applicator to verify the prescribed dose calculated by the TPS. Percent depth dose curves and off-axis profiles (phantom surface and 3-mm depth) were measured and compared to published data. Films were analyzed using an in-house written program and RIT113 v6 software. Film calibration was performed per TG-55 protocol using the Ir-192 source with NIST-traceable calibration. Results: The prescription absolute dose difference was 1% for the Valencia H2 applicator and 4% for the Valencia H3 applicator. The measured percent depth dose curves and off-axis dose profiles measured for the H2 and H2 Valencia applicators are in excellent agreement with the Granero et al. Monte Carlo results{sup 1}. Conclusion: Gafchromic EBT3 film can be used to indirectly verify the internal components of special HDR skin applicators constructed from high Z materials.{sup 1}Granero et al. “Design and evaluation of a HDR skin applicator with flattening filter”, Med. Phys. 35(2), 495–503, 2008.

  17. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

    Science.gov (United States)

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W. F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan

    2015-08-01

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.

  18. Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley

    Science.gov (United States)

    Nema, Manish K.; Khare, Deepak; Chandniha, Surendra K.

    2017-03-01

    Estimation of evapotranspiration (ET) is an essential component of the hydrologic cycle, which is also requisite for efficient irrigation water management planning and hydro-meteorological studies at both the basin and catchment scales. There are about twenty well-established methods available for ET estimation which depends upon various meteorological parameters and assumptions. Most of these methods are physically based and need a variety of input data. The FAO-56 Penman-Monteith method (PM) for estimating reference evapotranspiration (ET0) is recommend for irrigation scheduling worldwide, because PM generally yields the best results under various climatic conditions. This study investigates the abilities of artificial neural networks (ANN) to improve the accuracy of monthly evaporation estimation in sub-humid climatic region of Dehradun. In the first part of the study, different ANN models, comprising various combinations of training function and number of neutrons were developed to estimate the ET0 and it has been compared with the Penman-Monteith (PM) ET0 as the ideal (observed) ET0. Various statistical approaches were considered to estimate the model performance, i.e. Coefficient of Correlation (r), Sum of Squared Errors, Root Mean Square Error, Nash-Sutcliffe Efficiency Index (NSE) and Mean Absolute Error. The ANN model with Levenberg-Marquardt training algorithm, single hidden layer and nine number of neutron schema was found the best predicting capabilities for the study station with Coefficient of Correlation (r) and NSE value of 0.996 and 0.991 for calibration period and 0.990 and 0.980 for validation period, respectively. In the subsequent part of the study, the trend analysis of ET0 time series revealed a rising trend in the month of March, and a falling trend during June to November, except August, with more than 90% significance level and the annual declining rate was found to 1.49 mm per year.

  19. Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine

    Directory of Open Access Journals (Sweden)

    Mojdeh Piran

    2014-01-01

    Full Text Available In this research, manage the Internal Combustion (IC engine modeling and a multi-input-multi-output artificial intelligence baseline chattering free sliding mode methodology scheme is developed with guaranteed stability to simultaneously control fuel ratios to desired levels under various air flow disturbances by regulating the mass flow rates of engine PFI and DI injection systems. Modeling of an entire IC engine is a very important and complicated process because engines are nonlinear, multi inputs-multi outputs and time variant. One purpose of accurate modeling is to save development costs of real engines and minimizing the risks of damaging an engine when validating controller designs. Nevertheless, developing a small model, for specific controller design purposes, can be done and then validated on a larger, more complicated model. Analytical dynamic nonlinear modeling of internal combustion engine is carried out using elegant Euler-Lagrange method compromising accuracy and complexity. A baseline estimator with varying parameter gain is designed with guaranteed stability to allow implementation of the proposed state feedback sliding mode methodology into a MATLAB simulation environment, where the sliding mode strategy is implemented into a model engine control module (“software”. To estimate the dynamic model of IC engine fuzzy inference engine is applied to baseline sliding mode methodology. The fuzzy inference baseline sliding methodology performance was compared with a well-tuned baseline multi-loop PID controller through MATLAB simulations and showed improvements, where MATLAB simulations were conducted to validate the feasibility of utilizing the developed controller and state estimator for automotive engines. The proposed tracking method is designed to optimally track the desired FR by minimizing the error between the trapped in-cylinder mass and the product of the desired FR and fuel mass over a given time interval.

  20. Combined application of Artificial Neural Networks and life cycle assessment in lentil farming in Iran

    Directory of Open Access Journals (Sweden)

    Behzad Elhami

    2017-03-01

    Full Text Available In this study, an Artificial Neural Network (ANN was applied to model yield and environmental emissions from lentil cultivation in Esfahan province of Iran. Data was gathered from lentil farmers using face to face questionnaire method during 2014–2015 cropping season. Life cycle assessment (LCA was applied to investigate the environmental impact categories associated with lentil production. Based on the results, total energy input, energy output to input ratio and energy productivity were determined to be 32,970.10 MJ ha−1, 0.902 and 0.06 kg MJ−1, respectively. The greatest amount of energy consumption was attributed to chemical fertilizer (42.76%. Environmental analysis indicated that the acidification potential was higher than other environmental impact categories in lentil production system. Also results showed that the production of agricultural machinery was the main hotspot in abiotic depletion, eutrophication, global warming, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity impact categories, while direct emissions associated with lentil cultivation was the main hotspot in acidification potential and photochemical oxidation potential. In addition, diesel fuel was the main hotspot only in ozone layer depletion. The ANN model with 9-10-6-11 structure was identified as the most appropriate network for predicting yield and related environmental impact categories of lentil cultivation. Overall, the results of sensitivity analysis revealed that farmyard manure had the greatest effect on the most of the environmental impacts, while machinery was the most affecting parameter on the yield of the crop.

  1. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. Annual report, October 1994--October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, D.; Thompson, L.; Shenoi, S.

    1996-01-01

    The basis of this research is to apply novel techniques from Artificial Intelligence and Expert Systems in capturing, integrating and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. The ultimate goal is to design and implement a single powerful expert system for use by small producers and independents to efficiently exploit reservoirs. The main challenge of the proposed research is to automate the generation of detailed reservoir descriptions honoring all the available soft and hard data that ranges from qualitative and semi-quantitative geological interpretations to numeric data obtained from cores, well tests, well logs and production statistics. Additional challenges are the verification and validation of the expert system, since much of the interpretation of the experts is based on extended experience in reservoir characterization. The overall project plan to design the system to create integrated reservoir descriptions begins by initially developing an AI-based methodology for producing large-scale reservoir descriptions generated interactively from geology and well test data. Parallel to this task is a second task that develops an AI-based methodology that uses facies-biased information to generate small-scale descriptions of reservoir properties such as permeability and porosity. The third task involves consolidation and integration of the large-scale and small-scale methodologies to produce reservoir descriptions honoring all the available data. The final task will be technology transfer. With this plan, the authors have carefully allocated and sequenced the activities involved in each of the tasks to promote concurrent progress towards the research objectives. Moreover, the project duties are divided among the faculty member participants. Graduate students will work in terms with faculty members.

  2. Transport and flow characteristics of an oscillating cylindrical fiber for total artificial lung application

    KAUST Repository

    Qamar, Adnan

    2017-06-28

    Mass transport and fluid dynamics characteristics in the vicinity of an oscillating cylindrical fiber with an imposed pulsatile inflow condition are computationally investigated in the present study. The work is motivated by a recently proposed design modification to the Total Artificial Lung (TAL) device, which is expected to provide better gas exchange. Navier–Stokes computations, coupled with convection–diffusion equation are performed to assess flow dynamics and mass transport behavior around the oscillating fiber. The oscillations and the pulsatile free stream velocity are represented by two sinusoidal functions. The resulting non-dimensional parameters are Keulegan–Carpenter number (KC), Schmidt number (Sc), Reynolds number (Re), pulsatile inflow amplitude (), and amplitude of cylinder oscillation (). Results are computed for , Sc = 1000, Re = 5 and 10, and 0.7 and 0.25 5.25. The pulsatile inflow parameters correspond to the flow velocities found in human pulmonary artery while matching the operating TAL Reynolds number. Mass transport from the surface of the cylinder to the bulk fluid is found to be primarily dependent on the size of surface vortices created by the movement of the cylinder. Time-averaged surface Sherwood number (Sh) is dependent on the amplitude and KC of cylinder oscillation. Compared to the fixed cylinder case, a significant gain up to 380% in Sh is achieved by oscillating the cylinder even at the small displacement amplitude (AD = 0.75D). Moreover, with decrease in KC the oscillating cylinder exhibits a lower drag amplitude compared with the fixed cylinder case. Inflow pulsation amplitude has minor effects on the mass transport characteristics. However, an increase in results in an increase in the amplitude of the periodic drag force on the cylinder. This rise in the drag amplitude is similar to that measured for the fixed cylinder case. Quantifications of shear stress distribution in the bulk fluid suggest that the physiological

  3. Artificial neural network application for space station power system fault diagnosis

    Science.gov (United States)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  4. Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions

    Directory of Open Access Journals (Sweden)

    Abdullahi Abubakar Mas’ud

    2016-07-01

    Full Text Available In order to investigate how artificial neural networks (ANNs have been applied for partial discharge (PD pattern recognition, this paper reviews recent progress made on ANN development for PD classification by a literature survey. Contributions from several authors have been presented and discussed. High recognition rate has been recorded for several PD faults, but there are still many factors that hinder correct recognition of PD by the ANN, such as high-amplitude noise or wide spectral content typical from industrial environments, trial and error approaches in determining an optimum ANN, multiple PD sources acting simultaneously, lack of comprehensive and up to date databank of PD faults, and the appropriate selection of the characteristics that allow a correct recognition of the type of source which are currently being addressed by researchers. Several suggestions for improvement are proposed by the authors include: (1 determining the optimum weights in training the ANN; (2 using PD data captured over long stressing period in training the ANN; (3 ANN recognizing different PD degradation levels; (4 using the same resolution sizes of the PD patterns when training and testing the ANN with different PD dataset; (5 understanding the characteristics of multiple concurrent PD faults and effectively recognizing them; and (6 developing techniques in order to shorten the training time for the ANN as applied for PD recognition Finally, this paper critically assesses the suitability of ANNs for both online and offline PD detections outlining the advantages to the practitioners in the field. It is possible for the ANNs to determine the stage of degradation of the PD, thereby giving an indication of the seriousness of the fault.

  5. Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics

    Institute of Scientific and Technical Information of China (English)

    Amin Manouchehrian; Mostafa Sharifzadeh; Rasoul Hamidzadeh Moghadam

    2012-01-01

    Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models.

  6. An artificial neural network application to produce debris source areas of Barla, Besparmak, and Kapi Mountains (NW Taurids, Turkey

    Directory of Open Access Journals (Sweden)

    M. C. Tunusluoglu

    2007-10-01

    Full Text Available Various statistical, mathematical and artificial intelligence techniques have been used in the areas of engineering geology, rock engineering and geomorphology for many years. However, among the techniques, artificial neural networks are relatively new approach used in engineering geology in particular. The attractiveness of ANN for the engineering geological problems comes from the information processing characteristics of the system, such as non-linearity, high parallelism, robustness, fault and failure tolerance, learning, ability to handle imprecise and fuzzy information, and their capability to generalize. For this reason, the purposes of the present study are to perform an application of ANN to a engineering geology problem having a very large database and to introduce a new approach to accelerate convergence. For these purposes, an ANN architecture having 5 neurons in one hidden layer was constructed. During the training stages, total 40 000 training cycles were performed and the minimum RMSE values were obtained at approximately 10 000th cycle. At this cycle, the obtained minimum RMSE value is 0.22 for the second training set, while that of value is calculated as 0.064 again for the second test set. Using the trained ANN model at 10 000th cycle for the second random sampling, the debris source area susceptibility map was produced and adjusted. Finally, a potential debris source susceptibility map for the study area was produced. When considering the field observations and existing inventory map, the produced map has a high prediction capacity and it can be used when assessing debris flow hazard mitigation efforts.

  7. Artificial intelligence in medicine.

    Science.gov (United States)

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  8. Compliant load-bearing skins and structures for morphing aircraft applications

    Science.gov (United States)

    Olympio, Kingnide Raymond

    Aircraft morphing has the potential to significantly improve the performance of an aircraft over its flight envelope and expand its ight capability to allow it to perform dramatically different missions. The multiple projects carried on in the past three decades have considerably helped improve the designing of actuation systems and the utilization of smart materials for morphing aircraft structures. However, morphing aircraft and especially aircraft undergoing large shape change still face some significant technical issues. Among them, the skin covering the morphing structure must meet challenging requirements that no current conventional material fully satisfy. The design of such skin, which should be able to undergo large deformations and to carry air-loads, has received some attention in the last several years but no satisfactory solution has been found yet. In the current study, the design of compliant cellular structures and flexible skins for morphing aircraft structures is investigated for two different morphing deformations. The first morphing deformation considered corresponds to one-dimensional morphing which is representative of a wing or blade changing its chord or span. The second morphing deformation considered is shear-compression morphing which can be found in some morphing wing undergoing change in area, sweep and chord such as NextGen Aeronautics' morphing wing. Topologies of compliant cellular structures which can be used for these two types of structures are first calculated using a multi-objective approach. These topologies are calculated based on linear kinematics but the effect of geometric nonlinearities is also investigated. Then, ways to provide a smooth surface were investigated by considering a general honeycomb substructure with infill, bonded face-sheet or scales. This allowed justifying an overall skin concept made of a cellular substructure with a bonded face-sheet. Lastly, the design of an improved skin for NextGen Aeronautics

  9. In vivo skin irritation potential of a Castanea sativa (Chestnut) leaf extract, a putative natural antioxidant for topical application.

    Science.gov (United States)

    Almeida, Isabel F; Valentão, Patrícia; Andrade, Paula B; Seabra, Rosa M; Pereira, Teresa M; Amaral, M Helena; Costa, Paulo C; Bahia, M Fernanda

    2008-11-01

    Topical application of natural antioxidants has proven to be effective in protecting the skin against ultraviolet-mediated oxidative damage and provides a straightforward way to strengthen the endogenous protection system. However, natural products can provoke skin adverse effects, such as allergic and irritant contact dermatitis. Skin irritation potential of Castanea sativa leaf ethanol:water (7:3) extract was investigated by performing an in vivo patch test in 20 volunteers. Before performing the irritation test, the selection of the solvent and extraction method was guided by the 1,1-diphenyl-2-picryl hydrazyl (DPPH) free radical scavenging test and polyphenols extraction (measured by the Folin Ciocalteu assay). Iron-chelating activity and the phenolic composition (high performance liquid chromatography/diode array detection) were evaluated for the extract obtained under optimized conditions. The extraction method adopted consisted in 5 short extractions (10 min.) with ethanol:water (7:3), performed at 40 degrees. The IC(50) found for the iron chelation and DPPH scavenging assays were 132.94 +/- 9.72 and 12.58 +/- 0.54 microg/ml (mean +/- S.E.M.), respectively. The total phenolic content was found to be 283.8 +/- 8.74 mg GAE/g extract (mean +/- S.E.M.). Five phenolic compounds were identified in the extract, namely, chlorogenic acid, ellagic acid, rutin, isoquercitrin and hyperoside. The patch test carried out showed that, with respect to irritant effects, this extract can be regarded as safe for topical application.

  10. More than skin deep? Potential nicotinamide treatment applications in chronic kidney transplant recipients

    Science.gov (United States)

    Bostom, Andrew G; Merhi, Basma; Walker, Joanna; Robinson-Bostom, Leslie

    2016-01-01

    Non-melanoma cutaneous carcinomas, or skin cancers, predominantly squamous cell carcinomas (SCCs), are the most common malignancies occurring in kidney transplant recipients (KTRs). Squamous cell carcinoma risk is dramatically elevated in KTRs, occurring at rates of up 45-250 times those reported in general populations. New non-melanoma skin cancers in KTRs with a prior non-melanoma skin cancer also develop at 3-times the rate reported in non-KTRs with the same clinical history. The unique aggressiveness of SCCs in KTRs increases patient morbidity, due to the high rate of new lesions requiring treatment, frequently surgical excision. Oral nicotinamide shows promise in the chemoprevention of the especially aggressive non-melanoma skin cancers which occur in KTRs. This benefit might be conferred via its inhibition of sirtuin enzymatic pathways. Nicotinamide’s concurrent hypophosphatemic effect may also partially ameliorate the disturbed calcium-phosphorus homeostasis in these patients-a putative risk factor for mortality, and graft failure. Conceivably, a phase 3 trial of nicotinamide for the prevention of non-melanoma skin cancers in KTRs, lasting at least 12-mo, could also incorporate imaging and laboratory measures which assess nicotinamide’s impact on subclinical cardiovascular and chronic kidney disease risk, and progression. PMID:28058215

  11. More than skin deep? Potential nicotinamide treatment applications in chronic kidney transplant recipients.

    Science.gov (United States)

    Bostom, Andrew G; Merhi, Basma; Walker, Joanna; Robinson-Bostom, Leslie

    2016-12-24

    Non-melanoma cutaneous carcinomas, or skin cancers, predominantly squamous cell carcinomas (SCCs), are the most common malignancies occurring in kidney transplant recipients (KTRs). Squamous cell carcinoma risk is dramatically elevated in KTRs, occurring at rates of up 45-250 times those reported in general populations. New non-melanoma skin cancers in KTRs with a prior non-melanoma skin cancer also develop at 3-times the rate reported in non-KTRs with the same clinical history. The unique aggressiveness of SCCs in KTRs increases patient morbidity, due to the high rate of new lesions requiring treatment, frequently surgical excision. Oral nicotinamide shows promise in the chemoprevention of the especially aggressive non-melanoma skin cancers which occur in KTRs. This benefit might be conferred via its inhibition of sirtuin enzymatic pathways. Nicotinamide's concurrent hypophosphatemic effect may also partially ameliorate the disturbed calcium-phosphorus homeostasis in these patients-a putative risk factor for mortality, and graft failure. Conceivably, a phase 3 trial of nicotinamide for the prevention of non-melanoma skin cancers in KTRs, lasting at least 12-mo, could also incorporate imaging and laboratory measures which assess nicotinamide's impact on subclinical cardiovascular and chronic kidney disease risk, and progression.

  12. [Peculiarities of application of a cell saver apparatus in neonathal cardiosurgery using artificial blood circulation].

    Science.gov (United States)

    Kuz'menko, S O; Chasovs'kyĭ, K S

    2015-01-01

    Elaborated and introduced into the practice method of the blood preservation, while correction of complex inborn heart failures (IHF) in a newborn babies, was proposed. It assumes application of system for intraoperative reinfusion of own erythrocytes with processing of residual perfusate and their reinfusion in a postperfusion period. Impact of the blood preservation on volume of a donor's blood components, hematological indices and methods of application of washed erythrocytes while correction of complex IHF in a newborn babies were presented. The method was applied in 47 newborn babies, to whom an arterial switch was performed for the main vessels transposition.

  13. Parametric Studies on Artificial Morpho Butterfly Wing Scales for Optical Device Applications

    Directory of Open Access Journals (Sweden)

    Hyun Myung Kim

    2015-01-01

    Full Text Available We calculated diffraction efficiencies of grating structures inspired by Morpho butterfly wings by using a rigorous coupled-wave analysis method. The geometrical effects, such as grating width, period, thickness, and material index, were investigated in order to obtain better optical performance. Closely packed grating structures with an optimized membrane thickness show vivid reflected colors and provide high sensitivity to surrounding media variations, which is applicable to vapor sensing or healthcare indicators. Morpho structures with high index materials such as zinc sulfide or gallium phosphide generate white color caused by broadband reflection that can be used as reflected light sources for display applications.

  14. Atopic Dermatitis-Like Skin Lesions Reduced by Topical Application and Intraperitoneal Injection of Hirsutenone in NC/Nga Mice

    Directory of Open Access Journals (Sweden)

    Mi Sook Jeong

    2010-01-01

    Full Text Available Atopic dermatitis (AD is a common inflammatory skin disease. The increasing prevalence and severity of AD have prompted the developments of safer, more effective drugs. Although topical corticosteroids have been used as first line therapy for AD, their potential side effects limit their clinical applications. To investigate the effect of hirsutenone (HIR, a diarylheptanoid compound, on AD-like skin lesions and other factors related to immune response is the aim of this paper Th2-related cytokines (IL-4, IL-5, IL-13, eosinophil, IgE inflammatory factors (COX-2, iNOS levels were reduced in blood, lymphocytes, and tissue after HIR treatment. These results suggest that HIR might be an effective treatment for AD.

  15. [Clinical application of moving cupping therapy based on skin reaction observation and syndrome differentiation].

    Science.gov (United States)

    Deng, Xiao-Lan; Chen, Bo; Chen, Ze-Lin

    2014-12-01

    The diagnostic evidence on clinical diseases and theoretic basis of moving cupping therapy were ex- plored in the paper. By the observation of the local reaction, such as skin appearance and color, the affected location, duration of sickness and nature of disease were judged. Different moving cupping methods were selected for different disorders. It was discovered that the property of syndromes should be recognized by the palpation on skin and muscle in the moving cupping therapy so that the pathogenesis and treating principle could be carefully determined. The moving cupping therapy is the important component of body surface therapy. Skin reaction observation and syndrome differentiation is the essential guidance of the moving cupping therapy.

  16. Application of colour magnification technique for revealing skin microcirculation changes under regional anaesthetic input

    Science.gov (United States)

    Rubins, Uldis; Spigulis, Janis; Miscuks, Aleksejs

    2013-11-01

    In this work the colour magnification technique was applied for monitoring of palm skin microcirculation changes under peripheral (Plexus Brachialis with axiliary access) Regional Anaesthesia (RA). During the RA procedure 20 minute video of patient's forearm was taken at steady light conditions. Video content was processed offline by custom developed Matlab software with build-in colour magnification algorithm that performs temporal filtering of video sequence near-heartbeat frequency, spatial decomposition of video and amplification of pulsatile signal in every pixel of skin image. Using this method, we are able to visualize the subcutaneous microcirculation changes in high spatial resolution. The results showed different blood pulse amplitude dynamics over the skin regions of palm and forearm during the RA. The colour magnification technique could be used for real-time monitoring of RA effect.

  17. Skin formation in drying a film of soft matter solutions: Application of solute based Lagrangian scheme

    Science.gov (United States)

    Ling, Luo; Fanlong, Meng; Junying, Zhang; Masao, Doi

    2016-07-01

    When a film of soft matter solutions is being dried, a skin layer often forms at its surface, which is a gel-like elastic phase made of concentrated soft matter solutions. We study the dynamics of this process by using the solute based Lagrangian scheme which was proposed by us recently. In this scheme, the process of the gelation (i.e., the change from sol to gel) can be naturally incorporated in the diffusion equation. Effects of the elasticity of the skin phase, the evaporation rate of the solvents, and the initial concentration of the solutions are discussed. Moreover, the condition for the skin formation is provided. Project supported by the National Natural Science of China (Grant Nos. 21434001, 51561145002, and 11421110001).

  18. In Vivo skin hydration and anti-erythema effects of Aloe vera, Aloe ferox and Aloe marlothii gel materials after single and multiple applications

    Science.gov (United States)

    Fox, Lizelle T.; du Plessis, Jeanetta; Gerber, Minja; van Zyl, Sterna; Boneschans, Banie; Hamman, Josias H.

    2014-01-01

    Objective: To investigate the skin hydrating and anti-erythema activity of gel materials from Aloe marlothii A. Berger and A. ferox Mill. in comparison to that of Aloe barbadensis Miller (Aloe vera) in healthy human volunteers. Materials and Methods: Aqueous solutions of the polisaccharidic fractions of the selected aloe leaf gel materials were applied to the volar forearm skin of female subjects. The hydration effect of the aloe gel materials were measured with a Corneometer® CM 825, Visioscan® VC 98 and Cutometer® dual MPA 580 after single and multiple applications. The Mexameter® MX 18 was used to determine the anti-erythema effects of the aloe material solutions on irritated skin areas. Results: The A. vera and A. marlothii gel materials hydrated the skin after a single application, whereas the A. ferox gel material showed dehydration effects compared to the placebo. After multiple applications all the aloe materials exhibited dehydration effects on the skin. Mexameter® readings showed that A. vera and A. ferox have anti-erythema activity similar to that of the positive control group (i.e. hydrocortisone gel) after 6 days of treatment. Conclusion: The polysaccharide component of the gel materials from selected aloe species has a dehydrating effect on the skin after multiple applications. Both A. vera and A. ferox gel materials showed potential to reduce erythema on the skin similar to that of hydrocortisone gel. PMID:24991119

  19. The handbook of artificial intelligence

    CERN Document Server

    Barr, Avron

    1982-01-01

    The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine

  20. Error-correction learning for artificial neural networks using the Bayesian paradigm. Application to automated medical diagnosis

    National Research Council Canada - National Science Library

    Belciug, Smaranda; Gorunescu, Florin

    2014-01-01

    .... Due to their adaptive learning and nonlinear mapping properties, the artificial neural networks are widely used to support the human decision capabilities, avoiding variability in practice and errors...

  1. How to improve WEEE management? Novel approach in mobile collection with application of artificial intelligence.

    Science.gov (United States)

    Król, Aleksander; Nowakowski, Piotr; Mrówczyńska, Bogna

    2016-04-01

    In global demand of improvement of electrical and electronic waste management systems, stakeholders look for effective collection systems that generate minimal costs. In this study we propose a novel model for application in mobile collection schemes - on demand that waste be taken back from household residents. This type of the waste equipment collection is comfortable for residents as they can indicate day and time windows for the take-back. Collecting companies are interested in lowering operational costs required for service. This lowering includes selection of a sufficient number of vehicles and employees, and then minimising the routes' length in order to achieve savings in fuel consumption, and lowering of emissions. In the proposed model we use a genetic algorithm for optimisation of the route length and number of vehicles and fuzzy logic for representation of the household residents' satisfaction on the take-back service provided by collection companies. Also, modern communication channels like websites or mobile phone applications can be used to send the waste equipment take-back request from the household, so it has the potential to be developed in future applications. The operation of the model has been presented in the case study of a city in southern Poland. The results can be useful for collecting companies and software producers for preparation of new applications to be used in waste collection.

  2. Relative Penetration of Zinc Oxide and Zinc Ions into Human Skin after Application of Different Zinc Oxide Formulations.

    Science.gov (United States)

    Holmes, Amy M; Song, Zhen; Moghimi, Hamid R; Roberts, Michael S

    2016-02-23

    Zinc oxide (ZnO) is frequently used in commercial sunscreen formulations to deliver their broad range of UV protection properties. Concern has been raised about the extent to which these ZnO particles (both micronized and nanoparticulate) penetrate the skin and their resultant toxicity. This work has explored the human epidermal skin penetration of zinc oxide and its labile zinc ion dissolution product that may potentially be formed after application of ZnO nanoparticles to human epidermis. Three ZnO nanoparticle formulations were used: a suspension in the oil, capric caprylic triglycerides (CCT), the base formulation commonly used in commercially available sunscreen products; an aqueous ZnO suspension at pH 6, similar to the natural skin surface pH; and an aqueous ZnO suspension at pH 9, a pH at which ZnO is stable and there is minimal pH-induced impairment of epidermal integrity. In each case, the ZnO in the formulations did not penetrate into the intact viable epidermis for any of the formulations but was associated with an enhanced increase in zinc ion fluorescence signal in both the stratum corneum and the viable epidermis. The highest labile zinc fluorescence was found for the ZnO suspension at pH 6. It is concluded that, while topically applied ZnO does not penetrate into the viable epidermis, these applications are associated with hydrolysis of ZnO on the skin surface, leading to an increase in zinc ion levels in the stratum corneum, thence in the viable epidermis and subsequently in the systemic circulation and the urine.

  3. Experimental and finite element analyses of multifunctional skins for morphing wing applications

    Science.gov (United States)

    Geier, Sebastian; Kintscher, Markus; Mahrholz, Thorsten; Wierach, Peter; Monner, Hans-Peter; Wiedemann, Martin

    2016-04-01

    As a consequence of operational efficiency because of rising energy costs, future transport systems need to be mission-adaptive. Especially in aircraft design the limits of lightweight construction, reduced aerodynamic drag and optimized propulsion are pushed further and further. The first two aspects can be addressed by using a morphing leading edge. Great economic advantages can be expected as a result of gapless surfaces which feature longer areas of laminar flow. Instead of focusing on the kinematics, which are already published in a great number of varieties, this paper emphasizes as major challenge, the qualification of a multi-material layup which meets the compromise of needed stiffness, flexibility and essential functions to match the flight worthiness requirements, such as erosion shielding, impact safety, lighting protection and de-icing. It is the aim to develop an gapless leading edge device and to prepare the path for higher technology readiness levels resulting in an airborne application. During several national and European projects the DLR developed a gapless smart droop nose concept, which functionality was successfully demonstrated using a two-dimensional 5 m in span prototype in low speed (up to 50 m/s) wind tunnel tests. The basic structure is made of commercially available and certified glass-fiber reinforced plastics (GFRP, Hexcel Hexply 913). This paper presents 4-point bending tests to characterize the composite with its integrated functions. The integrity and aging/fatigue issues of different material combinations are analyzed by experiments. It can be demonstrated that only by adding functional layers the mentioned requirements such as erosion-shielding or de-icing can be satisfied. The total thickness of the composite skin increases by more than 100 % when required functions are integrated as additional layers. This fact has a tremendous impact on the maximum strain of the outer surface if it features a complete monolithic build

  4. Research on the Application of Artificial Neural Network%关于人工神经网络的应用研究

    Institute of Scientific and Technical Information of China (English)

    李红超

    2014-01-01

    Artificial neural networks are part of an integrated artificial intelligence, it is proposed is based on research of modern neuroscience. With the continuous development of artificial neural networks, and their use more widely. This article first analyzes the basic concepts and features of artificial neural networks, from six aspects of information, medicine, psychology and other de-tails of the application of artificial neural networks.%人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究。随着人工神经网络的不断发展,其应用范围越来越广泛。该文首先分析了人工神经网络的基本概念和特点,再从信息、医学、心理学等六个方面详细介绍了人工神经网络的应用。

  5. Progress in Research and Application of Aphids’ Artificial Diet%蚜虫人工饲料的研究及应用进展

    Institute of Scientific and Technical Information of China (English)

    高文兴; 王孟卿; 陈红印

    2012-01-01

    Rearing aphids on artificial diet is cheap and compact,and thus can provide cheap diet for mass production of natural enemies.And with the aphids reared on artificial diet,studies of nutritional physiology of aphids,screening insecticidal substances,and toxicological test of insecticides will be much easier.This paper summarized the effects of components of artificial diet on the growth and development of aphid and the applications of artificial diet,with the aim to provide some references for future improvement of artificial diets.%利用人工饲料饲养蚜虫,可以节约成本和空间,为天敌昆虫提供廉价、品质均一的食料;同时利用人工饲料作为介质,便于研究蚜虫的营养生理、筛选杀虫活性物质以及评价毒性物质对蚜虫和天敌昆虫的影响等。本文通过总结蚜虫人工饲料中不同成分在蚜虫生长发育中的作用以及蚜虫人工饲料的相关应用,为以后蚜虫人工饲料配方的改进及其应用提供借鉴。

  6. Your Skin

    Science.gov (United States)

    ... Room? What Happens in the Operating Room? Your Skin KidsHealth > For Kids > Your Skin Print A A ... are really dead skin cells. continue Bye-Bye Skin Cells These old cells are tough and strong, ...

  7. White Skin, Black Friend: A Fanonian Application to Theorize Racial Fetish in Teacher Education

    Science.gov (United States)

    Matias, Cheryl E.

    2016-01-01

    In "Black Skin, white masks" (1967, Grove Press), Franz Fanon uses a psychoanalytic framework to theorize the inferiority-dependency complex of Black men in response to the colonial racism of white men. Applying his framework in reverse, this theoretical article psychoanalyzes the white psyche and emotionality with respect to the…

  8. Variation of topical application to skin under good clinical practice (GCP)

    DEFF Research Database (Denmark)

    Vind-Kezunovic, Dina; Serup, Jørgen Vedelskov

    2016-01-01

    clinical practice (GCP) study designed to investigate the local tolerability and safety on healthy skin of captopril 1% ointment versus a placebo ointment. Volunteers were instructed to apply an even layer of test ointment on a 51 cm(2) test area on the arm twice daily over a 3-week period. At weekly...

  9. Patient reported outcomes in chronic skin diseases: eHealth applications for clinical practice

    NARCIS (Netherlands)

    van Cranenburgh, O.D.

    2016-01-01

    The overall aim of this thesis was to examine and integrate patient reported outcomes (PROs) in dermatological care. In part I, we specifically examined health-related quality of life (HRQoL), treatment satisfaction, and experiences with care in patients with chronic skin diseases. Our results

  10. The potential applications of fibrin-coated electrospun polylactide nanofibers in skin tissue engineering.

    Science.gov (United States)

    Bacakova, Marketa; Musilkova, Jana; Riedel, Tomas; Stranska, Denisa; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2016-01-01

    Fibrin plays an important role during wound healing and skin regeneration. It is often applied in clinical practice for treatment of skin injuries or as a component of skin substitutes. We prepared electrospun nanofibrous membranes made from poly(l-lactide) modified with a thin fibrin nanocoating. Fibrin surrounded the individual fibers in the membrane and also formed a thin fibrous mesh on several places on the membrane surface. The cell-free fibrin nanocoating remained stable in the cell culture medium for 14 days and did not change its morphology. On membranes populated with human dermal fibroblasts, the rate of fibrin degradation correlated with the degree of cell proliferation. The cell spreading, mitochondrial activity, and cell population density were significantly higher on membranes coated with fibrin than on nonmodified membranes, and this cell performance was further improved by the addition of ascorbic acid in the cell culture medium. Similarly, fibrin stimulated the expression and synthesis of collagen I in human dermal fibroblasts, and this effect was further enhanced by ascorbic acid. The expression of beta1-integrins was also improved by fibrin, and on pure polylactide membranes, it was slightly enhanced by ascorbic acid. In addition, ascorbic acid promoted deposition of collagen I in the form of a fibrous extracellular matrix. Thus, the combination of nanofibrous membranes with a fibrin nanocoating and ascorbic acid seems to be particularly advantageous for skin tissue engineering.

  11. White Skin, Black Friend: A Fanonian Application to Theorize Racial Fetish in Teacher Education

    Science.gov (United States)

    Matias, Cheryl E.

    2016-01-01

    In "Black Skin, white masks" (1967, Grove Press), Franz Fanon uses a psychoanalytic framework to theorize the inferiority-dependency complex of Black men in response to the colonial racism of white men. Applying his framework in reverse, this theoretical article psychoanalyzes the white psyche and emotionality with respect to the…

  12. [Effect of topical application of aminoguanidine cream on skin tissue of rats with diabetes].

    Science.gov (United States)

    Tian, Ming; Qing, Chun; Cao, Xiao-Zan; Niu, Yi-Wen; Lu, Shu-Liang

    2011-02-01

    To investigate the effects of aminoguanidine cream on the proliferation of keratinocytes (KC), content of advanced glycosylation end products (AGE) and oxidative stress in skin tissue of rats with diabetes. Stearic acid, liquid paraffin, vaseline, lanolin, isopropyl myristate fat, glycerol, 50 g/L alcohol paraben, aminoguanidine hydrochloride etc. were mixed in certain proportion to make aminoguanidine cream, and cream without aminoguanidine was used as matrix. The dorsal skin of normal rats were harvested and treated by aminoguanidine cream with dose of 5, 10 g/L, or 5 g/L together with 10 g/L azone. The transdermal effect was respectively measured at post treatment hour 2, 4, 7, 10, 12, 24. Thirty SD rats were divided into normal control (NC, n = 6), diabetes (D, n = 8), aminoguanidine cream-interfered (AI, n = 8), matrix cream-interfered groups (MI, n = 8) according to the random number table. Diabetes was reproduced by intraperitoneal injection of STZ (65 mg/kg) in rats of D, AI, and MI groups, and rats in NC group were injected with 0.05 mmol/L citrate buffer as control. One week later, dorsal skin of rats in AI and MI groups were respectively treated with 10 g/L aminoguanidine cream and matrix cream by external use for 4 weeks. AGE content was determined with fluorescence detection from skin collagen extract. KC cell cycle was detected by flow cytometry. Skin tissue specimens were obtained for determination of levels of superoxide dismutase (SOD), malondialdehyde (MDA), myeloperoxidase (MPO), and total antioxidant capacity. Data were processed with t test. Transdermal effect of aminoguanidine cream with dose of 10 g/L was better than that with 5 g/L or 5 g/L + 10 g/L azone cream. One rat was not induced successfully in MI group. Four weeks after model reproduction, 4 rats died in D group and 1 rat died in AI group. The AGE content in D group was obviously higher than that in NC group [(36.8 +/- 2.6), (24.6 +/- 2.7) U per milligram hydroxyproline, respectively

  13. High dose rate brachytherapy using custom made superficial mould applicators and Leipzig applicators for non melanoma localized skin cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pellizzon, A. Cassio A.; Miziara, Daniela; Lima, Flavia Pedroso de; Miziara, Miguel

    2014-07-01

    Purpose: advances in technology and the commercial production of Leipzig applicators allowed High Dose Rate after-load brachytherapy (HDR-BT) to address a number of the challenges associated with the delivery of superficial radiation to treat localized non melanoma skin cancer (NMSK). We reviewed our uni-institutional experience on the treatment of NMSK with HDR-BT. Methods: data were collected retrospectively from patients attending the Radiation Oncology Department at AV Carvalho Insitute, Sao Paulo, Brazil. HDR-BT was done using the stepping source HDR 192Ir Microselectron (Nucletron BV). The planning target volume consisted of the macroscopic lesion plus a 5mm to 10mm margin.The depth of treatment was 0.5 cm in smaller (< 2.0 cm) tumors and 10 to 15 mm for lesions bigger than that. Results: Thirteen patients were treated with HDR-BT from June, 2007 to June 2013. The median age and follow up time were 72 (38-90) years old and 36 (range, 7-73) months, respectively. There a predominance of males (61.5%) and of patients referred for adjuvant treatment due positive surgical margins or because they have had only a excision biopsy without safety margins (61.5%). Six (46.2%) patients presented with squamous cell carcinoma and 7 (53.8%) patients presented with basal cell carcinoma. The median tumor size was 20 (range, 5-42) mm. Patients were treated with a median total dose of 40 Gy (range, 20 -60), given in 10 (range, 2-15) fractions, given daily or twice a week. All patients responded very well to treatment and only one patient has failed locally so far, after 38 months of the end of the irradiation. The crude and actuarial 3-year local control rates were 100% and 80%, respectively. Moist desquamation, grade 2 RTOG, was observed in 4 (30.8%) patients. Severe late complication, radiation-induced dyspigmentation, occurred in 2 patients and 1 of the patients also showed telangiectasia in the irradiated area. The cosmetic result was considered good in 84% (11/13) patients

  14. Aplicação de radiação UV artificial e solar no tratamento fotocatalítico de efluentes de curtume Application of artificial and solar UV radiation in the photocatalytic treatment of a tannery effluent

    Directory of Open Access Journals (Sweden)

    Salomão de Andrade Pascoal

    2007-10-01

    Full Text Available Tannery effluents are very dangerous for the environment since they contain large amounts of dangerous and biorecalcitrant contaminants (organic matter and Cr(VI. This paper reports the efficiency of heterogeneous photocatalysis, based on the application of solar and artificial radiation, furnished by UV lamps, using TiO2 fixed on a flat plate, in the treatment of synthetic effluents. The results of COD and Cr(VI demonstrate that the use of solar radiation is the most efficient way to perform the photocatalytic treatment of these effluents since a minimum removal of 62 and 61% was observed for Cr(VI and organic matter, respectively.

  15. Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data

    Directory of Open Access Journals (Sweden)

    Baojuan Shan

    2013-01-01

    Full Text Available Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Remote sensing of the Earth’s energy budget, particularly with instruments flown on geostationary satellites, allows for near-real-time evaluation of cloud and surface radiation properties. The persistence and coverage of geostationary remote sensing instruments grant the frequent retrieval of near-instantaneous quasi-global skin temperature. Among other cloud and clear-sky retrieval parameters, NASA Langley provides a non-polar, high-resolution land and ocean skin temperature dataset for atmospheric modelers by applying an inverted correlated k-distribution method to clear-pixel values of top-of-atmosphere infrared temperature. The present paper shows that this method yields clear-sky skin temperature values that are, for the most part, within 2 K of measurements from ground-site instruments, like the Southern Great Plains Atmospheric Radiation Measurement (ARM Infrared Thermometer and the National Climatic Data Center Apogee Precision Infrared Thermocouple Sensor. The level of accuracy relative to the ARM site is comparable to that of the Moderate-resolution Imaging Spectroradiometer (MODIS with the benefit of an increased number of daily measurements without added bias or increased error. Additionally, matched comparisons of the high-resolution skin temperature product with MODIS land surface temperature reveal a level of accuracy well within 1 K for both day and night. This confidence will help in characterizing the diurnal and seasonal biases and root-mean-square differences between the retrievals and modeled values from the NASA Goddard Earth Observing System Version 5 (GEOS-5 in preparation for assimilation of the retrievals into GEOS-5. Modelers should find the immediate availability and broad coverage of these skin temperature

  16. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: In vitro study with finite and infinite dosage application.

    Science.gov (United States)

    Chen, Ming; Liu, Xiangli; Fahr, Alfred

    2011-04-15

    The aim of the present research is to evaluate the influence of different lipid vesicular systems as well as the effect of application mode on skin penetration and deposition behaviors of carboxyfluorescein (hydrophilic model drug) and temoporfin (lipophilic model drug). All of the lipid vesicular systems, including conventional liposomes, invasomes and ethosomes, were prepared by film hydration method and characterized for particle size distribution, ζ-potential, vesicular shape and surface morphology, in vitro human skin penetration and skin deposition. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) defined that all of lipid vesicles had almost spherical structures with low polydispersity (PDI ethosomes and invasomes, compared with non-vesicular systems, can significantly improve the delivery of hydrophilic drug such as carboxyfluorescein into skin deep layers or across the skin. While in the case of mTHPC with finite and infinite dose application, most of drug accumulation was observed in the skin superficial layer for both lipid vesicular systems and non-vesicular systems. The results also revealed that the factors influencing the drug skin distribution concern the physicochemical characteristics of the drug, the choice of the vehicle formulation and the application mode applied.

  17. Knowledge Based Concepts and Artificial Intelligence: Applications to Guidance and Control.

    Science.gov (United States)

    1987-08-01

    Princeton, 1976 . 11. Negoita, C.V ., "Expert Systems and Fuzzy, Systems," Benjamin/Cummings, Menlo Park, CA, 1985. 12. Prade, H. "A Computational...Approach to Approximate and Plausible Reasoning with Applications to Expert Systems," IEEE Transactions on Pattern Analysis and Machine Intelligence (3...ruslfe, erese At tire pr-en t11Ine, these data Ire entereed cI, the croil le by Lte operitre in replc to ’) -es triso aed by th e s ys tes. They could

  18. Clinical Application of Development of Nonantibiotic Macrolides That Correct Inflammation-Driven Immune Dysfunction in Inflammatory Skin Diseases

    Directory of Open Access Journals (Sweden)

    Carmen Rodriguez-Cerdeira

    2012-01-01

    Full Text Available Background. Inflammation-driven immune dysfunction supports the development of several chronic human disorders including skin diseases. Nonantibiotic macrolides have anti-inflammatory and/or immunomodulatory activity that suggests the exploitation of these in the treatment of skin diseases characterized by inflammatory disorders. Materials and Methods. We performed an extensive review of the nonantibiotic macrolide literature published between 2005 and 2012, including cross-references of any retrieved articles. We also included some data from our own experience. Results. Calcineurin antagonists such as tacrolimus and ascomycins (e.g., pimecrolimus act by inhibiting the activation of the nuclear factor for activated T cells (NFAT. There are new applications for these macrolides that have been available for several years and have been applied to skin and hair disorders such as atopic dermatitis, oral lichen planus, vitiligo, chronic autoimmune urticaria, rosacea, alopecia areata, pyoderma gangrenosum, Behcet’s disease, neutrophilic dermatosis, and lupus erythematosus. We also reviewed new macrolides, like rapamycin, everolimus, and temsirolimus. In addition to the literature review, we report a novel class of nonantibiotic 14-member macrocycle with anti-inflammatory and immunomodulatory effects. Conclusions. This paper summarizes the most important clinical studies and case reports dealing with the potential benefits of nonantibiotic macrolides which have opened new avenues in the development of anti-inflammatory strategies in the treatment of cutaneous disorders.

  19. Radiation formation of functionalized polysaccharide-protein based skin mimicking semi- inter penetrating network for biomedical application.

    Science.gov (United States)

    Singh, Baljit; Kumar, Ajay

    2016-11-01

    Radiation treatment of chitosan, gelatin, polyvinyl alcohol (PVA) and polyacrylamide [poly(AAm)] will form the sterile hydrogel wound dressings which can mimic the artificial skin function in wound therapy. These polymers have been characterized by cryo-scanning electron micrographs (cryo-SEMs), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and (13)C solid state nuclear magnetic resonance (NMR) spectroscopy and swelling studies. Some important properties of hydrogel wound dressings like drug delivery, blood compatibility, wound fluid absorption, antioxidant activity, oxygen permeability, water vapour permeability, microbial penetration, mucoadhesion and mechanical properties have also been determined. The release profile of moxifloxacin from the polyacrylamide functionalized chitosan-gelatin matrix followed Fickian diffusion mechanism and release profile best fitted in Korsmeyer-Peppas kinetic model. The hydrogel films are permeable to O2 and H2O vapour and impermeable to microbes in open environment and showed high wound absorption, good mucoadhesion and antioxidant activity. Beside release of antibiotic, the inherent wound healing potential of chitosan, adhesion capacity of gelatin, film forming ability of PVA and wound fluid absorption of poly(AAm), may enhance wound healing potential of these hydrogel wound dressings.

  20. Artificial penile nodules: case reports.

    OpenAIRE

    Lim, K B; Seow, C.S.; Tulip, T; Daniel, M.; Vijayasingham, S M

    1986-01-01

    An interesting cultural practice of implanting foreign bodies under the skin of the penis for enhancing sexual excitement in the man's sexual partner is described. Recognition of this is important to venereologists because of their primary concern with the genital area. The term artificial penile nodule has been suggested for the condition resulting from this practice.