WorldWideScience

Sample records for artificial radiation belts

  1. Control of the energetic proton flux in the inner radiation belt by artificial means

    Science.gov (United States)

    Shao, X.; Papadopoulos, K.; Sharma, A. S.

    2009-07-01

    Earth's inner radiation belt located inside L = 2 is dominated by a relatively stable flux of trapped protons with energy from a few to over 100 MeV. Radiation effects in spacecraft electronics caused by the inner radiation belt protons are the major cause of performance anomalies and lifetime of Low Earth Orbit satellites. For electronic components with large feature size, of the order of a micron, anomalies occur mainly when crossing the South Atlantic Anomaly. However, current and future commercial electronic systems are incorporating components with submicron size features. Such systems cannot function in the presence of the trapped 30-100 MeV protons, as hardening against such high-energy protons is essentially impractical. The paper discusses the basic physics of the interaction of high-energy protons with low-frequency Shear Alfven Wave (SAW) under conditions prevailing in the radiation belts. Such waves are observed mainly in the outer belt, and it is believed that they are excited by an Alfven Ion Cyclotron instability driven by anisotropic equatorially trapped energetic protons. The paper derives the bounce and drift-averaged diffusion coefficients and uses them to determine the proton lifetime as a function of the spectrum and amplitude of the volume-averaged SAW resonant with the trapped energetic protons. The theory is applied to the outer and inner radiation belts. It is found that the resonant interaction of observed SAW with nT amplitude in the outer belt results in low flux of trapped protons by restricting their lifetime to periods shorter than days. A similar analysis for the inner radiation belt indicates that broadband SAW in the 1-10 Hz frequency range and average amplitude of 25 pT would reduce the trapped energetic proton flux by more than an order of magnitude within 2 to 3 years. In the absence of naturally occurring SAW waves, such reduction can be achieved by injecting such waves from ground-based transmitters. The analysis indicates

  2. Measurements of the artificially stimulated precipitation of electrons from the inner radiation belt in the experiment 'Spolokh-2'

    Science.gov (United States)

    Zhulin, I. A.; Kostin, V. M.; Pimenov, I. A.; Ruzhin, Iu. Ia.; Skomarovskii, V. S.; Zhuchenko, Iu. M.; Romanovskii, Iu. A.

    Artificial ionospheric disturbances, resulting from a barium shaped charge release from Spolokh-2 rocket payload, launched on June 29, 1978, are described. Geiger counters were used to detect the stimulated fluxes of the precipitated electrons with energies greater than 40 keV. The spectral analysis of the counter data was used to find the short- and long-term charges of the electron fluxes after the charge explosion. Artificial precipitation of electrons was observed more than 100 s after the explosion.

  3. Measurements of the artificially stimulated precipitation of electrons from the inner radiation belt in the experiment 'Spolokh-2'

    International Nuclear Information System (INIS)

    Artificial ionospheric disturbances, resulting from a barium shaped charge release from Spolokh-2 rocket payload, launched on June 29, 1978, are described. Geiger counters were used to detect the stimulated fluxes of the precipitated electrons with energies greater than 40 keV. The spectral analysis of the counter data was used to find the short- and long-term charges of the electron fluxes after the charge explosion. Artificial precipitation of electrons was observed more than 100 s after the explosion

  4. Data From HANE-Generated Radiation Belts and the Origin of Diffusion Theory

    Energy Technology Data Exchange (ETDEWEB)

    Winske, Dan [Los Alamos National Laboratory

    2012-07-16

    In this presentation we briefly review some of the published data regarding the artificial radiation belts produced by the Starfish and R2 high altitude nuclear explosions in 1962. The data showed slow temporal variations of the belts in altitude (L) and pitch angle ({alpha}) that could be modeled as a diffusion process. That early work formed the basis for more complex radiation belt diffusion models that are in use at present.

  5. The Foundations of Radiation Belt Research

    Science.gov (United States)

    Ludwig, G. H.

    2008-12-01

    The United States undertook the launching of an artificial Earth satellite as part of its contribution to the International Geophysical Year. The Vanguard program was established to meet that commitment, and it developed a launch vehicle, ground station network, and suite of scientific payloads, including the cosmic ray experiment proposed by James A. Van Allen. Although Vanguard eventually exceeded all of its pre-stated goals, the preemptive launches of Sputniks I and II by the Soviets in October and November 1957 spurred the U.S. into a frenzy of activity, resulting in the launches of Explorers I and III in January and March of 1958. The data from those two satellites quickly revealed the lower boundary of an unexpected region of high intensity radiation trapped in the Earth's magnetic field. The original announcement in May 1958 stated that the radiation was probably composed of either protons or electrons, and that, if electrons, it was probably bremsstrahlung formed in the satellite shell. Immediately following that announcement, approval was received for what became Explorer IV, whose announced purpose was to follow up on the new discovery. Another reason for the satellite, unmentioned at the time, was its inclusion as a component of the highly classified Argos program, a covert military program to test whether the detonation of nuclear devices at high altitude would inject measurable numbers of charged particles into durable trajectories in the Earth's magnetic field. Our team at Iowa produced the satellites under the oversight of, and with assistance by, the Army Ballistic Missile Agency in Huntsville, and with the contributions of key hardware from several other government laboratories. The project was completed in the unbelievably short period of seventy-seven days from approval to launch. Launched into a higher-inclination orbit than the earlier Explorers, Explorer IV confirmed the discovery and greatly expanded our understanding of the natural

  6. Radiation belt dynamics during solar minimum

    Energy Technology Data Exchange (ETDEWEB)

    Gussenhoven, M.S.; Mullen, E.G. (Geophysics Lab., Air Force Systems Command, Hanscom AFB, MA (US)); Holeman, E. (Physics Dept., Boston College, Chestnut Hill, MA (US))

    1989-12-01

    Two types of temporal variation in the radiation belts are studied using low altitude data taken onboard the DMSP F7 satellite: those associated with the solar cycle and those associated with large magnetic storm effects. Over a three-year period from 1984 to 1987 and encompassing solar minimum, the protons in the heart of the inner belt increased at a rate of approximately 6% per year. Over the same period, outer zone electron enhancements declined both in number and peak intensity. During the large magnetic storm of February 1986, following the period of peak ring current intensity, a second proton belt with energies up to 50 MeV was found at magnetic latitudes between 45{degrees} and 55{degrees}. The belt lasted for more than 100 days. The slot region between the inner and outer electron belts collapsed by the merging of the two populations and did not reform for 40 days.

  7. Imaging Jupiter Radiation Belts At Low Frequencies

    Science.gov (United States)

    Girard, J. N.; de Pater, I.; Zarka, P.; Santos-Costa, D.; Sault, R.; Hess, S.; Cecconi, B.; Fender, R.; Pewg, Lofar

    2014-04-01

    The ultra-relativistic electrons, trapped in the inner radiation belts of Jupiter, generates a strong synchrotron radio emission (historically known as the jovian decimeter radiation (DIM)) which is beamed, polarized (~20% linear, ~1% circular) and broadband. It has been extensively observed by radio telescopes/ probes and imaged by radio interferometers over a wide frequency spectrum (from >300 MHz up to 22 GHz). This extended emission presents two main emission peaks constantly located on both sides of the planet close to the magnetic plane. High latitude emissions were also regularly observed at particular frequencies, times and in particular observational configurations. This region of the magnetosphere is "frozen" due to the strong magnetic field (~4.2 G as the equator) and therefore is forced to rotate at the planetary period (T≈9h55m). Due to the tilt (~ 10o) between the spin axis of the planet and the magnetic axis (which can be seen as dipolar in first approximation), the belts and the associated radio emission wobble around the planet center. The analysis of the flux at different frequencies highlighted spatial, temporal and spectral variabilities which origins are now partly understood. The emission varies at different time scales (short-time variations of hours to long-term variation over decades) due to the combination of visibility effect (wobbling, beaming, position of the observer in the magnetic rotating reference frame) [1], [2] and intrinsic local variations (interaction between relativistic electrons and satellites/dust, delayed effect of the solar wind ram pressure, impacts events) [3], [4], [5]. A complete framework is necessary to fully understand the source, loss and transport processes of the electrons originating from outside the belt, migrating by inward diffusion and populating the inner region of the magnetosphere. Only a few and unresolved measurements were made below 300 MHz and the nonsystematic observation of this radio emission

  8. The atmospheric implications of radiation belt remediation

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2006-08-01

    Full Text Available High altitude nuclear explosions (HANEs and geomagnetic storms can produce large scale injections of relativistic particles into the inner radiation belts. It is recognised that these large increases in >1 MeV trapped electron fluxes can shorten the operational lifetime of low Earth orbiting satellites, threatening a large, valuable population. Therefore, studies are being undertaken to bring about practical human control of the radiation belts, termed "Radiation Belt Remediation" (RBR. Here we consider the upper atmospheric consequences of an RBR system operating over either 1 or 10 days. The RBR-forced neutral chemistry changes, leading to NOx enhancements and Ox depletions, are significant during the timescale of the precipitation but are generally not long-lasting. The magnitudes, time-scales, and altitudes of these changes are no more significant than those observed during large solar proton events. In contrast, RBR-operation will lead to unusually intense HF blackouts for about the first half of the operation time, producing large scale disruptions to radio communication and navigation systems. While the neutral atmosphere changes are not particularly important, HF disruptions could be an important area for policy makers to consider, particularly for the remediation of natural injections.

  9. Radiation-belt dynamics during solar minimum. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Gussenhoven, M.S.; Mullen, E.G.; Holeman, E.

    1989-12-01

    Two types of temporal variation in the radiation belts are studied using low altitude data taken onboard the DMSP F7 satellite: those associated with the solar cycle and those associated with large magnetic storm effects. Over a three-year period from 1984 to 1987 and encompassing solar minimum, the protons in the heart of the inner belt increased at a rate of approximately 6% per year. Over the same period, outer zone electron enhancements declined both in number and peak intensity. During the large magnetic storm of February 1986, following the period of peak ring current intensity, a second proton belt with energies up to 50 MeV was found at magnetic latitudes between 45 deg. and 55 deg. The belt lasted for more than 100 days. The slot region between the inner and outer electron belts collapsed by the merging of the two populations and did not reform for 40 days.

  10. A Physical Model of Electron Radiation Belts of Saturn

    Science.gov (United States)

    Lorenzato, L.; Sicard-Piet, A.; Bourdarie, S.

    2012-04-01

    Radiation belts causes irreversible damages on on-board instruments materials. That's why for two decades, ONERA proposes studies about radiation belts of magnetized planets. First, in the 90's, the development of a physical model, named Salammbô, carried out a model of the radiation belts of the Earth. Then, for few years, analysis of the magnetosphere of Jupiter and in-situ data (Pioneer, Voyager, Galileo) allow to build a physical model of the radiation belts of Jupiter. Enrolling on the Cassini age and thanks to all information collected, this study permits to adapt Salammbô jovian radiation belts model to the case of Saturn environment. Indeed, some physical processes present in the kronian magnetosphere are similar to those present in the magnetosphere of Jupiter (radial diffusion; interaction of energetic electrons with rings, moons, atmosphere; synchrotron emission). However, some physical processes have to be added to the kronian model (compared to the jovian model) because of the particularity of the magnetosphere of Saturn: interaction of energetic electrons with neutral particles from Enceladus, and wave-particle interaction. This last physical process has been studied in details with the analysis of CASSINI/RPWS (Radio and Plasma Waves Science) data. The major importance of the wave particles interaction is now well known in the case of the radiation belts of the Earth but it is important to investigate on its role in the case of Saturn. So, importance of each physical process has been studied and analysis of Cassini MIMI-LEMMS and CAPS data allows to build a model boundary condition (at L = 6). Finally, results of this study lead to a kronian electrons radiation belts model including radial diffusion, interactions of energetic electrons with rings, moons and neutrals particles and wave-particle interaction (interactions of electrons with atmosphere particles and synchrotron emission are too weak to be taken into account in this model). Then, to

  11. Rotationally driven 'zebra stripes' in Earth's inner radiation belt.

    Science.gov (United States)

    Ukhorskiy, A Y; Sitnov, M I; Mitchell, D G; Takahashi, K; Lanzerotti, L J; Mauk, B H

    2014-03-20

    Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn, the electric field produced in the inner magnetosphere by Earth's rotation can change the velocity of trapped particles by only about 1-2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth's inner radiation belt are organized in regular, highly structured and unexpected 'zebra stripes', even when the solar-wind activity is low. Modelling reveals that the patterns are produced by Earth's rotation. Radiation-belt electrons are trapped in Earth's dipole-like magnetic field, where they undergo slow longitudinal drift motion around the planet because of the gradient and curvature of the magnetic field. Earth's rotation induces global diurnal variations of magnetic and electric fields that resonantly interact with electrons whose drift period is close to 24 hours, modifying electron fluxes over a broad energy range into regular patterns composed of multiple stripes extending over the entire span of the inner radiation belt. PMID:24646996

  12. Relativistic surfatron process for Landau resonant electrons in radiation belts

    CERN Document Server

    Osmane, A

    2014-01-01

    Recent theoretical studies of the nonlinear wave-particle interactions for relativistic particles have shown that Landau resonant orbits could be efficiently accelerated along the mean background magnetic field for propagation angles $\\theta$ in close proximity to a critical propagation $\\theta_\\textrm{c}$ associated with a Hopf--Hopf bifurcation condition. In this report, we extend previous studies to reach greater modeling capacities for the study of electrons in radiation belts by including longitudinal wave effects and inhomogeneous magnetic fields. We find that even though both effects can limit the surfatron acceleration of electrons in radiation belts, gains in energy of the order of 100 keV, taking place on the order of ten milliseconds, are sufficiently strong for the mechanism to be relevant to radiation belt dynamics.

  13. Contribution of Neutron Beta Decay to Radiation Belt Pumping from High Altitude Nuclear Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Marrs, R

    2002-11-13

    In 1962, several satellites were lost following high altitude nuclear tests by the United States and the Soviet Union. These satellite failures were caused by energetic electrons injected into the earth's radiation belts from the beta decay of bomb produced fission fragments and neutrons. It has been 40 years since the last high altitude nuclear test; there are now many more satellites in orbit, and it is important to understand their vulnerability to radiation belt pumping from nuclear explosions at high altitude or in space. This report presents the results of a calculation of the contribution of neutron beta decay to artificial belt pumping. For most high altitude nuclear explosions, neutrons are expected to make a smaller contribution than fission products to the total trapped electron inventory, and their contribution is usually neglected. However, the neutron contribution may dominate in cases where the fission product contribution is suppressed due to the altitude or geomagnetic latitude of the nuclear explosion, and for regions of the radiation belts with field lines far from the detonation point. In any case, an accurate model of belt pumping from high altitude nuclear explosions, and a self-consistent explanation of the 1962 data, require inclusion of the neutron contribution. One recent analysis of satellite measurements of electron flux from the 1962 tests found that a better fit to the data is obtained if the neutron contribution to the trapped electron inventory was larger than that of the fission products [l]. Belt pumping from high altitude nuclear explosions is a complicated process. Fission fragments are dispersed as part of the ionized bomb debris, which is constrained and guided by the earth's magnetic field. Those fission products that beta decay before being lost to the earth's atmosphere can contribute trapped energetic electrons to the earth's radiation belts. There has been a large effort to develop computer models for

  14. Dynamics of the earth's radiation belts and inner magnetosphere (geophysical monograph series)

    CERN Document Server

    2013-01-01

    Dynamics of the Earth's Radiation Belts and Inner Magnetosphere draws together current knowledge of the radiation belts prior to the launch of Radiation Belt Storm Probes (RPSP) and other imminent space missions, making this volume timely and unique. The volume will serve as a useful benchmark at this exciting and pivotal period in radiation belt research in advance of the new discoveries that the RPSP mission will surely bring. Highlights include the following: a review of the current state of the art of radiation belt science; a complete and up-to-date account of the wave-particle interactions that control the dynamical acceleration and loss processes of particles in the Earth's radiation belts and inner magnetosphere; a discussion emphasizing the importance of the cross-energy coupling of the particle populations of the radiation belts, ring current, and plasmasphere in controlling the dynamics of the inner magnetosphe...

  15. Statistical properties of the radiation belt seed population

    Science.gov (United States)

    Boyd, A. J.; Spence, H. E.; Huang, C.-L.; Reeves, G. D.; Baker, D. N.; Turner, D. L.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Shprits, Y. Y.

    2016-08-01

    We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular, we investigate the relationship between the tens and hundreds of keV seed electrons and >1 MeV core radiation belt electron population. Using a cross-correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈0.73 with a time lag of 10-15 h. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of the acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of hundreds of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration.

  16. Radiation Belt Electron Dynamics Driven by Large-Amplitude Whistlers

    Science.gov (United States)

    Khazanov, G. V.; Tel'nikhin, A. A.; Kronberg, T. K.

    2013-01-01

    Acceleration of radiation belt electrons driven by oblique large-amplitude whistler waves is studied. We show analytically and numerically that this is a stochastic process; the intensity of which depends on the wave power modified by Bessel functions. The type of this dependence is determined by the character of the nonlinear interaction due to coupling between action and phase. The results show that physically significant quantities have a relatively weak dependence on the wave power.

  17. Inner radiation belt source of helium and heavy hydrogen isotopes

    Science.gov (United States)

    Leonov, A. A.; Galper, A. M.; Koldashov, S. V.; Mikhailov, V. V.; Casolino, M.; Picozza, P.; Sparvoli, R.

    Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the main source of energetic H and He isotopes nuclei in the radiation belt. This paper reports on the specified calculations of these isotope intensities using various inner zone proton intensity models (AP-8 and SAMPEX/PET PSB97), the atmosphere drift-averaged composition and density model MSIS-90, and cross-sections of the interaction processes from the GNASH nuclear model code. To calculate drift-averaged densities and energy losses of secondaries, the particles were tracked in the geomagnetic field (modelled through IGRF-95) by integrating numerically the equation of the motion. The calculations take into account the kinematics of nuclear interactions along the whole trajectory of trapped proton. The comparison with new data obtained from the experiments on board RESURS-04 and MITA satellites and with data from SAMPEX and CRRES satellites taken during different phases of solar activity shows that the upper atmosphere is a sufficient source for inner zone helium and heavy hydrogen isotopes. The calculation results are energy spectra and angular distributions of light nuclear isotopes in the inner radiation belt that may be used to develop helium inner radiation belt model and to evaluate their contribution to SEU (single event upset) rates.

  18. Investigating radiation belt losses though numerical modelling of precipitating fluxes

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2004-11-01

    Full Text Available It has been suggested that whistler-induced electron precipitation (WEP may be the most significant inner radiation belt loss process for some electron energy ranges. One area of uncertainty lies in identifying a typical estimate of the precipitating fluxes from the examples given in the literature to date. Here we aim to solve this difficulty through modelling satellite and ground-based observations of onset and decay of the precipitation and its effects in the ionosphere by examining WEP-produced Trimpi perturbations in subionospheric VLF transmissions. In this study we find that typical Trimpi are well described by the effects of WEP spectra derived from the AE-5 inner radiation belt model for typical precipitating energy fluxes. This confirms the validity of the radiation belt lifetimes determined in previous studies using these flux parameters. We find that the large variation in observed Trimpi perturbation size occurring over time scales of minutes to hours is primarily due to differing precipitation flux levels rather than changing WEP spectra. Finally, we show that high-time resolution measurements during the onset of Trimpi perturbations should provide a useful signature for discriminating WEP Trimpi from non-WEP Trimpi, due to the pulsed nature of the WEP arrival.

  19. An Experimental Concept for Probing Nonlinear Radiation Belt Physics

    Science.gov (United States)

    Amatucci, Bill; Ganguli, Guru; Crabtree, Chris; Mithaiwala, Manish; Siefring, Carl; Tejero, Erik

    2014-10-01

    The SMART sounding rocket is designed to probe the nonlinear response of a known ionospheric stimulus. High-speed neutral barium atoms generated by a shaped charge explosion perpendicular to the magnetic field in the ionosphere form a ring velocity distribution of photo-ionized Ba+ that will generate lower hybrid waves. Induced nonlinear scattering of lower hybrid waves into whistler/magnetosonic waves has been theoretically predicted, confirmed by simulations, and observed in the lab. The effects of nonlinear scattering on wave evolution and whistler escape to the radiation belts have been studied and observable signatures quantified. The fraction of the neutral atom kinetic energy converted into waves is estimated at 10-12%. SMART will carry a Ba release module and an instrumented daughter section with vector wave magnetic and electric field sensors, Langmuir probes and energetic particle detectors to determine wave spectra in the source region and detect precipitated particles. The Van Allen Probes can detect the propagation of the scattered whistlers and their effects in the radiation belts. By measuring the radiation belt whistler energy density, SMART will confirm the nonlinear scattering process and the connection to weak turbulence. Supported by the Naval Research Laboratory Base Funds.

  20. Development of a new Global RAdiation Belt model: GRAB

    Science.gov (United States)

    Sicard-Piet, Angelica; Lazaro, Didier; Maget, Vincent; Rolland, Guy; Ecoffet, Robert; Bourdarie, Sébastien; Boscher, Daniel; Standarovski, Denis

    2016-07-01

    The well known AP8 and AE8 NASA models are commonly used in the industry to specify the radiation belt environment. Unfortunately, there are some limitations in the use of these models, first due to the covered energy range, but also because in some regions of space, there are discrepancies between the predicted average values and the measurements. Therefore, our aim is to develop a radiation belt model, covering a large region of space and energy, from LEO altitudes to GEO and above, and from plasma to relativistic particles. The aim for the first version is to correct the AP8 and AE8 models where they are deficient or not defined. At geostationary, we developed ten years ago for electrons the IGE-2006 model which was proven to be more accurate than AE8, and used commonly in the industry, covering a broad energy range, from 1keV to 5MeV. From then, a proton model for geostationary orbit was also developed for material applications, followed by the OZONE model covering a narrower energy range but the whole outer electron belt, a SLOT model to asses average electron values for 2file system to switch between models, in order to obtain at each location in space and energy point the most reliable value. Of course, the way the model is developed is well suited to add new local developments or to include international partnership. This model will be called the GRAB model, as Global Radiation Belt model. We will present first beta version during this conference.

  1. Ultra low frequency waves impact on radiation belt energetic particles

    Institute of Scientific and Technical Information of China (English)

    ZONG QiuGang; HAO YongQiang; WANG YongFu

    2009-01-01

    One of the most fundamental important issues in the space physics is to understand how solar wind energy transports into the inner magnetosphere.Ultra low frequency(ULF)wave in the magnetosphere and its impact on energetic particles,such as the wave-particle resonance,modulation,and particle acceleration,are extremely important topics in the Earth's radiation belt dynamics and solar windmagnetospheric coupling.In this review,we briefly introduce the recent advances on ULF waves study.Further,we will explore the density structures and ion compositions around the plasmaspheric boundary layer(PBL)and discuss its possible relation to the ULF waves.

  2. Rapid energization of radiation belt electrons by nonlinear wave trapping

    Directory of Open Access Journals (Sweden)

    Y. Katoh

    2008-11-01

    Full Text Available We show that nonlinear wave trapping plays a significant role in both the generation of whistler-mode chorus emissions and the acceleration of radiation belt electrons to relativistic energies. We have performed particle simulations that successfully reproduce the generation of chorus emissions with rising tones. During this generation process we find that a fraction of resonant electrons are energized very efficiently by special forms of nonlinear wave trapping called relativistic turning acceleration (RTA and ultra-relativistic acceleration (URA. Particle energization by nonlinear wave trapping is a universal acceleration mechanism that can be effective in space and cosmic plasmas that contain a magnetic mirror geometry.

  3. Ultra low frequency waves impact on radiation belt energetic particles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    One of the most fundamental important issues in the space physics is to understand how solar wind energy transports into the inner magnetosphere.Ultra low frequency(ULF)wave in the magnetosphere and its impact on energetic particles,such as the wave-particle resonance,modulation,and particle acceleration,are extremely important topics in the Earth’s radiation belt dynamics and solar wind― magnetospheric coupling.In this review,we briefly introduce the recent advances on ULF waves study. Further,we will explore the density structures and ion compositions around the plasmaspheric boundary layer(PBL)and discuss its possible relation to the ULF waves.

  4. Radial diffusion of radiation belt electrons in three dimensions

    Science.gov (United States)

    Perry, Kara Lynn

    It is becoming increasingly important to understand the dynamics of radiation belt energetic particles given their potentially hazardous effects on satellites and our ever-increasing dependence on those satellites. There is a need to determine whether existing two-dimensional models are adequate in estimating the dynamics of the radiation belts or if a three-dimensional model is required. Discussion of general space physics and radiation belt topology is followed by an account of existing models and how these models can be improved by extending dynamic calculations from two dimensions to three. A model is then developed describing magnetic and electric fields associated with poloidal mode Pc5 ULF waves. The frequency and L dependence of the ULF wave power is included in this model by incorporating published ground-based magnetometer data. The influence of ultra low frequency (ULF) waves in the Pc5 frequency range on radiation belt electrons in a dipole magnetic field is examined. This is the first analysis in three dimensions utilizing model ULF wave electric and magnetic fields in the guiding center trajectories of relativistic electrons. It is demonstrated here that realistic spectral characteristics play a significant role in the rate of diffusion of relativistic electrons via drift resonance with poloidal mode ULF waves. Radial diffusion rates including bounce motion are calculated for alphaeq ≥ 50° (lambda ≤ 20°). Energy, L and pitch angle dependence of diffusion rates are calculated for L-independent, L-dependent, frequency independent and frequency dependent field power. During geomagnetic storms when ULF wave power is increased, ULF waves are a significant driver of increased fluxes of relativistic electrons inside geosynchronous orbit. Diffusion time scales obtained here, when frequency and L dependence compared to observations of ULF wave power is included, support this conclusion. A compression is then added to the dipole field model and diffusion

  5. Insights on radiation belt physics from the dynamics radiation environment assimilation model, DREAM

    International Nuclear Information System (INIS)

    Complete text of publication follows. The Dynamic Radiation Environment Assimilation Model (DREAM) is a coupled, inner magnetosphere model with modules that include the ring current, the radiation belts, self-consistent global magnetic fields, Kalman filter data assimilation, and customized user applications. DREAM was developed at Los Alamos National Laboratory with the goals of specifying, predicting and understanding the near-Earth space environment. Here we will focus on new understanding of physics of the inner magnetosphere that DREAM has provided and, even more specifically, on the physics of radiation belt acceleration, transport, and loss. One early and important contribution was providing definitive evidence that local acceleration processes acting inside or near geosynchronous orbit are required in order to explain radiation belt dynamics. Another critical process we investigated was loss of radiation belt electrons by radial diffusion or transport to the magnetopause. A critical calculation here is accurate determination of the adiabatic redistribution of particles due to the storm-time ring current (the 'Dst' effect) which can cause both apparent 'loss' of particles at a given satellite. At different times and at different energies, DREAM can determine whether the region outside the trapping boundary acts as a source (the plasma sheet) a sink (the magnetopause) or a combination of both. Another fundamental sink of radiation belt electrons is the atmospheric loss cone where pitch angle scattering can remove electrons trough precipitation. In the final topic for this talk we will describe how we use DREAM to determine the relationship between trapped and precipitating populations and how we relate LEO measurements to high-altitude measurements using observed and modeled characteristics of magnetospheric wave populations.

  6. Exploring the Jupiter's and Saturn's radiation belts with LOFAR

    Science.gov (United States)

    Girard, Julien N.; Zarka, Philippe; Pater Imke, de; Hess, Sebastien; Tasse, Cyril; Courtin, Regis; Hofstadter, Mark; Santos-Costa, Daniel; Nettelmann, Nadine; lorenzato, Lise

    2014-05-01

    Since its detection in the mid-fifties, the decimeter synchrotron radiation (DIM), originating from the radiation belts of Jupiter, has been extensively observed over a wide spectrum (from >300 MHz to 22 GHz) by various radio instruments (VLA, ATCA, WSRT, Cassini...). They provided accurate flux measurements as well as resolved maps of the emission that revealed spatial, temporal and spectral variabilities. The strong magnetic field (~4.2 G at the equator) is responsible for the radio emission generated by relativistic electrons. The emission varies at different time scales (short-time variations of hours to long-term variation over decades) due to the combination of visibility configuration (fast rotating 'dipole' magnetic field, beamed radio emission) and intrinsic local variations (interaction between relativistic electrons and satellites/dust, delayed effect of the solar wind ram pressure, impacts events) (e.g. de Pater & Klein, 1989; de Pater & Dunn, 2003; Bagenal (ed.) et al., 2004; Santos-Costa, 2009, 2011). A complete framework is necessary to fully understand the source, loss and transport processes of the electrons populating the inner magnetosphere over a wide frequency range. The low frequencies are associated with electron of lower energies situated in weaker magnetic field regions. LOFAR, the LOw Frequency ARray (LOFAR) (van Haarlem et al., 2012), the last generation of versatile and digital ground-based radio interferometer operates in the [30-250] MHz bandwidth. It brings very high time (~μsec), frequency (~kHz) and angular (~asec) resolutions and huge sensitivities (~mJy). In November 2011, a single 10-hour track enabled to cover an entire planetary rotation and led to image, for the first time, the radiation belts between 127-172 MHz (Girard et al. 2012, 2013). In Feb 2013, an 11-hour joint LOFAR/WSRT observing campaign seized the dyname state of the radiation belts from 45 MHz up to 5 GHz. We will present the current study of the radiation belts

  7. Resonant scattering of energetic electrons in the outer radiation belt by HAARP-induced ELF/VLF waves

    Science.gov (United States)

    Chang, Shanshan; Zhu, Zhengping; Ni, Binbin; Cao, Xing; Luo, Weihua

    2016-10-01

    Several extremely low-frequency (ELF)/very low-frequency (VLF) wave generation experiments have been performed successfully at High-Frequency Active Auroral Research Program (HAARP) heating facility and the artificial ELF/VLF signals can leak into the outer radiation belt and contribute to resonant interactions with energetic electrons. Based on the artificial wave properties revealed by many of in situ observations, we implement test particle simulations to evaluate the effects of energetic electron resonant scattering driven by the HAARP-induced ELF/VLF waves. The results indicate that for both single-frequency/monotonic wave and multi-frequency/broadband waves, the behavior of each electron is stochastic while the averaged diffusion effect exhibits temporal linearity in the wave-particle interaction process. The computed local diffusion coefficients show that, the local pitch-angle scattering due to HARRP-induced single-frequency ELF/VLF whistlers with an amplitude of ∼10 pT can be intense near the loss cone with a rate of ∼10-2 rad2 s-1, suggesting the feasibility of HAARP-induced ELF/VLF waves for removal of outer radiation belt energetic electrons. In contrast, the energy diffusion of energetic electrons is relatively weak, which confirms that pitch-angle scattering by artificial ELF/VLF waves can dominantly lead to the precipitation of energetic electrons. Moreover, diffusion rates of the discrete, broadband waves, with the same amplitude of each discrete frequency as the monotonic waves, can be much larger, which suggests that it is feasible to trigger a reasonable broadband wave instead of the monotonic wave to achieve better performance of controlled precipitation of energetic electrons. Moreover, our test particle scattering simulation show good agreement with the predictions of the quasi-linear theory, confirming that both methods are applied to evaluate the effects of resonant interactions between radiation belt electrons and artificially generated

  8. Inner Radiation Belt Generation of Light Nuclei Isotope

    Science.gov (United States)

    Galper, A. M.; Koldashov, S. V.; Leonv, A. A.; Mikhailov, V. V.

    2003-07-01

    Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the essential source of H and He isotop es nuclei in radiation belt. This paper reports the calculations of these isotop es intensities from the inner zone proton intensity model AP-8, the atmosphere drift-averaged composition and densities model MSIS-90, and cross sections for the various interaction processes. To calculate drift-averaged densities and energy losses of secondaries the particles are traced in geomagnetic field according IGRF-95 model by numerical solution of motion equation. The calculations account for nuclear interactions kinematic along the whole trapped protons trajectories. The results of calculations are compared with experimental data from SAMPEX, CRRES, RESURS-04 and MITA satellites taken during different solar activity phases. The comparison with observational data shows that the atmosphere is sufficient source for inner zone 4 He, 3 He,2 H and 3 H for L-shell less than 1.3.

  9. Inward diffusion and loss of radiation belt protons

    Science.gov (United States)

    Selesnick, R. S.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2016-03-01

    Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, shows that the observed average rate of increase near L = 2 is predicted by the same model diffusion coefficient that is required to form the entire proton radiation belt, down to low L, over an extended (˜103 year) interval. A slower intensity decrease for lower energies near L = 1.5 may also be caused by inward diffusion, though it is faster than predicted by the model. Higher-energy (≳40 MeV) protons near the L = 1.5 intensity maximum are from cosmic ray albedo neutron decay. Their observed intensity is lower than expected by a factor ˜2, but the discrepancy is resolved by adding an unspecified loss process to the model with a mean lifetime ˜120 years.

  10. Imaging Jupiter's radiation belts down to 127 MHz with LOFAR

    CERN Document Server

    Girard, J N; Tasse, C; Hess, S; de Pater, I; Santos-Costa, D; Nenon, Q; Sicard, A; Bourdarie, S; Anderson, J; Asgekar, A; Bell, M E; van Bemmel, I; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Breton, R P; Broderick, J W; Brouw, W N; Brüggen, M; Ciardi, B; Corbel, S; Corstanje, A; de Gasperin, F; de Geus, E; Deller, A; Duscha, S; Eislöffel, J; Falcke, H; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Hessels, J W T; Hoeft, M; Hörandel, J; Iacobelli, M; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Loose, M; Maat, P; Mann, G; Markov, S; McFadden, R; McKay-Bukowski, D; Moldon, J; Munk, H; Nelles, A; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Rowlinson, A; Schwarz, D; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Thoudam, S; Toribio, M C; Vermeulen, R; Vocks, C; van Weeren, R J; Wijers, R A M J; Wucknitz, O

    2015-01-01

    Context. Observing Jupiter's synchrotron emission from the Earth remains today the sole method to scrutinize the distribution and dynamical behavior of the ultra energetic electrons magnetically trapped around the planet (because in-situ particle data are limited in the inner magnetosphere). Aims. We perform the first resolved and low-frequency imaging of the synchrotron emission with LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV) which map a broad region of Jupiter's inner magnetosphere. Methods (see article for complete abstract) Results. The first resolved images of Jupiter's radiation belts at 127-172 MHz are obtained along with total integrated flux densities. They are compared with previous observations at higher frequencies and show a larger extent of the synchrotron emission source (>=4 $R_J$). The asymmetry and the dynamic of east-west emission peaks are measured and the presence of a hot spot at lambda_III=230 {\\deg} $\\pm$ 25 {\\deg}. Spectral flux density measurements ar...

  11. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus

    Science.gov (United States)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2016-08-01

    Van Allen radiation belt electrons exhibit complex dynamics during geomagnetically active periods. Investigation of electron pitch angle distributions (PADs) can provide important information on the dominant physical mechanisms controlling radiation belt behaviors. Here we report a storm time radiation belt event where energetic electron PADs changed from butterfly distributions to normal or flattop distributions within several hours. Van Allen Probes observations showed that the flattening of butterfly PADs was closely related to the occurrence of whistler-mode chorus waves. Two-dimensional quasi-linear STEERB simulations demonstrate that the observed chorus can resonantly accelerate the near-equatorially trapped electrons and rapidly flatten the corresponding electron butterfly PADs. These results provide a new insight on how chorus waves affect the dynamic evolution of radiation belt electrons.

  12. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    Science.gov (United States)

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; Claudepierre, S. G.; Turner, D. L.; Baker, D. N.; Rae, I. J.; Kale, A.; Milling, D. K.; Boyd, A. J.; Spence, H. E.; Reeves, G. D.; Singer, H. J.; Dimitrakoudis, S.; Daglis, I. A.; Honary, F.

    2016-10-01

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave-particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave-particle scattering loss into the atmosphere is not needed in this case. When rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.

  13. The Roles of Transport and Wave-Particle Interactions on Radiation Belt Dynamics

    Science.gov (United States)

    Fok, Mei-Ching; Glocer, Alex; Zheng, Qiuhua

    2011-01-01

    Particle fluxes in the radiation belts can vary dramatically during geomagnetic active periods. Transport and wave-particle interactions are believed to be the two main types of mechanisms that control the radiation belt dynamics. Major transport processes include substorm dipolarization and injection, radial diffusion, convection, adiabatic acceleration and deceleration, and magnetopause shadowing. Energetic electrons and ions are also subjected to pitch-angle and energy diffusion when interact with plasma waves in the radiation belts. Important wave modes include whistler mode chorus waves, plasmaspheric hiss, electromagnetic ion cyclotron waves, and magnetosonic waves. We investigate the relative roles of transport and wave associated processes in radiation belt variations. Energetic electron fluxes during several storms are simulated using our Radiation Belt Environment (RBE) model. The model includes important transport and wave processes such as substorm dipolarization in global MHD fields, chorus waves, and plasmaspheric hiss. We discuss the effects of these competing processes at different phases of the storms and validate the results by comparison with satellite and ground-based observations. Keywords: Radiation Belts, Space Weather, Wave-Particle Interaction, Storm and Substorm

  14. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    Science.gov (United States)

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  15. The impact of radiation belts region on top side ionosphere condition during last solar minimum.

    Science.gov (United States)

    Rothkaehl, Hanna; Przepiórka, Dororta; Matyjasiak, Barbara

    2014-05-01

    The wave particle interactions in radiation belts region are one of the key parameters in understanding the global physical processes which govern the near Earth environment. The populations of outer radiation belts electrons increasing in response to changes in the solar wind and the interplanetary magnetic field, and decreasing as a result of scattering into the loss cone and subsequent absorption by the atmosphere. The most important question in relation to understanding the physical processes in radiation belts region relates to estimate the ratio between acceleration and loss processes. This can be also very useful for construct adequate models adopted in Space Weather program. Moreover the wave particle interaction in inner radiation zone and in outer radiation zone have significant influence on the space plasma property at ionospheric altitude. The aim of this presentation is to show the manifestation of radiation belts region at the top side ionosphere during the last long solar minimum. The presentation of longitude and seasonal changes of plasma parameters affected by process occurred in radiation belts region has been performed on the base of the DEMETER and COSMIC 3 satellite registration. This research is partly supported by grant O N517 418440

  16. What effect do substorms have on the content of the radiation belts?

    Science.gov (United States)

    Rae, I. J.; Murphy, K. R.; Freeman, M. P.; Huang, C.‐L.; Spence, H. E.; Boyd, A. J.; Coxon, J. C.; Jackman, C. M.; Kalmoni, N. M. E.; Watt, C. E. J.

    2016-01-01

    Abstract Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV “seed” population into the inner magnetosphere which is subsequently energized through wave‐particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1–3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM‐H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.

  17. TSUBASA (MDS-1) observations of energetic electrons and magnetic field variations in outer radiation belt

    Science.gov (United States)

    Nakamura, M.; Matsuoka, H.; Liu, H.; Koshiishi, H.; Koga, K.; Matsumoto, H.; Goka, T.

    2002-12-01

    We have investigated variations of energetic electrons (> 0.4 MeV) and magnetic field in the radiation belt obtained from the Standard DOse Monitor (SDOM) and the MAgnetoMeter (MAM) of the Space Environment Data Acquisition equipment (SEDA) onboard TSUBASA (the Mission Demonstration Test Satellite (MDS)-1) launched on February 4, 2002. Since TSUBASA is operated in the geostationary transfer orbit, it has provided rare opportunities of directly observing near-equatorial radiation belt plasma particles and magnetic field, having already included several large magnetic storms. The energetic electrons in the outer radiation belt are contributors to the total radiation dose deposited in lightly shielded spacecraft electronics for high altitude orbits and are known to have a drastic variability associated with geomagnetic storm and high speed solar wind streams. The abrupt energetic electron flux decreases in the outside of outer radiation belt show characteristic variations of in situ magnetic field. These observations have implications for the possible mechanisms of the depletion and the following recovery and/or buildup of energetic electrons in the outer radiation belt.

  18. CubeSat-Associated Radiation Belt Research: Recent and Upcoming Observations

    Science.gov (United States)

    Blum, Lauren; Li, Xinlin; Schiller, Quintin

    2016-07-01

    Interest in CubeSats has grown dramatically in the past decade within the space physics community. While CubeSats are generally accepted now to be useful tools for education and technology development/demonstration, their ability to provide scientific value is often still questioned. Radiation belt physics, however, is one area in which the scientific utility of these small platforms has been demonstrated and continues to offer great promise. The Colorado Student Space Weather Experiment (CSSWE) CubeSat, designed, built, tested, and operated by students at University of Colorado with mentoring from LASP professionals, was one of the first of now a long line of CubeSats designed to study radiation belt dynamics. Launched in September 2012, just a few weeks after NASA's Van Allen Probes, CSSWE provided valuable measurements of energetic electrons and protons from low-Earth orbit for two years, well beyond its nominal 3-month mission lifetime. The status of and results from CSSWE will be presented, with an emphasis on how these measurements have been combined with those from balloons and larger satellite missions to better understand radiation belt electron acceleration and loss processes. Some highlights from other radiation belt-related CubeSats will also be presented, along with upcoming missions. Radiation belt studies are a prime example of how small inexpensive CubeSats can be used to provide valuable scientific measurements and complement larger missions.

  19. III. Artificial sources of ionizing radiation

    International Nuclear Information System (INIS)

    A theoretical explanation is given of obtaining electrons by thermal emission. The Coolidge X-ray tube is described. The spectral composition is presented of X radiation, changes in the spectrum of X radiation bremsstrahlung in dependence on anode potential and on different shapes of the rectifier of the high voltage curve. X-ray spectrography of crystals is presented as an example of the use of X radiation. Linear accelerators (simple and multiple), microtrons, cyclotrons and betatrons are used for obtaining higher energy radiation. The principle is given for each accelerator and examples of acclerators are given such as are used in clinical practice and in radiotherapy. (E.S.)

  20. Improving the Salammbo code modelling and using it to better predict radiation belts dynamics

    Science.gov (United States)

    Maget, Vincent; Sicard-Piet, Angelica; Grimald, Sandrine Rochel; Boscher, Daniel

    2016-07-01

    In the framework of the FP7-SPACESTORM project, one objective is to improve the reliability of the model-based predictions performed of the radiation belt dynamics (first developed during the FP7-SPACECAST project). In this purpose we have analyzed and improved the way the simulations using the ONERA Salammbô code are performed, especially in : - Better controlling the driving parameters of the simulation; - Improving the initialization of the simulation in order to be more accurate at most energies for L values between 4 to 6; - Improving the physics of the model. For first point a statistical analysis of the accuracy of the Kp index has been conducted. For point two we have based our method on a long duration simulation in order to extract typical radiation belt states depending on the solar wind stress and geomagnetic activity. For last point we have first improved separately the modelling of different processes acting in the radiation belts and then, we have analyzed the global improvements obtained when simulating them together. We'll discuss here on all these points and on the balance that has to be taken into account between modeled processes to globally improve the radiation belt modelling.

  1. Understanding the Dynamical Evolution of the Earth Radiation Belt and Ring Current Coupled System

    Science.gov (United States)

    Shprits, Yuri; Usanova, Maria; Kellerman, Adam; Drozdov, Alexander

    2016-07-01

    Modeling and understanding the ring current and radiation belt-coupled system has been a grand challenge since the beginning of the space age. In this study we show long-term simulations with a 3D Versatile Electron Radiation Belt (VERB) code of modeling the radiation belts with boundary conditions derived from observations around geosynchronous orbit. Simulations can reproduce long term variations of the electron radiation belt fluxes and show the importance of local acceleration, radial diffusion, loss to the atmosphere and loss to the magnetopause. We also present 4D VERB simulations that include convective transport, radial diffusion, pitch angle scattering and local acceleration. VERB simulations show that the lower energy inward transport is dominated by the convection and higher energy transport is dominated by the diffusive radial transport. We also show that at energies of 100s of keV, a number of processes work simultaneously, including convective transport, radial diffusion, local acceleration, loss to the loss cone and loss to the magnetopause. The results of the simulation of the March 2013 storm are compared with Van Allen Probes observations.

  2. Reanalysis and forecasting killer electrons in Earth's radiation belts using the VERB code

    Science.gov (United States)

    Kellerman, Adam; Kondrashov, Dmitri; Shprits, Yuri; Podladchikova, Tatiana; Drozdov, Alexander

    2016-07-01

    The Van Allen radiation belts are torii-shaped regions of trapped energetic particles, that in recent years, have become a principle focus for satellite operators and engineers. During geomagnetic storms, electrons can be accelerated up to relativistic energies, where they may penetrate spacecraft shielding and damage electrical systems, causing permanent damage or loss of spacecraft. Data-assimilation provides an optimal way to combine observations of the radiation belts with a physics-based model in order to more accurately specify the global state of the Earth's radiation belts. We present recent advances to the data-assimilative version of the Versatile Electron Radiation Belt (VERB) code, including more sophisticated error analysis, and incorporation of realistic field-models to more accurately specify fluxes at a given MLT or along a spacecraft trajectory. The effect of recent stream-interaction-region (SIR) driven enhancements are investigated using the improved model. We also present a real-time forecast model based on the data-assimilative VERB code, and discuss the forecast performance over the past 12 months.

  3. Innermost Van Allen Radiation Belt for High Energy Protons at Saturn

    Science.gov (United States)

    Cooper, John F.

    2008-01-01

    The high energy proton radiation belts of Saturn are energetically dominated by the source from cosmic ray albedo neutron decay (CRAND), trapping of protons from beta decay of neutrons emitted from galactic cosmic ray nuclear interactions with the main rings. These belts were originally discovered in wide gaps between the A-ring, Janus/Epimetheus, Mimas, and Enceladus. The narrow F and G rings significant affected the CRAND protons but did not produce total depletion. Voyager 2 measurements subsequently revealed an outermost CRAND proton belt beyond Enceladus. Although the source rate is small, the trapping times limited by radial magnetospheric diffusion are very long, about ten years at peak measured flux inwards of the G ring, so large fluxes can accumulate unless otherwise limited in the trapping region by neutral gas, dust, and ring body interactions. One proposed final extension of the Cassini Orbiter mission would place perikrone in a 3000-km gap between the inner D ring and the upper atmosphere of Saturn. Experience with CRAND in the Earth's inner Van Allen proton belt suggests that a similar innermost belt might be found in this comparably wide region at Saturn. Radial dependence of magnetospheric diffusion, proximity to the ring neutron source, and northward magnetic offset of Saturn's magnetic equator from the ring plane could potentially produce peak fluxes several orders of magnitude higher than previously measured outside the main rings. Even brief passes through such an intense environment of highly penetrating protons would be a significant concern for spacecraft operations and science observations. Actual fluxes are limited by losses in Saturn's exospheric gas and in a dust environment likely comparable to that of the known CRAND proton belts. The first numerical model of this unexplored radiation belt is presented to determine limits on peak magnitude and radial profile of the proton flux distribution.

  4. The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission

    Science.gov (United States)

    Goldsten, J. O.; Maurer, R. H.; Peplowski, P. N.; Holmes-Siedle, A. G.; Herrmann, C. C.; Mauk, B. H.

    2013-11-01

    An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA's Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ˜0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (˜10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (˜3000 fA/cm2) and provide sufficient sensitivity (˜0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.

  5. Mechanisms of the outer radiation belt electron flux variation during magnetic storms

    Science.gov (United States)

    Nakamura, M.; Obara, T.; Koshiishi, H.; Koga, K.; Matsumoto, H.; Goka, T.

    2003-12-01

    We have investigated variations of the energetic electron flux (> 0.4 MeV) and the magnetic field in the outer radiation belt obtained from the Standard DOse Monitor (SDOM) and the MAgnetoMeter (MAM) of the Space Environment Data Acquisition equipment (SEDA) onboard Tsubasa (Mission Demonstration Test Satellite (MDS)-1). Since Tsubasa operates in geostationary transfer orbit (GTO) with an orbital period of 10 hours and an inclination of 28.5 degrees, it has provided a rare opportunity for directly observing near-equatorial radiation belt plasma particles and the magnetic field during magnetic storms. The decreases of the energetic electron flux during the main phase of the magnetic storms, and the subsequent recoveries and enhancements during the recovery phase in the outer radiation belt are linked respectively to typical variations of the magnetic field. At the moment that the outer radiation belt flux sharply drops during the main phase of the 17 April 2002 magnetic storm, the butterfly distribution is observed at L=5 and the magnetic equator where the magnitude of magnetic field is much smaller than the IGRF model. Calculating the drift motions of the energetic electrons in the Tyganenko 2001 magnetospheric magnetic field model, shows that the drift-shell splitting mechanism could generate the butterfly distribution due to loss of the near-equatorially mirroring electrons through dayside magnetopause boundary. We evaluate roles and contributions of the other possible mechanisms to explain the flux decreases. We discuss the three-dimensional field configuration in the magnetopause to compare with the low earth orbital observation of the outer radiation belt flux.

  6. Wave Distribution Functions of Plasmaspheric Hiss and their Effects on Radiation Belt Dynamics

    Science.gov (United States)

    Santolik, O.; Ripoll, J. F.; Kurth, W. S.; Hospodarsky, G. B.; Kletzing, C.

    2015-12-01

    Plasmaspheric hiss is formed by whistler-mode waves which play an important role in the dynamics the Earth's radiation belts, specifically in connection with the slot region between the inner and outer Van Allen belts. The origin of plasmaspheric hiss is still a subject of discussions and these waves are known for their complex propagation properties. They are often far from a single plane wave approximation, forming a continuous distribution of the wave energy density with respect to the wave vector direction (wave distribution function). Analysis of polarization and propagation parameters of these waves provides us with inputs for modeling of radiation belt dynamics. We use the data of the Waves instrument of Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft, to analyze simultaneous measurements of all electric and magnetic field components, together with measurements of the plasma density based on the determination of the upper hybrid resonance frequency. Using this unique data set we estimate the wave distribution functions of plasmaspheric hiss and we model the effects of these waves on the decay rates of radiation belt electrons through quasilinear pitch angle diffusion.

  7. Measurement of Radiation Belt Partcles by MDS-1 Onboard SEDA

    Science.gov (United States)

    Matsumoto, H.; Koshiishi, H.; Goka, T.

    The Space Environment Data Acquisition Equipment (SEDA) is on board the Mission Demonstration Test Satellite-1 (MDS-1) to measure the radiation environment, which was launched into geo-stationary transfer orbit (GTO) on February 4, 2002 with an apogee of about 35,700km, a perigee of about 500 km and an inclination of about 28.5 degrees. SEDA consists of the four instruments. Standard Dose Monitor monitors the electron and proton flux. Dosimeter measures the integrated radiation dose at fifty-six points of the satellite. Heavy Ion Telescope monitors the flux of heavy ions from He to Fe. Magnetometer measures the magnetic field in the magnetosphere. In this paper are described first results and comparison with the ISO standard model for the space environment

  8. Observation of Relativistic Electron Microbursts in Conjunction with Intense Radiation Belt Whistler-Mode Waves

    Science.gov (United States)

    Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.

    2011-01-01

    We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.

  9. Effects of Magnetic Flux Circulation on Radiation Belt and Ring Current Populations

    Science.gov (United States)

    Mitchell, E. J.; Fok, M. H.

    2011-12-01

    The orientation of the interplanetary magnetic field (IMF) determines the location of the dayside merging line and the magnetic flux circulation patterns. Magnetic flux circulation determines the amount of energy which enters the magnetosphere and ionosphere. We use the Lyon-Fedder-Mobarry (LFM) global Magneto-Hydro-Dynamic (MHD) code to simulate both idealized and real solar wind cases. We use several satellites to validate the LFM simulation results for the real solar wind case studies. With these cases, we examine the magnetic flux circulation under differing IMF orientations. We also use the Comprehensive Ring Current Model (CRCM) and Radiation Belt Environment (RBE) model to examine the inner magnetospheric response to the orientation of the IMF. We will present the different magnetic flux circulation patterns and the resulting effects on the radiation belt and ring current population.

  10. Volterra network modeling of the nonlinear finite-impulse reponse of the radiation belt flux

    Science.gov (United States)

    Taylor, M.; Daglis, I. A.; Anastasiadis, A.; Vassiliadis, D.

    2011-01-01

    We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks) can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts. We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential features of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.

  11. Volterra network modeling of the nonlinear finite-impulse reponse of the radiation belt flux

    International Nuclear Information System (INIS)

    We show how a general class of spatio-temporal nonlinear impulse-response forecast networks (Volterra networks) can be constructed from a taxonomy of nonlinear autoregressive integrated moving average with exogenous inputs (NAR-MAX) input-output equations, and used to model the evolution of energetic particle f uxes in the Van Allen radiation belts. We present initial results for the nonlinear response of the radiation belts to conditions a month earlier. The essential features of spatio-temporal observations are recovered with the model echoing the results of state space models and linear f nite impulse-response models whereby the strongest coupling peak occurs in the preceding 1-2 days. It appears that such networks hold promise for the development of accurate and fully data-driven space weather modelling, monitoring and forecast tools.

  12. Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves

    Institute of Scientific and Technical Information of China (English)

    XIAO Fu-Liang; HE Zhao-Guo; ZHANG Sai; SU Zhen-Peng; CHEN Liang-Xu

    2011-01-01

    Temporal evolution of outer radiation belt electron dynamics resulting from superluminous L-O mode waves is simulated at L=6.5. Diffusion rates are evaluated and then used as inputs to solve a 2D momentum-pitch-angle diffusion equation, particularly with and without cross diffusion terms. Simulated results demonstrate that phase space density(PSD) of energetic electrons due to L-O mode waves can enhance significantly within 24 h, covering a broader pitch-angle range in the absence of cross terms than that in the presence of cross terms. PSD evolution is also determined by the peak wave frequency, particularly at high kinetic energies. This result indicates that superluminous waves can be a potential candidate responsible for outer radiation belt electron dynamics.

  13. Variability of the Inner Proton Radiation Belt Observed by Van Allen Probes

    Science.gov (United States)

    Li, X.; Selesnick, R.; Baker, D. N.; Jaynes, A. N.; Kanekal, S. G.; Hudson, M. K.; Kress, B. T.

    2015-12-01

    Inner radiation belt protons with kinetic energy above 10 MeV are known to be highly stable, with a maximum intensity near L = 1.5 that varies little evenon solar-cycle time scales. However, for L = 2 and above, more rapid changes occur: (1) protons are trapped during solar particle events, (2) steady intensity changes near L = 2 may result from radial diffusion, (3) for L > 2 there are rapid losses during magnetic storms, and (4) the losses are replenished by albedo neutron decay. New measurements from Van Allen Probes describe each of the last three processes in detail (the first has not yet been observed). These data provide new constraints on theories of trapped proton dynamics and improved empirical estimates of transport coefficients for radiation belt modeling.

  14. Solar Modulation of Inner Trapped Belt Radiation Flux as a Function of Atmospheric Density

    Science.gov (United States)

    Lodhi, M. A. K.

    2005-01-01

    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose.

  15. The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission

    OpenAIRE

    Wygant, J. R.; Bonnell, J. W.; Goetz, K.; Ergun, R. E.; F. S. Mozer; Bale, S.D.; M. Ludlam; Turin, P.; Harvey, P. R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.

    2013-01-01

    The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal ...

  16. Field-aligned chorus wave spectral power in Earth's outer radiation belt

    OpenAIRE

    H. Breuillard; O. Agapitov; Artemyev, A; E. A. Kronberg; Haaland, S. E.; P. W. Daly; Krasnoselskikh, V. V.; Boscher, D.; Bourdarie, S; Zaliznyak, Y; Rolland, G.

    2015-01-01

    International audience Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the mag-netosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave–particle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40 •. We u...

  17. A density-temperature description of the outer electron radiation belt during geomagnetic storms

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Cayton, Thomas E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2009-01-01

    Electron flux measurements from 7 satellites in geosynchronous orbit from 1990-2007 are fit with relativistic bi-Maxwellians, yielding a number density n and temperature T description of the outer electron radiation belt. For 54.5 spacecraft years of measurements the median value ofn is 3.7x10-4 cm-3 and the median value ofT is 142 keY. General statistical properties of n, T, and the 1.1-1.5 MeV flux J are investigated, including local-time and solar-cycle dependencies. Using superposed-epoch analysis triggered on storm onset, the evolution of the outer electron radiation belt through high-speed-steam-driven storms is investigated. The number density decay during the calm before the storm is seen, relativistic-electron dropouts and recoveries from dropout are investigated, and the heating of the outer electron radiation belt during storms is examined. Using four different triggers (SSCs, southward-IMF CME sheaths, southward-IMF magnetic clouds, and minimum Dst), CME-driven storms are analyzed with superposed-epoch techniques. For CME-driven storms an absence of a density decay prior to storm onset is found, the compression of the outer electron radiation belt at time of SSC is analyzed, the number-density increase and temperature decrease during storm main phase is seen, and the increase in density and temperature during storm recovery phase is observed. Differences are found between the density-temperature and the flux descriptions, with more information for analysis being available in the density-temperature description.

  18. Saturn Neutron Exosphere as Source for Inner and Innermost Radiation Belts

    Science.gov (United States)

    Cooper, John; Lipatov, Alexander; Sittler, Edward; Sturner, Steven

    2011-01-01

    Energetic proton and electron measurements by the ongoing Cassini orbiter mission are expanding our knowledge of the highest energy components of the Saturn magnetosphere in the inner radiation belt region after the initial discoveries of these belts by the Pioneer 11 and Voyager 2 missions. Saturn has a neutron exosphere that extends throughout the magnetosphere from the cosmic ray albedo neutron source at the planetary main rings and atmosphere. The neutrons emitted from these sources at energies respectively above 4 and 8 eV escape the Saturn system, while those at lower energies are gravitationally bound. The neutrons undergo beta decay in average times of about 1000 seconds to provide distributed sources of protons and electrons throughout Saturn's magnetosphere with highest injection rates close to the Saturn and ring sources. The competing radiation belt source for energetic electrons is rapid inward diffusion and acceleration of electrons from the middle magnetosphere and beyond. Minimal losses during diffusive transport across the moon orbits, e.g. of Mimas and Enceladus, and local time asymmetries in electron intensity, suggest that drift resonance effects preferentially boost the diffusion rates of electrons from both sources. Energy dependences of longitudinal gradient-curvature drift speeds relative to the icy moons are likely responsible for hemispheric differences (e.g., Mimas, Tethys) in composition and thermal properties as at least partly produced by radiolytic processes. A continuing mystery is the similar radial profiles of lower energy (neutron decay, but perhaps alternatively from atmospheric albedo, or else all protons from diverse distributed sources are similarly affected by losses at the moon' orbits, e.g. because the proton diffusion rates are extremely low. Enceladus cryovolcanism, and radiolytic processing elsewhere on the icy moon and ring surfaces, are additional sources of protons via ionization and charge exchange from breakup of

  19. On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts

    Science.gov (United States)

    Osmane, Adnane; Wilson, Lynn B., III; Blum, Lauren; Pulkkinen, Tuija I.

    2016-01-01

    Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave-particle interactions. We show that wave parameters, consistent with large amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (greater than 1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles Theta (sub k)B greater than 50 degrees and phase-speeds v(sub phi) greater than or equal to c/9. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution function of electrons near the magnetic mirror point can result in the generation of double layers and electron solitary holes consistent in scales (of the order of Debye lengths) to nonlinear structures observed in the radiation belts by the Van Allen Probes. Our results indicate a relationship between nonlinear electrostatic and electromagnetic structures in the dynamics of planetary radiation belts and their role in the cyclical production of energetic electrons (E greater than or equal to 100 keV) on kinetic timescales, which is much faster than previously inferred.

  20. Examining the specific entropy (density of adiabatic invariants) of the outer electron radiation belt

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2008-01-01

    Using temperature and number-density measurements of the energetic-electron population from multiple spacecraft in geosynchronous orbit, the specific entropy S = T/n{sup 2/3} of the outer electron radiation belt is calculated. Then 955,527 half-hour-long data intervals are statistically analyzed. Local-time and solar-cycle variations in S are examined. The median value of the specific entropy (2.8 x 10{sup 7} eVcm{sup 2}) is much larger than the specific entropy of other particle populations in and around the magnetosphere. The evolution of the specific entropy through high-speed-stream-driven geomagnetic storms and through magnetic-cloud-driven geomagnetic storms is studied using superposed-epoch analysis. For high-speed-stream-driven storms, systematic variations in the entropy associated with electron loss and gain and with radiation-belt heating are observed in the various storm phases. For magnetic-cloud-driven storms, multiple trigger choices for the data superpositions reveal the effects of interplanetary shock arrival, sheath driving, cloud driving, and recovery phase. The specific entropy S = T/n{sup 2/3} is algebraically expressed in terms of the first and second adiabatic invariants of the electrons: this allows a relativistic expression for S in terms of T and n to be derived. For the outer electron radiation belt at geosynchronous orbit, the relativistic corrections to the specific entropy expression are -15%.

  1. Collision frequency of artificial satellites - The creation of a debris belt

    Science.gov (United States)

    Kessler, D. J.; Cour-Palais, B. G.

    1978-01-01

    The probability of satellite collisions increases with the number of satellites. In the present paper, possible time scales for the growth of a debris belt from collision fragments are determined, and possible consequences of continued unrestrained launch activities are examined. Use is made of techniques formerly developed for studying the evolution (growth) of the asteroid belt. A model describing the flux from the known earth-orbiting satellites is developed, and the results from this model are extrapolated in time to predict the collision frequency between satellites. Hypervelocity impact phenomena are then examined to predict the debris flux resulting from collisions. The results are applied to design requirements for three types of future space missions.

  2. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    OpenAIRE

    Rodger, C. J.; Enell, C.-F.; Turunen, E; M. A. Clilverd; Thomson, N. R.; Verronen, P. T.

    2007-01-01

    International audience; Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP). Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting ...

  3. Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times

    Science.gov (United States)

    Whittaker, Ian C.; Gamble, Rory J.; Rodger, Craig J.; Clilverd, Mark A.; Sauvaud, Jean-André

    2013-12-01

    The energy spectra of energetic electron precipitation from the radiation belts are studied in order to improve our understanding of the influence of radiation belt processes. The Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) microsatellite electron flux instrument is comparatively unusual in that it has very high energy resolution (128 channels with 17.9 keV widths in normal survey mode), which lends itself to this type of spectral analysis. Here electron spectra from DEMETER have been analyzed from all six years of its operation, and three fit types (power law, exponential, and kappa-type) have been applied to the precipitating flux observations. We show that the power law fit consistently provides the best representation of the flux and that the kappa-type is rarely valid. We also provide estimated uncertainties in the flux for this instrument as a function of energy. Average power law gradients for nontrapped particles have been determined for geomagnetically nondisturbed periods to get a typical global behavior of the spectra in the inner radiation belt, slot region, and outer radiation belt. Power law spectral gradients in the outer belt are typically -2.5 during quiet periods, changing to a softer spectrum of ˜-3.5 during geomagnetic storms. The inner belt does the opposite, hardening from -4 during quiet times to ˜-3 during storms. Typical outer belt e-folding values are ˜200 keV, dropping to ˜150 keV during geomagnetic storms, while the inner belt e-folding values change from ˜120 keV to >200 keV. Analysis of geomagnetic storm periods show that the precipitating flux enhancements evident from such storms take approximately 13 days to return to normal values for the outer belt and slot region and approximately 10 days for the inner belt.

  4. Comparison of Ring Current and Radiation Belt Responses during Transient Solar Wind Structures

    Science.gov (United States)

    Mulligan, T. L.; Roeder, J. L.; Lemon, C.; Fennell, J. F.

    2013-12-01

    The analysis of radiation belt dynamics provides insight into the physical mechanisms of trapping, energization, and loss of energetic particles in the magnetosphere. It is well known that the storm-time ring current response to solar wind drivers changes the magnetic field in the inner magnetosphere, which modifies radiation belt particle trajectories as well as the magnetopause and geomagnetic cutoff locations. What is not well known is the detailed space-time structure of solar wind transient features that drive the dynamics of the ring-current and radiation belt response. We compare observed responses of the ring current and radiation belts during two geomagnetic storms of similar intensity on 15 November 2012 and 29 June 2013. Using the self-consistent ring current model RCM-Equilibrium (RCM-E), which ensures a force-balanced ring-current response at each time step, we generate a simulated ring current in response to the changing conditions as the storm evolves on a timescale of hours. Observations of the plasma sheet particles, fields, and solar wind parameters are used to specify the dynamic boundary conditions as the storm evolves. This allows more realistic magnetospheric field and plasma dynamics during solar wind transients than can be obtained from existing empirical models. Using a spatial mapping algorithm developed by Mulligan et al., (2012) we create two-dimensional contour maps of the solar wind bulk plasma parameters using ACE, Wind, Geotail, and THEMIS data to quantitatively follow upstream spatial variations in the radial and azimuthal dimensions driving the storm. We perform a comparison of how the structure and impact angle of the solar wind transients affect the intensity and duration of energization of the ring current and radiation belt at various energies. We also investigate how the varying geomagnetic conditions determined by the solar wind affect dominant loss mechanisms such as magnetopause shadowing. Comparison of energetic particle

  5. Radial dependence of ionization losses of protons of the Earth's radiation belts

    Energy Technology Data Exchange (ETDEWEB)

    Kovtyukh, A.S. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Phyiscs

    2016-04-01

    Coulomb losses and charge exchange of protons are considered in detail. On the basis of modern models of the plasmasphere and the exosphere, the radial dependences of the rates of ionization losses of protons, with μ from 0.3 to 10 keV nT{sup -1}, of the Earth's radiation belts near the equatorial plane are calculated for quiet periods. For calculation of Coulomb losses of protons we used data of ISEE-1 satellite (protons with energy from 24 to 2081 keV) on L from 3 to 9, data of Explorer-45 satellite (protons with energy from 78.6 to 872 keV) on L from 3 to 5 and data of CRRES satellite (protons with energy from 1 to 100 MeV) on L ≤ 3 (L is the McIlwain parameter). It is shown that with decreasing L the rate of ionization losses of protons of the radiation belts is reduced; for protons with μ > 1.2 keV nT{sup -1} in a narrow region (ΔL ∝ 0.5) in the district of plasmapause in this dependence may form a local minimum of the rate. We found that the dependence from μ of the boundary on L between Coulomb losses and charge exchange of the trapped protons with hydrogen atoms is well approximated by the function L{sub b} = 4.71μ{sup 0.32}, where [μ] = keV nT{sup -1}. Coulomb losses dominate at L < L{sub b}(μ), and at L > L{sub b}(μ) dominates charge exchange of protons. We found the effect of subtracting the Coulomb losses from the charge exchange of protons of the radiation belts at low μ and L, which can simulate a local source of particles.

  6. Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Speci cally we de ne and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.

  7. Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.

  8. Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applications

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report reviews existing literature describing forecast accuracy metrics, concentrating on those based on relative errors and percentage errors. We then review how the most common of these metrics, the mean absolute percentage error (MAPE), has been applied in recent radiation belt modeling literature. Finally, we describe metrics based on the ratios of predicted to observed values (the accuracy ratio) that address the drawbacks inherent in using MAPE. Specifically, we define and recommend the median log accuracy ratio as a measure of bias and the median symmetric accuracy as a measure of accuracy.

  9. Energetic ionized helium in the quiet time radiation belts - Theory and comparison with observation

    Science.gov (United States)

    Spjeldvik, W. N.; Fritz, T. A.

    1978-01-01

    Theoretical calculations of helium ion distributions in the inner magnetosphere are compared to observations made by ATS-6 and Explorer-45. Coupled transport equations for equatorially mirroring singly and doubly ionized helium ions in the steady state limit with an outer boundary of L = 7 are solved. Radial profiles and energy spectra are computed at all lower L values. Theoretical quiet time predictions are compared to satellite observations of energetic helium ions in the lower MeV range. It is found that the theory adequately represents the principal characteristics of the radiation belt helium ion population.

  10. Conjugate In-situ and Incoherent Scatter Radar Observations of Radiation Belt Loss Mechanisms.

    Science.gov (United States)

    Kaeppler, S. R.; Jaynes, A. N.; Sanchez, E. R.; Nicolls, M. J.; Varney, R. H.; Marshall, R. A.

    2015-12-01

    We present results from conjugate observations between the Radiation Belt Storms Probe (RBSP) and the Poker Flat Incoherent Scatter Radar (PFISR) of energetic radiation belt precipitation. A key objective of the RBSP mission is to understand loss mechanisms of energetic particles from the radiation belt. The relative contribution from plasma waves (e.g., EMIC, hiss, chorus, and etc.) that pitch angle scatter particles into the loss cone remains an open scientific question. Rigorous experimental validation of these mechanisms is difficult to achieve because nearly simultaneous conjugate observations of in-situ pitch angle scattering and precipitation into the atmosphere are required. One ground-based signature of energetic precipitation is enhanced ionization and electron density at D-region altitudes. Incoherent scatter radar is a powerful remote sensing technique that is sensitive to electron density enhancements. By measuring the altitude profiles of ionization we infer the flux of particles precipitating into the atmosphere. PFISR observations show frequent occurrence of D-region ionization during both quiet-time and storm-time conditions. We present results from two events when the foot-points of the RBSP satellite were within 500 km of PFISR: a quiet-time event on January 13, 2015, and a storm-time event on April 16, 2015. PFISR observations of the D-region ionization signatures are presented, along with simultaneous conjugate RBSP observations of the magnetic field, electric field, and electron flux. Plasma waves are identified using the electric and magnetic field data, and evaluated as possible pitch angle scattering mechanisms. A direct comparison between the measured fluxes and loss cone fluxes predicted by theoretical wave-particle diffusion rates into the loss cone is used to test the validity of particle loss mechanisms predicted by the different theories. Preliminary results are presented of PFISR inversions of the D-region ionization to quantify the

  11. Forecasting the High Energy Electron Radiation Belts Using Physics Based Models

    Science.gov (United States)

    Horne, R. B.

    2012-12-01

    Wave-particle interactions waves play an important role in the loss and acceleration of electrons in the radiation belts. Here we present results from the SPACECAST project to forecast the high energy electron radiation belts using physics based models in the UK and France. The forecasting models include wave-particle interactions, radial diffusion, and losses by Coulomb collisions, and highlight the importance of various types of wave-particle interactions. The system is driven by a time series of the Kp index derived from solar wind data and ground based magnetometers and provides a forecast of the radiation belts up to 3 hours ahead, updated every hour. We show that during the storm of 8-9 March, 2012 the forecasts were able to reproduce the electron flux at geostationary orbit measured by GOES 13 to within a factor of two initially, and to within a factor of 10 later on during the event. By including wave-particle interactions between L* = 6.5 and 8 the forecast of the electron flux at geostationary orbit was significantly improved for the month of March 2012. We show examples of particle injection into the slot region, and relativistic flux drop-outs and suggest that flux drop outs are more likely to be associated with magnetopause motion than losses due to wave-particle interactions. To improve the forecasts we have developed a new database of whistler mode chorus waves from 5 different satellite missions. We present data on the power spectra of the waves as a function of magnetic local time, latitude and radial distance, and present pitch angle and energy diffusion coefficients for use in global models. We show that waves at different latitudes result in structure in the diffusion rates and we illustrate the effects on the trapped electron flux. We present forecasting skill scores which show quantitatively that including wave-particle interactions improves our ability to forecast the high energy electron radiation belt. Finally we suggest several areas where

  12. On the time needed to reach an equilibrium structure of the radiation belts

    Science.gov (United States)

    Ripoll, J.-F.; Loridan, V.; Cunningham, G. S.; Reeves, G. D.; Shprits, Y. Y.

    2016-08-01

    In this study, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1-D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3, and 6. We find that the equilibrium states at moderately low Kp, when plotted versus L shell (L) and energy (E), display the same interesting S shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S shape is also produced as the radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L shell. Equilibrium electron flux profiles are governed by the Biot number (τDiffusion/τloss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can

  13. From the IGY to the IHY: A Changing View of the Van Allen Radiation Belts

    Science.gov (United States)

    Hudson, M. K.

    2006-12-01

    Discovery of the Van Allen radiation belts by instrumentation flown on Explorer 1 in 1958 was the first major discovery of the Space Age. A view of the belts as static inner and outer zones of energetic particles with different sources, a double-doughnut encircling the Earth, became iconic to the point that their dynamic behavior and solar connection receded from public awareness and apparent scientific import. Then the Cycle 23 maximum in solar activity arrived in 1989-1991, the first approaching the activity level of the International Geophysical Year of 1957-58, when the Van Allen belts were first discovered. Delay in launch of the NASA-Air Force Combined Radiation Release and Effects Satellite, following the Challenger accident in 1986, led to having the right instruments in the right orbit at the right time to detect prompt injection of outer belt electrons and solar energetic protons into the `slot region' between the inner and outer belts, forming new trapped populations which lasted for years in an otherwise benign location. This event in March 1991, along with the great geomagnetic storm of March 1989, and our increased dependence on space technology since the early Explorer days, led to a resurgence of interest in the Van Allen radiation belts and understanding of their connectivity to the Sun. Additional instrumentation from NASA's International Solar Terrestrial Physics Program, the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) and IMAGE spacecraft from the Explorer program, NOAA and DOD spacecraft, and improved worldwide linkages of groundbased measurements have contributed much since 1991 to our understanding of the dynamic characteristics of the Van Allen belts. Further, the presence of continuous solar wind measurements beginning with the launch of WIND in 1994, and SOHO images of Coronal Mass Ejections and coronal hole sources of high speed solar wind flow have filled in the connection with solar activity qualitatively anticipated

  14. Inner Radiation Belt Source of Helium and Heavy Hydrogen Nuclei Isotope

    Science.gov (United States)

    Galper, A. M.; Koldashov, S. V.; Leonov, A. A.; Mikhailov, V. V.

    Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the essential source of H and He isotopes nuclei in radiation belt. This paper reports specified calculations of these isotopes intensities from the various inner zone proton intensity models AP-8, CRRESPRO and SAMPEX/PET PSB97, the atmosphere drift-averaged composition and densities model MSIS-90, and cross sections for the interaction processes from the GNASH nuclear model code. To calculate drift-averaged densities and energy losses of secondaries the particles are traced in geomagnetic field according IGRF-95 model by numerical solution of motion equation. The calculations account for nuclear interactions kinematic along the whole trapped protons trajectories. The comparison with observational data from SAMPEX, CRRES, RESURS-04 and MITA satellites taken during different solar activity phases shows that the atmosphere is sufficient source for inner zone 4He, 3He, 2H and 3H for L-shell less than 1.3. The calculation model allows having the energy spectrum and angle distribution of light nuclear isotopes in inner radiation belt that can be used to evaluate SEU rates.

  15. Estimates of trapped radiation encountered on low-thrust trajectories through the Van Allen belts

    Science.gov (United States)

    Karp, I. M.

    1973-01-01

    Estimates were made of the number of trapped protons and electrons encountered by vehicles on low-thrust trajectories through the Van Allen belts. The estimates serve as a first step in assessing whether these radiations present a problem to on-board sensitive components and payload. The integrated proton spectra and electron spectra are presented for the case of a trajectory described by a vehicle with a constant-thrust acceleration A sub c equal to 0.001 meter/sq sec. This value of acceleration corresponds to a trip time of about 54 days from low earth orbit to synchronous orbit. It is shown that the time spent in the belts and hence the radiation encountered vary nearly inversely with the value of thrust acceleration. Thus, the integrated spectral values presented for the case of A sub c = 0.001 meter/sq sec can be generalized for any other value of thrust acceleration by multiplying them by the factor 0.001/A sub c.

  16. Accaleration of Electrons of the Outer Electron Radiation Belt and Auroral Oval Dynamics

    Science.gov (United States)

    Antonova, Elizaveta; Ovchinnikov, Ilya; Riazantseva, Maria; Znatkova, Svetlana; Pulinets, Maria; Vorobjev, Viachislav; Yagodkina, Oksana; Stepanova, Marina

    2016-07-01

    We summarize the results of experimental observations demonstrating the role of auroral processes in the formation of the outer electron radiation belt and magnetic field distortion during magnetic storms. We show that the auroral oval does not mapped to the plasma sheet proper (region with magnetic field lines stretched in the tailward direction). It is mapped to the surrounding the Earth plasma ring in which transverse currents are closed inside the magnetosphere. Such currents constitute the high latitude continuation of the ordinary ring current. Mapping of the auroral oval to the region of high latitude continuation of the ordinary ring current explains the ring like shape of the auroral oval with finite thickness near noon and auroral oval dynamics during magnetic storms. The auroral oval shift to low latitudes during storms. The development of the ring current produce great distortion of the Earth's magnetic field and corresponding adiabatic variations of relativistic electron fluxes. Development of the asymmetric ring current produce the dawn-dusk asymmetry of such fluxes. We analyze main features of the observed processes including formation of sharp plasma pressure profiles during storms. The nature of observed pressure peak is analyzed. It is shown that the observed sharp pressure peak is directly connected with the creation of the seed population of relativistic electrons. The possibility to predict the position of new radiation belt during recovery phase of the magnetic storm using data of low orbiting and ground based observations is demonstrated.

  17. Energetic ionized helium in the quiet time radiation belts: Theory and comparison with observation

    Energy Technology Data Exchange (ETDEWEB)

    Spjeldvik, W.N.; Fritz, T.A.

    1978-02-01

    The nonadiabatic behavior of energetic ..cap alpha.. particles and singly ionized helium ions in the earth's inner magnetosphere is modeled for average quiet time conditions. A quasi-equilibrium balance among inward radial diffusive transport of both kinds of ions, classical collisional Coulomb interactions, and charge exchange processes is assumed. Ion flux spectra are modeled at the outer boundary of the trapping region of the radiation belts which for this study was taken at L=7. Radial profiles and energy spectra are computed at all lower L values, and the theory removes one degree of freedom compared to earlier work by predicting absolute intensities of the differential fluxes. The theoretical quiet time predictions are compared with direct observation of energetic helium ions in the lower MeV range obtained from the satellites ATS 6 and Explorer 45 at and below the geostationary orbit, respectively. To the extent of this data it is found that the theory simulates the most important characteristics of the radiation belt helium ion population. A number of spectral features of helium ions are predicted also below 1 MeV, and these can only be observationally tested on future satellites with more sophisticated ion detector systems.

  18. Dynamics of magnetically trapped particles foundations of the physics of radiation belts and space plasmas

    CERN Document Server

    Roederer, Juan G

    2014-01-01

    This book is a new edition of Roederer’s classic Dynamics of Geomagnetically Trapped Radiation, updated and considerably expanded. The main objective is to describe the dynamic properties of magnetically trapped particles in planetary radiation belts and plasmas and explain the physical processes involved from the theoretical point of view. The approach is to examine in detail the orbital and adiabatic motion of individual particles in typical configurations of magnetic and electric fields in the magnetosphere and, from there, derive basic features of the particles’ collective “macroscopic” behavior in general planetary environments. Emphasis is not on the “what” but on the “why” of particle phenomena in near-earth space, providing a solid and clear understanding of the principal basic physical mechanisms and dynamic processes involved. The book will also serve as an introduction to general space plasma physics, with abundant basic examples to illustrate and explain the physical origin of diff...

  19. Investigation of the solar UV/EUV related changes in the Jovian radiation belt and thermosphere

    Science.gov (United States)

    Kita, H.; Misawa, H.; Bhardwaj, A.; Tsuchiya, F.; Tao, C.; Sakanoi, T.; Miyoshi, Y.; Kasaba, Y.; Morioka, A.

    2013-09-01

    In order to investigate atmospheric heating effect by the solar UV/EUV on the Jovian Radiation Belt, we made coordinated observations using a radio interferometer and an infrared telescope. The total flux density of Jovian Synchrotron Radiation (JSR) increased from 6th Nov to 13th Nov in 2011 by about 5%, corresponding to the solar UV/EUV variations. The infrared H3+ emission also increased from 7th Nov. to 12th Nov. by 20-30%. These support a theoretical expectation that solar UV/EUV heating for the Jovian thermosphere drives neutral wind perturbations, then the induced dynamo electric field increases the total radio flux density. On the other hand, radio images showed that the equatorial emission peak moved outward by about 0.2 Jovian radii. These observation results showed that the variation of JSR at this time was caused by not global but non-uniform enhancement of radial diffusion.

  20. Accurately characterizing the importance of wave-particle interactions in radiation belt dynamics: The pitfalls of statistical wave representations

    Science.gov (United States)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.

    2016-08-01

    Wave-particle interactions play a crucial role in energetic particle dynamics in the Earth's radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.

  1. Study on geomagnetic storms driving motion of 0.1-2 MeV radiation belt electrons

    Science.gov (United States)

    Zhang, Zhenxia; Li, Xinqiao

    2016-08-01

    Using more than five years' worth of data observed by the Instrument for the Detection of Particles (IDP) spectrometer onboard the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite, we studied the motion characteristics of energetic electrons in different regions, i.e., the inner radiation belt, the outer radiation belt, and the slot region in geomagnetic storms. We investigated the flux change of 0.1-2.4 MeV electrons and the energy change of 0.1-1.0 MeV electrons in these different regions. By cross correlation analysis, we came to the following conclusions. First, when Dst geomagnetic storms on electrons are not distinguished significantly between in the day and night, and independent of the timing of the events. For storms with -50 geomagnetic storms is opposite in the inner and outer radiation belts. The proportion of electrons accelerated to relativistic energies is greater in the outer radiation and slot regions, while the ejection energetic electrons are more concentrated in the low energy region of the inner radiation belt. This phenomenon reflects the different electron injection mechanisms and accelerating processes responsible for spectral index variations in different L regions during geomagnetic storms.

  2. Parametric validations of analytical lifetime estimates for radiation belt electron diffusion by whistler waves

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2013-04-01

    Full Text Available The lifetimes of electrons trapped in Earth's radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between improved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range representative of a large part of the magnetosphere from L ~ 2 to 6. The effects of observed very oblique whistler waves are taken into account in both numerical and analytical calculations. Analytical lifetimes (and pitch-angle diffusion coefficients are found to be in good agreement with full numerical calculations based on CRRES and Cluster hiss and lightning-generated wave measurements inside the plasmasphere and Cluster lower-band chorus waves measurements in the outer belt for electron energies ranging from 100 keV to 5 MeV. Comparisons with lifetimes recently obtained from electron flux measurements on SAMPEX, SCATHA, SAC-C and DEMETER also show reasonable agreement.

  3. Study on geomagnetic storms driving motion of 0.1-2 MeV radiation belt electrons

    Science.gov (United States)

    Zhang, Zhenxia; Li, Xinqiao

    2016-08-01

    Using more than five years' worth of data observed by the Instrument for the Detection of Particles (IDP) spectrometer onboard the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite, we studied the motion characteristics of energetic electrons in different regions, i.e., the inner radiation belt, the outer radiation belt, and the slot region in geomagnetic storms. We investigated the flux change of 0.1-2.4 MeV electrons and the energy change of 0.1-1.0 MeV electrons in these different regions. By cross correlation analysis, we came to the following conclusions. First, when Dst < -50, the correlation coefficient (c.c.) of the electron flux and Dst index ranges from -0.63 to -0.86, and the enhancement of the electron flux generally occurs during the storm's main and recovery phases. Second, the storms greatly influence the lower energy region of the electron energy spectrum in the inner radiation belt, while the enhancement in the higher energy region is more significant in the outer radiation belt and the slot region. Third, the effects of geomagnetic storms on electrons are not distinguished significantly between in the day and night, and independent of the timing of the events. For storms with -50 < Dst < -30, there is a negative correlation of -0.51 to -0.57 between the Dst index and the electron flux in the outer radiation belt. Our analysis suggests that strong storms cause energetic electron ejections across a wide range, and the ejection level is affected by the storm intensity. Furthermore, the electron energy region influenced by the strong geomagnetic storms is opposite in the inner and outer radiation belts. The proportion of electrons accelerated to relativistic energies is greater in the outer radiation and slot regions, while the ejection energetic electrons are more concentrated in the low energy region of the inner radiation belt. This phenomenon reflects the different electron injection mechanisms and

  4. A radiation belt monitor for the High Energy Transient Experiment Satellite

    Science.gov (United States)

    Lo, D. H.; Wenzel, K. W.; Petrasso, R. D.; Prigozhin, G. Y.; Doty, J.; Ricker, G.

    1993-01-01

    A Radiation Belt Monitor (RBM) sensitive to protons and electrons with energy approximately greater than 0.5 MeV has been designed for the High Energy Transient Experiment (HETE) satellite in order to: first, control the on-off configuration of the experiments (i.e. those susceptible to proton damage); and second, to indicate the presence of proton and/or electron events that could masquerade as legitimate high energy photon events. One of the two RBM channels has an enhanced sensitivity to electrons. Each channel of the RBM, based on a PIN silicon diode, requires a typical power of 6 milliwatts. Tests have been performed with protons with energies from approximately 0.1 to 2.5 MeV (generated by a Cockcroft-Walton linear accelerator via the d(d,p)t reaction), and with electrons with energies up to 1 MeV (from a 1.0 microcurie Bi-207 source).

  5. CeREs, A Compact Radiation Belt Explorer to study charged particle dynamics in geospace

    Science.gov (United States)

    Kanekal, S. G.; Summerlin, E. J.; Christian, E. R.; Crum, G.; Desai, M. I.; Evans, A.; Dumonthier, J.; Jamison, T.; Jones, A. D.; Livi, S. A.; Ogasawara, K.; Paschalidis, N.; Suarez, G.; Patel, D.

    2015-12-01

    The CeREs 3U CubeSat, set to be launched in mid-2016, will study the physics of the acceleration and loss of radiation belt electrons, particularly loss due to electron microbursts. CeRES will also observe solar electrons and protons entering the magnetosphere via the open field-line polar caps. CeREs is expected to be in a low earth high inclination orbit and carries onboard the Miniaturized Electron pRoton Telescope (MERiT). The MERiT instrument measures electrons and protons ranging in energy from 5 keV to >10 MeV with high time resolution of ~5ms in multiple differential energy channels. MERiT is particle telescope using a stack of solid-state detectors and space-facing avalanche photo diodes.We will describe the CeRES spacecraft, science goals and the MERiT instrument.

  6. Accurately specifying storm-time ULF wave radial diffusion in the radiation belts

    CERN Document Server

    Dimitrakoudis, Stavros; Balasis, Georgios; Papadimitriou, Constantinos; Anastasiadis, Anastasios; Daglis, Ioannis A

    2015-01-01

    Ultra-low frequency (ULF) waves can contribute to the transport, acceleration and loss of electrons in the radiation belts through inward and outward diffusion. However, the most appropriate parameters to use to specify the ULF wave diffusion rates are unknown. Empirical representations of diffusion coefficients often use Kp; however, specifications using ULF wave power offer an improved physics-based approach. We use 11 years of ground-based magnetometer array measurements to statistically parameterise the ULF wave power with Kp, solar wind speed, solar wind dynamic pressure and Dst. We find Kp is the best single parameter to specify the statistical ULF wave power driving radial diffusion. Significantly, remarkable high energy tails exist in the ULF wave power distributions when expressed as a function of Dst. Two parameter ULF wave power specifications using Dst as well as Kp provide a better statistical representation of storm-time radial diffusion than any single variable alone.

  7. Evidence for solar wind origin of energetic heavy ions in the earth's radiation belt

    Science.gov (United States)

    Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1978-01-01

    Analysis of data from our energetic ion composition experiment on ISEE-1 has revealed the presence of substantial fluxes of carbon, oxygen, and heavier ions above 400 keV/nucleon at L values between approximately 2.5 and 4 earth radii. The measured C/O ratio varies systematically from 1.3 at 450 keV/nucleon to 4.1 at 1.3 MeV/nucleon, and no iron is observed above 200 keV/nucleon. These results provide strong evidence for a solar wind origin for energetic ions in the outer radiation belt. The absence of iron and the increase of the carbon-to-oxygen ratio with energy suggest that the condition for the validity of the first adiabatic invariant may have a strong influence on the trapping of these particles.

  8. Quantifying the effect of magnetopause shadowing on electron radiation belt dropouts

    Science.gov (United States)

    Yu, Y.; Koller, J.; Morley, S. K.

    2013-11-01

    Energetic radiation belt electron fluxes can undergo sudden dropouts in response to different solar wind drivers. Many physical processes contribute to the electron flux dropout, but their respective roles in the net electron depletion remain a fundamental puzzle. Some previous studies have qualitatively examined the importance of magnetopause shadowing in the sudden dropouts either from observations or from simulations. While it is difficult to directly measure the electron flux loss into the solar wind, radial diffusion codes with a fixed boundary location (commonly utilized in the literature) are not able to explicitly account for magnetopause shadowing. The exact percentage of its contribution has therefore not yet been resolved. To overcome these limitations and to determine the exact contribution in percentage, we carry out radial diffusion simulations with the magnetopause shadowing effect explicitly accounted for during a superposed solar wind stream interface passage, and quantify the relative contribution of the magnetopause shadowing coupled with outward radial diffusion by comparing with GPS-observed total flux dropout. Results indicate that during high-speed solar wind stream events, which are typically preceded by enhanced dynamic pressure and hence a compressed magnetosphere, magnetopause shadowing coupled with the outward radial diffusion can explain about 60-99% of the main-phase radiation belt electron depletion near the geosynchronous orbit. While the outer region (L* > 5) can nearly be explained by the above coupled mechanism, additional loss mechanisms are needed to fully explain the energetic electron loss for the inner region (L* ≤ 5). While this conclusion confirms earlier studies, our quantification study demonstrates its relative importance with respect to other mechanisms at different locations.

  9. Chorus-Driven Outer Radiation Belt Electron Dynamics at Different L-Shells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sai; XIAO Fu-Liang

    2010-01-01

    @@ Energetic outer radiation belt electron phase space density(PSD)evolution due to interaction with whistler-mode chorus at different L-shells is investigated by solving the diffusion equation including cross diffusion terms.It is found that the difference of diffusion rates for different L-shells occurs primarily at pitch angles 0°-50° and around 90°.In particular,diffusion rates for L = 6.5 are found to be 5-10 times larger than that for L = 3.5 at these pitch angles.In the presence of cross terms,PSD for~MeV electrons after 24 h decreases by about 25,12,10 and 8 times at L = 3.5,4.5,5.5 and 6.5 near the loss cone,and increases by about 55,45,30 and 20 times at larger pitch angles,respectively.After 24 h,the ratios between~MeV electron PSDs from simulations without and with cross diffusion at L = 3.5,4.5,5.5 and 6.5 are about 350,600,800 and 800 near the loss cone,and become 5,5.5,6.5 and 8 at pitch angle 90°,respectively.These results demonstrate that neglect of cross diffusion generally results in the overestimate of PSD,and the cross diffusion plays a more significant role in the resonant interaction between chorus waves and outer radiation belt electrons at larger L.

  10. Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

    Science.gov (United States)

    Li, W.; Ma, Q.; Thorne, R. M.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.; Kanekal, S. G.; Angelopoulos, V.; Green, J. C.; Goldstein, J.

    2016-06-01

    Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak location and produces characteristic flat-top pitch angle distributions. By only including radial diffusion, the simulation underestimates the observed electron acceleration, while radial diffusion plays an important role in redistributing electrons and potentially accelerates them to even higher energies. Moreover, plasmaspheric hiss is found to provide efficient pitch angle scattering losses for hundreds of keV electrons, while its scattering effect on > 1 MeV electrons is relatively slow. Although an additional loss process is required to fully explain the overestimated electron fluxes at multi-MeV, the combined physical processes of radial diffusion and pitch angle and energy diffusion by chorus and hiss reproduce the observed electron dynamics remarkably well, suggesting that quasi-linear diffusion theory is reasonable to evaluate radiation belt electron dynamics during this big storm.

  11. GOES Observations of Pitch Angle Evolution During an Electron Radiation Belt Dropout

    Science.gov (United States)

    Hartley, D. P.; Denton, M. H.; Green, J. C.; Onsager, T. G.; Rodriguez, J. V.; Singer, H. J.

    2012-12-01

    High Speed Stream (HSS) events exhibit characteristic structure in the solar wind which, when studied in conjunction with in situ observations at geostationary orbit (GEO) from GOES, allows us to examine the temporal evolution of dropouts in the outer electron radiation belt. Using pitch-angle-resolved Magnetospheric Electron Detector (MAGED) data, we study the evolution of perpendicular and parallel electron flux. During the HSS commencing on January 6th 2011, the flux over the entire energy distribution (30-600 keV) takes ~1.5 hours to dropout by two orders of magnitude from its pre-onset level. At this time, the lower energy electrons begin to reappear at GEO; however the 350-600 keV electron flux becomes highly parallel oriented and continues to decrease. Calculating the phase space density as a function of the three adiabatic invariants allows us to further investigate these loss mechanisms. Taking partial moments of the available electron distribution, we observe the number density quickly recovers (~4 hours), as well as the flux of the lower energy channels, however, the highest energy channel takes ~18 hours to recover to an approximately constant elevated level. This indicates that the electrons quickly reappear at GEO following the dropout before being heated over a period of days. This is consistent with the temperature values from GOES, showing an increase after the arrival of the HSS, peaking after ~3 days. This study provides independent confirmation of earlier statistical work and is a first step toward gaining understanding of the electron radiation belt dropout and recovery phenomena, in conjunction with coincident magnetic field measurements.

  12. Hiss induced radiation belt electron loss timescales in the plasmasphere based on ray tracings of wave propagation angle

    Science.gov (United States)

    Zhou, C.; Ni, B.; Li, W.; Bortnik, J.; Gu, X.; Zhao, Z.

    2015-12-01

    Plasmaspheric hiss plays an important role in driving resonant scattering losses of radiation belt electrons and thereby largely controls the lifetimes of electrons in the plasmasphere. Besides the spectral information of waves, an accurate investigation of hiss induced radiation belt electron loss timescales requires the details of wave normal angle distribution during propagation along the field line, which however is difficult to obtain directly from in situ measurements but can be reasonably evaluated from ray tracing of hiss propagation on basis of reasonable setups of background field and plasma density. By assuming a nominal and suitable plasmapause location at L = 4.5, we report the ray tracing results of hiss wave propagation angles for various hiss wave frequencies at various L-shells in the plasmasphere. Subsequently, we construct the improved model of hiss wave normal angle distribution with dependence on both wave frequency, magnetic latitude and L-shell, which is used to compute the quasi-linear bounce-averaged rates of electron scattering due to plasmaspheric hiss and perform the pure pitch angle diffusion simulations. Hiss induced radiation belt electron loss timescales are then determined from the simulated temporal evolution of electron fluxes after reaching the equilibrium state, as a function of electron kinetic energy and L-shell, which is of importance for incorporation into future simulations of the radiation belt electron dynamics under various geomagnetic conditions to comprehend the exact contribution of plasmaspheric hiss.

  13. Survival of bacterial isolates exposed to simulated Jovian trapped radiation belt electrons and solar wind protons

    Science.gov (United States)

    Taylor, D. M.; Hagen, C. A.; Renninger, G. M.; Simko, G. J.; Smith, C. D.; Yelinek, J. A.

    1972-01-01

    With missions to Jupiter, the spacecraft will be exposed for extended duration to solar wind radiation and the Jovian trapped radiation belt. This study is designed to determine the effect of these radiation environments on spacecraft bacterial isolates. The information can be used in the probability of contamination analysis for these missions. A bacterial subpopulation from Mariner Mars 1971 spacecraft (nine sporeforming and three nonsporeforming isolates) plus two comparative organisms, Staphylococcus epidermidis ATCC 17917 and a strain of Bacillus subtilis var. niger, were exposed to 2-, 12-, and 25-MeV electrons at different doses with simultaneous exposure to a vacuum of 0.0013 N/sqm at 20 and -20 C. The radioresistance of the subpopulation was dependent on the isolate, dose, and energy of electrons. Temperature affected the radioresistance of only the sporeforming isolates. Survival data indicated that spores were reduced approximately 1 log/1500 J/kg, while nonsporeforming isolates (micrococci) were reduced 1.5 to 2 logs/1500 J/kg with the exception of an apparent radioresistant isolate whose resistance approached that of the spores. The subpopulation was found to be less resistant to lower energy than to higher energy electrons.

  14. Artificial Optical Radiation photobiological hazards in arc welding.

    Science.gov (United States)

    Gourzoulidis, G A; Achtipis, A; Topalis, F V; Kazasidis, M E; Pantelis, D; Markoulis, A; Kappas, C; Bourousis, C A

    2016-08-01

    Occupational Health and Safety (OHS) is associated with crucial social, economic, cultural and technical issues. A highly specialized OHS sector deals with the photobiological hazards from artificial optical radiation (AOR), which is divided into visible light, UV and IR emitted during various activities and which is legally covered by European Directive 2006/25/EC. Among the enormous amount of sources emitting AOR, the most important non-coherent ones to consider for health effects to the whole optical range, are arcs created during metal welding. This survey presents the effort to assess the complicated exposure limits of the Directive in the controlled environment of a welding laboratory. Sensors covering the UV and blue light range were set to measure typical welding procedures reproduced in the laboratory. Initial results, apart from apparently justifying the use of Personal Protective Equipment (PPE) due to even subsecond overexposures measured, also set the basis to evaluate PPE's properties and support an integrated risk assessment of the complex welding environment. These results can also improve workers' and employer's information and training about radiation hazards, which is a crucial OHS demand.

  15. Artificial Optical Radiation photobiological hazards in arc welding.

    Science.gov (United States)

    Gourzoulidis, G A; Achtipis, A; Topalis, F V; Kazasidis, M E; Pantelis, D; Markoulis, A; Kappas, C; Bourousis, C A

    2016-08-01

    Occupational Health and Safety (OHS) is associated with crucial social, economic, cultural and technical issues. A highly specialized OHS sector deals with the photobiological hazards from artificial optical radiation (AOR), which is divided into visible light, UV and IR emitted during various activities and which is legally covered by European Directive 2006/25/EC. Among the enormous amount of sources emitting AOR, the most important non-coherent ones to consider for health effects to the whole optical range, are arcs created during metal welding. This survey presents the effort to assess the complicated exposure limits of the Directive in the controlled environment of a welding laboratory. Sensors covering the UV and blue light range were set to measure typical welding procedures reproduced in the laboratory. Initial results, apart from apparently justifying the use of Personal Protective Equipment (PPE) due to even subsecond overexposures measured, also set the basis to evaluate PPE's properties and support an integrated risk assessment of the complex welding environment. These results can also improve workers' and employer's information and training about radiation hazards, which is a crucial OHS demand. PMID:27422373

  16. Risk from exposure to natural and artificial ultraviolet radiation

    International Nuclear Information System (INIS)

    The association between exposure to ultraviolet (UV) and damage to the skin and eyes is today generally accepted. Exposure to UV radiation may occur in several ways. Apart from the sun, there is a wide range of artificial sources used in different fields of industry, research and medicine, the exposure to which adds to the total exposure of an individual during his life-span. The potential effects of ozone layer depletion on the increase of the solar UV radiation at earth's surface, and therefor on human health, have recently been emphasized. Moreover, great attention has been devoted to the often uncontrolled use of UV lamps for tanning. This report shows the basis on which short and long term UV risk is assessed, and indicates some parameters necessary to its evaluation. The UV effects, both at molecular and cellular levels and on humans, are described together with their respective action spectra. The most common UV sources are then analyzed and their use in different fields is shown. Finally, some methods in dosimetry, which are useful for the correct measurement of exposure values, are described

  17. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Science.gov (United States)

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  18. A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data Using a Generalized Regression Artificial Neural Network

    OpenAIRE

    Tamer Khatib; Wilfried Elmenreich

    2015-01-01

    This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle, and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that...

  19. Radial transport of radiation belt electrons due to stormtime Pc5 waves

    Directory of Open Access Journals (Sweden)

    A. Y. Ukhorskiy

    2009-05-01

    Full Text Available During geomagnetic storms relativistic electron fluxes in the outer radiation belt exhibit dynamic variability over multiple orders of magnitude. This requires radial transport of electrons across their drift shells and implies violation of their third adiabatic invariant. Radial transport is induced by the interaction of the electron drift motion with electric and magnetic field fluctuations in the ULF frequency range. It was previously shown that solar-wind driven ULF waves have long azimuthal wave lengths and thus can violate the third invariant of trapped electrons in the process of resonant interaction with their gradient-curvature motion. However, the amplitude of solar-wind driven ULF waves rapidly decreases with decreasing L. It is therefore not clear what mechanisms are responsible for fast transport rates observed inside the geosynchronous orbit. In this paper we investigate wether stormtime Pc5 waves can contribute to this process. Stormtime Pc5s have short azimuthal wave lengths and therefore cannot exhibit resonance with the the electron drift motion. However we show that stormtime Pc5s can cause localized random scattering of electron drift motion that violates the third invariant. According to our results electron interaction with stormtime Pc5s can produce rapid radial transport even as low as L≃4. Numerical simulations show that electron transport can exhibit large deviations from radial diffusion. The diffusion approximation is not valid for individual storms but only applies to the statistically averaged response of the outer belt to stormtime Pc5 waves.

  20. ICME-driven sheath regions deplete the outer radiation belt electrons

    Science.gov (United States)

    Hietala, H.; Kilpua, E. K.; Turner, D. L.

    2013-12-01

    It is an outstanding question in space weather and solar wind-magnetosphere interaction studies, why some storms result in an increase of the outer radiation belt electron fluxes, while others deplete them or produce no change. One approach to this problem is to look at differences in the storm drivers. Traditionally drivers have been classified to Stream Interaction Regions (SIRs) and Interplanetary Coronal Mass Ejections (ICMEs). However, an 'ICME event' is a complex structure: The core is a magnetic cloud (MC; a clear flux rope structure). If the mass ejection is fast enough, it can drive a shock in front of it. This leads to the formation of a sheath region between the interplanetary shock and the leading edge of the MC. While both the sheath and the MC feature elevated solar wind speed, their other properties are very different. For instance, the sheath region has typically a much higher dynamic pressure than the magnetic cloud. Moreover, the sheath region has a high power in magnetic field and dynamic pressure Ultra Low Frequency (ULF) range fluctuations, while the MC is characterised by an extremely smooth magnetic field. Magnetic clouds have been recognised as important drivers magnetospheric activity since they can comprise long periods of very large southward Interplanetary Magnetic Field (IMF). Nevertheless, previous studies have shown that sheath regions can also act as storm drivers. In this study, we analyse the effects of ICME-driven sheath regions on the relativistic electron fluxes observed by GOES satellites on the geostationary orbit. We perform a superposed epoch analysis of 31 sheath regions from solar cycle 23. Our results show that the sheaths cause an approximately one order of magnitude decrease in the 24h-averaged electron fluxes. Typically the fluxes also stay below the pre-event level for more than two days. Further analysis reveals that the decrease does not depend on, e.g., whether the sheath interval contains predominantly northward

  1. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth.

    Science.gov (United States)

    Guskov, A.; Shelkov, G.; Smolyanskiy, P.; Zhemchugov, A.

    2016-02-01

    The scientific apparatus GAMMA-400 designed for study of electromagnetic and hadron components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the GAMMA-400 apparatus. Due to high granularity of the sensor (pixel size is 55 mum) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  2. On the possibility to use semiconductive hybrid pixel detectors for study of radiation belt of the Earth

    CERN Document Server

    Guskov, A; Smolyanskiy, P; Zhemchugov, A

    2015-01-01

    The scientific apparatus "Gamma-400" designed for study of hadron and electromagnetic components of cosmic rays will be launched to an elliptic orbit with the apogee of about 300 000 km and the perigee of about 500 km. Such a configuration of the orbit allows it to cross periodically the radiation belt and the outer part of magnetosphere. We discuss the possibility to use hybrid pixel detecters based on the Timepix chip and semiconductive sensors on board the "Gamma-400" apparatus. Due to high granularity of the sensor (pixel size is 55 $mu$m) and possibility to measure independently an energy deposition in each pixel, such compact and lightweight detector could be a unique instrument for study of spatial, energy and time structure of electron and proton components of the radiation belt.

  3. Evaluation of Radiation Belt Space Weather Forecasts for Internal Charging Analyses

    Science.gov (United States)

    Minow, Joseph I.; Coffey, Victoria N.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    A variety of static electron radiation belt models, space weather prediction tools, and energetic electron datasets are used by spacecraft designers and operations support personnel as internal charging code inputs to evaluate electrostatic discharge risks in space systems due to exposure to relativistic electron environments. Evaluating the environment inputs is often accomplished by comparing whether the data set or forecast tool reliability predicts measured electron flux (or fluence over a given period) for some chosen period. While this technique is useful as a model metric, it does not provide the information necessary to evaluate whether short term deviances of the predicted flux is important in the charging evaluations. In this paper, we use a 1-D internal charging model to compute electric fields generated in insulating materials as a function of time when exposed to relativistic electrons in the Earth's magnetosphere. The resulting fields are assumed to represent the "true" electric fields and are compared with electric field values computed from relativistic electron environments derived from a variety of space environment and forecast tools. Deviances in predicted fields compared to the "true" fields which depend on insulator charging time constants will be evaluated as a potential metric for determining the importance of predicted and measured relativistic electron flux deviations over a range of time scales.

  4. Outer radiation belt dropout dynamics following the arrival of two interplanetary coronal mass ejections

    Science.gov (United States)

    Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.; Lago, A. Dal; Mendes, O.; Tsurutani, B. T.; Koga, D.; Kanekal, S. G.; Baker, D. N.; Wygant, J. R.; Kletzing, C. A.

    2016-02-01

    Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, using satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks/sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (MC) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 daylong quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown ˜ 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L≥5.5 can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shown to be viable mechanisms.

  5. Effect of Chorus Latitudinal Distribution on Evolution of Outer Radiation Belt Electrons

    Institute of Scientific and Technical Information of China (English)

    XIAO Fuliang; LI Junqiu; TANG Lijun; HE Yihua; LI Jiangfan

    2009-01-01

    Primary result on the impact of the latitudinal distribution of whistler-mode chorus upon temporal evolution of the phase space density (PSD) of outer radiation belt energetic electrons was presented.We evaluate diffusion rates in pitch angle and momentum due to a band of chorus frequency distributed at a standard Gaussian spectrum,and solve a 2-D bounce-averaged momentum-pitch-angle Fokker-Planck equation at L=4.5.It is shown that chorus is effective in accelerating electrons and can increase PSD for energy of ~1 MeV by a factor of 10 or more in about one day,which is consistent with observation.Moreover,the latitudinal distribution of chorus has a great impact on the acceleration of electrons.As the latitudinal distribution increases,the efficient acceleration region extends from higher pitch angles to lower pitch angles,and even covers the entire pitch angle region when chorus power reaches the maximum latitude λm=45°.

  6. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus

    Institute of Scientific and Technical Information of China (English)

    SU Zhen-Peng; ZHENG Hui-Nan; XIONG Ming

    2009-01-01

    Following our preceding work,we perform a further study on dynamic evolution of energetic electrons in the outer radiation belt L = 4.5 due to a band of whistler-mode chorus frequency distributed over a standard Gaussian spectrum.We solve the 2D bounce-averaged Fokker-Planck equation by allowing incorporation of cross diffusion rates.Numerical results show that whistler-mode chorus can be effective in acceleration of electrons at large pitch angles,and enhance the phase space density for energies of about 1MeV by a factor of 102 or above in about one day,consistent with observation of significant enhancement in flux of energetic electrons during the recovery phase of a geomagnetic storm.Moreover,neglecting cross diffusion often leads to overestimates of the phase space density evolution at large pitch angle by a factor of 5-10 after one day,with larger errors at smaller pitch angle,suggesting that cross diffusion also plays an important role in wave-particle interaction.

  7. Ionization losses of the Earth's radiation belt protons according to the radial diffusion theory

    Science.gov (United States)

    Kovtyukh, A. S.

    2016-07-01

    Using modern models of the plasmasphere and exosphere, radial profiles of the rates of ionization losses of protons with μ = 0.3-10 keV/nT (μ is the first adiabatic invariant) of the Earth's radiation belts (ERBs) have been constructed. To calculate Coulomb losses of protons, we used the ISEE-1 satellite data at L = 3-9 and CRRES satellite data at L ≤ 3 ( L is the McIlwain parameter). The relation of contributions of Coulomb losses and charge exchange in the rate of ionization losses of protons has been considered. We have discovered the effect of subtracting Coulomb losses from charge exchange of ERB protons for small μ and L, which can imitate a local particle source. It has been demonstrated that, with decreasing L, the rate of ionization losses of ERB protons decreases as a whole. The radial dependence of this rate only has a negative gradient in the narrow range (Δ L ~ 0.5) in the region of the plasmapause and only for protons with μ > 1.2 keV/nT.

  8. The JCMT Gould Belt Survey: Evidence for radiative heating and contamination in the W40 complex

    CERN Document Server

    Rumble, D; Pattle, K; Kirk, H; Wilson, T; Buckle, J; Berry, D S; Broekhoven-Fiene, H; Currie, M J; Fich, M; Jenness, T; Johnstone, D; Mottram, J C; Nutter, D; Pineda, J E; Quinn, C; Salji, C; Tisi, S; Walker-Smith, S; Di Francesco, J; Hogerheijde, M R; Ward-Thompson, D; Bastien, P; Bresnahan, D; Butner, H; Chen, M; Chrysostomou, A; Coude, S; Davis, C J; Drabek-Maunder, E; Duarte-Cabral, A; Fiege, J; Friberg, P; Friesen, R; Fuller, G A; Graves, S; Greaves, J; Gregson, J; Holland, W; Joncas, G; Kirk, J M; Knee, L B G; Mairs, S; Matthews, B C; Moriarty-Schieven, G; Mowat, C; Rawlings, J; Richer, J; Robertson, D; Rosolowsky, E; Sadavoy, S; Thomas, H; Tothill, N; Viti, S; White, G J; Wouterloot, J; Yates, J; Zhu, M

    2016-01-01

    We present SCUBA-2 450{\\mu}m and 850{\\mu}m observations of the W40 complex in the Serpens-Aquila region as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) of nearby star-forming regions. We investigate radiative heating by constructing temperature maps from the ratio of SCUBA-2 fluxes using a fixed dust opacity spectral index, {\\beta} = 1.8, and a beam convolution kernel to achieve a common 14.8" resolution. We identify 82 clumps ranging between 10 and 36K with a mean temperature of 20{\\pm}3K. Clump temperature is strongly correlated with proximity to the external OB association and there is no evidence that the embedded protostars significantly heat the dust. We identify 31 clumps that have cores with densities greater than 105cm{^{-3}}. Thirteen of these cores contain embedded Class 0/I protostars. Many cores are associated with bright-rimmed clouds seen in Herschel 70 {\\mu}m images. From JCMT HARP observations of the 12CO 3-2 line, we find contamination of the 850{\\mu}m band of up ...

  9. Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations

    Science.gov (United States)

    Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy; Ni, Binbin

    2012-08-01

    Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch angle scattering by plasmaspheric hiss inside the plasmasphere. The 3-D VERB simulations show that during the storm main phase and early recovery phase the estimated plasmapause is located deep in the inner region, indicating that pitch angle scattering by chorus waves can be a dominant loss process in the outer belt. We have also confirmed the important role played by mixed energy-pitch angle diffusion by chorus waves, which tends to reduce the fluxes enhanced by local acceleration, resulting in comparable levels of computed and measured fluxes. However, we cannot reproduce the more pronounced flux dropout near the boundary of our simulations during the main phase, which indicates that non-adiabatic losses may extend toL-shells lower than our simulation boundary. We also provide a detailed description of simulations for each of the GEM storm events.

  10. The JCMT Gould Belt Survey: evidence for radiative heating and contamination in the W40 complex

    Science.gov (United States)

    Rumble, D.; Hatchell, J.; Pattle, K.; Kirk, H.; Wilson, T.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Nutter, D.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Walker-Smith, S.; Francesco, J. Di; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-08-01

    We present SCUBA-2 450 μm and 850 μm observations of the W40 complex in the Serpens-Aquila region as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) of nearby star-forming regions. We investigate radiative heating by constructing temperature maps from the ratio of SCUBA-2 fluxes using a fixed dust opacity spectral index, β = 1.8, and a beam convolution kernel to achieve a common 14.8 arcsec resolution. We identify 82 clumps ranging between 10 and 36 K with a mean temperature of 20 ± 3 K. Clump temperature is strongly correlated with proximity to the external OB association and there is no evidence that the embedded protostars significantly heat the dust. We identify 31 clumps that have cores with densities greater than 105cm-3. 13 of these cores contain embedded Class 0/I protostars. Many cores are associated with bright-rimmed clouds seen in Herschel 70 μm images. From JCMT HARP observations of the 12CO 3-2 line, we find contamination of the 850 μm band of up to 20 per cent. We investigate the free-free contribution to SCUBA-2 bands from large-scale and ultracompact H II regions using archival VLA data and find the contribution is limited to individual stars, accounting for 9 per cent of flux per beam at 450 μm or 12 per cent at 850 μm in these cases. We conclude that radiative heating has potentially influenced the formation of stars in the Dust Arc sub-region, favouring Jeans stable clouds in the warm east and fragmentation in the cool west.

  11. The Van Allen Radiation Belt Discovery - A Look Behind the Scenes

    Science.gov (United States)

    Ludwig, G. H.

    2006-05-01

    During the forty-eight years since the discovery in 1958 of the Van Allen Radiation Belt by James A. Van Allen and his students at the University of Iowa, the event has been described in numerous published papers and other forms. Once launched on 31 January 1958, the instrument in Explorer I behaved strangely. Having no in-orbit data storage, it provided only brief snapshots of the radiation intensity as the satellite passed above the ground stations. The pattern of behavior was just beginning to unfold when Explorer III followed it into orbit on 26 March. The data recorder in Explorer III captured the pattern of behavior throughout repeated orbits. Upon seeing the first readout of data from a single complete orbit, it became quite clear that the detector was, in fact, registering an unexpected but real physical effect. Efforts to understand that phenomenon and describe it convincingly consumed Van Allen, Carl E. McIlwain, Ernest E. Ray, and the author for the next several weeks. We prepared our material as a University of Iowa Research Report during the last weeks of April. Van Allen made the first public announcement of the discovery at a special joint assembly of the National Academy of Sciences and the American Physical Society on 1 May 1958. Behind that widely-known general story is a more detailed tale of many discrete steps that were accompanied by intense expectation, initial disappointment, long hours of hard work, and growing excitement. The tale, interesting in its own right, conveys a vivid impression of a method of graduate student "cradle-to-grave" space research that has become more difficult to emulate with the growing complexity of the research programs and their instruments and carriers.

  12. Remediation of radiation belt electrons caused by ground based man-made VLF wave%地基人工 VLF电波对辐射带电子的调制

    Institute of Scientific and Technical Information of China (English)

    王平; 徐岩冰; 于晓霞; 赵小芸; 吴峰; 王焕玉; 马宇蒨; 李新乔; 卢红; 孟祥承; 张吉龙; 王辉; 石峰

    2011-01-01

    辐射带电子的加速与沉降机理是空间物理研究的重要课题.法国DEMETER电磁卫星观测到了美国NPM发射站VLF信号及与之相关的高能电子沉降事例.本研究工作将根据基于回旋共振相互作用的准线性扩散理论,通过对局域投掷角扩散系数的计算,来说明受VLF影响的高能电子的投掷角分布与电子的能量及所处位置的关系.理论计算较好地解释了DEMETER卫星在NPM实验期间所观测到的电子沉降事例.在此基础上进一步讨论了通过人工方式对辐射带高能电子施加影响的效率问题.%The physics mechanisms of radiation belt electrons loss and acceleration are important issues in space physics research. Recently, France Microsatellite DEMETER has discovered the correlation between man- made VLF signals and radiation belt electrons precipitation in the NPM ( the U. S. VLF transmitter located at Lualualei ) experiment. Our research focuses on the explanation of the relation among affected pitch angle distribution, kinetic energy and position of electrons. This is achieved by calculating the local diffusion coeffcient based on the theory of qusi-linear diffusion with resonant interaction. Our result has a good explanation of radiation belt electron precipitation discovered by DEMETER during NPM experiment. Furthermore, we have discussed the effciency of radiation belt remediation in an artificial way.

  13. Oblique Whistler-Mode Waves in the Earth's Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics

    Science.gov (United States)

    Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier; Krasnoselskikh, Vladimir; Shastun, Vitalii; Mozer, Forrest

    2016-04-01

    In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth's inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and non-linear generation, propagation, and damping processes. We further examine how such oblique wave populations can be included into both quasi-linear diffusion models and fully nonlinear models of wave-particle interaction. On this basis, we demonstrate that varying amounts of oblique waves can significantly change the rates of particle scattering, acceleration, and precipitation into the atmosphere during quiet times as well as in the course of a storm. Finally, we discuss possible generation mechanisms for such oblique waves in the radiation belts. We demonstrate that oblique whistler-mode chorus waves can be considered as an important ingredient of the radiation belt system and can play a key role in many aspects of wave-particle resonant interactions.

  14. Command and Data Handling Flight Software test framework: A Radiation Belt Storm Probes practice

    Science.gov (United States)

    Hill, T. A.; Reid, W. M.; Wortman, K. A.

    During the Radiation Belt Storm Probes (RBSP) mission, a test framework was developed by the Embedded Applications Group in the Space Department at the Johns Hopkins Applied Physics Laboratory (APL). The test framework is implemented for verification of the Command and Data Handling (C& DH) Flight Software. The RBSP C& DH Flight Software consists of applications developed for use with Goddard Space Flight Center's core Flight Executive (cFE) architecture. The test framework's initial concept originated with tests developed for verification of the Autonomy rules that execute with the Autonomy Engine application of the RBSP C& DH Flight Software. The test framework was adopted and expanded for system and requirements verification of the RBSP C& DH Flight Software. During the evolution of the RBSP C& DH Flight Software test framework design, a set of script conventions and a script library were developed. The script conventions and library eased integration of system and requirements verification tests into a comprehensive automated test suite. The comprehensive test suite is currently being used to verify releases of the RBSP C& DH Flight Software. In addition to providing the details and benefits of the test framework, the discussion will include several lessons learned throughout the verification process of RBSP C& DH Flight Software. Our next mission, Solar Probe Plus (SPP), will use the cFE architecture for the C& DH Flight Software. SPP also plans to use the same ground system as RBSP. Many of the RBSP C& DH Flight Software applications are reusable on the SPP mission, therefore there is potential for test design and test framework reuse for system and requirements verification.

  15. Plasmaspheric electron densities: the importance in modelling radiation belts and in SSA operation

    Science.gov (United States)

    Lichtenberger, János; Jorgensen, Anders; Koronczay, Dávid; Ferencz, Csaba; Hamar, Dániel; Steinbach, Péter; Clilverd, Mark; Rodger, Craig; Juhász, Lilla; Sannikov, Dmitry; Cherneva, Nina

    2016-04-01

    The Automatic Whistler Detector and Analyzer Network (AWDANet, Lichtenberger et al., J. Geophys. Res., 113, 2008, A12201, doi:10.1029/2008JA013467) is able to detect and analyze whistlers in quasi-realtime and can provide equatorial electron density data. The plasmaspheric electron densities are key parameters for plasmasphere models in Space Weather related investigations, particularly in modeling charged particle accelerations and losses in Radiation Belts. The global AWDANet detects millions of whistlers in a year. The network operates since early 2002 with automatic whistler detector capability and it has been recently completed with automatic analyzer capability in PLASMON (http://plasmon.elte.hu, Lichtenberger et al., Space Weather Space Clim. 3 2013, A23 DOI: 10.1051/swsc/2013045.) Eu FP7-Space project. It is based on a recently developed whistler inversion model (Lichtenberger, J. J. Geophys. Res., 114, 2009, A07222, doi:10.1029/2008JA013799), that opened the way for an automated process of whistler analysis, not only for single whistler events but for complex analysis of multiple-path propagation whistler groups. The network operates in quasi real-time mode since mid-2014, fifteen stations provide equatorial electron densities that are used as inputs for a data assimilative plasmasphere model but they can also be used directly in space weather research and models. We have started to process the archive data collected by AWDANet stations since 2002 and in this paper we present the results of quasi-real-time and off-line runs processing whistlers from quiet and disturb periods. The equatorial electron densities obtained by whistler inversion are fed into the assimilative model of the plasmasphere providing a global view of the region for processed the periods

  16. Lightning driven inner radiation belt energy deposition into the atmosphere: regional and global estimates

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2005-12-01

    Full Text Available In this study we examine energetic electron precipitation fluxes driven by lightning, in order to determine the global distribution of energy deposited into the middle atmosphere. Previous studies using lightning-driven precipitation burst rates have estimated losses from the inner radiation belts. In order to confirm the reliability of those rates and the validity of the conclusions drawn from those studies, we have analyzed New Zealand data to test our global understanding of troposphere to magnetosphere coupling. We examine about 10000h of AbsPAL recordings made from 17 April 2003 through to 26 June 2004, and analyze subionospheric very-low frequency (VLF perturbations observed on transmissions from VLF transmitters in Hawaii (NPM and western Australia (NWC. These observations are compared with those previously reported from the Antarctic Peninsula. The perturbation rates observed in the New Zealand data are consistent with those predicted from the global distribution of the lightning sources, once the different experimental configurations are taken into account. Using lightning current distributions rather than VLF perturbation observations we revise previous estimates of typical precipitation bursts at L~2.3 to a mean precipitation energy flux of ~1×10-3 ergs cm-2s-1. The precipitation of energetic electrons by these bursts in the range L=1.9-3.5 will lead to a mean rate of energy deposited into the atmosphere of 3×10-4 ergs cm-2min-1, spatially varying from a low of zero above some ocean regions to highs of ~3-6×10-3 ergs cm-2min-1 above North America and its conjugate region.

  17. Effects of Complex Interplanetary Structures on the Dynamics of the Earth's Outer Radiation Belt During the 16-30 September 2014 Period: II) Corotating Solar Wind Stream

    Science.gov (United States)

    Souza, V. M. C. E. S.; Da Silva, L. A.; Sibeck, D. G.; Alves, L. R.; Jauer, P. R.; Dias Silveira, M. V.; Medeiros, C.; Marchezi, J.; Rockenbach, M.; Baker, D. N.; Kletzing, C.; Kanekal, S. G.; Georgiou, M.; Mendes, O., Jr.; Dal Lago, A.; Vieira, L. E. A.

    2015-12-01

    We present a case study describing the dynamics of the outer radiation belt for two different solar wind conditions. First, we discuss a dropout of outer belt energetic electron fluxes corresponding to the arrival of an interplanetary coronal mass ejection (ICME) followed by a corotating stream in September 2014. Second, we discuss the reformation of the outer radiation belt that began on September 22nd. We find that the arrival of the ICME and the corotating interaction region that preceded the stream cause a long-duration (many day) dropout of high-energy electrons. The recovery in radiation belt fluxes only begins when the high-speed stream begins to develop IMF Bz fluctuations and auroral activity resumes. Furthermore, during periods in which several consecutive solar wind structures appear, the first structure primes the outer radiation belt prior to the interaction of the subsequent solar wind structures with the magnetosphere. Consequently, the evolution of the outer radiation belt through the solar cycle is significantly affected by the dominant structure of each phase of the cycle. We use energetic electron and magnetic field observations provided by the Van Allen Probes, THEMIS, and GOES missions.

  18. Evidence for dust-driven, radial plasma transport in Saturn's inner radiation belts

    Science.gov (United States)

    Roussos, E.; Krupp, N.; Kollmann, P.; Paranicas, C.; Mitchell, D. G.; Krimigis, S. M.; Andriopoulou, M.

    2016-08-01

    A survey of Cassini MIMI/LEMMS data acquired between 2004 and 2015 has led to the identification of 13 energetic electron microsignatures that can be attributed to particle losses on one of the several faint rings of the planet. Most of the signatures were detected near L-shells that map between the orbits of Mimas and Enceladus or near the G-ring. Our analysis indicates that it is very unlikely for these signatures to have originated from absorption on Mimas, Enceladus or unidentified Moons and rings, even though most were not found exactly at the L-shells of the known rings of the saturnian system (G-ring, Methone, Anthe, Pallene). The lack of additional absorbers is apparent in the L-shell distribution of MeV ions which are very sensitive for tracing the location of weakly absorbing material permanently present in Saturn's radiation belts. This sensitivity is demonstrated by the identification, for the first time, of the proton absorption signatures from the asteroid-sized Moons Pallene, Anthe and/or their rings. For this reason, we investigate the possibility that the 13 energetic electron events formed at known saturnian rings and the resulting depletions were later displaced radially by one or more magnetospheric processes. Our calculations indicate that the displacement magnitude for several of those signatures is much larger than the one that can be attributed to radial flows imposed by the recently discovered noon-to-midnight electric field in Saturn's inner magnetosphere. This observation is consistent with a mechanism where radial plasma velocities are enhanced near dusty obstacles. Several possibilities are discussed that may explain this observation, including a dust-driven magnetospheric interchange instability, mass loading by the pick-up of nanometer charged dust grains and global magnetospheric electric fields induced by perturbed orbits of charged dust due to the act of solar radiation pressure. Indirect evidence for a global scale interaction

  19. On the Relationship Between High Speed Solar Wind Streams and Radiation Belt Electron Fluxes

    Science.gov (United States)

    Zheng, Yihua

    2011-01-01

    Both past and recent research results indicate that solar wind speed has a close connection to radiation belt electron fluxes [e.g., Paulikas and Blake, 1979; Reeves et aI., 2011]: a higher solar wind speed is often associated with a higher level of radiation electron fluxes. But the relationship can be very complex [Reeves et aI., 2011]. The study presented here provides further corroboration of this viewpoint by emphasizing the importance of a global perspective and time history. We find that all the events during years 2010 and 2011 where the >0.8 MeV integral electron flux exceeds 10(exp 5) particles/sq cm/sr/s (pfu) at GEO orbit are associated with the high speed streams (HSS) following the onset of the Stream Interaction Region (SIR), with most of them belonging to the long-lasting Corotating Interaction Region (CIR). Our preliminary results indicate that during HSS events, a maximum speed of 700 km/s and above is a sufficient but not necessary condition for the > 0.8 MeV electron flux to reach 10(exp 5) pfu. But in the exception cases of HSS events where the electron flux level exceeds the 10(exp 5) pfu value but the maximum solar wind speed is less than 700 km/s, a prior impact can be noted either from a CME or a transient SIR within 3-4 days before the arrival of the HSS - stressing the importance of time history. Through superposed epoch analysis and studies providing comparisons with the CME events and the HSS events where the flux level fails to reach the 10(exp 5) pfu, we will present the quantitative assessment of behaviors and relationships of various quantities, such as the time it takes to reach the flux threshold value from the stream interface and its dependence on different physical parameters (e.g., duration of the HSS event, its maximum or average of the solar wind speed, IMF Bz, Kp). The ultimate goal is to apply what is derived to space weather forecasting.

  20. Prediction of Global Solar Radiation in India Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Rajiv Gupta

    2016-06-01

    Full Text Available Increasing global warming and decreasing fossil fuel reserves has necessitated the use of renewable energy resources like solar energy in India. To maximize return on a solar farm, it had to be set up at a place with high solar radiation. The solar radiation values are available only for a small number of places and must be interpolated for the rest. This paper utilizes Artificial Neural Network in interpolation, by obtaining a function with input as combinations of 7 geographical and meteorological parameters affecting radiation, and output as global solar radiation. Data considered was of past 9 years for 13 Indian cities. Low error values and high coefficient of determination values thus obtained, verified that the results were accurate in terms of the original solar radiation data known. Thus, artificial neural network can be used to interpolate the solar radiation for the places of interest depending on the availability of the data.

  1. Forecasting the Earth’s radiation belts and modelling solar energetic particle events: Recent results from SPACECAST

    Directory of Open Access Journals (Sweden)

    Poedts Stefaan

    2013-05-01

    Full Text Available High-energy charged particles in the van Allen radiation belts and in solar energetic particle events can damage satellites on orbit leading to malfunctions and loss of satellite service. Here we describe some recent results from the SPACECAST project on modelling and forecasting the radiation belts, and modelling solar energetic particle events. We describe the SPACECAST forecasting system that uses physical models that include wave-particle interactions to forecast the electron radiation belts up to 3 h ahead. We show that the forecasts were able to reproduce the >2 MeV electron flux at GOES 13 during the moderate storm of 7–8 October 2012, and the period following a fast solar wind stream on 25–26 October 2012 to within a factor of 5 or so. At lower energies of 10 – a few 100 keV we show that the electron flux at geostationary orbit depends sensitively on the high-energy tail of the source distribution near 10 RE on the nightside of the Earth, and that the source is best represented by a kappa distribution. We present a new model of whistler mode chorus determined from multiple satellite measurements which shows that the effects of wave-particle interactions beyond geostationary orbit are likely to be very significant. We also present radial diffusion coefficients calculated from satellite data at geostationary orbit which vary with Kp by over four orders of magnitude. We describe a new automated method to determine the position at the shock that is magnetically connected to the Earth for modelling solar energetic particle events and which takes into account entropy, and predict the form of the mean free path in the foreshock, and particle injection efficiency at the shock from analytical theory which can be tested in simulations.

  2. The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high-speed stream-driven storms

    Science.gov (United States)

    Borovsky, Joseph E.; Cayton, Thomas E.; Denton, Michael H.; Belian, Richard D.; Christensen, Roderick A.; Ingraham, J. Charles

    2016-06-01

    The outer proton radiation belt (OPRB) and outer electron radiation belt (OERB) at geosynchronous orbit are investigated using a reanalysis of the LANL CPA (Charged Particle Analyzer) 8-satellite 2-solar cycle energetic particle data set from 1976 to 1995. Statistics of the OPRB and the OERB are calculated, including local time and solar cycle trends. The number density of the OPRB is about 10 times higher than the OERB, but the 1 MeV proton flux is about 1000 times less than the 1 MeV electron flux because the proton energy spectrum is softer than the electron spectrum. Using a collection of 94 high-speed stream-driven storms in 1976-1995, the storm time evolutions of the OPRB and OERB are studied via superposed epoch analysis. The evolution of the OERB shows the familiar sequence (1) prestorm decay of density and flux, (2) early-storm dropout of density and flux, (3) sudden recovery of density, and (4) steady storm time heating to high fluxes. The evolution of the OPRB shows a sudden enhancement of density and flux early in the storm. The absence of a proton dropout when there is an electron dropout is noted. The sudden recovery of the density of the OERB and the sudden density enhancement of the OPRB are both associated with the occurrence of a substorm during the early stage of the storm when the superdense plasma sheet produces a "strong stretching phase" of the storm. These storm time substorms are seen to inject electrons to 1 MeV and protons to beyond 1 MeV into geosynchronous orbit, directly producing a suddenly enhanced radiation belt population.

  3. Beam-excited whistler waves at oblique propagation with relation to STEREO radiation belt observations

    Directory of Open Access Journals (Sweden)

    K. Sauer

    2010-06-01

    Full Text Available Isotropic electron beams are considered to explain the excitation of whistler waves which have been observed by the STEREO satellite in the Earth's radiation belt. Aside from their large amplitudes (~240 mV/m, another main signature is the strongly inclined propagation direction relative to the ambient magnetic field. Electron temperature anisotropy with Te⊥>Te||, which preferentially generates parallel propagating whistler waves, can be excluded as a free energy source. The instability arises due to the interaction of the Doppler-shifted cyclotron mode ω=−Ωe+kVbcosθ with the whistler mode in the wave number range of kce≤1 (θ is the propagation angle with respect to the background magnetic field direction, ωe is the electron plasma frequency and Ωe the electron cyclotron frequency. Fluid and kinetic dispersion analysis have been used to calculate the growth rate of the beam-excited whistlers including the most important parameter dependencies. One is the beam velocity (Vb which, for instability, has to be larger than about 2VAe, where VAe is the electron Alfvén speed. With increasing VAe the propagation angle (θ of the fastest growing whistler waves shifts from θ~20° for Vb=2VAe to θ~80° for Vb=5VAe. The growth rate is reduced by finite electron temperatures and disappears if the electron plasma beta (βe exceeds βe~0.2. In addition, Gendrin modes (kce≈1 are analyzed to determine the conditions under which stationary nonlinear waves (whistler oscillitons can exist. The corresponding spatial wave profiles are calculated using the full nonlinear fluid approach. The results are compared with the STEREO satellite observations.

  4. Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements

    International Nuclear Information System (INIS)

    ELF/VLF waves play a crucial role in the dynamics of the radiation belts and are partly responsible for the main losses and the acceleration of energetic electrons. Modeling wave-particle interactions requires detailed information of wave amplitudes and wave normal distribution over L-shells and over magnetic latitudes for different geomagnetic activity conditions. We performed a statistical study of ELF/VLF emissions using wave measurements in the whistler frequency range for 10 years (2001-2010) aboard Cluster spacecraft. We utilized data from the STAFF-SA experiment, which spans the frequency range from 8 Hz to 4 kHz. We present distributions of wave magnetic and electric field amplitudes and wave normal directions as functions of magnetic latitude, magnetic local time, L-shell, and geomagnetic activity. We show that wave normals are directed approximately along the background magnetic field (with the mean value of θ the angle between the wave normal and the background magnetic field, about 10-15 degrees) in the vicinity of the geomagnetic equator. The distribution changes with magnetic latitude: Plasma spheric hiss normal angles increase with latitude to quasi-perpendicular direction at 35-40 degrees where hiss can be reflected; lower band chorus are observed as two wave populations: One population of wave normals tends toward the resonance cone and at latitudes of around 35-45 degrees wave normals become nearly perpendicular to the magnetic field; the other part remains quasi-parallel at latitudes up to 30 degrees. The observed angular distribution is significantly different from Gaussian, and the width of the distribution increases with latitude. Due to the rapid increase of θ the wave mode becomes quasi-electrostatic, and the corresponding electric field increases with latitude and has a maximum near 30 degrees. The magnetic field amplitude of the chorus in the day sector has a minimum at the magnetic equator but increases rapidly with latitude with a

  5. Waves in plasmas generated by a rotating magnetic field and implications to radiation belts

    Science.gov (United States)

    Karavaev, Alexey V.

    The interaction of rotating magnetic fields (RMF) with magnetized plasmas is a fundamental plasma physics problem with implications to a wide range of areas, including laboratory and space plasma physics. Despite the importance of the topic the basic physics of the phenomenon remains unexplored. An important application of a RMF is its potential use as an efficient radiation source of low frequency waves in space plasmas, including whistler and shear Alfvéen waves (SAW) for controlled remediation of energetic particles in the Earth's radiation belts. In this dissertation the RMF waves generated in magnetized plasma are studied using numerical simulations with a semi-analytical three-dimensional magneto-hydrodynamic (MHD) model and experiments on the generation of whistler and magnetohydrodynamic waves conducted in UCLA's Large Plasma Device. Comparisons of the simulation results with the experimental measurements, namely, measured spatiotemporal wave structures, dispersion relation with finite transverse wave number, wave amplitude dependence on plasma and RMF source parameters, show good agreement in both the whistler and MHD wave regimes. In both the experiments and the 3D MHD simulations a RMF source was found to be very efficient in the generation of MHD and whistler waves with arbitrary polarizations. The RMF source drives significant field aligned plasma currents confined by the ambient magnetic field for both the whistler and MHD wave regimes, resulting in efficient transport of wave energy along the ambient magnetic field. The efficient transfer of the wave energy results in slow decay rates of the wave amplitude along the ambient magnetic field. The circular polarization of the waves generated by the RMF source, slow amplitude decay rate along the ambient magnetic field and nonzero transverse wave number determined by the RMF source size lead to nonlocal gradients of the wave magnetic field in the direction perpendicular to the ambient magnetic field. A

  6. Effects of solar radiation pressure torque on the rotational motion of an artificial satellite

    Science.gov (United States)

    Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho

    1992-01-01

    The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.

  7. Simulation of Resonant Interaction between Energetic Electrons and Whistler-Mode Chorus in the Outer Radiation Belt

    Institute of Scientific and Technical Information of China (English)

    SU Zhen-Peng; ZHENG Hui-Nan

    2008-01-01

    @@ We construct a realistic model to evaluate the chorus wave--particle interaction in the outer radiation belt L = 4.5.This model incorporates a plasmatrough number density model, a field-aligned density model and a realistic wave power and frequency model.We solve the 2D bounce-averaged momentum-pitch-angle Fokker-Planck equation and show that the Whistler-mode chorus can be effective in the acceleration of electrons, and enhance the phase space density for energies of ~1 Me V by a factor from 10 to 103 in about two days, consistent with the observation.We also demonstrate that ignorance of the electron number density variation along field line and magnetic local time in the previous work yields an overestimate of energetic electron phase space density by a factor 5~10 at large pitch-angle after two days, suggesting that a realistic plasma density model is very important to evaluate the evolution of energetic electrons in the outer radiation belt.

  8. Large Amplitude Whistler Waves and Electron Acceleration in the Earth's Radiation Belts: A Review of STEREO and Wind Observations

    Science.gov (United States)

    Cattell, Cynthia; Breneman, A.; Goetz, K.; Kellogg, P.; Kersten, K.; Wygant, J.; Wilson, L. B., III; Looper, Mark D.; Blake, J. Bernard; Roth, I.

    2012-01-01

    One of the critical problems for understanding the dynamics of Earth's radiation belts is determining the physical processes that energize and scatter relativistic electrons. We review measurements from the Wind/Waves and STEREO S/Waves waveform capture instruments of large amplitude whistler-mode waves. These observations have provided strong evidence that large amplitude (100s mV/m) whistler-mode waves are common during magnetically active periods. The large amplitude whistlers have characteristics that are different from typical chorus. They are usually nondispersive and obliquely propagating, with a large longitudinal electric field and significant parallel electric field. We will also review comparisons of STEREO and Wind wave observations with SAMPEX observations of electron microbursts. Simulations show that the waves can result in energization by many MeV and/or scattering by large angles during a single wave packet encounter due to coherent, nonlinear processes including trapping. The experimental observations combined with simulations suggest that quasilinear theoretical models of electron energization and scattering via small-amplitude waves, with timescales of hours to days, may be inadequate for understanding radiation belt dynamics.

  9. Whistlers Observed Outside the Plasmasphere: Correlation to Plasmaspheric/Plasmapause Features and Implications for the Scattering of Radiation-Belt Electrons

    Science.gov (United States)

    Adrian, Mark L.; Gallagher, D. L.

    2007-01-01

    Magnetospherically reflected, lightning-generated whistler waves are an important potential contributor to pitch-angle scattering loss processes of the electron radiation belts. While lightning-generated whistlers are a common feature at, and just inside, the plasmapause, they are infrequently observed outside the plasmasphere. As such, their potential contribution to outer radiation belt loss processes is more tenuous. Recently, Platino et al. [2005] has reported on whistlers observed outside the plasmasphere by Cluster. Here, we present correlative global observations of the plasmasphere, for the reported periods of Cluster-observed whistlers outside the plasmasphere, using IMAGE-EUV data. The intent of this study is to seek the underlying mechanisms that result in whistlers outside the plasmasphere and consequently the anticipated morphology and significance these waves may have on radiation belt dynamics.

  10. A Model for Hourly Solar Radiation Data Generation from Daily Solar Radiation Data Using a Generalized Regression Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Tamer Khatib

    2015-01-01

    Full Text Available This paper presents a model for predicting hourly solar radiation data using daily solar radiation averages. The proposed model is a generalized regression artificial neural network. This model has three inputs, namely, mean daily solar radiation, hour angle, and sunset hour angle. The output layer has one node which is mean hourly solar radiation. The training and development of the proposed model are done using MATLAB and 43800 records of hourly global solar radiation. The results show that the proposed model has better prediction accuracy compared to some empirical and statistical models. Two error statistics are used in this research to evaluate the proposed model, namely, mean absolute percentage error and root mean square error. These values for the proposed model are 11.8% and −3.1%, respectively. Finally, the proposed model shows better ability in overcoming the sophistic nature of the solar radiation data.

  11. Van Allen Probes Mission Space Academy: Educating middle school students about Earth's mysterious radiation belts

    Science.gov (United States)

    Butler, L.; Turney, D.; Matiella Novak, A.; Smith, D.; Simon, M.

    2013-12-01

    How's the weather in space? Why on Earth did NASA send two satellites above Earth to study radiation belts and space weather? To learn the answer to questions about NASA's Van Allen Probes mission, 450 students and their teachers from Maryland middle schools attended Space Academy events highlighting the Van Allen Probes mission. Sponsored by the Applied Physics Laboratory (APL) and Discovery Education, the events are held at the APL campus in Laurel, MD. Space Academies take students and teachers on behind-the-scenes exploration of how spacecraft are built, what they are designed to study, and introduces them to the many professionals that work together to create some of NASA's most exciting projects. Moderated by a public relations representative in the format of an official NASA press conference, the daylong event includes a student press conference with students as reporters and mission experts as panelists. Lunch with mission team members gives students a chance to ask more questions. After lunch, students don souvenir clean room suits, enjoy interactive science demonstrations, and tour APL facilities where the Van Allen Probes were built and tested before launch. Students may even have an opportunity to peek inside a clean room to view spacecraft being assembled. Prior to the event, teachers are provided with classroom activities, lesson plans, and videos developed by APL and Discovery Education to help prepare students for the featured mission. The activities are aligned to National Science Education Standards and appropriate for use in the classroom. Following their visit, student journalists are encouraged to write a short article about their field trip; selections are posted on the Space Academy web site. Designed to engage, inspire, and influence attitudes about space science and STEM careers, Space Academies provide an opportunity to attract underserved populations and emphasize that space science is for everyone. Exposing students to a diverse group of

  12. Electron loss rates from the outer radiation belt caused by the filling of the outer plasmasphere: the calm before the storm

    Energy Technology Data Exchange (ETDEWEB)

    Borovsky, Joseph E [Los Alamos National Laboratory; Denton, Michael H [LANCASTER UNIV

    2009-01-01

    Measurements from 7 spacecraft in geosynchronous orbit are analyzed to determine the decay rate of the number density of the outer electron radiation belt prior to the onset of high-speed-stream-driven geomagnetic storms. Superposed-data analysis is used wan(?) a collection of 124 storms. When there is a calm before the storm, the electron number density decays exponentially before the storm with a 3.4-day e-folding time: beginning about 4 days before storm onset, the density decreases from {approx}4x10{sup -4} cm{sup -3} to {approx}1X 10{sup -4} cm{sup -3}. When there is not a calm before the storm, the number-density decay is very smalL The decay in the number density of radiation-belt electrons is believed to be caused by pitch-angle scattering of electrons into the atmospheric loss cone as the outer plasmasphere fills during the calms. While the radiation-belt electron density decreases, the temperature of the electron radiation belt holds approximately constant, indicating that the electron precipitation occurs equally at all energies. Along with the number density decay, the pressure of the outer electron radiation belt decays and the specific entropy increases. From the measured decay rates, the electron flux to the atmosphere is calculated and that flux is 3 orders of magnitude less than thermal fluxes in the magnetosphere, indicating that the radiation-belt pitch-angle scattering is 3 orders weaker than strong diffusion. Energy fluxes into the atmosphere are calculated and found to be insufficient to produce visible airglow.

  13. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors

    OpenAIRE

    Sasaki, Masao S.; Tachibana, Akira; Takeda, Shunichi

    2013-01-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the ‘integrate-and-fire’ algorithm of artificial neural networks was developed and tested in cancer databases established by the R...

  14. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.

    OpenAIRE

    Sasaki, Masao S.; Tachibana, Akira; Takeda, Shunichi

    2014-01-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the R...

  15. Prediction of Global Solar Radiation in India using Artificial Neural Network

    OpenAIRE

    Rajiv Gupta; Saurabh Singhal

    2016-01-01

    Increasing global warming and decreasing fossil fuel reserves has necessitated the use of renewable energy resources like solar energy in India. To maximize return on a solar farm, it had to be set up at a place with high solar radiation. The solar radiation values are available only for a small number of places and must be interpolated for the rest. This paper utilizes Artificial Neural Network in interpolation, by obtaining a function with input as combinations of 7 geographical and meteoro...

  16. Short-term changes in Jupiter's synchrotron radiation at 325 MHz: Enhanced radial diffusion in Jupiter's radiation belt driven by solar UV/EUV heating

    Science.gov (United States)

    Tsuchiya, F.; Misawa, H.; Imai, K.; Morioka, A.

    2011-09-01

    The total flux density of Jupiter's synchrotron radiation (JSR) at 325 MHz was observed in 2007 with the Iitate Planetary Radio Telescope to investigate short-term variations in Jupiter's radiation belt with a time scale of a few days to a month. The total flux density showed a series of short-term increases and subsequent decreases. The variations in JSR and the Mg II solar UV/EUV index showed positive correlations, but the variations in JSR were preceded by those of the Mg II index by 3-5 days. The positive correlation supports a theoretical prediction that an enhancement in the radial diffusion driven by thermospheric winds in the upper atmosphere causes changes in relativistic electron distributions in both the radiation belt and the total flux density of JSR. The radial diffusion model was used to examine the hypothesis that temporal changes in the radial diffusion rate could be an origin of the short-term variation. The model includes physical processes such as radial diffusion, energy degradation by the synchrotron radiation, and several loss processes. We applied a radial diffusion coefficient of 3 × 10-8 L3/s and found a suitable solution that accounted for both the time scale of the short-term variations and the 4 day time lag. The model also showed that strong electron loss processes other than the synchrotron radiation are needed to explain the electron distribution in low L regions. An empirical electron distribution model showed that the synchrotron radiation does not act as a loss of electrons in such areas.

  17. Radiation of lamp and optimized experiment using artificial light in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jin-ping; David Barber; LI Tao; LI Shu-jiang; LI Xiang

    2008-01-01

    A winter optical experiment by an artificial lamp was conducted in the Amundsen Bay of Arctic Ocean from November of 2007 to January of 2008. The radiation field emitted from an artificial lamp was measured and is introduced in this paper, and the optimized experiment project is discussed. It is demonstrated that the minimum size allowed of the lamp is determined by both the field of view (FOV) of optical instrument and the measuring distance from the lamp. Some problems that might influence on the experiment result often occur for a simple fluorescent lamp,such as instability, spatial nonuniformity, light divergence, effect of lamp temperature, etc. By the analysis of the light radiation, three kind of measures are proposed to control the quality of the experiment, i.e. keeping consistency of lamp size with FOV of instrument, calibrating in situ downwind, and conducting measurement in effective range. Among them, the downwind calibration is the key step to overcome most problems arose by the lamp. The experiment indicated that the reliable results can be obtained only when the optical measurement is coordinated with the radiation field of artificial lamp. The measured radiation property of the lamp was used to advise the field experiment to minimize measuring error. As the experiment by artificial lamp was the first attempt in the Arctic Ocean, the experience given by this paper is a valuable reference to the correlative studies.

  18. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    Directory of Open Access Journals (Sweden)

    C. J. Rodger

    2007-08-01

    Full Text Available Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP. Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting WEP produced ionisation rate changes with those from Galactic Cosmic Radiation (GCR and solar photoionisation. During the day, WEP is never a significant source of ionisation in the lower ionosphere for any location or altitude. At nighttime, GCR is more significant than WEP at altitudes <68 km for all locations, above which WEP starts to dominate in North America and Central Europe. Between 75 and 80 km altitude WEP becomes more significant than GCR for the majority of spatial locations at which WEP deposits energy. The size of the regions in which WEP is the most important nighttime ionisation source peaks at ~80 km, depending on the relative contributions of WEP and nighttime solar Lyman-α. We also used the Sodankylä Ion Chemistry (SIC model to consider the atmospheric consequences of WEP, focusing on a case-study period. Previous studies have also shown that energetic particle precipitation can lead to large-scale changes in the chemical makeup of the neutral atmosphere by enhancing minor chemical species that play a key role in the ozone balance of the middle atmosphere. However, SIC modelling indicates that the neutral atmospheric changes driven by WEP are insignificant due to the short timescale of the WEP bursts. Overall we find that WEP is a significant energy input into some parts of the lower ionosphere, depending on the latitude/longitude and altitude, but does not play a significant role in the neutral chemistry of the mesosphere.

  19. Relation between the short-term variation of the Jovian radiation belt and thermosphere derived from radio and infrared observations

    Science.gov (United States)

    Kita, Hajime; Misawa, Hiroaki; Bhardwaj, Anil; Tsuchiya, Fuminori; Sakanoi, Takeshi; Kasaba, Yasumasa; Tao, Chihiro; Miyoshi, Yoshizumi; Morioka, Akira

    2015-08-01

    We report the first comprehensive observations of Jovian synchrotron radiation (JSR) and H3+ emission from the Jovian thermosphere to investigate the generation process of short-term (days to weeks) variations in the Jovian radiation belt. The observations were made by the Giant Metrewave Radio Telescope and NASA Infrared Telescope Facility during November 2011. The total flux density of JSR increased by approximately 5% between 6-9 November and 12-17 November, associated with the increased solar UV/EUV flux. From 7 to 14 November, a possible rise in the infrared H3+ emission was observed in the middle-latitude region, corresponding to a temperature variation of approximately 10 K. These results are consistent with the scenario that the solar UV/EUV heating causes variations in the thermospheric temperature and JSR. Radio images along the equatorial region showed that the JSR intensity decreased inside 1.5 Jovian radii (RJ) and the peak position shifted outward. This implies that energetic electrons are attenuated by some internal loss process, despite the simultaneous increase in radial diffusion. A physical model for the radiation belt shows that such an internal loss process can explain the observed variation of brightness distribution. Typical loss time scale is longer than strong diffusion limit, which suggests the existence of some pitch angle diffusion process such as wave-particle interaction. Thus, variations of the total JSR flux density and thermospheric temperature seem consistent with the scenario, and the brightness distribution of JSR can be explained by the increase in radial diffusion accompanied by internal loss processes.

  20. Lightning-driven inner radiation belt energy deposition into the atmosphere: implications for ionisation-levels and neutral chemistry

    Science.gov (United States)

    Rodger, C. J.; Enell, C.-F.; Turunen, E.; Clilverd, M. A.; Thomson, N. R.; Verronen, P. T.

    2007-08-01

    Lightning-generated whistlers lead to coupling between the troposphere, the Van Allen radiation belts and the lower-ionosphere through Whistler-induced electron precipitation (WEP). Lightning produced whistlers interact with cyclotron resonant radiation belt electrons, leading to pitch-angle scattering into the bounce loss cone and precipitation into the atmosphere. Here we consider the relative significance of WEP to the lower ionosphere and atmosphere by contrasting WEP produced ionisation rate changes with those from Galactic Cosmic Radiation (GCR) and solar photoionisation. During the day, WEP is never a significant source of ionisation in the lower ionosphere for any location or altitude. At nighttime, GCR is more significant than WEP at altitudes WEP starts to dominate in North America and Central Europe. Between 75 and 80 km altitude WEP becomes more significant than GCR for the majority of spatial locations at which WEP deposits energy. The size of the regions in which WEP is the most important nighttime ionisation source peaks at ~80 km, depending on the relative contributions of WEP and nighttime solar Lyman-α. We also used the Sodankylä Ion Chemistry (SIC) model to consider the atmospheric consequences of WEP, focusing on a case-study period. Previous studies have also shown that energetic particle precipitation can lead to large-scale changes in the chemical makeup of the neutral atmosphere by enhancing minor chemical species that play a key role in the ozone balance of the middle atmosphere. However, SIC modelling indicates that the neutral atmospheric changes driven by WEP are insignificant due to the short timescale of the WEP bursts. Overall we find that WEP is a significant energy input into some parts of the lower ionosphere, depending on the latitude/longitude and altitude, but does not play a significant role in the neutral chemistry of the mesosphere.

  1. Reproducing the observed energy-dependent structure of Earth's electron radiation belts during storm recovery with an event-specific diffusion model

    Science.gov (United States)

    Ripoll, J.-F.; Reeves, G. D.; Cunningham, G. S.; Loridan, V.; Denton, M.; Santolík, O.; Kurth, W. S.; Kletzing, C. A.; Turner, D. L.; Henderson, M. G.; Ukhorskiy, A. Y.

    2016-06-01

    We present dynamic simulations of energy-dependent losses in the radiation belt "slot region" and the formation of the two-belt structure for the quiet days after the 1 March storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally resolved whistler-mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L shells (2-6) including (a) the strong energy dependence to the radiation belt dynamics (b) an energy-dependent outer boundary to the inner zone that extends to higher L shells at lower energies and (c) an "S-shaped" energy-dependent inner boundary to the outer zone that results from the competition between diffusive radial transport and losses. We find that the characteristic energy-dependent structure of the radiation belts and slot region is dynamic and can be formed gradually in ~15 days, although the "S shape" can also be reproduced by assuming equilibrium conditions. The highest-energy electrons (E > 300 keV) of the inner region of the outer belt (L ~ 4-5) also constantly decay, demonstrating that hiss wave scattering affects the outer belt during times of extended plasmasphere. Through these simulations, we explain the full structure in energy and L shell of the belts and the slot formation by hiss scattering during storm recovery. We show the power and complexity of looking dynamically at the effects over all energies and L shells and the need for using data-driven and event-specific conditions.

  2. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN

    Directory of Open Access Journals (Sweden)

    U. Feister

    2008-01-01

    Full Text Available Artificial Neural Networks (ANN are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980–1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  3. Long-term solar UV radiation reconstructed by Artificial Neural Networks (ANN)

    Science.gov (United States)

    Feister, U.; Junk, J.; Woldt, M.

    2008-01-01

    Artificial Neural Networks (ANN) are efficient tools to derive solar UV radiation from measured meteorological parameters such as global radiation, aerosol optical depths and atmospheric column ozone. The ANN model has been tested with different combinations of data from the two sites Potsdam and Lindenberg, and used to reconstruct solar UV radiation at eight European sites by more than 100 years into the past. Annual totals of UV radiation derived from reconstructed daily UV values reflect interannual variations and long-term patterns that are compatible with variabilities and changes of measured input data, in particular global dimming by about 1980-1990, subsequent global brightening, volcanic eruption effects such as that of Mt. Pinatubo, and the long-term ozone decline since the 1970s. Patterns of annual erythemal UV radiation are very similar at sites located at latitudes close to each other, but different patterns occur between UV radiation at sites in different latitude regions.

  4. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    Directory of Open Access Journals (Sweden)

    J. Koller

    2009-07-01

    Full Text Available We describe here a new method for calculating the magnetic drift invariant, L*, that is used for modeling radiation belt dynamics and for other space weather applications. L* (pronounced L-star is directly proportional to the integral of the magnetic flux contained within the surface defined by a charged particle moving in the Earth's geomagnetic field. Under adiabatic changes to the geomagnetic field L* is a conserved quantity, while under quasi-adiabatic fluctuations diffusion (with respect to a particle's L* is the primary term in equations of particle dynamics. In particular the equations of motion for the very energetic particles that populate the Earth's radiation belts are most commonly expressed by diffusion in three dimensions: L*, energy (or momentum, and pitch angle (the dot product of velocity and the magnetic field vector. Expressing dynamics in these coordinates reduces the dimensionality of the problem by referencing the particle distribution functions to values at the magnetic equatorial point of a magnetic "drift shell" (or L-shell irrespective of local time (or longitude. While the use of L* aids in simplifying the equations of motion, practical applications such as space weather forecasting using realistic geomagnetic fields require sophisticated magnetic field models that, in turn, require computationally intensive numerical integration. Typically a single L* calculation can require on the order of 105 calls to a magnetic field model and each point in the simulation domain and each calculated pitch angle has a different value of L*. We describe here the development and validation of a neural network surrogate model for calculating L* in sophisticated geomagnetic field models with a high degree of fidelity at computational speeds that are millions of times faster than direct numerical field line mapping and integration. This new surrogate model has

  5. Combined scattering loss of radiation belt relativistic electrons by simultaneous three-band EMIC waves: A case study

    Science.gov (United States)

    He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi

    2016-05-01

    Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect of all EMIC emissions and the relative roles of each band in diffusing radiation belt relativistic electrons under realistic circumstances. Our quantitative results, obtained by quasi-linear diffusion rate computations and 1-D pure pitch angle diffusion simulations, demonstrate that the combined resonant scattering by the simultaneous three-band EMIC waves is overall dominated by He+ band wave diffusion, mainly due to its dominance over the wave power (the mean wave amplitudes are approximately 0.4 nT, 1.6 nT, and 0.15 nT for H+, He+, and O+ bands, respectively). Near the loss cone, while 2-3 MeV electrons undergo pitch angle scattering at a rate of the order of 10-6-10-5 s-1, 5-10 MeV electrons can be diffused more efficiently at a rate of the order of 10-3-10-2 s-1, which approaches the strong diffusion level and results in a moderately or heavily filled loss cone for the atmospheric loss. The corresponding electron loss timescales (i.e., lifetimes) vary from several days at the energies of ~2 MeV to less than 1 h at ~10 MeV. This case study indicates the leading contribution of He+ band waves to radiation belt relativistic electron losses during the coexistence of three EMIC wave bands and suggests that the roles of different EMIC wave bands in the relativistic electron dynamics should be carefully incorporated in future modeling efforts.

  6. The JCMT Gould Belt Survey: Evidence for radiative heating in Serpens MWC 297 and its influence on local star formation

    CERN Document Server

    Rumble, D; Gutermuth, R A; Kirk, H; Buckle, J; Beaulieu, S F; Berry, D S; Broekhoven-Fiene, H; Currie, M J; Fich, M; Jenness, T; Johnstone, D; Mottram, J C; Nutter, D; Pattle, K; Pineda, J E; Quinn, C; Salji, C; Tisi, S; Walker-Smith, S; Di Francesco, J; Hogerheijde, M R; Ward-Thompson, D; Allen, L E; Cieza, L A; Dunham, M M; Harvey, P M; Stapelfeldt, K R; Bastien, P; Butner, H; Chen, M; Chrysostomou, A; Coude, S; Davis, C J; Drabek-Maunder, E; Duarte-Cabral, A; Fiege, J; Friberg, P; Friesen, R; Fuller, G A; Graves, S; Greaves, J; Gregson, J; Holland, W; Joncas, G; Kirk, J M; Knee, L B G; Mairs, S; Marsh, K; Matthews, B C; Moriarty-Schieven, G; Rawlings, J; Richer, J; Robertson, D; Rosolowsky, E; Sadavoy, S; Thomas, H; Tothill, N; Viti, S; White, G J; Wilson, C D; Wouterloot, J; Yates, J; Zhu, M

    2014-01-01

    We present SCUBA-2 450\\mu m and 850\\mu m observations of the Serpens MWC 297 region, part of the JCMT Gould Belt Survey of nearby star-forming regions. Simulations suggest that radiative feedback influences the star-formation process and we investigate observational evidence for this by constructing temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two component model of the JCMT beam for a fixed dust opacity spectral index of beta = 1.8. Within 40 of the B1.5Ve Herbig star MWC 297, the submillimetre fluxes are contaminated by free-free emission with a spectral index of 1.03\\pm0.02, consistent with an ultra-compact HII region and polar winds/jets. Contamination accounts for 73\\pm5 per cent and 82\\pm4 per cent of peak flux at 450\\mu m and 850\\mu m respectively. The residual thermal disk of the star is almost undetectable at these wavelengths. Young Stellar Objects are confirmed where SCUBA-2 850\\mu m clumps identified by the fellwalker algorithm coincide with Spitzer Gould Belt Survey d...

  7. Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt

    Science.gov (United States)

    Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Mozer, Forrest; Krasnoselskikh, Vladimir

    2016-04-01

    Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ˜1-10 keV electrons and their acceleration up to 100-300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We demonstrate that the electron energy corresponding to the observed plateau remains in very good agreement with the energy required for Landau resonant interaction with the simultaneously measured oblique chorus waves over 6 h and a wide range of L shells (from 4 to 6) in the outer belt. The efficient parallel acceleration modifies electron pitch angle distributions at energies ˜50-200 keV, allowing us to distinguish the energized population. The observed energy range and the density of accelerated electrons are in reasonable agreement with test particle numerical simulations.

  8. Effect of gamma radiation on some artificial blood substitutes

    International Nuclear Information System (INIS)

    Effects of gamma irradiation of dextran 40,000 and 70,000 with doses of 0.5-4.5 Mrad were investigated. The powdered dextran samples were irradiated in glass vessels. The samples were dried before or after the exposure to radiation. There were determined changes in pH, reducing, buffer capacity, colouration, viscosity of the whole preparations, and viscosity of particular fractions separated by column chromatography. Thin-layer chromatography was used to check the irradiated samples for presence of simple sugars. Radioresistance of dextran preparations proved to be enhanced by drying before the exposure. (author)

  9. Typological classification and the existing condition of artificially established sycamore maple and Norway maple stands in the protective forest belt

    Directory of Open Access Journals (Sweden)

    Milošević Rajko

    2011-01-01

    Full Text Available The study results on the typological classification of the artificially established sycamore maple and Norway maple stands included in the shelterbelt along the „Belgrade-Zagreb“ highway are presented. The environmental conditions of the sycamore and Norway maple plantation have been typologically defined in specific typological entitities at the ecological level (ecological units. In this context, the specific site conditions were characterised and defined as: a Forest of common oak (Tilio-Quercetum crassiusculae typicum on leached chernozem, b Forest of common oak (Tilio-Quercetum crassiusculae typicum on moderately deep to deep calcareous chernozem, c Forest of common oak (Tilio-Quercetum crassiusculae typicum on shallow to moderately deep calcareous chernozem. The inter-relationship between sycamore maple and Norway maple regarding the ecological and coenological optimum differs within the above ecological units. The diversity reflects the sycamore and Norway maple bioecology and the site typology of the particular ecological units.

  10. The importance of energetic particle injections and cross-energy and -species interactions to the acceleration and loss of relativistic electrons in Earth's outer radiation belt (invited talk)

    Science.gov (United States)

    Turner, Drew; Gkioulidou, Matina; Ukhorskiy, Aleksandr; Gabrielse, Christine; Runov, Andrei; Angelopoulos, Vassilis

    2014-05-01

    Earth's radiation belts provide a natural laboratory to study a variety of physical mechanisms important for understanding the nature of energetic particles throughout the Universe. The outer electron belt is a particularly variable population, with drastic changes in relativistic electron intensities occurring on a variety of timescales ranging from seconds to decades. Outer belt variability ultimately results from the complex interplay between different source, loss, and transport processes, and all of these processes are related to the dynamics of the inner magnetosphere. Currently, an unprecedented number of spacecraft are providing in situ observations of the inner magnetospheric environment, including missions such as NASA's THEMIS and Van Allen Probes and ESA's Cluster and operational monitors such as NOAA's GOES and POES constellations. From a sampling of case studies using multi-point observations, we present examples showcasing the significant importance of two processes to outer belt dynamics: energetic particle injections and wave-particle interactions. Energetic particle injections are transient events that tie the inner magnetosphere to the near-Earth magnetotail; they involve the rapid inward transport of plasmasheet particles into the trapping zone in the inner magnetosphere. We briefly review key concepts and present new evidence from Van Allen Probes, GOES, and THEMIS of how these injections provide: 1. the seed population of electrons that are subsequently accelerated locally to relativistic energies in the outer belt and 2. the source populations of ions and electrons that produce a variety of ULF and VLF waves, which are also important for driving outer belt dynamics via wave-particle interactions. Cases of electron acceleration by chorus waves, losses by plasmaspheric hiss and EMIC waves, and radial transport driven by ULF waves will also be presented. Finally, we discuss the implications of this developing picture of the system, namely how

  11. Solar Radiation Measurement Using Raspberry Pi and Its Modelling Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Priya Selvanathan Shanmuga

    2016-01-01

    Full Text Available The advent of solar energy as the best alternative to traditional energy sources has led to an extensive study on the measurement and prediction of solar radiation. Devices such as pyranometer, pyrrheliometer, global UV radiometer are used for the measurement of solar radiation. The solar radiation measuring instruments available at Innovation Center, MIT Manipal were integrated with a Raspberry Pi to allow remote access to the data through the university Local Area Network. The connections of the data loggers and the Raspberry Pi were enclosed in a plastic box to prevent damage from the rainfall and humidity in Manipal. The solar radiation data was used to validate an Artificial Neural Network model which was developed using various meterological data from 2011-2015.

  12. Photostability study of commercial sunscreens submitted to artificial UV irradiation and/or fluorescent radiation.

    Science.gov (United States)

    Romanhole, Rodrigo Colina; Ataide, Janaina Artem; Cefali, Leticia Caramori; Moriel, Patricia; Mazzola, Priscila Gava

    2016-09-01

    Sunscreens contain molecules with the ability to absorb and/or reflect UVA (ultraviolet A) and UVB (ultraviolet B) radiation, thereby preventing this radiation from reaching the epidermis or dermis. Their photo stabilities after exposure to UV radiation are well known and described, but there is little data on the stability of these filters after fluorescent indoors light radiation, such as from light emitted by commercial lamps present in homes and offices. Those lamps can expose people to varying levels of UVB, UVA, visible light, and IR (infrared). This study assesses the photostability of four different commercial products containing chemical sun filters after artificial UV and fluorescent irradiation, correlating the UVB and UVA absorption efficiencies of each product against the different types of radiation. The tested products were applied on a plate of polymethylmethacrylate (PMMA) and irradiated by a solar simulator with specific filters for UVA and UVB and a commercial fluorescent light source. According to the results, three formulations did not show photostability, suffering significant changes in their UV absorption spectra, and one of the selected formulations can be considered photostable. This reinforces the importance of conducting stability studies for sunscreen formulations in different conditions, including under artificial (indoor) light exposure. PMID:27341636

  13. Radiation belt electron precipitation in the upper ionosphere at middle latitudes before strong earthquakes

    CERN Document Server

    Anagnostopoulos, G; Vassiliadis, E

    2010-01-01

    In this article we present examples of a wider study of space-time correlation of electron precipitation event of the Van Allen belts with the position and time of occurrence of strong (M>6.5) earthquakes. The study is based on the analysis of observations of electron bursts (EBs) with energies 70 - 2350 keV at middle geographic latitudes, which were detected by DEMETER satellite (at an altitude of ~700 km). The EBs show a relative peak-to-background increase usually < 100, they have a time duration ~0.5 - 3 min, energy spectrum with peaks moving in higher energies as the satellite moves towards the equator, and highest energy limit <~500 keV. The EBs are observed in the presence of VLF waves. The flux-time profile of the EBs varies in East Asia and Mediterranean Sea at the similar geographic latitudes, due to the differentiation of the magnitude of the earth's magnetic field. The most important result of our study is the characteristic temporal variation of electron precipitation variation which begins...

  14. The genotoxic effects of DNA lesions induced by artificial UV-radiation and sunlight.

    Science.gov (United States)

    Schuch, André Passaglia; Menck, Carlos Frederico Martins

    2010-06-01

    Solar radiation sustains and affects all life forms on Earth. The increase in solar UV-radiation at environmental levels, due to depletion of the stratospheric ozone layer, highlights serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions where radiation-intensity is still higher. Thus, there is the need to evaluate the harmful effects of solar UV-radiation on the DNA molecule as a basis for assessing the risks involved for human health, biological productivity and ecosystems. In order to evaluate the profile of DNA damage induced by this form of radiation and its genotoxic effects, plasmid DNA samples were exposed to artificial-UV lamps and directly to sunlight. The induction of cyclobutane pyrimidine dimer photoproducts (CPDs) and oxidative DNA damage in these molecules were evaluated by means of specific DNA repair enzymes. On the other hand, the biological effects of such lesions were determined through the analysis of the DNA inactivation rate and mutation frequency, after replication of the damaged pCMUT vector in an Escherichia coliMBL50 strain. The results indicated the induction of a significant number of CPDs after exposure to increasing doses of UVC, UVB, UVA radiation and sunlight. Interestingly, these photoproducts are those lesions that better correlate with plasmid inactivation as well as mutagenesis, and the oxidative DNA damages induced present very low correlation with these effects. The results indicated that DNA photoproducts play the main role in the induction of genotoxic effects by artificial UV-radiation sources and sunlight.

  15. On spatial distribution of proton radiation belt from solar cell degradation of Akebono satellite

    Science.gov (United States)

    Miyake, W.; Miyoshi, Y.; Matsuoka, A.

    2013-12-01

    Solar cells on any satellite degrade gradually due to severe space radiation environment. We found a fair correlation between the decrease rate of solar cell output current of Akebono satellite orbiting in the inner magnetosphere and trapped proton flux from AP8 model between 1989 and 1992. After 1993, presumably as a result of long-term degradation, variation of solar cell output seems more susceptible to other causes such as high temperature effect, and simple monthly averaged data show no significant relation between them. One of possible causes for the temperature variation of the solar cells is terrestrial heat radiation with changing orientation of solar cell panels towards the earth and another is solar radiation varied with eccentric earth's orbit around the sun. In order to remove the possible temperature effect, we sort the data expected to be least affected by the terrestrial heat radiation from the orbit conditions, and also analyze difference of the output current for a month from that for the same month in the previous year. The analysis method leads us to successfully track a continuous correlation between the decease rate of solar cell output and energetic trapped proton flux up to 1996. We also discuss the best-fitted spatial distribution of energetic protons from comparison with model calculations.

  16. Supervised artificial neural network-based method for conversion of solar radiation data (case study: Algeria)

    Science.gov (United States)

    Laidi, Maamar; Hanini, Salah; Rezrazi, Ahmed; Yaiche, Mohamed Redha; El Hadj, Abdallah Abdallah; Chellali, Farouk

    2016-01-01

    In this study, a backpropagation artificial neural network (BP-ANN) model is used as an alternative approach to predict solar radiation on tilted surfaces (SRT) using a number of variables involved in physical process. These variables are namely the latitude of the site, mean temperature and relative humidity, Linke turbidity factor and Angstrom coefficient, extraterrestrial solar radiation, solar radiation data measured on horizontal surfaces (SRH), and solar zenith angle. Experimental solar radiation data from 13 stations spread all over Algeria around the year (2004) were used for training/validation and testing the artificial neural networks (ANNs), and one station was used to make the interpolation of the designed ANN. The ANN model was trained, validated, and tested using 60, 20, and 20 % of all data, respectively. The configuration 8-35-1 (8 inputs, 35 hidden, and 1 output neurons) presented an excellent agreement between the prediction and the experimental data during the test stage with determination coefficient of 0.99 and root meat squared error of 5.75 Wh/m2, considering a three-layer feedforward backpropagation neural network with Levenberg-Marquardt training algorithm, a hyperbolic tangent sigmoid and linear transfer function at the hidden and the output layer, respectively. This novel model could be used by researchers or scientists to design high-efficiency solar devices that are usually tilted at an optimum angle to increase the solar incident on the surface.

  17. Active Path Selection of Fluid Microcapsules in Artificial Blood Vessel by Acoustic Radiation Force

    Science.gov (United States)

    Masuda, Kohji; Muramatsu, Yusuke; Ueda, Sawami; Nakamoto, Ryusuke; Nakayashiki, Yusuke; Ishihara, Ken

    2009-07-01

    Micrometer-sized microcapsules collapse upon exposure to ultrasound. Use of this phenomenon for a drug delivery system (DDS), not only for local delivery of medication but also for gene therapy, should be possible. However, enhancing the efficiency of medication is limited because capsules in suspension diffuse in the human body after injection, since the motion of capsules in blood flow cannot be controlled. To control the behavior of microcapsules, acoustic radiation force was introduced. We detected local changes in microcapsule density by producing acoustic radiation force in an artificial blood vessel. Furthermore, we theoretically estimated the conditions required for active path selection of capsules at a bifurcation point in the artificial blood vessel. We observed the difference in capsule density at both in the bifurcation point and in alternative paths downstream of the bifurcation point for different acoustic radiation forces. Comparing the experimental results with those obtained theoretically, the conditions for active path selection were calculated from the acoustic radiation force and fluid resistance of the capsules. The possibility of controlling capsule flow towards a specific point in a blood vessel was demonstrated.

  18. Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Delchini, Marc O., E-mail: delchinm@email.tamu.edu; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim, E-mail: jim.morel@tamu.edu

    2015-09-01

    The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The method of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.

  19. Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics

    International Nuclear Information System (INIS)

    The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The method of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks

  20. Pitch-angle diffusion of electrons through growing and propagating along a magnetic field electromagnetic wave in Earth's radiation belts

    International Nuclear Information System (INIS)

    The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts

  1. Generation of Nonlinear Electric Field Bursts in the Outer Radiation Belt through Electrons Trapping by Oblique Whistler Waves

    Science.gov (United States)

    Agapitov, Oleksiy; Drake, James; Mozer, Forrest

    2016-04-01

    Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.

  2. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 1: Diffusion coefficients and timescales

    Science.gov (United States)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Lyons, L. R.

    1994-01-01

    Protons that are convected into the inner magnetosphere in response to enhanced magnetic activity can resonate with ducted plasmaspheric hiss in the outer plasmasphere via an anomalous Doppler-shifted cyclotron resonance. Plasmaspheric hiss is a right-hand-polarized electromagnetic emission that is observed to fill the plasmasphere on a routine basis. When plasmaspheric hiss is confined within field-aligned ducts or guided along density gradients, wave normal angles remain largely below 45 deg. This allows resonant interactions with ions at typical ring current and radiation belt energies to take place. Such field-aligned ducts have been observed both within the plasmasphere and in regions outside of the plasmasphere. Wave intensities are estimated using statistical information from studies of detached plasma regions. Diffusion coefficients are presented for a range of L shells and proton energies for a fixed wave distribution. Harmonic resonances in the range N = +/-100 are considered in order to include interactions between hiss at 100 Hz to 2 kHz frequencies, and protons in the energy range between approximately 10 keV and 1000 keV. Diffusion timescales are estimated to be of the order of tens of days and comparable to or shorter than lifetimes for Coulomb decay and charge exchange losses over most of the energy and spatial ranges of interest.

  3. Studies of ionising radiation induced bystander effects in 3D artificial tissue system and applications for radiation protection

    International Nuclear Information System (INIS)

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. The bystander effect cannot be comprehensively explained on the basis of a single cell reaction. It is well known that an organism is composed of different cell types that interact as functional units in a way to maintain normal tissue function. Therefore the radiation response is not simply the sum of cellular responses as assumed in classical radiobiology, predominantly from studies using cell cultures. Experimental models, which maintain tissue-like intercellular cell signalling and 3D structure, are essential for proper understanding of the bystander effect. Our work relates to experimentation with novel 3D artificial human tissue systems available from MatTek Corporation (Boston, USA). Air-liquid interface culture technique is used to grow artificial tissues, which allow to model conditions present in vivo. The Gray Cancer Institute (Northwood, UK) charged particle microbeam was used to irradiate tissue samples in a known pattern with a known number of 3He2+ particles or protons. After irradiation, the tissues models were incubated for 3 days, fixed in 10 % NBF, paraffin embedded and then sliced into 5 μm histological sections located at varying distances from the plane of the irradiated cells. We studied in situ apoptosis and markers of differentiation. Significantly elevated bystander induced apoptosis was observed with 3'-OH DNA end-labelling based technique in 3D artificial tissue systems. Our results also suggested an importance of proliferation and differentiation status for bystander

  4. Hydrogen and helium isotope inner radiation belts in the Earth's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. I. Pugacheva

    Full Text Available Radial transport theory for inner radiation zone MeV ions has been extended by combining radial diffusive transport and losses due to Coulomb friction with local generation of D, T and 3He ions from nuclear reactions taking place on the inner edge of the inner radiation zone. Based on interactions between high energy trapped protons and upper atmospheric constituents we have included a nuclear reaction yield D, T and 3He flux source that was numerically derived from a nuclear reaction model code originally developed at the Institute of Nuclear Researches in Moscow, Russia. Magnetospheric transport computations have been made covering the L-shell range L=1.0–1.6. The resulting MeV energy D, T and 3He ion flux distributions show a strong influence of the local nuclear source mechanism on the inner zone energetic D, T and 3He ion content.

    Key words: Atmospheric composition and structure (Thermosphere-composition and chemistry · Magnetospheric physics (Energetic particles · trapped.

  5. Natural and artificial ultraviolet radiation and skin cancer risk: what's new? Proceedings of the SFRP Non-ionizing radiation section round table

    International Nuclear Information System (INIS)

    The Non-ionizing radiation section of the French Society of Radiation Protection (SFRP) organized a technical meeting on the current knowledge of UV mutagenicity mechanisms, on professional exposures and on the risks linked with artificial tanning and their prevention. This document brings together the 3 available presentations (slides) of the talks given at the meeting: 1 - UV induction of DNA photoproducts: recent data (Thierry DOUKI, CEA Grenoble); 2 - Professional exposure to UV radiations (Mathieu BONIOL, IPRI); 3 - Artificial tanning: a major but avoidable public health problem (Jean-Francois DORE, Centre de Recherche en Cancerologie)

  6. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors.

    Science.gov (United States)

    Sasaki, Masao S; Tachibana, Akira; Takeda, Shunichi

    2014-05-01

    Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking. PMID:24366315

  7. Characteristics of Pitch Angle Distributions of 100s Kev Electrons in the Slot Region and Inner Radiation Belt­­­­­­­­

    Science.gov (United States)

    Zhao, H.; Li, X.; Blake, J. B.; Fennell, J.; Claudepierre, S. G.; Baker, D. N.; Jaynes, A. N.; Malaspina, D.

    2014-12-01

    The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100s keV electron PADs below L =4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90°), cap (exceedingly peaking narrowly around 90°) and 90°-minimum (lower flux at 90°) PADs. By examining the characteristics of the PADs of 460 keV electrons for over a year, we find that the 90°-minimum PADs are generally present in the inner belt (Lbelt and relatively constant in the inner belt but changes significantly in the slot region (2mechanism can hardly explain the formation of 90°-minimum PADs at the center of inner belt. These new and compelling observations, made possible by the high-quality measurements of MagEIS, present a challenge for the wave modelers, and future work is still needed to fully understand them.

  8. An artificial-vision responsive to patient motions during computer controlled radiation therapy

    International Nuclear Information System (INIS)

    Purpose/Objectives: Automated precision radiotherapy using multiple conformal and modulated beams, requires monitoring of patient movements during irradiation. Immobilizers relying on patient cooperating in cradles have somewhat reduced positional uncertainties, but others including breathing are largely unknown. We built an artificial vision (AV) device for real-time vision of patient movements, their tracking and quantification. Method and Materials: The Artificial Vision System's 'acuity' and 'reflex' were evaluated in terms of imaged skin spatial resolutions and temporal dispersions measured using a mannequin and a fiduciated harmonic oscillator placed at 100cm isocenter. The device traced skin motion even in poorly lighted rooms without use of explicit skin fiduciation, or using standard radiotherapy skin tattoos. Results: The AV system tracked human skin at vision rates approaching 30Hz and sensitivity of 2mm. It successfully identified and tracked independent skin marks, either natural tattoos or artificial fiducials. Three alert levels triggered when patient movement exceeded preset displacements (2mm/30Hz), motion velocities (5m/sec) or acceleration (2m/sec2). Conclusion: The AV system trigger should suit for patient ventilatory gating and safety interlocking of treatment accelerators, in order to modulate, interrupt, or abort radiation during dynamic therapy

  9. A radiation-induced breast cancer following artificial pneumothorax therapy for pulmonary tuberculosis

    International Nuclear Information System (INIS)

    A case of radiation-induced breast cancer in a woman who had been fluoroscopied repeatedly for control of pneumothorax for pulmonary tuberculosis 35 years before is reported. The breast tissue presumably received about 136 rads or less in three and a half years. In Japan, both prospective and retrospective surveies following multiple fluoroscopies during artificial pneumothorax collaps therapy have failed to show an increase in the risk of subsequent development of primary breast cancer. The dose given to breast tissues in Japanese patients was generally far less than that in the MacKenzie's series. A radiation-induced breast cancer in Japanese literature has not yet been reported. It seems that the lesser doses may explain the reason of this fact. (auth.)

  10. 上海城市河岸带对降雨径流氮垂直去除研究%NITROGEN REMOVAL IN VERTICAL INFILTRATION OF RUNOFF BY ARTIFICIAL GREEN BELT NEAR RIPARIAN IN SHANGHAI

    Institute of Scientific and Technical Information of China (English)

    邓焕广; 王东启; 陈振楼; 周栋; 张菊

    2013-01-01

    在上海市城市河岸带人工绿地建设了微区径流场,进行了5次模拟降雨径流实验,研究了人工绿地岸带下渗流中氮浓度和去除率的时空变化.结果表明:人工绿地岸带对垂直下渗流中氮有显著的净化作用,且主要集中于土壤的0~30 cm以内,TN和NH4+去除率在39.9%和39.8%以上,NO3-+NO2去除率除11月为负值外,其余月份均在10.0%以上;在30~60 cm深度,由于土壤氮的析出导致径流中氮浓度增加,去除率降低;而60~90cm深度的去除率增加.径流场内下渗流中氮浓度具有明显的水平空间变化,随距入水端距离的增加,30 cm深度下渗流中氮浓度先上升后下降;人工绿地岸带对下渗流中氮的净化作用均随淹水时间的延长呈降低趋势,且季节变化明显,在10月和4月具有较高的去除率,0~30 cm内TN、NH4+和NO3+NO2-的去除率可分别达63.5%、89.1%和41.6%以上.%In order to study nitrogen removal in vertical infiltration of runoff by artificial green belt near urban riparian,a micro catchment area was constructed at Changfeng green belt of Suzhou River riparian.Meanwhile permeability of Changfeng green belt was measured by double ring method and soil samples were collected for analysis of physicochemical properties.In situ pore water samplers were used to collect samples of vertical infiltration at different depth in the micro catchment area,which were distributed from surface runoff flowing 1 m,11 m,18 m,21 m at depth of 30 cm,60 cm and 90 cm.3 pore water samplers were buried at each depth.The water in Suzhou River containing higher nitrogen concentrations than the corresponding type V standard values of the GB 3838-2002 National Environmental Quality Standards for Surface Water was fit to simulate runoff.Therefore,5 rainfall runoff stimulation experiments were carried out at Changfeng artificial green belt using water of Suzhou River at October,November of 2010 and April,June,August of 2011.Spatial

  11. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation

    Science.gov (United States)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2016-08-01

    In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.

  12. Towards OpenGGCM 4.0. Simulating the global magnetosphere with ring current, radiation belts, plasmasphere, and hall MHD

    International Nuclear Information System (INIS)

    Complete text of publication follows. The OpenGGCM is a global numerical model of geospace, covering the Earth's magnetosphere, ionosphere, and thermosphere. Although housed at the University of New Hampshire, it is a community model that is available to any researcher for runs on demand at the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov). Like any numerical model it is not perfect and thus subject to continuous development work to add more physics, make it more robust, and to improve performance. In this presentation we will outline a number of ongoing improvements to the model. First, the OpenGGCM is being coupled with the RCM (Rice Convection Model) and CRCM (Comprehensive Ring Current Model) models of the inner magnetosphere. This coupling should improve the realism of the model close to Earth, where particle drift physics is important. The coupling is in both directions, where the RC models receive the ionosphere potential, the magnetic topology, and plasma parameters at the boundaries from the OpenGGCM, and in the opposite direction the OpenGGCM receives pressure and density in the inner magnetosphere, as well as field aligned current and e- precipitation. Second, we couple the NASA/GSFC RBM (Radiation Belt Model) to the OpenGGCM. In this case the coupling is only one way, i.e., the RBM receives particle sources and magnetic topology from the OpenGGCM. Third, we replace the current ionosphere-thermosphere module, CTIM, with the new GT-GIP, which also includes a self-consistent plasmasphere model. Finally, we replace the MHD formalism in the magnetosphere with a Hall-MHD formalism, which is primarily of importance for magnetic reconnection. The new upgraded model will eventually become version 4.0 at the CCMC.

  13. Real time determination of dose radiation through artificial intelligence and virtual reality

    International Nuclear Information System (INIS)

    In the last years, a virtual environment of Argonauta research reactor, sited in the Instituto de Engenharia Nuclear (Brazil), has been developed. Such environment, called here Argonauta Virtual (AV), is a 3D model of the reactor hall, in which virtual people (avatar) can navigate. In AV, simulations of nuclear sources and doses are possible. In a recent work, a real time monitoring system (RTMS) was developed to provide (by means of Ethernet TCP/IP) the information of area detectors situated in the reactor hall. Extending the scope of AV, this work is intended to provide a continuous determination of gamma radiation dose in the reactor hall, based in several monitored parameters. To accomplish that a module based in artificial neural network (ANN) was developed. The ANN module is able to predict gamma radiation doses using as inputs: the avatar position (from virtual environment), the reactor power (from RTMS) and information of fixed area detectors (from RTMS). The ANN training data has been obtained by measurements of gamma radiation doses in a mesh of points, with previously defined positions, for different power levels. Through the use of ANN it is possible to estimate, in real time, the dose received by a person at any position in Argonauta reactor hall. Such approach allows tasks simulations and training of people inside the AV system, without exposing them to radiation effects. (author)

  14. Real time determination of dose radiation through artificial intelligence and virtual reality

    International Nuclear Information System (INIS)

    In the last years, a virtual environment of Argonauta research reactor, sited in the Instituto de Engenharia Nuclear (Brazil), has been developed. Such environment, called here Argonauta Virtual (AV), is a 3D model of the reactor hall, in which virtual people (avatar) can navigate. In AV, simulations of nuclear sources and doses are possible. In a recent work, a real time monitoring system (RTMS) was developed to provide (by means of Ethernet TCP/I P) the information of area detectors situated in the reactor hall. Extending the scope of AV, this work is intended to provide a continuous determination of gamma radiation dose in the reactor hall, based in several monitored parameters. To accomplish that a module based in artificial neural network (ANN) was developed. The ANN module is able to predict gamma radiation doses using as inputs: the avatar position (from virtual environment), the reactor power (from RTMS) and information of fixed area detectors (from RTMS). The ANN training data has been obtained by measurements of gamma radiation doses in a mesh of points, with previously defined positions, for different power levels. Through the use of ANN it is possible to estimate, in real time, the dose received by a person at any position in Argonauta reactor hall. Such approach allows tasks simulations and training of people inside the AV system, without exposing them to radiation effects. (author)

  15. Prediction of monthly mean daily global solar radiation using Artificial Neural Network

    Indian Academy of Sciences (India)

    V Sivamadhavi; R Samuel Selvaraj

    2012-12-01

    In this study, a multilayer feed forward (MLFF) neural network based on back propagation algorithm was developed, trained, and tested to predict monthly mean daily global radiation in Tamil Nadu, India. Various geographical, solar and meteorological parameters of three different locations with diverse climatic conditions were used as input parameters. Out of 565 available data, 530 were used for training and the rest were used for testing the artificial neural network (ANN). A 3-layer and a 4-layer MLFF networks were developed and the performance of the developed models was evaluated based on mean bias error, mean absolute percentage error, root mean squared error and Student’s -test. The 3-layer MLFF network developed in this study did not give uniform results for the three chosen locations. Hence, a 4-layer MLFF network was developed and the average value of the mean absolute percentage error was found to be 5.47%. Values of global radiation obtained using the model were in excellent agreement with measured values. Results of this study show that the designed ANN model can be used to estimate monthly mean daily global radiation of any place in Tamil Nadu where measured global radiation data are not available.

  16. Radiological impact of natural and artificial sources of ionizing radiation. Report UNSCEAR 2000

    International Nuclear Information System (INIS)

    The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was established by the General Assembly in 1995. It has the mandate to assess the levels and effects of ionizing radiation. During the last years UNSCEAR has undertaken a broad review of the natural and artificial sources of ionizing radiation. The results of these evaluations have been presented in a Report to the General Assembly with Scientific Annexes including extensive data for the world community (Report UNSCEAR 2000). The greatest contribution to radiation exposure comes from natural background sources. There are considerable variation in the exposures of the population depending on the altitude and latitude, characteristics of the soil and diet and the construction and ventilation features of houses. The global annual average per caput is 2.4 mSv with typical range 1 to 10 mSv. The next largest component comes from medical radiation examinations and treatments with an annual average of 0.4 mSv ranging from 0.04 to 1.0 mSv depending on the level o f medical care. The man-made practices, activities, and events in which radionuclides are released to the environment are always of much concern, but usually they contribute quite low to radiation exposure to humans. Atmospheric testing caused the greatest releases but nowadays very low residual annual levels of exposures persist (0.005 mSv). Nuclear Power production is responsible for only very low exposure and may reach in the future an average annual level of 0.0002 mSv. (Author)

  17. Fast radiative transfer of dust reprocessing in semi-analytic models with artificial neural networks

    CERN Document Server

    Silva, Laura; Granato, Gian Luigi

    2012-01-01

    A serious concern for semi-analytical galaxy formation models, aiming to simulate multi-wavelength surveys and to thoroughly explore the model parameter space, is the extremely time consuming numerical solution of the radiative transfer of stellar radiation through dusty media. To overcome this problem, we have implemented an artificial neural network algorithm in the radiative transfer code GRASIL, in order to significantly speed up the computation of the infrared SED. The ANN we have implemented is of general use, in that its input neurons are defined as those quantities effectively determining the shape of the IR SED. Therefore, the training of the ANN can be performed with any model and then applied to other models. We made a blind test to check the algorithm, by applying a net trained with a standard chemical evolution model (i.e. CHE_EVO) to a mock catalogue extracted from the SAM MORGANA, and compared galaxy counts and evolution of the luminosity functions in several near-IR to sub-mm bands, and also t...

  18. Effects of {gamma}-radiation on the fungus Alternaria alternata in artificially inoculated cereal samples

    Energy Technology Data Exchange (ETDEWEB)

    Braghini, R. [Departamento de Microbiologia, Instituto de Ciencias Biomedicas II, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-900 Sao Paulo (Brazil)], E-mail: raquelbraghini@yahoo.com.br; Pozzi, C.R. [Instituto de Zootecnia, Rua Heitor Penteado 56, CEP 13460-000, Nova Odessa, Sao Paulo (Brazil); Aquino, S. [Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355 , CEP 01246-902, Sao Paulo (Brazil); Rocha, L.O.; Correa, B. [Departamento de Microbiologia, Instituto de Ciencias Biomedicas II, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 1374, CEP 05508-900 Sao Paulo (Brazil)

    2009-09-15

    The objective of this study was to evaluate the effects of different {gamma}-radiation doses on the growth of Alternaria alternata in artificially inoculated cereal samples. Seeds and grains were divided into four groups: Control Group (not irradiated), and Groups 1, 2 and 3, inoculated with an A. alternata spore suspension (1x10{sup 6} spores/mL) and exposed to 2, 5 and 10 kGy, respectively. Serial dilutions of the samples were prepared and seeded on DRBC (dichloran rose bengal chloramphenicol agar) and DCMA (dichloran chloramphenicol malt extract agar) media, after which the number of colony-forming units per gram was determined in each group. In addition, fungal morphology after irradiation was analyzed by scanning electron microscopy (SEM). The results showed that ionizing radiation at a dose of 5 kGy was effective in reducing the growth of A. alternata. However, a dose of 10 kGy was necessary to inhibit fungal growth completely. SEM made it possible to visualize structural alterations induced by the different {gamma}-radiation doses used.

  19. An optimisation methodology of artificial neural network models for predicting solar radiation: a case study

    Science.gov (United States)

    Rezrazi, Ahmed; Hanini, Salah; Laidi, Maamar

    2016-02-01

    The right design and the high efficiency of solar energy systems require accurate information on the availability of solar radiation. Due to the cost of purchase and maintenance of the radiometers, these data are not readily available. Therefore, there is a need to develop alternative ways of generating such data. Artificial neural networks (ANNs) are excellent and effective tools for learning, pinpointing or generalising data regularities, as they have the ability to model nonlinear functions; they can also cope with complex `noisy' data. The main objective of this paper is to show how to reach an optimal model of ANNs for applying in prediction of solar radiation. The measured data of the year 2007 in Ghardaïa city (Algeria) are used to demonstrate the optimisation methodology. The performance evaluation and the comparison of results of ANN models with measured data are made on the basis of mean absolute percentage error (MAPE). It is found that MAPE in the ANN optimal model reaches 1.17 %. Also, this model yields a root mean square error (RMSE) of 14.06 % and an MBE of 0.12. The accuracy of the outputs exceeded 97 % and reached up 99.29 %. Results obtained indicate that the optimisation strategy satisfies practical requirements. It can successfully be generalised for any location in the world and be used in other fields than solar radiation estimation.

  20. Identification of Age, Temperature and Radiation Effect on Ferritic Steel Microstructure Based on Artificial Intelligence

    International Nuclear Information System (INIS)

    In the construction of nuclear installation, it is important to know the material condition used on it. Considering mechanical properties of these materials, there are some material change affected by ageing, temperature and radiation. For some years, austenitic stainless steel are used as a fuel cladding in fast breeder reactor. However this material will not sufficiently competitive from economic point of view for the next year. Experiment result on ferritic steel gave information of stronger structural properties compared to austenitic stainless steel. Modeling and simulation will support further identification of this material changing caused by such effects. Pattern recognition of these changes base on artificial intelligence is expected to support the research and development activities on nuclear structure materials. Material structure pattern of these materials, observed by SEM, are converted using image processing system. Its characteristic is then analyzed with principal component using perception method, which usually used on identifying and learning neural network system based on artificial intelligence. Specific design and input are needed to identify the change of material structure pattern before and after any applied effect. In this paper, simulation of changing identification on three types ferritic steel F17(17 Cr), EM 12 (9 CR-2 MoNbV), and EMI 0 (9 Cr-I Mo) were done. The microstructure data before and after effect are taken from some references. The whole pattern recognition process are done using MATLAB software package. (author)

  1. Neural Network on Photodegradation of Octylphenol using Natural and Artificial UV Radiation

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2011-09-01

    Full Text Available The present paper comes up with an experimental design meant to point out the factors interferingin octylphenol’s degradation in surface waters under solar radiation, underlining each factor’sinfluence on the process observable (concentration of p-octylphenol. Multiple linear regressionanalysis and artificial neural network (Multi-Layer Perceptron type were applied in order to obtaina mathematical model capable to explain the action of UV-light upon synthetic solutions of OP inultra-pure water (MilliQ type. Neural network proves to be the most efficient method in predictingthe evolution of OP concentration during photodegradation process. Thus, determination in neuralnetwork’s case has almost double value versus the regression analysis.

  2. ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION

    Directory of Open Access Journals (Sweden)

    Luiz Albino Teixeira Júnior

    2015-04-01

    Full Text Available This paper proposes a method (denoted by WD-ANN that combines the Artificial Neural Networks (ANN and the Wavelet Decomposition (WD to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1 are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN improved substantially the performance over the (traditional ANN method.

  3. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 2. Time evolution of the distribution function

    Science.gov (United States)

    Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.

    1995-11-01

    The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this

  4. LANL* V1.0: a radiation belt drift shell model suitable for real-time and reanalysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Koller, Josep [Los Alamos National Laboratory; Reeves, Geoffrey D [Los Alamos National Laboratory; Friedel, Reiner H W [Los Alamos National Laboratory

    2008-01-01

    Space weather modeling, forecasts, and predictions, especially for the radiation belts in the inner magnetosphere, require detailed information about the Earth's magnetic field. Results depend on the magnetic field model and the L* (pron. L-star) values which are used to describe particle drift shells. Space wather models require integrating particle motions along trajectories that encircle the Earth. Numerical integration typically takes on the order of 10{sup 5} calls to a magnetic field model which makes the L* calculations very slow, in particular when using a dynamic and more accurate magnetic field model. Researchers currently tend to pick simplistic models over more accurate ones but also risking large inaccuracies and even wrong conclusions. For example, magnetic field models affect the calculation of electron phase space density by applying adiabatic invariants including the drift shell value L*. We present here a new method using a surrogate model based on a neural network technique to replace the time consuming L* calculations made with modern magnetic field models. The advantage of surrogate models (or meta-models) is that they can compute the same output in a fraction of the time while adding only a marginal error. Our drift shell model LANL* (Los Alamos National Lab L-star) is based on L* calculation using the TSK03 model. The surrogate model has currently been tested and validated only for geosynchronous regions but the method is generally applicable to any satellite orbit. Computations with the new model are several million times faster compared to the standard integration method while adding less than 1% error. Currently, real-time applications for forecasting and even nowcasting inner magnetospheric space weather is limited partly due to the long computing time of accurate L* values. Without them, real-time applications are limited in accuracy. Reanalysis application of past conditions in the inner magnetosphere are used to understand

  5. Investigation of the solar UV/EUV heating effect on the Jovian radiation belt by GMRT-IRTF observation

    Science.gov (United States)

    Kita, H.; Misawa, H.; Bhardwaj, A.; Tsuchiya, F.; Tao, C.; Uno, T.; Kondo, T.; Morioka, A.

    2012-12-01

    Jupiter's synchrotron radiation (JSR) is the emission from relativistic electrons, and it is the most effective probe for remote sensing of Jupiter's radiation belt from the Earth. Recent intensive observations of JSR revealed short term variations of JSR with the time scale of days to weeks. Brice and McDonough (1973) proposed a scenario for the short term variations; i.e, the solar UV/EUV heating for Jupiter's upper atmosphere causes enhancement of total flux density. The purpose of this study is to investigate whether sufficient solar UV/EUV heating in Jupiter's upper atmosphere can actually causes variation in the JSR total flux and brightness distribution. Previous JSR observations using the Giant Metrewave Radio Telescope (GMRT) suggested important characteristics of short term variations; relatively low energy particles are accelerated by some acceleration processes which might be driven by solar UV/EUV heating and/or Jupiter's own magnetic activities. In order to evaluate the effect of solar UV/EUV heating on JSR variations, we made coordinated observations using the GMRT and NASA Infra-Red Telescope Facility (IRTF). By using IRTF, we can estimate the temperature of Jupiter's upper atmosphere from spectroscopic observation of H_3^+ infrared emission. Hence, we can evaluate the relationship between variations in Jupiter's upper atmosphere initiated by the solar UV/EUV heating and its linkage with the JSR. The GMRT observations were made during Nov. 6-17, 2011 at the frequency of 235/610MHz. The H_3^+ 3.953 micron line was observed using the IRTF during Nov. 7-12, 2011. During the observation period, the solar UV/EUV flux variations expected on Jupiter showed monotonic increase. A preliminary analysis of GMRT 610MHz band showed a radio flux variation similar to that in the solar UV/EUV. Radio images showed that the emission intensity increased at the outer region and the position of equatorial peak emission moved in the outward direction. If radial diffusion

  6. Processes of radiation-induced defect formation in quartz. III. Artificial amethyst

    International Nuclear Information System (INIS)

    It is shown that during gamma irradiation of r-crystals of amethyst in the dose range 104-106 R there are processes of migration of electron-alkali ion pairs (e-, Me+) and e-, H+ from O- Me+ and O-H+ groups of structural defects to triply coordinate Si↑ ions near interstitial iron ions. These processes create the necessary conditions for occurrence in the dose range 3 x 105-107 R of processes of countermigration of Me+ and H+ ions. With irradiation of amethyst by doses of over 106 R, the formation of marked concentrations of broken Si-O bonds causes the processes of migration of pairs e-, Me+ from growth defects to these radiation traps. The proposed model of radiation-stimulated processes explains the kinetics of the change in the main parameters of the optical absorption spectra in the UV, visible, and IR regions, acoustic (f = 1 MHz) and dielectric (f = 1 kHz) losses of artificial amethyst under gamma irradiation

  7. Antioxidant responses of damiana (Turnera diffusa Willd to exposure to artificial ultraviolet (UV radiation in an in vitro model: part II; UV-B radiation

    Directory of Open Access Journals (Sweden)

    Lluvia de Abril Alexandra Soriano-Melgar

    2014-05-01

    Full Text Available Introduction: Ultraviolet type B (UV-B radiation effects on medicinal plants have been recently investigated in the context of climate change, but the modifications generated by UV-B radiation might be used to increase the content of antioxidants, including phenolic compounds. Objective: To generate information on the effect of exposure to artificial UV-B radiation at different high-doses in the antioxidant content of damiana plants in an in vitro model. Methods: Damiana plantlets (tissue cultures in Murashige-Skoog medium were irradiated with artificial UV-B at 3 different doses (1 0.5 ± 0.1 mW cm-2 (high for 2 h daily, (2 1 ± 0,1 mW cm-2 (severe for 2 h daily, or (3 1 ± 0.1 mW cm-2 for 4 h daily during 3 weeks. The concentration of photosynthetic pigments (chlorophylls a and b, carotenoids, vitamins (C and E and total phenolic compounds, the enzymatic activity of superoxide dismutase (SOD, EC 1.15.1.1 and total peroxidases (POX, EC 1.11.1, as well as total antioxidant capacity and lipid peroxidation levels were quantified to assess the effect of high artificial UV-B radiation in the antioxidant content of in vitro damiana plants. Results: Severe and high doses of artificial UV-B radiation modified the antioxidant content by increasing the content of vitamin C and decreased the phenolic compound content, as well as modified the oxidative damage of damiana plants in an in vitro model. Conclusion: UV-B radiation modified the antioxidant content in damiana plants in an in vitro model, depending on the intensity and duration of the exposure.

  8. Changes in the width of the tropical belt due to simple radiative forcing changes in the GeoMIP simulations

    Science.gov (United States)

    Davis, Nicholas A.; Seidel, Dian J.; Birner, Thomas; Davis, Sean M.; Tilmes, Simone

    2016-08-01

    Model simulations of future climates predict a poleward expansion of subtropical arid climates at the edges of Earth's tropical belt, which would have significant environmental and societal impacts. This expansion may be related to the poleward shift of the Hadley cell edges, where subsidence stabilizes the atmosphere and suppresses precipitation. Understanding the primary drivers of tropical expansion is hampered by the myriad forcing agents in most model projections of future climate. While many previous studies have examined the response of idealized models to simplified climate forcings and the response of comprehensive climate models to more complex climate forcings, few have examined how comprehensive climate models respond to simplified climate forcings. To shed light on robust processes associated with tropical expansion, here we examine how the tropical belt width, as measured by the Hadley cell edges, responds to simplified forcings in the Geoengineering Model Intercomparison Project (GeoMIP). The tropical belt expands in response to a quadrupling of atmospheric carbon dioxide concentrations and contracts in response to a reduction in the solar constant, with a range of a factor of 3 in the response among nine models. Models with more surface warming and an overall stronger temperature response to quadrupled carbon dioxide exhibit greater tropical expansion, a robust result in spite of inter-model differences in the mean Hadley cell width, parameterizations, and numerical schemes. Under a scenario where the solar constant is reduced to offset an instantaneous quadrupling of carbon dioxide, the Hadley cells remain at their preindustrial width, despite the residual stratospheric cooling associated with elevated carbon dioxide levels. Quadrupled carbon dioxide produces greater tropical belt expansion in the Southern Hemisphere than in the Northern Hemisphere. This expansion is strongest in austral summer and autumn. Ozone depletion has been argued to cause

  9. Long-term observations of keV ion and electron variability in the outer radiation belt from CRRES

    International Nuclear Information System (INIS)

    The distribution of energetic electrons and ions with L-value (LST. These enhancements decay over less than 30 days. There is evidence of a magnetospheric electron and ion acceleration mechanism of considerable strength and efficiency. Very intense periods of activity can lead to the creation of an additional, high-energy belt in the slot region, which persists over a a period of many months. 11 refs., 1 fig

  10. Predicting Global Solar Radiation Using an Artificial Neural Network Single-Parameter Model

    Directory of Open Access Journals (Sweden)

    Karoro Angela

    2011-01-01

    Full Text Available We used five years of global solar radiation data to estimate the monthly average of daily global solar irradiation on a horizontal surface based on a single parameter, sunshine hours, using the artificial neural network method. The station under the study is located in Kampala, Uganda at a latitude of 0.19°N, a longitude of 32.34°E, and an altitude of 1200 m above sea level. The five-year data was split into two parts in 2003–2006 and 2007-2008; the first part was used for training, and the latter was used for testing the neural network. Amongst the models tested, the feed-forward back-propagation network with one hidden layer (65 neurons and with the tangent sigmoid as the transfer function emerged as the more appropriate model. Results obtained using the proposed model showed good agreement between the estimated and actual values of global solar irradiation. A correlation coefficient of 0.963 was obtained with a mean bias error of 0.055 MJ/m2 and a root mean square error of 0.521 MJ/m2. The single-parameter ANN model shows promise for estimating global solar irradiation at places where monitoring stations are not established and stations where we have one common parameter (sunshine hours.

  11. Real time determination of dose radiation through artificial intelligence and virtual reality; Determinacao de dose de radiacao, em tempo real, atraves de inteligencia artificial e realidade virtual

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Victor Goncalves Gloria

    2009-07-01

    In the last years, a virtual environment of Argonauta research reactor, sited in the Instituto de Engenharia Nuclear (Brazil), has been developed. Such environment, called here Argonauta Virtual (AV), is a 3D model of the reactor hall, in which virtual people (avatar) can navigate. In AV, simulations of nuclear sources and doses are possible. In a recent work, a real time monitoring system (RTMS) was developed to provide (by means of Ethernet TCP/I P) the information of area detectors situated in the reactor hall. Extending the scope of AV, this work is intended to provide a continuous determination of gamma radiation dose in the reactor hall, based in several monitored parameters. To accomplish that a module based in artificial neural network (ANN) was developed. The ANN module is able to predict gamma radiation doses using as inputs: the avatar position (from virtual environment), the reactor power (from RTMS) and information of fixed area detectors (from RTMS). The ANN training data has been obtained by measurements of gamma radiation doses in a mesh of points, with previously defined positions, for different power levels. Through the use of ANN it is possible to estimate, in real time, the dose received by a person at any position in Argonauta reactor hall. Such approach allows tasks simulations and training of people inside the AV system, without exposing them to radiation effects. (author)

  12. Study of energetic electrons in the outer radiation-belt regions using data obtained by the LLL spectrometer on OGO-5 in 1968

    International Nuclear Information System (INIS)

    An account is given of measurements of electrons made by the LLL magnetic electron spectrometer (60 to 3000 keV in seven differential energy channels) on the Ogo-5 satellite in the earth's outer-belt regions during 1968 and early 1969. The data were analyzed specifically to determine pitch-angle diffusion lifetimes as a function of energy in the L-range 2 to 5. As a part of this effort, the general dynamics of these regions were studied in terms of the time-dependent energy spectra, and pitch-angle distributions for the seven energy groups were obtained as a function of L with representative values presented for L = 2.5 to 6. The pitch-angle-diffusion results were used to analyze the dynamics of the electrons injected following the intense storms on October 31 and November 1, 1968, in terms of radial diffusion; the derived diffusion coefficients provide a quite reasonable picture of electron transport in the radiation belts. Both the radial- and pitch-angle-diffusion results are compared with earlier results. 53 references

  13. Select the most relevant input parameters using WEKA for models forecast Solar radiation based on Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Somaieh Ayalvary

    2015-11-01

    Full Text Available Forecasting solar radiation is important for many applications in research related to renewable energy. Solar radiation is forecasted by solar radiation forecast models including the traditional models and artificial neural network (ANN based model. There are geographical and meteorological variables that affect the solar radiation, thus identifying the appropriate variables to forecast solar radiation correctly is an important issue in the research area. Accordingly Waikato Environment for Knowledge Analysis (WEKA Software was used in 11 points in Guilan based on different weather conditions to find the most effective input parameters to forecast solar radiation in different ANN models. Input parameters include latitude, longitude, maximum wind speed, average temperatures in each month, the average maximum air temperature, average minimum air temperature, sunshine, monthly rainfall, maximum rainfall in a day  for different cities of Gilan. In order to check the reliability of the forecasts by known parameters, three ANN models have developed (ANN-1, ANN-2 and ANN-3. The maximum MAPE for ANN-1, ANN-2 and ANN-3 equals 22.15%, 20.29% and 22.14%, respectively indicating 1.86% improvement in the accuracy in the prediction of ANN-2. 

  14. A hopfield-like artificial neural network for solving inverse radiation transport problems

    International Nuclear Information System (INIS)

    In this thesis, we solve inverse radiation transport problems by an Artificial Neural Network(ANN) approach. ANNs have many interesting properties such as nonlinear, parallel, and distributed processing. Some of the promising applications of ANNs are optimization, image and signal processing, system control, etc. In some optimization problems, Hopfield Neural Network(HNN) which has one-layered and fully interconnected neurons with feed-back topology showed that it worked well with acceptable fault tolerance and efficiency. The identification of radioactive source in a medium with a limited number of external detectors is treated as an inverse radiation transport problem in this work. This kind of inverse problem is usually ill-posed and severely under-determined; however, its applications are very useful in many fields including medical diagnosis and nondestructive assay of nuclear materials. Therefore, it is desired to develop efficient and robust solution algorithms. Firstly, we study a representative ANN model which has learning ability and fault tolerance, i.e., feed-forward neural network. It has an error backpropagation learning algorithm processed by reducing error in learning patterns that are usually results of test or calculation. Although it has enough fault tolerance and efficiency, a major obstacle is 'curse of dimensionality'--required number of learning patterns and learning time increase exponentially proportional to the problem size. Therefore, in this thesis, this type of ANN is used as benchmarking the reliability of the solution. Secondly, another approach for solving inverse problems, a modified version of HNN is proposed. When diagonal elements of the interconnection matrix are not zero, HNN may become unstable. However, most problems including this identification problem contain non-zero diagonal elements when programmed on neural networks. According to Soulie et al., discrete random iterations could produce the stable minimum state

  15. Hourly photosynthetically active radiation estimation in Midwestern United States from artificial neural networks and conventional regressions models

    Science.gov (United States)

    Yu, Xiaolei; Guo, Xulin

    2016-08-01

    The relationship between hourly photosynthetically active radiation (PAR) and the global solar radiation ( R s ) was analyzed from data gathered over 3 years at Bondville, IL, and Sioux Falls, SD, Midwestern USA. These data were used to determine temporal variability of the PAR fraction and its dependence on different sky conditions, which were defined by the clearness index. Meanwhile, models based on artificial neural networks (ANNs) were established for predicting hourly PAR. The performance of the proposed models was compared with four existing conventional regression models in terms of the normalized root mean square error (NRMSE), the coefficient of determination ( r 2), the mean percentage error (MPE), and the relative standard error (RSE). From the overall analysis, it shows that the ANN model can predict PAR accurately, especially for overcast sky and clear sky conditions. Meanwhile, the parameters related to water vapor do not improve the prediction result significantly.

  16. Influences of cosmic radiation, artificial radioactivity and aerosol concentration upon the fair-weather atmospheric electric field in Lisbon (1955–1991)

    OpenAIRE

    Serrano, Claudia; Reis, A. Heitor; Rosa, Rui; P. S. Lucio

    2006-01-01

    The atmospheric electric field is influenced by cosmic radiation, radioactivity and aerosols. In this work we investigate the existence of: (i) correlations between relative anomalies of annual values of atmospheric electric field and cosmic radiation intensity, artificial radioactivity and aerosol concentration; (ii) seasonal correlations between relative anomalies of the atmospheric electric field and cosmic radiation intensity. We used data of the electric field strength recorded at the Po...

  17. Characteristics of flux-time profiles, temporal evolution, and spatial distribution of radiation-belt electron precipitation bursts in the upper ionosphere before great and giant earthquakes

    Directory of Open Access Journals (Sweden)

    Sergey Pulinets

    2012-04-01

    Full Text Available

    The analysis of energetic electron observations made by the DEMETER satellite reveals that radiation belt electron precipitation (RBEP bursts are observed in general several (~1-6 days before a large (M > 6.5 earthquake (EQ in the presence of broad band (~1-20 kHz VLF waves. The EBs show in general a relative peak-to-background flux increase usually < 100, they have a time duration of ~0.5 – 3 min, and their energy spectrum reach up to energies <~500 keV. The RBEP activity is observed as one, two or three EBs throughout a semi-orbit, depended on the magnetic field structure above the EQ epicenter. A statistical analysis has been made for earthquakes in Japan, which reveals a standard temporal variation of the number of EBs, which begins with an incremental rate several days before major earthquakes, and after a maximum, decreases so that the electron precipitation ceases above the epicenter. Some earthquake induced EBs were observed not only in the nightside ionosphere, but also in the dayside ionosphere.

     

  18. Energy ranges and pitch angles of outer radiation belt electrons depleted by an intense dayside hydrogen band EMIC wave event on February 23, 2014

    Science.gov (United States)

    Engebretson, M. J.; Posch, J. L.; Huang, C. L.; Kanekal, S. G.; Fok, M. C. H.; Rodger, C. J.; Smith, C. W.; Spence, H. E.; Baker, D. N.; Kletzing, C.; Wygant, J. R.

    2015-12-01

    Although most studies of the effect of EMIC waves on relativistic electrons have focused on wave events in the afternoon sector in the outer plasmasphere or plume region, strong magnetospheric compressions provide an additional stimulus for EMIC wave generation across a large range of local times and L shells. We present here observations of the effects of an intense, long-duration hydrogen band EMIC wave event on February 23, 2014 that was stimulated by a gradual 4-hour rise and subsequent sharp increases in solar wind pressure. Large-amplitude linearly polarized hydrogen band EMIC waves (up to 25 nT p-p) that included triggered emissions appeared for over 4 hours at both Van Allen Probes while these spacecraft were outside the plasmapause, in a region with densities ~5-20 cm-3, as they passed near apogee from late morning through local noon. Observations of radiation belt electrons by the REPT and MagEIS instruments on these spacecraft showed that these waves caused significant depletions of more field-aligned electrons at ultrarelativistic energies from 5.2 MeV down to ~2 MeV, and some depletions at energies down to below 1 MeV as well.

  19. Energetic heavy ions with nuclear charge Z greater than or equal to 4 in the equatorial radiation belts of the earth - Magnetic storms

    Science.gov (United States)

    Spjeldvik, W. N.; Fritz, T. A.

    1981-01-01

    Direct in situ observations of trapped energetic heavy ions with nuclear charge Z greater than or equal to 4 at energies in the lower MeV range made with Explorer 45 during the period June-December 1972 are presented. It is noted that all measurements were carried out in the vicinity of the geomagnetic equatorial plane and that the data show the varying effects of four major magnetic storm periods. Orders of magnitude increases in the trapped heavy ion population are seen deep within the radiation belts following the August 1972 solar flare and magnetic storm events. Fluxes of the Z greater than or equal to 4 ions are found to decay faster than those of helium ions of comparable energies; typical decay times for these ions are found to be 24-40 days at L less than or equal to 4 and shorter at higher L shells. The observations are compared with the expected post-injection long-term behavior of atomic oxygen ions deduced from charge exhange, radial diffusive transport, and Coulomb collisions. Good agreement is found between theory and observations.

  20. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  1. Non-Linear Model for the Disturbance of Electronics in by High Energy Electron Plasmas in the Van Allen Radiation Belts

    Science.gov (United States)

    Atkinson, William

    2009-11-01

    A model is presented that models the disturbance of electrical components by high energy electrons trapped in the Van Allen radiation belts; the model components consists of module computing the electron fluence rate given the altitude, the time of the year, and the sunspot number, a module that transports the electrons through the materials of the electrical component, and a module that computes the charge and electrical fields of the insulating materials as a function of time. A non-linear relationship (the Adameic-Calderwood equation) for the variation of the electrical conductivity with the electrical field strength is used as the field intensities can be quite high due to the small size of the electrical components and the high fluence rate of the electrons. The results show that the electric fields can often be as high as 10 MV/m in materials commonly used in cables such as Teflon and that the field can stay at high levels as long as an hour after the irradiation ends.

  2. SOME ASPECTS OF ORGANISING SUPERVISION OVER ARTIFICIAL SOURCES OF IONIZING RADIATION IN CHELYABINSK REGION

    Directory of Open Access Journals (Sweden)

    A. I. Semenov

    2012-01-01

    Full Text Available In experiments on rats (290 animals exposed to chronic gamma-radiation in the total dose of 10.0 Gy it was detected that prescription of synthetic harmaceutical of the dihydropyridine class-glutapyrone-together with drinking water during 6 months reduced the rate of malignant neoplasms from 26,5% in the control roup to 13% in the treated animals. In radiation-exposed rats that received lutapyrone there was a narrowing of spectrum of the emerged neoplasms (connectively-tissual tumors only as compared to the animals of the radiated control group, where blastomas of epithelium and lymphoid origin were also revealed. Low toxicity of lutapyrone and its anticarcinogenic action show the possibility of practical application of preparation for prevention radiation carcinogenesis.

  3. Gamma radiation effects on phases of evolutional cycle of Plodia interpunctella (Huebner, 1813) (Lepidoptera, Pyralidae) on artificial diet

    International Nuclear Information System (INIS)

    The effects of increased gamma radiation (60 Co) doses on different phases of the evolutional cycle of Plodia interpunctella (Hubner,1813) (Lepidoptera, Pyralidae) have bean studied under laboratory conditions in the Laboratory of Radioentomology of the Nuclear Energy for Agriculture Center (CENA) in Piracicaba, Sao Paulo State, Brazil. For all treatments with gamma radiation a Cobalt-60 source type Gamma bean-650 has been used and the activity was of approximately 2.93 x 1014 Bq (7,925 Ci), with a dose rate of 2.80 KGy per hour and the insects were kept in a climatic chamber with the temperature adjusted to 27 ± 20 C and a relative humidity of 70 ± 10%. The LD50 and LD100 of gamma radiation for eggs of in artificial diet were respectively 51 Gy and 125 Gy. The sterilizing doses in adults which were irradiated at immature phases (larvae and pupae) were 160 Gy and 250 Gy respectively. The sterilizing doses for adults females and males were respectively 250 Gy and 300 Gy. The LD100 for adult males was 4,750 Gy, 4,500 Gy for females and 4,750 Gy for insects at random. (author). 70 refs., 10 figs., 19 tabs

  4. Belt attachment and system

    Science.gov (United States)

    Schneider, Abraham D.; Davidson, Erick M.

    2016-02-02

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  5. The design and implementation of a high sensitivity telescope for in situ measurements of energetic particles in the Earth's radiation belts

    Science.gov (United States)

    Parker, Charles Walter

    This work describes the design and implementation of a high-sensitivity telescope (HST) for in situ detection and energy analysis of energetic charged particles in the Earth's radiation belts from a near-equatorial orbit that will range over geocentric distances from ≈ 2--3.5 Earth radii as part of the US Air Force's Demonstrations and Science eXperiment (DSX) mission. The HST employs a two element silicon solid state detector telescope that has a geometrical factor of 0.1 cm2 sr with a 14° field-of-view centered on the on-orbit local magnetic field vector to detect ≈ 100 particles s-1 cm-2 sr-1 in the geomagnetic bounce loss cone. The pointing direction of the HST is guaranteed by the active attitude control subsystem of the spacecraft. A novel implementation of a knife-edged baffled collimator design restricts the field-of-view and provides a sharp cutoff (≈ 103) in the angular response to all particle species with energies from ≈ 40--800 keV. The HST detectors are shielded with 5g cm-2 of aluminum followed by 3.1 g cm-2 of tungsten in all non-look directions to reduce the background fluxes incident on the detectors through the orbit (>107 particles cm -2 s-1 for electrons and protons individually) to levels that will allow the detection of the target flux in the loss cone. The HST has been extensively characterized on the ground and is capable of analyzing the energies of particles over the range of 25--850 keV with an energy resolution of 3.7keV and a noise FWHM of 15keV. The calibration has been established using 241Am and 133Ba X-ray sources and verified using additional beta- and X-ray sources and the electron beams produced by the 2 MeV Van de Graaff accelerator at the NASA Goddard Spaceflight Center's Radiation Effects Facility. The instrument's calibration has been shown to vary by less than 2% over the operational temperature range of --20 to +35°C. Electromagnetic interference testing has proven that the HST is unaffected by strong VLF fields

  6. Effect of ionizing radiation on fresh vegetables artificially contaminated with Vibrio cholerae

    International Nuclear Information System (INIS)

    Lettuce, cabbage and celery were artificially contaminated with Vibrio cholerae El Tor 01 Inaba, and irradiated at 0.50, 0.75 and 1.00 kGy. Non-irradiated samples were used as controls. The effect of irradiation was measured during 7-days storage under refrigeration, from the viewpoints of microbiological (MPN), nutritional (Vitamin C content), and sensory quality. Irradiation proved to be an effective technique to eliminate V. cholerae in fresh vegetables. Doses of less than 0.75 kGy were sufficient to eliminate an initial contamination of 105 cells/g of V. cholerae; neither sensory properties or nutritional quality (Vitamin C content) were adversely affected by the treatment. The cost of irradiating the vegetables at 0.5 kGy under the conditions of the study was US$ 0.131, 0.067 and 0.445 per unit of lettuce, cabbage and celery, respectively. (author)

  7. An artificial neural network based fast radiative transfer model for simulating infrared sounder radiances

    Indian Academy of Sciences (India)

    Praveen Krishnan; K Srinivasa Ramanujam; C Balaji

    2012-08-01

    The first step in developing any algorithm to retrieve the atmospheric temperature and humidity parameters at various pressure levels is the simulation of the top of the atmosphere radiances that can be measured by the satellite. This study reports the results of radiative transfer simulations for the multichannel infrared sounder of the proposed Indian satellite INSAT-3D due to be launched shortly. Here, the widely used community software k Compressed Atmospheric Radiative Transfer Algorithm (kCARTA) is employed for performing the radiative transfer simulations. Though well established and benchmarked, kCARTA is a line-by-line solver and hence takes enormous computational time and effort for simulating the multispectral radiances for a given atmospheric scene. This necessitates the development of a much faster and at the same time, equally accurate RT model that can drive a real-time retrieval algorithm. In the present study, a fast radiative transfer model using neural networks is proposed to simulate radiances corresponding to the wavenumbers of INSAT-3D. Realistic atmospheric temperature and humidity profiles have been used for training the network. Spectral response functions of GOES-13, a satellite similar in construction, purpose and design and already in use are used. The fast RT model is able to simulate the radiances for 1200 profiles in 18 ms for a 15-channel GOES profile, with a correlation coefficient of over 99%. Finally, the robustness of the model is tested using additional synthetic profiles generated using empirical orthogonal functions (EOF).

  8. The dynamic radiation environment assimilation model (DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D [Los Alamos National Laboratory; Koller, Josef [Los Alamos National Laboratory; Tokar, Robert L [Los Alamos National Laboratory; Chen, Yue [Los Alamos National Laboratory; Henderson, Michael G [Los Alamos National Laboratory; Friedel, Reiner H [Los Alamos National Laboratory

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate results than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.

  9. Aplicação de radiação UV artificial e solar no tratamento fotocatalítico de efluentes de curtume Application of artificial and solar UV radiation in the photocatalytic treatment of a tannery effluent

    Directory of Open Access Journals (Sweden)

    Salomão de Andrade Pascoal

    2007-10-01

    Full Text Available Tannery effluents are very dangerous for the environment since they contain large amounts of dangerous and biorecalcitrant contaminants (organic matter and Cr(VI. This paper reports the efficiency of heterogeneous photocatalysis, based on the application of solar and artificial radiation, furnished by UV lamps, using TiO2 fixed on a flat plate, in the treatment of synthetic effluents. The results of COD and Cr(VI demonstrate that the use of solar radiation is the most efficient way to perform the photocatalytic treatment of these effluents since a minimum removal of 62 and 61% was observed for Cr(VI and organic matter, respectively.

  10. Effects of environmental and artificial UV-B radiation on freshwater prawn Macrobrachium olfersi embryos

    Energy Technology Data Exchange (ETDEWEB)

    Nazari, Evelise Maria [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil); Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Ammar, Dib [Universidade do Oeste de Santa Catarina, Departamento de Biologia, Campus Universitario, 89600-000 Joacaba, SC (Brazil); Bem, Andreza Fabro de; Latini, Alexandra [Universidade Federal de Santa Catarina, Departamento de Bioquimica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Mueller, Yara Maria Rauh [Universidade Federal de Santa Catarina, Departamento de Biologia Celular, Embriologia e Genetica, Campus Universitario, 88040-900 Florianopolis, SC (Brazil); Allodi, Silvana, E-mail: sallodi@histo.ufrj.br [Programa de Pos-Graduacao em Ciencias Morfologicas, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, 21949-902 Rio de Janeiro, RJ (Brazil)

    2010-06-01

    The recent decrease of the stratospheric ozone has resulted in an increase of ultraviolet-B (UV-B) radiation reaching the Earth's surface. In freshwater ecosystems with transparent water, UV-B rays easily penetrate and potentially cause harmful effects to organisms. In this study, embryos of the prawn Macrobrachium olfersi were used to evaluate the impact of UV-B rays in freshwater environments. We observed three groups of embryos: the first was to assess whether UV-B radiation produced morphological defects and/or biochemical impairments in the laboratory. The second was to check whether embryos with the same impairments as those observed in the laboratory were found in their environment, under natural solar radiation. The third group was the non-irradiated control. The embryos irradiated with 310 mW cm{sup -2} UV-B for 30 min showed morphological alterations similar to those observed in embryos from the environmental control group. The most important effects of the UV-B radiation observed in M. olfersi embryos were morphological (1.2% of the total number of embryos from the environment and 2.8% of the total number of irradiated embryos), pigmentation changes in the eyes (78.0% of the total number of embryos from the environment and 98.9% of the total number of irradiated embryos), and disruption of the chromatophores (46.9% of the total number of embryos from the environment and 95.5% of the total number of irradiated embryos). We also observed an increase in egg volume, which was accompanied by a significant increase in water content in UV-B irradiated groups when compared with aquaria control embryos. In addition, a significant decrease in the mitotic index in eggs exposed to UV-B radiation was detected (0.17 for the embryos from the aquaria control, 0.10 for the embryos of the environmental control, and 0.04 for the irradiated groups). The low levels of NPSH and high levels of TBARS indicated that UV-B rays directly compromised the antioxidant function of

  11. Creation of an artificial ionized layer in the atmosphere by microwave nanosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vikharev, A.L.; Ivanov, O.A.; Litvak, A.G. [Russian Academy of Science, Nizhny Novgorod (Russian Federation). Inst. of Applied Physics

    1995-12-31

    The paper reviews recent results of IAP microwave discharge group in investigation of a pulse-periodical nanosecond microwave discharges in converging wave beams. Performed experiments are the laboratory modeling of plasma chemical kinetics in an artificial ionized layer (AIL) created in the atmosphere by microwave beams using a ground-based transmitters. The interest to the AIL is explained by the variety of tasks which can be solved with its help. At present there are suggestions to use AIL for: distant radio- and television communication, generation of ozone, diagnostics of atmosphere, clearing of atmosphere from pollution. For the first time the possibility of using a nanosecond microwave discharge in wave beams to replenish the ozone decrease in the region of local ``ozone holes`` has been demonstrated experimentally. The regimes of effective ozone generation with low expenditure of energy have been defined. The efficiency of chlorofluorocarbons (freon) destruction has been defined with the help of AIL in troposphere at the heights of 10--20 km on the basis of laboratory measurements of plasma decay rate of a nanosecond microwave discharge. It has been experimentally shown that if the concentration of the atmosphere freon surpasses the threshold value then it is destroyed quickly in the processes of dissociative attachment of electrons.

  12. Effects of gamma radiation and electron beam on samples of the Brazil nuts artificially inoculated with Aspergillus flavus

    International Nuclear Information System (INIS)

    The high level of contamination by aflatoxin produced by fungi in lots of Brazil nuts and the strict control by importing countries in relation to the levels of toxins in food, European Union countries decided in 2003 by the return of these lots products from Brazil. Despite the economic loss represented by contamination by toxigenic fungi in Brazil nuts, a major product of extractive Northern of Brazil, studies are still preliminary as the control of contamination aflatoxigenic fungal using methods such as gamma radiation (G.R) and mainly, electron beam (E.B). These facts motivated this research, which aimed to evaluate the effects of gamma radiation and application of electron beam in samples of Brazil nut artificially inoculated with Aspergillus flavus. This goal, we were studied 50 samples of the Brazil nut previously inoculated with spores of A. flavus and subsequently incubated at 30 °C in relative humidity controlled at 93%. After incubation, period of 15 days, the average water activity of the samples was 0.80, the samples were divided into 5 groups that received the following doses of radiation: control (0 kGy), 5 and 10 kGy 5 E.B and G.R. The mycobiota was performed by serial dilution, plated on surface using potato dextrose agar. The results demonstrated that treatment with E.B using a dose of 5 kGy and 10 kGy resulted in reduced growth of A. flavus in 74% (37/50) and 94% (47/50) of samples. The samples treated with G.R at the dose of 5 kGy and 10 kGy no fungal growth occurred in 92% (46/50) 100% (50/50) of. The study of aflatoxins showed that doses of E.B of 5 kGy and 10 kGy reduced levels of AFB1 at 53.32% and 65.66% respectively. The application of gamma rays at doses of 5 and 10 kGy reduced levels of toxins in 70.61% and 84.15% respectively. This result may be attributed to higher penetrability of gamma radiation. Sensory analysis showed greater acceptance of the judges for the samples irradiated with E.B and G.R at the dose of 10 kGy. We concluded

  13. Variability of the pitch angle distribution of radiation belt ultrarelativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations

    Science.gov (United States)

    Zou, Z.; Ni, B.; Gu, X.; Zhao, Z.; Zhou, C.

    2015-12-01

    Fifteen month of pitch angle resolved Van Allen Probes Relativistic Electron-Proton Telescope (REPT) measurements of differential electron flux are analyzed to investigate the characteristics of the pitch angle distribution of radiation belt ultrarelativistic(> 2 MeV) electrons during storm conditions and during the long-storm decay. By modeling the ultrarelativistic electron pitch angle distribution as ,where is the equatorial pitch angle we examine the spatiotemporal variations of n value. The results show that in general n values increases with the level of geomagnetic activity. In principle the ultrarelativistic electrons respond to geomagnetic storms by becoming peaked at 90° pitch angle with n-values of 2 - 3 as a supportive signature of chorus acceleration outside the plasmasphere. High n-values also exists inside the plasmasphere, being localized adjacent to the plasmapause and energy dependent, which suggests a significant contribution from electronmagnetic ion cyclotron (EMIC) waves scattering. During quiet periods, n values generally evolve to become small, i.e., 0-1. The slow and long-term decays of the ultrarelativistic electrons after geomagnetic storms, while prominent, produce energy and L-shell-dependent decay time scales in association with the solar and geomagnetic activity and wave-particle interaction processes. At lower L shells inside the plasmasphere, the decay time scales for electrons at REPT energies are generally larger, varying from tens of days to hundreds of days, which can be mainly attributed to the combined effect of hiss-induced pitch angle scattering and inward radial diffusion. As L shell increases to L~3.5, a narrow region exists (with a width of ~0.5 L), where the observed ultrarelativistic electrons decay fastest, possibly resulting from efficient EMIC wave scattering. As L shell continues to increase, generally becomes larger again, indicating an overall slower loss process by waves at high L shells. Our investigation based

  14. Non-stormtime injection of energetic particles into the slot-region between Earth's inner and outer electron radiation belts as observed by STSAT-1 and NOAA-POES

    OpenAIRE

    Park, J.; Min, K W; Summers, D.; Hwang, J; Kim, H. J.; Horne, Richard B.; Kirsch, Peter; Yumoto, K.; Uozumi, T.; Lühr, H.; J. Green

    2010-01-01

    The slot-region between Earth's inner and outer electron radiation belts was observed on 24 February 2004 by the satellite STSAT-1 to be populated by quasi-trapped electrons of energy 100-400 keV. This injection lasted for several hours and took place during a non-stormtime substorm. This appears to be the first observation of a slot-region electron injection that did not occur during a geomagnetic storm. We also report multi-instrument observations of this event from NOAA-POES and CPMN magne...

  15. Radiation exposure effects on the performance of an electrically trainable artificial neural network (ETANN)

    International Nuclear Information System (INIS)

    The authors present the effects of radiation exposure on an analog neural network device. The neural network implements a fully parallel architecture integrating 10,240 analog non-volatile synapses fabricated in a CMOS process. Graceful degradation of forward propagation performance analog non-volatile synapses fabricated in a CMOS process. Graceful degradation of forward propagation performance was observed in units that were exposed to absorbed doses of up to 26 Krads (Si) of 10 MeV electrons. The units were exposed without bias, except for that due to the floating gates. Single chip solutions to two pattern recognition problems representing two levels of difficulty are employed for testing. Post-irradiation-effects are observed over the following weeks after exposure due to latent charge trapping mechanism in the oxides of the non-volatile floating gate structures. They show that with the suitable algorithm and model, units with apparently permanent damage can be retrained to 100% recognition performance

  16. Infrared radiation method for measuring ice segregation temperature of artificially frozen soils

    Institute of Scientific and Technical Information of China (English)

    Zhou Guoqing; Zhang Qi; Xu Zhiwei; Zhou Yang

    2012-01-01

    In order to study the evolution of the freezing fringe and final lenses of frost susceptible soils and advance the understanding of frost heave and mechanism of frost heave control,we used an open one-dimensional frost heave test system of infrared radiation technology,instead of a traditional thermistor method.Temperatures of the freezing fringe and segregated ice were measured in a non-contact mode.The results show that accurate and precise temperatures of ice segregation can be obtained by infrared thermal imaging systems.A self-developed inversion program inverted the temperature field of frozen soils.Based on our analysis of temperature variation in segregated ice and our study of the relationship between temperature and rate of ice segregation in cooling and warming processes during intermittent freezing,the mechanism of decreasing frost heave of frozen soils by controlling the growth of final lenses with an intermittent freezing mode,can be explained properly.

  17. Estimation of global solar radiation using an artificial neural network based on an interpolation technique in southeast China

    Science.gov (United States)

    Zou, Ling; Wang, Lunche; Lin, Aiwen; Zhu, Hongji; Peng, Yuling; Zhao, Zhenzhen

    2016-08-01

    Solar radiation plays important roles in energy application, vegetation growth and climate change. Empirical relations and machine-learning methods have been widely used to estimate global solar radiation (GSR) in recent years. An artificial neural network (ANN) based on spatial interpolation is developed to estimate GSR in southeast China. The improved Bristow-Campbell (IBC) model and the improved Ångström-Prescott (IA-P) model are compared with the ANN model to explore the best model in solar radiation modeling. Daily meteorological parameters, such as sunshine duration hours, mean temperature, maximum temperature, minimum temperature, relative humidity, precipitation, air pressure, water vapor pressure, and wind speed, along with station-measured GSR and a daily surface GSR dataset over China obtained from the Data Assimilation and Modeling Center for Tibetan Multi-spheres (DAM), are used to predict GSR and to validate the models in this work. The ANN model with the network of 9-17-1 provides better accuracy than the two improved empirical models in GSR estimation. The root-mean-square error (RMSE), mean bias error (MBE), and determination coefficient (R2) are 2.65 MJ m-2, -0.94 MJ m-2, and 0.68 in the IA-P model; 2.19 MJ m-2, 1.11 MJ m-2, and 0.83 in the IBC model; 1.34 MJ m-2, -0.11 MJ m-2, and 0.91 in the ANN model, respectively. The regional monthly mean GSR in the measured dataset, DAM dataset, and ANN model is analyzed. The RMSE (RMSE %) is 1.07 MJ m-2 (8.91%) and the MBE (MBE %) is -0.62 MJ m-2 (-5.21%) between the measured and ANN-estimated GSR. The statistical errors of RMSE (RMSE %) are 0.91 MJ m-2 (7.28%) and those of MBE (MBE %) are -0.15 MJ m-2 (-1.20%) between DAM and ANN-modeled GSR. The correlation coefficients and R2 are larger than 0.95. The regional mean GSR is 12.58 MJ m-2. The lowest GSR is observed in the northwest area, and it increases from northwest to southeast. The annual mean GSR decreases by 0.02 MJ m-2 decade-1 over the entire

  18. An investigation of the cosmic radiation in the vicinity of the moon on the Luna 10, 11, and 12 artificial lunar satellites

    Science.gov (United States)

    Grigorov, N. L.; Kurt, V. G.; Lutsenko, V. N.; Maduyev, V. L.; Pisarenko, N. F.; Savenko, I. A.

    1974-01-01

    Research on the primary cosmic radiation and solar cosmic rays from the Luna 10, 11, and 12 artificial lunar satellites is reviewed. Data on the vertical distribution of cosmic rays above the moon's surface are presented, and the albedo for the primary radiation is determined. The fluxes of electrons with energies from 30 to 300 keV were registered in the solar cosmic rays. Rapid variations of the electron flux were observed. The angular distributions of 0.5-10 MeV protons moving together with the corpuscular streams responsible for Forbush decreases were investigated.

  19. Artificial Neural Network L* from different magnetospheric field models

    Science.gov (United States)

    Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.

    2011-12-01

    The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.

  20. Risk from exposure to natural and artificial ultraviolet radiation; Il rischio di esposizione alla radiazione ultravioletta naturale e artificiale

    Energy Technology Data Exchange (ETDEWEB)

    Matzeu, M. [Istituto Superiore di Sanita`, Rome (Italy). Lab. di Fisica

    1998-12-31

    The association between exposure to ultraviolet (UV) and damage to the skin and eyes is today generally accepted. Exposure to UV radiation may occur in several ways. Apart from the sun, there is a wide range of artificial sources used in different fields of industry, research and medicine, the exposure to which adds to the total exposure of an individual during his life-span. The potential effects of ozone layer depletion on the increase of the solar UV radiation at earth`s surface, and therefor on human health, have recently been emphasized. Moreover, great attention has been devoted to the often uncontrolled use of UV lamps for tanning. This report shows the basis on which short and long term UV risk is assessed, and indicates some parameters necessary to its evaluation. The UV effects, both at molecular and cellular levels and on humans, are described together with their respective action spectra. The most common UV sources are then analyzed and their use in different fields is shown. Finally, some methods in dosimetry, which are useful for the correct measurement of exposure values, are described. [Italiano] E` oggi generalmente accettata l`assciazione tra l`esposizione alla radiazione UV e alcuni danni alla pelle e agli occhi (carcinomi e cataratta). Le occasioni di esposizione sono molteplici; oltre al sole, anche una grande varieta` di sorgenti artificiali impiegate per scopi diversi nell`industria, nella ricerca e in medicina danno un contributo, non sempre valutabile, all`esposizione totale di un individuo nell`arco della sua vita. Recentemente e` stato posto l`accento sulle possibili conseguenze della riduzione dello stato di ozono stratosferico sull`aumento della frazione di UV solare al suolo e quindi sulla salute umana; particolare attenzione ha inoltre suscitato l`uso, spesso incontrollato, delle lampade UV per scopi estetici. Sono illustrate le basi sulle quali viene riconosciuto il rischio a breve e a lungo termine e sono definiti i parametri

  1. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics

    International Nuclear Information System (INIS)

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  2. Gamma radiation effects on phases of evolutional cycle of Plodia interpunctella (Huebner, 1813) (Lepidoptera, Pyralidae) on artificial diet; Efeitos da radiacao gama nas fases do ciclo evolutivo da Plodia interpunctella (Huebner, 1813) (Lepidoptera - Pyralidae) em dieta artificial

    Energy Technology Data Exchange (ETDEWEB)

    Tamborlin, Maria Julia

    1988-10-01

    The effects of increased gamma radiation ({sup 60} Co) doses on different phases of the evolutional cycle of Plodia interpunctella (Hubner,1813) (Lepidoptera, Pyralidae) have bean studied under laboratory conditions in the Laboratory of Radioentomology of the Nuclear Energy for Agriculture Center (CENA) in Piracicaba, Sao Paulo State, Brazil. For all treatments with gamma radiation a Cobalt-60 source type Gamma bean-650 has been used and the activity was of approximately 2.93 x 10{sup 14} Bq (7,925 Ci), with a dose rate of 2.80 KGy per hour and the insects were kept in a climatic chamber with the temperature adjusted to 27 {+-} 2{sup 0} C and a relative humidity of 70 {+-} 10%. The LD{sub 50} and LD{sub 100} of gamma radiation for eggs of in artificial diet were respectively 51 Gy and 125 Gy. The sterilizing doses in adults which were irradiated at immature phases (larvae and pupae) were 160 Gy and 250 Gy respectively. The sterilizing doses for adults females and males were respectively 250 Gy and 300 Gy. The LD{sub 100} for adult males was 4,750 Gy, 4,500 Gy for females and 4,750 Gy for insects at random. (author). 70 refs., 10 figs., 19 tabs.

  3. The Development of Radiation hardened tele-robot system - Development of artificial force reflection control for teleoperated mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Jang; Hong, Sun Gi; Kang, Young Hoon; Kim, Min Soeng [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    1999-04-01

    One of the most important issues in teleoperation is to provide the sense of telepresence so as to conduct the task more reliably. In particular, teleoperated mobile robots are needed to have some kinds of backup system when the operator is blind for remote situation owing to the failure of vision system. In the first year, the idea of artificial force reflection was researched to enhance the reliability of operation when the mobile robot travels on the plain ground. In the second year, we extend previous results to help the teleoperator even when the robot climbs stairs. Finally, we apply the developed control algorithms to real experiments. The artificial force reflection method has two modes; traveling on the plain ground and climbing stairs. When traveling on the plain ground, the force information is artificially generated by using the range data from the environment while generating the impulse force when climbing stairs. To verify the validity of our algorithm, we develop the simulator which consists of the joystick and the visual display system. Through some experiments using this system, we confirm the validity and effectiveness of our new idea of artificial force reflection in the teleoperated mobile robot. 11 refs., 30 figs. (Author)

  4. Dynamic characteristics of conveyor belts

    Institute of Scientific and Technical Information of China (English)

    HOU You-fu; MENG Qing-rui

    2008-01-01

    The dynamic characteristics of a belt conveyor are determined to a large extent by the properties of the belt. This paper describes experiments designed to establish the dynamic properties of belting material. The dynamic elastic modulus, viscous damping and theological constants of the belt were measured. Several properties were studied as a function of the tensile loading on the belt. These included longitudinal vibration, the natural vibration frequency in the transverse direction and the response to an impulse excitation. Vibration response was observed under several different excitation frequencies. Most of these properties have not been tested previously under conditions appropriate for the ISO/DP9856 standard. Two types of belt were tested, a steel reinforced belt and a fabric reinforced belt. The test equipment was built to provide data appropriate for designing belt conveyors. It was observed that the stress wave propagation speed increased with tensile load and that tensile load was the main factor influencing longitudinal vibrations.

  5. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  6. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part ii; UV-B radiation.

    Science.gov (United States)

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Introducción: Los efectos de la radiación ultravioleta tipo B (UV-B) sobre las plantas medicinales se han investigado recientemente en el contexto del cambio climático, pero las modificaciones que genera la radiación UV-B podrían emplearse para modificar el contenido de compuestos antioxidantes, incluyendo los compuestos fenólicos. Objetivo: Generar información sobre el efecto de una alta exposición a UV-B artificial en el contenido antioxidante de damiana (Turnera diffusa, Willd) en un modelo in vitro. Método: Plántulas de damiana en cultivo de tejidos (medio Murashige-Skoog) fueron irradiadas con UV-B artificial en 3 diferentes dosis: (1) 0,5 ± 0,1 mW cm-2 (alto) por 2 h diarias, (2) 1 ± 0,1 mW cm-2 (severa) por 2 h diarias, o (3) 1 ± 0,1 mW cm-2 durante 4 horas diarias por 3 semanas. Se cuantificó la concentración de pigmentos fotosintéticos (clorofilas a y b, carotenoides), vitaminas (C y E) y compuestos fenólicos totales, la actividad enzimática de la superóxido dismutasa (SOD, EC 1.15.1.1) y las peroxidasas totales (POX, EC 1.11.1), así como la capacidad antioxidante total y la peroxidación de lípidos para evaluar el efecto de la alta radiación UV-B artificial en el contenido antioxidante de damiana in vitro. Resultados: Dosis altas y severas de radiación UV-B artificial modificaron el contenido antioxidante incrementando el contenido de vitamina C y disminuyendo el contenido de compuestos fenólicos totales, además de modificar el daño oxidativo de plantas de damiana en un modelo in vitro. Conclusión: La radiación UV-B modifica el contenido antioxidante en damiana en un modelo in vitro, dependiendo de la intensidad y el tiempo de exposición.

  7. Artificial Limbs

    Science.gov (United States)

    ... you are missing an arm or leg, an artificial limb can sometimes replace it. The device, which ... activities such as walking, eating, or dressing. Some artificial limbs let you function nearly as well as ...

  8. Effects of gamma radiation on phases of evolutional cycle of Corcyra cephalonica (Stainton, 1865) (Lepidoptera pyralidae) in artificial diet

    International Nuclear Information System (INIS)

    The effects of the increase in the gamma radiation (60 Co) doses on different phases of the evolutional cycle of Corcyra cephalonica (Stainton, 1865) (Lepidoptera Pyraliade) are studied. A cobalt 60 source type gamma beam 650 was used and the activity was of approximately 2.91 x 1014 Bq. The experiments were conducted under controlled conditions with temperature at 25 ± 20 C and relative humidity of 70 ± 10%. (M.A.C.)

  9. A survey of sources of incoherent artificial optical radiation in a hospital environment in accordance with European Directive 2006/25/EC: evaluation of the related exposure risk.

    Science.gov (United States)

    Cavatorta, Claudia; Lualdi, Manuela; Meroni, Silvia; Polita, Giovanni; Bolchi, Mauro; Pignoli, Emanuele

    2016-03-01

    The evaluation of incoherent artificial optical radiation (AOR) exposure in hospital environments is a complex task due to the variety of sources available. This study has been designed to provide a proposal for the precautionary assessment of the related risk. This survey suggested that, in our Institution, at least three kinds of AOR sources required specific investigations: ambient lighting, theatre operating lighting and ultraviolet radiation (UVR) sources. For each kind of evaluated sources a specific measurement approach was developed. All irradiance measurements were made using a commercial spectroradiometer. The obtained results were compared with the appropriate exposure limit values (ELVs) defined in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and adopted by the European Directive 2006/25/EC. The risk related to the evaluated AOR exposure was finally assessed according to our risk matrix. According to our results, the emission of ambient lighting in the actual exposure conditions was always in accordance with the ELVs and the related risk was classifiable as not relevant. The risk related to the exposure to theatre operating lighting resulted not negligible, especially when two or more sources were used with focal spots overlapping on reflective objects. UVR sources emission may represent a health hazard depending, in particular, on the set up of the device containing the source. In case of laminar flow cabinets and closed transilluminators, if the UVR source is well contained within an enclosure with interlock, it presents no risk of exposure. Otherwise, the emission arising from UVR lamps, open transilluminators or sources not provided with interlock, may represent a risk classifiable as high even in the actual working conditions. The personal protective equipment used by workers were also assessed and their suitability was discussed.

  10. Belt-up!

    Energy Technology Data Exchange (ETDEWEB)

    Woof, M.

    1999-07-01

    Advanced control systems, improved materials and new dust control systems have turned the humble conveyor belt into a sophisticated method for transporting materials. RJB Mining has improved productivity at the Price of Wales colliery in Yorkshire, UK, with the installation of Alstom`s VDM drive system; Qualter Hall`s upgraded conveyor system at the Rugely Power Station in the UK is proving its ability to minimise coal spillage. The article highlights advances by several manufacturers in conveyor technology. 5 photos.

  11. The effects of artificially induced hyperglycaemia on the response of the Lewis lung carcinoma to radiation and cyclophosphamide

    International Nuclear Information System (INIS)

    In the treatment of any malignancy it is essential to utilize all known physiological differences that exist between tumour and normal tissue. One well established difference is that tumours, in both rodents and man, have a lower pH than normal tissue. Further reduction in tumour pH occurs in non-vascularised necrotic regions. It is now widely believed that cells, close to necrotic regions, distant from blood vessels are protected from the effects of radiation and chemotherapeutic agents by their hypoxia and reduced rate of proliferation, thus providing the foci for tumour regrowth. Yet, since these cells are situated in an acidic environment they should be the ones most susceptible to exploitation or modification of the tumour's acid:base status. Hyperglycaemia is known to increase tumour acidosis. The effect of such treatment on the tumour response to radiation or to chemotherapeutic agents is being assessed. Initial results indicate that hyperglycaemia can increase or reduce the response of the Lewis lung carcinoma to cyclophosphamide. The type of response obtained is dependent on the duration, level and timing of glucose treatments. Further work is now in progress

  12. Lap belt injuries in children.

    LENUS (Irish Health Repository)

    McGrath, N

    2010-07-01

    The use of adult seat belts without booster seats in young children may lead to severe abdominal, lumbar or cervical spine and head and neck injuries. We describe four characteristic cases of lap belt injuries presenting to a tertiary children\\'s hospital over the past year in addition to a review of the current literature. These four cases of spinal cord injury, resulting in significant long-term morbidity in the two survivors and death in one child, arose as a result of lap belt injury. These complex injuries are caused by rapid deceleration characteristic of high impact crashes, resulting in sudden flexion of the upper body around the fixed lap belt, and consequent compression of the abdominal viscera between the lap belt and spine. This report highlights the dangers of using lap belts only without shoulder straps. Age-appropriate child restraint in cars will prevent these injuries.

  13. Belt conveyor for recycle aggregate

    OpenAIRE

    Bezrodný, Roman

    2014-01-01

    This bachelor thesis deals with the belt conveyor for the transport of recycled aggregate in an oblique direction. The aim is to find constructional solutions to the belt conveyor for the assigned transport capacity of 95 000 kg per hour, and the assigned axial distance of 49 m and different height of 12 m. The thesis contains a brief description of the belt conveyor and a description of basic constructional components. It also contains a functional calculation of the capacity and forces acco...

  14. Antioxidant responses of damiana (Turnera diffusa Willd) to exposure to artificial ultraviolet (UV) radiation in an in vitro model; part I; UV-C radiation.

    Science.gov (United States)

    Soriano-Melgar, Lluvia de Abril Alexandra; Alcaraz-Meléndez, Lilia; Méndez-Rodríguez, Lía C; Puente, María Esther; Rivera-Cabrera, Fernando; Zenteno-Savín, Tania

    2014-05-01

    Introducción: La radiación ultravioleta tipo C (UV-C) presenta mayor energía y es menos estudiada que la radiación UV-B, debido a que se considera que es totalmente absorbida por la capa de ozono. Sin embargo, la radiación UV-C artificial es capaz de generar diversas modificaciones en las plantas. Dado que la exposición a UV-C por intervalos de tiempo cortos incrementa la concentración de compuestos antioxidantes, mejorando la apariencia y vida de anaquel de los productos, su potencial aplicación en tratamientos poscosecha para modificar el contenido antioxidante de plantas medicinales, como la damiana (Turnera diffusa), es novedoso y relevante. Objetivo: Determinar el efecto de la radiación UV-C sobre las defensas antioxidantes enzimáticas y no enzimáticas, así como en los niveles de daño oxidativo de damiana (Turnera diffusa) in vitro. Resultados: La radiación UV-C disminuyó la actividad de las enzimas superóxido dismutasa (SOD, EC 1.15.1.1) y peroxidasas totales (POX, CE 1.11.1), la concentración de clorofila (a y b), carotenos, vitamina C y la capacidad antioxidante total, e incrementó el contenido de compuestos fenólicos en damiana. La disminución de las defensas antioxidantes fue mayor en plantas de damiana expuestas a dosis más altas de UV-C o por períodos más largos. Estos resultados sugieren que la radiación UV-C induce estrés oxidativo, evidenciado por el incremento del contenido de carbonilos proteicos y el contenido de compuestos fenólicos en damiana (T. diffusa). Conclusión: Dosis bajas y menor exposición a UV-C estimulan la síntesis de compuestos fenólicos en damiana. Por ello, tratamientos controlados con UV-C podrían emplearse como tratamientos poscosecha para incrementar el contenido de compuestos fenólicos en plantas de damiana.

  15. SLH Timing Belt Powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abe

    2014-04-09

    The main goal of this proposal was to develop and test a novel powertrain solution for the SLH hydroEngine, a low-cost, efficient low-head hydropower technology. Nearly two-thirds of U.S. renewable electricity is produced by hydropower (EIA 2010). According to the U.S. Department of Energy; this amount could be increased by 50% with small hydropower plants, often using already-existing dams (Hall 2004). There are more than 80,000 existing dams, and of these, less than 4% generate power (Blankinship 2009). In addition, there are over 800 irrigation districts in the U.S., many with multiple, non-power, low-head drops. These existing, non-power dams and irrigation drops could be retrofitted to produce distributed, baseload, renewable energy with appropriate technology. The problem is that most existing dams are low-head, or less than 30 feet in height (Ragon 2009). Only about 2% of the available low-head hydropower resource in the U.S. has been developed, leaving more than 70 GW of annual mean potential low-head capacity untapped (Hall 2004). Natel Energy, Inc. is developing a low-head hydropower turbine that operates efficiently at heads less than 6 meters and is cost-effective for deployment across multiple low-head structures. Because of the unique racetrack-like path taken by the prime-movers in the SLH, a flexible powertrain is required. Historically, the only viable technological solution was roller chain. Despite the having the ability to easily attach blades, roller chain is characterized by significant drawbacks, including high cost, wear, and vibration from chordal action. Advanced carbon- fiber-reinforced timing belts have been recently developed which, coupled with a novel belt attachment system developed by Natel Energy, result in a large reduction in moving parts, reduced mass and cost, and elimination of chordal action for increased fatigue life. The work done in this project affirmatively addressed each of the following 3 major uncertainties concerning

  16. Geography of the asteroid belt

    Science.gov (United States)

    Zellner, B. H.

    1978-01-01

    The CSM classification serves as the starting point on the geography of the asteroid belt. Raw data on asteroid types are corrected for observational biases (against dark objects, for instance) to derive the distribution of types throughout the belt. Recent work on family members indicates that dynamical families have a true physical relationship, presumably indicating common origin in the breakup of a parent asteroid.

  17. Artificial blood

    Directory of Open Access Journals (Sweden)

    Sarkar Suman

    2008-01-01

    Full Text Available Artificial blood is a product made to act as a substitute for red blood cells. While true blood serves many different functions, artificial blood is designed for the sole purpose of transporting oxygen and carbon dioxide throughout the body. Depending on the type of artificial blood, it can be produced in different ways using synthetic production, chemical isolation, or recombinant biochemical technology. Development of the first blood substitutes dates back to the early 1600s, and the search for the ideal blood substitute continues. Various manufacturers have products in clinical trials; however, no truly safe and effective artificial blood product is currently marketed. It is anticipated that when an artificial blood product is available, it will have annual sales of over $7.6 billion in the United States alone.

  18. Gamma-H2AX as a biomarker of DNA damage induced by ionizing radiation in targeted and bystander human artificial skin models and peripheral blood lymphocytes

    Science.gov (United States)

    Redon, Christophe; Dickey, Jennifer; Bonner, William; Sedelnikova, Olga

    Ionizing radiation (IR) exposure is inevitable. In addition to exposure from cosmic rays, the sun and radioactive substances, modern society has created new sources of radiation exposure such as space and high altitude journeys, X-ray diagnostics, radiological treatments and the increasing threat of radiobiological terrorism. For these reasons, a reliable, reproducible and sensitive assessment of dose and time exposure to IR is essential. We developed a minimally invasive diagnostic test for IR exposure based on detection of a phosphorylated variant of histone H2AX (gamma-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs). The phosphorylation of thousands of H2AX molecules forms a gamma-H2AX focus in the chromatin flanking the DSB site that can be detected in situ. We analyzed gamma- H2AX focus formation in both directly irradiated cells as well as in un-irradiated "bystanders" in close contact with irradiated cells. In order to insure minimal invasiveness, we examined commercially available artificial skin models as a surrogate for human skin biopsies as well as peripheral blood lymphocytes. In human skin models, cells in a thin plane were microbeamirradiated and gamma-H2AX formation was measured both in irradiated and in distal bystander cells over time. In irradiated cells DSB formation reached a maximum at 15-30 minutes post- IR and then declined within several hours; all cells were affected. In marked contrast, the incidence of DSBs in bystander cells reached a maximum by 12-48 hours post-irradiation, gradually decreasing over the 7 day time course. At the maxima, 40-60% of bystander cells were affected. Similarly, we analyzed blood samples exposed to IR ex vivo at doses ranging from 0.02 to 3 Gy. The amount of DNA damage was linear in respect to radiation dose and independent of the age or sex of the blood donor. The method is highly reproducible and highly sensitive. In directly irradiated cells, the number of gamma-H2AX foci peaked

  19. Artificial urushi.

    Science.gov (United States)

    Kobayashi, S; Uyama, H; Ikeda, R

    2001-11-19

    A new concept for the design and laccase-catalyzed preparation of "artificial urushi" from new urushiol analogues is described. The curing proceeded under mild reaction conditions to produce the very hard cross-linked film (artificial urushi) with a high gloss surface. A new cross-linkable polyphenol was synthesized by oxidative polymerization of cardanol, a phenol derivative from cashew-nut-shell liquid, by enzyme-related catalysts. The polyphenol was readily cured to produce the film (also artificial urushi) showing excellent dynamic viscoelasticity. PMID:11763444

  20. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  1. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  2. Correction for 'artificial' electron disequilibrium due to cone-beam CT density errors: implications for on-line adaptive stereotactic body radiation therapy of lung.

    Science.gov (United States)

    Disher, Brandon; Hajdok, George; Wang, An; Craig, Jeff; Gaede, Stewart; Battista, Jerry J

    2013-06-21

    Cone-beam computed tomography (CBCT) has rapidly become a clinically useful imaging modality for image-guided radiation therapy. Unfortunately, CBCT images of the thorax are susceptible to artefacts due to scattered photons, beam hardening, lag in data acquisition, and respiratory motion during a slow scan. These limitations cause dose errors when CBCT image data are used directly in dose computations for on-line, dose adaptive radiation therapy (DART). The purpose of this work is to assess the magnitude of errors in CBCT numbers (HU), and determine the resultant effects on derived tissue density and computed dose accuracy for stereotactic body radiation therapy (SBRT) of lung cancer. Planning CT (PCT) images of three lung patients were acquired using a Philips multi-slice helical CT simulator, while CBCT images were obtained with a Varian On-Board Imaging system. To account for erroneous CBCT data, three practical correction techniques were tested: (1) conversion of CBCT numbers to electron density using phantoms, (2) replacement of individual CBCT pixel values with bulk CT numbers, averaged from PCT images for tissue regions, and (3) limited replacement of CBCT lung pixels values (LCT) likely to produce artificial lateral electron disequilibrium. For each corrected CBCT data set, lung SBRT dose distributions were computed for a 6 MV volume modulated arc therapy (VMAT) technique within the Philips Pinnacle treatment planning system. The reference prescription dose was set such that 95% of the planning target volume (PTV) received at least 54 Gy (i.e. D95). Further, we used the relative depth dose factor as an a priori index to predict the effects of incorrect low tissue density on computed lung dose in regions of severe electron disequilibrium. CT number profiles from co-registered CBCT and PCT patient lung images revealed many reduced lung pixel values in CBCT data, with some pixels corresponding to vacuum (-1000 HU). Similarly, CBCT data in a plastic lung

  3. Chaos on the conveyor belt

    CERN Document Server

    Sándor, Bulcsú; Tél, Tamás; Néda, Zoltán

    2013-01-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by spring to an external static point, and due to the dragging effect of the belt the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can only be achieved by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic dynamics and phase transition-like behavior. Noise induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks, around five.

  4. Nutrient content of soils under artificial grass vegetation in the urban hydro-fluctua-tion belt of the Three Gorges Reservoir Region%三峡水库城区消落带人工草本植被土壤养分含量研究

    Institute of Scientific and Technical Information of China (English)

    杨予静; 李昌晓; 马朋

    2015-01-01

    A study has been undertaken to explore the dynamics of soil chemical properties under different wa-ter-logging durations following re-vegetation in the urban hydro-fluctuation belt of the Three Gorges Reservoir Region.The study also aimed to determine the potential impact of vegetation reconstruction on water quality. Soil samples were taken from Hemarthria compressa ,Cynodon dactylon and Saccharum spontaneum commu-nities,and from non-vegetated areas in a hydro-fluctuation belt located in downtown Chongqing,in June 2012, March 2013,May 2013,July 2013 and September 2013.Analysis was undertaken of soil pH,organic matter (OM),alkali hydrolysable nitrogen (AN),available phosphorus (AP),available potassium (AK),total nitro-gen (TN),total phosphorus (TP)and total potassium (TK).Results showed that vegetation type significantly influenced soil pH values and AN,AP and TP contents.No significant differences were found in the tested properties between soils without vegetation and those beneath the three types of artificial grasses.However, there were significant soil differences under different water-logging durations.pH values and OM contents fluc-tuated throughout the experiment.Soil pH ranged from 6.5 to 8.5.AN contents were relatively higher in March and September 2013,when the water level dropped,while maximum AP contents were found in June 2012.At that time,AP contents under bare areas,H .compressa,C.dactylon,and S .spontaneum were (2.62±0.30),(3.92±0.34),(1.08±0.16),and (1.24±0.06)mg/kg respectively.TP and TK contents in-creased in the later phases of the experiment.The study also showed that,besides vegetation and hydrological factors,other factors such as urban sewage discharge,human disturbance and point or non-point source pollu-tion caused by surface runoff influenced soil pH and nutrients.For the Yangtze River in Chongqing urban areas of the Three Gorges Reservoir Region,the potential risk of water eutrophication caused by artificial grasses might be lower

  5. Artificial intelligence

    International Nuclear Information System (INIS)

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  6. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  7. Radiation

    International Nuclear Information System (INIS)

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  8. Artificial sweeteners

    DEFF Research Database (Denmark)

    Raben, Anne Birgitte; Richelsen, Bjørn

    2012-01-01

    Artificial sweeteners can be a helpful tool to reduce energy intake and body weight and thereby risk for diabetes and cardiovascular diseases (CVD). Considering the prevailing diabesity (obesity and diabetes) epidemic, this can, therefore, be an important alternative to natural, calorie-containin...

  9. Kuiper Belts Around Nearby Stars

    CERN Document Server

    Nilsson, R; Brandeker, A; Olofsson, G; Pilbratt, G L; Risacher, C; Rodmann, J; Augereau, J -C; Bergman, P; Eiroa, C; Fridlund, M; Thébault, P; White, G J

    2010-01-01

    In order to detect and characterise cold extended circumstellar dust originating from collisions of planetesimal bodies in disks, belts, or rings at Kuiper-Belt distances (30--50\\,AU or beyond) sensitive submillimetre observations are essential. Measurements of the flux densities at these wavelengths will extend existing IR photometry and permit more detailed modelling of the Rayleigh-Jeans tail of the disks spectral energy distribution (SED), effectively constraining dust properties and disk extensions. By observing stars spanning from a few up to several hundred Myr, the evolution of debris disks during crucial phases of planet formation can be studied. // We have performed 870\\,$\\mu$m observations of 22 exo-Kuiper-Belt candidates, as part of a Large Programme with the LABOCA bolometer at the APEX telescope. Dust masses (or upper limits) were calculated from integrated 870\\,$\\mu$m fluxes, and fits to the SED of detected sources revealed the fractional dust luminosities $f_{\\mathrm{dust}}$, dust temperatures...

  10. Single beam optical conveyor belt for chiral particles

    CERN Document Server

    Fernandes, David E

    2016-01-01

    We propose a novel paradigm to selectively manipulate and transport small engineered chiral particles and discriminate different enantiomers using unstructured chiral light. It is theoretically shown that the response of a chiral metamaterial particle may be tailored to enable an optical conveyor belt operation with no optical traps, such that for a fixed incident light helicity and independent of the nanoparticle location, it is either steadily pushed towards the direction of the photon flow or steadily pulled against the photon flow. Our findings create new opportunities for unconventional optical manipulations of tailored nanoparticles and may have applications in sorting racemic mixtures of artificial chiral molecules and in particle delivery.

  11. Artificial Intelligence.

    Science.gov (United States)

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  12. Artificial intelligence

    OpenAIRE

    Duda, Antonín

    2009-01-01

    Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.

  13. Artificial vision.

    Science.gov (United States)

    Zarbin, M; Montemagno, C; Leary, J; Ritch, R

    2011-09-01

    A number treatment options are emerging for patients with retinal degenerative disease, including gene therapy, trophic factor therapy, visual cycle inhibitors (e.g., for patients with Stargardt disease and allied conditions), and cell transplantation. A radically different approach, which will augment but not replace these options, is termed neural prosthetics ("artificial vision"). Although rewiring of inner retinal circuits and inner retinal neuronal degeneration occur in association with photoreceptor degeneration in retinitis pigmentosa (RP), it is possible to create visually useful percepts by stimulating retinal ganglion cells electrically. This fact has lead to the development of techniques to induce photosensitivity in cells that are not light sensitive normally as well as to the development of the bionic retina. Advances in artificial vision continue at a robust pace. These advances are based on the use of molecular engineering and nanotechnology to render cells light-sensitive, to target ion channels to the appropriate cell type (e.g., bipolar cell) and/or cell region (e.g., dendritic tree vs. soma), and on sophisticated image processing algorithms that take advantage of our knowledge of signal processing in the retina. Combined with advances in gene therapy, pathway-based therapy, and cell-based therapy, "artificial vision" technologies create a powerful armamentarium with which ophthalmologists will be able to treat blindness in patients who have a variety of degenerative retinal diseases.

  14. Poleward expansion of the tropical belt derived from upper tropospheric water vapour

    OpenAIRE

    You, Qinglong; Min, Jinzhong; Kang, Shichang; Pepin, Nick

    2015-01-01

    Based on intersatellite-calibrated high-resolution infrared radiation sounder (HIRS) upper tropospheric water vapour (UTWV) brightness temperatures, the width of the tropical belt is defined as the distance between the latitudes at which maximum HIRS UTWV brightness temperatures are recorded in both hemispheres. Poleward expansion of the tropical belt is evident during 1979–2013 on an annual basis, with an average global magnitude of 1.57° latitude per decade. Most rapid widening is evident i...

  15. French experience in seat belt use.

    NARCIS (Netherlands)

    Lassarre, S. & Page, Y.

    1992-01-01

    This paper concerns the French experience in seat belt use. As well as the seat belt regulations, the strategies employed to reinforce the wearing of seat belts by using information and encouragement campaigns and checks by the police and gendarmerie are described here along with their timetables an

  16. Study of thermal conditions at belt slippage

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, R.; Pampel, W.; Pfleger, P.

    1987-04-01

    Conveyor belt slippage experiments are carried out on the Chrudim (Czechoslovakia) industrial sized test stand for belt widths up to 1 m and driving drum forces up to 400 kW. The stand is operated jointly by TAKRAF (GDR) and VITKOVICE VUTZ, Prague. From 1972 to 1981, 7 belt conveyor fires occurred in GDR brown coal surface mines due to belt slippage. One of these cases led to a belt fire after only 15 s at 100% belt slippage. Aim of the study was to determine accurate permissible slippage values. Design of the test stand is explained as well as test procedures with belt slippage at the driving drum varying between 10 and 100%. Belt driving parameters were measured along with temperature of the drum surface. The heat penetration parameter b (in kJ/m/sup 2/) was calculated. Maximum temperatures up to 150 C were measured on the drum during partial slippage and 370 C at 100% belt slippage. The ignition temperature of rubber abrasion fines was also analyzed and found to vary between 40 and 318 C, i.e. substantially lower than belt and drum layer ignition temperatures. Graphs and diagram of slippage measurement results are calculated. Values for permissible maximum slippage time for operating belt slippage monitoring devices are shown. These devices are required to be installed in the GDR at heavy mine belt conveyors with driving forces exceeding 500 kW. 8 refs.

  17. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics; Methodes deterministes de resolution des equations de Vlasov-Maxwell relativistes en vue du calcul de la dynamique des ceintures de Van Allen

    Energy Technology Data Exchange (ETDEWEB)

    Le Bourdiec, S

    2007-03-15

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  18. The Relative Deep Penetrations of Energetic Electrons and Ions into the Slot Region and Inner Belt

    Science.gov (United States)

    Zhao, H.; Li, X.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Baker, D. N.; Reeves, G. D.; Spence, H. E.

    2015-12-01

    Energetic electrons in the inner magnetosphere are distributed into two regions: the inner radiation belt and the outer radiation belt, with the slot region in between separating the two belts. Though many studies have focused on the outer belt dynamics, the energetic electrons in the slot region and especially inner belt did not receive much attention until recently. A number of new features regarding electrons in the low L region have been reported lately, including the abundance of 10s-100s of keV electrons in the inner belt, the frequent deep injections of 100s of keV electrons, and 90°-minimum pitch angle distributions of 100s of keV electrons in the inner belt and slot region. In this presentation, we focus on the relative deep injections into the slot region and inner belt of energetic electrons and ions using observations from HOPE and MagEIS instruments on the Van Allen Probes. It is shown that while 10s - 100s of keV electrons penetrate commonly deep into the low L region and are persistent in the inner belt, the deep injections of ions with similar energies occur rarely, possibly due to the fast loss of ions in the low L region. The energy spectra and pitch angle distributions of electrons and ions during injections are also very different, indicating the existence of different physical mechanisms acting on them. In addition, some intriguing similarities between lower energy ions and higher energy electrons will also be discussed.

  19. The use of solar simulation systems for producing artificial global radiation for the purpose of determining the heat load of rooms

    Science.gov (United States)

    Kalt, A. C.

    1975-01-01

    Certain climatic tests which require solar and sky radiation were carried out in the laboratory by using simulated global radiation. The advantages of such a method of measurement and the possibilities and limitations resulting from the simulation of global radiation are described. Experiments concerning the thermal load in rooms were conducted in order to test the procedure. In particular, the heat gain through a window with sunshade is discussed, a venetian blind between the panes of a double-glazed window being used in most cases.

  20. Protection of Marine Structures by Artificial Islands

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Ottesen Hansen, N.E.

    1998-01-01

    protection of the bridge and of the grounding ships aspects like erosion of the islands and hydraulic resistance to the water flow through the belt must also be considered. The paper is focused on the design aspects related to ship grounding. It presents a theoretical model, which predicts the ship motions...... material and giving minimum resistance to the water flow through the belt......., the loads and the deformations during a ship grounding event on a soft sea bed. The models applied to determine the shapes of the artificial islands, which most efficiently protect the bridge from ship impact while posing minimum risk of damage to the grounding ships, requiring the least amount of building...

  1. Synchronous and Cogged Fan Belt Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D.; Dean, J.; Acosta, J.

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  2. Sensitivity of winter phytoplankton communities from Andean lakes to artificial ultraviolet-B radiation Sensibilidad de comunidades fitoplanctónicas invernales de lagos andinos a la radiación ultravioleta-B artificial

    Directory of Open Access Journals (Sweden)

    E. WALTER HELBLING

    2001-06-01

    Full Text Available During July of 1999 sampling was carried out in five Andean lakes to determine the sensitivity of winter phytoplankton communities to ultraviolet-B radiation (UV-B, 280-320 nm. The studied lakes, Moreno, El Trébol, Nahuel Huapi, Gutiérrez, and Morenito, located in the Patagonia region (41° S, 71° W, 800 m of altitude, had attenuation coefficients for UV-B that ranged from 0.36 m-1 (Lake Moreno to 2.8 m-1 (Lake Morenito. The samples were inoculated with labeled carbon (NaH14CO3 and incubated in an illuminated chamber (UV-B = 0.35 W m-2, UV-A [320-400 nm] = 1.1 W m-2, and PAR [400-700 nm] = 10.8 W m-2 at 10 °C. The phytoplankton cells were exposed to UV radiation (280-400 nm + PAR (quartz tubes, and to UV-A + PAR (quartz tubes covered with Mylar-D. The total duration of the experiments was 4 h and two samples were taken from each treatment every hour. In lakes Moreno, El Trébol, Nahuel Huapi and Gutiérrez, the photosynthetic inhibition increased linearly with UV-B doses, while in Lake Morenito just a slight relationship was observed. After receiving a dose of 1.25 kJ m-2 (UV-B, phytoplankton from Lake Morenito had the highest cumulative photosynthetic inhibition (44 %, whereas in Lakes Moreno, El Trébol, Nahuel Huapi and Gutiérrez the inhibition was of 22, 11, 5, and 1 %, respectively. However, at the end of incubation period and after receiving doses of 5 kJ m-2, the most inhibited phytoplankton cells were from Lake Moreno (70 % and the most resistant (27 % was that from Lake Gutiérrez. The kinetics of inhibition was different in each lake, and transparent lakes, with higher proportion of large cells, had higher inhibition rates. The results suggest that an increase in UV-B radiation (e.g., produced by a decrease in stratospheric ozone would have a greater impact on microplankton from clear lakes, while pico- and nanoplankton from less transparent lakes will be less affectedDurante julio de 1999 se realizaron muestreos en cinco lagos

  3. Artificial Economy

    Directory of Open Access Journals (Sweden)

    Alexandru JIVAN

    2011-08-01

    Full Text Available This paper proposes to eliminate, a routine in the economic thinking, claimed to be responsible for the negative essence of economic developments, from the point of view, of the ecological implications (employment in the planetary ecosystem. The methodological foundations start from the natural origins of the functionality of the human economic society according to the originary physiocrat liberalism, and from specific natural characteristics of the humankind. This paper begins with a comment-analysis of the difference between natural and artificial within the economy, and then explains some of the most serious diversions from the natural essence of economic liberalism. It shall be explained the original (heterodox interpretation of the Classical political economy (economics, by making calls to the Romanian economic thinking from aggravating past century. Highlighting the destructive impact of the economy - which, under the invoked doctrines, we call unnatural - allows an intuitive presentation of a logical extension of Marshall's market price, based on previous research. Besides the doctrinal arguments presented, the economic realities inventoried along the way (major deficiencies and effects, determined demonstrate the validity of the hypothesis of the unnatural character and therefore necessarily to be corrected, of the concept and of the mechanisms of the current economy.The results of this paper consist of original heterodox methodspresented, intuitive or developed that can be found conclusively within the key proposals for education and regulation.

  4. NONLINEAR DYNAMIC BEHAVIOR OF VISCOELATIC TRANSMISSION BELT

    Institute of Scientific and Technical Information of China (English)

    Li Yinghui; Gao Qing; Jian Kailin; Yin Xuegang

    2003-01-01

    The nonlinear dynamic responses of viscoelastic axially transmission belts are investigated and the Kelvin viscoelastic differential constitutive model is employed to characterize the material property of belts. The generalized equation of motion is obtained for a viscoelatic axially transmission belts with geometric nonlinearity first, and then is reduced to be a set of second-order nonlinear ordinary differential equations by applying Galerkin's method. Finally, the effects of viscosity parameter and elastic parameter and the moving velocity of the belts on the transient responses are investigated by the research of digital simulation.

  5. Effects of gamma radiation and electron beam on samples of the Brazil nuts artificially inoculated with Aspergillus flavus; Efeitos da radiacao gama e feixe de eletrons sobre amostras de castanhas-do-Brasil inoculadas artificialmente com Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Ednei Assuncao Antunes

    2012-07-01

    The high level of contamination by aflatoxin produced by fungi in lots of Brazil nuts and the strict control by importing countries in relation to the levels of toxins in food, European Union countries decided in 2003 by the return of these lots products from Brazil. Despite the economic loss represented by contamination by toxigenic fungi in Brazil nuts, a major product of extractive Northern of Brazil, studies are still preliminary as the control of contamination aflatoxigenic fungal using methods such as gamma radiation (G.R) and mainly, electron beam (E.B). These facts motivated this research, which aimed to evaluate the effects of gamma radiation and application of electron beam in samples of Brazil nut artificially inoculated with Aspergillus flavus. This goal, we were studied 50 samples of the Brazil nut previously inoculated with spores of A. flavus and subsequently incubated at 30 °C in relative humidity controlled at 93%. After incubation, period of 15 days, the average water activity of the samples was 0.80, the samples were divided into 5 groups that received the following doses of radiation: control (0 kGy), 5 and 10 kGy 5 E.B and G.R. The mycobiota was performed by serial dilution, plated on surface using potato dextrose agar. The results demonstrated that treatment with E.B using a dose of 5 kGy and 10 kGy resulted in reduced growth of A. flavus in 74% (37/50) and 94% (47/50) of samples. The samples treated with G.R at the dose of 5 kGy and 10 kGy no fungal growth occurred in 92% (46/50) 100% (50/50) of. The study of aflatoxins showed that doses of E.B of 5 kGy and 10 kGy reduced levels of AFB1 at 53.32% and 65.66% respectively. The application of gamma rays at doses of 5 and 10 kGy reduced levels of toxins in 70.61% and 84.15% respectively. This result may be attributed to higher penetrability of gamma radiation. Sensory analysis showed greater acceptance of the judges for the samples irradiated with E.B and G.R at the dose of 10 kGy. We concluded

  6. Apparatus for heat treating plastic belts

    Science.gov (United States)

    Topits, A., Jr.

    1975-01-01

    Apparatus performs programed rotating, stretching/shrinking and heat treatment necessary to fabrication of high-performance plastic belts. Belts can be treated in lengths varying from 7 to 48 in., in widths up to 1 in., and in thicknesses up to approximately 0.003 in.

  7. Understanding Quaternions and the Dirac Belt Trick

    Science.gov (United States)

    Staley, Mark

    2010-01-01

    The Dirac belt trick is often employed in physics classrooms to show that a 2n rotation is not topologically equivalent to the absence of rotation whereas a 4n rotation is, mirroring a key property of quaternions and their isomorphic cousins, spinors. The belt trick can leave the student wondering if a real understanding of quaternions and spinors…

  8. Parameters affecting seat belt use in Greece.

    Science.gov (United States)

    Yannis, G; Laiou, A; Vardaki, S; Papadimitriou, E; Dragomanovits, A; Kanellaidis, G

    2011-09-01

    The objective of this research is the exploration of seat belt use in Greece and particularly the identification of the parameters affecting seat belt use in Greece. A national field survey was conducted for the analytical recording of seat belt use. A binary logistic regression model was developed, and the impact of each parameter on seat belt use in Greece was quantified. Parameters included in the model concern characteristics of car occupants (gender, age and position in the car), the type of the car and the type of the road network. The data collection revealed that in Greece, the non-use of seat belt on the urban road network was higher than on the national and rural road network and young and older men use seat belts the least. The developed model showed that travelling on a national road is negative for not wearing the seat belt. Finally, the variable with the highest impact on not wearing a seat belt is being a passenger on the back seats. PMID:21452095

  9. Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells

    International Nuclear Information System (INIS)

    Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials: Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death.

  10. Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Zhiming [Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan (China); Department of Radiation Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Wang Ping; Wang Hongyan; Zhang Xiangming [Department of Radiation Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Wang Minli [Division of Life Sciences, Universities Space Research Association, Houston, Texas (United States); Cucinotta, Francis A. [National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas (United States); Wang Ya, E-mail: ywang94@emory.edu [Department of Radiation Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2013-02-01

    Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials: Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death.

  11. Future aerosol reductions and widening of the northern tropical belt

    Science.gov (United States)

    Allen, Robert J.; Ajoku, Osinachi

    2016-06-01

    Observations show that the tropical belt has widened over the past few decades, a phenomenon associated with poleward migration of subtropical dry zones and large-scale atmospheric circulation. Although part of this signal is related to natural climate variability, studies have identified an externally forced contribution primarily associated with greenhouse gases (GHGs) and stratospheric ozone loss. Here we show that the increase in aerosols over the twentieth century has led to contraction of the northern tropical belt, thereby offsetting part of the widening associated with the increase in GHGs. Over the 21st century, however, when aerosol emissions are projected to decrease, the effects of aerosols and GHGs reinforce one another, both contributing to widening of the northern tropical belt. Models that have larger aerosol forcing, by including aerosol indirect effects on cloud albedo and lifetime, yield significantly larger Northern Hemisphere (NH) tropical widening than models with direct aerosol effects only. More targeted simulations show that future reductions in aerosols can drive NH tropical widening as large as greenhouse gases, and idealized simulations show the importance of NH midlatitude aerosol forcing. Mechanistically, the 21st century reduction in aerosols peaks near 40°N, which results in a corresponding maximum increase in surface solar radiation, NH midlatitude tropospheric warming amplification, and a poleward shift in the latitude of maximum baroclinicity, implying a corresponding shift in atmospheric circulation. If models with aerosol indirect effects better represent the real world, then future aerosol changes are likely to be an important -- if not dominant -- driver of NH tropical belt widening.

  12. The Gould's Belt distance survey

    CERN Document Server

    Loinard, L; Torres, R M; Dzib, S; Rodriguez, L F; Boden, A F

    2011-01-01

    Very Long Baseline Interferometry (VLBI) observations can provide the position of compact radio sources with an accuracy of order 50 micro-arcseconds. This is sufficient to measure the trigonometric parallax and proper motions of any object within 500 pc of the Sun to better than a few percent. Because they are magnetically active, young stars are often associated with compact radio emission detectable using VLBI techniques. Here we will show how VLBI observations have already constrained the distance to the most often studied nearby regions of star-formation (Taurus, Ophiuchus, Orion, etc.) and have started to provide information on their internal structure and kinematics. We will then briefly describe a large project (called The Gould's Belt Distance Survey) designed to provide a detailed view of star-formation in the Solar neighborhood using VLBI observations.

  13. Binaries in the Kuiper Belt

    CERN Document Server

    Noll, K S; Chiang, E I; Margot, J L; Kern, S D; Noll, Keith S.; Grundy, William M.; Chiang, Eugene I.; Margot, Jean-Luc; Kern, Susan D.

    2007-01-01

    Binaries have played a crucial role many times in the history of modern astronomy and are doing so again in the rapidly evolving exploration of the Kuiper Belt. The large fraction of transneptunian objects that are binary or multiple, 48 such systems are now known, has been an unanticipated windfall. Separations and relative magnitudes measured in discovery images give important information on the statistical properties of the binary population that can be related to competing models of binary formation. Orbits, derived for 13 systems, provide a determination of the system mass. Masses can be used to derive densities and albedos when an independent size measurement is available. Angular momenta and relative sizes of the majority of binaries are consistent with formation by dynamical capture. The small satellites of the largest transneptunian objects, in contrast, are more likely formed from collisions. Correlations of the fraction of binaries with different dynamical populations or with other physical variabl...

  14. 电离层人工调制激发的下行ELF/VLF波辐射%The downward ELF/VLF waves radiation excited by ionospheric artificial modulation

    Institute of Scientific and Technical Information of China (English)

    常珊珊; 赵正予; 汪枫

    2011-01-01

    By heating the ionosphere with large ELF/VLF-modulated HF wave, a virtual antenna is produced in the ionosphere, which is an effective means to radiate ELF/VLF waves. This paper uses the modulated-heating models of Wang Feng (2009) to calculate the strength of the LF radiation source produced by HF heating, uses full-wave model to analyze attenuation and reflection of the LF wave transmitting downward, and with HAARP experiment parameter, simulates magnetic field of the LF signals on the sea, which is in PT order, according with the experimental data.%通过大功率ELF/VLF调幅高频波对电离层进行加热,形成电离层虚拟天线,可以作为发射ELF/VLF波的一种有效手段.本文使用汪枫(2009)的调制加热模型,计算高频加热电离层产生的低频辐射源强度,采用全波解算法分析辐射的低频波向下传播过程中的衰减和反射问题,并采用HAARP实验参数,模拟出在海面上接收到的低频信号强度为PT量级,与实验数据一致.模拟结果表明,加热泵波功率、低频调制波频率、以及加热纬度位置是影响ELF/VLF波辐射和传播的三个主要因素.

  15. Strategy for replacing conveyor belts in complex haulage systems

    Energy Technology Data Exchange (ETDEWEB)

    Gladysiewicz, L.; Jurdziak, L.; Masella, J.

    1986-01-01

    Discusses service life and reliability of conveyor belts used for mine haulage in brown coal surface mining and a method for optimizing belt service life. Based on analysis of operation of 900-1,200 m long belt conveyors in the Konin surface mine, failure rates and factors that influence belt reliability were determined. Effects of joints, length of belt sections and service life of each belt section were analyzed. Formulae for determining the optimum time interval for replacing belt sections on a long belt conveyor were derived. The formulae consider cost of new belt sections, replacement cost and haulage losses associated with possible belt failure caused by excessive belt service life. The optimization procedure has been successfully tested at the Turow surface mine and power plant. 4 refs.

  16. Seat belt use law in developing countries

    Institute of Scientific and Technical Information of China (English)

    SangWanLee

    1999-01-01

    Objective:To highlight the way to successful implementation of mandantory seat belt use law in developing countries particulary where have significant increase in number or cars and subsequent increase in car occupant casualties.Methods:Literatures concerning seat belt use were reviewed and experiences of the world.Satisfactory or not,investigated.It summed up general aspects of seat belt use as well as benefits,attitude toward legislation and measures to enhance the usage.Results:Seat belt use has been proven and stood time tested as the most effective means to protect car occupants from road crash injuries.It appears to be arduous to achieve the golal of seat belt use law in developing countries. but possible via strategies appropriately leading to legislation and promotion of the belt usage.Conclusions:It is prime necessity for the government authorities to recognize the importance of seat belt use.There needs an organizational structure composed of relevant professional from both private and government sectors which is able to carry out every steps toward successful legislation and implementation:education,publicity,enforcement,evaluation and dissemination of the law's benefits.

  17. DYNAMIC RESPONSES OF VISCOELASTIC AXIALLY MOVING BELT

    Institute of Scientific and Technical Information of China (English)

    李映辉; 高庆; 蹇开林; 殷学纲

    2003-01-01

    Based on the Kelvin viscoelastic differential constitutive law and the motion equation of the axially moving belt, the nonlinear dynamic model of the viscoelastic axial moving belt was established. And then it was reduced to be a linear differential system which the analytical solutions with a constant transport velocity and with a harmonically varying transport velocity were obtained by applying Lie group transformations. According to the nonlinear dynamic model, the effects of material parameters and the steady-state velocity and the perturbed axial velocity of the belt on the dynamic responses of the belts were investigated by the research of digital simulation. The result shows: 1 ) The nonlinear vibration frequency of the belt will become small when the relocity of the belt increases. 2 ) Increasing the value of viscosity or decreasing the value of elasticity leads to a deceasing in vibration frequencies. 3 ) The most effects of the transverse amplitudes come from the frequency of the perturbed velocity when the belt moves with harmonic velocity.

  18. Computer-aided design of conveyor belts

    Energy Technology Data Exchange (ETDEWEB)

    Karolewski, B.; Pytel, J.

    1984-01-01

    Possibilities are discussed for using mathematical models of belt conveyors for development of computer-aided design of conveyors for coal mining. Examples of optimization tasks and methods for their solution using computerized simulation are analyzed. The analysis is illustrated by an algorithm used to design a starter for the drive system of a belt conveyor. Electromagnetic moment and starting current are used as optimization criteria. A simplified model of a belt conveyor is used. The model consists of an equation of motion with variable braking moment and variable moment of inertia. 3 references.

  19. From transmission error measurement to Pulley-Belt slip determination in serpentine belt drives: influence of tensioner and belt characteristics

    OpenAIRE

    Manin, Lionel; Michon, Guilhem; Rémond, Didier; Dufour, Regis

    2007-01-01

    Serpentine belt drives are often used in front end accessory drive of automotive engine. The accessories resistant torques are getting higher within new technological innovations as stater-alternator, and belt transmissions are always asked for higher capacity. Two kind of tensioners are used to maintain minimum tension that insure power transmission and minimize slip: dry friction or hydraulic tensioners. An experimental device and a specific transmission error measurement method have been u...

  20. Trends in Artificial Intelligence.

    Science.gov (United States)

    Hayes, Patrick

    1978-01-01

    Discusses the foundations of artificial intelligence as a science and the types of answers that may be given to the question, "What is intelligence?" The paradigms of artificial intelligence and general systems theory are compared. (Author/VT)

  1. Artificial Inteligence and Law

    OpenAIRE

    Fuková, Kateřina

    2012-01-01

    Submitted diploma work Artificial Intelligence and Law deals with the rule of law and its position in the process of new advanced technologies in computer cybernetics and further scientific disciplines related with artificial intelligence and its creation. The first part of the work introduces the history of the first imagines about artificial intelligence and concerns with its birth. This chapter presents main theoretical knowledge and hypotheses defined artificial intelligence and progre...

  2. The Compositional Structure of the Asteroid Belt

    CERN Document Server

    DeMeo, Francesca E; Walsh, Kevin J; Chapman, Clark R; Binzel, Richard P

    2015-01-01

    The past decade has brought major improvements in large-scale asteroid discovery and characterization with over half a million known asteroids and over 100,000 with some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the Main Asteroid Belt. Put in context with meteorite measurements and dynamical models, a new and more complete picture of Solar System evolution has emerged. The question has changed from "What was the original compositional gradient of the Asteroid Belt?" to "What was the original compositional gradient of small bodies across the entire Solar System?" No longer is the leading theory that two belts of planetesimals are primordial, but instead those belts were formed and sculpted through evolutionary processes after Solar System formation. This article reviews the advancements on the fronts of asteroid compositional characterization, meteorite measurements, and dynamical theories in the context of the heliocentric distribution of...

  3. Handbook Timing Belts Principles, Calculations, Applications

    CERN Document Server

    Perneder, Raimund

    2012-01-01

    Timing belts offer a broad range of innovative drivetrain solutions; they allow low-backlash operation in robot systems, they are widely used in automated processes and industrial handling involving highly dynamic start-up loads, they are low-maintenance solutions for continuous operation applications, and they can guarantee exact positioning at high operating speeds. Based on his years of professional experience, the author has developed concise guidelines for the dimensioning of timing belt drives and presents proven examples from the fields of power transmission, transport and linear transfer technology. He offers definitive support for dealing with and compensating for adverse operating conditions and belt damage, as well as advice on drive optimization and guidelines for the design of drivetrain details and supporting systems. All market-standard timing belts are listed as brand neutral. Readers will discover an extensive bibliography with information on the various manufacturers and their websites. This...

  4. Simulation of engine auxiliary drive V-belt slip motion. Part 1. Development of belt slip model; Engine hoki V belt slip kyodo no simulation. 1. Belt slip model no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, T. [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    V-belts are widely used for driving auxiliary components of an engine. Inadequet design of such belt system sometimes results in troubles such as belt squeak, side rubber separation and/or bottom rubber crack. However, there has been no design tools which can predict belt slip quantitatively. The author developed a motion simulation program of Auxiliary Drive V-Belt System considering belt slip. The program showed good prediction accuracy for belt slip motion. This paper describes the simulation model. 1 ref., 12 figs.

  5. Two Discrete UHP and HP Metamorphic Belts in the Central Orogenic Belt, China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhang Li; Zhou Hanwen; You Zhendong

    2006-01-01

    An attempt is made to confirm the existence of the two discrete UHP and HP metamorphic belts in the central orogenic belt in China. Detailed geological mapping and structural and petrological analyses of the Kanfenggou (看丰沟) and Xiangfanggou ( 香坊沟 ) slices exposed in the eastern Qinling (秦岭) orogen indicate that they experienced ultrahigh pressure and high pressure metamorphism, respectively. The former, situated in northern Qinling, contains a large volume of fine-grained coesite and quartz pseudomorphs after coesite- and microdiamond-bearing eclogite lenses, whereas the latter, located in southern Qinling, preserves the relicts of a high pressure metamorphic mineral assemblage. Based on extensive fieldwork together with compilations at the scale of the orogenic belt, and a comparison of Pb isotopic compositions between the UHP metamorphic rocks from Kanfenggou slice and the Dabie UHP metamorphic belt, we propose that there are at least two discrete ultrahigh pressure metamorphic belts with different ages and tectonic evolution within the central orogenic belt in China. The first is the South Altun-North Qaidam-North Qinling ultrahigh pressure metamorphic belt of Early Paleozoic age (~ 500-400 Ma). The Kanfenggou ultrahigh pressure slab is located at its eastern segment. The second is the well constrained Dabie ( 大别 )-Sulu ( 苏鲁 ) ultrahigh/ high pressure metamorphic belt of Triassic age (~250-220 Ma). The Xiangfanggou high pressure metamorphic slab is a westward extension of the Dabie-Sulu ultrahigh/high pressure metamorphic belt. The Pb isotopic compositions of the UHP metamorphic rocks from Kanfenggou UHP fragment in East Qinling are different from those of the UHP rocks in Dabie UHP metamorphic belt, but are consistent with those of the rocks from the Qinling rock group and Erlangping (二郎坪) rock group. The East Qinling UHP metamorphic belt does not appear to link with the Dabie-Sulu UHP metamorphic belt. These two ultrahigh

  6. Artificial Atoms: from Quantum Physics to Applications

    International Nuclear Information System (INIS)

    The primary objective of this workshop is to survey the most recent advances of technologies enabling single atom- and artificial atom-based devices. These include the assembly of artificial molecular structures with magnetic dipole and optical interactions between engineered atoms embedded in solid-state lattices. The ability to control single atoms in diamond or similar solids under ambient operating conditions opens new perspectives for technologies based on nanoelectronics and nanophotonics. The scope of the workshop is extended towards the physics of strong coupling between atoms and radiation field modes. Beyond the traditional atom-cavity systems, artificial dipoles coupled to microwave radiation in circuit quantum electrodynamics is considered. All these technologies mutually influence each other in developing novel devices for sensing at the quantum level and for quantum information processing.

  7. Seat belts, airbags and child protection devices. [previously: Seat belts and child restraint seats.

    NARCIS (Netherlands)

    2010-01-01

    In the Netherlands, the use of seat belts results in a yearly reduction of hundreds of fatalities. Seat belts reduce the risk of fatal injury by 37 to 48%, depending on the position in the car. At 50%, the effect of child protection devices is even slightly higher. When last measured (in 2010), 97%

  8. Analysis of stress distribution of timing belts by FEM; Yugen yosoho ni yoru timing belt oryoku kaiseki (belt code oryoku bunpu kaiseki hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y.; Tomono, K.; Takahashi, H.; Uchida, T. [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    A model of the belt analyzed by-ABAQUS (: a general nonlinear finite element program) successfully confirmed the mechanism that generates the belt cord stress. A quite good agreement between experimental and computed results for the stress distribution of the belt cord. It is found that maximum stress of the cords occurs near the root of the tooth by calculation, where the belt cords break off. 3 refs., 9 figs.

  9. Flat belt continuously variable high speed drive

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, E.L.

    1992-02-01

    A study was undertaken at Kumm Industries funded by DOE in the NBS/DOE Energy-Related Inventions Program starting in August 1990 to design, construct and test a novel very high speed flat belt drive. The test arrangement as shown in Figure 1 consists of a multiple belt-pulley configuration that transmits power from a low speed (2000--4000 RPM) input to a small pulley turbine'' (27,000 to 55,000 RPM) and then to the low speed output variable radius pulley (2000--5000 RPM) via a special self-active tensioner. Transmitting 25 HP to and from the turbine'' corresponds to obtaining 50 HP in one direction only in a possible turbo compounded engine application. The high speed of the turbine'' belts, i.e. 100 meters/sec. at 55,000 RPM, while transferring substantial power is a new much higher operating regime for belts. The study showed that the available belts gave overall test rig efficiencies somewhat above 80% for the higher speeds (50,000 RPM) and higher powers (corresponding to above 90% in the turbocompound application) and a significantly better efficiencies at slightly lower speeds. The tests revealed a number of improved approaches in the design of such high speed drives. It appears that there is considerable possibility for further improvement and application of such equipment.

  10. Anticipatory Artificial Autopoiesis

    OpenAIRE

    DuBois, Daniel; Holmberg, Stig C.

    2010-01-01

    In examining relationships between autopoiesis and anticipation in artificial life (Alife) systems it is demonstrated that anticipation may increase efficiency and viability in artificial autopoietic living systems. This paper, firstly, gives a review of the Varela et al [1974] automata algorithm of an autopoietic living cell. Some problems in this algorithm must be corrected. Secondly, a new and original anticipatory artificial autopoiesis algorithm for automata is presented. ...

  11. Inteligencia artificial en vehiculo

    OpenAIRE

    Amador Díaz, Pedro

    2012-01-01

    Desarrollo de un robot seguidor de líneas, en el que se implementan diversas soluciones de las áreas de sistemas embebidos e inteligencia artificial. Desenvolupament d'un robot seguidor de línies, en el qual s'implementen diverses solucions de les àrees de sistemes encastats i intel·ligència artificial. Follower robot development of lines, in which various solutions are implemented in the areas of artificial intelligence embedded systems.

  12. Artificial cognition architectures

    CERN Document Server

    Crowder, James A; Friess, Shelli A

    2013-01-01

    The goal of this book is to establish the foundation, principles, theory, and concepts that are the backbone of real, autonomous Artificial Intelligence. Presented here are some basic human intelligence concepts framed for Artificial Intelligence systems. These include concepts like Metacognition and Metamemory, along with architectural constructs for Artificial Intelligence versions of human brain functions like the prefrontal cortex. Also presented are possible hardware and software architectures that lend themselves to learning, reasoning, and self-evolution

  13. The Compositions of Kuiper Belt Objects

    CERN Document Server

    Brown, Michael E

    2011-01-01

    Objects in the Kuiper belt are small and far away thus difficult to study in detail even with the best telescopes available at earth. For much of the early history of the Kuiper belt, studies of the compositions of these objects were relegated to collections of moderate quality spectral and photometric data that remained difficult to interpret. Much early effort was put into simple correlations of surface colors and identifications of spectral features, but it was difficult to connect the observations to a larger understanding of the region. The last decade, however, has seen a blossoming in our understanding of the compositions of objects in the Kuiper belt. This blossoming is a product of the discoveries of larger -- and thus easier to study -- objects, continued dedication to the collection of a now quite large collection of high quality photometric and spectroscopic observations, and continued work at the laboratory and theoretical level. Today we now know of many processes which affect the surface compos...

  14. Perceptual findings on the broadway belt voice.

    Science.gov (United States)

    DeLeo LeBorgne, Wendy; Lee, Linda; Stemple, Joseph C; Bush, Heather

    2010-11-01

    The present study required raters (casting directors) to evaluate the belt voice quality of 20 musical theater majors who were proficient in the singing style referred to as belting. Two specified vocalizes and six short excerpts from the belting repertoire were used for rating purposes. The raters were asked to judge the belters on a set of seven perceptual parameters (loudness, vibrato, ring, timbre, focus, nasality, and registration breaks), and then report an overall score for these student belters. The four highest and lowest average scores were used to establish the elite and average student belters. A correlation analysis and linear regression analysis provided insight regarding which perceptual judgments correlated most highly with the elite and average scores. The present study found the perceptual ratings of vibrato and ring to be most highly correlated to the elite student belter. In addition, vibrato and ring were found to highly correlate with perceived loudness. PMID:19900789

  15. Raytracing of extreamely low frequency waves radiated from ionospheric artificial modulation at low latitude%低纬电离层人工调制所激发的ELF波射线追踪

    Institute of Scientific and Technical Information of China (English)

    汪枫; 赵正予; 常珊珊; 倪彬彬; 顾旭东

    2012-01-01

    通过大功率极低频(ELF)/甚低频(VLF)高频调幅波能有效地扰动低电离层电流,形成等效的ELF/VLF电离层虚拟天线,辐射ELFNLF波,所辐射出的低频信号能够传播进入到磁层,对其传播特性的研究对于理解辐射带高能电子沉降具有重要意义.本文基于磁层射线追踪理论,通过数值模拟得到在低纬地区所激发出的ELF波在磁层中的射线路径,并对其特征进行分析.数值模拟结果表明,从低纬激发的ELF波在南北半球来回弹跳,并逐渐传播到更远处,对于不同频率的ELF波,频率越高,传播距离越近,频率越低,传播距离越远,在传播过程中,ELF波会逐渐倾向于在一个固定的磁层区域附近来回反射,在此过程中波法向角也逐渐变为90°,射线方向倾向于沿着背景磁场方向传播.%Powerful high-frequency radio waves modulated at extremely low frequency (ELF) and very low frequency (VLF) can efficiently modify the lower ionospheric current which can act as an equivalent ionospheri'c antenna for the generation of ELF/VLF wave and these signals can propagate into the magnetosphere and the investigation of the propagation properties is of significance for understanding of radiation belt energetic electrons precipitation. In this paper, based on the raytracing theory, the ray paths of ELF waves in the magnetosphere are obtained using numerical modeling and the properties are analyzed. The results shows that the ELF waves generated from the low latitude reflect between the southern and northern hemisphere and propagate to the farther place gradually. For the signals with different frequencies, the higher their frequencies, the shorter their propagation distances are, the lower their frequencies, the longer their propagtion distances are. In the process, ELF waves tend to reflect near a fixed region. The normal angel increases to 90° gradually and ray direction tends to

  16. Whistler mode emissions in the Uranian radiation belts

    Science.gov (United States)

    Coroniti, F. V.; Kurth, W. S.; Scarf, F. L.; Kennel, C. F.; Krimigis, S. M.

    1987-01-01

    Voyager 2 detected intense whistler mode emissions and fluxes of energetic electrons during the outbound pass through the region of auroral L shells. The observed energetic (E greater than 22 keV) electron distribution, a model warm (E less than 27.5 keV) electron distribution, and the cold plasma density profile deduced by Kurth et al. (1987) are used to calculate the ray path-integrated spatial amplification of whistlers which arrive at Voyager 2 from the magnetic equator. By matching the calculated amplification and the relative gains at different frequencies deduced from the observed whistler power spectrum, the pitch angle anisotropy parameters of the electron distributions are determined to within a fairly narrow range of values. The estimated bounce average pitch angle diffusion coefficient indicates that electrons are on strong diffusion over a wide range in energies. The electron precipitation energy flux is sufficient to produce the observed auroral light emissions.

  17. Composite Microdiscs with a Magnetic Belt

    DEFF Research Database (Denmark)

    Knaapila, Matti; Høyer, Henrik; Helgesen, Geir

    2015-01-01

    We describe an emulsion-based preparation of patchy composite particles (diameter of 100-500 mu m) consisting of a disclike epoxy core and a belt of porous polystyrene particles (diameter of 30 mu m) with magnetite within the pores. Compared to the magnetically uniform polystyrene particles......, the spontaneous aggregation of composite particles is suppressed when dispersed into liquid, which is attributed to the increased particle size, reduced magnetic susceptibility, and the shape of the magnetic domain distribution within the particles (spherical versus a belt). When the composite particles...

  18. Artificial life and life artificialization in Tron

    Directory of Open Access Journals (Sweden)

    Carolina Dantas Figueiredo

    2012-12-01

    Full Text Available Cinema constantly shows the struggle between the men and artificial intelligences. Fiction, and more specifically fiction films, lends itself to explore possibilities asking “what if?”. “What if”, in this case, is related to the eventual rebellion of artificial intelligences, theme explored in the movies Tron (1982 and Tron Legacy (2010 trat portray the conflict between programs and users. The present paper examines these films, observing particularly the possibility programs empowering. Finally, is briefly mentioned the concept of cyborg as a possibility of response to human concerns.

  19. Artificial insemination in poultry

    Science.gov (United States)

    Artificial insemination is a relative simple yet powerful tool geneticists can employ for the propagation of economically important traits in livestock and poultry. In this chapter, we address the fundamental methods of the artificial insemination of poultry, including semen collection, semen evalu...

  20. 电离层人工调制在水平分层电离层中所激发的ELF波辐射%Radiation of ELF waves by ionospheric artificial modulation into a stratified ionosphere

    Institute of Scientific and Technical Information of China (English)

    汪枫; 赵正予; 常珊珊; 赵光欣; 青海银

    2012-01-01

    通过大功率ELF/VIF调幅高频波能有效地扰动低电离层,形成等效的ELF/VLF电离层虚拟天线,用来辐射ELF/VLF波,所辐射出的低频信号可以进入中性大气层形成地球-电离层波导.本文基于调制加热模型,采用全波有限元算法计算由人工调制电离层所形成的电偶极矩所辐射出的ELF波在水平分层电离层中的波场,计算结果将与地面观测结果进行比较.模拟结果表明,所辐射出的ELF波在电离层中形成一个窄的准直波束,海面所能接收到的ELF信号强度为pT量级,并且频率越低,海面所接收到的场强就越小,与HAARP实验数据一致.结果还表明,低纬电离层对低频信号的传播衰减较大,并且所能透射出电离层的角度小,因此高纬地区更适合地球-电离层波导的激发.%Using powerful high-frequency radio waves modulated at ELF/VLF can efficiently modify the lower ionosphere which can act as an equivalent ELF/VLF virtual antenna for the generation of ELF/VLF waves which can propagate in the Earth-ionosphere waveguide. In this paper, based on the modulation model, a full-wave finite element method is used to calculate the field of the ELF waves radiated by the dipole moment which is produced by ionospheric artificial modulation in the stratified ionosphere and the calculated values are compared to the ground observation. The numerical modeling shows that these waves form a narrow collimated beam and the magnitude of field intensity of low frequency signals received on the sea is -pT which will become smaller when the frequency is lower and this result is in accordance with the laboratory data from HAARP. The result also shows that it has stronger attenuation and small angel penetrating the ionosphere for the low signal at low latitude, so that the excitation of the Earth-ionosphere waveguide is easier at high latitude.

  1. Onion artificial muscles

    Science.gov (United States)

    Chen, Chien-Chun; Shih, Wen-Pin; Chang, Pei-Zen; Lai, Hsi-Mei; Chang, Shing-Yun; Huang, Pin-Chun; Jeng, Huai-An

    2015-05-01

    Artificial muscles are soft actuators with the capability of either bending or contraction/elongation subjected to external stimulation. However, there are currently no artificial muscles that can accomplish these actions simultaneously. We found that the single layered, latticed microstructure of onion epidermal cells after acid treatment became elastic and could simultaneously stretch and bend when an electric field was applied. By modulating the magnitude of the voltage, the artificial muscle made of onion epidermal cells would deflect in opposing directions while either contracting or elongating. At voltages of 0-50 V, the artificial muscle elongated and had a maximum deflection of -30 μm; at voltages of 50-1000 V, the artificial muscle contracted and deflected 1.0 mm. The maximum force response is 20 μN at 1000 V.

  2. The thrust belts of Western North America

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, F.C.

    1993-08-01

    Most of the Basin and Range physiographic province of western North America is now believed to be part of the overthrust. The more obvious overthrust belt along the eastern edge of the Basin and Range Province is named the Sevier orogenic belt, where older rocks are observed thrust onto younger rocks. More detailed surface geological mapping, plus deep multiple-fold geophysical work and many oil and gas wildcat wells, have confirmed an east-vergent shortened and stacked sequence is present in many places in the Basin and Range. This western compressive deformed area in east central Nevada is now named the Elko orogenic belt by the U.S. Geological Survey. This older compressed Elko orogenic belt started forming approximately 250 m.y. ago when the North American plate started to move west as the Pangaea supercontinent started to fragment. The North American plate moved west under the sediments of the Miogeocline that were also moving west. Surface-formed highlands and oceanic island arcs on the west edge of the North American plate restricted the westward movement of the sediments in the Miogeocline, causing east-vergent ramp thrusts to form above the westward-moving North American plate. The flat, eastward-up-cutting thrust assemblages moved on the detachment surfaces.

  3. Design aspects of multiple driven belt conveyors

    NARCIS (Netherlands)

    Nuttall, A.J.G.

    2007-01-01

    Worldwide belt conveyors are used to transport a great variety of bulk solid materials. The desire to carry higher tonnages over longer distances and more diverse routes, while keeping exploitation costs as low as possible, has fuelled many technological advances. An interesting development in the r

  4. Mental models of radiation

    International Nuclear Information System (INIS)

    Laymen and experts participated in interviews designed to reveal their 'mental models' of the processes potentially causing the miscommunications between experts and the public. We analyzed their responses in terms of an 'expert model' circumscribing scientifically relevant information. From results, there are gaps even between experts. Experts on internal exposure focused mainly on artificial radiation and high level of radiation. Experts on radiation biology focused on medical radiation, level of risk, environmental radiation, and hot springs. Experts on dosimetric performance focused on atomic power generation and needs of radiological protection. It means that even experts, they have interests only on their own specialized field. (author)

  5. Artificial intelligence in medicine.

    Science.gov (United States)

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  6. An icy Kuiper-Belt around the young solar-type star HD 181327

    CERN Document Server

    Lebreton, J; Thi, W -F; Roberge, A; Donaldson, J; Schneider, G; Maddison, S T; Ménard, F; Riviere-Marichalar, P; Mathews, G S; Kamp, I; Pinte, C; Dent, W R F; Barrado, D; Duchêne, G; Gonzalez, J -F; Grady, C A; Meeus, G; Pantin, E; Williams, J P; Woitke, P

    2011-01-01

    HD 181327 is a young F5/F6V star belonging to the Beta Pictoris moving group (12 Myr). It harbors an optically thin belt of circumstellar material at 90 AU. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. We obtained far-IR observations with the Herschel/PACS instrument, and 3.2 mm observations with the ATCA array. The geometry of the belt is constrained with newly reduced HST/NICMOS images that break the degeneracy between the disk geometry and the dust properties. We use the radiative transfer code GRaTer to compute a large grid of models, and we identify the grain models that best reproduce the Spectral Energy Distribution through a Bayesian analysis. We attempt to detect the [OI] and [CII] lines with PACS spectroscopy, providing observables to our photochemical code ProDiMo. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected in the far-IR with PACS and the disk is resolved with both PACS and ATCA. A medium ...

  7. Impacts of intense inward and outward ULF wave radial diffusion on the Van Allen belts

    Science.gov (United States)

    Mann, Ian; Ozeke, Louis; Rae, I. Jonathan; Murphy, Kyle

    2016-07-01

    During geomagnetic storms, the power in ultra-low frequency (ULF) waves can be orders of magnitude larger than that predicted by statistics determined from an entire solar cycle. This is especially true during the main phase and early recovery phase. These periods of enhanced storm-time ULF wave power can have significant impacts on the morphology and structure of the Van Allen belts. Either fast inward or outward radial diffusion can result, depending on the profiles of the electron phase space density and the outer boundary condition at the edge of the belts. Small changes in the time sequence of powerful ULF waves, and the time sequence of any magnetopause shadowing or the recovery of plamasheet sources relative to the ULF wave occurrence, have a remarkable impact on the resulting structure of the belts. The overall impact of the enhanced ULF wave power is profound, but the response can be very different depending on the available source flux in the plasmasheet. We review these impacts by examining ultra-relativistic electron dynamics during seemingly different storms during the Van Allen Probe era, including during the Baker et al. third radiation belt, and show the observed behaviour can be largely explained by differences in the time sequence of events described above.

  8. Detecting Extrasolar Asteroid Belts Through Their Microlensing Signatures

    CERN Document Server

    Lake, Ethan; Dong, Subo

    2016-01-01

    We propose that extrasolar asteroid belts can be detected through their gravitational microlensing signatures. Asteroid belt + star lens systems create so-called "pseudo-caustics", regions in the source plane where the magnification exhibits a finite but discontinuous jump. These features allow such systems to generate distinctive microlensing light curves across a wide region of belt parameter space and possess remarkably large lensing cross-sections. Sample light curves for a range of asteroid belt parameters are presented. In the near future, space-based microlensing surveys (e.g., WFIRST) may be able to discover extrasolar asteroid belts with masses of the order of $0.1 M_{\\oplus}$.

  9. Seat Belt Use Among Adult Workers - 21 States, 2013.

    Science.gov (United States)

    Boal, Winifred L; Li, Jia; Rodriguez-Acosta, Rosa L

    2016-01-01

    Roadway incidents involving motorized vehicles accounted for 24% of fatal occupational injuries in the United States during 2013 and were the leading cause of fatal injuries among workers.* In 2013, workers' compensation costs for serious, nonfatal injuries among work-related roadway incidents involving motorized land vehicles were estimated at $2.96 billion.(†) Seat belt use is a proven method to reduce injuries to motor vehicle occupants (1). Use of lap/shoulder seat belts reduces the risk for fatal injuries to front seat occupants of cars by 45% and the risk to light truck occupants by 60%.(§) To characterize seat belt use among adult workers by occupational group, CDC analyzed data from the 2013 Behavioral Risk Factor Surveillance System (BRFSS) and found that not always using a seat belt was significantly associated with occupational group after controlling for factors known to influence seat belt use. Occupational groups with the highest prevalences of not always using a seat belt included construction and extraction; farming, fishing, and forestry; and installation, maintenance, and repair. To increase seat belt use among persons currently employed, states can enact and enforce primary seat belt laws, employers can set and enforce safety policies requiring seat belt use by all vehicle occupants, and seat belt safety advocates can target interventions to workers in occupational groups with lower reported seat belt use. PMID:27309488

  10. LOAD DISTRIBUTION ON DRUMS OF DOUBLE DRIVE BELT CONVEYOR

    Institute of Scientific and Technical Information of China (English)

    薛河; 苏清祖; 马胜利

    1999-01-01

    The double drum drive is widely used on the mine belt conveyor, which are divided the rigid connected double drums and separately driving double drums according to connected method of two drums. Because of the change of real work condition, the load distribution is changed on the two drive drums, which may produce a slippage between a drum and belt. Slippage may intensify the wear of the drum, and sometimes causing the fire of the belt. This restricts the development toward narrow belt, high velocity and large power of belt conveyor. In this paper, the factors affecting the load distribution of two drums of double drum belt conveyor are'systematically analyzed and some computing formulas derived, by these formulas, the actual load distribution onthe two drums of rigid connected or separately driving belt conveyor can be separately calculated. These formulas also can be as the theory base for adjusting the driving force of two drums.

  11. Stability of Triangular Equilibrium Points in the Photogravitational Restricted Three-Body Problem with Oblateness and Potential from a Belt

    Indian Academy of Sciences (India)

    Jagadish Singh; Joel John Taura

    2014-06-01

    We have examined the effects of oblateness up to 4 of the less massive primary and gravitational potential from a circum-binary belt on the linear stability of triangular equilibrium points in the circular restricted three-body problem, when the more massive primary emits electromagnetic radiation impinging on the other bodies of the system. Using analytical and numerical methods, we have found the triangular equilibrium points and examined their linear stability. The triangular equilibrium points move towards the line joining the primaries in the presence of any of these perturbations, except in the presence of oblateness up to 4 where the points move away from the line joining the primaries. It is observed that the triangular points are stable for 0 < < c and unstable for c ≤ ≤ $\\frac{1}{2}$, where c is the critical mass ratio affected by the oblateness up to 4 of the less massive primary, electromagnetic radiation of the more massive primary and potential from the belt, all of which have destabilizing tendencies, except the coefficient 4 and the potential from the belt. A practical application of this model could be the study of motion of a dust particle near a radiating star and an oblate body surrounded by a belt.

  12. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  13. The Artificial Anal Sphincter

    OpenAIRE

    Christiansen, John

    2000-01-01

    The artificial anal sphincter as treatment for end stage anal incontinence was first described in 1987. Published series concern a total of 42 patients, with a success rate of approximately 80%. Infection has been the most serious complication, but a number of technical complications related to the device have also occurred and required revisional procedures in 40% to 60% of the patients. The artificial anal sphincter may be used for the same indications as dynamic graciloplasty except in pat...

  14. Radial gradients of phase space density in the inner electron radiation

    Science.gov (United States)

    Kim, Kyung-Chan; Shprits, Yuri

    2012-12-01

    While the outer radiation belt (3.5 inner radiation belt (1.2 inner electron belt in recent years. It has been generally accepted that the equilibrium structure of radiation belt electrons is explained by the slow inward radial diffusion from a source in the outer belt and losses by Coulomb collision and wave-particle interaction. In this study, we examine this well accepted theory using the radial profiles of the phase space density (PSD), inferred from in situ measurements made by three different satellites: S3-3, CRRES, and POLAR. Our results show that electron PSD in the inner electron belt has a clear prominent local peak and negative radial gradient in the outer portion of the inner zone, i.e., decreasing PSD with increasingL-value. A likely explanation for the peaks in PSD is acceleration due to energy diffusion produced by lightning-generated and anthropogenic whistlers. These results indicate that either additional local acceleration mechanism is responsible for the formation of the inner electron belt or inner electron belt is formed by sporadic injections of electrons into the inner zone. The currently well accepted model of slow diffusion and losses will be further examined by the upcoming Radiation Belt Storm Probes (RBSP) mission.

  15. Alien Asteroid Belt Compared to our Own

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Band of Light Comparison This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below; see Figure 1). NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present. The movie begins at dusk on the imaginary world, when HD 69830, like our Sun, has begun to set over the horizon. Time is sped up to show the onset of night and the appearance of a brilliant band of light. This light comes from dust in a massive asteroid belt, which scatters sunlight. In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the 'false dawn,' this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.) In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.

  16. Araguaia fold belt, new geochronological data

    International Nuclear Information System (INIS)

    The northern part of the Araguaia Fold Belt (AFB) outcrops in a N-S direction for about 400 km in the state of Tocantins. Dome-like structures occur in this fold belt also in a N-S direction. Both deformation and metamorphism increase from the West to the East. The basement of the AFB consist of Colmeia complex and Cantao gneiss, which crop out mainly in the core of the dome-like structures. The supracrustals rocks of the fold belt belongs to the Baixo Araguaia supergroup which is divided into the lower Estrondo group and the upper Tocantins group. Preliminary Sm-Nd data from the Colmeia complex (Grota Rica dome) gave Archean model ages of 2.8 Ga (TNd sub(DM)) while Rb-Sr data in the same rocks give an age of 2530 ± 200 Ma. In the others dome-like structures, the Rb-Sr systematics gave ages for the Colmeia a complex of 2239 ± 47 Ma (Colmeia structure) and 1972 ± 46 Ma (Lontra structure). These younger ages are believed to represent partial to total isotopic resetting of the Rb-Sr system during the Transamazonian Event. The Rb-Sr studies of the Cantao gneiss gave an age of 1774 ± 31 Ma. (author)

  17. Seat belt use during pregnancy in Iran: attitudes and practices

    Institute of Scientific and Technical Information of China (English)

    Mojgan Karbakhsh; Zahra Ershadi; Ali Khaji; Fatemeh Rahimi-Sharbaf

    2010-01-01

    Objective: Seat belt use during pregnancy reduces injury to the mother and her fetus. During recent years, the use of seat belts has been mandated by law in Iran. The purpose of this study was to determine the attitudes and practices of pregnant women regarding seat belt use.Methods: In this cross-sectional study, we asked 335 pregnant women at a hospital-based prenatal care clinic on the use of safety belt before and during pregnancy. SPSS version 13.0 was used for data analysis.Results: The mean age of study subjects was 27.3 years±5.3 years with the median of 27 years. Compared with the seat belt use before pregnancy, no change was detected in 48.7% of the women; seat belt use had increased in 17.5 %of them and decreased in 33.8 %. Eighty-one percent of women knew the correct placing of both lap belt and shoulder belt. Only 4% of women had received education on proper restraint use during pregnancy.Conclusions: The prevalence of seat belt use during pregnancy is lower than reports which are mostly from developed nations. The fact that about one-third of women have decreased their seat belt usage during pregnancy highlights the importance of education of mothers on this topic.

  18. Artificial muscles on heat

    Science.gov (United States)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  19. Artificial vision workbench.

    Science.gov (United States)

    Frenger, P

    1997-01-01

    Machine vision is an important component of medical systems engineering. Inexpensive miniature solid state cameras are now available. This paper describes how these devices can be used as artificial retinas, to take snapshots and moving pictures in monochrome or color. Used in pairs, they produce a stereoscopic field of vision and enable depth perception. Macular and peripheral vision can be simulated electronically. This paper also presents the author's design of an artificial orbit for this synthetic eye. The orbit supports the eye, protects it, and provides attachment points for the ocular motion control system. Convergence and image fusion can be produced, and saccades simulated, along with the other ocular motions. The use of lenses, filters, irises and focusing mechanisms are also discussed. Typical camera-computer interfaces are described, including the use of "frame grabbers" and analog-to-digital image conversion. Software programs for eye positioning, image manipulation, feature extraction and object recognition are discussed, including the application of artificial neural networks.

  20. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  1. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  2. Artificial intelligence in nanotechnology

    Science.gov (United States)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  3. Radiation, health and society

    International Nuclear Information System (INIS)

    Experience from over one hundred years of working with radiation and follow-up studies of hundreds of thousands of workers has not revealed health hazards caused by normal exposure to natural radiation or to artificial radiation below the limits prescribed by ICRP. For the public, dose limits are only a fraction of those specified for occupationally exposed workers. While many people feel anxiety about the possibility of accidents in nuclear establishments and the short and long term effects on their health and on the health of their descendants, the risks from radiation must be seen in perspective. Human activities have added some artificial radioactive substances to the environment, but on the whole, that amount is far slighter than most people realize, and so slight that its impact on health can only be characterized as minimal

  4. Artificial human vision.

    Science.gov (United States)

    Dowling, Jason

    2005-01-01

    Can vision be restored to the blind? As early as 1929 it was discovered that stimulating the visual cortex of an individual led to the perception of spots of light, known as phosphenes [1] . The aim of artificial human vision systems is to attempt to utilize the perception of phosphenes to provide a useful substitute for normal vision. Currently, four locations for electrical stimulation are being investigated; behind the retina (subretinal), in front of the retina (epiretinal), the optic nerve and the visual cortex (using intra- and surface electrodes). This review discusses artificial human vision technology and requirements, and reviews the current development projects.

  5. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  6. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  7. Environmental radiation

    International Nuclear Information System (INIS)

    The types of ionizing radiations from the atomic nucleus are explained, such as the beams alpha, beta and gamma. The definitions of spectrometry and nuclear traces have been included.The study presents two researches realized in Costa Rica on the radioactive nuclear and artificial elements in the environment. The first shown is the analysis of coastal sediments where explains which are radioactive artificial isotopes and the pollution that occurs in food, coastal sediments, fertilizers, the soil, the water and the air. Within the analysis techniques are the gamma spectrometry, alpha spectrometry and nuclear strokes. Among the conclusions of this initial investigation is shown that at Punta Leona descendants of Uranium and Thorium present lower concentrations in relation to the gulf and its variations are not important. In the following study the radon gas is analyzed in the human environment where is determined that it is the second generator that causes cancer in lungs after the tobacco. This work indicates that the doses come from natural and artificial sources of radiation for the public are a whole of 2.7 mSv/year, information provided by the UNSCEAR, 2000. The radon gas is inert and radioactive of atomic number 86, includes 23 isotopes and 3 natural isotopes. The radon is everywhere, as are houses and buildings, in Costa Rica it is located in old homes with little ventilation. It describes the equipment used for the detection of radon gas in the environment. Within the conclusions radon gas is concentrated in confined spaces which can be harmful to health. It is determined that enough ventilation in places of high concentrations of radon is important. Finally it is recommended to monitor the sites where can be detected high concentrations of radon and that they have important influx of people

  8. Cooperative quasi-Cherenkov radiation

    CERN Document Server

    Anishchenko, S V

    2014-01-01

    We study the features of cooperative parametric (quasi-Cherenkov) radiation arising when initially unmodulated electron (positron) bunches pass through a crystal (natural or artificial) under the conditions of dynamical diffraction of electromagnetic waves in the presence of shot noise. A detailed numerical analysis is given for cooperative THz radiation in artificial crystals. The radiation intensity above 200~MW$/$cm$^2$ is obtained in simulations. In two- and three-wave diffraction cases, the peak intensity of cooperative radiation emitted at small and large angles to particle velocity is investigated as a function of the particle number in an electron bunch. The peak radiation intensity appeared to increase monotonically until saturation is achieved. At saturation, the shot noise causes strong fluctuations in the intensity of cooperative parametric radiation. It is shown that the duration of radiation pulses can be much longer than the particle flight time through the crystal. This enables a thorough expe...

  9. Health Monitoring for Coated Steel Belts in an Elevator System

    OpenAIRE

    Yimei Mao; Zuoying Huang; Guiyun Tian; Hui Zhao; Huaming Lei

    2012-01-01

    This paper presents a method of health monitoring for coated steel belts in an elevator system by measuring the electrical resistance of the ropes embedded in the belt. A model on resistance change caused by fretting wear and stress fatigue has been established. Temperature and reciprocating cycles are also taken into consideration when determining the potential strength degradation of the belts. It is proved by experiments that the method could effectively estimate the health degradation of ...

  10. Modal analysis of coupled vibration of belt drive systems

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-jun; CHEN Li-qun

    2008-01-01

    The modal method is applied to analyze coupled vibration of belt drive systems. A belt drive system is a hybrid system consisting of continuous belts modeled as strings as well as discrete pulleys and a tensioner arm. The characteristic equation of the system is derived from the governing equation. Numerical results demenstrate the effects of the transport speed and the initial tension on natural frequencies.

  11. Health Monitoring for Coated Steel Belts in an Elevator System

    Directory of Open Access Journals (Sweden)

    Huaming Lei

    2012-01-01

    Full Text Available This paper presents a method of health monitoring for coated steel belts in an elevator system by measuring the electrical resistance of the ropes embedded in the belt. A model on resistance change caused by fretting wear and stress fatigue has been established. Temperature and reciprocating cycles are also taken into consideration when determining the potential strength degradation of the belts. It is proved by experiments that the method could effectively estimate the health degradation of the most dangerous section as well as other ones along the whole belts.

  12. CHAOTIC BELT PHENOMENA IN NONLINEAR ELASTIC BEAM

    Institute of Scientific and Technical Information of China (English)

    张年梅; 杨桂通

    2003-01-01

    The chaotic motions of axial compressed nonlinear elastic beam subjected totransverse load were studied. The damping force in the system is nonlinear. Consideringmaterial and geometric nonlinearity, nonlinear governing equation of the system wasderived. By use of nonlinear Galerkin method, differential dynamic system was set up.Melnikov method was used to analyze the characters of the system. The results showed thatchaos may occur in the system when the load parameters P0 and f satisfy some conditions.The zone of chaotic motion was belted. The route from subharmonic bifurcation to chaoswas analyzed. The critical conditions that chaos occurs were determined.

  13. Dust bands in the asteroid belt

    Science.gov (United States)

    Sykes, Mark V.; Greenberg, Richard; Dermott, Stanley F.; Nicholson, Philip D.; Burns, Joseph A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations.

  14. Parametric resonances of convection belt system

    Institute of Scientific and Technical Information of China (English)

    Zhi-an YANG; Gao-feng LI

    2009-01-01

    Based on the Coriolis acceleration and the Lagrangian strain formula,a generalized equation for the transverse vibration system of convection belts is derived using Newton's second law.The method of multiple scales is directly applied to the governing equations,and an approximate solution of the primary parameter resonance of the system is obtained.The detuning parameter,cross-section area,elastic and viscoelastic parameters,and axial moving speed have a significant influences on the amplitudes of steady-state response and their existence boundaries.Some new dynamical phenomena are revealed.

  15. Artificial intelligence within AFSC

    Science.gov (United States)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  16. Artificial Left Ventricle

    CERN Document Server

    Ranjbar, Saeed; Meybodi, Mahmood Emami

    2014-01-01

    This Artificial left ventricle is based on a simple conic assumption shape for left ventricle where its motion is made by attached compressed elastic tubes to its walls which are regarded to electrical points at each nodal .This compressed tubes are playing the role of myofibers in the myocardium of the left ventricle. These elastic tubes have helical shapes and are transacting on these helical bands dynamically. At this invention we give an algorithm of this artificial left ventricle construction that of course the effect of the blood flow in LV is observed with making beneficiary used of sensors to obtain this effecting, something like to lifegates problem. The main problem is to evaluate powers that are interacted between elastic body (left ventricle) and fluid (blood). The main goal of this invention is to show that artificial heart is not just a pump, but mechanical modeling of LV wall and its interaction with blood in it (blood movement modeling) can introduce an artificial heart closed to natural heart...

  17. Artificial Gravity Research Plan

    Science.gov (United States)

    Gilbert, Charlene

    2014-01-01

    This document describes the forward working plan to identify what countermeasure resources are needed for a vehicle with an artificial gravity module (intermittent centrifugation) and what Countermeasure Resources are needed for a rotating transit vehicle (continuous centrifugation) to minimize the effects of microgravity to Mars Exploration crewmembers.

  18. Micromachined Artificial Haircell

    Science.gov (United States)

    Liu, Chang (Inventor); Engel, Jonathan (Inventor); Chen, Nannan (Inventor); Chen, Jack (Inventor)

    2010-01-01

    A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.

  19. Terahertz Artificial Dielectric Lens

    Science.gov (United States)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  20. Observations of artificial satellites

    Directory of Open Access Journals (Sweden)

    A. MAMMANO

    1964-06-01

    Full Text Available The following publication gives the results of photographic
    observations of artificial satellites made at Asiago during the second
    and third year of this programme. The fixed camera technique and that
    with moving film (the latter still in its experimental stage have been used.

  1. Introduction to Artificial Neural Networks

    DEFF Research Database (Denmark)

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  2. Tailoring superradiance to design artificial quantum systems

    Science.gov (United States)

    Longo, Paolo; Keitel, Christoph H.; Evers, Jörg

    2016-03-01

    Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This “reverse engineering” of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.

  3. Tailoring superradiance to design artificial quantum systems.

    Science.gov (United States)

    Longo, Paolo; Keitel, Christoph H; Evers, Jörg

    2016-03-24

    Cooperative phenomena arising due to the coupling of individual atoms via the radiation field are a cornerstone of modern quantum and optical physics. Recent experiments on x-ray quantum optics added a new twist to this line of research by exploiting superradiance in order to construct artificial quantum systems. However, so far, systematic approaches to deliberately design superradiance properties are lacking, impeding the desired implementation of more advanced quantum optical schemes. Here, we develop an analytical framework for the engineering of single-photon superradiance in extended media applicable across the entire electromagnetic spectrum, and show how it can be used to tailor the properties of an artificial quantum system. This "reverse engineering" of superradiance not only provides an avenue towards non-linear and quantum mechanical phenomena at x-ray energies, but also leads to a unified view on and a better understanding of superradiance across different physical systems.

  4. Stabilization of electrostatic accelerator charging belt current

    International Nuclear Information System (INIS)

    For the purpose of improving reliability and quality of electrostatic accelerator basic parameters the stabilizer of charging belt current is developed. The stabilizer consists of two units: high-voltage unit and control unit. The charging rectifier assures voltage up to 60 kV at total current load of 750 μA. For the EG- 2.5 and the EGP-10 M accelerators supply circuits of charging device with an earth screen and posAitive voltage supply the needles. t the EGP-10-1 accelerator negative charging voltage is supplied to the screens of the charging device. ''Plus'' of the rectifier is earthed. Charging and recharging are performed by means of brushes slipping over the internal belt side. At all accelerators the stability of charging current mean value is not worse 0.1%. The highest response of the system are obtained at the EG-2.5 accelerator for account of rectifier load by charging current and instrument resistor from 140 to 400 MOhm

  5. Fading of Jupiter's South Equatorial Belt

    Science.gov (United States)

    Sola, Michael A.; Orton, Glenn; Baines, Kevin; Yanamandra-Fisher, Padma

    2011-01-01

    One of Jupiter's most dominant features, the South Equatorial Belt, has historically gone through a "fading" cycle. The usual dark, brownish clouds turn white, and after a period of time, the region returns to its normal color. Understanding this phenomenon, the latest occurring in 2010, will increase our knowledge of planetary atmospheres. Using the near infrared camera, NSFCAM2, at NASA's Infrared Telescope Facility in Hawaii, images were taken of Jupiter accompanied by data describing the circumstances of each observation. These images are then processed and reduced through an IDL program. By scanning the central meridian of the planet, graphs were produced plotting the average values across the central meridian, which are used to find variations in the region of interest. Calculations using Albert4, a FORTRAN program that calculates the upwelling reflected sunlight from a designated cloud model, can be used to determine the effects of a model atmosphere due to various absorption, scattering, and emission processes. Spectra that were produced show ammonia bands in the South Equatorial Belt. So far, we can deduce from this information that an upwelling of ammonia particles caused a cloud layer to cover up the region. Further investigations using Albert4 and other models will help us to constrain better the chemical make up of the cloud and its location in the atmosphere.

  6. Young Stellar Objects in the Gould Belt

    CERN Document Server

    Dunham, Michael M; Evans, Neal J; Broekhoven-Fiene, Hannah; Cieza, Lucas; Di Francesco, James; Gutermuth, Robert A; Harvey, Paul M; Hatchell, Jennifer; Heiderman, Amanda; Huard, Tracy; Johnstone, Doug; Kirk, Jason M; Matthews, Brenda C; Miller, Jennifer F; Peterson, Dawn E; Young, Kaisa E

    2015-01-01

    We present the full catalog of Young Stellar Objects (YSOs) identified in the 18 molecular clouds surveyed by the Spitzer Space Telescope "cores to disks" (c2d) and "Gould Belt" (GB) Legacy surveys. Using standard techniques developed by the c2d project, we identify 3239 candidate YSOs in the 18 clouds, 2966 of which survive visual inspection and form our final catalog of YSOs in the Gould Belt. We compile extinction corrected SEDs for all 2966 YSOs and calculate and tabulate the infrared spectral index, bolometric luminosity, and bolometric temperature for each object. We find that 326 (11%), 210 (7%), 1248 (42%), and 1182 (40%) are classified as Class 0+I, Flat-spectrum, Class II, and Class III, respectively, and show that the Class III sample suffers from an overall contamination rate by background AGB stars between 25% and 90%. Adopting standard assumptions, we derive durations of 0.40-0.78 Myr for Class 0+I YSOs and 0.26-0.50 Myr for Flat-spectrum YSOs, where the ranges encompass uncertainties in the ado...

  7. Storm/substorm signatures in the outer belt

    International Nuclear Information System (INIS)

    The response of the ring current region is compared for periods of storm and substorm activity, with an attempt to isolate the contributions of both processes. The authors investigate CRRES particle data in an overview format that allows the display of long-term variations of the outer radiation belt. They compare the evolution of the ring current population to indicators of storm (Dst) and substorm (AE) activity and examine compositional changes. Substorm activity leads to the intensification of the ring current at higher L (L ∼ 6) and lower ring current energies compared to storms (L ∼ 4). The O+/H+ ratio during substorms remains low, near 10%, but is much enhanced during storms (can exceed 100%). They conclude that repeated substorms with an AE ∼ 900 nT lead to a ΔDst of ∼ 30 nT, but do not contribute to Dst during storm main phase as substorm injections do not form a symmetric ring current during such disturbed times

  8. Chronology of generation, variation, and disappearance of a second proton belt as determined by effects in electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Stassinopoulos, E.G. [National Aeronautics and Space Administration, Greenbelt, MD (United States). Goddard Space Flight Center; Brucker, G.J. [Brucker (G.J.), West Long Beach, NJ (United States); Stauffer, C.A. [SES, Greenbelt, MD (United States); Meulenberg, A. [COMSAT Labs., Clarksburg, MD (United States)

    1995-12-01

    This paper presents an analysis of SEU data obtained from memory devices on the CRRES (Combined Release and Radiation Effects Satellite) spacecraft. It provides a dynamic picture of the newly identified second peak of the trapped proton belt in the equatorial region between approximately 2.0--2.8 Earth radii. In previous work, it was stated that injection of solar flare protons from the major flare of March 1991 generated this secondary belt which appears to have survived at least up to the demise of CRRES (October 12, 1991). The results of this study show that the radiation responsible for the observed effects existed intermittently in that region of space from the very beginning of the mission, that is July 27, 1990, during a period when there was no significant high energy flare activity (about 4.5 months), and then disappeared for three months until it reappeared again with the March 1991 flare.

  9. International Workshop on First Decadal Review Of The Edgeworth-kuiper-belt : Towards New Frontiers

    CERN Document Server

    Barrera, Luis; Towards New Frontiers

    2004-01-01

    A decade after the confirmation of the Kuiper Belt's existence, 80 of the world's experts gathered in Chile to review what has been learned since 1992. This record of the meeting is enhanced by several specially solicited papers covering additional material not presented at the conference. The volume includes papers on the dynamics of the trans-Neptunian region, the results of deep surveys for the new objects and the evidence for an outer Edge to the Edgeworth-Kuiper belt. Physical observations of many objects are described and attempts are made to bring these data into some coherent picture of the distant solar system. The interior physics of these distant, icy objects, and the link between the Kuiper Belt and dust disks around other stars are also considered. Of particular interest is a set of papers on how the surfaces of distant asteroids are affected by various types of radiation, an area crucial to the interpretation of data being collected by large ground based telescopes. Suitable for professi...

  10. Origins and Asteroid Main-Belt Stratigraphy for H-, L-, LL-Chondrite Meteorites

    Science.gov (United States)

    Binzel, Richard; DeMeo, Francesca; Burbine, Thomas; Polishook, David; Birlan, Mirel

    2016-10-01

    We trace the origins of ordinary chondrite meteorites to their main-belt sources using their (presumably) larger counterparts observable as near-Earth asteroids (NEAs). We find the ordinary chondrite stratigraphy in the main belt to be LL, H, L (increasing distance from the Sun). We derive this result using spectral information from more than 1000 near-Earth asteroids [1]. Our methodology is to correlate each NEA's main-belt source region [2] with its modeled mineralogy [3]. We find LL chondrites predominantly originate from the inner edge of the asteroid belt (nu6 region at 2.1 AU), H chondrites from the 3:1 resonance region (2.5 AU), and the L chondrites from the outer belt 5:2 resonance region (2.8 AU). Each of these source regions has been cited by previous researchers [e.g. 4, 5, 6], but this work uses an independent methodology that simultaneously solves for the LL, H, L stratigraphy. We seek feedback from the planetary origins and meteoritical communities on the viability or implications of this stratrigraphy.Methodology: Spectroscopic and taxonomic data are from the NASA IRTF MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS) [1]. For each near-Earth asteroid, we use the Bottke source model [2] to assign a probability that the object is derived from five different main-belt source regions. For each spectrum, we apply the Shkuratov model [3] for radiative transfer within compositional mixing to derive estimates for the ol / (ol+px) ratio (and its uncertainty). The Bottke source region model [2] and the Shkuratov mineralogic model [3] each deliver a probability distribution. For each NEA, we convolve its source region probability distribution with its meteorite class distribution to yield a likelihood for where that class originates. Acknowledgements: This work supported by the National Science Foundation Grant 0907766 and NASA Grant NNX10AG27G.References: [1] Binzel et al. (2005), LPSC XXXVI, 36.1817. [2] Bottke et al. (2002). Icarus 156, 399. [3

  11. Outer Belt Radial Transport Signatures in Drift Phase Structure - Case Studies

    Science.gov (United States)

    O'Brien, Paul; Green, Janet; Fennell, Joseph; Claudepierre, Seth; Roeder, James; Kwan, Betty; Mulligan Skov, Tamitha

    2016-07-01

    During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. Different modes of radial transport have different temporal signatures in the particle phase-space density on timescales shorter than a drift period. We use such drift phase structure in time series particle flux observations to identify transport signatures of impulsive and oscillatory drift resonant transport. We perform multiple case studies of geomagnetic storms using particle flux taken near geostationary orbit. We estimate the radial diffusion coefficients from the drift phase structures. We show how these radial diffusion coefficients derived from particle data compare to transport coefficients deduced from wave observations.

  12. 30 CFR 57.4263 - Underground belt conveyors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground belt conveyors. 57.4263 Section 57... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Equipment § 57.4263 Underground belt conveyors. Fire protection shall...

  13. Ambient Response Analysis of the Great Belt Bridge

    DEFF Research Database (Denmark)

    Brincker, Rune; Frandsen, J. B.; Andersen, P.

    2000-01-01

    In this paper an ambient response analysis of the Great Belt Bridge is presented. The Great Belt Bridge is one of the largest suspension bridges in the world, and the analysis was carried out in order to investigate the possibilities of estimating reliable damping values from the ambient response...

  14. Teaching Taekwondo in Physical Education: Incorporating the Color Belt System

    Science.gov (United States)

    Oh, Hyun-Ju; Hannon, James C.; Banks, Aaron

    2006-01-01

    Taekwondo is an excellent lifetime physical activity that provides both physical and mental benefits to its participants. The color belt system may be creatively used in physical education to encourage improvement in all learning domains. This article provides information on incorporating the color belt system into physical education, and provides…

  15. Safety belt usage in Finland and in other Nordic countries.

    NARCIS (Netherlands)

    Valtonen, J.

    1992-01-01

    Legislation has played a significant role in increasing safety belt usage in Finland and in the other Nordic countries. Publicity and enforcement have, however, been required to support the legislation. The development of safety belt regulations has been nearly similar in all these countries, both i

  16. Canadian seat belt wearing rates, promotion programs, and future directions.

    NARCIS (Netherlands)

    Grant, B.A.

    1992-01-01

    On the basis of a national driver seat belt survey conducted in Canada each year, the most important results are presented. A number of programmes for increasing seat belt use has been evaluated in Canada. Finally, a description is given of some of the current and planned activities within Canada wh

  17. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    International Nuclear Information System (INIS)

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  18. Landscape distribution characteristics of northern foothill belts of Tianshan Mountains

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The foothill belts of Tianshan Mountains are about 280 km long and 60 km wide, and the study area extends from Kuitun city to Fukang city. They are transitional belts between mountains and plains, appearing in three rows of folds with different morphologies and their age becoming younger from south to north. Based on GIS and RS methods, and materials of the previous researchers, this paper deals with the genetics of the foothill belts and their landscape features resulting from folding by neotectonic movements, and also describes their length, width and slope by remote sensing image interpretation. The characteristics of the foothill belts are found to be very important for the surrounding environment by preventing groundwater from flowing into plains, changing groundwater, increasing flow of surface runoff, in addition to their roles in protecting the surrounding environment. The purpose of this paper is to provide an in-depth understanding of the foothill belts and influence on its surrounding environment.

  19. a Wave Model for a Pneumatic Tyre Belt

    Science.gov (United States)

    PINNINGTON, R. J.; BRISCOE, A. R.

    2002-06-01

    A one-dimensional wave equation of an infinite flattened tyre belt is generated. The belt vibration is controlled by bending, tension, shear and the sidewall stiffness. The dispersion relations for two waves in the belt are calculated and used to find both the input impedance and attenuation on a tyre belt of infinite extent. Tension and the sidewall controls the deformation and stiffness below 100Hz. Waves propagate around the belt above this frequency. The wave speeds due to bending and shear were predicted and measured. The model presented here should be valid for the prediction of tyre response above about 400 Hz when for a car tyre the modal behaviour is observed to cease. In this high-frequency region, the tyre at the input appears to be of infinite extent.

  20. Experimental Measurements of Belt Gears in Newly Developed Device

    Directory of Open Access Journals (Sweden)

    Jozef Mascenik

    2016-05-01

    Full Text Available The paper deals with the alternative of determination of state of the belt gear. To realize themeasurements a newly developed device was designed for measurement and diagnostics of the belt gears. The main task is to detect the V-belt slip expressed by the coefficient of elastic creep and of specific slip with a measuring device. The measurements regarding can be performed if input revolutions of the electric motor and torque of the belt gear are constant whereas the tensioning force of the belt gear changes. It is also possible to perform the measurement if the input revolutions of the electric motor and the tensioning forces are constant and the torque changes.

  1. Artificial organisms that sleep.

    OpenAIRE

    Mirolli, Marco; Parisi, Domenico

    2003-01-01

    Abstract Populations of artificial organisms live in an environment in which light is cyclically present (day) or absent (night). Since being active during night is non-adaptive (activity consumes energy which is not compensated by the food found at night) the organisms evolve a sleep/wake behavioral pattern of being active during daytime and sleeping during nighttime. When the population moves to a different environment that contains "caves", they have to get out of a cave although the dark ...

  2. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems. Ann’s, like people, learn by example.

  3. Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Kapil Nahar

    2012-12-01

    Full Text Available An artificial neural network is an information-processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information.The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurons working in unison to solve specific problems.Ann’s, like people, learn by example.

  4. Artificial neural network modelling

    CERN Document Server

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  5. Artificial sweetener; Jinko kanmiryo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The patents related to the artificial sweetener that it is introduced to the public in 3 years from 1996 until 1998 are 115 cases. The sugar quality which makes an oligosaccharide and sugar alcohol the subject is greatly over 28 cases of the non-sugar quality in the one by the kind as a general tendency of these patents at 73 cases in such cases as the Aspartame. The method of manufacture patent, which included new material around other peptides, the oligosaccharide and sugar alcohol isn`t inferior to 56 cases of the formation thing patent at 43 cases, and pays attention to the thing, which is many by the method of manufacture, formation. There is most improvement of the quality of sweetness with 31 cases in badness of the aftertaste which is characteristic of the artificial sweetener and so on, and much stability including the improvement in the flavor of food by the artificial sweetener, a long time and dissolution, fluid nature and productivity and improvement of the economy such as a cost are seen with effect on a purpose. (NEDO)

  6. A Study on the Vibration of the Charging Belt in an Electrostatic Accelerator

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The vibration of the charging belt in an electrostatic accelerator has intense influences on the accelerator operation. A calculating model was set up in this paper to study the belt vibration. The results show that the belt tension, belt velocity and belt current all contribute to the belt vibration. There is an optimal relationship among the three factors by which the belt would run most smoothly. There exists a minimum value of optimal tension for various belt velocities. The vibrating frequency of the is generally around several Hz.

  7. Radiation and waste safety

    International Nuclear Information System (INIS)

    Most of the ionizing radiation that people are exposed to in day-to-day activities comes from natural, rather than manmade, sources. Nuclear radiation is a powerful source of benefit to mankind, whether applied in the field of medicine, agriculture, environmental management or elsewhere. The health effects of radiation - both natural and artificial - are relatively well understood and can be minimized through careful safety measures and practices. The Department of Technical Co-operation is sponsoring a programme with the support of the Nuclear Safety Department aiming at establishing Basic Safety Standard requirements in all Member States. (IAEA)

  8. Epistemology of radiation protection

    International Nuclear Information System (INIS)

    The scientific committee had assess Status of levels, effects and risks of ionizing radiation for General assembly, scientific community and public. The review of levels, sources and exposures. The natural sources of radiation include cosmic rays, terrestrial and artificial sources include medical issues, military activities, civil nuclear power occupational exposure and accidents. The global average exposure is 80% natural source, 20% medical examination 0.2% weapon fallout < 0.1% cherbonyl accidents and < 0.1 nuclear power. The effects of radiation incudes health effects, hereditable effects, bystander effects, and abscopal effects. The randon risks include lancer risk, plant and animal

  9. Equilibria and Free Vibration of a Two-Pulley Belt-Driven System with Belt Bending Stiffness

    Directory of Open Access Journals (Sweden)

    Jieyu Ding

    2014-01-01

    Full Text Available Nonlinear equilibrium curvatures and free vibration characteristics of a two-pulley belt-driven system with belt bending stiffness and a one-way clutch are investigated. With nonlinear dynamical tension, the transverse vibrations of the translating belt spans and the rotation motions of the pulleys and the accessory shaft are coupled. Therefore, nonlinear piecewise discrete-continuous governing equations are established. Considering the bending stiffness of the translating belt spans, the belt spans are modeled as axially moving beams. The pattern of equilibria is a nontrivial solution. Furthermore, the nontrivial equilibriums of the dynamical system are numerically determined by using two different approaches. The governing equations of the vibration near the equilibrium solutions are derived by introducing a coordinate transform. The natural frequencies of the dynamical systems are studied by using the Galerkin method with various truncations and the differential and integral quadrature methods. Moreover, the convergence of the Galerkin truncation is investigated. Numerical results reveal that the study needs 16 terms after truncation in order to determine the free vibration characteristics of the pulley-belt system with the belt bending stiffness. Furthermore, the first five natural frequencies are very sensitive to the bending stiffness of the translating belt.

  10. East Central Uplift Belt of Junggar Basin

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    @@ Mosuowandong ( Z3 ) and Dongdaohaizi (Z4) are two bidding blocks located in the east part of central uplift Belt, the hinterland of Junggar Basin. Xinjiang Uygur Autonomous Region. It totally covers an area of 8 100km2. Topographically, the two blocks are quite gentle with elevation of 380-400 m on average. The north part is desert and the south area is good for farming. There are three ephemeral streams flowing across the desert from south to north. The ground water is buried at the depth ranging from 6 to 8 m. It belongs to continental climate with the annually averaged precipitation of 80 mm. The traffic is rather convenient in the south part of both blocks. There are several sand-paved roads and two asphalt roads connected with the highway from Karamay to Urumqi City.

  11. Ultraviolet radiation, sun and tanning salons

    CERN Document Server

    1999-01-01

    The pamphlet gives some information about ultraviolet radiation (UV), UV-sources and health effects, tanning in artificial and natural sun. It also includes some sun protection advice. It is intended mainly for persons inspecting artificial tanning units and for the owners of tanning salons. (Author)

  12. Geometry, kinematics and evolution of the Tongbai orogenic belt

    Institute of Scientific and Technical Information of China (English)

    HUANG Shaoying; XU Bei; WANG Changqiu; ZHAN Sheng; DENG Rongjing

    2006-01-01

    The Tongbai orogenic belt (TOB) is composed of six tectonic units. From south to north these units are: Tongbai gneiss rise (TGR); Hongyihe-Luozhuang eclogite belt (HLE); Maopo-Hujiazhai igneous rock belt (MHI); Zhoujiawan flysch belt (ZFB); Yangzhuang greenschist belt (YGB); and Dongjiazhuang marble belt (DMB).The geometry and kinematic images of the TOB include: the antiformal structures caused by a later uplift process, the top-to-north ductile shear structure that related to a process that the ultrahigh pressure rocks are brought to surface, the top-to-south ductile shear thrust and the sinistrial shear structures related to a south-north direction compression, and the east-west direction fold structures in the upper crust. In the view of the multistage subduction-collision orogenic belt, according to the characters of petrology and its distribution, geometry, kinematics and structural chronology in these tectonic units, tectonic evolution of the TOB can be divided into four stages: oceanic crust subduction during 400-300 Ma, continental collision during 270-250 Ma, continental deep subduction and uplift during 250-205 Ma and doming deformation during 200-185 Ma.

  13. Mechanism of artificial heart

    CERN Document Server

    Yamane, Takashi

    2016-01-01

    This book first describes medical devices in relation to regenerative medicine before turning to a more specific topic: artificial heart technologies. Not only the pump mechanisms but also the bearing, motor mechanisms, and materials are described, including expert information. Design methods are described to enhance hemocompatibility: main concerns are reduction of blood cell damage and protein break, as well as prevention of blood clotting. Regulatory science from R&D to clinical trials is also discussed to verify the safety and efficacy of the devices.

  14. Polymer artificial muscles

    Directory of Open Access Journals (Sweden)

    Tissaphern Mirfakhrai

    2007-04-01

    Full Text Available The various types of natural muscle are incredible material systems that enable the production of large deformations by repetitive molecular motions. Polymer artificial muscle technologies are being developed that produce similar strains and higher stresses using electrostatic forces, electrostriction, ion insertion, and molecular conformational changes. Materials used include elastomers, conducting polymers, ionically conducting polymers, and carbon nanotubes. The mechanisms, performance, and remaining challenges associated with these technologies are described. Initial applications are being developed, but further work by the materials community should help make these technologies applicable in a wide range of devices where muscle-like motion is desirable.

  15. Uncertainty in artificial intelligence

    CERN Document Server

    Kanal, LN

    1986-01-01

    How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

  16. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  17. Power Transmission Through Timing Belt In Two Wheeler Motors

    Directory of Open Access Journals (Sweden)

    Gurumurthy Veerapathiran

    2015-03-01

    Full Text Available This paper studies the effect of noise and friction on performance of the chain drive system for motor bikes. Experiment shows that chain transmission in chain drive system leads to poor overall performance, due to its noise and chain gets loose due to aging and sprockets wear due to chain friction etc., the proposed system consists of drive and driven pulley with timing belt transmission. Compared to conventional method, proposed method give improved tension in pulleys and belt by the additional arrangement called belt tensioner. This gives good overall performance of the system, and reduces noise, vibration and gives high transmission speed.

  18. Detection of Small Kuiper Belt Objects by Stellar Occultations

    OpenAIRE

    Stevenson, R

    2007-01-01

    Knowledge of the Kuiper Belt is currently limited to those objects that can be detected directly. Objects with diameters less than $\\sim$10km reflect too little light to be detected. These smaller bodies could contain most of the mass in the Kuiper Belt while the abundance of these bodies may constrain the distribution of mass. The overall size distribution of bodies within the Kuiper Belt can also be inferred from the relative abundances of sub-km and larger bodies. Stellar occultations are ...

  19. How to teach artificial organs.

    Science.gov (United States)

    Zapanta, Conrad M; Borovetz, Harvey S; Lysaght, Michael J; Manning, Keefe B

    2011-01-01

    Artificial organs education is often an overlooked field for many bioengineering and biomedical engineering students. The purpose of this article is to describe three different approaches to teaching artificial organs. This article can serve as a reference for those who wish to offer a similar course at their own institutions or incorporate these ideas into existing courses. Artificial organ classes typically fulfill several ABET (Accreditation Board for Engineering and Technology) criteria, including those specific to bioengineering and biomedical engineering programs.

  20. Canada: Living with radiation

    International Nuclear Information System (INIS)

    Canadians are exposed daily to a variety of naturally occurring radiation. Heat and light from the sun, are familiar examples. Radium and uranium are naturally occurring materials which have been found to emit radiation and so have been called radioactive. There are also various types of artificially produced forms of radiation that are employed routinely in modern living, such as radio and television waves and microwaves. X-rays, another common type of radiation, are widely used in medicine as are some man-made radioactive substances. These emit radiation just like naturally occurring radioactive materials. Surveys have shown that many people have a poor understanding of the risks associated with the activities of modern living. Exposure to ionizing radiation from radioactive materials is also considered by many persons to have a high risk, This booklet attempts to inform the readers about ionizing radiation, its uses and the risks associated with it, and to put these risks in perspective with the risks of other activities and practices. A range of topics from medical uses of radiation to emergency planning, from biological effects of radiation to nuclear power, each topic is explained to relate radiation to our everyday lives. 44 figs

  1. Development of artificial empathy.

    Science.gov (United States)

    Asada, Minoru

    2015-01-01

    We have been advocating cognitive developmental robotics to obtain new insight into the development of human cognitive functions by utilizing synthetic and constructive approaches. Among the different emotional functions, empathy is difficult to model, but essential for robots to be social agents in our society. In my previous review on artificial empathy (Asada, 2014b), I proposed a conceptual model for empathy development beginning with emotional contagion to envy/schadenfreude along with self/other differentiation. In this article, the focus is on two aspects of this developmental process, emotional contagion in relation to motor mimicry, and cognitive/affective aspects of the empathy. It begins with a summary of the previous review (Asada, 2014b) and an introduction to affective developmental robotics as a part of cognitive developmental robotics focusing on the affective aspects. This is followed by a review and discussion on several approaches for two focused aspects of affective developmental robotics. Finally, future issues involved in the development of a more authentic form of artificial empathy are discussed.

  2. An Icy Kuiper Belt Around the Young Solar-type Star HD 181327

    Science.gov (United States)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Matthews, G. S.; Kamp, I.; Pinte, C.; Dent, W. R. F.; Barrado, D.; Duchene, G.; Gonzalez, J.-F.; Grady C. A.; Meeus,G.; Pantin, E.; Williams, J. P.; Woitke, P.

    2012-01-01

    Context. HD 181327 is a young main sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx.. 12 Myr). It harbors an optically thin belt of circumstellar material at radius approx.. 90 AU, presumed to result from collisions in a population of unseen planetesimals. Aims. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. Methods. We obtained far-infrared photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 mm observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST/NICMOS scattered light images that allow the degeneracy between the disk geometry and the dust properties to be broken. We then use the radiative transfer code GRaTeR to compute a large grid of models, and we identify the grain models that best reproduce the spectral energy distribution (SED) through a Bayesian analysis. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes.We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an important layer of ice, for a total dust mass of approx.. 0.05 Solar Mass (in grains up to 1 mm). We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx. 17 Solar Mass. Conclusions. Despite the weak

  3. An Icy Kuiper-Belt Around the Young Solar-Type Star HD 181327

    Science.gov (United States)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J.; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Mathews, G. S.; Kamp, I.; Pinte, C.; Dent, W. R. F.; Barrado, D.; Duchene, G.; Gonzalez, J.-F.; Grady, C. A.; Meeus, G.; Pantin, E.; Williams, J. P.; Woitke, P.

    2011-01-01

    HD 181327 is a young Main Sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx 12 Myr). It harbors an optically thin belt of circumstellar material at approx90 AU, presumed to result from collisions in a populat.ion of unseen planetesimals. Aims. We aim to study the dust properties in the belt in great details, and to constrain the gas-to-dust ratio. Methods. We obtained far-IR photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 nun observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST /NICMOS scattered light images that break the degeneracy between the disk geometry and the dust properties. We then use the radiative transfer code GRaTer to compute a large grid of dust models, and we apply a Bayesian inference method to identify the grain models that best reproduce the SED. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an import.ant layer of ice for a total dust mass of approx 0.05 stellar Mass. We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx 17 Stellar Mass Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the

  4. MACRO MODEL OF SEAT BELT USE BY CAR DRIVERS AND PASSENGERS

    Directory of Open Access Journals (Sweden)

    Kazimierz JAMROZ

    2013-12-01

    Full Text Available The article presents some problems of seat belt use by car drivers and passengers. It looks in particular at seat belt use and effectiveness in selected countries. Next, factors of seat belt use are presented and methodology of model development. A macro model of seat belt use is presented based on data from around fifty countries from different continents.

  5. Generative Artificial Intelligence : Philosophy and Theory of Artificial Intelligence

    NARCIS (Netherlands)

    van der Zant, Tijn; Kouw, Matthijs; Schomaker, Lambertus; Mueller, Vincent C.

    2013-01-01

    The closed systems of contemporary Artificial Intelligence do not seem to lead to intelligent machines in the near future. What is needed are open-ended systems with non-linear properties in order to create interesting properties for the scaffolding of an artificial mind. Using post-structuralistic

  6. 4 National Standards for Rubber Belt Products Issued

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On May 20, National General Administration of Quality Supervision, Inspection and Quarantine and National Standardization Administration approved to issue 4 national standards for rubber belt products, which come into effect from October 1.

  7. Face-Saving Devices: Seat Belts and Air Bags

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160032.html Face-Saving Devices: Seat Belts and Air Bags Using ... 11 percent) suffered facial fractures -- nasal and mid-face fractures most often. Those most likely to suffer ...

  8. Periumbilical allergic contact dermatitis: blue jeans or belt buckles?

    Science.gov (United States)

    Byer, Tara T; Morrell, Dean S

    2004-01-01

    Nickel is the most ubiquitous contact allergen among children and adolescents. Metal blue jeans buttons and belts have been noted to cause nickel dermatitis around the umbilicus. For these children, traditional teaching is strict avoidance of all pants with metal snaps/buttons, particularly blue jeans. In this study we tested 90 pairs of blue jeans and 47 belts for nickel using the dimethylglyoxime spot test. Only 10% of blue jeans tested positive, while 53% of belts tested positive. Furthermore, 10 pairs of nickel-negative blue jeans remained negative after 10 washings. Overall we found no resistance to testing in clothing stores. From these results, we recommend that patients with allergic contact dermatitis secondary to nickel need not strictly avoid blue jeans and metal belt buckles. Rather, families should be encouraged to use the dimethylglyoxime spot test to test these items for nickel prior to purchase.

  9. "Abomination"--life as a Bible belt gay.

    Science.gov (United States)

    Barton, Bernadette

    2010-01-01

    Drawing on observation, autoethnography, and audio-taped interviews, this article explores the religious backgrounds and experiences of Bible Belt gays. In the Bible Belt, Christianity is not confined to Sunday worship. Christian crosses, messages, paraphernalia, music, news, and attitudes permeate everyday settings. Consequently, Christian fundamentalist dogma about homosexuality-that homosexuals are bad, diseased, perverse, sinful, other, and inferior-is cumulatively bolstered within a variety of other social institutions and environments in the Bible Belt. Of the 46 lesbians and gay men interviewed for this study (age 18-74 years), most describe living through spirit-crushing experiences of isolation, abuse, and self-loathing. This article argues that the geographic region of the Bible Belt intersects with religious-based homophobia. Informants explained that negative social attitudes about homosexuality caused a range of harmful consequences in their lives including the fear of going to hell, depression, low self-esteem, and feelings of worthlessness.

  10. "Abomination"--life as a Bible belt gay.

    Science.gov (United States)

    Barton, Bernadette

    2010-01-01

    Drawing on observation, autoethnography, and audio-taped interviews, this article explores the religious backgrounds and experiences of Bible Belt gays. In the Bible Belt, Christianity is not confined to Sunday worship. Christian crosses, messages, paraphernalia, music, news, and attitudes permeate everyday settings. Consequently, Christian fundamentalist dogma about homosexuality-that homosexuals are bad, diseased, perverse, sinful, other, and inferior-is cumulatively bolstered within a variety of other social institutions and environments in the Bible Belt. Of the 46 lesbians and gay men interviewed for this study (age 18-74 years), most describe living through spirit-crushing experiences of isolation, abuse, and self-loathing. This article argues that the geographic region of the Bible Belt intersects with religious-based homophobia. Informants explained that negative social attitudes about homosexuality caused a range of harmful consequences in their lives including the fear of going to hell, depression, low self-esteem, and feelings of worthlessness. PMID:20391006

  11. 5m Main Belt Asteroid Population Estimation Using Vesta Imagery

    Science.gov (United States)

    Rynders, Michael; Trilling, David E.

    2016-10-01

    The Main Belt is the largest source of Near-Earth asteroids, but objects 2 pixels in diameter that were counted in a 33km 2 region to give a crater density. By knowing the crater density and making some reasonable assumptions about the orbital distribution of asteroids and the age of Vesta's surface, an estimate of the population of small asteroids in the inner main belt was made. It was found that the inner region of the main asteroid belt contains approximately 20 billion asteroids larger than 5 m. These results agree well with the measured inner Main Belt Size distribution derived by the Wide-field Infrared Survey Explorer, WISE (Masiero et al. 2011).

  12. FORMATION AND EVOLUTION OF THE CENOZOIC THRUST FOLD BELT IN JINPING, SICHUAN

    Institute of Scientific and Technical Information of China (English)

    LIAO Zhongli; DENG Yongfu; LIAO Guangyu

    2003-01-01

    The Jinping orogenic belt in Sichuan, China consists mainly of the Jinpingshan intracontinental thrust-nappe belt, foreland thrust-nappe belt and foreland uplift belt. Based on analyses about the characteristics of the structural units in this area, the authors propose in this paper that Chapuzi-Bazhe revival fault belt is the regional boundary fault, and points out that after the formation of the Pre-Sinian basement, the western edge of the Yangtze paraplatform was turned into the passive continental margin in Sinian to Triassic, then into the Mesozoic collision orogenic belt, and finally into the Cenozoic orogenic belt through intracontinental orogeny.

  13. Geochemical ways of artificial radionuclide migration in biosphere

    International Nuclear Information System (INIS)

    This collection presents abstracts of papers on the following subjects: organization and methodology of research and developments on creation of combined medium- and largescale landscape-geochemical and radioecological maps for territories contaminated by radionuclides; typological and space features of distribution of artificial radionuclides and regularities of their migration, the radionuclides being entered the biosphere during accidents at NPPs; forms of artificial radionuclides in biosphere after the NPP accidents; simulation of primary entering and secondary migration of radionuclides in biosphere; methodology of organization and conducting radiogeochemical monitoring of biosphere; new methods and means for radiation monitoring of the environment

  14. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    Science.gov (United States)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or

  15. Artificial organs: recent progress in artificial hearing and vision.

    Science.gov (United States)

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas. PMID:19330498

  16. SPECIFIC RESISTANCE AND SPECIFIC INTENSITY OF BELT SANDING OF WOOD

    Directory of Open Access Journals (Sweden)

    Boleslaw Porankiewicz

    2010-06-01

    Full Text Available This paper examines and discusses the specific belt sanding resistance K (N·cm-2 and specific belt sanding intensity SI (g·cm-2·min-1, for wood of Pinus sylvestris L., Picea abies L., Quercus robra L., Acer pseudoplatanus L., Alnus glutinosa Gaertn., and Populus Nigra L., by different sanding pressure pS, different sanding grit NG number, and different wood grain angles Phi(v.

  17. Tribological Properties of Metal V-Belt Type CVT Lubricant

    OpenAIRE

    Keiichi Narita

    2012-01-01

    The priority for lubricant performance for metal V-belt-type CVT (B-CVTFs) should be the improvement of transmittable torque capacity between the belt and pulley plus excellent antishudder properties for lockup clutch used in B-CVTs. This study intends to investigate the effect of lubricant additives for improving these performances of B-CVTs. In addition, surface analysis techniques were utilized to gain a novel insight into the chemical composites and morphology of the tribofilms. As a resu...

  18. Promoting automobile safety belt use by young children.

    OpenAIRE

    Sowers-Hoag, K M; Thyer, B A; Bailey, J S

    1987-01-01

    A program using behavioral practice, assertiveness training, and social and contrived reinforcers was developed to establish and maintain automobile safety belt use by young children. Sixteen children (ages 4.8 to 7 years) who never used their safety belts during a 5-day preexperimental observation period were randomly assigned to two groups of eight each. A multiple baseline design across groups was used to evaluate the effectiveness of the training program. During the 8-day baseline period ...

  19. Design of MGA trajectories for main belt asteroid

    Institute of Scientific and Technical Information of China (English)

    崔祜涛; 乔栋; 崔平远; 栾恩杰

    2003-01-01

    Asteroid exploration is one of the most sophisticated missions currently being investigated. Gravityassist trajectories have proven valuable in interplanetary missions such as the Pioneer, Voyager and Galileo. In this paper, we design interplanetary trajectory for main belt asteroid exploration mission with the Mars gravityassist (MGA) using "pork chop" plots and patched-conic theory and give some initial valuable trajectory parameters on main belt asteroid exploration mission with MGA.

  20. Ultraviolet radiation

    International Nuclear Information System (INIS)

    Ultraviolet radiation (UVR) from the sun or artificial sources is reflected or transmitted at the surface of the skin, about 5% of normally incident rays being directly reflected. The transmitted fraction is scattered, photochemically absorbed or dissipated as heat within the skin, or passes from it to contribute to the variable total amount of reflected and transmitted radiation. The UVR absorbers in skin are not definitely known, but DNA is a definite target and probably lipoprotein membranes, RNA, proteins, mucopolysaccharides, elastin and collagen. Photochemical or free radical damage to absorber or nearby organelles leads to pharmacological, ultrastructural, histological and clinical changes. Most frequent DNA damage is pyrimidine dimer formation, apparently inhibiting cell function and replication. This is largely enzymatically repaired in man in the dark by excision repair, post-replication repair and possible other enzymatic mechanisms, and at least in some organisms by light-induced photoreactivation repair. UVR exposure causes well recognized acute and chronic clinical syndromes in man. These are discussed in this paper

  1. Occultation Searches for Kuiper Belt Objects

    CERN Document Server

    Cooray, A R; Cooray, Asantha; Farmer, Alison J.

    2003-01-01

    The occultation of background stellar sources by foreground Kuiper Belt Objects (KBOs) can be used to survey physical properties of the KBO population. We discuss statistics related to a KBO occultation survey, such as the event duration distribution, and suggest that occultation searches can be effectively used to probe the KBO size distribution below 10 km. In particular, we suggest that occultation surveys may be best suited to search for a turnover radius in the KBO size distribution due to collisions between small-size objects. For occultation surveys that monitor stellar sources near the ecliptic over a few square degrees, with time sampling intervals of order 0.1 sec and sensitivity to flux variations of a few percent or more, a turnover radius between 0.1 and 1.0 km can be probed. While occultation surveys will probe the low-radius limit and imaging surveys will detect KBOs of size 100 km or more, statistics of objects with sizes in the intermediate range of around 1 km to 100 km will likely remain un...

  2. Orion revisited III. The Orion Belt population

    CERN Document Server

    Kubiak, K; Bouy, H; Sarro, L M; Ascenso, J; Burkert, A; Forbrich, J; Großschedl, J; Hacar, A; Hasenberger, B; Lombardi, M; Meingast, S; Köhler, R; Teixeira, P S

    2016-01-01

    This paper continues our study of the foreground population to the Orion molecular clouds. The goal is to characterize the foreground population north of NGC 1981 and to investigate the star formation history in the large Orion star-forming region. We focus on a region covering about 25 square degrees, centered on the $\\epsilon$ Orionis supergiant (HD 37128, B0\\,Ia) and covering the Orion Belt asterism. We used a combination of optical (SDSS) and near-infrared (2MASS) data, informed by X-ray (\\textit{XMM-Newton}) and mid-infrared (WISE) data, to construct a suite of color-color and color-magnitude diagrams for all available sources. We then applied a new statistical multiband technique to isolate a previously unknown stellar population in this region. We identify a rich and well-defined stellar population in the surveyed region that has about 2\\,000 objects that are mostly M stars. We infer the age for this new population to be at least 5\\, Myr and likely $\\sim10$\\,Myr and estimate a total of about 2\\,500 mem...

  3. Detecting Mass Loss in Main Belt Asteroids

    Science.gov (United States)

    Sandberg, Erik; Rajagopal, Jayadev; Ridgway, Susan E.; Kotulla, Ralf C.; Valdes, Francisco; Allen, Lori

    2016-01-01

    Sandberg, E., Rajagopal, J., Ridgway, S.E, Kotulla, R., Valdes, F., Allen, L.The Dark Energy Camera (DECam) on the 4m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO) is being used for a survey of Near Earth Objects (NEOs). Here we attempt to identify mass loss in main belt asteroids (MBAs) from these data. A primary motivation is to understand the role that asteroids may play in supplying dust and gas for debris disks. This work focuses on finding methods to automatically pick out asteroids that have qualities indicating possible mass loss. Two methods were chosen: looking for flux above a certain threshold in the asteroid's radial profile, and comparing its PSF to that of a point source. After sifting through 490 asteroids, several have passed these tests and should be followed up with a more rigorous analysis.Sandberg was supported by the NOAO/KPNO Research Experience for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829)

  4. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  5. Forming the Cold Classical Kuiper Belt in a light Disk

    CERN Document Server

    Shannon, Andrew; Lithwick, Yoram

    2015-01-01

    Large Kuiper Belt Objects are conventionally thought to have formed out of a massive planetesimal belt that is a few thousand times its current mass. Such a picture, however, is incompatible with multiple lines of evidence. Here, we present a new model for the conglomeration of Cold Classical Kuiper belt objects, out of a solid belt only a few times its current mass, or a few percent of the solid density in a Minimum Mass Solar Nebula. This is made possible by depositing most of the primordial mass in grains of size centimetre or smaller. These grains collide frequently and maintain a dynamically cold belt out of which large bodies grow efficiently: an order-unity fraction of the solid mass can be converted into large bodies, in contrast to the ~0.1% efficiency in conventional models. Such a light belt may represent the true outer edge of the Solar system, and it may have effectively halted the outward migration of Neptune. In addition to the high efficiency, our model can also produce a mass spectrum that pe...

  6. Development of a radiation-hard photomultiplier tube

    Science.gov (United States)

    Birnbaum, M. M.; Bunker, R. L.; Roderick, J.; Stephenson, K.

    1984-01-01

    In a radiation-hard photomultiplier tube (PMT) such as has been developed for stabilization of the Galileo spacecraft as it goes through the Jovian high energy radiation belts, the primary effects of high energy electron and proton radiation that must be resisted are the production of fluorescence and Cerenkov emission. The present PMT envelope is ceramic rather than glass, and employs a special, electron-focusing design which will collect, accelerate and amplify electrons only from desired photocathode areas. Tests in a Co-60 radiation facility have shown that the radiation-hard PMT produces less than 2.5 percent of the radiation noise of a standard PMT.

  7. Genesis Radiation Environment

    Science.gov (United States)

    Minow, Joseph I.; Altstatt, Richard L.; Skipworth, William C.

    2007-01-01

    The Genesis spacecraft launched on 8 August 2001 sampled solar wind environments at L1 from 2001 to 2004. After the Science Capsule door was opened, numerous foils and samples were exposed to the various solar wind environments during periods including slow solar wind from the streamer belts, fast solar wind flows from coronal holes, and coronal mass ejections. The Survey and Examination of Eroded Returned Surfaces (SEERS) program led by NASA's Space Environments and Effects program had initiated access for the space materials community to the remaining Science Capsule hardware after the science samples had been removed for evaluation of materials exposure to the space environment. This presentation will describe the process used to generate a reference radiation Genesis Radiation Environment developed for the SEERS program for use by the materials science community in their analyses of the Genesis hardware.

  8. Artificial sweeteners - a review.

    Science.gov (United States)

    Chattopadhyay, Sanchari; Raychaudhuri, Utpal; Chakraborty, Runu

    2014-04-01

    Now a days sugar free food are very much popular because of their less calorie content. So food industry uses various artificial sweeteners which are low in calorie content instead of high calorie sugar. U.S. Food and Drug Administration has approved aspartame, acesulfame-k, neotame, cyclamate and alitame for use as per acceptable daily intake (ADI) value. But till date, breakdown products of these sweeteners have controversial health and metabolic effects. On the other hand, rare sugars are monosaccharides and have no known health effects because it does not metabolize in our body, but shows same sweet taste and bulk property as sugar. Rare sugars have no such ADI value and are mainly produced by using bioreactor and so inspite of high demand, rare sugars cannot be produced in the desired quantities. PMID:24741154

  9. Artificial Immune Systems (2010)

    CERN Document Server

    Greensmith, Julie; Aickelin, Uwe

    2010-01-01

    The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the m...

  10. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;

    2008-01-01

    "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...... as chemzymes that catalyze conjugate additions, cycloadditions, and self-replicating processes. The focus will be mainly on cyclodextrin-based chemzymes since they have shown to be good candidate structures to base an enzyme model skeleton on. In addition hereto, other molecules that encompass binding......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...

  11. Instructional Applications of Artificial Intelligence.

    Science.gov (United States)

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  12. Sucrose compared with artificial sweeteners

    DEFF Research Database (Denmark)

    Sørensen, Lone Brinkmann; Vasilaras, Tatjana H; Astrup, Arne;

    2014-01-01

    There is a lack of appetite studies in free-living subjects supplying the habitual diet with either sucrose or artificially sweetened beverages and foods. Furthermore, the focus of artificial sweeteners has only been on the energy intake (EI) side of the energy-balance equation. The data are from...

  13. Artificial Ligaments: Promise or Panacea?

    Science.gov (United States)

    Lubell, Adele

    1987-01-01

    The Food and Drug Administration has approved a prosthetic ligament for limited use in persons with damaged anterior cruciate ligaments (ACL). This article addresses ligament repair, ACL tears, current treatment, development of the Gore-Tex artificial ligament, other artificial ligaments in process, and arguments for and against their use.…

  14. Radiation protection textbook

    International Nuclear Information System (INIS)

    This textbook of radiation protection presents the scientific bases, legal and statutory measures and technical means of implementation of the radioprotection in the medical and industrial sectors, research and nuclear installations. It collects the practical information (organization, analysis of post, prevention, evaluation and risks management, the controls, the training and the information) usually scattered and the theoretical knowledge allowing every person using ionizing radiation: To analyze jobs in controlled areas, to watch the respect for the current regulations, to participate in the training and in the information of the staffs exposed to intervene in accidental situation. This third edition is widely updated and enriched by the most recent scientific and legal data concerning, notably, the human exposure, the dosimetry, the optimization of the radiation protection and the epidemiological inquiries. The contents is as follows: physics of ionizing radiation, ionizing radiation: origin and interaction with matter, dosimetry and protection against ionizing radiation, detection and measurement of ionizing radiation, radiobiology, legal measures relative to radiation protection, human exposure of natural origin, human exposure of artificial origin, medical, dental and veterinarian radiology, radiotherapy, utilization of unsealed sources in medicine and research, electronuclear industry, non nuclear industrial and aeronautical activities exposing to ionizing radiation, accidental exposures. (N.C.)

  15. Development of Abdominal Compression Belt and Evaluation of the Efficiency for the Reduction of Respiratory Motion in SBRT

    International Nuclear Information System (INIS)

    It's essential to minimize the tumor motion and identify the exact location of the lesions to achieve the improvement in radiation therapy efficiency during SBRT. In this study, we made the established compression belt to reduce respiratory motion and evaluated the usefulness of clinical application in SBRT. We analyzed the merits and demerits of the established compression belt to reduce the respiratory motion and improved the reproducibility and precision in use. To evaluate the usefulness of improved compression belt for respiratory motion reduction in SBRT, firstly, we reviewed the spiral CT images acquired in inspiration and expiration states of 8 lung cancer cases, respectively, and analyzed the three dimensional tumor motion related to respiration. To evaluate isodose distribution, secondly, we also made the special phantom using EBT2 film (Gafchronic, ISP, USA) and we prepared the robot (Cartesian Robot-2 Axis, FARARCM4H, Samsung Mechatronics, Korea) to reproduce three dimensional tumor motion. And analysis was made for isodose curves and two dimensional isodose profiles with reproducibility of respiratory motion on the basis of CT images. A respiratory motion reduction compression belt (Velcro type) that has convenient use and good reproducibility was developed. The moving differences of three dimensional tumor motion of lung cancer cases analyzed by CT images were mean 3.2 mm, 4.3 mm and 13 mm each in LR, AP and CC directions. The result of characteristic change in dose distribution using the phantom and rectangular coordinates robot showed that the distortion of isodose has great differences, mean length was 4.2 mm; the differences were 8.0% and 16.8% each for cranio-caudal and 8.1% and 10.9% each for left-right directions in underdose below the prescribed dose. In this study, we could develop the convenient and efficient compression belt that can make the organs' motion minimize. With this compression belt, we confirmed that underdose due to respiration

  16. Soft computing in artificial intelligence

    CERN Document Server

    Matson, Eric

    2014-01-01

    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  17. Beyond AI: Artificial Dreams Conference

    CERN Document Server

    Zackova, Eva; Kelemen, Jozef; Beyond Artificial Intelligence : The Disappearing Human-Machine Divide

    2015-01-01

    This book is an edited collection of chapters based on the papers presented at the conference “Beyond AI: Artificial Dreams” held in Pilsen in November 2012. The aim of the conference was to question deep-rooted ideas of artificial intelligence and cast critical reflection on methods standing at its foundations.  Artificial Dreams epitomize our controversial quest for non-biological intelligence, and therefore the contributors of this book tried to fully exploit such a controversy in their respective chapters, which resulted in an interdisciplinary dialogue between experts from engineering, natural sciences and humanities.   While pursuing the Artificial Dreams, it has become clear that it is still more and more difficult to draw a clear divide between human and machine. And therefore this book tries to portrait such an image of what lies beyond artificial intelligence: we can see the disappearing human-machine divide, a very important phenomenon of nowadays technological society, the phenomenon which i...

  18. Effect of gamma radiation on the growth of Aspergillus Flavus aflatoxins producer and on the use of polymerase chain reaction technique (PCR) in samples of maize grains artificially inoculated

    International Nuclear Information System (INIS)

    The aim of this present study was to verify the effects of gamma radiation on the growth of Aspergillus flavus Link aflatoxins producer; to demonstrate the application of Polymerase Chain Reaction (PCR) technique in the diagnostic of A. Flavus, as well to verify the effect of radiation in the profile of DNA bands. Twenty samples of grains maize with 200 g each were individually irradiated with 20 kGy, to eliminate the microbial contamination. In following, the samples were inoculated with an toxigenic A. flavus (1x106 spores/ml), incubated for 15 days at 25 deg C with a relative humidity of around 97,5% and irradiated with 0, 2; 5 and 10 kGy. The samples, 5 to each dose of irradiation, were individually analyzed for the number of fungal cells, water activity, viability test (fluorescein diacetate and ethidium bromide), PCR and aflatoxins (AFB) detection. The results showed that the doses used were effective in reducing the number of Colony Forming Units (CFU/g) mainly the doses of 5 and 10 kGy. In addition, the viability test showed a decrease of viable cells with increase of irradiation doses. The reduction of AFB1 and AFB-2, was more efficient with the use of 2 kGy in comparison with the dose of 5 kGy, while the dose of 10 kGy, degraded the aflatoxins. Thereby, it was observed that AFB2 showed to be more radiosensitive. The use of PCR technique showed the presence of DNA bands, in all samples. (author)

  19. Delivery of meteorites from the asteroid belt

    Science.gov (United States)

    Nolan, Michael Craig

    The process of the delivery of meteorites to the surface of the Earth from plausible source regions such as the asteroid belt is currently understood in general terms, but important uncertainties and conflicts remain to be resolved. Stochastic effects of the rare disruptions of large asteroids on the population of meteorite-sized Earth-crossing asteroids can change the flux and the proportions of compositional types in the infalling meteorite population. These changes can be significant in magnitude over timescales of 108 years. Changes of the order of 1 percent can be expected on timescales of 105-106 y, consistent with small differences between the Antarctic meteorites and modern falls. The magnitude of changes depends strongly on poorly-understood details of collisions. Asteroids 961 Gaspra and 243 Ida were recently imaged by the Galileo spacecraft. I use a numerical hydrocode model to examine the outcomes of various sire impacts into targets the sizes of these asteroids. A shock wave fractures the asteroid in advance of crater excavation flow; thus, for impactors larger than 100 m, impacting at 5.3 km s-1, tensile strength is unimportant in these bodies, whether they are initially intact or are 'rubble piles'. Because of the shock-induced fracture, impact results are controlled by gravity. Therefore these asteroids are much more resistant to catastrophic disruption than predicted by previous estimates, which had assumed that strength was controlling these processes for rock targets. Fracture of km-size asteroids is different from fracture in terrestrial experiments using few-cm targets. The composition distribution of delivered meteorites depends on the outcomes of such asteroid impacts.

  20. Activating main belt comets by collisions

    Science.gov (United States)

    Maindl, T. I.; Haghighipour, N.; Schäfer, C.; Speith, R.

    2016-02-01

    Since their identification as a new class of bodies by Hsieh and Jewitt in 2006 active asteroids (or Main Belt Comets, MBCs) have attracted a great deal of interest. Given that sublimation of volatile material (presumably water-ice) drives MBC activity, these bodies are probable candidates for delivering a significant amount of Earth's water. Dynamical studies suggest in-situ formation of MBCs as the remnants of the break-up of large icy asteroids. Also, collisions between MBCs and small objects might have exposed sub-surface water-ice triggering the cometary activity of these bodies. In order to advance the effort of understanding the nature of MBC activation, we have investigated these collision processes by simulating the impacts in detail using a smooth particle hydrodynamics (SPH) approach that includes material strength and fracture models. Our simulations cover a range of impact velocities (between 0.5 km/s and 5.3 km/s) and angles, allowing m-sized impactors to erode enough of an MBC's surface to expose volatiles and trigger its activation. We also varied the material strength of the active asteroid's surface to study its influence on crater depths and shapes. As expected, depending on the impact energy, impact angle, and MBC's material strength we observe different crater depths. Across all scenarios however, our results show that the crater depths do not exceed a few meters. This implies that if the activity of MBCs is due to sublimating water-ice, ice has to exist in no deeper than a few meters from the surface.

  1. Meningococcal carriage in the African meningitis belt

    Science.gov (United States)

    2013-01-01

    A meningococcal serogroup A polysaccharide/tetanus toxoid conjugate vaccine (PsA-TT) (MenAfriVac#x2122;) is being deployed in countries of the African meningitis belt. Experience with other polysaccharide/protein conjugate vaccines has shown that an important part of their success has been their ability to prevent the acquisition of pharyngeal carriage and hence to stop transmission and induce herd immunity. If PsA-TT is to achieve the goal of preventing epidemics, it must be able to prevent the acquisition of pharyngeal carriage as well as invasive meningococcal disease and whether PsA-TT can prevent pharyngeal carriage needs to be determined. To address this issue, a consortium (the African Meningococcal Carriage (MenAfriCar) consortium) was established in 2009 to investigate the pattern of meningococcal carriage in countries of the African meningitis belt prior to and after the introduction of PsA-TT. This article describes how the consortium was established, its objectives and the standardised field and laboratory methods that were used to achieve these objectives. The experience of the MenAfriCar consortium will help in planning future studies on the epidemiology of meningococcal carriage in countries of the African meningitis belt and elsewhere. Un vaccin conjugué contenant un polysaccharide du sérogroupe A méningococcique et une anatoxine du tétanos (PsA-TT) (MenAfriVac™) est en cours de déploiement dans les pays de la ceinture africaine de la méningite. L’ expérience avec d’ autres vaccins conjugués polysaccharide/protéine a montré qu’ une partie importante de leur succès a été leur capacité à empêcher l’ acquisition du portage pharyngé et donc à arrêter la transmission et à induire une immunité de group. Si PsA-TT doit d’ atteindre l’ objectif de prévenir les épidémies, il devrait être en mesure d’ empêcher l’ acquisition du portage pharyngé ainsi que la méningococcie invasive et le fait que PsA-TT puisse emp

  2. Meningococcal carriage in the African meningitis belt

    Science.gov (United States)

    2013-01-01

    A meningococcal serogroup A polysaccharide/tetanus toxoid conjugate vaccine (PsA-TT) (MenAfriVac#x2122;) is being deployed in countries of the African meningitis belt. Experience with other polysaccharide/protein conjugate vaccines has shown that an important part of their success has been their ability to prevent the acquisition of pharyngeal carriage and hence to stop transmission and induce herd immunity. If PsA-TT is to achieve the goal of preventing epidemics, it must be able to prevent the acquisition of pharyngeal carriage as well as invasive meningococcal disease and whether PsA-TT can prevent pharyngeal carriage needs to be determined. To address this issue, a consortium (the African Meningococcal Carriage (MenAfriCar) consortium) was established in 2009 to investigate the pattern of meningococcal carriage in countries of the African meningitis belt prior to and after the introduction of PsA-TT. This article describes how the consortium was established, its objectives and the standardised field and laboratory methods that were used to achieve these objectives. The experience of the MenAfriCar consortium will help in planning future studies on the epidemiology of meningococcal carriage in countries of the African meningitis belt and elsewhere. Un vaccin conjugué contenant un polysaccharide du sérogroupe A méningococcique et une anatoxine du tétanos (PsA-TT) (MenAfriVac™) est en cours de déploiement dans les pays de la ceinture africaine de la méningite. L’ expérience avec d’ autres vaccins conjugués polysaccharide/protéine a montré qu’ une partie importante de leur succès a été leur capacité à empêcher l’ acquisition du portage pharyngé et donc à arrêter la transmission et à induire une immunité de group. Si PsA-TT doit d’ atteindre l’ objectif de prévenir les épidémies, il devrait être en mesure d’ empêcher l’ acquisition du portage pharyngé ainsi que la méningococcie invasive et le fait que PsA-TT puisse emp

  3. HUMAN EXPOSURE TO THE ARTIFICIAL RADIONUCLIDES IN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ivana Vukanac

    2012-09-01

    Full Text Available Artificial radionuclides are product of different human activities and their presence in the environment is negative side effect of civilization progress. They have been spread in the environment by events such as nuclear weapon tests, nuclear accidents and by deliberate and negligent discharge of radioactive waste from nuclear and other installation. Once released in to the nature, the artificial radionuclides start to circle in the same manner as naturally occurring ones, and finally they fall out from air and water onto the ground and build into the foodstuff and drinking water resulting in radiation doses to human beings. The short overview of presence of artificial radioactivity in human environment and its impact on human life is presented in this paper.

  4. natural or artificial diets

    Directory of Open Access Journals (Sweden)

    A. O. Meyer-Willerer

    2005-01-01

    Full Text Available Se probaron alimentos artificiales y naturales con larva de camarón (Litopenaeus vannamei cultivados en diferentes recipientes. Estos fueron ocho frascos cónicos con 15L, ocho acuarios con 50L y como grupo control, seis tanques de fibra de vidrio con 1500L; todos con agua marina fresca y filtrada. La densidad inicial en todos los recipientes fue de 70 nauplios/L. Aquellos en frascos y acuarios recibieron ya sea dieta natural o artificial. El grupo control fue cultivado con dieta natural en los tanques grandes que utilizan los laboratorios para la producción masiva de postlarvas. El principal producto de excreción de larva de camarón es el ión amonio, que es tóxico cuando está presente en concentraciones elevadas. Se determinó diariamente con el método colorimétrico del indofenol. Los resultados muestran diferencias en la concentración del ión amonio y en la sobrevivencia de larvas entre las diferentes dietas y también entre los diferentes recipientes. En aquellos con volúmenes pequeños comparados con los grandes, se presentó mayor concentración de amonio (500 a 750µg/L, en aquellos con dietas naturales, debido a que este ión sirve de fertilizante a las algas adicionadas, necesitando efectuar recambios diarios de agua posteriores al noveno día de cultivo para mantener este ión a una concentración subletal. Se obtuvo una baja cosecha de postlarvas (menor a 15% con el alimento artificial larvario, debido a la presencia de protozoarios, alimentándose con el producto comercial precipitado en el fondo de los frascos o acuarios. Los acuarios con larvas alimentadas con dieta natural también mostraron concentraciones subletales de amonio al noveno día; sin embargo, la sobrevivencia fue cuatro veces mayor que con dietas artificiales. Los tanques control con dietas naturales presentaron tasas de sobrevivencia (70 ± 5% similares a la reportada por otros laboratorios.

  5. [Research and development of artificial retina material].

    Science.gov (United States)

    Hu, Ning; Yang, Jun; Peng, Chenglin; Wang, Xing; Zhang, Sijie; Zhang, Ying; Zheng, Erxin

    2008-04-01

    The application of artificial retina was introduced. The principal characteristics of artificial retina material were reviewed in particular. Moreover, the recent research development and application prospect were discussed.

  6. Digital Spectra and Analysis of Altitudinal Belts in Tianshan Mountains,China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Baiping; MO Shenguo; WU Hongzhi; XIAO Fei

    2004-01-01

    Based on the framework of the geo-info spectra of montane altitudinal belts, this paper firstly reviews six classification systems for the spectra of mountain altitudinal belts in China and considers that detailed regional study of altitudinal belts is the key for reaching standardization and systemization of mountain altitudinal belts. Only can this furtheridentify and resolve problems with the study of altitudinal belts. The factors forming the spectra of altitudinal belts are analyzed in the Tianshan Mountains of China, and a digital altitudinal belt system is constructed for the northern flank, Southern flank, the heartland, and Ilivalley in the west. The characteristics of each belt are revealed with a summarization of the pattern of areal differentiation of altitudinal belts.

  7. Bioengineering of Artificial Lymphoid Organs.

    Science.gov (United States)

    Nosenko, M A; Drutskaya, M S; Moisenovich, M M; Nedospasov, S A

    2016-01-01

    This review addresses the issue of bioengineering of artificial lymphoid organs.Progress in this field may help to better understand the nature of the structure-function relations that exist in immune organs. Artifical lymphoid organs may also be advantageous in the therapy or correction of immunodefficiencies, autoimmune diseases, and cancer. The structural organization, development, and function of lymphoid tissue are analyzed with a focus on the role of intercellular contacts and on the cytokine signaling pathways regulating these processes. We describe various polymeric materials, as scaffolds, for artificial tissue engineering. Finally, published studies in which artificial lymphoid organs were generated are reviewed and possible future directions in the field are discussed.

  8. Artificial Immune Systems Tutorial

    CERN Document Server

    Aickelin, Uwe

    2008-01-01

    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted an...

  9. Artificial Immune Systems

    CERN Document Server

    Aickelin, Uwe

    2009-01-01

    The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted an...

  10. Evolution of the Bhandara-Balaghat granulite belt along the southern margin of the Sausar Mobile Belt of central India

    Indian Academy of Sciences (India)

    H M Ramachandra; Abhinaba Roy

    2001-12-01

    The Bhandara-Balaghat granulite (BBG) belt occurs as a 190 km long, detached narrow, linear, NE-SW to ENE-WSW trending belt that is in tectonic contact on its northern margin with the Sausar Group of rocks and is bordered by the Sakoli fold belt in the south. The Bhandara part of the BBG belt is quite restricted, comprising a medium to coarse grained two-pyroxene granulite body that is of gabbroic composition and preserves relic igneous fabric. The main part of the belt in Arjuni-Balaghat section includes metasedimentary (quartzite, BIF, Al- and Mg-Al metapelites) and metaigneous (metaultramafic, amphibolite and two-pyroxene granulite) protoliths interbanded with charnockite and charnockitic gneiss. These rocks, occurring as small bands and enclaves within migmatitic and granitic gneisses, show polyphase deformation and metamorphism. Geochemically, basic compositions show tholeiitic trend without Fe-enrichment, non-komatitic nature, continental affinity and show evolved nature. Mineral parageneses and reaction textures in different rock compositions indicate early prograde, dehydration melt forming reactions followed by orthopyroxene stability with or without melt. Coronitic and symplectitic garnets have formed over earlier minerals indicating onset of retrograde IBC path. Evidences for high temperature ductile shearing are preserved at places. Retrogressive hydration events clearly post-date the above paths. The present study has shown that the BBG belt may form a part of the Bastar Craton and does not represent exhumed oceanic crust of the Bundelkhand Craton. It is further shown that rocks of the BBG belt have undergone an earlier high-grade granulite metamorphism at 2672 ± 54 Ma (Sm-Nd age) and a post-peak granulite metamorphism at 1416 ± 59 Ma (Sm-Nd age, 1380 ± 28 Ma Rb-Sr age). These events were followed by deposition of the Sausar supracrustals and Neoproterozoic Sausar orogeny between 973 ± 63 Ma and 800 ± 16 Ma (Rb-Sr ages).

  11. JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT

    Energy Technology Data Exchange (ETDEWEB)

    Turrini, D.; Coradini, A.; Magni, G., E-mail: diego.turrini@ifsi-roma.inaf.it [Istituto di Astrofisica e Planetologia Spaziali, INAF-IAPS, Via Fosso del Cavaliere 100, 00133, Rome (Italy)

    2012-05-01

    The asteroid belt is an open window on the history of the solar system, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to the giant planets. The actual process producing the first generation of asteroids is uncertain, strongly depending on the physical characteristics of the Solar Nebula, and the different scenarios produce very diverse initial size-frequency distributions (SFDs). In this work, we investigate the implications of the formation of Jupiter, plausibly the first giant planet to form, on the evolution of the primordial asteroid belt. The formation of Jupiter triggered a short but intense period of primordial bombardment, previously unaccounted for, which caused an early phase of enhanced collisional evolution in the asteroid belt. Our results indicate that this Jovian Early Bombardment caused the erosion or the disruption of bodies smaller than a threshold size, which strongly depends on the SFD of the primordial planetesimals. If the asteroid belt was dominated by planetesimals less than 100 km in diameter, the primordial bombardment would have caused the erosion of bodies smaller than 200 km in diameter. If the asteroid belt was instead dominated by larger planetesimals, the bombardment would have resulted in the destruction of bodies as big as 500 km.

  12. Flat belt continuously variable high speed drive. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, E.L.

    1992-02-01

    A study was undertaken at Kumm Industries funded by DOE in the NBS/DOE Energy-Related Inventions Program starting in August 1990 to design, construct and test a novel very high speed flat belt drive. The test arrangement as shown in Figure 1 consists of a multiple belt-pulley configuration that transmits power from a low speed (2000--4000 RPM) input to a small pulley ``turbine`` (27,000 to 55,000 RPM) and then to the low speed output variable radius pulley (2000--5000 RPM) via a special self-active tensioner. Transmitting 25 HP to and from the ``turbine`` corresponds to obtaining 50 HP in one direction only in a possible turbo compounded engine application. The high speed of the ``turbine`` belts, i.e. 100 meters/sec. at 55,000 RPM, while transferring substantial power is a new much higher operating regime for belts. The study showed that the available belts gave overall test rig efficiencies somewhat above 80% for the higher speeds (50,000 RPM) and higher powers (corresponding to above 90% in the turbocompound application) and a significantly better efficiencies at slightly lower speeds. The tests revealed a number of improved approaches in the design of such high speed drives. It appears that there is considerable possibility for further improvement and application of such equipment.

  13. Off-Beam Gamma-Ray Pulsars and Unidentified EGRET Sources in the Gould Belt

    CERN Document Server

    Harding, A K; Harding, Alice K.; Zhang, Bing

    2001-01-01

    We investigate whether gamma-ray pulsars viewed at a large angle to the neutron star magnetic pole could contribute to the new population of galactic unidentified EGRET sources associated with the Gould Belt. The faint, soft nature of these sources is distinctly different from both the properties of unidentified EGRET sources along the galactic plane and of the known gamma-ray pulsars. We explore the possibility, within the polar cap model, that some of these sources are emission from pulsars seen at lines of sight that miss both the bright gamma-ray cone beams and the radio beam. The off-beam gamma-rays come from high-altitude curvature emission of primary particles, are radiated over a large solid angle and have a much softer spectrum than that of the main beams. We estimate that the detectability of such off-beam emission is about a factor of 4-5 higher than that of the on-beam emission. At least some of the radio-quiet Gould Belt sources detected by EGRET could therefore be such off-beam gamma-ray pulsars...

  14. Analysis of a non-storm time enhancement in outer belt electrons

    Science.gov (United States)

    Schiller, Q.; Li, X.; Godinez, H. C.; Sarris, T. E.; Tu, W.; Malaspina, D.; Turner, D. L.; Blake, J. B.; Koller, J.

    2014-12-01

    A high-speed solar wind stream impacted Earth's magnetosphere on January 13th, 2013, and is associated with a large enhancement (>2.5 orders) of outer radiation belt electron fluxes despite a small Dst signature (-30 nT). Fortunately, the outer belt was well sampled by a variety of missions during the event, including the Van Allen Probes, THEMIS, and the Colorado Student Space Weather Experiment (CSSWE). In-situ flux and phase space density observations are used from MagEIS (Magnetic Electron Ion Spectrometer) onboard the Van Allen Probes, REPTile (Relativistic Electron and Proton Telescope integrated little experiment) onboard CSSWE, and SST onboard THEMIS. The observations show a rapid increase in 100's keV electron fluxes, followed by a more gradual enhancement of the MeV energies. The 100's keV enhancement is associated with a substorm injection, and the futher energization to MeV energies is associated with wave activity as measured by the Van Allen Probes and THEMIS. Furthermore, the phase space density radial profiles show an acceleration region occurring between 5

  15. Repeating Fast Radio Bursts from Highly Magnetized Pulsars Travelling through Asteroid Belts

    CERN Document Server

    Dai, Z G; Wu, X F; Huang, Y F

    2016-01-01

    Very recently Spitler et al. (2016) reported their detections of ten additional bright bursts from the direction of the fast radio burst (FRB) 121102. This repeating FRB is obviously distinct from the other non-repeating FRBs and thus challenges all of the energy source models but giant pulses from young pulsars. Here we propose a different model, in which highly magnetized pulsars travel through asteroid belts of other stars. We show that a repeating FRB could originate from this pulsar encountering with lots of asteroids in the belt. During such an impact, an electric field induced on a radially elongated, transversely compressed asteroid near the pulsar's surface is strong enough to accelerate electrons to an ultra-relativistic speed instantaneously. Subsequent movement of these electrons along the magnetic field lines not only gives rise to a current loop, but also produces coherent curvature radiation, which can well account for the properties of an FRB. While the high repetitive rate estimated is well c...

  16. Medical exposure and the effects of radiation

    International Nuclear Information System (INIS)

    Radiation gives cracks to genes. The influence is divided into deterministic effect with a threshold value, and the stochastic effect (tumor and genetic effect) which increases according to the exposure amount. Although we are put to various non-artificial radiations, which we cannot be avoided, on the earth, the contamination by artificial radiation can be defended. Artificial radioactive exposure includes medical exposure and non-medical exposure for example by nuclear power plant. As to medical examinations using radiation, the inquiry about the radiation exposure is increasing after the occurrence of the first nuclear power plant disaster of Fukushima. While concern about non-medical radioactive exposure increases, the uneasiness to medical irradiation is also increasing. The dose limit by artificial radioactive exposure other than medical exposure is set up in order to prevent the influence on the health. While the dose limit of the public exposure is set to the lower value than the total dose of non-artificial exposure concerning of a safety margin for all people, the dose limit of medical exposure is not defined, since it is thought that medical irradiation has a benefit for those who receive irradiation. Making an effort to decrease the radiation dose in performing the best medical treatment is the responsibility with which we are burdened. (author)

  17. Research on Dynamic Tension for Belt Conveyor with Constant Force Automatic Take-Up Assembly

    Institute of Scientific and Technical Information of China (English)

    MENG Guo-ying; CHEN Jing-li; LI Yu-jin

    2003-01-01

    The article Provides a dynamic model for belt conveyor. Based on the drive-force of conveyor, take-up tension of take-up assembly, gravity of conveyor belt and material, and friction between belt and idlers, it gives a viscoelastic dynamic equation for conveyor belt. It presents a calculation method of analytic solution to both viscoelastic dynamic equation and geometric dynamic equation when automatic take-up assembly is applied to belt conveyor. The article also makes a study of design method of limiting and eliminating the conveyor belt's elastic vibration.

  18. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  19. Artificial Life Meets Computational Creativity?

    OpenAIRE

    McMullin, Barry

    2009-01-01

    I (briefly) review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity.

  20. Darwin, artificial selection, and poverty.

    Science.gov (United States)

    Sanchez, Luis

    2010-03-01

    This paper argues that the processes of evolutionary selection are becoming increasingly artificial, a trend that goes against the belief in a purely natural selection process claimed by Darwin's natural selection theory. Artificial selection is mentioned by Darwin, but it was ignored by Social Darwinists, and it is all but absent in neo-Darwinian thinking. This omission results in an underestimation of probable impacts of artificial selection upon assumed evolutionary processes, and has implications for the ideological uses of Darwin's language, particularly in relation to poverty and other social inequalities. The influence of artificial selection on genotypic and phenotypic adaptations arguably represents a substantial shift in the presumed path of evolution, a shift laden with both biological and political implications.

  1. Artificial Reefs and Ocean Dumping.

    Science.gov (United States)

    Glueck, Richard D.

    1983-01-01

    Activities and instructional strategies for two multigrade lessons are provided. Activity objectives include describing an artificial reef (such as a sunken ocean liner) as an ecosystem, knowing animal types in the ecosystem, and describing a food web. (JN)

  2. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine;

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti......This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  3. Food analysis using artificial senses.

    Science.gov (United States)

    Śliwińska, Magdalena; Wiśniewska, Paulina; Dymerski, Tomasz; Namieśnik, Jacek; Wardencki, Waldemar

    2014-02-19

    Nowadays, consumers are paying great attention to the characteristics of food such as smell, taste, and appearance. This motivates scientists to imitate human senses using devices known as electronic senses. These include electronic noses, electronic tongues, and computer vision. Thanks to the utilization of various sensors and methods of signal analysis, artificial senses are widely applied in food analysis for process monitoring and determining the quality and authenticity of foods. This paper summarizes achievements in the field of artificial senses. It includes a brief history of these systems, descriptions of most commonly used sensors (conductometric, potentiometric, amperometic/voltammetric, impedimetric, colorimetric, piezoelectric), data analysis methods (for example, artificial neural network (ANN), principal component analysis (PCA), model CIE L*a*b*), and application of artificial senses to food analysis, in particular quality control, authenticity and falsification assessment, and monitoring of production processes.

  4. Artificial weathering of granite

    Directory of Open Access Journals (Sweden)

    Silva Hermo, B.

    2008-06-01

    Full Text Available This article summarizes a series of artificial weathering tests run on granite designed to: simulate the action of weathering agents on buildings and identify the underlying mechanisms, determine the salt resistance of different types of rock; evaluate consolidation and water-repellent treatment durability; and confirm hypotheses about the origin of salts such as gypsum that are often found in granite buildings. Salt crystallization tests were also conducted, using sodium chloride, sodium sulphate, calcium sulphate and seawater solutions. One of these tests was conducted in a chamber specifically designed to simulate salt spray weathering and another in an SO2 chamber to ascertain whether granite is subject to sulphation. The test results are analyzed and discussed, along with the shortcomings of each type of trial as a method for simulating the decay observed in monuments. The effect of factors such as wet-dry conditions, type of saline solution and the position of the planes of weakness on the type of decay is also addressed.En este trabajo se hace una síntesis de varios ensayos de alteración artificial realizados con rocas graníticas. Estos ensayos tenían distintos objetivos: reproducir las formas de alteración encontradas en los edificios para llegar a conocer los mecanismos que las generan, determinar la resistencia de las diferentes rocas a la acción de las sales, evaluar la durabilidad de tratamientos de consolidación e hidrofugación y constatar hipótesis acerca del origen de algunas sales, como el yeso, que aparecen frecuentemente en edificios graníticos. En los ensayos de cristalización de sales se utilizaron disoluciones de cloruro de sodio, sulfato de sodio, sulfato de calcio y agua de mar. Uno de estos ensayos se llevó a cabo en una cámara especialmente diseñada para reproducir la alteración por aerosol marino y otro se realizó en una cámara de SO2, con el objeto de comprobar si en rocas graníticas se puede producir

  5. Aqueous alteration on main-belt asteroids

    Science.gov (United States)

    Fornasier, S.; Lantz, C.; Barucci, M.; Lazzarin, M.

    2014-07-01

    The study of aqueous alteration is particularly important for unraveling the processes occurring during the earliest times in Solar System history, as it can give information both on the thermal processes and on the localization of water sources in the asteroid belt, and for the associated astrobiological implications. The aqueous alteration process produces the low temperature (< 320 K) chemical alteration of materials by liquid water which acts as a solvent and produces materials like phyllosilicates, sulphates, oxides, carbonates, and hydroxides. This means that liquid water was present in the primordial asteroids, produced by the melting of water ice by heating sources, very probably by ^{26}Al decay. Hydrated minerals have been found mainly on Mars surface, on primitive main-belt asteroids (C, G, B, F, and P-type, following the classification scheme by Tholen, 1984) and possibly also on few transneptunian objects. Reflectance spectroscopy of aqueous altered asteroids shows absorption features in the 0.6-0.9 and 2.5-3.5-micron regions, which are diagnostic of, or associated with, hydrated minerals. In this work, we investigate the aqueous alteration process on a large sample of 600 visible spectra of C-complex asteroids available in the literature. We analyzed all these spectra in a similar way to characterize the absorption-band parameters (band center, depth, and width) and spectral slope, and to look for possible correlations between the aqueous alteration process and the asteroids taxonomic classes, orbital elements, heliocentric distances, albedo, and sizes. We find that 4.6 % of P, 7.7 % of F, 9.8 % of B, 50.5 % of C, and 100 % of the G-type asteroids have absorption bands in the visible region due to hydrated silicates. Our analysis shows that the aqueous alteration sequence starts from the P-type objects, practically unaltered, and increases through the P → F → B → C → G asteroids, these last being widely aqueously altered, strengthening thus

  6. Medical applications of artificial intelligence

    CERN Document Server

    Agah, Arvin

    2013-01-01

    Enhanced, more reliable, and better understood than in the past, artificial intelligence (AI) systems can make providing healthcare more accurate, affordable, accessible, consistent, and efficient. However, AI technologies have not been as well integrated into medicine as predicted. In order to succeed, medical and computational scientists must develop hybrid systems that can effectively and efficiently integrate the experience of medical care professionals with capabilities of AI systems. After providing a general overview of artificial intelligence concepts, tools, and techniques, Medical Ap

  7. Mechanical properties of artificial snow

    OpenAIRE

    Lintzén, Nina

    2013-01-01

    Mechanical properties of snow have been a subject of research since the mid-20th century. Theresearch done is based on natural snow. During the last decades the winter business industryhas been growing and also the interest for constructing buildings and artwork of snow. Suchconstructions are generally built using artificial snow, i.e. snow produced by snow guns. Up tothe present constructions of snow are designed based on knowledge by experience. Only minorscientific studies on artificial sn...

  8. What are artificial neural networks?

    DEFF Research Database (Denmark)

    Krogh, Anders

    2008-01-01

    Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb......Artificial neural networks have been applied to problems ranging from speech recognition to prediction of protein secondary structure, classification of cancers and gene prediction. How do they work and what might they be good for? Udgivelsesdato: 2008-Feb...

  9. The handbook of artificial intelligence

    CERN Document Server

    Barr, Avron

    1982-01-01

    The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine

  10. Two new basaltic asteroids in the Outer Main Belt

    CERN Document Server

    Duffard, R

    2007-01-01

    The identification of other basaltic objects in the asteroid belt is mandatory to explain the diversity in the collection of basaltic meteorites. This diversity requires more than one differentiated parent body, a fact that is consistent with the diversity of differentiated parent bodies implied by the iron meteorites. Based on a list of previously identified candidate basaltic (V-type) asteroids, two asteroids in the outer main belt, (7472) Kumakiri and (10537) 1991 RY16, were spectroscopically observed during an observational run in Calar Alto Observatory, Spain. We confirm the V-type character of these two asteroids that, together with (1459) Magnya, become the only known traces of basaltic found in the outer main belt up to now. We also demonstrate that the searching for candidate V-type asteroids using a photometric survey, like the Sloan Digital Sky Survey, produces reliable results.

  11. Gravity inferred subsurface structure of Gadwal Schist belt, Andhra Pradesh

    Indian Academy of Sciences (India)

    G Ramadass; I B Ramaprasada Rao; N Srinivasulu

    2001-03-01

    Detailed gravity data collected across the Gadwal schist belt in the state of Andhra Pradesh show an 8.4 mgal residual gravity anomaly associated with meta-sediments/volcanics of the linear NNW-SSE trending schist belt that shows metamorphism from green schist to amphibolite facies. This schist belt is flanked on either side by the peninsular gneissic complex. The elevation and slab Bouguer corrected residual gravity profile data were interpreted using 2-D prism models. The results indicate a synformal structure having a width of 1.8 km at the surface, tapering at a depth of about 2.6 km with a positive density contrast of 0.15 gm/cc with respect to the surrounding peninsular gneissic complex.

  12. Regional Fault Systems of Qaidam Basin and Adjacent Orogenic Belts

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The purpose of this paper is to analyze the regional fault systems of Qaidam basin and adjacent orogenic belts. Field investigation and seismic interpretation indicate that five regional fault systems occurred in the Qaidam and adjacent mountain belts, controlling the development and evolution of the Qaidam basin. These fault systems are: (1)north Qaidam-Qilian Mountain fault system; (2) south Qaidam-East Kunlun Mountain fault system; (3)Altun strike-slip fault system; (4)Elashan strike-slip fault system, and (5) Gansen-Xiaochaidan fault system. It is indicated that the fault systems controlled the orientation of the Qaidam basin, the formation and distribution of secondary faults within the basin,the migration of depocenters and the distribution of hydrocarbon accumulation belt.

  13. TAKRAF belt conveyors - effective means of transport for bulk materials

    Energy Technology Data Exchange (ETDEWEB)

    Peterman, L.

    1988-11-01

    Presents belt conveyor types produced by TAKRAF, especially those intended for use at surface mines. The FAM works (Transport Equipment) produces belt conveyors 800-1,400 mm wide, with 2.09-5.24 m/s belt velocity, 460-3,750 m/sup 3//h capacity, max. feed distance 2,500 m and (1-5)x55 kW drive power. The drive stations are based on pontoons or caterpillar vehicles while the end-stations are based on pontoons. Charging hoppers have autonomic drives and are mobile on rail. The described conveyors can also be used in power plants. The FAM works produces 650-800 mm wide conveyors for thermal electric power stations. The conveyors are equipped with metal detectors and metal separators.

  14. ASAP- ARTIFICIAL SATELLITE ANALYSIS PROGRAM

    Science.gov (United States)

    Kwok, J.

    1994-01-01

    The Artificial Satellite Analysis Program (ASAP) is a general orbit prediction program which incorporates sufficient orbit modeling accuracy for mission design, maneuver analysis, and mission planning. ASAP is suitable for studying planetary orbit missions with spacecraft trajectories of reconnaissance (flyby) and exploratory (mapping) nature. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. ASAP uses Cowell's method in the numerical integration of the equations of motion. The orbital mechanics calculation contains perturbations due to non-sphericity (up to a 40 X 40 field) of the planet, lunar and solar effects, and drag and solar radiation pressure. An 8th order Runge-Kutta integration scheme with variable step size control is used for efficient propagation. The input includes the classical osculating elements, orbital elements of the sun relative to the planet, reference time and dates, drag coefficient, gravitational constants, and planet radius, rotation rate, etc. The printed output contains Cartesian coordinates, velocity, equinoctial elements, and classical elements for each time step or event step. At each step, selected output is added to a plot file. The ASAP package includes a program for sorting this plot file. LOTUS 1-2-3 is used in the supplied examples to graph the results, but any graphics software package could be used to process the plot file. ASAP is not written to be mission-specific. Instead, it is intended to be used for most planetary orbiting missions. As a consequence, the user has to have some basic understanding of orbital mechanics to provide the correct input and interpret the subsequent output. ASAP is written in FORTRAN 77 for batch execution and has been implemented on an IBM PC compatible computer operating under MS-DOS. The ASAP package requires a math coprocessor and a minimum of 256K RAM. This program was last

  15. Fault Tolerant Characteristics of Artificial Neural Network Electronic Hardware

    Science.gov (United States)

    Zee, Frank

    1995-01-01

    The fault tolerant characteristics of analog-VLSI artificial neural network (with 32 neurons and 532 synapses) chips are studied by exposing them to high energy electrons, high energy protons, and gamma ionizing radiations under biased and unbiased conditions. The biased chips became nonfunctional after receiving a cumulative dose of less than 20 krads, while the unbiased chips only started to show degradation with a cumulative dose of over 100 krads. As the total radiation dose increased, all the components demonstrated graceful degradation. The analog sigmoidal function of the neuron became steeper (increase in gain), current leakage from the synapses progressively shifted the sigmoidal curve, and the digital memory of the synapses and the memory addressing circuits began to gradually fail. From these radiation experiments, we can learn how to modify certain designs of the neural network electronic hardware without using radiation-hardening techniques to increase its reliability and fault tolerance.

  16. The Belt voice: Acoustical measurements and esthetic correlates

    Science.gov (United States)

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  17. Systematic for assessment of occupational exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    The approval of Royal Decree 486/2010 of 23 April on the protection of health and safety of workers from risks related to exposure to artificial optical radiation, moves to state law a framework of protection against the radiation. This should involve a significant intensification of control at work is conducted in this radiation. Despite the complexity of the issue and limit values ??difficult to apply (for incoherent ultraviolet radiation enters the bounding box up to 5 different values ??may apply), requires a systematic analysis of the problem well done. In this paper we consider the ultraviolet radiation generated by artificial sources.

  18. Development of a totally implantable artificial larynx

    NARCIS (Netherlands)

    Verkerke, GJ; Veenstra, Aalze; de Vries, MP; Schutte, HK; Busscher, HJ; Herrmann, IF; Van der Mei, HC; Rakhorst, G; Clements, MP

    1996-01-01

    Background. The consequences of a life-saving laryngectomy are still very distressing. The Eureka project "Artificial Larynx" aims at realization of an implantable artificial larynx to eliminate all drawbacks. Methods. The artificial larynx will consist of artificial vocal folds of adjustable pitch

  19. Traffic restrictions due to wind on the Fehmarn Belt bridge

    DEFF Research Database (Denmark)

    Dellwik, E.; Mann, Jakob; Rosenhagen, G.

    2006-01-01

    This report documents the calculations carried out in order to estimate the wind climate at the site where the Fehmarn Belt bridge is planned. Further, an estimate of how often and for how long traffic restrictions will be enforced according to statedcriteria (sec. 3.2) is given. This estimate...... are the same as used in this report and here the comparison is satisfactory. We estimate that the prospective Fehmarn Belt bridge will be closed roughly 2% of the timefor light roadway vehicles (unloaded trucks and caravans), corresponding to 7 days per year. This is slightly less than for the Fehmarnsund...

  20. Bifurcation for Dynamical Systems of Planet-Belt Interaction

    OpenAIRE

    Jiang, Ing-Guey; Yeh, Li-Chin

    2002-01-01

    The dynamical systems of planet-belt interaction are studied by the fixed-point analysis and the bifurcation of solutions on the parameter space is discussed. For most cases, our analytical and numerical results show that the locations of fixed points are determined by the parameters and these fixed points are either structurally stable or unstable. In addition to that, there are two special fixed points: the one on the inner edge of the belt is asymptotically stable and the one on the outer ...

  1. Lightcurve Survey of V-type Asteroids in the Inner Asteroid Belt

    CERN Document Server

    Hasegawa, Sunao; Mito, Hiroyuki; Sarugaku, Yuki; Ozawa, Tomohiko; Kuroda, Daisuke; Nishihara, Setsuko; Harada, Akari; Yoshida, Michitoshi; Yanagisawa, Kenshi; Shimizu, Yasuhiro; Nagayama, Shogo; Toda, Hiroyuki; Okita, Kouji; Kawai, Nobuyuki; Mori, Machiko; Sekiguchi, Tomohiko; Ishiguro, Masateru; Abe, Takumi; Abe, Masanao

    2013-01-01

    We have observed the lightcurves of 13 V-type asteroids ((1933) Tinchen, (2011) Veteraniya, (2508) Alupka, (3657) Ermolova, (3900) Knezevic, (4005) Dyagilev, (4383) Suruga, (4434) Nikulin, (4796) Lewis, (6331) 1992 $\\mathrm{FZ_{1}}$, (8645) 1998 TN, (10285) Renemichelsen, and (10320) Reiland). Using these observations we determined the rotational rates of the asteroids, with the exception of Nikulin and Renemichelsen. The distribution of rotational rates of 59 V-type asteroids in the inner main belt, including 29 members of the Vesta family that are regarded as ejecta from the asteroid (4) Vesta, is inconsistent with the best-fit Maxwellian distribution. This inconsistency may be due to the effect of thermal radiation Yarkovsky--O'Keefe--Radzievskii--Paddack (YORP) torques, and implies that the collision event that formed V-type asteroids is sub-billion to several billion years in age.

  2. Radiation enteritis

    Science.gov (United States)

    ... enteropathy; Radiation-induced small bowel injury; Post-radiation enteritis ... often are no good treatments for chronic radiation enteritis that is more severe. Medicines such as cholestyramine, ...

  3. Biological Effects Of Artificial Illumination

    Science.gov (United States)

    Corth, Richard

    1980-10-01

    We are increasingly being warned of the possible effects of so called "polluted" light, that is light that differs in spectral content from that of sunlight. We should be concerned, we are told, because all animals and plants have evolved under this natural daylight and therefore any difference between that illuminant and the artificial illuminants that are on the market today, is suspect. The usual presentation of the differences between the sunlight and the artificial illuminants are as shown in Figure 1. Here we are shown the spectral power distribution of sunlight and Cool White fluorescent light. The spectral power distributions of each have been normalized to some convenient wavelength so that each can be seen and easily compared on the same figure. But this presentation is misleading for one does not experience artificial illuminants at the same intensity as one experiences sunlight. Sunlight intensities are ordinarily found to be in the 8000 to 10,000 footcandle range whereas artificial illuminants are rarely experienced at intensity levels greater than 100 footcandles. Therefore a representative difference between the two types of illumination conditions is more accurately represented as in Figure 2. Thus if evolutionary adaptations require that humans and other animals be exposed to sunlight to ensure wellbeing, it is clear that one must be exposed to sunlight intensities. It is not feasible to expect that artificially illuminated environments will be lit to the same intensity as sunlight

  4. Design study of flat belt CVT for electric vehicles

    Science.gov (United States)

    Kumm, E. L.

    1980-01-01

    A continuously variable transmission (CVT) was studied, using a novel flat belt pulley arrangement which couples the high speed output shaft of an energy storage flywheel to the drive train of an electric vehicle. A specific CVT arrangement was recommended and its components were selected and sized, based on the design requirements of a 1700 KG vehicle. A design layout was prepared and engineering calculations made of component efficiencies and operating life. The transmission efficiency was calculated to be significantly over 90% with the expected vehicle operation. A design consistent with automotive practice for low future production costs was considered, together with maintainability. The technology advancements required to develop the flat belt CVT were identified and an estimate was made of how the size of the flat belt CVT scales to larger and smaller design output torques. The suitability of the flat belt CVT for alternate application to an electric vehicle powered by an electric motor without flywheel and to a hybrid electric vehicle powered by an electric motor with an internal combustion engine was studied.

  5. Resolving the Planetesimal Belt of HR 8799 with ALMA

    CERN Document Server

    Booth, Mark; Casassus, Simon; Hales, Antonio S; Dent, William R F; Faramaz, Virginie; Matrà, Luca; Barkats, Denis; Brahm, Rafael; Cuadra, Jorge

    2016-01-01

    The star HR 8799 hosts one of the largest known debris discs and at least four giant planets. Previous observations have found evidence for a warm belt within the orbits of the planets, a cold planetesimal belt beyond their orbits and a halo of small grains. With the infrared data, it is hard to distinguish the planetesimal belt emission from that of the grains in the halo. With this in mind, the system has been observed with ALMA in band 6 (1.34 mm) using a compact array format. These observations allow the inner edge of the planetesimal belt to be resolved for the first time. A radial distribution of dust grains is fitted to the data using an MCMC method. The disc is best fit by a broad ring between $145^{+12}_{-12}$ AU and $429^{+37}_{-32}$ AU at an inclination of $40^{+5}_{-6}${\\deg} and a position angle of $51^{+8}_{-8}${\\deg}. A disc edge at ~145 AU is too far out to be explained simply by interactions with planet b, requiring either a more complicated dynamical history or an extra planet beyond the orb...

  6. Nature of the Kirkwood gaps in the asteroid belt

    Energy Technology Data Exchange (ETDEWEB)

    Dermott, S.F.; Murray, C.D. (Cornell Univ., Ithaca, NY (USA). Lab. for Planetary Studies)

    1983-01-20

    The distributions of orbital eccentricities and inclinations near the Jovian resonances in the asteroid belt show that the observed Kirkwood gaps in the distribution of the semimajor axes were formed after the asteroids had dispersed from the near-coplanar disk in which they accreted.

  7. Uranium deposits of the Grants, New Mexico mineral belt (II)

    International Nuclear Information System (INIS)

    This is part of a study of the genesis of the U deposits of the Grants mineral belt. Enrichment of Mg in ore zones is frequently observed, with chlorite being a common product. Clay mineralogic studies argue for chlorite-illite-montmorillonite associations with ores. The methods include scanning electron microscopy, Eh-pH diagrams, activation analysis, and rare earth element studies

  8. Resolving the planetesimal belt of HR 8799 with ALMA

    Science.gov (United States)

    Booth, Mark; Jordán, Andrés; Casassus, Simon; Hales, Antonio S.; Dent, William R. F.; Faramaz, Virginie; Matrà, Luca; Barkats, Denis; Brahm, Rafael; Cuadra, Jorge

    2016-07-01

    The star HR 8799 hosts one of the largest known debris discs and at least four giant planets. Previous observations have found evidence for a warm belt within the orbits of the planets, a cold planetesimal belt beyond their orbits and a halo of small grains. With the infrared data, it is hard to distinguish the planetesimal belt emission from that of the grains in the halo. With this in mind, the system has been observed with ALMA in band 6 (1.34 mm) using a compact array format. These observations allow the inner edge of the planetesimal belt to be resolved for the first time. A radial distribution of dust grains is fitted to the data using an MCMC method. The disc is best fitted by a broad ring between 145^{+12}_{-12} au and 429^{+37}_{-32} au at an inclination of 40^{+5}_{-6}° and a position angle of 51^{+8}_{-8}°. A disc edge at ˜145 au is too far out to be explained simply by interactions with planet b, requiring either a more complicated dynamical history or an extra planet beyond the orbit of planet b.

  9. Collisional and dynamic evolution of dust from the asteroid belt

    Science.gov (United States)

    Gustafson, Bo A. S.; Gruen, Eberhard; Dermott, Stanley F.; Durda, Daniel D.

    1992-01-01

    The size and spatial distribution of collisional debris from main belt asteroids is modeled over a 10 million year period. The model dust and meteoroid particles spiral toward the Sun under the action of Poynting-Robertson drag and grind down as they collide with a static background of field particles.

  10. Influence of the Gould Belt on Interstellar Extinction

    CERN Document Server

    Gontcharov, George

    2016-01-01

    A new analytical 3D model of interstellar extinction within 500 pc of the Sun as a function of the Galactic spherical coordinates is suggested. This model is physically more justified than the widely used Arenou model, since it takes into account the presence of absorbing matter both in the layer along the equatorial Galactic plane and in the Gould Belt. The extinction in the equatorial layer varies as the sine of the Galactic longitude and in the Gould Belt as the sine of twice the longitude in the Belt plane. The extinction across the layers varies according to a barometric law. It has been found that the absorbing layers intersect at an angle of 17 deg and that the Sun is located near the axial plane of the absorbing layer of the Gould Belt and is probably several parsecs below the axial plane of the equatorial absorbing layer but above the Galactic plane. The model has been tested using the extinction of real stars from three catalogs.

  11. Structural appraisal of the Gadag schist belt from gravity investigations

    Indian Academy of Sciences (India)

    G Ramadass; D Himabindu; N Srinivasulu

    2003-12-01

    Semi-detailed gravity investigations were carried out over an area of approximately 2750 sq km with maximum N-S and E-W extents of 55 and 50km respectively in the Gadag region in the Dharwar craton with a view to obtain a clearer perception of the structural configuration of the region. From qualitative analysis of the gravity data, several tectonic features are inferred: the high density Gadag schist belt is characterized by a gravity high and occurs in two discontinuous segments — the main N-S trending segment, and its thinner NW-SE trending extension, the two separated by a NE-SW trending deep seated fault. While the N-S trend of the Gadag schist belt is bounded on its east by the NW-SE trending Chitradurga thrust fault and on its west by another major NNW-SSE trending fault, the NW-SE extension is likewise bounded by two other NW-SE major faults. Quantitative evaluation from forward modeling/inversion of five profiles in the region, assuming a density contrast of 0.29 gm/cc of the anomalous schistose body with the gneissic host rocks indicated a synclinal structure plunging to the southeast along its axis for the Gadag schist belt. The maximum width and depth from surface of the schist belt are 22km and 5.6km respectively.

  12. 1991 National campaign to increase safety belt usage.

    NARCIS (Netherlands)

    National Highway Traffic Safety Administration NHTSA

    1992-01-01

    The central theme of this paper is the national campaign of the USA to be conducted in 1991 and 1992, in order to reach the goal of 70 percent safety belt usage by 1992. Among other things, it is shown that visible enforcement of existing laws offers the greatest potential for achieving this goal. F

  13. WISE Albedos for Tens of Thousands of Main Belt Asteroids

    NARCIS (Netherlands)

    Masiero, Joseph R.; Mainzer, A. K.; Bauer, J.; Cutri, R.; Dailey, J.; Delbo, M.; Grav, T.; McMillan, R. S.; Mueller, M.; Walker, R.; Wright, E.; WISE Science Team, [No Value

    2010-01-01

    Using thermal IR data from the Wide-field Infrared Survey Explorer (WISE) mission we have calculated diameters for tens of thousands of previously known Main Belt asteroids. Using archival optical observations we have also determined albedos for each object. We present our results from this investig

  14. Shaping mobile belts by small-scale convection.

    Science.gov (United States)

    Faccenna, Claudio; Becker, Thorsten W

    2010-06-01

    Mobile belts are long-lived deformation zones composed of an ensemble of crustal fragments, distributed over hundreds of kilometres inside continental convergent margins. The Mediterranean represents a remarkable example of this tectonic setting: the region hosts a diffuse boundary between the Nubia and Eurasia plates comprised of a mosaic of microplates that move and deform independently from the overall plate convergence. Surface expressions of Mediterranean tectonics include deep, subsiding backarc basins, intraplate plateaux and uplifting orogenic belts. Although the kinematics of the area are now fairly well defined, the dynamical origins of many of these active features are controversial and usually attributed to crustal and lithospheric interactions. However, the effects of mantle convection, well established for continental interiors, should be particularly relevant in a mobile belt, and modelling may constrain important parameters such as slab coherence and lithospheric strength. Here we compute global mantle flow on the basis of recent, high-resolution seismic tomography to investigate the role of buoyancy-driven and plate-motion-induced mantle circulation for the Mediterranean. We show that mantle flow provides an explanation for much of the observed dynamic topography and microplate motion in the region. More generally, vigorous small-scale convection in the uppermost mantle may also underpin other complex mobile belts such as the North American Cordillera or the Himalayan-Tibetan collision zone. PMID:20520711

  15. PROPOSALS ON IMPROVING THE EXCAVATION, TRANSPORT AND COAL DEPOSIT, USING THE RUBBER CONVEYOR BELT

    Directory of Open Access Journals (Sweden)

    Nicoleta-Maria MIHUT

    2016-05-01

    Full Text Available In this work we make a study of the improvement methods of quantity of material transported by conveyor belt. Determination of discharge of solids entail establish of the parameters of the conveyor belt. As a result, we determine the belt speed who provide maximum discharge of solids materials.

  16. Paired Magmatic-Metallogenic Belts in Myanmar - an Andean Analogue?

    Science.gov (United States)

    Gardiner, Nicholas; Robb, Laurence; Searle, Michael; Morley, Christopher

    2015-04-01

    Myanmar (Burma) is richly endowed in precious and base metals, having one of the most diverse collections of natural resources in SE Asia. Its geological history is dominated by the staged closing of Tethys and the suturing of Gondwana-derived continental fragments onto the South China craton during the Mesozoic-Cenozoic. The country is located at a crucial geologic juncture where the main convergent Tethyan collision zone swings south around the Namche Barwa Eastern Himalayan syntaxis. However, despite recent work, the geological and geodynamic history of Myanmar remains enigmatic. Plate margin processes, magmatism, metasomatism and the genesis of mineral deposits are intricately linked, and there has long been recognized a relationship between the distribution of certain mineral deposit types, and the tectonic settings which favour their genesis. A better knowledge of the regional tectonic evolution of a potential exploration jurisdiction is therefore crucial to understanding its minerals prospectivity. This strong association between tectonics and mineralization can equally be applied in reverse. By mapping out the spatial, and temporal, distribution of presumed co-genetic mineral deposits, coupled with an understanding of their collective metallogenetic origin, a better appreciation of the tectonic evolution of a terrane may be elucidated. Identification and categorization of metallotects within a geodynamically-evolving terrane thus provides a complimentary tool to other methodologies (e.g. geochemical, geochronological, structural, geophysical, stratigraphical), for determining the tectonic history and inferred geodynamic setting of that terrane through time. Myanmar is one such study area where this approach can be undertaken. Here are found two near-parallel magmatic belts, which together contain a significant proportion of that country's mineral wealth of tin, tungsten, copper, gold and silver. Although only a few 100 km's apart, these belts exhibit a

  17. Belt(s) of debris resolved around the Sco-Cen star HIP 67497

    CERN Document Server

    Bonnefoy, M; Ménard, F; Vigan, A; Lagrange, A -M; Delorme, P; Boccaletti, A; Lazzoni, C; Galicher, R; Desidera, S; Chauvin, G; Augereau, J C; Mouillet, D; Pinte, C; van der Plas, G; Gratton, R; Beust, H; Beuzit, J L

    2016-01-01

    In 2015, we initiated a survey of Scorpius-Centaurus A-F stars that are predicted to host warm-inner and cold-outer belts of debris similar to the case of the system HR~8799. The survey aims to resolve the disks and detect planets responsible for the disk morphology. In this paper, we study the F-type star HIP~67497 and present a first-order modelisation of the disk in order to derive its main properties. We used the near-infrared integral field spectrograph (IFS) and dual-band imager IRDIS of VLT/SPHERE to obtain angular-differential imaging observations of the circumstellar environnement of HIP~67497. We removed the stellar halo with PCA and TLOCI algorithms. We modeled the disk emission with the GRaTeR code. We resolve a ring-like structure that extends up to $\\sim$450 mas ($\\sim$50 au) from the star in the IRDIS and IFS data. It is best reproduced by models of a non-eccentric ring with an inclination of $80\\pm1^{\\circ}$, a position angle of $-93\\pm1^{\\circ}$, and a semi-major axis of $59\\pm3$ au. We also ...

  18. Artificial heart for humanoid robot

    Science.gov (United States)

    Potnuru, Akshay; Wu, Lianjun; Tadesse, Yonas

    2014-03-01

    A soft robotic device inspired by the pumping action of a biological heart is presented in this study. Developing artificial heart to a humanoid robot enables us to make a better biomedical device for ultimate use in humans. As technology continues to become more advanced, the methods in which we implement high performance and biomimetic artificial organs is getting nearer each day. In this paper, we present the design and development of a soft artificial heart that can be used in a humanoid robot and simulate the functions of a human heart using shape memory alloy technology. The robotic heart is designed to pump a blood-like fluid to parts of the robot such as the face to simulate someone blushing or when someone is angry by the use of elastomeric substrates and certain features for the transport of fluids.

  19. [Implantation of the artificial retina].

    Science.gov (United States)

    Yagi, T; Hayashida, Y

    1999-05-01

    In some degenerative retinal diseases, e.g., retinitis pigmentosa and age-related macular degeneration, the photoreceptors are destroyed to cause serious visual defects. Recent studies on blind human subjects revealed that a large number of ganglion cells remains intact and is capable of transmitting signals to the brain to evoke partial visual perception. This provided hope to compensate for the visual defects with retinal prostheses. The recent progress of microfabrication technique made it possible to implement the Vary Large Scale Integrated circuit, the artificial retina, which emulates a part of retinal function. The idea of implanting the artificial retina to the patients was proposed recently and experiments using animals have been put into practice. This article surveys the front line of the artificial retina implantation.

  20. Artificial sweeteners: safe or unsafe?

    Science.gov (United States)

    Qurrat-ul-Ain; Khan, Sohaib Ahmed

    2015-02-01

    Artificial sweeteners or intense sweeteners are sugar substitutes that are used as an alternative to table sugar. They are many times sweeter than natural sugar and as they contain no calories, they may be used to control weight and obesity. Extensive scientific research has demonstrated the safety of the six low-calorie sweeteners currently approved for use in foods in the U.S. and Europe (stevia, acesulfame-K, aspartame, neotame, saccharin and sucralose), if taken in acceptable quantities daily. There is some ongoing debate over whether artificial sweetener usage poses a health threat .This review article aims to cover thehealth benefits, and risks, of consuming artificial sweeteners, and discusses natural sweeteners which can be used as alternatives. PMID:25842566

  1. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  2. Radiation, people and the environment

    International Nuclear Information System (INIS)

    Radiation is a fact of life. We live in a world in which radiation is naturally present everywhere. Light and heat from nuclear reactions in the Sun are essential to our existence. Radioactive materials occur naturally throughout the environment, and our bodies contain radioactive materials such as carbon-14, potassium-40 and polonium-210 quite naturally. All life on Earth has evolved in the presence of this radiation. Since the discovery of X rays and radioactivity more than 100 years ago, we have found ways of producing radiation and radioactive materials artificially. The first use of X rays was in medical diagnosis, within six months of their discovery in 1895. So a benefit from the use of radiation was established very early on, but equally some of the potential dangers of radiation became apparent in the doctors and surgeons who unwittingly overexposed themselves to X rays in the early 1900s. Since then, many different applications of radiation and radioactive materials have been developed. We can classify radiation according to the effects it produces on matter, into ionizing and non-ionizing radiation. Ionizing radiation includes cosmic rays, X rays and the radiation from radioactive materials. Non-ionizing radiation includes ultraviolet light, radiant heat, radio waves and microwaves. This book deals with ionizing radiation, a term, which for simplicity, is often shortened to just radiation. It has been prepared by the International Atomic Energy Agency (IAEA) in co-operation with the National Radiological Protection Board (United Kingdom) as a broad overview of the subject of ionizing radiation, its effects and uses, as well as the measures in place to use it safely. As the United Nations agency for nuclear science and its peaceful applications, the IAEA offers a broad spectrum of expertise and programmes to foster the safe use of radiation internationally

  3. Evaluation of the Community Land Model (CLM-Crop) in the United States Corn Belt

    Science.gov (United States)

    Chen, M.; Griffis, T.

    2013-12-01

    An accurate representation of crop phenology in land surface models is crucial for predicting the carbon, water and energy budgets of managed ecosystems. Soybean and corn are cultivated in approximately 600,000 km2 in the Corn Belt- an area greater than the entire State of California. Accurate prediction of the radiation, energy, and carbon budgets of this region is especially important for understanding its influence on radiative forcing, the thermodynamic properties of the atmospheric boundary layer, and changes in climate. Recently, key algorithms describing crop biophysics and interactive crop management (planting, fertilization, irrigation, harvesting) have been implemented in the Community Land Model (CLM-Crop). CLM-Crop provides a framework for prognostic simulation of crop phenology and evaluation of human management decisions under future climate scenarios. However, there is an important need to evaluate CLM-Crop against a broad range of agricultural site observations in order to understand its limitations and to help optimize the crop biophysical parameterization. Here we evaluated CLM-Crop version 4.5 at 9 AmeriFlux corn/soybean sites that are located within the United States Corn Belt. The following questions were addressed: 1) How well does CLM perform for the 9 crop sites with different management techniques (e.g., tillage vs. no-till, rainfed vs. irrigated)? 2) What are the model's strengths and weaknesses of simulating crop phenology, energy fluxes and carbon fluxes? 3) What steps are needed in order to improve the reliability of the CLM-Crop simulations? Our preliminary results indicate that CLM-Crop can simulate the radiation, energy, and carbon fluxes with reasonable accuracy during the mid growing season. The model performance degrades substantially during the early and late growing seasons, which we attribute to a bias in crop phenology. For instance, we observed that the simulated corn and soybean phenology (LAI) has an earlier phase than the

  4. TECTONICS OF THE DABIE OROGENIC BELT, CENTRAL CHINA

    Institute of Scientific and Technical Information of China (English)

    GUO Fu-sheng; XIA Fei; PENG Hua-ming; DU Yang-song

    2002-01-01

    Tectonically the Dabie orogenic belt consists mainly of the Dabieshan Yanshanian uplifted zone and the Beihuaiyang Variscan-Indosinian folding zone. In the north boundary adjoining the North China Block, there are an Early Palaeozoic ophiolitic mixtite belt and the Hefei Mesozoic-Cenozoic faulted basin which overlaps on the suture belt. In the south of Dabie orogen, there is a secondary tectonic unit called Foreland thrust-faulted structural zone which was mainly formed by the intracontinental subductions during Mesozoic era. The study shows that the Dabie Block is a part of mid-late Proterozoic palaeo-island arc at the north margin of Yangtze Block. During Caledonian period, as a submerged uplift at the northen continental margin of Yangtze Block, the Dabie Block collided with the early Palaeozoic palaeo-island arc at the south margin of North China Block, resulting in the convergence of the North and South China Blocks and the disappearance of oceanic crust. Since then,large-scale intracontinental subductions were followed. Dabie Orogenic Belt is the product of overlapping of Yangtze Block, Dabie Block and North China Block under the mechanism of intracontinental subduction. Indosinian period is the period of chief deformation and high pressure dynamic metamorphism for Dabie Block, and Yanshan period is the main orogenic period in which the remelting of crust caused by basement shearing resulted in large scale thermometamorphism. The present tectonic framework of the orogen was finally formed by the rapid uplifting of the Dabieshan mountains and gliding southwards, which result in the developing of thrust belt on south side and the extensional tectonic movement on north side.

  5. Flexible electrode belt for EIT using nanofiber web dry electrodes

    International Nuclear Information System (INIS)

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human–electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes. (paper)

  6. Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor

    CERN Document Server

    Grant, C E; Bautz, M W; O'Dell, S L

    2010-01-01

    The Advanced CCD Imaging Spectrometer (ACIS) is one of two focal-plane instruments on the Chandra X-ray Observatory. During initial radiation-belt passes, the exposed ACIS suffered significant radiation damage from trapped soft protons scattering off the x-ray telescope's mirrors. The primary effect of this damage was to increase the charge-transfer inefficiency (CTI) of the ACIS 8 front-illuminated CCDs. Subsequently, the Chandra team implemented procedures to remove the ACIS from the telescope's focus during high-radiation events: planned protection during radiation-belt transits; autonomous protection triggered by an on-board radiation monitor; and manual intervention based upon assessment of space-weather conditions. However, as Chandra's multilayer insulation ages, elevated temperatures have reduced the effectiveness of the on-board radiation monitor for autonomous protection. Here we investigate using the ACIS CCDs themselves as a radiation monitor. We explore the 10-year database to evaluate the CCDs' ...

  7. Degradation of artificial sweeteners via direct and indirect photochemical reactions.

    Science.gov (United States)

    Perkola, Noora; Vaalgamaa, Sanna; Jernberg, Joonas; Vähätalo, Anssi V

    2016-07-01

    We studied the direct and indirect photochemical reactivity of artificial sweeteners acesulfame, saccharin, cyclamic acid and sucralose in environm entally relevant dilute aqueous solutions. Aqueous solutions of sweeteners were irradiated with simulated solar radiation (>290 nm; 96 and 168 h) or ultraviolet radiation (UVR; up to 24 h) for assessing photochemical reactions in surface waters or in water treatment, respectively. The sweeteners were dissolved in deionised water for examination of direct photochemical reactions. Direct photochemical reactions degraded all sweeteners under UVR but only acesulfame under simulated solar radiation. Acesulfame was degraded over three orders of magnitude faster than the other sweeteners. For examining indirect photochemical reactions, the sweeteners were dissolved in surface waters with indigenous dissolved organic matter or irradiated with aqueous solutions of nitrate (1 mg N/L) and ferric iron (2.8 mg Fe/L) introduced as sensitizers. Iron enhanced the photodegradation rates but nitrate and dissolved organic matter did not. UVR transformed acesulfame into at least three products: iso-acesulfame, hydroxylated acesulfame and hydroxypropanyl sulfate. Photolytic half-life was one year for acesulfame and more than several years for the other sweeteners in surface waters under solar radiation. Our study shows that the photochemical reactivity of commonly used artificial sweeteners is variable: acesulfame may be sensitive to photodegradation in surface waters, while saccharin, cyclamic acid and sucralose degrade very slowly even under the energetic UVR commonly used in water treatment. PMID:27023816

  8. Agent communication and artificial institutions

    OpenAIRE

    Fornara, Nicoletta; Viganò, Francesco; Colombetti, Marco

    2011-01-01

    In this paper we propose an application-independent model for the definition of artificial institutions that can be used to define open multi-agent systems. Such a model of institutional reality makes us able also to define an objective and external semantics of a commitment-based Agent Communication Language (ACL). In particular we propose to regard an ACL as a set of conventions to act on a fragment of institutional reality, defined in the context of an artificial institution. Another c...

  9. Rewritable artificial magnetic charge ice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. -L.; Xiao, Z. -L.; Snezhko, A.; Xu, J.; Ocola, L. E.; Divan, R.; Pearson, J. E.; Crabtree, G. W.; Kwok, W. -K.

    2016-05-19

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.

  10. Artificial intelligence techniques in Prolog

    CERN Document Server

    Shoham, Yoav

    1993-01-01

    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  11. Artificial cells: prospects for biotechnology

    Science.gov (United States)

    Pohorille, Andrew; Deamer, David

    2002-01-01

    A variety of techniques can now be used to alter the genome of a cell. Although these techniques are very powerful, they have limitations related to cost and efficiency of scale. Artificial cells designed for specific applications combine properties of biological systems such as nanoscale efficiency, self-organization and adaptability at relatively low cost. Individual components needed for such structures have already been developed, and now the main challenge is to integrate them in functional microscopic compartments. It will then become possible to design and construct communities of artificial cells that can perform different tasks related to therapeutic and diagnostic applications.

  12. ASSESSMENT OF HOMEOWNERSHIP AND ASSET POVERTY IN THE ALABAMA BLACK BELT AND NON-BLACK BELT COUNTIES

    OpenAIRE

    Kanyi, Peter M.; Baharanyi, Ntam; Ngandu, Mudiayi Sylvain; Zabawa, Robert

    2008-01-01

    This study assessed homeownership and how it is affected by race, residency in or out of Alabama Black Belt, family status, poverty and other variables. All variables showed significant relationship to Alabama homeownership with single-parenthood showing a negative impact on White homeownership but insignificant to Black homeownership in the region.

  13. Break the Green Belt? The differences between green belt and its alternative green wedge : A comparative study of London and Stockholm

    OpenAIRE

    Kong, Luyao

    2012-01-01

    The paper sets out to compare two widely applied planning strategies--- green belt and green wedge--- to understand if as an alternative, the green wedge has more strengths than green belt. Green belt has long been the planning policy with a steady position in UK, and also accepted by other countries, Australia, Japan, Korea for example. But during recent years, this policy has been under accusation for fostering un-sustainability, housing shortage and value degradation of the green space. A ...

  14. Making Artificial Seawater More Natural

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Marine fish will die if placed in fresh water and they cannot live in simple salt water. Instead, they need water that contains a mixture of different ingredients, as found in natural seawater. Conventional methods of making artificial seawater have shortcomings, because the water so achieved is only composed of mineral elements and lacks organic components similar to those in natural seawater.

  15. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  16. Artificial Video for Video Analysis

    Science.gov (United States)

    Gallis, Michael R.

    2010-01-01

    This paper discusses the use of video analysis software and computer-generated animations for student activities. The use of artificial video affords the opportunity for students to study phenomena for which a real video may not be easy or even possible to procure, using analysis software with which the students are already familiar. We will…

  17. Artificial neural networks in medicine

    Energy Technology Data Exchange (ETDEWEB)

    Keller, P.E.

    1994-07-01

    This Technology Brief provides an overview of artificial neural networks (ANN). A definition and explanation of an ANN is given and situations in which an ANN is used are described. ANN applications to medicine specifically are then explored and the areas in which it is currently being used are discussed. Included are medical diagnostic aides, biochemical analysis, medical image analysis and drug development.

  18. Artificial-Satellite-Analysis Program

    Science.gov (United States)

    Kwok, Johnny H.

    1989-01-01

    Artificial Satellite Analysis Program (ASAP) is general orbit-predicting computer program incorporating sufficient orbit-modeling accuracy for design and planning of missions and analysis of maneuvers. Suitable for study of planetary-orbit missions with spacecraft trajectories of reconnaissance (flyby) and exploratory (mapping) nature. Not written for specific mission and intended use for almost any planetary orbiting mission. Written in FORTRAN 77.

  19. Anisotropic artificial substrates for microwave applications

    Science.gov (United States)

    Shahvarpour, Attieh

    ) with very low-beam squint, which makes it particularly appropriate for applications in wide band point-to-point communication and radar systems. The antenna is constituted of a mushroom type anisotropic magneto-dielectric artificial grounded slab with uniaxially anisotropic permittivity and permeability tensors. A spectral transmission-line model based on Green functions approach is chosen for the analysis of the structure. A rigorous comparison between the isotropic and anisotropic leaky-wave antennas is performed which reveals that as opposed to anisotropic slabs, isotropic slabs show weak performance in leaky-wave antennas. The properties of planar antennas such as low profile, low cost, compatibility with integrated circuits and their conformal nature have made them appropriate antennas for communications systems. In parallel, bandwidth and miniaturization requirements have increased the demand for millimeter-wave wireless systems, such as radar, remote sensors and highspeed local area networks. However, as frequency increases towards millimeter-wave regime, the radiation efficiency of planar antennas becomes an important issue. This is due to the increased electrical thickness of the substrate and therefore increased number of the excited surface modes which carry part of the energy of the system in the substrate without any efficient contribution to radiation. Therefore, these antennas suffer from low radiation efficiency. This has motivated the third contribution of the thesis which is the interpretation and analysis of the radiation efficiency behavior of the planar antennas on electrically thick substrates. A novel substrate dipole approach is introduced for the explanation of the efficiency behavior. This dipole models the substrate and reduces the problem of the horizontal electric source on the substrate to an equivalent dipole radiating in the free-space. In addition, in this work, some efficiency enhancement solutions at the electrical thicknesses where

  20. DEVELOPMENT OF THE TEST METHODS OF THE CONVEYOR BELTS USED IN ENVIRONMENTS ENDANGERED BY EXPLOSION HAZARDS

    Directory of Open Access Journals (Sweden)

    Florin Adrian PĂUN

    2012-05-01

    Full Text Available Conveyor belts are used for a long period of time in the industry branches where potentially explosive atmospheres could occur. Dangerous phenomena which can be in direct connection with the use of conveyor belts are the ones regarding: - sparks influence over the coating layer and/or resistance internal structure of the stopped conveyor belt; - propagation of a flame along the length of a conveyor belt that was exposed to a energy source relative high like a fire or due to blockage of a conveyor belt as a result of the driving mechanism still operating, that generate a local heating of the conveyor belt in contact with the driving drum, rollers or any other heating source generated by friction. Determining the safety parameters characteristic of the conveyor belts by employing test methods allows assessment of the safety level as well as certification of their explosion protection quality when used in environments with explosion danger.