WorldWideScience

Sample records for artificial potential field

  1. MOTION MODELLINGUSINGCONCEPTS OF FUZZY ARTIFICIAL POTENTIAL FIELDS

    Directory of Open Access Journals (Sweden)

    O. Motlagh

    2010-12-01

    Full Text Available Artificial potential fields (APF are well established for reactive navigation of mobile robots. This paper describes a fast and robust fuzzy-APF on an ActivMedia AmigoBot. Obstacle-related information is fuzzified by using sensory fusion, which results in a shorter runtime. In addition, the membership functions of obstacle direction and range have been merged into one function, obtaining a smaller block of rules. The system is tested in virtual environments with non-concave obstacles. Then, the paper describes a new approach to motion modelling where the motion of intelligent travellers is modelled by consecutive path segments. In previous work, the authors described a reliable motion modelling technique using causal inference of fuzzy cognitive maps (FCM which has been efficiently modified for the purpose of this contribution. Results and analysis are given to demonstrate the efficiency and accuracy of the proposed motion modelling algorithm.

  2. Dynamic Artificial Potential Fields for Autonomous Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Jhala, Arnav Harish

    2009-01-01

    the implementation and evaluation of Artificial Potential Fields for automatic camera placement. We first describe the re- casting of the frame composition problem as a solution to a two particles suspended in an Artificial Potential Field. We demonstrate the application of this technique to control both camera...

  3. Solution to reinforcement learning problems with artificial potential field

    Institute of Scientific and Technical Information of China (English)

    XIE Li-juan; XIE Guang-rong; CHEN Huan-wen; LI Xiao-li

    2008-01-01

    A novel method was designed to solve reinforcement learning problems with artificial potential field. Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF), which was a very appropriate method to model a reinforcement learning problem. Secondly, a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept. The performance of this new method was tested by a gridworld problem named as key and door maze. The experimental results show that within 45 trials, good and deterministic policies are found in almost all simulations. In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution, the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning. Therefore, the new method is simple and effective to give an optimal solution to the reinforcement learning problem.

  4. Predicting Individual Trip Destinations With Artificial Potential Fields.

    NARCIS (Netherlands)

    Zonta, A.; Smit, S.K.; Haasdijk, Evert

    2017-01-01

    This paper presents a method to model the intended destination of a subject in real time, based on a trace of position information and prior knowledge of possible destinations. In contrast to most work in this field, it does so without the need for prior analysis of habitual travel patterns. The

  5. AI Reloaded: Objectives, Potentials, and Challenges of the Novel Field of Brain-Like Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Rosemarie Velik

    2012-11-01

    Full Text Available The general objective of Artificial Intelligence (AI is to make machines – particularly computers – do things that require intelligence when done by humans. In the last 60 years, AI has significantly progressed and today forms an important part of industry and technology. However, despite the many successes, fundamental questions concerning the creation of human-level intelligence in machines still remain open and will probably not be answerable when continuing on the current, mainly mathematic-algorithmically-guided path of AI. With the novel discipline of
    Brain-Like Artificial Intelligence, one potential way out of this dilemma has been suggested. Brain-Like AI aims at analyzing and deciphering the working mechanisms of the brain and translating this knowledge into implementable AI architectures with the objective to develop in this way more efficient, flexible, and capable technical systems This article aims at giving a review about this young and still heterogeneous and dynamic research field.

  6. Combining Hector SLAM and Artificial Potential Field for Autonomous Navigation Inside a Greenhouse

    Directory of Open Access Journals (Sweden)

    El Houssein Chouaib Harik

    2018-05-01

    Full Text Available The key factor for autonomous navigation is efficient perception of the surroundings, while being able to move safely from an initial to a final point. We deal in this paper with a wheeled mobile robot working in a GPS-denied environment typical for a greenhouse. The Hector Simultaneous Localization and Mapping (SLAM approach is used in order to estimate the robots’ pose using a LIght Detection And Ranging (LIDAR sensor. Waypoint following and obstacle avoidance are ensured by means of a new artificial potential field (APF controller presented in this paper. The combination of the Hector SLAM and the APF controller allows the mobile robot to perform periodic tasks that require autonomous navigation between predefined waypoints. It also provides the mobile robot with a robustness to changing conditions that may occur inside the greenhouse, caused by the dynamic of plant development through the season. In this study, we show that the robot is safe to operate autonomously with a human presence, and that in contrast to classical odometry methods, no calibration is needed for repositioning the robot over repetitive runs. We include here both hardware and software descriptions, as well as simulation and experimental results.

  7. Artificial Potential Field Approach to Path Tracking for a Non-Holonomic Mobile Robot

    DEFF Research Database (Denmark)

    Sørensen, M.J.

    2003-01-01

    This paper introduces a novel path tracking controller for an over-actuated robotic vehicle moving in an agricultural field. The vehicle itself is a four wheel steered, four wheel driven vehicle subject to the two non-holonomic constraints of free rolling and non-slipping wheels. A dynamic model...

  8. Ship Domain Model for Multi-ship Collision Avoidance Decision-making with COLREGs Based on Artificial Potential Field

    Directory of Open Access Journals (Sweden)

    TengFei Wang

    2017-03-01

    Full Text Available A multi-ship collision avoidance decision-making and path planning formulation is studied in a distributed way. This paper proposes a complete set of solutions for multi-ship collision avoidance in intelligent navigation, by using a top-to-bottom organization to structure the system. The system is designed with two layers: the collision avoidance decision-making and the path planning. Under the general requirements of the International Regulations for Preventing Collisions at Sea (COLREGs, the performance of distributed path planning decision-making for anti-collision is analyzed for both give-way and stand-on ships situations, including the emergency actions taken by the stand-on ship in case of the give-way ship’s fault of collision avoidance measures. The Artificial Potential Field method(APF is used for the path planning in details. The developed APF method combined with the model of ship domain takes the target ships’ speed and course in-to account, so that it can judge the moving characteristics of obstacles more accurately. Simulation results indicate that the system proposed can work effectiveness.

  9. Folding pathways explored with artificial potential functions

    International Nuclear Information System (INIS)

    Ulutaş, B; Bozma, I; Haliloglu, T

    2009-01-01

    This paper considers the generation of trajectories to a given protein conformation and presents a novel approach based on artificial potential functions—originally proposed for multi-robot navigation. The artificial potential function corresponds to a simplified energy model, but with the novelty that—motivated by work on robotic navigation—a nonlinear compositional scheme of constructing the energy model is adapted instead of an additive formulation. The artificial potential naturally gives rise to a dynamic system for the protein structure that ensures collision-free motion to an equilibrium point. In cases where the equilibrium point is the native conformation, the motion trajectory corresponds to the folding pathway. This framework is used to investigate folding in a variety of protein structures, and the results are compared with those of other approaches including experimental studies

  10. The Potential Role of Artificial Intelligence Technology in Education.

    Science.gov (United States)

    Salem, Abdel-Badeeh M.

    The field of Artificial Intelligence (AI) and Education has traditionally a technology-based focus, looking at the ways in which AI can be used in building intelligent educational software. In addition AI can also provide an excellent methodology for learning and reasoning from the human experiences. This paper presents the potential role of AI in…

  11. The potential of artificial intelligence toys

    DEFF Research Database (Denmark)

    Dai, Zheng

    2008-01-01

    Artificial intelligence is moving to a next step of development and application areas. From electronic games to human-like robots, AI toy is a good choice for next step during this process. Technology-based design is fit to the development of AI toy. It can exert the advantages and explore more...... value for existing resources. It combines AI programs and common sensors to realize the function of intelligence input and output. Designers can use technology-based criteria to design and need to consider the possible issues in this new field. All of these aspects can be referenced from electronic game...

  12. Robotics Potential Fields

    Directory of Open Access Journals (Sweden)

    Jordi Lucero

    2009-01-01

    Full Text Available This problem was to calculate the path a robot would take to navigate an obstacle field and get to its goal. Three obstacles were given as negative potential fields which the robot avoided, and a goal was given a positive potential field that attracted the robot. The robot decided each step based on its distance, angle, and influence from every object. After each step, the robot recalculated and determined its next step until it reached its goal. The robot's calculations and steps were simulated with Microsoft Excel.

  13. Towards use of Dijkstra Algorithm for Optimal Navigation of an Unmanned Surface Vehicle in a Real-Time Marine Environment with results from Artificial Potential Field

    Directory of Open Access Journals (Sweden)

    Yogang Singh

    2018-03-01

    Full Text Available The growing need of ocean surveying and exploration for scientific and industrial application has led to the requirement of routing strategies for ocean vehicles which are optimal in nature. Most of the op-timal path planning for marine vehicles had been conducted offline in a self-made environment. This paper takes into account a practical marine environment, i.e. Portsmouth Harbour, for finding an optimal path in terms of computational time between source and end points on a real time map for an USV. The current study makes use of a grid map generated from original and uses a Dijkstra algorithm to find the shortest path for a single USV. In order to benchmark the study, a path planning study using a well-known local path planning method artificial path planning (APF has been conducted in a real time marine environment and effectiveness is measured in terms of path length and computational time.

  14. Artificial magnetic-field quenches in synthetic dimensions

    Science.gov (United States)

    Yılmaz, F.; Oktel, M. Ö.

    2018-02-01

    Recent cold atom experiments have realized models where each hyperfine state at an optical lattice site can be regarded as a separate site in a synthetic dimension. In such synthetic ribbon configurations, manipulation of the transitions between the hyperfine levels provide direct control of the hopping in the synthetic dimension. This effect was used to simulate a magnetic field through the ribbon. Precise control over the hopping matrix elements in the synthetic dimension makes it possible to change this artificial magnetic field much faster than the time scales associated with atomic motion in the lattice. In this paper, we consider such a magnetic-flux quench scenario in synthetic dimensions. Sudden changes have not been considered for real magnetic fields as such changes in a conducting system would result in large induced currents. Hence we first study the difference between a time varying real magnetic field and an artificial magnetic field using a minimal six-site model. This minimal model clearly shows the connection between gauge dependence and the lack of on-site induced scalar potential terms. We then investigate the dynamics of a wave packet in an infinite two- or three-leg ladder following a flux quench and find that the gauge choice has a dramatic effect on the packet dynamics. Specifically, a wave packet splits into a number of smaller packets moving with different velocities. Both the weights and the number of packets depend on the implemented gauge. If an initial packet, prepared under zero flux in an n -leg ladder, is quenched to Hamiltonian with a vector potential parallel to the ladder, it splits into at most n smaller wave packets. The same initial wave packet splits into up to n2 packets if the vector potential is implemented to be along the rungs. Even a trivial difference in the gauge choice such as the addition of a constant to the vector potential produces observable effects. We also calculate the packet weights for arbitrary initial and

  15. Artificial sweeteners as potential tracers of municipal landfill leachate

    International Nuclear Information System (INIS)

    Roy, James W.; Van Stempvoort, Dale R.; Bickerton, Greg

    2014-01-01

    Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources. -- Highlights: • Artificial sweeteners detected at 14 of 15 municipal landfill sites. • Concentrations comparable to wastewater even at sites closed for >50 yr. • Saccharin elevated at all sites; potentially diagnostic of landfill impacts. • Potential for age-dating recent (past 2 decades) waste with acesulfame. -- Artificial sweeteners may be useful for tracing landfill leachate contamination and distinguishing it from wastewater impacts

  16. Artificial terraced field extraction based on high resolution DEMs

    Science.gov (United States)

    Na, Jiaming; Yang, Xin; Xiong, Liyang; Tang, Guoan

    2017-04-01

    With the increase of human activities, artificial landforms become one of the main terrain features with special geographical and hydrological value. Terraced field, as the most important artificial landscapes of the loess plateau, plays an important role in conserving soil and water. With the development of digital terrain analysis (DTA), there is a current and future need in developing a robust, repeatable and cost-effective research methodology for terraced fields. In this paper, a novel method using bidirectional DEM shaded relief is proposed for terraced field identification based on high resolution DEM, taking Zhifanggou watershed, Shannxi province as the study area. Firstly, 1m DEM is obtained by low altitude aerial photogrammetry using Unmanned Aerial Vehicle (UAV), and 0.1m DOM is also obtained as the test data. Then, the positive and negative terrain segmentation is done to acquire the area of terraced field. Finally, a bidirectional DEM shaded relief is simulated to extract the ridges of each terraced field stages. The method in this paper can get not only polygon feature of the terraced field areas but also line feature of terraced field ridges. The accuracy is 89.7% compared with the artificial interpretation result from DOM. And additional experiment shows that this method has a strong robustness as well as high accuracy.

  17. Antiglycating potential of acesulfame potassium: an artificial sweetener.

    Science.gov (United States)

    Ali, Ahmad; More, Tejashree Anil; Hoonjan, Amaritpal Kaur; Sivakami, Subramanian

    2017-10-01

    Sweeteners have replaced the natural sugars in the food and beverage industry because of many reasons, such as hyperglycemia and cost. Saccharin, sucralose, aspartame and acesulfame-K are the most commonly used sweeteners. In the present study, the abovementioned artificial sweeteners were used to assess their glycating properties by established methods such as browning, fructosamine assay, determination of carbonyl content, protein aggregation, and measurement of fluorescence. Amadori and advanced glycation end products (AGEs) are formed as a result of the interaction between carbonyl groups of reducing sugars and amino groups of proteins and other macromolecules during glycation. The objective of this study was to investigate the influence of artificial sweeteners on the formation of AGEs and protein oxidation in an in vitro model of glucose-mediated protein glycation. The results indicated that the abovementioned artificial sweeteners do not enhance the process of glycation. On the other hand, acesulfame-K was found to have antiglycating potential as it caused decreased formation of Amadori products and AGEs. Further studies are essential in the characterization of Amadori products and AGEs produced as a result of interaction between sweeteners and proteins, which are interfered with by sweeteners. This study is significant in understanding the probable role of artificial sweeteners in the process of glycation and the subsequent effect on macromolecular alteration.

  18. Sweet proteins – Potential replacement for artificial low calorie sweeteners

    Directory of Open Access Journals (Sweden)

    Kant Ravi

    2005-02-01

    Full Text Available Abstract Exponential growth in the number of patients suffering from diseases caused by the consumption of sugar has become a threat to mankind's health. Artificial low calorie sweeteners available in the market may have severe side effects. It takes time to figure out the long term side effects and by the time these are established, they are replaced by a new low calorie sweetener. Saccharine has been used for centuries to sweeten foods and beverages without calories or carbohydrate. It was also used on a large scale during the sugar shortage of the two world wars but was abandoned as soon as it was linked with development of bladder cancer. Naturally occurring sweet and taste modifying proteins are being seen as potential replacements for the currently available artificial low calorie sweeteners. Interaction aspects of sweet proteins and the human sweet taste receptor are being investigated.

  19. Analysis of artificial opals by scanning near field optical microscopy

    Science.gov (United States)

    Barrio, J.; Lozano, G.; Lamela, J.; Lifante, G.; Dorado, L. A.; Depine, R. A.; Jaque, F.; Míguez, H.

    2011-04-01

    Herein we present a detailed analysis of the optical response of artificial opal films realized employing a near-field scanning optical microscope in collection and transmission modes. Near-field patterns measured at the rear surface when a plane wave impinges on the front face are presented with the finding that optical intensity maps present a clear correlation with the periodic arrangement of the outer surface. Calculations based on the vector Korringa-Kohn-Rostoker method reproduce the different profiles experimentally observed as well as the response to the polarization of the incident field. These observations constitute the first experimental confirmation of the collective lattice resonances that give rise to the optical response of these three dimensional periodic structures in the high-energy range.

  20. Linear field demagnetisation of artificial magnetic square ice

    Directory of Open Access Journals (Sweden)

    Jason Phillip Morgan

    2013-12-01

    Full Text Available We have studied experimentally the states formed in artificial square ice nanomagnet systems following demagnetisation in a rotating in-plane applied magnetic field that reduces to zero in a manner that is linear in time. The final states are found to be controlled via the system's lattice constant, which determines the strength of the magnetostatic interactions between the elements, as well as the field ramping rate. We understand these effects as a requirement that the system undergoes a sufficiently large number of active rotations within the critical field window in which elements may be reversed, such that the interactions are allowed to locally exert their influence if the ground state is to be approached. On the other hand, if quenched disorder is too strong when compared to the interaction strength, any close approach to the ground state is impossible. These results show that it is not necessary for there to be any ac component to the field amplitude that is applied to the system during demagnetisation, which is the method almost exclusively employed in field protocols reported to date. Furthermore, by optimising the parameters of our linear demagnetisation protocol, the largest field-generated ground state domains yet reported are found.

  1. Potential biocontrol agents for biofouling on artificial structures.

    Science.gov (United States)

    Atalah, Javier; Newcombe, Emma M; Hopkins, Grant A; Forrest, Barrie M

    2014-09-01

    The accumulation of biofouling on coastal structures can lead to operational impacts and may harbour problematic organisms, including non-indigenous species. Benthic predators and grazers that can supress biofouling, and which are able to be artificially enhanced, have potential value as augmentative biocontrol agents. The ability of New Zealand native invertebrates to control biofouling on marina pontoons and wharf piles was tested. Caging experiments evaluated the ability of biocontrol to mitigate established biofouling, and to prevent fouling accumulation on defouled surfaces. On pontoons, the gastropods Haliotis iris and Cookia sulcata reduced established biofouling cover by >55% and largely prevented the accumulation of new biofouling over three months. On wharf piles C. sulcata removed 65% of biofouling biomass and reduced its cover by 73%. C. sulcata also had better retention and survival rates than other agents. Augmentative biocontrol has the potential to be an effective method to mitigate biofouling on marine structures.

  2. Effective potentials for twisted fields

    International Nuclear Information System (INIS)

    Banach, R.

    1981-01-01

    Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)

  3. Potential problems with interpolating fields

    Energy Technology Data Exchange (ETDEWEB)

    Birse, Michael C. [The University of Manchester, Theoretical Physics Division, School of Physics and Astronomy, Manchester (United Kingdom)

    2017-11-15

    A potential can have features that do not reflect the dynamics of the system it describes but rather arise from the choice of interpolating fields used to define it. This is illustrated using a toy model of scattering with two coupled channels. A Bethe-Salpeter amplitude is constructed which is a mixture of the waves in the two channels. The potential derived from this has a strong repulsive core, which arises from the admixture of the closed channel in the wave function and not from the dynamics of the model. (orig.)

  4. Artificial potential functions for highway driving with collision avoidance

    OpenAIRE

    Wolf , Michael T.; Burdick, Joel W.

    2008-01-01

    We present a set of potential function components to assist an automated or semi-automated vehicle in navigating a multi-lane, populated highway. The resulting potential field is constructed as a superposition of disparate functions for lane- keeping, road-staying, speed preference, and vehicle avoidance and passing. The construction of the vehicle avoidance potential is of primary importance, incorporating the structure and protocol of laned highway driving. Particularly, the shape and dimen...

  5. Potential consequences of clinical application of artificial gametes: a systematic review of stakeholder views.

    Science.gov (United States)

    Hendriks, Saskia; Dondorp, Wybo; de Wert, Guido; Hamer, Geert; Repping, Sjoerd; Dancet, Eline A F

    2015-01-01

    recommendations could be categorized under the following eight objectives to be safeguarded during clinical application of artificial gametes: (i) timing the implementation of new treatments correctly, (ii) meeting 'plausible demands of patients', (iii) improving and safeguarding public health, (iv) promoting the progress of medical science in the interest of future patients, (v) providing treatments that are morally acceptable for the general public, (vi) controlling medical practice, (vii) offering treatments that allow acquisition of informed consent and (viii) funding treatments fairly. Professionals specialized in biomedical science, science journalists and professionals specialized in ethics all addressed these eight objectives on artificial gametes, whereas professionals specialized in law or political science addressed seven objectives. Although one study reported on the perspective of parents of under-aged patients on three objectives, the perspectives of patients themselves were not reported by the reviewed literature. Of course, clinical introduction of artificial gametes should only be considered on the basis of reassuring outcomes of appropriate preclinical effectiveness and safety studies. In addition, potential users' views on the desirability and acceptability of artificial gametes should be studied before clinical introduction. A societal debate including all stakeholders is needed to determine the relative importance of all arguments in favor of and against the introduction of artificial gametes into clinical practice. More broadly, establishing pre-implementation processes for new medical techniques is relevant for all fields of medicine. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The effective crystal field potential

    CERN Document Server

    Mulak, J

    2000-01-01

    As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...

  7. Artificial Neural Network L* from different magnetospheric field models

    Science.gov (United States)

    Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.

    2011-12-01

    The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.

  8. Bioaccessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers.

    Science.gov (United States)

    Pavilonis, Brian T; Weisel, Clifford P; Buckley, Brian; Lioy, Paul J

    2014-01-01

    To reduce maintenance costs, municipalities and schools are starting to replace natural grass fields with a new generation synthetic turf. Unlike Astro-Turf, which was first introduced in the 1960s, synthetic field turf provides more cushioning to athletes. Part of this cushioning comes from materials like crumb rubber infill, which is manufactured from recycled tires and may contain a variety of chemicals. The goal of this study was to evaluate potential exposures from playing on artificial turf fields and associated risks to trace metals, semi-volatile organic compounds (SVOCs), and polycyclic aromatic hydrocarbons (PAHs) by examining typical artificial turf fibers (n = 8), different types of infill (n = 8), and samples from actual fields (n = 7). Three artificial biofluids were prepared, which included: lung, sweat, and digestive fluids. Artificial biofluids were hypothesized to yield a more representative estimation of dose than the levels obtained from total extraction methods. PAHs were routinely below the limit of detection across all three biofluids, precluding completion of a meaningful risk assessment. No SVOCs were identified at quantifiable levels in any extracts based on a match of their mass spectrum to compounds that are regulated in soil. The metals were measurable but at concentrations for which human health risk was estimated to be low. The study demonstrated that for the products and fields we tested, exposure to infill and artificial turf was generally considered de minimus, with the possible exception of lead for some fields and materials. © 2013 Society for Risk Analysis.

  9. Bio-accessibility and Risk of Exposure to Metals and SVOCs in Artificial Turf Field Fill Materials and Fibers

    Science.gov (United States)

    Pavilonis, Brian T.; Weisel, Clifford P.; Buckley, Brian; Lioy, Paul J.

    2014-01-01

    To reduce maintenance costs, municipalities and schools are starting to replace natural grass fields with a new generation synthetic turf. Unlike Astro-Turf, which was first introduced in the 1960’s, synthetic field turf provides more cushioning to athletes. Part of this cushioning comes from materials like crumb rubber infill, which is manufactured from recycled tires and may contain a variety of chemicals. The goal of this study was to evaluate potential exposures from playing on artificial turf fields and associated risks to trace metals, semivolatile organic compounds (SVOCs), and polycyclic aromatic hydrocarbons (PAHs) by examining typical artificial turf fibers (n=8), different types of infill (n=8), and samples from actual fields (n=7). Three artificial biofluids were prepared which included: lung, sweat, and digestive fluids. Artificial biofluids were hypothesized to yield a more representative estimation of dose than the levels obtained from total extraction methods. PAHs were routinely below the limit of detection across all three biofluids precluding completion of a meaningful risk assessment. No SVOCs were identified at quantifiable levels in any extracts based on a match of their mass spectrum to compounds that are regulated in soil. The metals were measurable but at concentrations for which human health risk was estimated to be low. The study demonstrated that for the products and fields we tested, exposure to infill and artificial turf was generally considered de minimus, with the possible exception of lead for some fields and materials. PMID:23758133

  10. Field observations of artificial sand and oil agglomerates

    Science.gov (United States)

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  11. Artificial force fields for multi-agent simulations of maritime traffic and risk estimation

    NARCIS (Netherlands)

    Xiao, F.; Ligteringen, H.; Van Gulijk, C.; Ale, B.J.M.

    2012-01-01

    A probabilistic risk model is designed to estimate probabilities of collisions for shipping accidents in busy waterways. We propose a method based on multi-agent simulation that uses an artificial force field to model ship maneuvers. The artificial force field is calibrated by AIS data (Automatic

  12. SYNTHESIS OF ARTIFICIAL GRAVITATIONAL FIELDS VIRTUAL METERS FOR THE POLYCONFLICTS RESOLUTION IN THE AERONAVIGATION ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Valery Chepizhenko

    2012-09-01

    Full Text Available  In article schemes have been offered and characteristics of virtual meters of artificial force fields for the conflicts resolution in the aeronavigation environment have been investigated.

  13. THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN SOUTH AFRICAN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    A.R. Greef

    2012-01-01

    Full Text Available This paper provides an introduction to the most commonly used Knowledge Based Systems (KBS's called Rule Based Systems, presents some benefits of using these systems if the application warrants their attention and provides an over-view of current R&D as well as industrial systems already implemented. Areas of manUfacturing that could use KES's within the South African context are suggested. A research programme investigating the use of KBS's in robotics in progress at the University of Stellenbosch demonstrating a number of useful properties associated with programming Artificial Intelligence (AI techniques using logic programming, is discussed.

  14. Control Systems for Hyper-Redundant Robots Based on Artificial Potential Method

    Directory of Open Access Journals (Sweden)

    Mihaela Florescu

    2015-06-01

    Full Text Available This paper presents the control method of hyper-redundant robots based on the artificial potential approach. The principles of this method are shown and a suggestive example is offered. Then, the artificial potential method is applied to the case of a tentacle robot starting from the dynamic model of the robot. In addition, a series of results that are obtained through simulation is presented.

  15. Emerging trends in geospatial artificial intelligence (geoAI): potential applications for environmental epidemiology.

    Science.gov (United States)

    VoPham, Trang; Hart, Jaime E; Laden, Francine; Chiang, Yao-Yi

    2018-04-17

    Geospatial artificial intelligence (geoAI) is an emerging scientific discipline that combines innovations in spatial science, artificial intelligence methods in machine learning (e.g., deep learning), data mining, and high-performance computing to extract knowledge from spatial big data. In environmental epidemiology, exposure modeling is a commonly used approach to conduct exposure assessment to determine the distribution of exposures in study populations. geoAI technologies provide important advantages for exposure modeling in environmental epidemiology, including the ability to incorporate large amounts of big spatial and temporal data in a variety of formats; computational efficiency; flexibility in algorithms and workflows to accommodate relevant characteristics of spatial (environmental) processes including spatial nonstationarity; and scalability to model other environmental exposures across different geographic areas. The objectives of this commentary are to provide an overview of key concepts surrounding the evolving and interdisciplinary field of geoAI including spatial data science, machine learning, deep learning, and data mining; recent geoAI applications in research; and potential future directions for geoAI in environmental epidemiology.

  16. Fuzzy Pheromone Potential Fields for Virtual Pedestrian Simulation

    Directory of Open Access Journals (Sweden)

    Meriem Mandar

    2016-01-01

    Full Text Available The study of collective movement of pedestrians is crucial in various situations, such as evacuation of buildings, stadiums, or external events like concerts or public events. In such situations and under panic conditions, several incidents and disasters may arise, resulting in loss of human lives. Hence, the study and modeling of the pedestrians behavior are imperative in both normal and panic situations. In a previous work, we developed a microscopic model for pedestrian movement based on the algorithm of Ant Colonies and the principles of cellular automata. We took advantage of a fuzzy model to better reflect the uncertainty and vagueness of the perception of space to pedestrians, especially to represent the desirability or blurred visibility of virtual pedestrians. This paper uses the mechanism of artificial potential fields. Said fields provide virtual pedestrians with better visibility of their surroundings and its various components (goals and obstacles. The predictions provided by the first-order traffic flow theory are confirmed by the results of the simulation. The advantage of this model lies in the combination of benefits provided by the model of ants and artificial potential fields in a fuzzy modeling, to better understand the perceptions of pedestrians.

  17. Determination of Liquefaction Potential using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Farrokhzad, F; Choobbasti, A.J; Barari, Amin

    2011-01-01

    The authors propose an alternative general regression model based on neural networks, which enables analysis of summary data obtained by liquefaction analysis according to usual methods. For that purpose, the data from some thirty boreholes made during field investigations in Babol, in the Iranian...

  18. A ferrofluid based artificial tactile sensor with magnetic field control

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, T.I., E-mail: tatiana.volkova@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Böhm, V., E-mail: valter.boehm@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Naletova, V.A., E-mail: naletova@imec.msu.ru [Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Kaufhold, T., E-mail: tobias.kaufhold@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Becker, F., E-mail: felix.becker@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zeidis, I., E-mail: igor.zeidis@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany); Zimmermann, K., E-mail: klaus.zimmermann@tu-ilmenau.de [Technical Mechanics Group, Faculty of Mechanical Engineering, Technische Universität Ilmenau, Ilmenau D-98684 (Germany)

    2017-06-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  19. A ferrofluid based artificial tactile sensor with magnetic field control

    International Nuclear Information System (INIS)

    Volkova, T.I.; Böhm, V.; Naletova, V.A.; Kaufhold, T.; Becker, F.; Zeidis, I.; Zimmermann, K.

    2017-01-01

    The paper deals with a tactile sensor inspired by biological hairs of mammals. The working principle is based on the effect of the magnetic force exerted on a paramagnetic body submerged into a ferrofluid volume under the influence of a nonuniform magnetic field. The deflection of the sensor's rod caused by external mechanical stimuli may be unambiguously identified by the distortion of the magnetic field, which occurs due to the motion of the attached body in the ferrofluid. The magnetic force acting on the body is evaluated experimentally and theoretically for the nonuniform magnetic field of a permanent magnet. The controlled oscillations of the rod are realised by applying a nonuniform magnetic field of periodically altering direction. - Highlights: • A design approach of a tactile sensor inspired by special mammalian hairs is presented. • The working principle is based on magnetic properties of a ferrofluid in magnetic fields. • The magnetic force acting on a body submerged into a ferrofluid volume is evaluated. • External mechanical stimuli may be identified by the distortion of the magnetic field. • The controlled whisking-like oscillations of the sensor's rod are realised experimentally.

  20. Artificial intelligence applications in the nuclear field: Achievements and prospects: The new challenge

    International Nuclear Information System (INIS)

    Thomas, J.B.

    1993-01-01

    The first applications of Artificial Intelligence in the nuclear field were expert systems dedicated to off-line problems of diagnosis and maintenance. A second step aimed at solving more ambitious problems related to plant design and operation, which improved methodologies and tools. By the end of this period, new limits appeared. To solve the problems faced in the late eighties, powerful principles and methods became available. These require extensive sources. The present book describes examples of large-scale applications of Artificial Intelligence in the nuclear field

  1. Electroactive Polymers as Artificial Muscles: Capabilities, Potentials and Challenges

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2000-01-01

    The low density and the relative ease of shaping made polymers highly attractive materials and they are increasingly being chosen for aerospace applications. Polymer matrix composite materials significantly impacted the construction of high performance aircraft components and structures. In recent years, the resilience characteristics of polymers made them attractive to the emerging field of inflatable structures. Balloons were used to cushion the deployment of the Mars Pathfinder lander on July 4, 1997, paving the way for the recent large number of related initiatives. Inflatable structures are now being used to construct a rover, aerial vehicles, telescopes, radar antennas, and others. Some of these applications have reached space flight experiments, whereas others are now at advanced stages of development.

  2. Artificially injected charged particles as a tool for the measurement of the electric field in the magnetosphere

    International Nuclear Information System (INIS)

    Pirre, M.

    1982-01-01

    Two methods of measuring the parallel electric field in the magnetosphere using artificially injected charged particles are discussed. One method uses electrons to measure the parallel electric field in the vicinity of the spacecraft. It is shown that a very good accuracy can be achieved for such a measurement. The principle of this method is briefly reviewed, the minimum theoretical value measurable by the method is shown, and the limitations on it due to the spacecraft environment are discussed. Most important among the latter is the high level of turbulence about the spacecraft. The second method uses ions to measure the electric potential along the magnetic field lines if the associated parallel electric field is directed downward. For such a field at a lower altitude, Li ions are used to maximize the returning fluxes and to increase the probability of detection. Rockets are more suitable than satellites to make such measurements. 17 references

  3. A qualitative vision of artificial turf football fields: Elite players and ...

    African Journals Online (AJOL)

    This study identified the most important parameters for the design and safety of artificial turf football fields according to professional footballers and coaches. Two semi-structured interviews were conducted. The sample consisted of 32 professional players and 25 professional coaches. The players and coaches emphasised ...

  4. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  5. Ion Permeability of Artificial Membranes Evaluated by Diffusion Potential and Electrical Resistance Measurements

    Science.gov (United States)

    Shlyonsky, Vadim

    2013-01-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and "n"-decane. The electrical resistance and potential…

  6. Problems of Terminology in the Field of Measuring Instruments with Elements of Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Roald TAYMANOV

    2009-03-01

    Full Text Available The paper examines some problems that concern terminology in the field of measuring instruments which include sensors and elements of artificial intelligence. At present, a "common language" in this area does not exist. It is shown that application of an evolutionary method helps to systematize the concepts and creates a basis facilitating understanding of the relations between terms. Proposals on terms and their definitions in the field considered are given.

  7. Self-constrained inversion of potential fields

    Science.gov (United States)

    Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F.

    2013-11-01

    We present a potential-field-constrained inversion procedure based on a priori information derived exclusively from the analysis of the gravity and magnetic data (self-constrained inversion). The procedure is designed to be applied to underdetermined problems and involves scenarios where the source distribution can be assumed to be of simple character. To set up effective constraints, we first estimate through the analysis of the gravity or magnetic field some or all of the following source parameters: the source depth-to-the-top, the structural index, the horizontal position of the source body edges and their dip. The second step is incorporating the information related to these constraints in the objective function as depth and spatial weighting functions. We show, through 2-D and 3-D synthetic and real data examples, that potential field-based constraints, for example, structural index, source boundaries and others, are usually enough to obtain substantial improvement in the density and magnetization models.

  8. PREDICTIVE POTENTIAL FIELD-BASED COLLISION AVOIDANCE FOR MULTICOPTERS

    Directory of Open Access Journals (Sweden)

    M. Nieuwenhuisen

    2013-08-01

    Full Text Available Reliable obstacle avoidance is a key to navigating with UAVs in the close vicinity of static and dynamic obstacles. Wheel-based mobile robots are often equipped with 2D or 3D laser range finders that cover the 2D workspace sufficiently accurate and at a high rate. Micro UAV platforms operate in a 3D environment, but the restricted payload prohibits the use of fast state-of-the-art 3D sensors. Thus, perception of small obstacles is often only possible in the vicinity of the UAV and a fast collision avoidance system is necessary. We propose a reactive collision avoidance system based on artificial potential fields, that takes the special dynamics of UAVs into account by predicting the influence of obstacles on the estimated trajectory in the near future using a learned motion model. Experimental evaluation shows that the prediction leads to smoother trajectories and allows to navigate collision-free through passageways.

  9. Comparison of the incidence, nature and cause of injuries sustained on dirt field and artificial turf field by amateur football players

    Directory of Open Access Journals (Sweden)

    Kordi Ramin

    2011-02-01

    Full Text Available Abstract Background Data on the incidence, nature, severity and cause of match football injuries sustained on dirt field are scarce. The objectives of this study was to compare the incidence, nature, severity and cause of match injuries sustained on dirt field and artificial turf field by amateur male football players. Methods A prospective two-cohort design was employed. Participants were 252 male football players (mean age 27 years, range 18-43 in 14 teams who participated in a local championship carried on a dirt field and 216 male football players (mean age 28 years, range 17-40 in 12 teams who participated in a local championship carried on a artificial turf field in the same zone of the city. Injury definitions and recording procedures were compliant with the international consensus statement for epidemiological studies of injuries in football. Results The overall incidence of match injuries for men was 36.9 injuries/1000 player hours on dirt field and 19.5 on artificial turf (incidence rate ratio 1.88; 95% CI 1.19-3.05. Most common injured part on dirt field was ankle (26.7% and on artificial turf was knee (24.3%. The most common injury type in the dirt field was skin injuries (abrasion and laceration and in the artificial turf was sprain and ligament injury followed by haematoma/contusion/bruise. Most injuries were acute (artificial turf 89%, dirt field 91% and resulted from player-to-player contact (artificial turf 59.2%, dirt field 51.4%. Most injuries were slight and minimal in dirt field cohort but in artificial turf cohort the most injuries were mild. Conclusions There were differences in the incidence and type of football match injuries sustained on dirt field and artificial turf.

  10. Comparison of the incidence, nature and cause of injuries sustained on dirt field and artificial turf field by amateur football players.

    Science.gov (United States)

    Kordi, Ramin; Hemmati, Farajollah; Heidarian, Hamid; Ziaee, Vahid

    2011-02-09

    Data on the incidence, nature, severity and cause of match football injuries sustained on dirt field are scarce. The objectives of this study was to compare the incidence, nature, severity and cause of match injuries sustained on dirt field and artificial turf field by amateur male football players. A prospective two-cohort design was employed. Participants were 252 male football players (mean age 27 years, range 18-43) in 14 teams who participated in a local championship carried on a dirt field and 216 male football players (mean age 28 years, range 17-40) in 12 teams who participated in a local championship carried on a artificial turf field in the same zone of the city. Injury definitions and recording procedures were compliant with the international consensus statement for epidemiological studies of injuries in football. The overall incidence of match injuries for men was 36.9 injuries/1000 player hours on dirt field and 19.5 on artificial turf (incidence rate ratio 1.88; 95% CI 1.19-3.05).Most common injured part on dirt field was ankle (26.7%) and on artificial turf was knee (24.3%). The most common injury type in the dirt field was skin injuries (abrasion and laceration) and in the artificial turf was sprain and ligament injury followed by haematoma/contusion/bruise.Most injuries were acute (artificial turf 89%, dirt field 91%) and resulted from player-to-player contact (artificial turf 59.2%, dirt field 51.4%).Most injuries were slight and minimal in dirt field cohort but in artificial turf cohort the most injuries were mild. There were differences in the incidence and type of football match injuries sustained on dirt field and artificial turf.

  11. Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.

    Science.gov (United States)

    Sniecinski, Irena; Seghatchian, Jerard

    2018-05-09

    Artificial Intelligence (AI) reflects the intelligence exhibited by machines and software. It is a highly desirable academic field of many current fields of studies. Leading AI researchers describe the field as "the study and design of intelligent agents". McCarthy invented this term in 1955 and defined it as "the science and engineering of making intelligent machines". The central goals of AI research are reasoning, knowledge, planning, learning, natural language processing (communication), perception and the ability to move and manipulate objects. In fact the multidisplinary AI field is considered to be rather interdisciplinary covering numerous number of sciences and professions, including computer science, psychology, linguistics, philosophy and neurosciences. The field was founded on the claim that a central intellectual property of humans, intelligence-the sapience of Homo Sapiens "can be so precisely described that a machine can be made to simulate it". This raises philosophical issues about the nature of the mind and the ethics of creating artificial beings endowed with human-like intelligence. Artificial Intelligence has been the subject of tremendous optimism but has also suffered stunning setbacks. The goal of this narrative is to review the potential use of AI approaches and their integration into pediatric cellular therapies and regenerative medicine. Emphasis is placed on recognition and application of AI techniques in the development of predictive models for personalized treatments with engineered stem cells, immune cells and regenerated tissues in adults and children. These intelligent machines could dissect the whole genome and isolate the immune particularities of individual patient's disease in a matter of minutes and create the treatment that is customized to patient's genetic specificity and immune system capability. AI techniques could be used for optimization of clinical trials of innovative stem cell and gene therapies in pediatric patients

  12. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential.

    Science.gov (United States)

    Das, Nilakash; Topalovic, Marko; Janssens, Wim

    2018-03-01

    The application of artificial intelligence in the diagnosis of obstructive lung diseases is an exciting phenomenon. Artificial intelligence algorithms work by finding patterns in data obtained from diagnostic tests, which can be used to predict clinical outcomes or to detect obstructive phenotypes. The purpose of this review is to describe the latest trends and to discuss the future potential of artificial intelligence in the diagnosis of obstructive lung diseases. Machine learning has been successfully used in automated interpretation of pulmonary function tests for differential diagnosis of obstructive lung diseases. Deep learning models such as convolutional neural network are state-of-the art for obstructive pattern recognition in computed tomography. Machine learning has also been applied in other diagnostic approaches such as forced oscillation test, breath analysis, lung sound analysis and telemedicine with promising results in small-scale studies. Overall, the application of artificial intelligence has produced encouraging results in the diagnosis of obstructive lung diseases. However, large-scale studies are still required to validate current findings and to boost its adoption by the medical community.

  13. Design and analysis of a field modulated magnetic screw for artificial heart

    Science.gov (United States)

    Ling, Zhijian; Ji, Jinghua; Wang, Fangqun; Bian, Fangfang

    2017-05-01

    This paper proposes a new electromechanical energy conversion system, called Field Modulated Magnetic Screw (FMMS) as a high force density linear actuator for artificial heart. This device is based on the concept of magnetic screw and linear magnetic gear. The proposed FMMS consists of three parts with the outer and inner carrying the radially magnetized helically permanent-magnet (PM), and the intermediate having a set of helically ferromagnetic pole pieces, which modulate the magnetic fields produced by the PMs. The configuration of the newly designed FMMS is presented and its electromagnetic performances are analyzed by using the finite-element analysis, verifying the advantages of the proposed structure.

  14. Scalar field cosmologies with inverted potentials

    Energy Technology Data Exchange (ETDEWEB)

    Boisseau, B.; Giacomini, H. [Université de Tours, Laboratoire de Mathématiques et Physique Théorique, CNRS/UMR 7350, 37200 Tours (France); Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr [Université Montpellier and CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France)

    2015-10-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.

  15. Scalar field cosmologies with inverted potentials

    International Nuclear Information System (INIS)

    Boisseau, B.; Giacomini, H.; Polarski, D.

    2015-01-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF

  16. The artificially injected charged particles as a tool for the measurement of the electric field in the magnetosphere

    International Nuclear Information System (INIS)

    Pirre, M.

    1982-01-01

    This chapter discusses two methods of measuring the parallel electric field using artificially injected charged particles. The first method uses electrons to measure the parallel electric field in the vicinity of the spacecraft. The second method uses ions to measure electric potential along the magnetic field lines if the associated parallel electric field is directed downward. The use of electrons for the measurement has many limitations due to the disturbed regions surrounding the spacecraft and to the high level of turbulence which could significantly reduce accuracy. Even if the parallel electric fields are too low to be measured owing to the broadening of the fluxes by turbulence, the electrons can still be used to study the turbulence. It is demonstrated that if parallel electric fields are predominantly directed upward at high altitude, a downward parallel electric field can exist at lower altitude. Lithium ions can be used to maximize the returning fluxes and to increase the probability of detection. Rockets are shown to be more suitable than satellites with regard to measurement

  17. Decoupling Action Potential Bias from Cortical Local Field Potentials

    Directory of Open Access Journals (Sweden)

    Stephen V. David

    2010-01-01

    Full Text Available Neurophysiologists have recently become interested in studying neuronal population activity through local field potential (LFP recordings during experiments that also record the activity of single neurons. This experimental approach differs from early LFP studies because it uses high impendence electrodes that can also isolate single neuron activity. A possible complication for such studies is that the synaptic potentials and action potentials of the small subset of isolated neurons may contribute disproportionately to the LFP signal, biasing activity in the larger nearby neuronal population to appear synchronous and cotuned with these neurons. To address this problem, we used linear filtering techniques to remove features correlated with spike events from LFP recordings. This filtering procedure can be applied for well-isolated single units or multiunit activity. We illustrate the effects of this correction in simulation and on spike data recorded from primary auditory cortex. We find that local spiking activity can explain a significant portion of LFP power at most recording sites and demonstrate that removing the spike-correlated component can affect measurements of auditory tuning of the LFP.

  18. Calibration and Validation of the Precision Nitrogen Management Tool for Artificially Drained Fields Under Maize

    Science.gov (United States)

    Marjerison, R.; Hutson, J.; Melkonian, J.; van Es, H.; Sela, S.

    2015-12-01

    Organic and inorganic fertilizer additions to agricultural fields can lead to soil nitrogen (N) levels in excess of those required for optimal crop growth. The primary loss pathways for this excess N are leaching and denitrification. Nitrate leaching from agricultural sources contributes to the formation of hypoxic zones in critical estuarine systems including the Chesapeake Bay and Gulf of Mexico. Denitrification can lead to the production of nitrous oxide (N2O), a potent greenhouse gas. Agricultural practices such as controlling the timing and location of fertilizer application can help reduce these losses. The Precision Nitrogen Management (PNM) model was developed to simulate water transport, nitrogen transformations and transport, and crop growth and nutrient uptake from agricultural fields. The PNM model allows for the prediction of N losses under a variety of crop and management scenarios. Recent improvements to the model include the option to simulate artificially drained fields. The model performs well in simulating drainage and nitrate leaching when compared to measured data from field studies in artificially drained soils in New York and Minnesota. A simulated N budget was compared to available data. The improved model will be used to assess different management options for reducing N losses in maize production under different climate projections for key maize production locations/systems in the U.S.

  19. Green's functions potential fields on surfaces

    CERN Document Server

    Melnikov, Yuri A

    2017-01-01

    This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.

  20. Comparison of Artificial Neural Networks and GIS Based Solar Analysis for Solar Potential Estimation

    Science.gov (United States)

    Konakoǧlu, Berkant; Usta, Ziya; Cömert, Çetin; Gökalp, Ertan

    2016-04-01

    Nowadays, estimation of solar potential plays an important role in planning process for sustainable cities. The use of solar panels, which produces electricity directly from the sun, has become popular in accordance with developing technologies. Since the use of solar panels enables the users to decrease costs and increase yields, the use of solar panels will be more popular in the future. Production of electricity is not convenient for all circumstances. Shading effects, massive clouds and rainy weather are some factors that directly affect the production of electricity from solar energy. Hence, before the installation of solar panels, it is crucial to conduct spatial analysis and estimate the solar potential of the place that the solar panel will be installed. There are several approaches to determine the solar potential. Examination of the applications in the literature reveals that the applications conducted for determining the solar potential are divided into two main categories. Solar potential is estimated either by using artificial neural network approach in which statistical parameters such as the duration of sun shine, number of clear days, solar radiation etc. are used, or by spatial analysis conducted in GIS approaches in which spatial parameters such as, latitude, longitude, slope, aspect etc. are used. In the literature, there are several studies that use both approaches but the literature lacks of a study related to the comparison of these approaches. In this study, Karadeniz Technical University campus has been selected as study area. Monthly average values of the number of clear sky days, air temperature, atmospheric pressure, relative humidity, sunshine duration and solar radiation parameters obtained for the years between 2005 and 2015 will be used to perform artificial neural network analysis to estimate the solar potential of the study area. The solar potential will also be estimated by using GIS-based solar analysis modules. The results of

  1. Feasibility of artificial geomagnetic field generation by a superconducting ring network

    International Nuclear Information System (INIS)

    Motojima, Osamu; Yanagi, Nagato

    2008-05-01

    The geomagnetic field shields the Earth from a large proportion of incoming radiation, and has thus played a key role in sustaining life on Earth. Paleomagnetic measurements have shown that the geomagnetic field undergoes many reversals of polarity. Continuous observations of the field intensity have revealed a weakening of approximately 10% over the last 150 years. If we assume that this trend indicates the onset of polarity reversal, the geomagnetic field, particularly the dipole component, may weaken sufficiently over the next thousand years to expose the atmosphere and nearby space to significantly increased levels of cosmic and solar radiation. This may have a serious impact on vital infrastructure such as satellites, air traffic, and electricity networks, as well as on global climate changes, indicating that measures should better be taken in an attempt to support the limited protection provided by the remaining higher-order multipole fields and atmosphere. Here we show that a series of planet-encircling superconducting rings can provide an artificial geomagnetic field equivalent to 10% of the present-day field necessary to prevent adverse effects. A feasible system consists of 12 latitudinal high-temperature superconducting rings, each carrying 6.4 MA current with a modest 1 GW of power requirement. (author)

  2. Local Field Potentials: Myths and Misunderstandings

    Directory of Open Access Journals (Sweden)

    Oscar Herreras

    2016-12-01

    Full Text Available The intracerebral local field potential (LFP is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century’s worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. As such, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source’s activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so.

  3. Effective field theory approaches for tensor potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Maximilian

    2016-11-14

    Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev

  4. Solar Energy Potential Estimation in Perak Using Clearness Index and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Assadi Morteza Khalaji

    2014-07-01

    Full Text Available In this paper solar energy potential has been estimated by two methods which are clearness index and artificial network (ANN methods. The selected region is Seri Iskandar, Perak (4°24´latitude, 100°58´E longitude, 24 m altitude. Experimental data (monthly average daily radiation on horizontal surface was obtained from UTP solar research site in UTP campus. The data include the period of 2010 to 2012 and were used for testing the artificial neural network model and also for determination of clearness index. Also the experimental data of the three meteorological, Ipoh, Bayan Lepas & KLIA were used in calculating the clearness index and for training the neural network. Result shows that clearness index for Seri Iskandar is 0.52, the highest radiation is on February (20.45 MJ/m2/day, annual average is 18.25 MJ/m2/day and clearness index is more accurate than ANN when there is limited data supply. In general, Perak states show strong potential for solar energy application.

  5. Application of artificial intelligence to characterize naturally fractured zones in Hassi Messaoud Oil Field, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    El Ouahed, Abdelkader Kouider; Mazouzi, Amine [Sonatrach, Rue Djenane Malik, Hydra, Algiers (Algeria); Tiab, Djebbar [Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, 100 East Boyd Street, SEC T310, Norman, OK, 73019 (United States)

    2005-12-15

    In highly heterogeneous reservoirs classical characterization methods often fail to detect the location and orientation of the fractures. Recent applications of Artificial Intelligence to the area of reservoir characterization have made this challenge a possible practice. Such a practice consists of seeking the complex relationship between the fracture index and some geological and geomechanical drivers (facies, porosity, permeability, bed thickness, proximity to faults, slopes and curvatures of the structure) in order to obtain a fracture intensity map using Fuzzy Logic and Neural Network. This paper shows the successful application of Artificial Intelligence tools such as Artificial Neural Network and Fuzzy Logic to characterize naturally fractured reservoirs. A 2D fracture intensity map and fracture network map in a large block of Hassi Messaoud field have been developed using Artificial Neural Network and Fuzzy Logic. This was achieved by first building the geological model of the permeability, porosity and shale volume using stochastic conditional simulation. Then by applying some geomechanical concepts first and second structure directional derivatives, distance to the nearest fault, and bed thickness were calculated throughout the entire area of interest. Two methods were then used to select the appropriate fracture intensity index. In the first method well performance was used as a fracture index. In the second method a Fuzzy Inference System (FIS) was built. Using this FIS, static and dynamic data were coupled to reduce the uncertainty, which resulted in a more reliable Fracture Index. The different geological and geomechanical drivers were ranked with the corresponding fracture index for both methods using a Fuzzy Ranking algorithm. Only important and measurable data were selected to be mapped with the appropriate fracture index using a feed forward Back Propagation Neural Network (BPNN). The neural network was then used to obtain a fracture intensity

  6. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    International Nuclear Information System (INIS)

    Nakagawa, Hidenori; Ohuchi, Mikio

    2017-01-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo. - Highlights: • The principal aim of this research is to contribute to the utilization of the twisted fields for the most effective blood-flow in vivo. • Two newly designed coil systems were used for producing a desirably twisted magnetic field under the measuring domain in the flow channel. • Further, we investigated the magnetohydrodynamic efficiencies of a prototype of a magnetic device, which was converted from use as a commercial alternating magnetic therapy apparatus. • The system was well-constructed with a successful application of a plural exposure coil; therefore, we were able to detect a maximum of induced electromotive force in a fluid of an artificial solution as a substitute for blood. • This new finding demonstrates that the process of blood massotherapy by magnetic stimuli is a therapy for many diseases.

  7. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Hidenori, E-mail: hnakagawa-tdt@umin.ac.jp; Ohuchi, Mikio

    2017-06-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo. - Highlights: • The principal aim of this research is to contribute to the utilization of the twisted fields for the most effective blood-flow in vivo. • Two newly designed coil systems were used for producing a desirably twisted magnetic field under the measuring domain in the flow channel. • Further, we investigated the magnetohydrodynamic efficiencies of a prototype of a magnetic device, which was converted from use as a commercial alternating magnetic therapy apparatus. • The system was well-constructed with a successful application of a plural exposure coil; therefore, we were able to detect a maximum of induced electromotive force in a fluid of an artificial solution as a substitute for blood. • This new finding demonstrates that the process of blood massotherapy by magnetic stimuli is a therapy for many diseases.

  8. Enhanced intrinsic voltage gain in artificially stacked bilayer CVD graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Himadri; Kataria, Satender [RWTH Aachen University, Chair for Electronic Devices, Aachen (Germany); University of Siegen, School of Science and Technology, Siegen (Germany); Aguirre-Morales, Jorge-Daniel; Fregonese, Sebastien; Zimmer, Thomas [IMS Laboratory, Centre National de la Recherche Scientifique, University of Bordeaux, Talence (France); Passi, Vikram [University of Siegen, School of Science and Technology, Siegen (Germany); AMO GmbH, Advanced Microelectronics Center Aachen (Germany); Iannazzo, Mario; Alarcon, Eduard [Technical University of Catalonia, Department of Electronics Engineering, UPC, Barcelona (Spain); Lemme, Max C. [RWTH Aachen University, Chair for Electronic Devices, Aachen (Germany); University of Siegen, School of Science and Technology, Siegen (Germany); AMO GmbH, Advanced Microelectronics Center Aachen (Germany)

    2017-11-15

    We report on electronic transport in dual-gate, artificially stacked bilayer graphene field effect transistors (BiGFETs) fabricated from large-area chemical vapor deposited (CVD) graphene. The devices show enhanced tendency to current saturation, which leads to reduced minimum output conductance values. This results in improved intrinsic voltage gain of the devices when compared to monolayer graphene FETs. We employ a physics based compact model originally developed for Bernal stacked bilayer graphene FETs (BSBGFETs) to explore the observed phenomenon. The improvement in current saturation may be attributed to increased charge carrier density in the channel and thus reduced saturation velocity due to carrier-carrier scattering. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Ion permeability of artificial membranes evaluated by diffusion potential and electrical resistance measurements.

    Science.gov (United States)

    Shlyonsky, Vadim

    2013-12-01

    In the present article, a novel model of artificial membranes that provides efficient assistance in teaching the origins of diffusion potentials is proposed. These membranes are made of polycarbonate filters fixed to 12-mm plastic rings and then saturated with a mixture of creosol and n-decane. The electrical resistance and potential difference across these membranes can be easily measured using a low-cost volt-ohm meter and home-made Ag/AgCl electrodes. The advantage of the model is the lack of ionic selectivity of the membrane, which can be modified by the introduction of different ionophores to the organic liquid mixture. A membrane treated with the mixture containing valinomycin generates voltages from -53 to -25 mV in the presence of a 10-fold KCl gradient (in to out) and from -79 to -53 mV in the presence of a bi-ionic KCl/NaCl gradient (in to out). This latter bi-ionic gradient potential reverses to a value from +9 to +20 mV when monensin is present in the organic liquid mixture. Thus, the model can be build stepwise, i.e., all factors leading to the development of diffusion potentials can be introduced sequentially, helping students to understand the quantitative relationships of ionic gradients and differential membrane permeability in the generation of cell electrical signals.

  10. EEG potentials associated with artificial grammar learning in the primate brain.

    Science.gov (United States)

    Attaheri, Adam; Kikuchi, Yukiko; Milne, Alice E; Wilson, Benjamin; Alter, Kai; Petkov, Christopher I

    2015-09-01

    Electroencephalography (EEG) has identified human brain potentials elicited by Artificial Grammar (AG) learning paradigms, which present participants with rule-based sequences of stimuli. Nonhuman animals are sensitive to certain AGs; therefore, evaluating which EEG Event Related Potentials (ERPs) are associated with AG learning in nonhuman animals could identify evolutionarily conserved processes. We recorded EEG potentials during an auditory AG learning experiment in two Rhesus macaques. The animals were first exposed to sequences of nonsense words generated by the AG. Then surface-based ERPs were recorded in response to sequences that were 'consistent' with the AG and 'violation' sequences containing illegal transitions. The AG violations strongly modulated an early component, potentially homologous to the Mismatch Negativity (mMMN), a P200 and a late frontal positivity (P500). The macaque P500 is similar in polarity and time of occurrence to a late EEG positivity reported in human AG learning studies but might differ in functional role. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Fortescue field, Gippsland basin: Flank potential realized

    Energy Technology Data Exchange (ETDEWEB)

    Hendrich, J.H.; Schwebel, D.A.; Palmer, I.D. (Esso Asustralia Ltd., Sydney, New South Wales (Australia))

    1990-09-01

    Fortescue field was the last major oil field to be discovered in the offshore Gippsland basin, southeastern Australia. The discovery well, 1 West Halibut, was drilled in 1978 on the basis of a 1-km seismic grid as a follow up to the dry 1 Fortescue wildcat. Data from this well were interpreted to indicate that there was a high probability of a stratigraphic trap occurring on the western flank of the giant Halibut-Cobia structure. The 2, 3, and 4 Fortescue wells were drilled by early 1979 to determine the limits of the field, delineate the stratigraphy, and define the hydrocarbon contacts. Cobia A had the dual purpose of developing the Cobia field and the southern extent of the Fortescue reservoirs that were inaccessible to the Fortescue A plat-form. At the conclusion of development drilling in early 1986, eight Cobia A wells and 20 Fortescue A wells were capable of producing from Fortescue reservoirs. The Fortescue reservoirs are Eocene sandstones that were deposited in coastal plain, upper shoreface, and lower shoreface environments. Integration of well log correlations, stratigraphic interpretations, reservoir pressure data, and seismic data indicates that these Fortescue reservoirs are stratigraphically younger than, and are hydraulically separated from, the underlying Halibut-Cobia fields. Pressure data acquired during development drilling and while monitoring subsequent production performance have conclusively demonstrated that there are at least three separate hydraulic systems active within the Fortescue field. Fortescue field dimensions are approximately 11 km x 4 km with a maximum relief of 100 m above the original oil-water contact. Reserves are estimated at 280,000 STB, based on original oil in place estimates of 415,000 STB and recovery factors in the 65-70% range. Production rate peaked in 1984 at 100 K BOPD from the combined development facilities and was sustained until late 1986. More than two-thirds of the reserves have been produced to date.

  12. Effective potentials in gauge field theories

    International Nuclear Information System (INIS)

    Caldas, P.S.S.; Fleming, H.; Garcia, R.L.

    An elementary and very efficient method for computing the effective potential of any theory containing scalar bosons is described. Examples include massless scalar electrodynamics and Yang-Mills theories [pt

  13. The relationship between diver experience levels and perceptions of attractiveness of artificial reefs - examination of a potential management tool.

    Directory of Open Access Journals (Sweden)

    Anne E Kirkbride-Smith

    Full Text Available Artificial reefs are increasingly used worldwide as a method for managing recreational diving since they have the potential to satisfy both conservation goals and economic interests. In order to help maximize their utility, further information is needed to drive the design of stimulating resources for scuba divers. We used a questionnaire survey to explore divers' perceptions of artificial reefs in Barbados. In addition, we examined reef resource substitution behaviour among scuba divers. Divers expressed a clear preference for large shipwrecks or sunken vessels that provided a themed diving experience. Motives for diving on artificial reefs were varied, but were dominated by the chance of viewing concentrated marine life, increased photographic opportunities, and the guarantee of a 'good dive'. Satisfaction with artificial reef diving was high amongst novices and declined with increasing experience. Experienced divers had an overwhelming preference for natural reefs. As a management strategy, our results emphasize the capacity of well designed artificial reefs to contribute towards the management of coral reef diving sites and highlight a number of important areas for future research. Suggested work should validate the present findings in different marine tourism settings and ascertain support of artificial reefs in relationship to level of diver specialization.

  14. Artificial Immune Systems as a Modern Tool for Solving Multi-Purpose Optimization Tasks in the Field of Logistics

    Directory of Open Access Journals (Sweden)

    Skitsko Volodymyr I.

    2017-03-01

    Full Text Available The article investigates various aspects of the functioning of artificial immune systems and their using to solve different tasks. The analysis of the studied literature showed that nowadays there exist combinations of artificial immune systems, in particular with genetic algorithms, the particle swarm optimization method, artificial neural networks, etc., to solve different tasks. However, the solving of economic tasks is paid little attention. The article presents the basic terminology of artificial immune systems; the steps of the clonal selection algorithm are described, as well as a brief description of the negative selection algorithm, the immune network algorithm and the dendritic algorithm is given; conceptual aspects of the use of an artificial immune system for solving multi-purpose optimization problems are formulated, and an example of solving a problem in the field of logistics is described. Artificial immune systems as a means of solving various weakly structured, multi-criteria and multi-purpose economic tasks, in particular in the sphere of logistics, are a promising tool that requires further research. Therefore, it is advisable in the future to focus on the use of various existing immune algorithms for solving various economic problems.

  15. Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap

    Science.gov (United States)

    Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.

    2015-05-01

    The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.

  16. Radar observations of artificial E-region field-aligned irregularities

    Directory of Open Access Journals (Sweden)

    E. Nossa

    2009-07-01

    Full Text Available Artificial E region field aligned plasma density irregularities (FAIs were generated using HAARP in four different experimental modes and observed with a coherent scatter radar imager located 450 km to the southwest where it could detect field-aligned backscatter. The experiments were conducted in July of 2008, during the Polar Aeronomy and Radio Science Summer School (PARS, during quiet conditions in the daytime when the E layer was dense and absorption was modest. The echoes observed during zenith and magnetic zenith heating experiments were deflected from their nominally anticipated horizontal positions toward the midpoint position. The occurrence of hysteresis when heating with amplitude modulated pulses implied the development of the resonance instability, although the threshold for the onset of instability appeared to be higher than what has been predicted theoretically. Heating experiments involving pump frequencies slightly above and below the second electron gyroharmonic frequency produced no significant differences in the observed echoes. Finally, heating with a pump frequency slightly above the E region critical frequency appears to have produced FAIs at two distinct altitudes where the upper-hybrid resonance condition could be satisfied.

  17. Modelling of solar energy potential in Nigeria using an artificial neural network model

    International Nuclear Information System (INIS)

    Fadare, D.A.

    2009-01-01

    In this study, an artificial neural network (ANN) based model for prediction of solar energy potential in Nigeria (lat. 4-14 o N, log. 2-15 o E) was developed. Standard multilayered, feed-forward, back-propagation neural networks with different architecture were designed using neural toolbox for MATLAB. Geographical and meteorological data of 195 cities in Nigeria for period of 10 years (1983-1993) from the NASA geo-satellite database were used for the training and testing the network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, mean temperature, and relative humidity) were used as inputs to the network, while the solar radiation intensity was used as the output of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation intensities for training and testing datasets were higher than 90%, thus suggesting a high reliability of the model for evaluation of solar radiation in locations where solar radiation data are not available. The predicted solar radiation values from the model were given in form of monthly maps. The monthly mean solar radiation potential in northern and southern regions ranged from 7.01-5.62 to 5.43-3.54 kW h/m 2 day, respectively. A graphical user interface (GUI) was developed for the application of the model. The model can be used easily for estimation of solar radiation for preliminary design of solar applications.

  18. Potential Habitat Modelling of Ferula ovina Using Artificial Neural Network in Fereydunshahr Region, Isfahan Province

    Directory of Open Access Journals (Sweden)

    Z. Rahmati

    2015-06-01

    Full Text Available Species distribution maps have been widely developed based on ecological niche theory together with statistical and geographical information system in plant ecology. The current study aimed to evaluate Artificial Neural Network (ANN in mapping potential habitat of Ferula ovina Boiss in Ferydunshar rangelands, Isfahan. This is known as valuable forage and medicinal species. Environmental data (independent variables and species occurrence data (dependent variable were required to determine potential habitat of a given species. Some physical and chemical soil properties, climate and physiographic variables were mapped for the entire studied area using krigging and inverse distance weighting methods. F. ovina occurrence data were collected from 278 sites including 137 presence and 141 absence sites. The relationships between the studied environmental variables and F. ovina occurrence data were explored using ANN method. According to the sensitivity analysis, occurrence of F. ovina mostly correlated with silt and sand percentage, elevation slope, and organic matter. Model evaluation based on Kappa coefficient (0.66 and Receiver operating characteristic (ROC=0.9 showed good model fitness in relation to reality on local scales. The ANN technique enables managers to identify appropriate areas for rehabilitation practices such as direct seeding and planting.                       

  19. A comparative study between nonlinear regression and artificial neural network approaches for modelling wild oat (Avena fatua) field emergence

    Science.gov (United States)

    Non-linear regression techniques are used widely to fit weed field emergence patterns to soil microclimatic indices using S-type functions. Artificial neural networks present interesting and alternative features for such modeling purposes. In this work, a univariate hydrothermal-time based Weibull m...

  20. Applications of artificial intelligence technology to wastewater treatment fields in China

    Institute of Scientific and Technical Information of China (English)

    QING Xiao-xia; WANG Bo; MENG De-tao

    2005-01-01

    Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.

  1. [Advances in the research of application of artificial intelligence in burn field].

    Science.gov (United States)

    Li, H H; Bao, Z X; Liu, X B; Zhu, S H

    2018-04-20

    Artificial intelligence has been able to automatically learn and judge large-scale data to some extent. Based on database of a large amount of burn data and in-depth learning, artificial intelligence can assist burn surgeons to evaluate burn surface, diagnose burn depth, guide fluid supply during shock stage, and predict prognosis, with high accuracy. With the development of technology, artificial intelligence can provide more accurate information for burn surgeons to make clinical diagnosis and treatment strategies.

  2. An introduction to artificial intelligence and its potential use in space systems.

    OpenAIRE

    McDonald, Gary Wayne

    1986-01-01

    Approved for public release; distribution is unlimited This thesis provides an introduction to Artificial Intelligence and Space Systems, with comments regarding their integration. The survey of Artificial Intelligence (AI) is based upon a review of its history, its philosophical development, and subcategories of its current technologies. These subcategories are Expert Systems (ES), Natural Language Processing (NLP), Computer Vision and Pattern Recognition, and Robotic...

  3. A potential material to cut down infection caused by application of artificial muscles.

    Science.gov (United States)

    Wang, Jiang-Ning; Li, Xiao-Rong; Wang, De-Cheng

    2013-04-01

    Artificial muscles are so important that can be used to cure prosthetic limbs. A new kind of taurine Schiff base sodium was synthesized by a series of chemical reactions, which may be applied to strengthen antibacterial activity of artificial muscle. The bioactivity of this material was screened by cytotoxicity test, antibacterial test, and thermal gravity test and so on. All results told us that this material had low toxicity, high antibacterial activity and thermal stability. Combine our deep studies on pharmacological activity of the active material with our knowledge on artificial muscles; we want to know if we can put this material into the content of artificial muscle, in order to strengthen its antimicrobial activity, so that the pains of the patients who were applied artificial muscle would be relieved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Day-light-controlled artificial lighting a potential energy saver": right interior light by sky luninance trracking

    NARCIS (Netherlands)

    Rutten, A.J.F.; Mills, Evan

    1991-01-01

    The energy consumption in office buildings can considerably be cut, if daylight is used as task lighting. A conservative estimate - starting from existing knowledge and calculation methods - gives a potential saving of 460 GWh a year or 46 % of the electricity costs for artificial lighting in Dutch

  5. Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet

    2004-01-01

    Turkey is located at the Mediterranean at 36 deg. and 42 deg. N latitudes and has a typical Mediterranean climate. The solar energy potential is very high in Turkey. The yearly average solar radiation is 3.6 kW h/m 2 day, and the total yearly radiation period is ∼2610 h. This study consists of two cases. Firstly, the main focus of this study is to put forward the solar energy potential in Turkey using artificial neural networks (ANNs). Secondly, in this study, the best approach was investigated for each station by using different learning algorithms and a logistic sigmoid transfer function in the neural network with developed software. In order to train the neural network, meteorological data for last three years (2000-2002) from 17 stations (Ankara, Samsun, Edirne, Istanbul-Goeztepe, Van, Izmir, Denizli, Sanliurfa, Mersin, Adana, Gaziantep, Aydin, Bursa, Diyarbakir, Yozgat, Antalya and Mugla) spread over Turkey were used as training (11 stations) and testing (6 stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration and mean temperature) are used in the input layer of the network. Solar radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 6.735% and R 2 values were found to be about 99.893% for the testing stations. However, these values were found to be 4.398% and 99.965% for the training stations. The trained and tested ANN models show greater accuracy for evaluating the solar resource possibilities in regions where a network of monitoring stations has not been established in Turkey. The predicted solar potential values from the ANN are given in the form of monthly maps. These maps are of prime importance for different working disciplines, like scientists, architects, meteorologists and solar engineers, in Turkey. The predictions from the ANN models could enable scientists to locate and design solar energy systems in Turkey and determine the best solar

  6. Potential brain imaging using near field radiomety

    International Nuclear Information System (INIS)

    Oikonomou, A; Karanasiou, I S; Uzunoglu, N K

    2009-01-01

    During the past decades there has been a tremendous increase throughout the scientific community for developing methods of understanding human brain functionality, as diagnosis and treatment of diseases and malfunctions could be effectively developed through understanding of how the brain works. In parallel, research effort is driven on minimizing drawbacks of existing imaging techniques including potential risks from radiation and invasive attributes of the imaging methodologies. Towards that direction, we are proposing a near filed radiometry imaging system for intracranial applications. The methodology is based on the fact that human tissues emit chaotic thermal type radiation at temperatures above the absolute zero. Using a phase shifted antenna array system, resolution, detection depth and sensitivity are increased. Several different setups are theoretically investigated and compared, so as to make the proposed system useful for clinical applications. Combining previous research as well as new findings, the possibility of using the proposed system as a complementary method for brain imaging is discussed in the present paper.

  7. Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese.

    Science.gov (United States)

    Cao-Hoang, Lan; Chaine, Aline; Grégoire, Lydie; Waché, Yves

    2010-10-01

    A sodium caseinate film containing nisin (1000 IU/cm(2)) was produced and used to control Listeria innocua in an artificially contaminated cheese. Mini red Babybel cheese was chosen as a model semi-soft cheese. L. innocua was both surface- and in-depth inoculated to investigate the effectiveness of the antimicrobial film as a function of the distance from the surface in contact with the film. The presence of the active film resulted in a 1.1 log CFU/g reduction in L. innocua counts in surface-inoculated cheese samples after one week of storage at 4 degrees C as compared to control samples. With regard to in-depth inoculated cheese samples, antimicrobial efficiency was found to be dependent on the distance from the surface in contact with the active films to the cheese matrix. The inactivation rates obtained were 1.1, 0.9 and 0.25 log CFU/g for distances from the contact surface of 1 mm, 2 mm and 3 mm, respectively. Our study demonstrates the potential application of sodium caseinate films containing nisin as a promising method to overcome problems associated with post-process contamination, thereby extending the shelf life and possibly enhancing the microbial safety of cheeses. 2010 Elsevier Ltd. All rights reserved.

  8. AN INTRODUCTION TO KNOWLEDGE-GROWING SYSTEM: A NOVEL FIELD IN ARTIFICIAL INTELLIGENCE

    Directory of Open Access Journals (Sweden)

    Arwin Datumaya Wahyudi Sumari

    2010-07-01

    Full Text Available The essential matter of Artificial Intelligence (AI is how to build an entity that mimics human intelligence in the way of learning of a phenomenon in a real life to gain knowledge of it and uses the knowledge to solve problems related to it. Based on the findings of intelligenct characteristic displayed by the human brain in growing and generating new knowledge by fusing information perceived by sensory organs, we develop brain-inspired Knowledge-Growing System (KGS that is, a system that is capable of growing its knowledge along with the accretion of information as the time passes. The essential matter of KGS is knowledge-growing method which is based on a new algorithm called Observation Multi-time A3S (OMA3S information-inferencing fusion method. In this paper we deliver the development of KGS along with some examples of KGS application to a real-life problem. Based on the state-of-the-art of AI and approaches to construct OMA3S method as KG method as well as validations to assess the system performance, we state that brain-inspired KGS is a novel field in AI.

  9. 30 MHz radar observations of artificial E region field-aligned plasma irregularities

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2008-02-01

    Full Text Available Artificial E region field aligned irregularities (FAIs have been observed during heating experiments at the HAARP facility using a new 30 MHz coherent scatter radar imager deployed near Homer, Alaska. Irregularities were observed during brief experiments on three quiet days in July and August, 2007, when the daytime E region critical frequency was close to 3 MHz. Irregularities were consistently generated and detected during experiments with O-mode HF pumping on zenith with a 1-min on, 1-min off CW modulation. The scattering cross sections, rise, and fall times of the echoes were observed as well as their spectral properties. Results were found to be mainly in agreement with observations from other mid- and high-latitude sites with some discrepancies. Radar images of the irregularity-filled volume on one case exhibited clear variations in backscatter power and Doppler shift across the volume. The images furthermore show the emergence of a small irregularity-filled region to the south southwest of the main region in the approximate direction of magnetic zenith.

  10. Skeletal muscle oxygen pressure fields in artificially ventilated, critically ill patients

    International Nuclear Information System (INIS)

    Lund, N.; Jorfeldt, L.; Lewis, D.H.; Oedman, S.

    1980-01-01

    The MDO (Mehrdraht Dostmund Oberflaeche) oxygen electrode was used in a study of skeletal muscle oxygen pressure fields, presented as histograms, in critically ill patients artificially ventilated with gas mixtures of different oxygen concentrations. The histograms were compared with forearm blood flow measurements performed with strain gauge plethysmography. Local blood flow and permeability-surface area product (PS) were also studied by the simultaneous clearances of 133 xenon and 51 Cr-EDTA. The histogram distribution type was normal, i.e. approximately Gaussian, at arterial oxygen pressure levels between 10 and 18 kPa. At arterial oxygen pressures outside this range the histogram distribution types were abnormal, i.e. they showed a non-symmetrical distribution of oxygen pressure values, but their mean was approximately the same as in the normal histogram. However, there were significantly higher tissue oxygen pressure mean values in the patients (3.43 kPa) than in a group of healthy human volunteers (2.25 kPa). Mean forearm blood flow and the clearances of 133 xenon and 51 Cr-EDTA showed marked variations during the measurements both intraindividually and interindividually. Mean forearm blood flow and mean clearances of 133 xenon showed opposite trends compared with arterial oxygen pressures. Mean clearances of 51 Cr-EDTA and mean PS showed minor variations at the different arterial oxygen pressure levels. (author)

  11. Extended semen for artificial insemination in swine as a potential transmission mechanism for infectious Chlamydia suis.

    Science.gov (United States)

    Hamonic, G; Pasternak, J A; Käser, T; Meurens, F; Wilson, H L

    2016-09-01

    Although typically unnoticed, Chlamydia infections in swine have been shown to be both widespread and may impact production characteristics and reproductive performance in swine. Serum titers suggest Chlamydia infection within boar studs is common, and infected boars are known to shed chlamydia in their ejaculates. Although the transmission of viruses in chilled extended semen (ES) is well established, the inclusion of antibiotics in commercially available extender is generally believed to limit or preclude the transmission of infectious bacteria. The objective of this study was to evaluate the potential of ES used in artificial insemination to support transmission of the obligate intracellular bacteria Chlamydia suis (C suis) under standard industry conditions. First, the effect of C suis on sperm quality during storage was assessed by flow cytometry. Only concentrations above 5 × 10(5) viable C suis/mL caused significant spermicidal effects which only became evident after 7 days of storage at 17 °C. No significant effect on acrosome reaction was observed using any chlamydial concentration. Next, an in vitro infection model of swine testicular fibroblast cells was established and used to evaluate the effect of chilled storage on C suis viability under variable conditions. Storage in Androhep ES reduced viability by 34.4% at a multiplicity of infection of 1.25, an effect which increased to 53.3% when the multiplicity of infection decreased to 0.1. Interestingly, storage in semen extender alone (SE) or ES with additional antibiotics had no effect on bacterial viability. To rule out a secondary effect on extender resulting from metabolically active sperm, C suis was stored in fresh and expended SE and again no significant effect on bacterial viability was observed. Fluorescent microscopy of C suis in ES shows an association between bacteria and the remaining gel fraction after storage suggesting that the apparent reduction of bacterial viability in the presence

  12. Assessment of microclimate conditions under artificial shades in a ginseng field.

    Science.gov (United States)

    Lee, Kyu Jong; Lee, Byun-Woo; Kang, Je Yong; Lee, Dong Yun; Jang, Soo Won; Kim, Kwang Soo

    2016-01-01

    Knowledge on microclimate conditions under artificial shades in a ginseng field would facilitate climate-aware management of ginseng production. Weather data were measured under the shade and outside the shade at two fields located in Gochang-gun and Jeongeup-si, Korea, in 2011 and 2012 seasons to assess temperature and humidity conditions under the shade. An empirical approach was developed and validated for the estimation of leaf wetness duration (LWD) using weather measurements outside the shade as inputs to the model. Air temperature and relative humidity were similar between under the shade and outside the shade. For example, temperature conditions favorable for ginseng growth, e.g., between 8°C and 27°C, occurred slightly less frequently in hours during night times under the shade (91%) than outside (92%). Humidity conditions favorable for development of a foliar disease, e.g., relative humidity > 70%, occurred slightly more frequently under the shade (84%) than outside (82%). Effectiveness of correction schemes to an empirical LWD model differed by rainfall conditions for the estimation of LWD under the shade using weather measurements outside the shade as inputs to the model. During dew eligible days, a correction scheme to an empirical LWD model was slightly effective (10%) in reducing estimation errors under the shade. However, another correction approach during rainfall eligible days reduced errors of LWD estimation by 17%. Weather measurements outside the shade and LWD estimates derived from these measurements would be useful as inputs for decision support systems to predict ginseng growth and disease development.

  13. Simultaneous measurements of HF-enhanced plasma waves and artificial field-aligned irregularities at Arecibo

    International Nuclear Information System (INIS)

    Noble, S.T.; Djuth, F.T.

    1990-01-01

    Two radar systems with beams intersecting in the HF-modified F region were used to simultaneously measure HF-enhanced plasma lines (HFPLs) and artificial geomagnetic field-aligned irregularities (AFAIs). The Arecibo 430-MHz radar was used for the HFPL observations, and a portable 49.92-MHz backscatter radar was deployed on the island of Guadeloupe to monitor the AFAIs. The experiment was desgined to examine the degree to which HF-induced plasma turbulence influences the development of AFAIs. When the HF beam is stepped up in power, sustained HFPLs and AFAIs are first observed at the same HF power level, indicating that ponderomotively driven instabilities may be involved in the early time development of AFAIs. As the HF power is increased, the HFPL backscatter power begins to saturate at ∼70 MW effective radiated power (ERP). However, the backscatter from AFAIs is linearly dependent on HF power, even at the highest (120 MW ERP) HF power levels available at Arecibo. This suggests that additional processes may contribute to the development of AFAIs. For example, ponderomotively driven instabilities may give rise to weak geomagnetic field-aligned irregularities that are subsequently driven unstable by processes excited near the upper hybrid resonance. It is also likely that AFAIs greatly impact the development of HF-induced plasma turbulence at late times (>1 s) following HF turn-on. Once the ionosphere is preconditioned by high-power HF modifications, AFAIs and HFPLs can be simultaneously sustained at a much lower HF power level than that needed to originally excite them. The nature of the preconditioning process is currently not well understood. New theoretical initiatives are clearly needed to guide future experimental activity in this area

  14. Application of naturally occurring isotopes and artificial radioactive tracer for monitoring water flooding in oil field

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, I.H.; Farooq, M.; Tasneem, M.A.; Rafiq, M.; Din, U.G.; Gul, S.

    2002-03-01

    Water flooding is an important operation to enhance oil recovery. Water is injected in the oil formation under high pressure through an injection well. Movement of the injected water is needed to be traced to test the performance of water flood, investigate unexpected anomalies in flow and verify suspected geological barriers or flow channels, etc. In the present study environmental isotopes and artificial radiotracer (tritium) were used at Fimkassar Oil Field of Oil and Gas Development Company Limited (OGDCL) where water flooding was started in March 1996 in Sakessar formation to maintain its pressure and enhance the oil recovery. Environmental isotopes: /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents were used to determine the breakthrough/transit time and contribution of fresh injected water. Water samples were collected from the injection well, production well and some other fields for reference indices of Sakessar Formation during June 1998 to August 1999. These samples were analyzed for the /sup 18/O, /sup 2/H and /sup 3/H, and chloride contents. Results show that the water of production well is mixture of fresh water and formation water. The fresh water contribution varied from 67% to 80%, while remaining component was the old recharged formation water. This percentage did not change significantly from the time of break-through till the last sampling which indicates good mixing in the reservoir and absence of any quick channel. The initial breakthrough time was 27 months as the fresh water contributed significantly in the first appearance of water in the production well in June 1998. Tritium tracer, which was injected in November 1998, appeared in the production well after 8 months. It show that breakthrough time decreased with the passage of time. /sup 14/C of inorganic carbon in the water in Chorgali and Sakessar Formations was also analyzed which indicates that the water is at least few thousand years old. (author)

  15. Potential of Field Education as Signature Pedagogy: The Field Director Role

    Science.gov (United States)

    Lyter, Sharon C.

    2012-01-01

    In light of the assertion that field education is the signature pedagogy of social work education, this Internet-based study explores field director demographics and questions the fulfillment of this potential, examining BSW and MSW field education through the lens of the field director position. Field directors (159) and deans/directors (150)…

  16. Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility.

    Directory of Open Access Journals (Sweden)

    Martin Aubé

    Full Text Available Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.

  17. Utilizing an Artificial Outcrop to Scaffold Learning Between Laboratory and Field Experiences in a College-Level Introductory Geology Course

    Science.gov (United States)

    Wilson, Meredith

    Geologic field trips are among the most beneficial learning experiences for students as they engage the topic of geology, but they are also difficult environments to maximize learning. This action research study explored one facet of the problems associated with teaching geology in the field by attempting to improve the transition of undergraduate students from a traditional laboratory setting to an authentic field environment. Utilizing an artificial outcrop, called the GeoScene, during an introductory college-level non-majors geology course, the transition was studied. The GeoScene was utilized in this study as an intermediary between laboratory and authentic field based experiences, allowing students to apply traditional laboratory learning in an outdoor environment. The GeoScene represented a faux field environment; outside, more complex and tangible than a laboratory, but also simplified geologically and located safely within the confines of an educational setting. This exploratory study employed a mixed-methods action research design. The action research design allowed for systematic inquiry by the teacher/researcher into how the students learned. The mixed-methods approach garnered several types of qualitative and quantitative data to explore phenomena and support conclusions. Several types of data were collected and analyzed, including: visual recordings of the intervention, interviews, analytic memos, student reflections, field practical exams, and a pre/post knowledge and skills survey, to determine whether the intervention affected student comprehension and interpretation of geologic phenomena in an authentic field environment, and if so, how. Students enrolled in two different sections of the same laboratory course, sharing a common lecture, participated in laboratory exercises implementing experiential learning and constructivist pedagogies that focused on learning the basic geological skills necessary for work in a field environment. These laboratory

  18. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  19. Potential weekly intake of artificial food colours by 3-14-year-old children in Brazil.

    Science.gov (United States)

    Toledo, M C; Guerchon, M S; Ragazzi, S

    1992-01-01

    The Potential Weekly Intake (PWI) of artificial food colours by 3-14-year-old children living in the District of Barão Geraldo, Campinas, São Paulo, Brazil, was estimated on the basis of average consumption data of artificially coloured food and analytically determined colour concentration in foodstuffs ingested. Coloured food consumption data were obtained through dietary recall interviews and collection of the packages and/or labels of the coloured foods consumed during a two-week period. Colours found in the individual types of foods detected through the consumption survey were identified and determined by methods that included wool dyeing and polyamide column extractions, ascending paper chromatography and spectrophotometry. The results showed that all artificial colours used in the composition of 83 commercial food products, including jellies, juices, soft drinks, syrups and 57 different candies, were permitted for use in food in Brazil the year the survey was conducted (1986), in amounts below those prescribed by law. Statistical analysis performed to compare the PWI for different population groups demonstrated that young male children, especially from lower social classes, were most exposed to artificial colours. Comparison of the estimated potential intakes with the toxicologically Acceptable Daily Intake (ADI) showed that consumption of Amaranth, Sunset Yellow, Indigotine and Tartrazine by all children in the study represented approximately 24%, 3%, 0.05% and 0.4%, of the actual ADI values, respectively.

  20. Evaluation of the safety and efficacy of Glycyrrhiza uralensis root extracts produced using artificial hydroponic and artificial hydroponic-field hybrid cultivation systems.

    Science.gov (United States)

    Akiyama, H; Nose, M; Ohtsuki, N; Hisaka, S; Takiguchi, H; Tada, A; Sugimoto, N; Fuchino, H; Inui, T; Kawano, N; Hayashi, S; Hishida, A; Kudo, T; Sugiyama, K; Abe, Y; Mutsuga, M; Kawahara, N; Yoshimatsu, K

    2017-01-01

    Glycyrrhiza uralensis roots used in this study were produced using novel cultivation systems, including artificial hydroponics and artificial hydroponic-field hybrid cultivation. The equivalency between G. uralensis root extracts produced by hydroponics and/or hybrid cultivation and a commercial Glycyrrhiza crude drug were evaluated for both safety and efficacy, and there were no significant differences in terms of mutagenicity on the Ames tests. The levels of cadmium and mercury in both hydroponic roots and crude drugs were less than the limit of quantitation. Arsenic levels were lower in all hydroponic roots than in the crude drug, whereas mean lead levels in the crude drug were not significantly different from those in the hydroponically cultivated G. uralensis roots. Both hydroponic and hybrid-cultivated root extracts showed antiallergic activities against contact hypersensitivity that were similar to those of the crude drug extracts. These study results suggest that hydroponic and hybrid-cultivated roots are equivalent in safety and efficacy to those of commercial crude drugs. Further studies are necessary before the roots are applicable as replacements for the currently available commercial crude drugs produced from wild plant resources.

  1. Making Computers Smarter: A Look At the Controversial Field of Artificial Intelligence.

    Science.gov (United States)

    Green, John O.

    1984-01-01

    Defines artificial intelligence (AI) and discusses its history; the current state of the art, research, experimentation, and practical applications; and probable future developments. Key dates in the history of AI and eight references are provided. (MBR)

  2. On-orbit assembly of a team of flexible spacecraft using potential field based method

    Science.gov (United States)

    Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping

    2017-04-01

    In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.

  3. Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations

    Science.gov (United States)

    2016-09-19

    synthesize observable emission . In future, the computational speed of the MF model makes it a potential avenue for near- real time and/or ensemble...AFRL-AFOSR-UK-TR-2016-0030 PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD SIMULATIONS Anthony Yeates UNIVERSITY OF DURHAM Final Report...Final 3. DATES COVERED (From - To)  15 Sep 2014 to 14 Sep 2017 4. TITLE AND SUBTITLE PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD

  4. Estimation of solar potential in Turkey by artificial neural networks using meteorological and geographical data

    Energy Technology Data Exchange (ETDEWEB)

    Sozen, Adnan; Ozalp, Mehmet [Gazi Univ., Mechanical Education Dept., Ankara (Turkey); Arcaklioglu, Erol [Krkkale Univ., Mechanical Engineering Dept., Krkkale (Turkey)

    2004-11-01

    Turkey is located at the Mediterranean at 36 deg and 42 deg N latitudes and has a typical Mediterranean climate. The solar energy potential is very high in Turkey. The yearly average solar radiation is 3.6 kW h/m{sup 2} day, and the total yearly radiation period is {approx}2610 h. This study consists of two cases. Firstly, the main focus of this study is to put forward the solar energy potential in Turkey using artificial neural networks (ANNs). Secondly, in this study, the best approach was investigated for each station by using different learning algorithms and a logistic sigmoid transfer function in the neural network with developed software. In order to train the neural network, meteorological data for last three years (2000-2002) from 17 stations (Ankara, Samsun, Edirne, Istanbul-Goztepe, Van, Izmir, Denizli, Sanl urfa, Mersin, Adana, Gaziantep, Ayd n, Bursa, Diyarbak r, Yozgat, Antalya and Mugla) spread over Turkey were used as training (11 stations) and testing (6 stations) data. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration and mean temperature) are used in the input layer of the network. Solar radiation is in the output layer. The maximum mean absolute percentage error was found to be less than 6.735% and R{sup 2} values were found to be about 99.893% for the testing stations. However, these values were found to be 4.398% and 99.965% for the training stations. The trained and tested ANN models show greater accuracy for evaluating the solar resource possibilities in regions where a network of monitoring stations has not been established in Turkey. The predicted solar potential values from the ANN are given in the form of monthly maps. These maps are of prime importance for different working disciplines, like scientists, architects, meteorologists and solar engineers, in Turkey. The predictions from the ANN models could enable scientists to locate and design solar energy systems in Turkey and determine the

  5. Concerns Over the Expansion of Artificial Intelligence in the Legal Field

    OpenAIRE

    Einhouse, Ben

    2018-01-01

    Cornell Law School J.D. Student Research Papers. 38 Advances in technology have surely made the practice of law more efficient, but looming advances in artificial intelligence should raise some concern about the price of this efficiency. Artificial intelligence programs already exhibit the capacity to replace the daily activities of some lawyers, which should raise some concern in the legal community, especially regarding legal ethics. Despite these concerns, the access to knowledge that arti...

  6. Potential usefulness of an artificial neural network for assessing ventricular size

    International Nuclear Information System (INIS)

    Fukuda, Haruyuki; Nakajima, Hideyuki; Usuki, Noriaki; Saiwai, Shigeo; Miyamoto, Takeshi; Inoue, Yuichi; Onoyama, Yasuto.

    1995-01-01

    An artificial neural network approach was applied to assess ventricular size from computed tomograms. Three layer, feed-forward neural networks with a back propagation algorithm were designed to distinguish between three degree of enlargement of the ventricles on the basis of patient's age and six items of computed tomographic information. Data for training and testing the neural network were created with computed tomograms of the brains selected at random from daily examinations. Four radiologists decided by mutual consent subjectively based on their experience whether the ventricles were within normal limits, slightly enlarged, or enlarged for the patient's age. The data for training was obtained from 38 patients. The data for testing was obtained from 47 other patients. The performance of the neural network trained using the data for training was evaluated by the rate of correct answers to the data for testing. The valid solution ratio to response of the test data obtained from the trained neural networks was more than 90% for all conditions in this study. The solutions were completely valid in the neural networks with two or three units at the hidden layer with 2,200 learning iterations, and with two units at the hidden layer with 11,000 learning iterations. The squared error decreased remarkably in the range from 0 to 500 learning iterations, and was close to a contrast over two thousand learning iterations. The neural network with a hidden layer having two or three units showed high decision performance. The preliminary results strongly suggest that the neural network approach has potential utility in computer-aided estimation of enlargement of the ventricles. (author)

  7. Quantum particle in a potential well field and in an electric field

    International Nuclear Information System (INIS)

    Gyunter, U.; Olejnik, V.P.

    1990-01-01

    Solutions of the Dirac equation in the field of δ-like potential well with arbitrary symmetry and in uniform electric field were obtained and analyzed. It is shown that wave function and energy of electron in bound state in the absence of electric field depend sufficiently on the type of potential well symmetry. 1 ref

  8. Artificial intelligence modeling to evaluate field performance of photocatalytic asphalt pavement for ambient air purification.

    Science.gov (United States)

    Asadi, Somayeh; Hassan, Marwa; Nadiri, Ataallah; Dylla, Heather

    2014-01-01

    In recent years, the application of titanium dioxide (TiO₂) as a photocatalyst in asphalt pavement has received considerable attention for purifying ambient air from traffic-emitted pollutants via photocatalytic processes. In order to control the increasing deterioration of ambient air quality, urgent and proper risk assessment tools are deemed necessary. However, in practice, monitoring all process parameters for various operating conditions is difficult due to the complex and non-linear nature of air pollution-based problems. Therefore, the development of models to predict air pollutant concentrations is very useful because it can provide early warnings to the population and also reduce the number of measuring sites. This study used artificial neural network (ANN) and neuro-fuzzy (NF) models to predict NOx concentration in the air as a function of traffic count (Tr) and climatic conditions including humidity (H), temperature (T), solar radiation (S), and wind speed (W) before and after the application of TiO₂ on the pavement surface. These models are useful for modeling because of their ability to be trained using historical data and because of their capability for modeling highly non-linear relationships. To build these models, data were collected from a field study where an aqueous nano TiO₂ solution was sprayed on a 0.2-mile of asphalt pavement in Baton Rouge, LA. Results of this study showed that the NF model provided a better fitting to NOx measurements than the ANN model in the training, validation, and test steps. Results of a parametric study indicated that traffic level, relative humidity, and solar radiation had the most influence on photocatalytic efficiency.

  9. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  10. Off disk-center potential field calculations using vector magnetograms

    Science.gov (United States)

    Venkatakrishnan, P.; Gary, G. Allen

    1989-01-01

    A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.

  11. Action potential propagation: ion current or intramembrane electric field?

    Science.gov (United States)

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  12. The value of smart artificial lift technology in mature field operations demonstrated in the Zistersdorf oilfield in Austria

    Energy Technology Data Exchange (ETDEWEB)

    Muessig, S.; Oberndorfer, M.; Rice, D. [Rohoelaufsuchungs-AG, Wien (Austria); Soliman, K. [Montanuniversitaet Leoben (Austria)

    2013-08-01

    Currently, approximately 40% of world oil production comes from mature fields and the tendency is that this will increase with time. A significant portion of operational expenditures in mature oil fields is related to lifting costs including the cost of maintenance of the artificial lift equipment. In many cases additional, unnecessary, costs are incurred due to inadequate control of corrosion and sand production leading to premature failures of the equipment and thus to additional workover operations. In mature fields this can result in a significant loss of reserves when the production has to be abandoned prematurely because workover operations become uneconomic. In order to combat such losses of reserves RAG and its partners have developed fit-for-purpose technologies such as: continuous control of the liquid level in the annulus (i.e. bottom hole flowing pressure), innovative advanced sand control and longer lasting artificial lift equipment. On the basis of the 75 years old Zistersdorf oilfields the value of these developments in artificial lift technology is demonstrated. The Zistersdorf oilfields produce primarily from the compacted and fairly permeable 'Sarmat' sandstone formation which has many layers whereby the higher layers are poorly consolidated. The fields are currently producing from 33 producing wells some 6 900 m{sup 3} (Vn)/d gas and 48 t/d of oil at an average water cut of 97.1%. It will be shown that the implementation of the technologies described in combination with the in-house knowledge and the dedication of the field staff has extended considerably the mean time between failures of the equipment, reduced markedly the average yearly decline rate and thus extended the economic life expectancy of the fields and increased the ultimate recovery significantly.

  13. A regularization method for extrapolation of solar potential magnetic fields

    Science.gov (United States)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  14. The potential of immobilized artificial membrane chromatography to predict human oral absorption.

    Science.gov (United States)

    Tsopelas, Fotios; Vallianatou, Theodosia; Tsantili-Kakoulidou, Anna

    2016-01-01

    The potential of immobilized artificial membrane (IAM) chromatography to estimate human oral absorption (%HOA) was investigated. For this purpose, retention indices on IAM stationary phases reported previously by our group or measured by other authors under similar conditions were used to model %HOA data, compiled from literature sources. Considering the pH gradient in gastrointestinal tract, the highest logkw(IAM) values were considered, obtained either at pH7.4 or 5.5, defined as logkw(IAM)(best). Non linear models were established upon introduction of additional parameters and after exclusion of drugs which are substrates either to efflux or uptake transporters. The best model included Abraham's hydrogen-bond acidity parameter, molecular weight as well as the positively and negatively charged molecular fractions. For reasons of comparison between IAM chromatography and traditional lipophilicity, corresponding models were derived by replacing IAM retention factors with octanol-water distribution coefficients (logD). An overexpression of electrostatic interactions with phosphate anions was observed in the case of IAM retention as expressed by the negative contribution of the positively charged fraction F(+). The same parameter is statistically significant also in the logD model, but with a positive sign, indicating the attraction of basic drugs in the negatively charged inner membrane. To validate the obtained models a blind test set of 22 structurally diverse drugs was used, whose logkw(IAM)(best) values were determined and analyzed in the present study under similar conditions. IAM retention factors were further compared with MDCK cell lines permeability data taken from literature for a set of validation drugs. The overexpression of electrostatic interactions with phosphate anions on IAM surface was also evident in respect to MDCK permeability. In contrast to the clear classification between drugs with high and poor (or intermediate) absorption provided by MDCK

  15. Generating functionals for quantum field theories with random potentials

    International Nuclear Information System (INIS)

    Jain, Mudit; Vanchurin, Vitaly

    2016-01-01

    We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.

  16. Binaural loudness for artificial-head measurements in directional sound fields

    DEFF Research Database (Denmark)

    Sivonen, Ville Pekka; Ellermeier, Wolfgang

    2008-01-01

    The effect of the sound incidence angle on loudness was investigated for fifteen listeners who matched the loudness of sounds coming from five different incidence angles in the horizontal plane to that of the same sound with frontal incidence. The stimuli were presented via binaural synthesis...... by using head-related transfer functions measured for an artificial head. The results, which exhibited marked individual differences, show that loudness depends on the direction from which a sound reaches the listener. The average results suggest a relatively simple rule for combining the two signals...... at the ears of an artificial head for binaural loudness predictions....

  17. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  18. Elution of Artificial Sputum from Swab by Rotating Magnetic Field-Induced Mechanical Impingement

    Directory of Open Access Journals (Sweden)

    Shubham Banik

    2017-12-01

    Full Text Available Cotton-tipped applicator swabs are used as a collection device for many biological samples and its complete elution is a desired step for clinical and forensic diagnostics. Swabs are used to collect infectious body fluids, where the concentration of pathogens can range from 1 × 104 CFU/mL (colony forming units/mL in respiratory-tract infections and 1 × 105 in urinary-tract infections, to up to 1 × 109 CFU/mL in salivary samples. These samples are then eluted and lysed, prior to DNA (De-oxy Ribonucleic Acid analysis. The recovery of micro-organisms from a matrix of swab fibres depends on the nature of the body fluid, the type of the swab fibres, and the process of elution. Various methods to elute samples from swab include chemical digestion of fibres (~20% recovery, centrifugation (~58% recovery, piezoelectric vibration, or pressurized fluid-flow (~60% recovery. This study reports a magnetically-actuated physical impingement method for elution and recovery of artificial sputum samples from cotton fibres. A device has been fabricated to induce a rotating magnetic field on smaller magnetic particles in a vial that strikes the swab within a confined gap. Elution from the swab in this device was characterized using 2% Methyl cellulose in deionised water, loaded with fluorescent-tagged polystyrene beads and E. coli at various concentrations. The recovery efficiency was found to increase with both rotational speed and elution time, but plateaus after 400 RPM (Revolutions per minute and 120 s, respectively. At a higher concentration of polystyrene beads (5 × 108 particles/mL, a maximum recovery of ~85% was achieved. With lower concentration, (1 × 105 particles/mL the maximum efficiency (~92.8% was found to be almost twice of passive elution (46.7%. In the case of E. coli, the corresponding recovery efficiency at 3.35 × 105 CFU/mL is 90.4% at 500 RPM and 120 s. This elution method is expected to have a wide applicability in clinical diagnostics.

  19. Evaluation of Visual Field Test Parameters after Artificial Tear Administration in Patients with Glaucoma and Dry Eye.

    Science.gov (United States)

    Özyol, Pelin; Özyol, Erhan; Karalezli, Aylin

    2018-01-01

    To examine the effect of a single dose of artificial tear administration on automated visual field (VF) testing in patients with glaucoma and dry eye syndrome. A total of 35 patients with primary open-angle glaucoma experienced in VF testing with symptoms of dry eye were enrolled in this study. At the first visit, standard VF testing was performed. At the second and third visits with an interval of one week, while the left eyes served as control, one drop of artificial tear was administered to each patient's right eye, and then VF testing was performed again. The reliability parameters, VF indices, number of depressed points at probability levels of pattern deviation plots, and test times were compared between visits. No significant difference was observed in any VF testing parameters of control eyes (P>0.05). In artificial tear administered eyes, significant improvement was observed in test duration, mean deviation, and the number of depressed points at probability levels (P˂0.5%, P˂1%, P˂2) of pattern deviation plots (P˂0.05). The post-hoc test revealed that artificial tear administration elicited an improvement in test duration, mean deviation, and the number of depressed points at probability levels (P˂0.5%, P˂1%, P˂2%) of pattern deviation plots from first visit to second and third visits (P˂0.01, for all comparisons). The intraclass correlation coefficient for the three VF test indices was found to be between 0.735 and 0.85 (P<0.001, for all). A single dose of artificial tear administration immediately before VF testing seems to improve test results and decrease test time.

  20. A tailored biocatalyst achieved by the rational anchoring of imidazole groups on a natural polymer: furnishing a potential artificial nuclease by sustainable materials engineering.

    Science.gov (United States)

    Ferreira, José G L; Grein-Iankovski, Aline; Oliveira, Marco A S; Simas-Tosin, Fernanda F; Riegel-Vidotti, Izabel C; Orth, Elisa S

    2015-04-11

    Foreseeing the development of artificial enzymes by sustainable materials engineering, we rationally anchored reactive imidazole groups on gum arabic, a natural biocompatible polymer. The tailored biocatalyst GAIMZ demonstrated catalytic activity (>10(5)-fold) in dephosphorylation reactions with recyclable features and was effective in cleaving plasmid DNA, comprising a potential artificial nuclease.

  1. The use of artificial nests by weaver ants: a preliminary field observation

    DEFF Research Database (Denmark)

    Offenberg, Joachim

    2014-01-01

    of the plantation. This suggests that exposure to harsh weather triggered the use of artificial nests. It was also found that ants preferred to nest in bottles covered with aluminum foil compared to transparent bottles. These findings document an opportunistic nesting behavior of weaver ants and suggest...

  2. Elements for an Ontology of Care in the Field of Artificial Intelligence.

    Science.gov (United States)

    González Aguña, Alexandra; Fernández Batalla, Marta; Cercas Duque, Adriana; Herrero Jaén, Sara; Monsalvo San Macario, Enrique; Jiménez Rodríguez, Ma Lourdes; Santamaría García, José Ma; Ramírez Sánchez, Sylvia Claudine; Vialart Vidal, Niurka; Condor Camara, Daniel Flavio

    2018-01-01

    An ontology of care is a formal, explicit specification of a shared conceptualization. Constructing an ontology is a process that requires four elements: knowledge object, subject that knows, knowledge operation and result. These elements configure theframework to generate ontologies that can be used in Artificial Intelligence systems for care.

  3. Effective potential for bilocal composite fields and its ambiguity

    International Nuclear Information System (INIS)

    Muta, T.

    1988-01-01

    It is discussed that an ambiguity exists in the definition of the effective potential for bilocal composite fields which is an indispensable tool to discuss dynamical symmetry breaking. The ambiguity gives warning to arguments on the stability of ground states based on the curvature of the effective potential

  4. Evaluating the Potential for Marine and Hydrokinetic Devices to Act As Artificial Reefs or Fish Aggregating Devices

    Science.gov (United States)

    Kramer, S.; Nelson, P.

    2016-02-01

    Wave energy converters (WECs) and tidal energy converters (TECs) are only beginning to be deployed along the U.S. West Coast and in Hawai'i, and a better understanding of their ecological effects on fish, particularly on special status fish is needed to facilitate project siting, design and environmental permitting. The structures of WECs and TECs placed on to the seabed, such as anchors and foundations, may function as artificial reefs that attract reef associated fishes, while the midwater and surface structures, such as mooring lines, buoys, and wave or tidal power devices, may function as fish aggregating devices (FADs). We evaluated these potential ecological interactions by comparing them to surrogate structures, such as artificial reefs, natural reefs, kelp vegetation, floating and sunken debris, oil and gas platforms, anchored FADs deployed to enhance fishing opportunities, net cages used for mariculture, and piers and marinas. We also conducted guided discussions with scientists and resource managers to provide unpublished observations. Our findings indicate the structures of WECs and TECs placed on or near the seabed in coastal waters of the U.S. West Coast and Hawai`i likely will function as small scale artificial reefs and attract potentially high densities of reef associated fishes and the midwater and surface structures of WECs placed in the tropical waters of Hawai`i likely will function as de facto FADs.

  5. Analytical formulation for φ4 field potential dynamics

    International Nuclear Information System (INIS)

    Javidan, Kurosh; Ghahraman, Arash

    2011-01-01

    An analytical model for adding a space dependent potential to the φ 4 field equation of motion is presented, by constructing a collective coordinate system for the solitary solutions of this model. The interaction of φ 4 solitons with a delta function potential barrier and also delta function potential well is investigated. Most of the characters of interaction are derived analytically while they are calculated by other models numerically. We will find that the behaviour of a solitary solution is like a point particle which is moved under the influence of a complicated effective potential. The effective potential is a function of the field initial conditions and also of parameters of the added potential. (author)

  6. The potential application of artificial intelligence to the petroleum industry. Part 1: principles; Inteligencia artificial e seu potencial de uso na industria do petroleo. Parte 1: fundamentos

    Energy Technology Data Exchange (ETDEWEB)

    Alegre, Lideniro [PETROBRAS (Brazil). Dept. de Producao

    1990-04-01

    The article presents the main goals and concepts of artificial intelligence. We describe its history and application on expert systems. Emphasis is given to why and for what expert systems are developed. We also give a general view of the use of artificial intelligence in Brazil and in PETROBRAS. (author) 9 refs., 1 tab.

  7. Artificial intelligence analysis of hyperspectral remote sensing data for management of water, weed, and nitrogen stresses in corn fields

    Science.gov (United States)

    Waheed, Tahir

    most effective for classifying combined water, weed, and nitrogen stress. The second contribution is the successful classification of hyperspectral observations acquired over an agricultural field, using three innovative artificial intelligence approaches; support vector machines (SVM), genetic algorithms (GA) and decision tree (DT) algorithms. These AI approaches were used to evaluate a combined effect of water, weed and nitrogen stresses in corn and of all the three AI approaches used, SVM produced the best results (overall accuracy ranging from 88% to 100%). The general conclusion is that the conventional statistical and artificial intelligence techniques used in this study are all useful for quickly mapping combined affects of irrigation, weed and nitrogen stresses (with overall accuracies ranging from 76% to 100%). These approaches have strong potential and are of great benefit to those investigating the in-season impact of irrigation, weed and nitrogen management for corn crop production and other environment related challenges.

  8. Cavity-induced artificial gauge field in a Bose-Hubbard ladder

    Science.gov (United States)

    Halati, Catalin-Mihai; Sheikhan, Ameneh; Kollath, Corinna

    2017-12-01

    We consider theoretically ultracold interacting bosonic atoms confined to quasi-one-dimensional ladder structures formed by optical lattices and coupled to the field of an optical cavity. The atoms can collect a spatial phase imprint during a cavity-assisted tunneling along a rung via Raman transitions employing a cavity mode and a transverse running wave pump beam. By adiabatic elimination of the cavity field we obtain an effective Hamiltonian for the bosonic atoms, with a self-consistency condition. Using the numerical density-matrix renormalization-group method, we obtain a rich steady-state diagram of self-organized steady states. Transitions between superfluid to Mott-insulating states occur, on top of which we can have Meissner, vortex liquid, and vortex lattice phases. Also a state that explicitly breaks the symmetry between the two legs of the ladder, namely, the biased-ladder phase, is dynamically stabilized. We investigate the influence that a trapping potential has on the stability of the self-organized phases.

  9. Potential of the test particle in the magnetic field. I

    International Nuclear Information System (INIS)

    Sestak, B.

    1980-01-01

    The problem of the test particle potential in an external homogeneous magnetic field is solved in an unmagnetized plasma. It is shown that for the case when the parallel velocity component of the test particle is greater than the thermal velocity of the background particles, the potential is of a Coulomb character while for the case where the parallel velocity component is less than the thermal velocity the potential is of a Debye character. The Larmor radius of the test particle appears as an additional parameter in these potentials. (author)

  10. The potential of artificial aging for modelling of natural aging processes of ballpoint ink.

    Science.gov (United States)

    Weyermann, Céline; Spengler, Bernhard

    2008-08-25

    Artificial aging has been used to reproduce natural aging processes in an accelerated pace. Questioned documents were exposed to light or high temperature in a well-defined manner in order to simulate an increased age. This may be used to study the aging processes or to date documents by reproducing their aging curve. Ink was studied especially because it is deposited on the paper when a document, such as a contract, is produced. Once on the paper, aging processes start through degradation of dyes, solvents drying and resins polymerisation. Modelling of dye's and solvent's aging was attempted. These processes, however, follow complex pathways, influenced by many factors which can be classified as three major groups: ink composition, paper type and storage conditions. The influence of these factors is such that different aging states can be obtained for an identical point in time. Storage conditions in particular are difficult to simulate, as they are dependent on environmental conditions (e.g. intensity and dose of light, temperature, air flow, humidity) and cannot be controlled in the natural aging of questioned documents. The problem therefore lies more in the variety of different conditions a questioned document might be exposed to during its natural aging, rather than in the simulation of such conditions in the laboratory. Nevertheless, a precise modelling of natural aging curves based on artificial aging curves is obtained when performed on the same paper and ink. A standard model for aging processes of ink on paper is therefore presented that is based on a fit of aging curves to a power law of solvent concentrations as a function of time. A mathematical transformation of artificial aging curves into modelled natural aging curves results in excellent overlap with data from real natural aging processes.

  11. Are voluntary wheel running and open-field behavior correlated in mice? Different answers from comparative and artificial selection approaches.

    Science.gov (United States)

    Careau, Vincent; Bininda-Emonds, Olaf R P; Ordonez, Genesis; Garland, Theodore

    2012-09-01

    Voluntary wheel running and open-field behavior are probably the two most widely used measures of locomotion in laboratory rodents. We tested whether these two behaviors are correlated in mice using two approaches: the phylogenetic comparative method using inbred strains of mice and an ongoing artificial selection experiment on voluntary wheel running. After taking into account the measurement error and phylogenetic relationships among inbred strains, we obtained a significant positive correlation between distance run on wheels and distance moved in the open-field for both sexes. Thigmotaxis was negatively correlated with distance run on wheels in females but not in males. By contrast, mice from four replicate lines bred for high wheel running did not differ in either distance covered or thigmotaxis in the open field as compared with mice from four non-selected control lines. Overall, results obtained in the selection experiment were generally opposite to those observed among inbred strains. Possible reasons for this discrepancy are discussed.

  12. Advances in high-field superconducting composites by addition of artificial pinning centres to niobium-titanium

    International Nuclear Information System (INIS)

    Cooley, L.D.; Motowidlo, L.R.

    1999-01-01

    Artificial pinning-centre (APC) niobium-titanium composites attain critical current density J c values higher than 4000 A mm -2 at 5 T, 4.2 K, surpassing the barrier reached by the conventional Nb-Ti composite process. At 2 T APC composites achieve more than double the J c of conventional composites, making them particularly well suited for low-field applications. On the other hand, APC composites are inferior to conventional composites at 8 T, due to weak high-field pinning and reduced upper critical field. This review discusses fabrication techniques, microstructural development and superconducting and flux-pinning properties of APC composites. Key elements and underlying issues for achieving higher J c are identified and discussed in terms of the current state of the art. (author)

  13. Creating Spin-One Fermions in the Presence of Artificial Spin-Orbit Fields: Emergent Spinor Physics and Spectroscopic Properties

    Science.gov (United States)

    Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá

    2018-05-01

    We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.

  14. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  15. Electric Potential and Electric Field Imaging with Applications

    Science.gov (United States)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  16. A Julia set model of field-directed morphogenesis: developmental biology and artificial life.

    Science.gov (United States)

    Levin, M

    1994-04-01

    One paradigm used in understanding the control of morphogenetic events is the concept of positional information, where sub-organismic components (such as cells) act in response to positional cues. It is important to determine what kinds of spatiotemporal patterns may be obtained by such a method, and what the characteristics of such a morphogenetic process might be. This paper presents a computer model of morphogenesis based on gene activity driven by interpreting a positional information field. In this model, the interactions of mutually regulating developmental genes are viewed as a map from R2 to R2, and are modeled by the complex number algebra. Functions in complex variables are used to simulate genetic interactions resulting in position-dependent differentiation. This is shown to be equivalent to computing modified Julia sets, and is seen to be sufficient to produce a very rich set of morphologies which are similar in appearance and several important characteristics to those of real organisms. The properties of this model can be used to study the potential role of fields and positional information as guiding factors in morphogenesis, as the model facilitates the study of static images, time-series (movies) and experimental alterations of the developmental process. It is thus shown that gene interactions can be modeled as a multi-dimensional algebra, and that only two interacting genes are sufficient for (i) complex pattern formation, (ii) chaotic differentiation behavior, and (iii) production of sharp edges from a continuous positional information field. This model is meant to elucidate the properties of the process of positional information-guided biomorphogenesis, not to serve as a simulation of any particular organism's development. Good quantitative data are not currently available on the interplay of gene products in morphogenesis. Thus, no attempt is made to link the images produced with actual pictures of any particular real organism. A brief

  17. Filament shape versus coronal potential magnetic field structure

    Science.gov (United States)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  18. Coppicing potential of Eucalyptus nitens : results from a field survey ...

    African Journals Online (AJOL)

    In order to determine factors which could have a positive influence on the coppicing potential of Eucalyptus nitens , a field survey was carried out at Draycott, near Estcourt in the KwaZulu-Natal Midlands. Five measures of the ability to coppice (stump survival, height of coppice, number of dominant shoots, coppicing ...

  19. Effective potential in Lorentz-breaking field theory models

    Energy Technology Data Exchange (ETDEWEB)

    Baeta Scarpelli, A.P. [Centro Federal de Educacao Tecnologica, Nova Gameleira Belo Horizonte, MG (Brazil); Setor Tecnico-Cientifico, Departamento de Policia Federal, Belo Horizonte, MG (Brazil); Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Felipe, J.C.C. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Engenharia, Ciencia e Tecnologia, Veredas, Janauba, MG (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)

    2017-12-15

    We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)

  20. Effective potential in Lorentz-breaking field theory models

    International Nuclear Information System (INIS)

    Baeta Scarpelli, A.P.; Brito, L.C.T.; Felipe, J.C.C.; Nascimento, J.R.; Petrov, A.Yu.

    2017-01-01

    We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)

  1. Color and odor of artificial fruit used to signal potential dispersers in the Atlantic forest in Brazil

    Directory of Open Access Journals (Sweden)

    Aliny Oliveira Barcelos

    2012-06-01

    Full Text Available Fruit color and odor are the main features regulating the rate of fruit predation and dispersal. The aim of this study was to analyze the effect of odor and color on fruit predators and dispersers. The present study was conducted in a 30ha area of secondary forest in Southeastern Atlantic Brazil. This area was divided into two transects, in which four points were marked with a 30m distance from each other. Each sampling point contained a total of 30 artificial fruit which belong to six different treatment groups, with five artificial fruit per group. Each group was randomly placed on the ground and that artificial fruit was checked every seven days. For each group of five fruit, 5mL of essence (vanilla or pineapple were placed, and no essence was used in the control group. Artificial fruit was made with green and red nontoxic modeling clay, as well as artificial essences (vanilla and pineapple. A total of 960 fruits were used. Predated fruit equaled 26.9% (258 units, from which the red/pineapple had the highest predation rate (81.9%, followed by red/vanilla (46.3%, while green/control fruits were not predated. Throughout the experiment, bitten fruit and pecked fruit equaled 58.3% and 41.7%, respectively. No significant differences were recorded (x²=7.57, df=5, p=0.182 between bitten and pecked fruit. Fruit color and odor are important in attracting predators and dispersers, which explains the high rate of predation of red/vanilla and red/pineapple, and the absence of predated fruits in the green/control group. Regarding the potential disperser, there was no statistically significant difference between pecked fruit and bitten fruit. As a result, it should be taken into consideration that zoochory (mammalochory and ornithochory is the most important dispersal; therefore, it should be concluded that birds are more attracted by color and mammals by odor. Rev. Biol. Trop. 60 (2: 925-931. Epub 2012 June 01.

  2. Does ozone enhance the remineralizing potential of nanohydroxyapatite on artificially demineralized enamel? A laser induced fluorescence study

    Science.gov (United States)

    Srinivasan, Samuelraj; Prabhu, Vijendra; Chandra, Subhash; Koshy, Shalini; Acharya, Shashidhar; Mahato, Krishna K.

    2014-02-01

    The present era of minimal invasive dentistry emphasizes the early detection and remineralization of initial enamel caries. Ozone has been shown to reverse the initial demineralization before the integrity of the enamel surface is lost. Nano-hydroxyapatite is a proven remineralizing agent for early enamel caries. In the present study, the effect of ozone in enhancing the remineralizing potential of nano-hydroxyapatite on artificially demineralized enamel was investigated using laser induced fluorescence. Thirty five sound human premolars were collected from healthy subjects undergoing orthodontic treatment. Fluorescence was recorded by exciting the mesial surfaces using 325 nm He-Cd laser with 2 mW power. Tooth specimens were subjected to demineralization to create initial enamel caries. Following which the specimens were divided into three groups, i.e ozone (ozonated water for 2 min), without ozone and artificial saliva. Remineralization regimen was followed for 3 weeks. The fluorescence spectra of the specimens were recorded from all the three experimental groups at baseline, after demineralization and remineralization. The average spectrum for each experimental group was used for statistical analysis. Fluorescence intensities of Ozone treated specimens following remineralization were higher than that of artificial saliva, and this difference was found to be statistically significant (P<0.0001). In a nutshell, ozone enhanced the remineralizing potential of nanohydroxyapatite, and laser induced fluorescence was found to be effective in assessing the surface mineral changes in enamel. Ozone can be considered an effective agent in reversing the initial enamel caries there by preventing the tooth from entering into the repetitive restorative cycle.

  3. DEVELOPING A HUMAN CONTROLLED MODEL FOR SAFE ARTIFICIAL INTELLIGENCE SYSTEMS

    OpenAIRE

    KÖSE, Utku

    2018-01-01

    Artificial Intelligence is known as one of the most effective research field of nowadays and the future. But rapid rise of Artificial Intelligence and its potential to solve all real world problems autonomously, it has caused also several anxieties. Some scientists think that intelligent systems can reach to a level, which is dangerous for the humankind so because of that some precautions should be taken. So, many sub-research fields like Machine Ethics or Artificial Intelligence Safety have ...

  4. Brain potentials predict learning, transmission and modification of an artificial symbolic system

    DEFF Research Database (Denmark)

    Lumaca, Massimo; Baggio, G.

    2016-01-01

    capacity account for aspects of ‘variation’ observed in symbolic behavior and symbolic systems. We addressed this issue in the domain of auditory processing.We conducted a combined behavioral and EEG study on 2 successive days. On day 1, participants listened to standard and deviant five-tone sequences......: as in previous oddball studies, an mismatch negativity (MMN) was elicited by deviant tones. On day 2, participants learned an artificial signaling system from a trained confederate of the experimenters in a coordination game in which five-tone sequences were associated to affective meanings (emotion......-laden pictures of human faces). In a subsequent game with identical structure, participants transmitted and occasionally changed the signaling system learned during the first game. TheMMNlatency from day 1 predicted learning, transmission and structural modification of signaling systems on day 2. Our study...

  5. Potentially harmful secondary metabolites produced by indoor Chaetomium species on artificially and naturally contaminated building materials

    DEFF Research Database (Denmark)

    Dosen, Ina; Nielsen, Kristian Fog; Clausen, Geo

    2017-01-01

    , have been screened for, and thus detected in buildings. In this study, we used a liquid chromatography-high resolution mass spectrometry approach to screen both artificially and naturally infected building materials for all the Chaetomium metabolites described in the literature. Pure agar cultures were...... also investigated in order to establish differences between metabolite production in vitro and on building materials as well as comparison to non-indoor reference strains. On building materials six different chaetoglobosins were detected in total concentrations of up to 950 mg/m2 from C. globosum along...... with three different chaetoviridins/chaetomugilins in concentrations up to 200 mg/m2. Indoor Chaetomium spp. preferred wood-based materials over gypsum, both in terms of growth rate and metabolite production. Cochliodones were detected for the first time on all building materials infected by both C. globosum...

  6. Sign language recognition and translation: a multidisciplined approach from the field of artificial intelligence.

    Science.gov (United States)

    Parton, Becky Sue

    2006-01-01

    In recent years, research has progressed steadily in regard to the use of computers to recognize and render sign language. This paper reviews significant projects in the field beginning with finger-spelling hands such as "Ralph" (robotics), CyberGloves (virtual reality sensors to capture isolated and continuous signs), camera-based projects such as the CopyCat interactive American Sign Language game (computer vision), and sign recognition software (Hidden Markov Modeling and neural network systems). Avatars such as "Tessa" (Text and Sign Support Assistant; three-dimensional imaging) and spoken language to sign language translation systems such as Poland's project entitled "THETOS" (Text into Sign Language Automatic Translator, which operates in Polish; natural language processing) are addressed. The application of this research to education is also explored. The "ICICLE" (Interactive Computer Identification and Correction of Language Errors) project, for example, uses intelligent computer-aided instruction to build a tutorial system for deaf or hard-of-hearing children that analyzes their English writing and makes tailored lessons and recommendations. Finally, the article considers synthesized sign, which is being added to educational material and has the potential to be developed by students themselves.

  7. Effect of temperature on the effectiveness of artificial reproduction of dace [Cyprinidae (Leuciscus leuciscus (L.))] under laboratory and field conditions.

    Science.gov (United States)

    Nowosad, Joanna; Targońska, Katarzyna; Chwaluczyk, Rafał; Kaszubowski, Rafał; Kucharczyk, Dariusz

    2014-10-01

    This study sought to determine the effect of water temperature on the effectiveness of artificial reproduction of dace brooders under laboratory and field conditions. Three temperatures were tested in the laboratory: 9.5, 12 and 14.5 °C (± 0.1 °C). The water temperature under field conditions was 11.0 ± 0.3 °C (Czarci Jar Fish Farm) and 13.2 ± 1.4 °C (Janowo Fish Farm). The study showed that artificial reproduction of dace is possible in all the temperature ranges under study and an embryo survival rate of over 87% can be achieved. Dace has also been found to be very sensitive to rapid temperature changes, even within the temperature ranges optimal for the species. Such changes have an adverse effect on the outcome of the reproduction process, such as a decrease in the percentage of reproducing females, a decrease in the pseudo-gonado-somatic index (PGSI) and a decrease in the embryo survival rate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. The GeoFlow experiment-spherical Rayleigh-Benard convection under the influence of an artificial central force field

    International Nuclear Information System (INIS)

    Gellert, M; Beltrame, P; Egbers, C

    2005-01-01

    Spherical Rayleigh-Benard convection under the influence of an artificial central force field produced by the so-called dielectrophoretic effect is studied as a simplified model of the flow in the outer earth core. The fluid motion there is most probably driving the earth's dynamo and the energy source for the earth's magnetic field. Studying convective flows in earth-like geometry could lead to a deeper understanding of the basics of these processes. This research is a preparatory study for the experiments on the International Space Station (ISS). A bifurcation-theoretical approach shows the existence of heteroclinic cycles between spherical modes (l, l + 1) for the non-rotating system. This behavior depends strong on the radius ratio of the spheres and will be hard to detect in the experiment. For slow rotations interactions of the azimuthal modes (m, m + 1) found in numerical simulations for supercritical states are supposed to be experimentally observable

  9. Birth of puppies of predetermined sex after artificial insemination with a low number of sex-sorted, frozen-thawed spermatozoa in field conditions.

    Science.gov (United States)

    Wei, Yun-Fang; Chen, Fang-Liang; Tang, Shu-Sheng; Mao, Ai-Guo; Li, Li-Guang; Cheng, Lu-Guang; Chen, Chao; Li, Fei-Xiang; Wang, Bin; Xu, Tao; Zhang, Yue-Jun; Li, Jing; Wan, Jiu-Sheng

    2017-08-01

    The aim of this study was to evaluate fertility and sex ratios after artificial insemination in dogs under field conditions. Semen was cryopreserved as unsorted (control) or was separated into X- and Y-chromosome-bearing sperm using a cell sorter. Sixty female dogs were inseminated with frozen-thawed spermatozoa of 100 × 10 6 unsorted (a dose in practice) and 4 × 10 6 sorted (X and Y group, respectively). A total of 20 dogs became pregnant and 126 puppies were born from the three groups. The percentage of parturition was similar for the X (5/20; 25.0%) and Y (4/20; 20.0%) group (P > 0.05), but lower than controls (11/20; 55.0%) (P dog spermatozoa at a farm level, making sperm-sexing technology potentially applicable for elite breeding units. © 2017 Japanese Society of Animal Science.

  10. Combining casein phosphopeptide-amorphous calcium phosphate with fluoride: synergistic remineralization potential of artificially demineralized enamel or not?

    Science.gov (United States)

    Elsayad, Iman; Sakr, Amal; Badr, Yahia

    2009-07-01

    Recaldent is a product of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). The remineralizing potential of CPP-ACP per se, or when combined with 0.22% Fl gel on artificially demineralized enamel using laser florescence, is investigated. Mesial surfaces of 15 sound human molars are tested using a He-Cd laser beam at 441.5 nm with 18-mW power as an excitation source on a suitable setup based on a Spex 750-M monochromator provided with a photomultiplier tube (PMT) for detection of collected autofluorescence from sound enamel. Mesial surfaces are subjected to demineralization for ten days. The spectra from demineralized enamel are measured. Teeth are divided into three groups according to the remineralizing regimen: group 1 Recaldent per se, group 2 Recaldent combined with fluoride gel and ACP, and group 3 artificial saliva as a positive control. After following these protocols for three weeks, the spectra from the remineralized enamel are measured. The spectra of enamel autofluorescence are recorded and normalized to peak intensity at about 540 nm to compare spectra from sound, demineralized, and remineralized enamel surfaces. A slight red shift occurred in spectra from demineralized enamel, while a blue shift may occur in remineralized enamel. Group 2 shows the highest remineralizing potential. Combining fluoride and ACP with CPP-ACP can give a synergistic effect on enamel remineralization.

  11. Comparison of potential field solutions for Carrington Rotation 2144

    Science.gov (United States)

    Hayashi, Keiji; Yang, Shangbin; Deng, Yuagyong

    2016-02-01

    We examined differences among the coronal magnetic field structures derived with the potential field source surface (PFSS) model for Carrington Rotation 2144, from 21 November to 19 December 2013. We used the synoptic maps of solar photospheric magnetic field from four observatories, the Huairou Solar Observing Station (HSOS), Global Oscillation Network Group (GONG), Helioseismic Magnetic Imager (HMI), and Wilcox Solar Observatory (WSO). We tested two smoothing methods, Gaussian and boxcar averaging, and correction of unbalanced net magnetic flux. The solutions of three-dimensional coronal magnetic field are significantly different each other. An open-field region derived with HSOS data agrees best with the corresponding coronal hole observed by Solar Dynamics Observatories/Atmospheric Imaging Assembly, while HMI data yielded best agreements with the near-Earth OMNI database. The GONG data overall gave agreements as good as the HMI. The PFSS calculations using WSO data were least sensitive to the choices we examined in this work. Differences in PFSS solutions using different choices and parameters in smoothing imply that the photospheric magnetic field distributions with size of several degrees at midlatitude and low-latitude regions can be decisive, at least, in the examined period. To better determine the global solar corona, therefore, further evaluation of influences from compact bipolar magnetic field is needed.

  12. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  13. A Comparative Investigation on Citation Counts and Altmetrics between Papers Authored by Universities and Companies in the Research Field of Artificial Intelligence

    OpenAIRE

    Luo, Feiheng; Zheng, Han; Erdt, Mojisola Helen; Raamkumar, Aravind Sesagiri; Theng, Yin-Leng

    2018-01-01

    Artificial Intelligence is currently a popular research field. With the development of deep learning techniques, researchers in this area have achieved impressive results in a variety of tasks. In this initial study, we explored scientific papers in Artificial Intelligence, making comparisons between papers authored by the top universities and companies from the dual perspectives of bibliometrics and altmetrics. We selected publication venues according to the venue rankings provided by Google...

  14. Research on Flow Field Perception Based on Artificial Lateral Line Sensor System

    Directory of Open Access Journals (Sweden)

    Guijie Liu

    2018-03-01

    Full Text Available In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.

  15. Modeling the long-term effect of winter cover crops on nitrate transport in artificially drained fields across the Midwest U.S.

    Science.gov (United States)

    A fall-planted cover crop is a management practice with multiple benefits including reducing nitrate losses from artificially drained fields. We used the Root Zone Water Quality Model (RZWQM) to simulate the impact of a cereal rye cover crop on reducing nitrate losses from drained fields across five...

  16. Artificial intelligence

    International Nuclear Information System (INIS)

    Perret-Galix, D.

    1992-01-01

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  17. Field efficacy of expanded polystyrene and shredded waste polystyrene beads for mosquito control in artificial pools and field trials, Islamic Republic of Iran.

    Science.gov (United States)

    Soltani, A; Vatandoost, H; Jabbari, H; Mesdaghinia, A R; Mahvi, A H; Younesian, M; Hanafi-Bojd, A A; Bozorgzadeh, S

    2012-10-01

    Concerns about traditional chemical pesticides has led to increasing research into novel mosquito control methods. This study compared the effectiveness of 2 different types of polystyrene beads for control of mosquito larvae in south-east Islamic Republic of Iran. Simulated field trials were done in artificial pools and field trials were carried out in 2 villages in an indigenous malaria area using WHO-recommended methods. Application of expanded polystyrene beads or shredded, waste polystyrene chips to pool surfaces produced a significant difference between pre-treatment and post-treatment density of mosquitoes (86% and 78% reduction respectively 2 weeks after treatment). There was no significant difference between the efficacy of the 2 types of material. The use of polystyrene beads as a component of integrated vector management with other supportive measures could assist in the control of mosquito-borne diseases in the Islamic Republic of Iran and neighbouring countries.

  18. Far-field potentials in cylindrical and rectangular volume conductors.

    Science.gov (United States)

    Dumitru, D; King, J C; Rogers, W E

    1993-07-01

    The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.

  19. Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)

    2017-06-20

    Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.

  20. Predicting local field potentials with recurrent neural networks.

    Science.gov (United States)

    Kim, Louis; Harer, Jacob; Rangamani, Akshay; Moran, James; Parks, Philip D; Widge, Alik; Eskandar, Emad; Dougherty, Darin; Chin, Sang Peter

    2016-08-01

    We present a Recurrent Neural Network using LSTM (Long Short Term Memory) that is capable of modeling and predicting Local Field Potentials. We train and test the network on real data recorded from epilepsy patients. We construct networks that predict multi-channel LFPs for 1, 10, and 100 milliseconds forward in time. Our results show that prediction using LSTM outperforms regression when predicting 10 and 100 millisecond forward in time.

  1. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  2. An optimized absorbing potential for ultrafast, strong-field problems

    Science.gov (United States)

    Yu, Youliang; Esry, B. D.

    2018-05-01

    Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.

  3. Artificial blood-flow controlling effects of inhomogeneity of twisted magnetic fields

    Science.gov (United States)

    Nakagawa, Hidenori; Ohuchi, Mikio

    2017-06-01

    We developed a blood-flow controlling system using magnetic therapy for some types of nervous diseases. In our research, we utilized overlapped extremely low frequency (ELF) fields for the most effective blood-flow for the system. Results showed the possibility that the inhomogeneous region obtained by overlapping the fields at 50 Hz, namely, a desirably twisted field revealed a significant difference in induced electromotive forces at the insertion points of electrodes. In addition, ELF exposures with a high inhomogeneity of the twisted field at 50 Hz out of phase were more effective in generating an induced electromotive difference by approximately 31%, as contrasted with the difference generated by the exposure in phase. We expect that the increase of the inhomogeneity of the twisted field around a blood vessel can produce the most effective electromotive difference in the blood, and also moderately affect the excitable cells relating to the autonomic nervous system for an outstanding blood-flow control in vivo.

  4. Primordial black holes from polynomial potentials in single field inflation

    Science.gov (United States)

    Hertzberg, Mark P.; Yamada, Masaki

    2018-04-01

    Within canonical single field inflation models, we provide a method to reverse engineer and reconstruct the inflaton potential from a given power spectrum. This is not only a useful tool to find a potential from observational constraints, but also gives insight into how to generate a large amplitude spike in density perturbations, especially those that may lead to primordial black holes (PBHs). In accord with other works, we find that the usual slow-roll conditions need to be violated in order to generate a significant spike in the spectrum. We find that a way to achieve a very large amplitude spike in single field models is for the classical roll of the inflaton to overshoot a local minimum during inflation. We provide an example of a quintic polynomial potential that implements this idea and leads to the observed spectral index, observed amplitude of fluctuations on large scales, significant PBH formation on small scales, and is compatible with other observational constraints. We quantify how much fine-tuning is required to achieve this in a family of random polynomial potentials, which may be useful to estimate the probability of PBH formation in the string landscape.

  5. Field and electric potential of conductors with fractal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de [Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador (Brazil)

    2007-11-28

    In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-{alpha}, where {alpha} is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases.

  6. Field and electric potential of conductors with fractal geometry

    International Nuclear Information System (INIS)

    Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de

    2007-01-01

    In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-α, where α is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases

  7. A field study of physico-chemical states of artificial radionuclides in seawater

    International Nuclear Information System (INIS)

    Nagaya, Yutaka; Nakamura, Kiyoshi

    1974-01-01

    The physico-chemical states of artificial radionuclides, 90 Sr, 137 Cs and 144 Ce in seawater were investigated by radiochemical analysis of filtered and unfiltered seawater. The difference of radionuclide concentrations between unfiltered and filtered seawaters was defined as the ''particulate form'' radioisotope and its ''particle ratio'' was discussed. Practically no particulate 90 Sr, greater than 0.22 μ in size, was observed in both coastal and open seawaters, but some of 137 Cs seemed to be insoluble in some circumstances, especially in coastal waters. A considerable amount of 144 Ce was found to be particulate. An estimation of the radionuclides in particulate form was made for Kashima-nada seawaters collected in 1970 to 1972, and it was shown that the possible occurrence of particulate radionuclides, greater than 0.22 μ in size, were 1% or less for 90 Sr and 6% for 137 Cs. In the coastal water, 80% of 144 Ce were seemed to be in particulate form, but in the open seawater only a few %. The influences of suspended materials to 137 Cs and 144 Ce concentration levels in seawater were not negligible and further investigations are desirable. (auth.)

  8. Quo Vadis, Artificial Intelligence?

    OpenAIRE

    Berrar, Daniel; Sato, Naoyuki; Schuster, Alfons

    2010-01-01

    Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervou...

  9. Potencial atrator de tubarões costeiros em recife artificial no litoral norte do estado do Rio de Janeiro, Brasil Attractive potential of coastal sharks in artificial reef on the Northern Coast of Rio de Janeiro State, Brazil

    Directory of Open Access Journals (Sweden)

    Vicente Vieira Faria

    2001-09-01

    Full Text Available Artificial reefs have been used in many countries to increase coastal fishery productivity. In order to increase fish attraction to the Northern Coast of Rio de Janeiro State, it was installed an artificial reef (1,500 m² 5 nautical miles off Manguinhos's Bay (São Francisco de ltabapoana, Rio de Janeiro. The artificial structures were made of tires, concrete and cement blocks. A gill net of 125 x 3 m was monthly used in the artificial reef (AR and in a control area (CA to determine the effect of the experimental structures on the stock and diversity of coastal sharks. Considering the complexity of a sustainable elasmobranch exploitation, sharks were focused in this study. During 24 months of investigation (April/96 to March/98, a total of 325 individuais distributed in four shark species were captured in the two areas (AR and CA: Mustelus higmani (Springer & Lowe, 1963 (AR = 70; CA = 82 individuals, Rhizoprionodon lalandii (Valenciennes, 1839 (AR = 86; CA = 56 individuals, R. porosus (Poey, 1861 (AR = 16; CA = 14 individuals and Carcharhinus brachyurus (Günther, 1870 (AR = 1 individual. The attractive potential of the artificial reef is suggested by the predominance of the shark R. lalandii in the reef complex after the first year of monitoring, with the increase of the structures.

  10. Artificial Niches for Stromal Stem Cells as a Potential Instrument for the Design of the Surface of Biomimetic Osteogenic Materials

    Science.gov (United States)

    Khlusov, I. A.; Khlusova, M. Yu.; Pichugin, V. F.; Sharkeev, Yu. P.; Legostaeva, E. V.

    2014-02-01

    A relationship between the topography of rough calcium phosphate surfaces having osteogenic niche-reliefs and the electrostatic potential of these surfaces as a possible instrument to control stromal stem cells has been investigated. The in vitro culture of human lung prenatal stromal cells on nanostructured/ultrafine-grained VT1.0 titanium alloy plates with bilateral rough calcium phosphate (CaP) microarc coating was used. It was established that the amplitude of the electret CaP surface potential linearly increased with increasing area of valleys (sockets), and the negative charge is formed on the socket surface. The area of alkaline phosphatase staining (the marker of osteoblast maturation and differentiation) of adherent CD34- CD44+ cells increases linearly with increasing area of artificial microterritory (socket) of the CaP surface occupied with each cell. The negative electret potential in valleys (sockets) of microarc CaP coatings can be the physical mechanism mediating the influence of the surface topography on osteogenic maturation and differentiation of cells in vitro. This mechanism can be called "niche-potential" and can be used as an instrument for biomimetic modification of smooth CaP surfaces to strengthen their integration with the bone tissue.

  11. Optimization of potential field method parameters through networks for swarm cooperative manipulation tasks

    Directory of Open Access Journals (Sweden)

    Rocco Furferi

    2016-10-01

    Full Text Available An interesting current research field related to autonomous robots is mobile manipulation performed by cooperating robots (in terrestrial, aerial and underwater environments. Focusing on the underwater scenario, cooperative manipulation of Intervention-Autonomous Underwater Vehicles (I-AUVs is a complex and difficult application compared with the terrestrial or aerial ones because of many technical issues, such as underwater localization and limited communication. A decentralized approach for cooperative mobile manipulation of I-AUVs based on Artificial Neural Networks (ANNs is proposed in this article. This strategy exploits the potential field method; a multi-layer control structure is developed to manage the coordination of the swarm, the guidance and navigation of I-AUVs and the manipulation task. In the article, this new strategy has been implemented in the simulation environment, simulating the transportation of an object. This object is moved along a desired trajectory in an unknown environment and it is transported by four underwater mobile robots, each one provided with a seven-degrees-of-freedom robotic arm. The simulation results are optimized thanks to the ANNs used for the potentials tuning.

  12. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  13. Appraisal of artificial screening techniques of tomato to accurately reflect field performance of the late blight resistance.

    Directory of Open Access Journals (Sweden)

    Marzena Nowakowska

    Full Text Available Late blight (LB caused by the oomycete Phytophthora infestans continues to thwart global tomato production, while only few resistant cultivars have been introduced locally. In order to gain from the released tomato germplasm with LB resistance, we compared the 5-year field performance of LB resistance in several tomato cultigens, with the results of controlled conditions testing (i.e., detached leaflet/leaf, whole plant. In case of these artificial screening techniques, the effects of plant age and inoculum concentration were additionally considered. In the field trials, LA 1033, L 3707, L 3708 displayed the highest LB resistance, and could be used for cultivar development under Polish conditions. Of the three methods using controlled conditions, the detached leaf and the whole plant tests had the highest correlation with the field experiments. The plant age effect on LB resistance in tomato reported here, irrespective of the cultigen tested or inoculum concentration used, makes it important to standardize the test parameters when screening for resistance. Our results help show why other reports disagree on LB resistance in tomato.

  14. Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs.

    Science.gov (United States)

    Hess, Ricarda; Jaeschke, Anna; Neubert, Holger; Hintze, Vera; Moeller, Stephanie; Schnabelrauch, Matthias; Wiesmann, Hans-Peter; Hart, David A; Scharnweber, Dieter

    2012-12-01

    In vivo, bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo-like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone-co-lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Artificial vesicles with incorporated photosynthetic materials for potential solar energy conversion systems

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2009-07-01

    Full Text Available WITH INCORPORATED PHOTOSYNTHETIC MATERIALS FOR POTENTIAL SOLAR ENERGY CONVERSION SYSTEMS J E Smit1, A F Grobler2, A E Karsten1, R W Sparrow3 1 CSIR National Laser Centre, PO Box 395, Pretoria, 0001, South Africa 2 Unit for drug development and research, North...

  16. Exploring uncertainty in the Earth Sciences - the potential field perspective

    Science.gov (United States)

    Saltus, R. W.; Blakely, R. J.

    2013-12-01

    Interpretation of gravity and magnetic anomalies is mathematically non-unique because multiple theoretical solutions are possible. The mathematical label of 'non-uniqueness' can lead to the erroneous impression that no single interpretation is better in a geologic sense than any other. The purpose of this talk is to present a practical perspective on the theoretical non-uniqueness of potential field interpretation in geology. There are multiple ways to approach and constrain potential field studies to produce significant, robust, and definitive results. For example, a smooth, bell-shaped gravity profile, in theory, could be caused by an infinite set of physical density bodies, ranging from a deep, compact, circular source to a shallow, smoothly varying, inverted bell-shaped source. In practice, however, we can use independent geologic or geophysical information to limit the range of possible source densities and rule out many of the theoretical solutions. We can further reduce the theoretical uncertainty by careful attention to subtle anomaly details. For example, short-wavelength anomalies are a well-known and theoretically established characteristic of shallow geologic sources. The 'non-uniqueness' of potential field studies is closely related to the more general topic of scientific uncertainty in the Earth sciences and beyond. Nearly all results in the Earth sciences are subject to significant uncertainty because problems are generally addressed with incomplete and imprecise data. The increasing need to combine results from multiple disciplines into integrated solutions in order to address complex global issues requires special attention to the appreciation and communication of uncertainty in geologic interpretation.

  17. Phosphorus export from artificially drained fields across the Eastern corn belt

    Science.gov (United States)

    Field observations that quantify agricultural phosphorus (P) losses are critical for the development of P reduction strategies across the Eastern Corn Belt region of North America. Within this region, surface water bodies including Lake Erie are sensitive to non-point P loadings. It is therefore imp...

  18. Cationic Thiolated Poly(aspartamide) Polymer as a Potential Excipient for Artificial Tear Formulations.

    Science.gov (United States)

    Budai-Szűcs, Mária; Horvát, Gabriella; Szilágyi, Barnabás Áron; Gyarmati, Benjámin; Szilágyi, András; Berkó, Szilvia; Szabó-Révész, Piroska; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Soós, Judit; Facskó, Andrea; Csányi, Erzsébet

    2016-01-01

    Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide)-co-(N-(N',N'-dimethylaminoethyl)aspartamide)] (ThioPASP-DME), was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease.

  19. Cationic Thiolated Poly(aspartamide Polymer as a Potential Excipient for Artificial Tear Formulations

    Directory of Open Access Journals (Sweden)

    Mária Budai-Szűcs

    2016-01-01

    Full Text Available Dry eye disease is a relatively common ocular problem, which causes eye discomfort and visual disorders leading to a decrease in the quality of life. The aim of this study was to find a possible excipient for eye drop formulations, which is able to stabilize the tear film. A cationic thiolated polyaspartamide polymer, poly[(N-mercaptoethylaspartamide-co-(N-(N′,N′-dimethylaminoethylaspartamide] (ThioPASP-DME, was used as a potential vehicle. Besides satisfying the basic requirements, the chemical structure of ThioPASP-DME is similar to those of ocular mucins as it is a protein-like polymer bearing a considerable number of thiol groups. The solution of the polymer is therefore able to mimic the physiological properties of the mucins and it can interact with the mucus layer via disulphide bond formation. The resultant mucoadhesion provides a prolonged residence time and ensures protective effect for the corneal/conjunctival epithelium. ThioPASP-DME also has an antioxidant effect due to the presence of the thiol groups. The applicability of ThioPASP-DME as a potential excipient in eye drops was determined by means of ocular compatibility tests and through examinations of the interactions with the mucosal surface. The results indicate that ThioPASP-DME can serve as a potential eye drop excipient for the therapy of dry eye disease.

  20. ["Handle with care": about the potential unintended consequences of oracular artificial intelligence systems in medicine.

    Science.gov (United States)

    Cabitza, Federico; Alderighi, Camilla; Rasoini, Raffaele; Gensini, Gian Franco

    2017-10-01

    Decisional support systems based on machine learning (ML) in medicine are gaining a growing interest as some recent articles have highlighted the high diagnostic accuracy exhibited by these systems in specific medical contexts. However, it is implausible that any potential advantage can be obtained without some potential drawbacks. In light of the current gaps in medical research about the side effects of the application of these new AI systems in medical practice, in this article we summarize the main unexpected consequences that may result from the widespread application of "oracular" systems, that is highly accurate systems that cannot give reasonable explanations of their advice as those endowed with predictive models developed with ML techniques usually are. These consequences range from the intrinsic uncertainty in the data that are used to train and feed these systems, to the inadequate explainability of their output; through the risk of overreliance, deskilling and context desensitization of their end-users. Although some of these issues may be currently hard to evaluate due to the still scarce adoption of these decisional systems in medical practice, we advocate the study of these potential consequences also for a more informed policy of approval beyond hype and disenchantment.

  1. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    Directory of Open Access Journals (Sweden)

    R. Huth

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  2. The response of earthworms (Eisenia fetida) and soil microbes to the crumb rubber material used in artificial turf fields.

    Science.gov (United States)

    Pochron, Sharon T; Fiorenza, Andrew; Sperl, Cassandra; Ledda, Brianne; Lawrence Patterson, Charles; Tucker, Clara C; Tucker, Wade; Ho, Yuwan Lisa; Panico, Nicholas

    2017-04-01

    Municipalities have been replacing grass fields with artificial turf, which uses crumb rubber infill made from recycled tires. Crumb rubber contains hydrocarbons, organic compounds, and heavy metals. Water runoff from crumb rubber fields contains heavy metals. These components can damage the environment. We contaminated topsoil with new crumb rubber and measured its impact on earthworms and soil microbes. Specifically, we compared soil microbe activity and earthworm health, survivorship, and longevity in heat and light stress under two soil regimes: clean topsoil and clean topsoil contaminated with crumb rubber. We then characterized levels of metals, nutrients, and micronutrients of both soil treatments and compared those to published New York soil background levels and to levels set by the New York State Department of Environmental Conservation (DEC) as remediation goals. We found that: 1) contaminated soil did not inhibit microbial respiration rates, 2) earthworm survivorship was not impacted by exposure to contaminated soil, 3) earthworms' ability to cope with heat and light stress remained unchanged after living in contaminated soil, but 4) earthworms living in contaminated soil gained 14% less body weight than did earthworms living in uncontaminated soil. We also found that, with the exception of zinc, heavy metals in our contaminated soil did not exceed the background levels found throughout New York State or the remediation targets set by the DEC. Published by Elsevier Ltd.

  3. Evanescent field: A potential light-tool for theranostics application

    Science.gov (United States)

    Polley, Nabarun; Singh, Soumendra; Giri, Anupam; Pal, Samir Kumar

    2014-03-01

    A noninvasive or minimally invasive optical approach for theranostics, which would reinforce diagnosis, treatment, and preferably guidance simultaneously, is considered to be major challenge in biomedical instrument design. In the present work, we have developed an evanescent field-based fiber optic strategy for the potential theranostics application in hyperbilirubinemia, an increased concentration of bilirubin in the blood and is a potential cause of permanent brain damage or even death in newborn babies. Potential problem of bilirubin deposition on the hydroxylated fiber surface at physiological pH (7.4), that masks the sensing efficacy and extraction of information of the pigment level, has also been addressed. Removal of bilirubin in a blood-phantom (hemoglobin and human serum albumin) solution from an enhanced level of 77 μM/l (human jaundice >50 μM/l) to ˜30 μM/l (normal level ˜25 μM/l in human) using our strategy has been successfully demonstrated. In a model experiment using chromatography paper as a mimic of biological membrane, we have shown efficient degradation of the bilirubin under continuous monitoring for guidance of immediate/future course of action.

  4. Synthesis and in vitro evaluation of PNA-peptide-DETA conjugates as potential cell penetrating artificial ribonucleases.

    Science.gov (United States)

    Petersen, Lene; de Koning, Martijn C; van Kuik-Romeijn, Petra; Weterings, Jimmy; Pol, Christine J; Platenburg, Gerard; Overhand, Mark; van der Marel, Gijsbert A; van Boom, Jacques H

    2004-01-01

    We report the synthesis of novel artificial ribonucleases with potentially improved cellular uptake. The design of trifunctional conjugates 1a and 1b is based on the specific RNA-recognizing properties of PNA, the RNA-cleaving abilities of diethylenetriamine (DETA), and the peptide (KFF)(3)K for potential uptake into E. coli. The conjugates were assembled in a convergent synthetic route involving native chemical ligation of a PNA, containing an N-terminal cysteine, with the C-terminal thioester of the cell-penetrating (KFF)(3)K peptide to give 12a and 12b. These hybrids contained a free cysteine side-chain, which was further functionalized with an RNA-hydrolyzing diethylenetriamine (DETA) moiety. The trifunctional conjugates (1a, 1b) were evaluated for RNA-cleaving properties in vitro and showed efficient degradation of the target RNA at two major cleavage sites. It was also established that the cleavage efficiency strongly depended on the type of spacer connecting the PNA and the peptide.

  5. Prediction of Potential Hit Song and Musical Genre Using Artificial Neural Networks

    Science.gov (United States)

    Monterola, Christopher; Abundo, Cheryl; Tugaff, Jeric; Venturina, Lorcel Ericka

    Accurately quantifying the goodness of music based on the seemingly subjective taste of the public is a multi-million industry. Recording companies can make sound decisions on which songs or artists to prioritize if accurate forecasting is achieved. We extract 56 single-valued musical features (e.g. pitch and tempo) from 380 Original Pilipino Music (OPM) songs (190 are hit songs) released from 2004 to 2006. Based on an effect size criterion which measures a variable's discriminating power, the 20 highest ranked features are fed to a classifier tasked to predict hit songs. We show that regardless of musical genre, a trained feed-forward neural network (NN) can predict potential hit songs with an average accuracy of ΦNN = 81%. The accuracy is about +20% higher than those of standard classifiers such as linear discriminant analysis (LDA, ΦLDA = 61%) and classification and regression trees (CART, ΦCART = 57%). Both LDA and CART are above the proportional chance criterion (PCC, ΦPCC = 50%) but are slightly below the suggested acceptable classifier requirement of 1.25*ΦPCC = 63%. Utilizing a similar procedure, we demonstrate that different genres (ballad, alternative rock or rock) of OPM songs can be automatically classified with near perfect accuracy using LDA or NN but only around 77% using CART.

  6. Solving potential field problems in composite media with complicated geometries

    International Nuclear Information System (INIS)

    Yeh, H.

    1977-01-01

    Recently, Yeh developed a method of solving potential field problems for complicated geometries and theorems of piecewise continuous eigenfunctions which can be used to solve boundary-value problems in composite media by the separation of variables. This paper shows that by a proper arrangement of matching conditions and boundary conditions, this method and these theorems can be applied simultaneously so that the problems in composite media with complicated geometries can be solved. To illustrate this, a heat-conduction problem in a composite cylinder with an abrupt change in cross-section area is solved. Also presented in this paper are the method of handling the nonhomogeneous boundary conditions for composite media and the extension of one of the above-mentioned theorems to include imperfect contact on material boundaries

  7. The local field potential reflects surplus spike synchrony

    DEFF Research Database (Denmark)

    Denker, Michael; Roux, Sébastien; Lindén, Henrik

    2011-01-01

    While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions...... of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes....... This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations...

  8. Inflation from the Higgs field false vacuum with hybrid potential

    DEFF Research Database (Denmark)

    Masina, I.; Notari, A.

    2012-01-01

    We have recently suggested [1, 2] that Inflation could have started in a local minimum of the Higgs potential at field values of about 10(15) - 10(17) GeV, which exists for a narrow band of values of the top quark and Higgs masses and thus gives rise to a prediction on the Higgs mass...... we present an alternative possibility with an additional subdominant scalar very weakly coupled to the Higgs, realizing an (inverted) hybrid Inflation scenario. Interestingly, we show that such model has an additional constraint m(H) ..., this selects a narrower range 10(-4) less than or similar to r Higgs mass of about m(H)

  9. From neurons to circuits: linear estimation of local field potentials

    Science.gov (United States)

    Rasch, Malte; Logthetis, Nikos K.; Kreiman, Gabriel

    2010-01-01

    Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs, a circuit property) and spiking multi-unit activity (MUA). There has been increased interest in LFPs due to their correlation with fMRI measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same or nearby electrodes. We used Signal Estimation Theory to show that a linear filter operation on the activity of one/few neurons can explain a significant fraction of the LFP time course in the macaque primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positve time lags. The filter was similar across neocortical regions and behavioral conditions including spontaneous activity and visual stimulation. The estimations had a spatial resolution of ~1 mm and a temporal resolution of ~200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than negative time lags. Additionally, we showed that spikes occurring within ~10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In sum, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons. PMID:19889990

  10. Potential of carbon nanotube field effect transistors for analogue circuits

    KAUST Repository

    Hayat, Khizar

    2013-05-11

    This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET\\'s potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.

  11. Potential of carbon nanotube field effect transistors for analogue circuits

    KAUST Repository

    Hayat, Khizar; Cheema, Hammad; Shamim, Atif

    2013-01-01

    This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET's potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.

  12. Space-frequency analysis and reduction of potential field ambiguity

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    1997-06-01

    Full Text Available Ambiguity of depth estimation of magnetic sources via spectral analysis can be reduced representing its field via a set of space-frequency atoms. This is obtained throughout a continuous wavelet transform using a Morlet analyzing wavelet. In the phase-plane representation even a weak contribution related to deep-seated sources is clearly distinguished with respect a more intense effect of a shallow source, also in the presence of a strong noise. Furthermore, a new concept of local power spectrum allows the depth to both the sources to be correctly interpreted. Neither result can be provided by standard Fourier analysis. Another method is proposed to reduce ambiguity by inversion of potential field data lying along the vertical axis. This method allows a depth resolution to gravity or the magnetic methods and below some conditions helps to reduce their inherent ambiguity. Unlike the case of monopoles, inversion of a vertical profile of gravity data above a cubic source gives correct results for the cube side and density.

  13. Potential vorticity field in the Bay of Bengal during southwest monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Rao, D.P.

    theta), potential vorticity distribution is complex due to wind and freshwater forcings. The beta -effect dominates the potential vorticity field on 26.9 sigma theta isopycnal. The field of potential vorticity closely follows that of circulation...

  14. Fabrication of artificial arteriovenous fistula and analysis of flow field and shear stress by using μ-PIV technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Cheol; Kim, Hyun Kyu [Div. of Vascular Surgery, Dept. of Surgery, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of); Song, Ryun Geun; Kim, Sun Ho; Lee, Jin Kee [School of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Seung Hyun [School of Engineering, Brown University, Providence (United States)

    2016-12-15

    Radio-cephalic arteriovenous fistula (RC-AVF) is an operation performed to achieve vascular access for hemodialysis. Although RC-AVF is a reliable and well-known method, this technique presents high rates of early failure depending on the vessel condition. These failures are due to blood shear stress around the anastomosis site and the vascular access failure caused by thrombosis secondary to stenosis formation, as well as vascular access reocclusion after percutaneous interventions. In this work, we fabricate in vitro 3D RC-AVF by using polydimethylsiloxane and 3D printing technology to understand the underlying mechanism and predict AVF failure. Micro- Particle image velocimetry (μ-PIV) focusing on the cardiac pulse cycle is used to measure the velocity field within the artificial blood vessel. Results are confirmed by numerical simulation. Accordingly, the in vitro AVF model agrees well with the simulations. Overall, this research would provide the future possibility of using the proposed method to reduce in vivo AVF failure for various conditions.

  15. Artificial E-region field-aligned plasma irregularities generated at pump frequencies near the second electron gyroharmonic

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2009-07-01

    Full Text Available E region ionospheric modification experiments have been performed at HAARP using pump frequencies about 50 kHz above and below the second electron gyroharmonic frequency. Artificial E region field-aligned plasma density irregularities (FAIs were created and observed using the imaging coherent scatter radar near Homer, Alaska. Echoes from FAIs generated with pump frequencies above and below 2Ωe did not appear to differ significantly in experiments conducted on summer afternoons in 2008, and the resonance instability seemed to be at work in either case. We argue that upper hybrid wave trapping and resonance instability at pump frequencies below the second electron gyroharmonic frequency are permitted theoretically when the effects of finite parallel wavenumbers are considered. Echoes from a sporadic E layer were observed to be somewhat weaker when the pump frequency was 50 kHz below the second electron gyroharmonic frequency. This may indicate that finite parallel wavenumbers are inconsistent with wave trapping in thin sporadic E ionization layers.

  16. Artificial E-region field-aligned plasma irregularities generated at pump frequencies near the second electron gyroharmonic

    Directory of Open Access Journals (Sweden)

    D. L. Hysell

    2009-07-01

    Full Text Available E region ionospheric modification experiments have been performed at HAARP using pump frequencies about 50 kHz above and below the second electron gyroharmonic frequency. Artificial E region field-aligned plasma density irregularities (FAIs were created and observed using the imaging coherent scatter radar near Homer, Alaska. Echoes from FAIs generated with pump frequencies above and below 2Ωe did not appear to differ significantly in experiments conducted on summer afternoons in 2008, and the resonance instability seemed to be at work in either case. We argue that upper hybrid wave trapping and resonance instability at pump frequencies below the second electron gyroharmonic frequency are permitted theoretically when the effects of finite parallel wavenumbers are considered. Echoes from a sporadic E layer were observed to be somewhat weaker when the pump frequency was 50 kHz below the second electron gyroharmonic frequency. This may indicate that finite parallel wavenumbers are inconsistent with wave trapping in thin sporadic E ionization layers.

  17. Color and odor of artificial fruit used to signal potential dispersers in the Atlantic forest in Brazil

    Directory of Open Access Journals (Sweden)

    Aliny Oliveira Barcelos

    2012-06-01

    Full Text Available Fruit color and odor are the main features regulating the rate of fruit predation and dispersal. The aim of this study was to analyze the effect of odor and color on fruit predators and dispersers. The present study was conducted in a 30ha area of secondary forest in Southeastern Atlantic Brazil. This area was divided into two transects, in which four points were marked with a 30m distance from each other. Each sampling point contained a total of 30 artificial fruit which belong to six different treatment groups, with five artificial fruit per group. Each group was randomly placed on the ground and that artificial fruit was checked every seven days. For each group of five fruit, 5mL of essence (vanilla or pineapple were placed, and no essence was used in the control group. Artificial fruit was made with green and red nontoxic modeling clay, as well as artificial essences (vanilla and pineapple. A total of 960 fruits were used. Predated fruit equaled 26.9% (258 units, from which the red/pineapple had the highest predation rate (81.9%, followed by red/vanilla (46.3%, while green/control fruits were not predated. Throughout the experiment, bitten fruit and pecked fruit equaled 58.3% and 41.7%, respectively. No significant differences were recorded (x²=7.57, df=5, p=0.182 between bitten and pecked fruit. Fruit color and odor are important in attracting predators and dispersers, which explains the high rate of predation of red/vanilla and red/pineapple, and the absence of predated fruits in the green/control group. Regarding the potential disperser, there was no statistically significant difference between pecked fruit and bitten fruit. As a result, it should be taken into consideration that zoochory (mammalochory and ornithochory is the most important dispersal; therefore, it should be concluded that birds are more attracted by color and mammals by odor. Rev. Biol. Trop. 60 (2: 925-931. Epub 2012 June 01.El olor y el color de los frutos son las

  18. The Indian Ocean nodule field: Geology and resource potential

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.; Ghosh, A; Iyer, S.D.

    This book briefly accounts for the physiography, geology, biology, physics and chemistry of the nodule field, and discusses in detail the aspects of structure, tectonic and volcanism in the field. The role of the ocean floor sediment that hosts...

  19. Application of an Artificial Neural Network to the Prediction of OH Radical Reaction Rate Constants for Evaluating Global Warming Potential.

    Science.gov (United States)

    Allison, Thomas C

    2016-03-03

    Rate constants for reactions of chemical compounds with hydroxyl radical are a key quantity used in evaluating the global warming potential of a substance. Experimental determination of these rate constants is essential, but it can also be difficult and time-consuming to produce. High-level quantum chemistry predictions of the rate constant can suffer from the same issues. Therefore, it is valuable to devise estimation schemes that can give reasonable results on a variety of chemical compounds. In this article, the construction and training of an artificial neural network (ANN) for the prediction of rate constants at 298 K for reactions of hydroxyl radical with a diverse set of molecules is described. Input to the ANN consists of counts of the chemical bonds and bends present in the target molecule. The ANN is trained using 792 (•)OH reaction rate constants taken from the NIST Chemical Kinetics Database. The mean unsigned percent error (MUPE) for the training set is 12%, and the MUPE of the testing set is 51%. It is shown that the present methodology yields rate constants of reasonable accuracy for a diverse set of inputs. The results are compared to high-quality literature values and to another estimation scheme. This ANN methodology is expected to be of use in a wide range of applications for which (•)OH reaction rate constants are required. The model uses only information that can be gathered from a 2D representation of the molecule, making the present approach particularly appealing, especially for screening applications.

  20. Evaluation of the potential for artificial ground-water recharge in eastern San Joaquin County, California; Phase 3

    Science.gov (United States)

    Hamlin, S.N.

    1987-01-01

    Infiltration tests were used to evaluate the potential of basin spreading surface water as a means of artificially recharging the aquifer system in eastern San Joaquin County, California. Two infiltration sites near Lockeford and Linden were selected on the basis of information collected during the first two phases of the study. Data from the infiltration tests indicate that the two sites are acceptable for recharge by the basin-spreading method. Infiltration rates ranged between 6.7 and 10.5 ft/day near Lockeford and between 2.6 and 11.2 ft/day near Linden. Interpretation of these data is limited by lack of information on the response of the saturated zone during testing and by the inherent difficulty in extrapolating the results of small-scale tests to larger long-term operations. Lithology is a major factor that controls infiltration rates at the test sites. The unsaturated zone is characterized by heterogeneous layers of coarse- and fine- grained materials. Clay layers of low hydraulic conductivity commonly form discontinuous lenses that may cause a transient perched water table to develop during recharge. Water level measurements from wells screened in the unsaturated zone indicate that the perched water table could reach the land surface after 2 and 5 months of recharge near Lockeford and Linden, respectively. These figures probably represent the minimum time necessary for saturation of the land. Another major factor that affects infiltration rates is the quality of the recharge water, particularly the suspended sediment content. The clogging action of suspended sediment may be minimized by: (1) pretreatment of recharge water in a settling pond, (2) adherence to a routine program of monitoring and maintenance, and (3) proper design of the recharge facility. Other factors that affect infiltration rates include basin excavation technique, basin shape, and maintenance procedures. Efficient operation of the recharge facility requires careful attention to the

  1. Towards photovoltaic powered artificial retina

    Directory of Open Access Journals (Sweden)

    Santiago Silvestre

    2011-11-01

    Full Text Available The aim of this article is to provide an overview of current and future concepts in the field of retinal prostheses, and is focused on the power supply based on solar energy conversion; we introduce the possibility of using PV minimodules as power supply for a new concept of retinal prostheses: Photovoltaic Powered Artificial Retina (PVAR. Main characteristics of these PV modules are presented showing its potential for this application.

  2. CORONAL MAGNETIC FIELDS DERIVED FROM SIMULTANEOUS MICROWAVE AND EUV OBSERVATIONS AND COMPARISON WITH THE POTENTIAL FIELD MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)

    2016-02-10

    We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.

  3. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array].

    Science.gov (United States)

    Wang, Jinlong; Lu, Mai; Hu, Yanwen; Chen, Xiaoqiang; Pan, Qiangqiang

    2015-12-01

    Neuron is the basic unit of the biological neural system. The Hodgkin-Huxley (HH) model is one of the most realistic neuron models on the electrophysiological characteristic description of neuron. Hardware implementation of neuron could provide new research ideas to clinical treatment of spinal cord injury, bionics and artificial intelligence. Based on the HH model neuron and the DSP Builder technology, in the present study, a single HH model neuron hardware implementation was completed in Field Programmable Gate Array (FPGA). The neuron implemented in FPGA was stimulated by different types of current, the action potential response characteristics were analyzed, and the correlation coefficient between numerical simulation result and hardware implementation result were calculated. The results showed that neuronal action potential response of FPGA was highly consistent with numerical simulation result. This work lays the foundation for hardware implementation of neural network.

  4. Potential field signatures along the Zagros collision zone in Iran

    Science.gov (United States)

    Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.

    2018-01-01

    The Zagros orogenic belt, known as an active fold-thrust belt, was formed in southwestern Iran due to the convergence of the Arabian and Eurasian plates. In this study, potential field data are inverted in 3D to image the variations of magnetic susceptibility and density contrast along the collision zone, resulting in better tectonic understanding of the studied region. Geophysical data measured by airborne magnetic and ground-based gravity systems are used to construct an integrated model that facilitates the interpretations of various tectonic zones across a 450-km line. This line intersects the main structural units from the SW portion of the Zagros belt. The constructed model reveals a contrast that indicates the transition between the two continental plates coinciding with the western boundaries of the Sanandaj-Sirjan Zone (SSZ) at the Main Zagros Thrust (MZT) fault. The subduction of the Arabian continental crust below the Iranian one is evident because of its lower susceptibility property and alternating sequence of high and low density regions. Higher susceptibility, magnetic remanence and density are the mainstays of the Urumieh-Dokhtar Magmatic Assemblage (UDMA) zone at the NE of the studied route, whereas lower values of these properties correspond to (1) the thin massive Tertiary-Neogene and Quaternary sediments of the central domain (CD) zone, and (2) the thick sedimentary and salt intrusion cover over the Zagros Fold-and-Thrust belt (ZFTB). Higher density of regions in the Arabian crust below the ZFTB implies that fault activities have caused significant vertical displacement of the basement. Finally, a simplified geological model is presented based upon the inversions of the geophysical data, in which the main geological units are divided along the studied route.

  5. Seismic and potential field studies over the East Midlands

    Science.gov (United States)

    Kirk, Wayne John

    A seismic refraction profile was undertaken to investigate the source of an aeromagnetic anomaly located above the Widmerpool Gulf, East Midlands. Ten shots were fired into 51 stations at c. 1.5km spacing in a 70km profile during 41 days recording. The refraction data were processed using standard techniques to improve the data quality. A new filtering technique, known as Correlated Adaptive Noise Cancellation was tested on synthetic data and successfully applied to controlled source and quarry blast data. Study of strong motion data reveals that the previous method of site calibration is invalid. A new calibration technique, known as the Scaled Amplitude method is presented to provide safer charge size estimation. Raytrace modelling of the refraction data and two dimensional gravity interpretation confirms the presence of the Widmerpool Gulf but no support is found for the postulated intrusion. Two dimensional magnetic interpretation revealed that the aeromagnetic anomaly could be modelled with a Carboniferous igneous source. A Lower Palaeozoic refractor with a velocity of 6.0 km/s is identified at a maximum depth of c. 2.85km beneath the Widmerpool Gulf. Carboniferous and post-Carboniferous sediments within the gulf have velocities between 2.6-5.5 km/s with a strong vertical gradient. At the gulf margins, a refractor with a constant velocity of 5.2 km/s is identified as Dinantian limestone. A low velocity layer of proposed unaltered Lower Palaeozoics is identified beneath the limestone at the eastern edge of the Derbyshire Dome. The existence and areal extent of this layer are also determined from seismic reflection data. Image analysis of potential field data, presents a model identifying 3 structural provinces, the Midlands Microcraton, the Welsh and English Caledonides and a central region of complex linears. This model is used to explain the distribution of basement rocks determined from seismic and gravity profiles.

  6. Low and High-Frequency Field Potentials of Cortical Networks ...

    Science.gov (United States)

    Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit

  7. Dual-well potential field function for articulated manipulator trajectory planning

    Directory of Open Access Journals (Sweden)

    Ahmed Badawy

    2016-06-01

    Full Text Available A new attractive potential field function is proposed in this paper for manipulator trajectory planning. Existing attractive potential field constructs a global minimum through which maneuvering objects move down the gradient of the potential field toward this global minimum. The proposed method constructs a potential field with two minima. The purpose of these two minima is to create a dual attraction between links rather than affecting each link by the preceding one through kinematic constraints.

  8. Second vertical derivative of potential fields using an adaptation of ...

    African Journals Online (AJOL)

    The second vertical derivative of magnetic fields is commonly used for resolution of anomalies in gravity and magnetic fields. It is also commonly used as an aid to geologic mapping i.e. for the delineation of geological discontinuities in the subsurface. Frequency domain methods for calculating second vertical derivatives ...

  9. Using Artificial Intelligence and Web Media Data to Evaluate the Growth Potential of Companies in Emerging Industry Sectors

    Directory of Open Access Journals (Sweden)

    Andrew Droll

    2017-06-01

    Full Text Available In this article, we describe our efforts to adapt and validate a web search and analytics tool – the Gnowit Cognitive Insight Engine – to evaluate the growth and competitive potential of new technology startups and existing firms in the newly emerging precision medicine sector. The results are based on two different search ontologies and two different samples of firms. The first sample includes established drug companies operating in the precision medicine field and was used to estimate the relationship between the firms’ innovativeness and the extent of online discussions focusing on their potential growth. The second sample includes new technology firms in the same sector. The firms in the second sample were used as test cases to determine whether their growth-related web search scores would relate to the degree of their innovativeness. The second part of the study applied the same methodology to the real-time monitoring of the firms’ competitive actions. In our findings, we see that our methodology reveals a moderate degree of correlation between the Insight Engine’s algorithmically computed relevance scores and independent measures of innovation potential. The existence of such correlations invites future work in attempting to analyze company growth potential using techniques founded in web content scraping, natural language processing, and machine learning.

  10. Biologically inspired technologies using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-01-01

    One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their response mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the current state of- the-art and challenges to making artificial muscles and their potential biomimetic applications.

  11. Impact of the strong electromagnetic field on the QCD effective potential for homogeneous Abelian gluon field configurations

    International Nuclear Information System (INIS)

    Galilo, Bogdan V.; Nedelko, Sergei N.

    2011-01-01

    The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.

  12. SPECIFICITY OF THE PROJECTIVE FIELD: REVERIES AND TRANSFORMATIVE POTENTIALITIES

    Directory of Open Access Journals (Sweden)

    Tiziana Sola

    2014-01-01

    Full Text Available This article suggests a reading of the projectives Methods in Bionian key, with particular reference to the bionian elaboration by Antonino Ferro, who substantially considers the patient’s associative flows as forms of the oneiric. The projective situation also represents a place of induction to reverie, in resonance with the concept of projective field, the peculiarity of which lie in the introduction of the element “third”, i.e. the test material.Keywords: Projective methods - Projective field – induction to reverie – activity of symbolization

  13. LEPS potential for H3 from force field data

    International Nuclear Information System (INIS)

    Varandas, A.J.C.

    1979-01-01

    A new potential energy surface for H 3 of the London--Eyring--Polanyi--Sato type has been obtained which reproduces the best available estimates for the geometry, classical barrier height, and quadratic force constants of the D/sub infinityh/ saddle point. Other attributes of the surface, e.g., minimum energy profile for the exchange process, spherically averaged potential V 0 , and leading anisotropic potential V 2 , are also shown to be in good agreement with the best available estimates. The simplicity of its functional form further commends it for future dynamical studies

  14. Automatic Estimation of Volumetric Breast Density Using Artificial Neural Network-Based Calibration of Full-Field Digital Mammography: Feasibility on Japanese Women With and Without Breast Cancer.

    Science.gov (United States)

    Wang, Jeff; Kato, Fumi; Yamashita, Hiroko; Baba, Motoi; Cui, Yi; Li, Ruijiang; Oyama-Manabe, Noriko; Shirato, Hiroki

    2017-04-01

    Breast cancer is the most common invasive cancer among women and its incidence is increasing. Risk assessment is valuable and recent methods are incorporating novel biomarkers such as mammographic density. Artificial neural networks (ANN) are adaptive algorithms capable of performing pattern-to-pattern learning and are well suited for medical applications. They are potentially useful for calibrating full-field digital mammography (FFDM) for quantitative analysis. This study uses ANN modeling to estimate volumetric breast density (VBD) from FFDM on Japanese women with and without breast cancer. ANN calibration of VBD was performed using phantom data for one FFDM system. Mammograms of 46 Japanese women diagnosed with invasive carcinoma and 53 with negative findings were analyzed using ANN models learned. ANN-estimated VBD was validated against phantom data, compared intra-patient, with qualitative composition scoring, with MRI VBD, and inter-patient with classical risk factors of breast cancer as well as cancer status. Phantom validations reached an R 2 of 0.993. Intra-patient validations ranged from R 2 of 0.789 with VBD to 0.908 with breast volume. ANN VBD agreed well with BI-RADS scoring and MRI VBD with R 2 ranging from 0.665 with VBD to 0.852 with breast volume. VBD was significantly higher in women with cancer. Associations with age, BMI, menopause, and cancer status previously reported were also confirmed. ANN modeling appears to produce reasonable measures of mammographic density validated with phantoms, with existing measures of breast density, and with classical biomarkers of breast cancer. FFDM VBD is significantly higher in Japanese women with cancer.

  15. Generation of an artificial skin construct containing a non-degradable fiber mesh: a potential transcutaneous interface

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, Frederick [Biomedical Strategies Inc., San Diego, CA (United States); Kyriakides, Themis R [Vascular Biology and Therapeutics, Yale University, New Haven, CT 06536-9812 (United States)], E-mail: themis.kyriakides@yale.edu

    2008-09-01

    Generation of a stable interface between soft tissues and biomaterials could improve the function of transcutaneous prostheses, primarily by minimizing chronic infections. We hypothesized that inclusion of non-biodegradable biomaterials in an artificial skin substrate would improve integration of the neodermis. In the present study, we compared the biocompatibility of an experimental substrate, consisting of collagen and glycosylaminoglycans, with commercially available artificial skin of similar composition. By utilizing a mouse excisional wound model, we found that the source of collagen (bovine tendon versus hide), extent of injury and wound contraction were critical determinants of inflammation and neodermis formation. Reducing the extent of injury to underlying muscle reduced inflammation and improved remodeling; the improved conditions allowed the detection of a pro-inflammatory effect of hide-derived collagen. To eliminate the complication of wound contraction, subsequent grafts were performed in guinea pigs and showed that inclusion of carbon fibers or non-degradable sutures resulted in increased foreign body response (FBR) and altered remodeling. On the other hand, inclusion of a polyester multi-stranded mesh induced a mild FBR and allowed normal neodermis formation. Taken together, our observations suggest that non-degradable biomaterials can be embedded in an artificial skin construct without compromising its ability to induce neodermis formation.

  16. SPECIFICITY OF THE PROJECTIVE FIELD: REVERIES AND TRANSFORMATIVE POTENTIALITIES

    OpenAIRE

    Tiziana Sola

    2014-01-01

    This article suggests a reading of the projectives Methods in Bionian key, with particular reference to the bionian elaboration by Antonino Ferro, who substantially considers the patient’s associative flows as forms of the oneiric. The projective situation also represents a place of induction to reverie, in resonance with the concept of projective field, the peculiarity of which lie in the introduction of the element “third”, i.e. the test material.Keywords: Projective methods - Projective fi...

  17. Computer simulating for oil fields with artificial elevation method by electrical submersible pump; Simulacao computacional para pocos de petroleo com metodo de elevacao artificial por bombeio centrifugo submerso

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Evellyne da Silva; Maitelli, Andre Laurindo [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Costa, Rutacio de Oliveira [PETROBRAS S.A., Natal, RN (Brazil). Unidade de Negocio RN/CE; Barbosa, Tiago de Souza [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia de Computacao

    2008-07-01

    The architecture heterogeneities and petrophysical properties of carbonate reservoirs result from a combination of platform morphology, related depositional environments, relative sea level changes and diagenetic events. The reservoir layering built for static and dynamic modelling purposes should reflect the key heterogeneities (depositional or diagenetic) which govern the fluid flow patterns. The layering needs to be adapted to the goal of the modelling, ranging from full field computations of hydrocarbon volumes, to sector-based fine-scale simulations to test the recovery improvement. This paper illustrates various reservoir layering types, including schemes dominated by depositional architecture, and those more driven by the diagenetic overprint. The examples include carbonate platform reservoirs from different stratigraphic settings (Tertiary, Cretaceous, Jurassic and Permian) and different regions (Europe, Africa and Middle East areas). This review shows how significant stratigraphic surfaces (such as sequence boundaries or maximum flooding) with their associated facies shifts, can be often considered as key markers to constrain the reservoir layering. Conversely, how diagenesis (dolomitization and karst development), resulting in units with particular poroperm characteristics, may significantly overprint the primary reservoir architecture by generating flow units which cross-cut depositional sequences. To demonstrate how diagenetic processes can create reservoir bodies with geometries that cross-cut the depositional fabric, different types of dolomitization and karst development are illustrated. (author)

  18. Metastability of Reversible Random Walks in Potential Fields

    Science.gov (United States)

    Landim, C.; Misturini, R.; Tsunoda, K.

    2015-09-01

    Let be an open and bounded subset of , and let be a twice continuously differentiable function. Denote by the discretization of , , and denote by the continuous-time, nearest-neighbor, random walk on which jumps from to at rate . We examine in this article the metastable behavior of among the wells of the potential F.

  19. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  20. Improved effective-potential formalism for composite fields

    International Nuclear Information System (INIS)

    Banks, T.; Raby, S.

    1976-01-01

    We develop an effective-potential formalism for studying dynamical symmetry breaking. The potential that we calculate is single-valued and bounded from below. Our formalism incorporates a stability criterion for deciding whether the broken-symmetry solution to the theory is the physical one. In lowest-order calculations in gauge theories we find that the asymmetric theory will be stable if and only if a composite Goldstone boson can be bound. Our conclusion is that in the weak-coupling approximation there is no dynamical spontaneous breakdown in gauge theories. We then use the renormalization group to argue that, if spontaneous breakdown occurs at all, it must also occur for arbitrarily weak coupling. The renormalization group also provides us with evidence that dynamical symmetry breakdown does not occur in infrared-stable theories

  1. Artificial Intelligence.

    Science.gov (United States)

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  2. Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona

    OpenAIRE

    Petrie, G. J. D.

    2007-01-01

    We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex tha...

  3. Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation

    Directory of Open Access Journals (Sweden)

    Mitsuo Kato

    2018-01-01

    Full Text Available A potential vector field is a solution of an extended WDVV equation which is a generalization of a WDVV equation. It is expected that potential vector fields corresponding to algebraic solutions of Painlevé VI equation can be written by using polynomials or algebraic functions explicitly. The purpose of this paper is to construct potential vector fields corresponding to more than thirty non-equivalent algebraic solutions.

  4. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line.

    Science.gov (United States)

    Tuhtan, Jeffrey A; Fuentes-Perez, Juan Francisco; Toming, Gert; Schneider, Matthias; Schwarzenberger, Richard; Schletterer, Martin; Kruusmaa, Maarja

    2018-05-25

    The lateral line system provides fish with advanced mechanoreception over a wide range of flow conditions. Inspired by the abilities of their biological counterparts, artificial lateral lines have been developed and tested exclusively under laboratory settings. Motivated by the lack of flow measurements taken in the field which consider fluid-body interactions, we built a fish-shaped lateral line probe. The device is outfitted with 11 high-speed (2.5 kHz) time-synchronized pressure transducers, and designed to capture and classify flows in fish passage structures. A total of 252 field measurements, each with a sample size of 132 000 discrete sensor readings were recorded in the slots and across the pools of vertical slot fishways. These data were used to estimate the time-averaged flow velocity (R 2   =  0.952), which represents the most common metric to assess fishway flows. The significant contribution of this work is the creation and application of hydrodynamic signatures generated by the spatial distribution of pressure fluctuations on the fish-shaped body. The signatures are based on the collection of the pressure fluctuations' probability distributions, and it is shown that they can be used to automatically classify distinct flow regions within the pools of three different vertical slot fishways. For the first time, field data from operational fishway measurements are sampled and classified using an artificial lateral line, providing a completely new source of bioinspired flow information.

  5. [Analysis of the causes of potential wear and breakdown of elements of artificial heart valves of the disk type].

    Science.gov (United States)

    Dobrova, N B; Iofis, N A; Kozyrkin, B I; Agafonov, A V; Zaretskiĭ, Iu V

    1987-01-01

    The reliability analysis of the artificial cardiac valve and experiments made it possible to establish that the ACV reliability is ensured by the physical and mechanical properties of the material, technology observance and thorough control over each operation during the manufacturing process. The accelerated testing of the new MX disk valve made in the USSR showed a satisfactory degree of the disk wear and the absence of breaks-down after 400 million working cycles which is equivalent to ten-years' work in a human body.

  6. Biologically inspired technologies using artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2005-01-01

    After billions of years of evolution, nature developed inventions that work, which are appropriate for the intended tasks and that last. The evolution of nature led to the introduction of highly effective and power efficient biological mechanisms that are scalable from micron to many meters in size. Imitating these mechanisms offers enormous potentials for the improvement of our life and the tools we use. Humans have always made efforts to imitate nature and we are increasingly reaching levels of advancement where it becomes significantly easier to imitate, copy, and adapt biological methods, processes and systems. Some of the biomimetic technologies that have emerged include artificial muscles, artificial intelligence, and artificial vision to which significant advances in materials science, mechanics, electronics, and computer science have contributed greatly. One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their operation mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the state-of-the-art and challenges to making artificial muscles and their potential biomimetic applications.

  7. Superfield approach to calculation of effective potential in supersymmetric field theories

    International Nuclear Information System (INIS)

    Bukhbinder, I.L.; Kuzenko, S.M.; Yarevskaya, Zh.V.

    1993-01-01

    Superfield method of computing effective potential in supersymmetric field theories is suggested. The one-loop effective potential of the Wess-Zumino model is found. The prescription for obtaining multi-loop corrections is described

  8. Avoidance, biomass and survival response of soil dwelling (endogeic) earthworms to OECD artificial soil: potential implications for earthworm ecotoxicology.

    Science.gov (United States)

    Brami, C; Glover, A R; Butt, K R; Lowe, C N

    2017-05-01

    Soil dwelling earthworms are now adopted more widely in ecotoxicology, so it is vital to establish if standardised test parameters remain applicable. The main aim of this study was to determine the influence of OECD artificial soil on selected soil-dwelling, endogeic earthworm species. In an initial experiment, biomass change in mature Allolobophora chlorotica was recorded in Standard OECD Artificial Soil (AS) and also in Kettering Loam (KL). In a second experiment, avoidance behaviour was recorded in a linear gradient with varying proportions of AS and KL (100% AS, 75% AS + 25% KL, 50% KS + 50% KL, 25% AS + 75% KL, 100% KL) with either A. chlorotica or Octolasion cyaneum. Results showed a significant decrease in A. chlorotica biomass in AS relative to KL, and in the linear gradient, both earthworm species preferentially occupied sections containing higher proportions of KL over AS. Soil texture and specifically % composition and particle size of sand are proposed as key factors that influenced observed results. This research suggests that more suitable substrates are required for ecotoxicology tests with soil dwelling earthworms.

  9. Effects of an electric field on the confined hydrogen atom in a parabolic potential well

    International Nuclear Information System (INIS)

    Xie Wenfang

    2009-01-01

    Using the perturbation method, the confined hydrogen atom by a parabolic potential well is investigated. The binding energy of the confined hydrogen atom in a parabolic potential well is calculated as a function of the confined potential radius and as a function of the intensity of an applied electric field. It is shown that the binding energy of the confined hydrogen atom is highly dependent on the confined potential radius and the intensity of an applied electric field.

  10. Artificial snowmaking and potential water conflicts in mountain resorts. The case of Avoriaz (Haute-Savoie, France)

    Science.gov (United States)

    Magnier, E.; Reynard, E.

    2012-04-01

    The practice of artificial snowmaking is recent (1990s), and may use large volumes of water. In the French Alps, the total consumption is on average 20 Mm3 per year (Miquel, 2003), which corresponds to the annual consumption of drinking water for a city of more than 300,000 inhabitants such as Nice (France). Moreover, snowmaking does not represent the only use of water in winter sport resorts. The available water resource is used for drinking water, artificial snowmaking and leisure activities (swimming pools, golf spas). One can speak in this context of a multifunctionality of the resource. Of particular concern is the winter season when streams reach their lowest level (from December to April). These activities require that water is drawn from resources created at other times of the year. Water for snowmaking production is pumped from drinking water reservoirs, rivers, groundwater tables, artificial hydropower reservoirs, as well as from hill water reservoirs, specifically built for storing water for snow production, themselves supplied from surface water capture. In Avoriaz (Haute-Savoie, France) the risk of shortages is important. The reason is that the resort is supplied by a unique lake or hillside reservoir (Lake 1730), which satisfies two particularly high-consuming water uses (the water supply for production of snow and drinking water). On a finer scale, namely that of a single day in January 2011, considerable volumes are drawn off in the space of a few hours (10,114 m3 on 24 January), while pumping for drinking water spreads out over several months. Intensity of use for the production of snow can trigger water scarcity and water conflicts with other uses such as drinking water. Good management of the resource is, therefore, especially important. However, no legislation specific to artificial snowmaking has been established. Even if, at present, there is no situation involving shortages and conflicting uses at Avoriaz, the situation needs to be monitored

  11. Ten years later: Evaluation of the effectiveness of 12.5% amitraz against a field population of Rhipicephalus (Boophilus) microplus using field studies, artificial infestation (Stall tests) and adult immersion tests.

    Science.gov (United States)

    Maciel, Willian Giquelin; Lopes, Welber Daniel Zanetti; Cruz, Breno Cayeiro; Gomes, Lucas Vinicius Costa; Teixeira, Weslen Fabrício Pires; Buzzulini, Carolina; Bichuette, Murilo Abud; Campos, Gabriel Pimentel; Felippelli, Gustavo; Soares, Vando Edésio; de Oliveira, Gilson Pereira; da Costa, Alvimar José

    2015-12-15

    Using field trials, artificial infestations (Stall tests) and in vitro adult immersion tests, the present study evaluated the acaricidal efficacy of 12.5% amitraz administered via whole body spraying against a Rhipicephalus (Boophilus) microplus population that did not have any contact with chemical products belonging to this acaricide family for 10 years (approximately 40 generations). Two natural infestation trials, two artificial infestation trials (Stall tests) and two adult immersion tests were performed in two different stages in 2005 and 2015. Between 2002 and 2015, the bovine herd of this property was formed by approximately 450 animals from the Simmental breed that were divided into nine paddocks formed by Cynodon dactylon (L.) Pers. For the natural infestation experiments in 2005 and 2015, we selected nearly 70 animals naturally infested with ticks from the same herd that belonged to the "São Paulo" farm located in São José do Rio Pardo, São Paulo, Brazil. Field studies were performed in the same paddock (9). To evaluate anti-R. (B.) microplus activity in the artificially infested cattle (Stall tests) and adult immersion tests, two experiments of each methodology were performed at CPPAR (the Center of Research in Animal Health located on the FCAV/UNESP campus in Jaboticabal, São Paulo, Brazil) in 2005 and 2015. R. (B.) microplus used in the artificial infestation, and adult immersion test experiments were obtained from paddocks 1-9 in 2005 and 2015 from the commercial farm where the field studies were performed. Based on the obtained results, it was possible to conclude that amitraz use in rotation with pyrethroids every 28 days for three consecutive years (2002-2004) previous to the beginning of the first trial (2005) was sufficient to generate a R. (B.) microplus strain resistant to amitraz. Moreover, using field trials, artificial infestations (Stall tests) and adult immersion tests, we verified that 40 generations of the tick species with no

  12. Potential of Penicillium Species in the Bioremediation Field

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leitão

    2009-04-01

    Full Text Available The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs, and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation.

  13. COMPETITIVE STRATEGY IN THE FIELD OF EDUCATIONAL POTENTIAL

    Directory of Open Access Journals (Sweden)

    Yuri F. Shamrai

    2013-01-01

    Full Text Available In the course of market reforms in the Russian economy there has been a trend of weakening its educational potential. The problems of access to education and the possibility of payment have exacerbated. Delay in the development of innovative models and raw primitivization economy resulted in decrease of intelligence needs and the demand for qualified professionals. Further, there arose difficulties in connection with the transition to the so-called two-tier education system – «Bachelor – Master.»On the basis of the circumstances mentioned in the article, the improvement of the Russian educational system in the direction of democratization and individualization of the learning process, referring to giving students a choice between different educational systems and modules, and various ways to improve students’ weight (the development of corporate education, the provision of learning opportunities created in the Russian branches of Western universities, the organization of NSO on market principles, the creation of youth discussion clubs, innovative student enterprises, competitions on market principles, the establishment of universities’ student avenues of glory, etc.. 

  14. Artificial intelligence in hematology.

    Science.gov (United States)

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  15. Electron-electron interactions in artificial graphene

    Science.gov (United States)

    Rasanen, Esa

    2013-03-01

    Recent advances in the creation and modulation of graphenelike systems are introducing a science of ``designer Dirac materials.'' In its original definition, artificial graphene is a man-made nanostructure that consists of identical potential wells (quantum dots) arranged in an adjustable honeycomb lattice in the two-dimensional electron gas. As our ability to control the quality of artificial graphene samples improves, so grows the need for an accurate theory of its electronic properties, including the effects of electron-electron interactions. Here we determine those effects on the band structure and on the emergence of Dirac points, and discuss future investigations and challenges in this field.

  16. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    Science.gov (United States)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the

  17. Application of the artificial satellite of the earth to determine the velocity of the gravitational interaction within newtonian gravitational fields

    International Nuclear Information System (INIS)

    Cristea, Gh.

    1975-01-01

    In the first part of this paper, additional data are given concerning a gravimeter consisting in a pendulum-laser set proposed in a previous paper of the author (1). This gravimeter could have a sensitivity of 0.1 microgal or even 0.01 microgal in the case of statistical measurements. If processing by an on-line computer is used, the pendulum-laser can constitute a gravimeter which, used in statistical measurements on a long time interval, could reach a sensitivity of 10 -12 g. The second part of the paper points out the advantages resulting from determining the velocity of the gravitational reaction in an artificial satellite of the earth. The main advantage is the very fact that this measurement can be achieved by means of the existant gravimeters. The massive reduction of the time error is due to the increase of the ''sinusoid'' frequency resulting from the recording being made on the gravimeter set on an artificial satellite turning around the earth in about 90 minutes

  18. Amounts of artificial food colors in commonly consumed beverages and potential behavioral implications for consumption in children.

    Science.gov (United States)

    Stevens, Laura J; Burgess, John R; Stochelski, Mateusz A; Kuczek, Thomas

    2014-02-01

    Artificial food colors (AFCs) are widely used to color foods and beverages. The amount of AFCs the Food and Drug Administration has certified over the years has increased more than 5-fold since 1950 (12 mg/capita/day) to 2012 (68 mg/capita/day). In the past 38 years, there have been studies of adverse behavioral reactions such as hyperactivity in children to double-blind challenges with AFCs. Studies that used 50 mg or more of AFCs as the challenge showed a greater negative effect on more children than those which used less. The study reported here is the first to quantify the amounts of AFCs in foods (specifically in beverages) commonly consumed by children in the United States. Consumption data for all foods would be helpful in the design of more challenge studies. The data summarized here should help clinicians advise parents about AFCs and beverage consumption.

  19. Glycomics meets artificial intelligence - Potential of glycan analysis for identification of seropositive and seronegative rheumatoid arthritis patients revealed.

    Science.gov (United States)

    Chocholova, Erika; Bertok, Tomas; Jane, Eduard; Lorencova, Lenka; Holazova, Alena; Belicka, Ludmila; Belicky, Stefan; Mislovicova, Danica; Vikartovska, Alica; Imrich, Richard; Kasak, Peter; Tkac, Jan

    2018-06-01

    In this study, one hundred serum samples from healthy people and patients with rheumatoid arthritis (RA) were analyzed. Standard immunoassays for detection of 10 different RA markers and analysis of glycan markers on antibodies in 10 different assay formats with several lectins were applied for each serum sample. A dataset containing 2000 data points was data mined using artificial neural networks (ANN). We identified key RA markers, which can discriminate between healthy people and seropositive RA patients (serum containing autoantibodies) with accuracy of 83.3%. Combination of RA markers with glycan analysis provided much better discrimination accuracy of 92.5%. Immunoassays completely failed to identify seronegative RA patients (serum not containing autoantibodies), while glycan analysis correctly identified 43.8% of these patients. Further, we revealed other critical parameters for successful glycan analysis such as type of a sample, format of analysis and orientation of captured antibodies for glycan analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Quantum effects in external fields determined by potentials with point-like support

    International Nuclear Information System (INIS)

    Mamev, S.G.; Trunov, N.N.

    1982-01-01

    Exact expressions are obtained for the vacuum expectation values of the energy-momentum tensor of a scalar field in external potentials of the delta-function type. The conditions for the onset of the vacuum instability are found and the properties of the resulting condensate are studied. Particle production in the field of a nonstationary delta potential is studied

  1. Thermodynamic potential with condensate fields in an SU(2) model of QCD

    International Nuclear Information System (INIS)

    Ebert, D.

    1996-06-01

    We calculate the thermodynamic potential of the quark-gluon plasma in an SU(2) model of QCD, taking into account the gluon condensate configuration with a constant A 4 -potential and a uniform chromomagnetic field H. Within this scheme the interplay of condensate fields, as well as the role of quarks in the possible dynamical stabilization of the system is investigated. (orig.)

  2. Minimally Naturalistic Artificial Intelligence

    OpenAIRE

    Hansen, Steven Stenberg

    2017-01-01

    The rapid advancement of machine learning techniques has re-energized research into general artificial intelligence. While the idea of domain-agnostic meta-learning is appealing, this emerging field must come to terms with its relationship to human cognition and the statistics and structure of the tasks humans perform. The position of this article is that only by aligning our agents' abilities and environments with those of humans do we stand a chance at developing general artificial intellig...

  3. Do field-free electromagnetic potentials play a role in biology?

    Science.gov (United States)

    Szasz, A; Vincze, G; Andocs, G; Szasz, O

    2009-01-01

    All bio-systems are imperfect dielectrics. Their general properties however cannot be described by conventional simple electrodynamics; the system is more complex. A central question in our present paper is centered on a controversial debate of the possible effect of the zero fields (only potentials exist). We show that the identical use of the "field-free," "curl-free," and "force-free" terminologies is incorrect, there have definitely different meanings. It is shown that the effective electro-dynamical parameters that describe and modify living systems are the potentials and not the fields. We discuss how the potentials have a role in biological processes even in field-free cases.

  4. Step-wise potential development across the lipid bilayer under external electric fields

    Science.gov (United States)

    Majhi, Amit Kumar

    2018-04-01

    Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.

  5. Description of the Magnetic Field and Divergence of Multisolenoid Aharonov-Bohm Potential

    Directory of Open Access Journals (Sweden)

    Araz R. Aliev

    2016-01-01

    Full Text Available Explicit formulas for the magnetic field and divergence of multisolenoid Aharonov-Bohm potential are obtained; the mathematical essence of this potential is explained. It is shown that the magnetic field and divergence of this potential are very singular generalized functions concentrated at a finite number of thin solenoids. Deficiency index is found for the minimal operator generated by the Aharonov-Bohm differential expression.

  6. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2009-06-19

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.

  7. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2009-01-01

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential

  8. Cybersecurity in Artificial Pancreas Experiments.

    Science.gov (United States)

    O'Keeffe, Derek T; Maraka, Spyridoula; Basu, Ananda; Keith-Hynes, Patrick; Kudva, Yogish C

    2015-09-01

    Medical devices have transformed modern health care, and ongoing experimental medical technology trials (such as the artificial pancreas) have the potential to significantly improve the treatment of several chronic conditions, including diabetes mellitus. However, we suggest that, to date, the essential concept of cybersecurity has not been adequately addressed in this field. This article discusses several key issues of cybersecurity in medical devices and proposes some solutions. In addition, it outlines the current requirements and efforts of regulatory agencies to increase awareness of this topic and to improve cybersecurity.

  9. Artificial intelligence in medicine.

    OpenAIRE

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of ...

  10. Artificial Consciousness or Artificial Intelligence

    OpenAIRE

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  11. An Application of Artificial Intelligence for the Joint Estimation of Amplitude and Two-Dimensional Direction of Arrival of Far Field Sources Using 2-L-Shape Array

    Directory of Open Access Journals (Sweden)

    Fawad Zaman

    2013-01-01

    Full Text Available An easy and efficient approach, based on artificial intelligence technique, is proposed to jointly estimate the amplitude, elevation, and azimuth angles of far field sources impinging on 2-L-shape array. In these proposed artificial intelligence techniques, the metaheuristics based on genetic algorithm and simulated annealing are used as global optimizers assisted with rapid local version of pattern search for optimization of the adaptive parameters. The performance metric is employed on a fitness evaluation function depending on mean square error which is optimum and requires single snapshot to converge. The proposed approaches are easy to understand, and simple to implement; the genetic algorithm specifically hybridized with pattern search generates fairly good results. The comparison of the given schemes is carried out with 1-L-shape array, as well as, with parallel-shape array and is found to be in good agreement in terms of accuracy, convergence rate, computational complexity, and mean square error. The effectiveness and efficiency of the given schemes are examined through Monte Carlo simulations and their inclusive statistical analysis.

  12. BioArtificial polymers

    Science.gov (United States)

    Szałata, Kamila; Gumi, Tania

    2017-07-01

    Nowadays, the polymer science has impact in practically all life areas. Countless benefits coming from the usage of materials with high mechanical and chemical resistance, variety of functionalities and potentiality of modification drive to the development of new application fields. Novel approaches of combining these synthetic substances with biomolecules lead to obtain multifunctional hybrid conjugates which merge the bioactivity of natural component with outstanding properties of artificial polymer. Over the decades, an immense progress in bioartificial composites domain allowed to reach a high level of knowledge in terms of natural-like systems engineering, leading to diverse strategies of biomolecule immobilization. Together with different available options, including covalent and noncovalent attachment, come various challenges, related mainly with maintaining the biological activity of fixed molecules. Even though the amount of applications that achieve commercial status is still not substantial, and is expanding continuously in the disciplines like "smart materials," biosensors, delivery systems, nanoreactors and many others. A huge number of remarkable developments reported in the literature present a potential of bioartificial conjugates as a fabrics with highly controllable structure and multiple functionalities, serving as a powerful nanotechnological tool. This novel approach brings closer biologists, chemists and engineers, who sharing their effort and complementing the knowledge can revolutionize the field of bioartificial polymer science.

  13. Sum rules for the ed - NN scattering reactions and microscopic potential field-theoretical approach

    International Nuclear Information System (INIS)

    Machivariani, A.I.

    1996-01-01

    The connections between the equal-time commutators of nucleon and photon field-operators and relativistic potential approach of ed - NN scattering equations is established. Namely, it is demonstrated that: 1) equal-time commutator between nucleon field operators generated completeness condition for NN interaction functions, 2) the off-mass shell contributions in γd - NN exchange currents or in microscopic NN potential are determined by equal time commutator between nucleon field operator and photon or nucleon source operators, and 3) equal-time commutators between source operators produce sum rules for same vertex functions and effective potentials [ru

  14. [Artificial organs].

    Science.gov (United States)

    Raguin, Thibaut; Dupret-Bories, Agnès; Debry, Christian

    2017-01-01

    Research has been fighting against organ failure and shortage of donations by supplying artificial organs for many years. With the raise of new technologies, tissue engineering and regenerative medicine, many organs can benefit of an artificial equivalent: thanks to retinal implants some blind people can visualize stimuli, an artificial heart can be proposed in case of cardiac failure while awaiting for a heart transplant, artificial larynx enables laryngectomy patients to an almost normal life, while the diabetic can get a glycemic self-regulation controlled by smartphones with an artificial device. Dialysis devices become portable, as well as the oxygenation systems for terminal respiratory failure. Bright prospects are being explored or might emerge in a near future. However, the retrospective assessment of putative side effects is not yet sufficient. Finally, the cost of these new devices is significant even if the advent of three dimensional printers may reduce it. © 2017 médecine/sciences – Inserm.

  15. Field-aligned plasma-potential structure formed by local electron cyclotron resonance

    International Nuclear Information System (INIS)

    Hatakeyama, Rikizo; Kaneko, Toshiro; Sato, Noriyoshi

    2001-01-01

    The significance of basic experiments on field-aligned plasma-potential structure formed by local electron cyclotron resonance (ECR) is claimed based on the historical development of the investigation on electric double layer and electrostatic potential confinement of open-ended fusion-oriented plasmas. In the presence of a single ECR point in simple mirror-type configurations of magnetic field, a potential dip (thermal barrier) appears around this point, being followed by a subsequent potential hump (plug potential) along a collisionless plasma flow. The observed phenomenon gives a clear-cut physics to the formation of field-aligned plug potential with thermal barrier, which is closely related to the double layer formation triggered by a negative dip. (author)

  16. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Directory of Open Access Journals (Sweden)

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  17. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kushwaha, Manvir S. [Department of Physics and Astronomy, Rice University, P.O. Box 1892, Houston, TX 77251 (United States)

    2014-12-15

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  18. [Electrosmog as a health risk factor: sources of artificial electromagnetic fields, evaluation of health risk, prevention methods].

    Science.gov (United States)

    Fedorowski, A; Steciwko, A

    1997-01-01

    In recent years we have observed how electromagnetic (EM) radiation enters our daily life. The strength of man-made EM field is often far above the natural level and this finding has encouraged a large group of researchers to investigate its possible health effect. Non-ionizing radiation and extremely low-frequency electric and magnetic fields have been the subject of intensive theoretical and experimental works since Adey published his observations concerning non-linear and non-thermal biological effects. At the same time an epidemiological material appeared suggesting that EM field generates various diseases including leukemia and brain tumors. Possible mechanisms of EM field interactions with living matter remain unknown although theoretical models have been proposed by many authors. In vitro and in vivo studies as well as epidemiological data have not provided the ground for decisive conclusions. Nevertheless, the relationship between EM fields and biological effects seems to be most likely. Any international standards for safety limits have not as yet been established and regulations in this regard vary in different countries. However, occupational and residential exposure to EM field can be efficiently measured using an appropriate equipment and such measurements should become a standard procedure wherever electrosmog is suspected to be a pathogenic factor.

  19. A short proof that the Coulomb-gauge potentials yield the retarded fields

    Energy Technology Data Exchange (ETDEWEB)

    Heras, Jose A, E-mail: herasgomez@gmail.co [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa, Mexico D. F. 02200 (Mexico)

    2011-01-15

    A short demonstration that the potentials in the Coulomb gauge yield the retarded electric and magnetic fields is presented. This demonstration is relatively simple and can be presented in an advanced undergraduate course of electromagnetic theory.

  20. A short proof that the Coulomb-gauge potentials yield the retarded fields

    International Nuclear Information System (INIS)

    Heras, Jose A

    2011-01-01

    A short demonstration that the potentials in the Coulomb gauge yield the retarded electric and magnetic fields is presented. This demonstration is relatively simple and can be presented in an advanced undergraduate course of electromagnetic theory.

  1. Potential climate change impacts and the BLM Rio Puerco field office's transportation system : a technical report

    Science.gov (United States)

    2015-03-01

    This report provides information about potential climate change impacts in central New Mexico and their possible implications for the Bureau of Land Management (BLM) Rio Puerco Field Office (RPFO) transportation network. The report considers existing...

  2. How to teach artificial organs.

    Science.gov (United States)

    Zapanta, Conrad M; Borovetz, Harvey S; Lysaght, Michael J; Manning, Keefe B

    2011-01-01

    Artificial organs education is often an overlooked field for many bioengineering and biomedical engineering students. The purpose of this article is to describe three different approaches to teaching artificial organs. This article can serve as a reference for those who wish to offer a similar course at their own institutions or incorporate these ideas into existing courses. Artificial organ classes typically fulfill several ABET (Accreditation Board for Engineering and Technology) criteria, including those specific to bioengineering and biomedical engineering programs.

  3. Ionization from short-range potential under action of electromagnetic field of complex configuration

    CERN Document Server

    Rodionov, V N; Kravtsova, G A

    2002-01-01

    The transcendental equation for the complex energy is obtained on the basis of the exactly solvable 3D model of the short-acting potential and the Green time function in the intensive electromagnetic field, constituting the combination of the constant magnetic field and the circular-polarization wave field. The electron quasistationary states parameters in the delta-potential with an account of the action of the intensive external field of complex configuration are calculated. The problem on the possibility of stabilizing the bound states decay of the spinor and scalar particles through the intensive magnetic field is clarified. It is established that the obtained results regime the reexamination of the accepted notion on the stabilizing role of the strong magnetic field by the atoms ionization

  4. The potential for satellite and marginal field developments on the Norwegian continental shelf

    International Nuclear Information System (INIS)

    Raustein, O.; Abrahamsen, L.E.; Einang, G.

    1994-01-01

    Norway is faced with decreasing field sizes in hostile waters. On the other hand, approximately 620 billion 1993-NOK have been invested in field installations and transport systems. These installations will have significant available processing and transport capacity in the future, and thus represent a valuable infrastructure. This paper describes the resource situation and the installed infrastructure on the Norwegian Continental Shelf. Then the potential of still maintaining a high activity level in field developments is outlined

  5. Magnetophoretic potential at the movement of cluster products of electrochemical reactions in an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Gorobets, O. Yu.; Gorobets, Yu. I.; Rospotniuk, V. P.

    2015-01-01

    An electric field arises from the influence of a nonuniform static magnetic field on charged colloid particles with magnetic susceptibility different from that of the surrounding liquid. It arises, for example, under the influence of a nonuniform static magnetic field in clusters of electrochemical reaction products created during metal etching, deposition, and corrosion processes without an external electric current passing through an electrolyte near a magnetized electrode surface. The corresponding potential consists of a Nernst potential of inhomogeneous distribution of concentration of colloid particles and a magnetophoretic potential (MPP). This potential has been calculated using a thermodynamic approach based on the equations of thermodynamics of nonequilibrium systems and the Onsager relations for a mass flow of correlated magnetic clusters under a gradient magnetic force in the electrolyte. The conditions under which the MPP contribution to the total electric potential may be significant are discussed with a reference to the example of a corroding spherical ferromagnetic steel electrode

  6. Magnetophoretic potential at the movement of cluster products of electrochemical reactions in an inhomogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorobets, O. Yu., E-mail: pitbm@ukr.net; Gorobets, Yu. I., E-mail: Gorobets@imag.kiev.ua [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine); Institute of Magnetism NAS of Ukraine and National Academy of Sciences of Ukraine, Vernadsky Avenue, 36-b, Kyiv 03142 (Ukraine); Rospotniuk, V. P. [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine)

    2015-08-21

    An electric field arises from the influence of a nonuniform static magnetic field on charged colloid particles with magnetic susceptibility different from that of the surrounding liquid. It arises, for example, under the influence of a nonuniform static magnetic field in clusters of electrochemical reaction products created during metal etching, deposition, and corrosion processes without an external electric current passing through an electrolyte near a magnetized electrode surface. The corresponding potential consists of a Nernst potential of inhomogeneous distribution of concentration of colloid particles and a magnetophoretic potential (MPP). This potential has been calculated using a thermodynamic approach based on the equations of thermodynamics of nonequilibrium systems and the Onsager relations for a mass flow of correlated magnetic clusters under a gradient magnetic force in the electrolyte. The conditions under which the MPP contribution to the total electric potential may be significant are discussed with a reference to the example of a corroding spherical ferromagnetic steel electrode.

  7. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  8. Advanced Applications of Neural Networks and Artificial Intelligence: A Review

    OpenAIRE

    Koushal Kumar; Gour Sundar Mitra Thakur

    2012-01-01

    Artificial Neural Network is a branch of Artificial intelligence and has been accepted as a new computing technology in computer science fields. This paper reviews the field of Artificial intelligence and focusing on recent applications which uses Artificial Neural Networks (ANN’s) and Artificial Intelligence (AI). It also considers the integration of neural networks with other computing methods Such as fuzzy logic to enhance the interpretation ability of data. Artificial Neural Networks is c...

  9. Using artificial intelligence and web media data to evaluate the growth potential of companies in emerging industry sectors

    DEFF Research Database (Denmark)

    Tanev, Stoyan; Droll, Andrew; Khan, Shahzad

    2017-01-01

    In this article, we describe our efforts to adapt and validate a web search and analytics tool – the Gnowit Cognitive Insight Engine – to evaluate the growth and competitive potential of new technology startups and existing firms in the newly emerging precision medicine sector. The results are ba...

  10. Intense laser field effects on a Woods-Saxon potential quantum well

    Science.gov (United States)

    Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.

    2015-11-01

    This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.

  11. Particle localization in a double-well potential by pseudo-supersymmetric fields

    International Nuclear Information System (INIS)

    Bagrov, V. G.; Samsonov, B. F.; Shamshutdinova, V. V.

    2011-01-01

    We study properties of a particle moving in a double-well potential in the two-level approximation placed in an additional external time-dependent field. Using previously established property (J. Phys. A 41, 244023 (2008)) that any two-level system possesses a pseudo-supersymmetry we introduce the notion of pseudo-supersymmetric field. It is shown that these fields, even if their time dependence is not periodical, may produce the effect of localization of the particle in one of the wells of the double-well potential.

  12. Artificial Reefs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  13. Influence of the Ambient Electric Field on Measurements of the Actively Controlled Spacecraft Potential by MMS

    Science.gov (United States)

    Torkar, K.; Nakamura, R.; Andriopoulou, M.; Giles, B. L.; Jeszenszky, H.; Khotyaintsev, Y. V.; Lindqvist, P.-A.; Torbert, R. B.

    2017-12-01

    Space missions with sophisticated plasma instrumentation such as Magnetospheric Multiscale, which employs four satellites to explore near-Earth space benefit from a low electric potential of the spacecraft, to improve the plasma measurements and therefore carry instruments to actively control the potential by means of ion beams. Without control, the potential varies in anticorrelation with plasma density and temperature to maintain an equilibrium between the plasma current and the one of photoelectrons produced at the surface and overcoming the potential barrier. A drawback of the controlled, almost constant potential is the difficulty to use it as convenient estimator for plasma density. This paper identifies a correlation between the spacecraft potential and the ambient electric field, both measured by double probes mounted at the end of wire booms, as the main responsible for artifacts in the potential data besides the known effect of the variable photoelectron production due to changing illumination of the surface. It is shown that the effect of density variations is too weak to explain the observed correlation with the electric field and that a correction of the artifacts can be achieved to enable the reconstruction of the uncontrolled potential and plasma density in turn. Two possible mechanisms are discussed: the asymmetry of the current-voltage characteristic determining the probe to plasma potential and the fact that a large equipotential structure embedded in an electric field results in asymmetries of both the emission and spatial distribution of photoelectrons, which results in an increase of the spacecraft potential.

  14. A physics-based potential and electric field model of a nanoscale ...

    Indian Academy of Sciences (India)

    In this paper, we have developed a physics-based model for surface potential, channel potential, electric field and drain current for AlGaN/GaN high electron mobility transistor with high-K gate dielectric using two-dimensional Poisson equation under full depletion approximation with the inclusion of effect of polarization ...

  15. A physics-based potential and electric field model of a nanoscale ...

    Indian Academy of Sciences (India)

    ... paper, we have developed a physics-based model for surface potential, channel potential, electric field and drain current for AlGaN/GaN high electron mobility transistor with high-K gate dielectric using two-dimensional Poisson equation under full depletion approximation with the inclusion of effect of polarization charges.

  16. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  17. Analytic solution of the potential and electric field of a jet type drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Weltin, A

    1988-02-15

    Starting from the known two-dimensional potential of a multiwire proportional chamber, the analytic expressions of the potential and the electric field are derived for a jet type drift chamber with a central wire plane of alternating sense and potential wires. The design goal of any jet chamber, namely the periodicity of the electric drift field, is imposed as a boundary condition at the beginning. In this way, the formulae are short and can be easily evaluated. In particular, expressions are given for the mean potential of the central wire plane, the drift field and the wire surface fields. Moreover, wire cathodes frequently used in jet chambers are described by analytic expressions. For a given drift field the difference of the potential as compared to a continuous metal cathode is presented. These results allowed to construct a two-dimensional computer simulation of the full OPAL jet chamber with no explicit periodicity but all its boundaries. Using field shaping electrodes a geometrically short yet quite satisfactory termination of a sense wire plane is demonstrated. Finally an example is presented, which is calculated in detail.

  18. On the relation between fields and potentials in non abelian Gauge Theories

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1979-01-01

    Some examples have been given in the literature of ambiguous gauge fields, i.e. those not having a unique potential (up to a gauge transformation). An example given by Deser and Wilczek is examined and found the condition (for any gauge group) that the group element generating the potentials must satisfy in order for the potentials not to be related by any gauge transformation. In three dimensions (for Su 2 ) there are other families of ambiguous fields characterized by arbitrary unit vector fields n vector (n vector) (n 2 vector =1). The example given by Wu and Yang belongs to a particular family with n vector = n vector. r vector / r vector. The sources of these fields and some interesting relations between them are also found [pt

  19. Computation of 3-D magnetostatic fields using a reduced scalar potential

    International Nuclear Information System (INIS)

    Biro, O.; Preis, K.; Vrisk, G.; Richter, K.R.

    1993-01-01

    The paper presents some improvements to the finite element computation of static magnetic fields in three dimensions using a reduced magnetic scalar potential. New methods are described for obtaining an edge element representation of the rotational part of the magnetic field from a given source current distribution. In the case when the current distribution is not known in advance, a boundary value problem is set up in terms of a current vector potential. An edge element representation of the solution can be directly used in the subsequent magnetostatic calculation. The magnetic field in a D.C. arc furnace is calculated by first determining the current distribution in terms of a current vector potential. A three dimensional problem involving a permanent magnet as well as a coil is solved and the magnetic field in some points is compared with measurement results

  20. Discussion on prospecting potential for rich uranium deposits in Xiazhuang uranium ore-field, northern Guangdong

    International Nuclear Information System (INIS)

    Wu Lieqin; Tan Zhengzhong

    2004-01-01

    Based on analyzing the prospecting potential for uranium deposits in Xiazhuang uranium ore field this paper discusses the prospecting for rich uranium deposits and prospecting potential in the region. Research achievements indicate: that the Xiazhuang ore-field is an ore-concentrated area where uranium has been highly enriched, and possesses good prospecting potential and perspective, becoming one of the most important prospecting areas for locating rich uranium deposits in northern Guangdong; that the 'intersection type', the alkaline metasomatic fractured rock type and the vein-group type uranium deposits are main targets and the prospecting direction for future uranium prospecting in this region

  1. Stable Flocking of Multiple Agents Based on Molecular Potential Field and Distributed Receding Horizon Control

    International Nuclear Information System (INIS)

    Zhang Yun-Peng; Duan Hai-Bin; Zhang Xiang-Yin

    2011-01-01

    A novel distributed control scheme to generate stable flocking motion for a group of agents is proposed. In this control scheme, a molecular potential field model is applied as the potential field function because of its smoothness and unique shape. The approach of distributed receding horizon control is adopted to drive each agent to find its optimal control input to lower its potential at every step. Experimental results show that this proposed control scheme can ensure that all agents eventually converge to a stable flocking formation with a common velocity and the collisions can also be avoided at the same time. (general)

  2. Field differential equations for a potential flow from a Hamilton type variational principle

    International Nuclear Information System (INIS)

    Fierros Palacios, A.

    1992-01-01

    The same theoretical frame that was used to solve the problem of the field equations for a viscous fluid is utilized in this work. The purpose is to obtain the differential field equations for a potential flow from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density as a function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. A particular Lagrangian density of the T-V type leads to the wave equation for the velocity potential. (Author)

  3. The Analytical Potential Energy Function of NH Radical Molecule in External Electric Field

    International Nuclear Information System (INIS)

    Wu Dong-Lan; Tan Bin; Wan Hui-Jun; Xie An-Dong; Ding Da-Jun

    2015-01-01

    The geometric structures of an NH radical in different external electric fields are optimized by using the density functional B3P86/cc-PV5Z method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect. (paper)

  4. Separation of Electric Fields Into Potential and Inductive Parts, and Implications for Radial Diffusion

    Science.gov (United States)

    Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.

    2017-12-01

    It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.

  5. Interaction potentials for multiquark states from instantons and other background gauge field configurations

    International Nuclear Information System (INIS)

    Warner, R.C.; Joshi, G.C.

    1979-01-01

    A simple rule is presented for calculating the contributions to the interaction potentials between constituent particles for a family of multiquark states, due to the presence of a semi-classical gauge field configuration which exists in a single SU(2) subgroup of colour SU(3). In multiquark states beyond the baryon many-body potential terms are found. The static (Wilson loop) limit is sufficient to elucidate the dependence of the potential on the colour structure of the multiquark state

  6. Heavy quark potential in a static and strong homogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)

    2017-11-15

    We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)

  7. [Effect of pulse magnetic field on distribution of neuronal action potential].

    Science.gov (United States)

    Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling

    2014-08-25

    The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.

  8. Artificial molecular motors

    NARCIS (Netherlands)

    Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A.

    2017-01-01

    Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new

  9. Database in Artificial Intelligence.

    Science.gov (United States)

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  10. Potential Risk Assessment of Mountain Torrent Disasters on Sloping Fields in China

    Science.gov (United States)

    GAO, X.

    2017-12-01

    China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.

  11. Breast cancer diagnosis by thermal imaging in the fields of medical and artificial intelligence sciences: review article

    Directory of Open Access Journals (Sweden)

    Hossein Ghayoumi Zadeh

    2016-09-01

    Full Text Available Breast cancer is the most common cancer in women and one of the leading of death among them. The high and increasing incidence of the disease and its difficult treatment specifically in advanced stages, imposes hard situations for different countries’ health systems. Body temperature is a natural criteria for the diagnosis of diseases. In recent decades extensive research has been conducted to increase the use of thermal cameras and obtain a close relationship between heat and temperature of the skin's physiology. Thermal imaging (thermography applies infrared method which is fast, non-invasive, non-contact and flexibile to monitor the temperature of the human body. This paper investigates highly diversified studies implemented before and after the year 2000. And it emphasizes mostly on the newely published articles including: performance and evaluation of thermal imaging, the various aspects of imaging as well as The available technology in this field and its disadvantages in the diagnosis of breast cancer. Thermal imaging has been adopted by researchers in the fields of medicine and biomedical engineering for the diagnosis of breast cancer. With the advent of modern infrared cameras, data acquisition and processing techniques, it is now possible to have real time high resolution thermographic images, which is likely to surge further research in this field.  Thermography does not provide information on the structures of the breast morphology, but it provides performance information of temperature and breast tissue vessels. It is assumed that the functional changes occured before the start of the structural changes which is the result of disease or cancer. These days, thermal imaging method has not been established as an applicative method for screening or diagnosing purposes in academic centers. But there are different centers that adopt this method for the diognosis and examining purposes. Thermal imaging is an effective method which is

  12. A NEW TECHNIQUE FOR THE PHOTOSPHERIC DRIVING OF NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Marion; Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Mackay, Duncan H. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Henney, Carl J.; Arge, C. Nick, E-mail: marion.weinzierl@durham.ac.uk [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States)

    2016-05-20

    In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surface flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.

  13. Artificial intelligence executive summary

    International Nuclear Information System (INIS)

    Wamsley, S.J.; Purvis, E.E. III

    1984-01-01

    Artificial intelligence (AI) is a high technology field that can be used to provide problem solving diagnosis, guidance and for support resolution of problems. It is not a stand alone discipline, but can also be applied to develop data bases for retention of the expertise that is required for its own knowledge base. This provides a way to retain knowledge that otherwise may be lost. Artificial Intelligence Methodology can provide an automated construction management decision support system, thereby restoring the manager's emphasis to project management

  14. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  15. Artificial neural networks in NDT

    International Nuclear Information System (INIS)

    Abdul Aziz Mohamed

    2001-01-01

    Artificial neural networks, simply known as neural networks, have attracted considerable interest in recent years largely because of a growing recognition of the potential of these computational paradigms as powerful alternative models to conventional pattern recognition or function approximation techniques. The neural networks approach is having a profound effect on almost all fields, and has been utilised in fields Where experimental inter-disciplinary work is being carried out. Being a multidisciplinary subject with a broad knowledge base, Nondestructive Testing (NDT) or Nondestructive Evaluation (NDE) is no exception. This paper explains typical applications of neural networks in NDT/NDE. Three promising types of neural networks are highlighted, namely, back-propagation, binary Hopfield and Kohonen's self-organising maps. (Author)

  16. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys

    International Nuclear Information System (INIS)

    Gu, X N; Zheng, Y F; Chen, L J

    2009-01-01

    The electrochemical behavior of potential orthopedic Mg-Ca, AZ31 and AZ91 alloys was studied in Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and serum-containing medium (DMEM adding 10% fetal bovine serum (DMEM+FBS)) over a 7 day immersion period. The biocorrosion of the above three alloys for various immersion time intervals was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). After 7 day immersion, potentiodynamic polarization tests were carried out and the surface morphologies of experimental samples were examined by scanning electron microscopy (SEM) observation complemented by energy-disperse spectrometer (EDS) analysis. It was shown that the corrosion of magnesium alloys was influenced by the composition of the solution. The results indicated that chloride ion could reduce the corrosion resistance and the hydrocarbonate ions could induce rapid surface passivation. The adsorbed amino acid on the experimental magnesium alloys' surface increased their polarization resistance and reduced current densities. The influence of the serum protein on corrosion was found to be associated with the magnesium alloy compositions. A Mg-Ca alloy exhibited an increased corrosion rate in the presence of serum protein. An AZ31 alloy showed an increased corrosion rate in DMEM+FBS in the initial 3 day immersion and the corrosion rate decreased thereafter. An AZ91 alloy, with high Al content, showed a reduced corrosion rate with the addition of FBS into DMEM.

  17. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys.

    Science.gov (United States)

    Gu, X N; Zheng, Y F; Chen, L J

    2009-12-01

    The electrochemical behavior of potential orthopedic Mg-Ca, AZ31 and AZ91 alloys was studied in Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and serum-containing medium (DMEM adding 10% fetal bovine serum (DMEM+FBS)) over a 7 day immersion period. The biocorrosion of the above three alloys for various immersion time intervals was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). After 7 day immersion, potentiodynamic polarization tests were carried out and the surface morphologies of experimental samples were examined by scanning electron microscopy (SEM) observation complemented by energy-disperse spectrometer (EDS) analysis. It was shown that the corrosion of magnesium alloys was influenced by the composition of the solution. The results indicated that chloride ion could reduce the corrosion resistance and the hydrocarbonate ions could induce rapid surface passivation. The adsorbed amino acid on the experimental magnesium alloys' surface increased their polarization resistance and reduced current densities. The influence of the serum protein on corrosion was found to be associated with the magnesium alloy compositions. A Mg-Ca alloy exhibited an increased corrosion rate in the presence of serum protein. An AZ31 alloy showed an increased corrosion rate in DMEM+FBS in the initial 3 day immersion and the corrosion rate decreased thereafter. An AZ91 alloy, with high Al content, showed a reduced corrosion rate with the addition of FBS into DMEM.

  18. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gu, X N; Zheng, Y F [State Key Laboratory for Turbulence and Complex System and Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, Beijing 100871 (China); Chen, L J, E-mail: yfzheng@pku.edu.c [School of Material Science and Engineering, Shengyang University of Technology, Shenyang 110023 (China)

    2009-12-15

    The electrochemical behavior of potential orthopedic Mg-Ca, AZ31 and AZ91 alloys was studied in Hank's solution, Dulbecco's Modified Eagle's Medium (DMEM) and serum-containing medium (DMEM adding 10% fetal bovine serum (DMEM+FBS)) over a 7 day immersion period. The biocorrosion of the above three alloys for various immersion time intervals was investigated by linear polarization and electrochemical impedance spectroscopy (EIS). After 7 day immersion, potentiodynamic polarization tests were carried out and the surface morphologies of experimental samples were examined by scanning electron microscopy (SEM) observation complemented by energy-disperse spectrometer (EDS) analysis. It was shown that the corrosion of magnesium alloys was influenced by the composition of the solution. The results indicated that chloride ion could reduce the corrosion resistance and the hydrocarbonate ions could induce rapid surface passivation. The adsorbed amino acid on the experimental magnesium alloys' surface increased their polarization resistance and reduced current densities. The influence of the serum protein on corrosion was found to be associated with the magnesium alloy compositions. A Mg-Ca alloy exhibited an increased corrosion rate in the presence of serum protein. An AZ31 alloy showed an increased corrosion rate in DMEM+FBS in the initial 3 day immersion and the corrosion rate decreased thereafter. An AZ91 alloy, with high Al content, showed a reduced corrosion rate with the addition of FBS into DMEM.

  19. Research in the fields of medicine in Slovenia – research potential, funding, and publications

    Directory of Open Access Journals (Sweden)

    Stojan Pečlin

    2012-09-01

    Conclusions: The size of the human research potential in the fields of medicine in Slovenia is modest. The majority of researchers are also engaged in medical practice and education. Consequently, funds from public sources for research per researcher are low. Research fields of medicine primarly require an increase in human research resources, which can then provide a basis for a rise in funding and the impact of its research results becoming comparable to the EU and world averages.

  20. Current-current correlation function in presence of chemical potential and external magnetic field

    International Nuclear Information System (INIS)

    Apresyan, E.A.

    2017-01-01

    The (2+1)-dimensional electron system was observed, where relation between the Green functions and conductivity was used. The current-current correlation function Π_μ_ν(B) for the fermion system was calculated in presence of non-quantizing magnetic field B, chemical potential η and gap m. From this function it is possible to obtain the equation for polarization operator calculated without the magnetic field. The result is also applicable for graphene

  1. Artificial sweeteners

    DEFF Research Database (Denmark)

    Raben, Anne Birgitte; Richelsen, Bjørn

    2012-01-01

    Artificial sweeteners can be a helpful tool to reduce energy intake and body weight and thereby risk for diabetes and cardiovascular diseases (CVD). Considering the prevailing diabesity (obesity and diabetes) epidemic, this can, therefore, be an important alternative to natural, calorie-containin......Artificial sweeteners can be a helpful tool to reduce energy intake and body weight and thereby risk for diabetes and cardiovascular diseases (CVD). Considering the prevailing diabesity (obesity and diabetes) epidemic, this can, therefore, be an important alternative to natural, calorie......-containing sweeteners. The purpose of this review is to summarize the current evidence on the effect of artificial sweeteners on body weight, appetite, and risk markers for diabetes and CVD in humans....

  2. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for a Thin Solenoid with Uniform Current Density

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    A numerical algorithm for computing the field components Br and Bz and their r and z derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with uniform current density is described in this note. An algorithm for computing the vector potential Aθ is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of the algorithms described in this note applies to cases where the field point is outside of the bore of the solenoid and the field-point radius approaches the solenoid radius. Since the elliptic integrals of the third kind normally used in computing Bz and Aθ become infinite in this region of parameter space, fields for points with the axial coordinate z outside of the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals of the third kind of modified argument, derived by use of an addition theorem. Also, the algorithms also avoid the numerical difficulties the textbook solutions have for points near the axis arising from explicit factors of 1/r or 1/r2 in the some of the expressions.

  3. Parallel computation of electrostatic potentials and fields in technical geometries on SUPRENUM

    International Nuclear Information System (INIS)

    Alef, M.

    1990-02-01

    The programs EPOTZR und EFLDZR have been developed in order to compute electrostatic potentials and the corresponding fields in technical geometries (example: Diode geometry for optimum focussing of ion beams in pulsed high-current ion diodes). The Poisson equation is discretized in a two-dimensional boundary-fitted grid in the (r,z)-plane and solved using multigrid methods. The z- and r-components of the field are determined by numerical differentiation of the potential. This report contains the user's guide of the SUPRENUM versions EPOTZR-P and EFLDZR-P. (orig./HP) [de

  4. An analytical expression of electric potential and field of organic thin film transistors

    International Nuclear Information System (INIS)

    Pankalla, S; Glesner, M

    2012-01-01

    The two-dimensional electric potential and field of an organic thin-film transistor (OTFT) is derived by conformal mapping using the Schwarz-Christoffel-transformation of the Poisson equation. In this paper we compare this analytical closed-form solution to field simulation results from Silvaco TCAD. Inter alia the potential close to the surface is calculated and we found excellent accordance to the numerical simulations and thus proofed its usability for charge transport calculations. Thus, it is used for calculation of the drain-source-current in the channel.

  5. Quark number density and susceptibility calculation with one correction in mean field potential

    International Nuclear Information System (INIS)

    Singh, S. Somorendro

    2016-01-01

    We calculate quark number density and susceptibility of a model which has one loop correction in mean field potential. The calculation shows continuous increasing in the number density and susceptibility up to the temperature T = 0.4 GeV. Then the value of number density and susceptibility approach to the lattice result for higher value of temperature. The result indicates that the calculated values of the model fit well and the result increase the temperature to reach the lattice data with the one loop correction in the mean field potential. (author)

  6. Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method

    Directory of Open Access Journals (Sweden)

    Weihao Li

    2017-01-01

    Full Text Available In this paper, potential field method has been used to navigate a three omnidirectional wheels’ mobile robot and to avoid obstacles. The potential field method is used to overcome the local minima problem and the goals nonreachable with obstacles nearby (GNRON problem. For further consideration, model predictive control (MPC has been used to incorporate motion constraints and make the velocity more realistic and flexible. The proposed method is employed based on the kinematic model and dynamics model of the mobile robot in this paper. To show the performance of proposed control scheme, simulation studies have been carried to perform the motion process of mobile robot in specific workplace.

  7. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  8. Artificial organ engineering

    CERN Document Server

    Annesini, Maria Cristina; Piemonte, Vincenzo; Turchetti, Luca

    2017-01-01

    Artificial organs may be considered as small-scale process plants, in which heat, mass and momentum transfer operations and, possibly, chemical transformations are carried out. This book proposes a novel analysis of artificial organs based on the typical bottom-up approach used in process engineering. Starting from a description of the fundamental physico-chemical phenomena involved in the process, the whole system is rebuilt as an interconnected ensemble of elemental unit operations. Each artificial organ is presented with a short introduction provided by expert clinicians. Devices commonly used in clinical practice are reviewed and their performance is assessed and compared by using a mathematical model based approach. Whilst mathematical modelling is a fundamental tool for quantitative descriptions of clinical devices, models are kept simple to remain focused on the essential features of each process. Postgraduate students and researchers in the field of chemical and biomedical engineering will find that t...

  9. Artificial intelligence in nanotechnology

    Science.gov (United States)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  10. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  11. Mean Field Limits for Interacting Diffusions in a Two-Scale Potential

    Science.gov (United States)

    Gomes, S. N.; Pavliotis, G. A.

    2018-06-01

    In this paper, we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in Duncan et al. (Brownian motion in an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions.

  12. Magnetic field effects on the open circuit potential of ferromagnetic electrodes in corroding solutions.

    Science.gov (United States)

    Dass, Amala; Counsil, Joseph A; Gao, Xuerong; Leventis, Nicholas

    2005-06-02

    Magnetic fields shift the open circuit potential (OCP) of ferromagnetic electrodes (Fe, Co, and Ni) in corroding solutions. The OCP changes we observe (a) follow the series Fe>Co>Ni; (b) increase with the magnetic flux density; (c) reach a maximum with disk electrodes approximately 1 mm in diameter; and (d) depend on the orientation of the electrode. We report that when the surface of the electrode is oriented parallel (theta = 90 degrees) or perpendicular (theta = 0 degrees) to the magnetic field, the open circuit potential moves in opposite directions (positive and negative, respectively) with the largest changes occurring when the electrode surface is parallel to the magnetic field. Nonconvective sleeve electrodes produce the same behavior. The overall experimental evidence suggests that the magnetic field changes the OCP by modifying the surface concentrations of the paramagnetic participants in the corrosion process of the ferromagnetic electrode by species in solution; this in turn is accomplished by imposing a field-gradient driven mode of mass transfer upon paramagnetic species in solution (magnetophoresis). Simulations of the magnetic field around the ferromagnetic electrode at the two extreme orientations considered here show that in one case (theta = 90 degrees) field gradients actually repel, while in the other case (theta = 0 degrees) they attract paramagnetic species in the vicinity of the electrode.

  13. Bioengineering of Artificial Lymphoid Organs.

    Science.gov (United States)

    Nosenko, M A; Drutskaya, M S; Moisenovich, M M; Nedospasov, S A

    2016-01-01

    This review addresses the issue of bioengineering of artificial lymphoid organs.Progress in this field may help to better understand the nature of the structure-function relations that exist in immune organs. Artifical lymphoid organs may also be advantageous in the therapy or correction of immunodefficiencies, autoimmune diseases, and cancer. The structural organization, development, and function of lymphoid tissue are analyzed with a focus on the role of intercellular contacts and on the cytokine signaling pathways regulating these processes. We describe various polymeric materials, as scaffolds, for artificial tissue engineering. Finally, published studies in which artificial lymphoid organs were generated are reviewed and possible future directions in the field are discussed.

  14. Effect of an improved molecular potential on strong-field tunneling ionization of molecules

    International Nuclear Information System (INIS)

    Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.

    2010-01-01

    We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB α) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB α do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.

  15. Point charge potential and weighting field of a pixel or pad in a plane condenser

    Energy Technology Data Exchange (ETDEWEB)

    Riegler, W.; Aglieri Rinella, G.

    2014-12-11

    We derive expressions for the potential of a point charge as well as the weighting potential and weighting field of a rectangular pad for a plane condenser, which are well suited for numerical evaluation. We relate the expressions to solutions employing the method of image charges, which allows discussion of convergence properties and estimation of errors, providing also an illuminating example of a problem with an infinite number of image charges.

  16. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bezbaruah, Pratikshya, E-mail: pratphd@tezu.ernet.in; Das, Nilakshi [Department of Physics, Tezpur University, Tezpur, Assam 784028 (India)

    2016-04-15

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  17. Collisional effects on interaction potential in complex plasma in presence of magnetic field

    International Nuclear Information System (INIS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2016-01-01

    Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.

  18. Evaluating the potential of natural reproduction and artificial techniques to increase Acropora cervicornis populations at Discovery Bay, Jamaica

    Directory of Open Access Journals (Sweden)

    Norman J Quinn

    2006-12-01

    Full Text Available Shallow water Acropora species have become uncommon on north coast Jamaican coral reefs owing to a number of factors. On many reefs, algae have taken their place. The result is loss of habitat for many species of fish and invertebrates and less attractive reefs with fewer fish. These reefs appear to be prime candidates for coral restoration. However, the potential for coral to naturally recover should be examined before efforts to restore reefs are undertaken. Reef restoration is unnecessary if the population has the capacity to recovery through natural means. We observed that the rate of settlement of Acropora spat in the Caribbean is much lower than the spat settlement rate of several other Caribbean coral families and much lower than Acropora spat settlement rates in the South Pacific. A very low percentage of apparently healthy colonies of A. cervicornis possessed developing gametes in July 2005, a month before spawning. It appears that the long-term survival of remnant A. cervicornis populations is threatened unless successful sexual reproduction is restored. Several techniques were used to test transplant methods for restoring A. cervicornis populations. The mean survivorship and growth rate of one technique was >75% and nearly 250% per annum, respectively. Working with hotel operators, environmental groups, and local fishers, we are attempting to reintroduce A. cervicornis to sites where it previously existed and increase coral biomass and complexity at these sites. Reefs with greater A. cervicornis biomass have larger edible fish populations. With localized protection of these restored reefs we anticipate an increase of larger edible fish not only on reefs within the restored protected areas but also on adjacent reefs. Furthermore, increased coral and fish biodiversity improves the attractiveness of the reef community for divers and snorkelers. Rev. Biol. Trop. 54 (Suppl. 3: 105-116. Epub 2007 Jan. 15.Las especies someras de Acropora se

  19. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    Science.gov (United States)

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  20. Artificial Intelligence.

    Science.gov (United States)

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  1. A METRIC FOR A CHIRAL POTENTIAL FIELD UNA MÉTRICA PARA UN CAMPO POTENCIAL QUIRAL

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available In this paper we present an example of a specific metric which geometrizes explicitly a light-like four-vector potential (chiral field. The geometrization shows that such a vector has the same geometrical structure as a gravitational Kerr field. We discuss a theoretical proposition that a rotating body generates, besides a special gravitational field, a magnetic-type gauge field which might be identified with a chiral geometrized field. This chiral field represents a novel type of field because we cannot identify it with any of the known electromagnetic fields. As an application of this theory we discuss the morphology of the planets around the sun.En este trabajo se presenta un ejemplo de una métrica especifica que geometriza explícitamente un potencial cuadrivector tipo luz (campo quiral. La geometrización muestra que tal vector tiene la misma estructura geométrica que un campo gravitacional Kerr. Se discute una proposición teórica que un cuerpo rotante genera, su gravitación y el calibre de campo tipo magnético que puede ser identificado con un campo quiral geometrizado. Este campo quiral representa un tipo novedoso de campo que no puede ser identificado con alguno de los campos electromagnéticos conocidos. Como aplicación de esta teoría se discute la morfología de los planetas alrededor del sol.

  2. Potential of the aquatic fern Azolla filiculoides in biodegradation of an azo dye: modeling of experimental results by artificial neural networks.

    Science.gov (United States)

    Khataee, A R; Movafeghi, A; Vafaei, F; Lisar, S Y Salehi; Zarei, M

    2013-01-01

    The potential of an aquatic fern, Azolla filiculoides, in phytoremediation of a mono azo dye solution, C.I. Acid Blue 92 (AB92), was studied. The effects of operational parameters such as reaction time, initial dye concentration, fern fresh weight, pH, temperature and reusability of the fern on biodegradation efficiency were investigated. The intermediate compounds produced by biodegradation process were analyzed using GC-MS analysis. An artificial neural network (ANN) model was developed to predict the biodegradation efficiency. The findings indicated that ANN provides reasonable predictive performance (R2 = 0.961). The effects of AB92 solutions (10 and 20 mg L(-1)) on growth, chlorophylls and carotenoids content, activity of antioxidant enzymes such as superoxide dismutase, peroxidase and catalase and formation of malondialdehyde were analyzed. AB92 generally showed inhibitory effects on the growth. Moreover, photosynthetic pigments in the fronds significantly decreased in the treatments. An increase was detected for lipid peroxidation and antioxidant enzymes activity, suggesting that AB92 caused reactive oxygen species production in Azolla fronds, which were scavenged by induced activities of antioxidant enzymes.

  3. Phytoextraction potential of water fern (Azolla pinnata) in the removal of a hazardous dye, methyl violet 2B: Artificial neural network modelling.

    Science.gov (United States)

    Kooh, Muhammad Raziq Rahimi; Lim, Linda B L; Lim, Lee-Hoon; Malik, Owais Ahmed

    2018-04-16

    This study investigated the potential of Azolla pinnata (AP) in the removal of toxic methyl violet 2B (MV) dye wastewater using the phytoextraction approach with the inclusion of an Artificial Neural Network (ANN) modelling. Parameters examined included the effects of dye concentration, pH and plant dosage. The highest removal efficiency was 93% which was achieved at a plant dosage of 0.8 g (dye volume = 200 mL, initial pH = 6.0, initial dye concentration = 10 mg L -1 ). A significant decrease in relative frond number (RFN), a growth rate estimator, observed at a dye concentration of 20 mg L -1 MV indicated some toxicity, which coincided with the plant pigments studies where the chlorophyll a content was lower than the control. There were little differences in the plant pigment contents between the control and those in the presence of dye (5 to 15 mg L -1 ) indicating the tolerance of AP to MV at lower concentrations. A three-layer ANN model was optimized (6 neurons in the hidden layer) and successfully predicted the phytoextraction of MV (R = 0.9989, RMSE = 0.0098). In conclusion, AP proved to be a suitable plant that could be used for the phytoextraction of MV while the ANN modelling has shown to be a reliable method for the modelling of phytoextraction of MV using AP.

  4. Stochastic quantum inflation for a canonical scalar field with linear self-interaction potential

    Energy Technology Data Exchange (ETDEWEB)

    Panotopoulos, Grigoris [CENTRA, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa (Portugal)

    2017-10-15

    We apply Starobinsky's formalism of stochastic inflation to the case of a massless minimally coupled scalar field with linear self-interaction potential. We solve the corresponding Fokker-Planck equation exactly, and we obtain analytical expressions for the stochastic expectation values. (orig.)

  5. Note on the evolution of the gravitational potential in Rastall scalar field theories

    International Nuclear Information System (INIS)

    Fabris, J.C.; Hamani Daouda, M.; Piattella, O.F.

    2012-01-01

    We investigate the evolution of the gravitational potential in Rastall scalar field theories. In a single component model a consistent perturbation theory, formulated in the Newtonian gauge, is possible only for γ=1, which is the General Relativity limit. On the other hand, the addition of another canonical fluid component allows to consider the case γ≠1.

  6. Solar system tests of scalar field models with an exponential potential

    International Nuclear Information System (INIS)

    Paramos, J.; Bertolami, O.

    2008-01-01

    We consider a scenario where the dynamics of a scalar field is ruled by an exponential potential, such as those arising from some quintessence-type models, and aim at obtaining phenomenological manifestations of this entity within our Solar System. To do so, we assume a perturbative regime, derive the perturbed Schwarzschild metric, and extract the relevant post-Newtonian parameters.

  7. Effective potential in N=1, d=4 supergravity coupled to the Volkov-Akulov field

    International Nuclear Information System (INIS)

    Jasinschi, R.S.; Smith, A.W.

    1984-01-01

    The only-loop effective potential for N=1, d=4 supergravity theory coupled to the Volkov-Akulov field is calculated. Then it is shown that after an ajustment of some parameters the local supersymmetry is dynamically broken and as a consequence the gravitino acquires mass. (Author) [pt

  8. Students' Reasoning When Tackling Electric Field and Potential in Explanation of DC Resistive Circuits

    Science.gov (United States)

    Leniz, Ane; Zuza, Kristina; Guiasola, Jenaro

    2017-01-01

    This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge…

  9. Inversion of potential-field data for layers with uneven thickness

    OpenAIRE

    Caratori Tontini, F.; Cocchi, L.; Carmisciano, C.; Stefanelli, P.

    2008-01-01

    AB: Inversion of large-scale potential-field anomalies, aimed at determining density or magnetization, is usually made in the Fourier domain. The commonly adopted geometry is based on a layer of constant thickness, characterized by a bottom surface at a fixed distance from the top surface.....

  10. Recent Progress in Molecular Simulation of Aqueous Electrolytes: Force Fields, Chemical Potentials and Solubility.

    Czech Academy of Sciences Publication Activity Database

    Nezbeda, Ivo; Moučka, F.; Smith, W.R.

    2016-01-01

    Roč. 114, č. 11 (2016), s. 1665-1690 ISSN 0026-8976 R&D Projects: GA ČR GA15-19542S Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : force fields * chemical potentials * aqueous electrolytes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016

  11. Relating double field theory to the scalar potential of N=2 gauged supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, 80805 (Germany); Font, Anamaria [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, 80805 (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU,Theresienstr. 37, München, 80333 (Germany); Plauschinn, Erik [Arnold Sommerfeld Center for Theoretical Physics, LMU,Theresienstr. 37, München, 80333 (Germany)

    2015-12-18

    The double field theory action in the flux formulation is dimensionally reduced on a Calabi-Yau three-fold equipped with non-vanishing type IIB geometric and non-geometric fluxes. First, we rewrite the metric-dependent reduced DFT action in terms of quantities that can be evaluated without explicitly knowing the metric on the Calabi-Yau manifold. Second, using properties of special geometry we obtain the scalar potential of N=2 gauged supergravity. After an orientifold projection, this potential is consistent with the scalar potential arising from the flux-induced superpotential, plus an additional D-term contribution.

  12. Disordered electrical potential observed on the surface of SiO2 by electric field microscopy

    International Nuclear Information System (INIS)

    GarcIa, N; Yan Zang; Ballestar, A; Barzola-Quiquia, J; Bern, F; Esquinazi, P

    2010-01-01

    The electrical potential on the surface of ∼300 nm thick SiO 2 grown on single-crystalline Si substrates has been characterized at ambient conditions using electric field microscopy. Our results show an inhomogeneous potential distribution with fluctuations up to ∼0.4 V within regions of 1 μm. The potential fluctuations observed at the surface of these usual dielectric holders of graphene sheets should induce strong variations in the graphene charge densities and provide a simple explanation for some of the anomalous behaviors of the transport properties of graphene.

  13. Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells with applied electric fields

    International Nuclear Information System (INIS)

    Wu, Jinghe; Guo, Kangxian; Liu, Guanghui

    2014-01-01

    Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.

  14. Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Energy Technology Data Exchange (ETDEWEB)

    Genenko, Yuri A., E-mail: genenko@mm.tu-darmstadt.de; Hirsch, Ofer [Technische Universität Darmstadt, Darmstadt (Germany); Erhart, Paul [Chalmers University of Technology, Gothenburg (Sweden)

    2014-03-14

    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.

  15. Effects on functional groups and zeta potential of SAP1pulsed electric field technology.

    Science.gov (United States)

    Liang, Rong; Li, Xuenan; Lin, Songyi; Wang, Jia

    2017-01-01

    SAP 1 pulsed electric field (PEF) technology. The effects of electric field intensity and pulse frequency on SAP 1 electric field intensity 15 kV cm -1 , pulse frequency 1600 Hz and flow velocity 2.93 mL min -1 ). Furthermore, the PEF-treated SAP 1 < MW < 3kDa under optimal conditions lacked the characteristic absorbance of N-H, C = C and the amide band and the zeta potential was reduced to -18.0 mV. Overall, the results of the present study suggest that the improvement of antioxidant activity of SAP 1 < MW < 3kDa is a result of the contribution of the functional groups and the change in zeta potential when treated with PEF. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. THE POSSIBLE IMPACT OF L5 MAGNETOGRAMS ON NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Weinzierl, Marion; Yeates, Anthony R. [Department of Mathematical Sciences, Durham University South Road, Durham DH1 3LE (United Kingdom); Mackay, Duncan H. [School of Mathematics and Statistics, University of St. Andrews North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Pevtsov, Alexei A., E-mail: marion.weinzierl@durham.ac.uk [National Solar Observatory 3010 Coronal Loop, sunspot NM 88349 (United States)

    2016-09-10

    The proposed Carrington-L5 mission would bring instruments to the L5 Lagrange point to provide us with crucial data for space weather prediction. To assess the importance of including a magnetograph, we consider the possible differences in non-potential solar coronal magnetic field simulations when magnetograph observations are available from the L5 point, compared with an L1-based field of view (FOV). A timeseries of synoptic radial magnetic field maps is constructed to capture the emergence of two active regions from the L5 FOV. These regions are initially absent in the L1 magnetic field maps, but are included once they rotate into the L1 FOV. Non-potential simulations for these two sets of input data are compared in detail. Within the bipolar active regions themselves, differences in the magnetic field structure can exist between the two simulations once the active regions are included in both. These differences tend to reduce within 5 days of the active region being included in L1. The delayed emergence in L1 can, however, lead to significant persistent differences in long-range connectivity between the active regions and the surrounding fields, and also in the global magnetic energy. In particular, the open magnetic flux and the location of open magnetic footpoints, are sensitive to capturing the real-time of emergence. These results suggest that a magnetograph at L5 could significantly improve predictions of the non-potential corona, the interplanetary magnetic field, and of solar wind source regions on the Sun.

  17. Reconstruction of the Scalar Field Potential in Inflationary Models with a Gauss-Bonnet term

    Science.gov (United States)

    Koh, Seoktae; Lee, Bum-Hoon; Tumurtushaa, Gansukh

    2017-06-01

    We consider inflationary models with a Gauss-Bonnet term to reconstruct the scalar-field potentials and the Gauss-Bonnet coupling functions. Both expressions are derived from the observationally favored configurations of ns and r . Our result implies that, for the reconstructed potentials and coupling functions, the blue tilt of inflationary tensor fluctuations can be realized. To achieve a blue tilt for the inflationary tensor fluctuations, a scalar field must climb up its potential before rolling down. We further investigate the properties of propagation of the perturbation modes in Friedmann-Robertson-Walker spacetime. For the reconstructed configurations that give rise to the blue tilt for the inflationary tensor fluctuations, we show that the ghosts and instabilities are absent with the superluminal propagation speeds for the scalar perturbation modes, whereas the propagation speeds of the tensor perturbations are subluminal.

  18. On the unlikeliness of multi-field inflation: bounded random potentials and our vacuum

    International Nuclear Information System (INIS)

    Battefeld, Diana; Battefeld, Thorsten; Schulz, Sebastian

    2012-01-01

    Based on random matrix theory, we compute the likelihood of saddles and minima in a class of random potentials that are softly bounded from above and below, as required for the validity of low energy effective theories. Imposing this bound leads to a random mass matrix with non-zero mean of its entries. If the dimensionality of field-space is large, inflation is rare, taking place near a saddle point (if at all), since saddles are more likely than minima or maxima for common values of the potential. Due to the boundedness of the potential, the latter become more ubiquitous for rare low/large values respectively. Based on the observation of a positive cosmological constant, we conclude that the dimensionality of field-space after (and most likely during) inflation has to be low if no anthropic arguments are invoked, since the alternative, encountering a metastable deSitter vacuum by chance, is extremely unlikely

  19. Self-Potential Monitoring of Landslides on Field and Laboratory Scale

    Science.gov (United States)

    Heinze, T.; Limbrock, J. K.; Weigand, M.; Wagner, F. M.; Kemna, A.

    2017-12-01

    Among several other geophysical methods used to observe water movement in the ground, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context of landslides is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than pressure diffusion. We present self-potential measurements from over a year of continuous monitoring at an old landslide site. Using a three-dimensional electric-resistivity underground model, the self-potential signal is analyzed with respect to precipitation and the resulting flow in the ground. Additional data from electrical measurements and conventional sensors are included to assess saturation. The field observations are supplemented by laboratory experiments in which we study the behavior of the self-potential during failure of a piled land slope. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. Our results

  20. Assessing effects of a mining and municipal sewage effluent mixture on fathead minnow (Pimephales promelas) reproduction using a novel, field-based trophic-transfer artificial stream.

    Science.gov (United States)

    Rickwood, Carrie J; Dubé, Monique G; Weber, Lynn P; Lux, Sarah; Janz, David M

    2008-01-31

    The Junction Creek watershed, located in Sudbury, ON, Canada receives effluent from three metal mine wastewater treatment plants, as well as a municipal wastewater (MWW) discharge. Effects on fish have been documented within the creek (decreased egg size and increased metal body burdens). It has been difficult to identify the cause of the effects observed due to the confounded nature of the creek. The objectives of this investigation were to assess the: (1) effects of a mine effluent and municipal wastewater (CCMWW) mixture on fathead minnow (FHM; Pimephales promelas) reproduction in an on-site artificial stream and (2) importance of food (Chironomus tentans) as a source of exposure using a trophic-transfer system. Exposures to CCMWW through the water significantly decreased egg production and spawning events. Exposure through food and water using the trophic-transfer system significantly increased egg production and spawning events. Embryos produced in the trophic-transfer system showed similar hatching success but increased incidence and severity of deformities after CCMWW exposure. We concluded that effects of CCMWW on FHM were more apparent when exposed through the water. Exposure through food and water may have reduced effluent toxicity, possibly due to increased nutrients and organic matter, which may have reduced metal bioavailability. More detailed examination of metal concentrations in the sediment, water column, prey (C. tentans) and FHM tissues is recommended to better understand the toxicokinetics of potential causative compounds within the different aquatic compartments when conducting exposures through different pathways.

  1. Artificial Consciousness or Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Spanache Florin

    2017-05-01

    Full Text Available Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus automatic. But conscience is above these differences because it is neither conditioned by the self-preservation of autonomy, because a conscience is something that you use to help your neighbor, nor automatic, because one’s conscience is tested by situations which are not similar or subject to routine. So, artificial intelligence is only in science-fiction literature similar to an autonomous conscience-endowed being. In real life, religion with its notions of redemption, sin, expiation, confession and communion will not have any meaning for a machine which cannot make a mistake on its own.

  2. Comprehensive simulation study on local and global development of auroral arcs and field-aligned potentials

    International Nuclear Information System (INIS)

    Watanabe, Tomohiko; Oya, Hiroshi; Watanabe, Kunihiko; Sato, Tetsuya.

    1992-10-01

    Extensive three-dimensional computer simulations of the magnetosphere-ionosphere (M-I) coupling are performed to study self-excitation of auroral arcs with special emphasis on 1) nonlinear evolution of the feedback instability in the M-I coupling system, 2) controlling mechanisms of the auroral arc structure, 3) formation of a field-aligned electric potential structure in association with the development of the feedback instability, and 4) effects of the parallel potential generation on auroral arc development. It is reconfirmed that the feedback instability produces a longitudinally elongated, latitudinally striated structure where the upward field-aligned current and the ionospheric density are locally enhanced. The following important new features are revealed. 1) The global distribution of the striation structure is primarily governed by the magnetospheric convection pattern and the ionospheric density distribution. 2) There appears a significant dawn-dusk asymmetry in the auroral arc formation, even though the apparent geometrical relationship is symmetric. 3) The recombination effect plays a significant role in the global, as well as local, development of the auroral arc structure. The nonlinearity of recombination, in conjunction with the closure of an arc-associated local field-aligned current system, acts to destroy an old arc and creates a new arc in a different but adjacent position. 4) A V-shaped field aligned potential structure is created in association with an auroral arc. Rapid increase in the electron density and the local upward field-aligned current of an arc arises as a result of enhanced ionization by precipitating electrons accelerated by the parallel potential. 5) A drastic oscillatory behavior of appearance and disappearance of auroral arcs is obtained when the ionization effect is strong. The period is primarily given by the Alfven bounce time. (J.P.N.)

  3. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  4. Apparatus and method for transfer of information by means of a curl-free magnetic vector potential field

    International Nuclear Information System (INIS)

    Gelinas, R.C.

    1984-01-01

    A system for transmission of information using a curl-free magnetic vector potential radiation field. The system includes current-carrying apparatus for generating a magnetic vector potential field with a curl-free component coupled to apparatus for modulating the current applied to the field generating apparatus. Receiving apparatus includes a detector with observable properties that vary with the application of an applied curl-free magnetic vector potential field. Analyzing apparatus for determining the information content of modulation imposed on the curl-free vector potential field can be established in materials that are not capable of transmitting more common electromagnetic radiation

  5. Artificial Intelligence.

    Science.gov (United States)

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  6. Artificial intelligence

    OpenAIRE

    Duda, Antonín

    2009-01-01

    Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.

  7. Artificial heart

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-18

    Super-pure plutonium-238 could use heat produced during fission to power an implanted artificial heart. Three model hearts have worked for some time. Concern that excess heat would make the procedure unsafe for humans has broadened the search for another energy source, such as electrohydraulic drive or an external power battery. A back pack approach may provide an interim solution until materials are developed which can withstand heart activity and be small enough for implantation.

  8. Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction

    Science.gov (United States)

    Solov'ev, A. A.

    2013-09-01

    We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.

  9. Artificial organs: recent progress in artificial hearing and vision.

    Science.gov (United States)

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.

  10. MHODE: a local-homogeneity theory for improved source-parameter estimation of potential fields

    Science.gov (United States)

    Fedi, Maurizio; Florio, Giovanni; Paoletti, Valeria

    2015-08-01

    We describe a multihomogeneity theory for source-parameter estimation of potential fields. Similar to what happens for random source models, where the monofractal scaling-law has been generalized into a multifractal law, we propose to generalize the homogeneity law into a multihomogeneity law. This allows a theoretically correct approach to study real-world potential fields, which are inhomogeneous and so do not show scale invariance, except in the asymptotic regions (very near to or very far from their sources). Since the scaling properties of inhomogeneous fields change with the scale of observation, we show that they may be better studied at a set of scales than at a single scale and that a multihomogeneous model is needed to explain its complex scaling behaviour. In order to perform this task, we first introduce fractional-degree homogeneous fields, to show that: (i) homogeneous potential fields may have fractional or integer degree; (ii) the source-distributions for a fractional-degree are not confined in a bounded region, similarly to some integer-degree models, such as the infinite line mass and (iii) differently from the integer-degree case, the fractional-degree source distributions are no longer uniform density functions. Using this enlarged set of homogeneous fields, real-world anomaly fields are studied at different scales, by a simple search, at any local window W, for the best homogeneous field of either integer or fractional-degree, this yielding a multiscale set of local homogeneity-degrees and depth estimations which we call multihomogeneous model. It is so defined a new technique of source parameter estimation (Multi-HOmogeneity Depth Estimation, MHODE), permitting retrieval of the source parameters of complex sources. We test the method with inhomogeneous fields of finite sources, such as faults or cylinders, and show its effectiveness also in a real-case example. These applications show the usefulness of the new concepts, multihomogeneity and

  11. Gravitational and electromagnetic potentials of the stationary Einstein-Maxwell field equations

    International Nuclear Information System (INIS)

    Jones, T.C.

    1979-01-01

    Associated with the stationary Einstein-Maxwell field equations is an infinite hierarchy of potentials. The basic characteristics of these potentials are examined in general and then in greater detail for the particular case of the Reissner-Nordstrom metric. Thier essential utility in the process of solution generation is elucidated, and the necessary equations for solution generation are developed. Appropriate generating functions, which contain the complete infinite hierarchy of potentials, are developed and analyzed. Particular attention is paid to the inherent gauge freedom of these generating functions. Two methods of solution generation, which yield asymptotically flat solutions in vacuum, are generalized to include electromagnetism. One method, using potentials consistent with the Harrison transformation and the Reissner-Nordstrom metric, is discussed in detail, and its resultant difficulties are explored

  12. Vacuum stability of a general scalar potential of a few fields

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, Kristjan [NICPB, Tallinn (Estonia)

    2016-06-15

    We calculate analytical vacuum stability or bounded from below conditions for general scalar potentials of a few fields. After a brief review of copositivity, we show how to find positivity conditions for more complicated potentials. We discuss the vacuum stability conditions of the general potential of two real scalars, without and with the Higgs boson included in the potential. As further examples, we give explicit vacuum stability conditions for the two Higgs doublet model with no explicit CP breaking, and for the Z{sub 3} scalar dark matter with an inert doublet and a complex singlet. We give a short overview of positivity conditions for tensors of quartic couplings via tensor eigenvalues. (orig.)

  13. Algorithms for Computing the Magnetic Field, Vector Potential, and Field Derivatives for Circular Current Loops in Cylindrical Coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-24

    A numerical algorithm for computing the field components Br and Bz and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairly general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r2 in the some of the expressions.

  14. Noncontact measurement of electrostatic fields: Verification of modeled potentials within ion mobility spectrometer drift tube designs

    International Nuclear Information System (INIS)

    Scott, Jill R.; Tremblay, Paul L.

    2007-01-01

    The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity

  15. Essentials of artificial intelligence

    CERN Document Server

    Ginsberg, Matt

    1993-01-01

    Since its publication, Essentials of Artificial Intelligence has beenadopted at numerous universities and colleges offering introductory AIcourses at the graduate and undergraduate levels. Based on the author'scourse at Stanford University, the book is an integrated, cohesiveintroduction to the field. The author has a fresh, entertaining writingstyle that combines clear presentations with humor and AI anecdotes. At thesame time, as an active AI researcher, he presents the materialauthoritatively and with insight that reflects a contemporary, first hand

  16. Exact time-dependent exchange-correlation potentials for strong-field electron dynamics

    International Nuclear Information System (INIS)

    Lein, Manfred; Kuemmel, Stephan

    2005-01-01

    By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process

  17. Modification of the trapped field in bulk high-temperature superconductors as a result of the drilling of a pattern of artificial columnar holes

    International Nuclear Information System (INIS)

    Lousberg, Gregory P; Vanderbemden, Ph; Vanderheyden, B; Fagnard, J-F; Ausloos, M

    2010-01-01

    The trapped magnetic field is examined in bulk high-temperature superconductors that are artificially drilled along their c-axis. The influence of the hole pattern on the magnetization is studied and compared by means of numerical models and Hall probe mapping techniques. To this aim, we consider two bulk YBCO samples with a rectangular cross-section that are drilled each by six holes arranged either on a rectangular lattice (sample I) or on a centered rectangular lattice (sample II). For the numerical analysis, three different models are considered for calculating the trapped flux: (i), a two-dimensional (2D) Bean model neglecting demagnetizing effects and flux creep, (ii), a 2D finite-element model neglecting demagnetizing effects but incorporating magnetic relaxation in the form of an E - J power law, and, (iii), a 3D finite element analysis that takes into account both the finite height of the sample and flux creep effects. For the experimental analysis, the trapped magnetic flux density is measured above the sample surface by Hall probe mapping performed before and after the drilling process. The maximum trapped flux density in the drilled samples is found to be smaller than that in the plain samples. The smallest magnetization drop is found for sample II, with the centered rectangular lattice. This result is confirmed by the numerical models. In each sample, the relative drops that are calculated independently with the three different models are in good agreement. As observed experimentally, the magnetization drop calculated in the sample II is the smallest one and its relative value is comparable to the measured one. By contrast, the measured magnetization drop in sample (1) is much larger than that predicted by the simulations, most likely because of a change of the microstructure during the drilling process.

  18. On radiation of electrons moving in braking electric fields with distributed potential

    International Nuclear Information System (INIS)

    Fedulov, V.I.; Suvorov, V.I.; Umirov, U.R.

    2002-01-01

    The characteristics of radiation of electron moving in flat structures with braking electric field created by an accelerating electrode and another electrode with distributed potential are investigated. The analytical expressions for definition of conditions for complete loss of energy by electron in structure with distributed potential and for arising the electron vibrations are received. Also expressions connecting the electron energy with the point of entry and its fluctuation frequency are received. The mathematical model of irradiation process is offered depending on energy and point of entry of the electron. The connection between a radiation wave length and position of point of entry of electrons in the braking electric field are found. A possibility of emerging the optical radiation in solid environments at passage of charge particles through substance is shown. (author)

  19. Internal and external potential-field estimation from regional vector data at varying satellite altitude

    Science.gov (United States)

    Plattner, Alain; Simons, Frederik J.

    2017-10-01

    When modelling satellite data to recover a global planetary magnetic or gravitational potential field, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g. by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the source) while balancing the conflicting demands for spatial concentration and spectral limitation. The `altitude-cognizant' gradient vector Slepian functions (AC-GVSF) enjoy a noise tolerance under downward continuation that is much improved relative to the `classical' gradient vector Slepian functions (CL-GVSF), which do not factor satellite altitude into their construction. Furthermore, venturing beyond the realm of their first application, published in a preceding paper, in the present article we extend the theory to being able to handle both internal and external potential-field estimation. Solving simultaneously for internal and external fields under the limitation of regional data availability reduces internal-field artefacts introduced by downward-continuing unmodelled external fields, as we show with numerical examples. We explain our solution strategies on the basis of analytic expressions for the behaviour of the estimation bias and variance of models for which signal and noise are uncorrelated, (essentially) space- and band-limited, and spectrally (almost) white. The AC-GVSF are optimal linear combinations of vector spherical harmonics

  20. Potential limitations for potato yields in raised soil field systems near Lake Titicaca

    Directory of Open Access Journals (Sweden)

    Lozada Diego Sánchez de

    2006-01-01

    Full Text Available During the last two decades, various non-governmental organizations have strongly encouraged Bolivian farmers in the Altiplano region near Lake Titicaca to resume the ancestral agricultural practice of constructing raised fields. In addition to improved drainage and possibilities this practice affords for sub-irrigation, advocated benefits of this system traditionally include frost mitigation and high crop yields. Until recently, reliable data to assess the extent of these benefits were unfortunately lacking. In this context, field experiments on raised fields were designed and carried out at two locations in the Bolivian Altiplano to obtain reliable potato yield and temperature data. Observed yields ranged from 2.73 to 10.80 t ha-1 at the first site, where salinity caused significant yield variability (R² = 0.79. At the second site, yields per raised platform varied between 8.25 and 33.45 t ha-1. However, comparable yields were obtained in flat control plots in spite of a mid-season frost, and the minimum temperatures differed only by 1ºC in the conventional plots relative to the raised fields. These results suggest that, under the experimental conditions, the potential benefits of raised fields in terms of frost mitigation or increased yields might only be observable in exceptionally bad years, when extreme frosts wipe out entire potato crops on conventional fields. Nevertheless, it is argued that in spite of these marginally supportive observations, raised-field agriculture may still be a viable option for farmers to consider if the water-filled channels between the raised fields are managed for fish and fertilizer production.

  1. Shallow geothermal field in Lanzarote (Canary Island). Potential evaluation and heat extraction test

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Gil, J.L.; Valentin, A. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Torres, F. [Universidad de Barcelona (Spain); Albert, J.F.

    1994-12-31

    Boreholes were used to perform various experiments. A thermometry was carried out, as well as chemical analysis and an hydrodynamic modelling. This paper presents the scientific aims and conclusions of the whole project called ``Shallow H.D.R. geothermal field`` in Lanzarote (Canary Islands). Potential evaluation and heat extraction test are presented. (Project JOUG-0004 ES -JR - JOULE Program of the EEC). (TEC). 2 tabs.

  2. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: A case study of the South Pars Gas Field, Persian Gulf, Iran

    Science.gov (United States)

    Alizadeh, Bahram; Najjari, Saeid; Kadkhodaie-Ilkhchi, Ali

    2012-08-01

    Intelligent and statistical techniques were used to extract the hidden organic facies from well log responses in the Giant South Pars Gas Field, Persian Gulf, Iran. Kazhdomi Formation of Mid-Cretaceous and Kangan-Dalan Formations of Permo-Triassic Data were used for this purpose. Initially GR, SGR, CGR, THOR, POTA, NPHI and DT logs were applied to model the relationship between wireline logs and Total Organic Carbon (TOC) content using Artificial Neural Networks (ANN). The correlation coefficient (R2) between the measured and ANN predicted TOC equals to 89%. The performance of the model is measured by the Mean Squared Error function, which does not exceed 0.0073. Using Cluster Analysis technique and creating a binary hierarchical cluster tree the constructed TOC column of each formation was clustered into 5 organic facies according to their geochemical similarity. Later a second model with the accuracy of 84% was created by ANN to determine the specified clusters (facies) directly from well logs for quick cluster recognition in other wells of the studied field. Each created facies was correlated to its appropriate burial history curve. Hence each and every facies of a formation could be scrutinized separately and directly from its well logs, demonstrating the time and depth of oil or gas generation. Therefore potential production zone of Kazhdomi probable source rock and Kangan- Dalan reservoir formation could be identified while well logging operations (especially in LWD cases) were in progress. This could reduce uncertainty and save plenty of time and cost for oil industries and aid in the successful implementation of exploration and exploitation plans.

  3. Potential effect of fiddler crabs on organic matter distribution: A combined laboratory and field experimental approach

    Science.gov (United States)

    Natálio, Luís F.; Pardo, Juan C. F.; Machado, Glauco B. O.; Fortuna, Monique D.; Gallo, Deborah G.; Costa, Tânia M.

    2017-01-01

    Bioturbators play a key role in estuarine environments by modifying the availability of soil elements, which in turn may affect other organisms. Despite the importance of bioturbators, few studies have combined both field and laboratory experiments to explore the effects of bioturbators on estuarine soils. Herein, we assessed the bioturbation potential of fiddler crabs Leptuca leptodactyla and Leptuca uruguayensis in laboratory and field experiments, respectively. We evaluated whether the presence of fiddler crabs resulted in vertical transport of sediment, thereby altering organic matter (OM) distribution. Under laboratory conditions, the burrowing activity by L. leptodactyla increased the OM content in sediment surface. In the long-term field experiment with areas of inclusion and exclusion of L. uruguayensis, we did not observe influence of this fiddler crab in the vertical distribution of OM. Based on our results, we suggest that small fiddler crabs, such as the species used in these experiments, are potentially capable of alter their environment by transporting sediment and OM but such effects may be masked by environmental drivers and spatial heterogeneity under natural conditions. This phenomenon may be related to the small size of these species, which affects how much sediment is transported, along with the way OM interacts with biogeochemical and physical processes. Therefore, the net effect of these burrowing organisms is likely to be the result of a complex interaction with other environmental factors. In this sense, we highlight the importance of performing simultaneous field and laboratory experiments in order to better understanding the role of burrowing animals as bioturbators.

  4. A Multiagent Potential Field-Based Bot for Real-Time Strategy Games

    Directory of Open Access Journals (Sweden)

    Johan Hagelbäck

    2009-01-01

    Full Text Available Bots for real-time strategy (RTS games may be very challenging to implement. A bot controls a number of units that will have to navigate in a partially unknown environment, while at the same time avoid each other, search for enemies, and coordinate attacks to fight them down. Potential fields are a technique originating from the area of robotics where it is used in controlling the navigation of robots in dynamic environments. Although attempts have been made to transfer the technology to the gaming sector, assumed problems with efficiency and high costs for implementation have made the industry reluctant to adopt it. We present a multiagent potential field-based bot architecture that is evaluated in two different real-time strategy game settings and compare them, both in terms of performance, and in terms of softer attributes such as configurability with other state-of-the-art solutions. We show that the solution is a highly configurable bot that can match the performance standards of traditional RTS bots. Furthermore, we show that our approach deals with Fog of War (imperfect information about the opponent units surprisingly well. We also show that a multiagent potential field-based bot is highly competitive in a resource gathering scenario.

  5. Stability Analysis and Variational Integrator for Real-Time Formation Based on Potential Field

    Directory of Open Access Journals (Sweden)

    Shengqing Yang

    2014-01-01

    Full Text Available This paper investigates a framework of real-time formation of autonomous vehicles by using potential field and variational integrator. Real-time formation requires vehicles to have coordinated motion and efficient computation. Interactions described by potential field can meet the former requirement which results in a nonlinear system. Stability analysis of such nonlinear system is difficult. Our methodology of stability analysis is discussed in error dynamic system. Transformation of coordinates from inertial frame to body frame can help the stability analysis focus on the structure instead of particular coordinates. Then, the Jacobian of reduced system can be calculated. It can be proved that the formation is stable at the equilibrium point of error dynamic system with the effect of damping force. For consideration of calculation, variational integrator is introduced. It is equivalent to solving algebraic equations. Forced Euler-Lagrange equation in discrete expression is used to construct a forced variational integrator for vehicles in potential field and obstacle environment. By applying forced variational integrator on computation of vehicles' motion, real-time formation of vehicles in obstacle environment can be implemented. Algorithm based on forced variational integrator is designed for a leader-follower formation.

  6. Evolution Engines and Artificial Intelligence

    Science.gov (United States)

    Hemker, Andreas; Becks, Karl-Heinz

    In the last years artificial intelligence has achieved great successes, mainly in the field of expert systems and neural networks. Nevertheless the road to truly intelligent systems is still obscured. Artificial intelligence systems with a broad range of cognitive abilities are not within sight. The limited competence of such systems (brittleness) is identified as a consequence of the top-down design process. The evolution principle of nature on the other hand shows an alternative and elegant way to build intelligent systems. We propose to take an evolution engine as the driving force for the bottom-up development of knowledge bases and for the optimization of the problem-solving process. A novel data analysis system for the high energy physics experiment DELPHI at CERN shows the practical relevance of this idea. The system is able to reconstruct the physical processes after the collision of particles by making use of the underlying standard model of elementary particle physics. The evolution engine acts as a global controller of a population of inference engines working on the reconstruction task. By implementing the system on the Connection Machine (Model CM-2) we use the full advantage of the inherent parallelization potential of the evolutionary approach.

  7. Accelerating artificial intelligence with reconfigurable computing

    Science.gov (United States)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  8. POSSIBILITIES, LIMITATIONS AND ECONOMIC ASPECTS OF ARTIFICIAL INTELLIGENCE APPLICATIONS IN HEALTCARE

    OpenAIRE

    Dejan T ILIĆ; Branko Momcilo MARKOVIĆ

    2016-01-01

    The increasing importance of achieving sustainable development is largely positively influenced the emergence and increasing the level of application of artificial intelligence in different spheres of human activity, but especially in the field of health care. It is this trend and initiated that in work devote special attention to precisely to the analysis of potential opportunities, and economic effects of the use of artificial intelligence in the direction of improving efficiency, but the e...

  9. POSSIBILITIES, LIMITATIONS AND ECONOMIC ASPECTS OF ARTIFICIAL INTELLIGENCE APPLICATIONS IN HEALTCARE

    Directory of Open Access Journals (Sweden)

    Dejan T ILIĆ

    2016-02-01

    Full Text Available The increasing importance of achieving sustainable development is largely positively influenced the emergence and increasing the level of application of artificial intelligence in different spheres of human activity, but especially in the field of health care. It is this trend and initiated that in work devote special attention to precisely to the analysis of potential opportunities, and economic effects of the use of artificial intelligence in the direction of improving efficiency, but the economic effects of health care

  10. A Comparative Survey of Lotka and Pao’s Laws Conformity with the Number of Researchers and Their Articles in Computer Science and Artificial Intelligence Fields in Web of Science (1986-2009

    Directory of Open Access Journals (Sweden)

    Farideh Osareh

    2011-10-01

    Full Text Available The purpose of this research was to examine the validity of Lotka and Pao’s laws with authorship distribution of "Computer Science" and "Artificial Intelligence" fields using Web of Science (WoS during 1986 to 2009 and comparing the results of examinations. This study was done by using the methods of citation analysis which are scientometrics techniques. The research sample includes all articles in computer science and artificial intelligence fields indexed in the databases accessible via Web of Science during 1986-2009; that were stored in 500 records files and added to "ISI.exe" software for analysis to be performed. Then, the required output of this software was saved in Excel. There were 19150 articles in the computer science field (by 45713 authors and 958 articles in artificial intelligence field (by 2487 authors. Then for final counting and analyzing, the data converted to “Excel” spreadsheet software. Lotka and Pao’s laws were tested using both Lotka’s formula: (for Lotka’s Law; also for testing Pao’s law the values of the exponent n and the constant c are computed and Kolmogorov-Smirnov goodness-of-fit tests were applied. The results suggested that author productivity distribution predicted in “Lotka's generalized inverse square law” was not applicable to computer science and artificial intelligence; but Pao’s law was applicable to these subject areas. Survey both literature and original examining of Lotka and Pao’s Laws witnessed some aspects should be considered. The main elements involved in fitting in a bibliometrics method have been identified: using Lotka or Pao’s law, subject area, period of time, measurement of authors, and a criterion for assessing goodness-of-fit.

  11. Multiscale analysis of potential fields by a ridge consistency criterion: the reconstruction of the Bishop basement

    Science.gov (United States)

    Fedi, M.; Florio, G.; Cascone, L.

    2012-01-01

    We use a multiscale approach as a semi-automated interpreting tool of potential fields. The depth to the source and the structural index are estimated in two steps: first the depth to the source, as the intersection of the field ridges (lines built joining the extrema of the field at various altitudes) and secondly, the structural index by the scale function. We introduce a new criterion, called 'ridge consistency' in this strategy. The criterion is based on the principle that the structural index estimations on all the ridges converging towards the same source should be consistent. If these estimates are significantly different, field differentiation is used to lessen the interference effects from nearby sources or regional fields, to obtain a consistent set of estimates. In our multiscale framework, vertical differentiation is naturally joint to the low-pass filtering properties of the upward continuation, so is a stable process. Before applying our criterion, we studied carefully the errors on upward continuation caused by the finite size of the survey area. To this end, we analysed the complex magnetic synthetic case, known as Bishop model, and evaluated the best extrapolation algorithm and the optimal width of the area extension, needed to obtain accurate upward continuation. Afterwards, we applied the method to the depth estimation of the whole Bishop basement bathymetry. The result is a good reconstruction of the complex basement and of the shape properties of the source at the estimated points.

  12. New approaches of the potential field for QPSO algorithm applied to nuclear reactor reload problem

    International Nuclear Information System (INIS)

    Nicolau, Andressa dos Santos; Schirru, Roberto

    2015-01-01

    Recently quantum-inspired version of the Particle Swarm Optimization (PSO) algorithm, Quantum Particle Swarm Optimization (QPSO) was proposed. The QPSO algorithm permits all particles to have a quantum behavior, where some sort of 'quantum motion' is imposed in the search process. When the QPSO is tested against a set of benchmarking functions, it showed superior performances as compared to classical PSO. The QPSO outperforms the classical one most of the time in convergence speed and achieves better levels for the fitness functions. The great advantage of QPSO algorithm is that it uses only one parameter control. The critical step or QPSO algorithm is the choice of suitable attractive potential field that can guarantee bound states for the particles moving in the quantum environment. In this article, one version of QPSO algorithm was tested with two types of potential well: delta-potential well harmonic oscillator. The main goal of this study is to show with of the potential field is the most suitable for use in QPSO in a solution of the Nuclear Reactor Reload Optimization Problem, especially in the cycle 7 of a Brazilian Nuclear Power Plant. All result were compared with the performance of its classical counterpart of the literature and shows that QPSO algorithm are well situated among the best alternatives for dealing with hard optimization problems, such as NRROP. (author)

  13. New approaches of the potential field for QPSO algorithm applied to nuclear reactor reload problem

    Energy Technology Data Exchange (ETDEWEB)

    Nicolau, Andressa dos Santos; Schirru, Roberto, E-mail: andressa@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Recently quantum-inspired version of the Particle Swarm Optimization (PSO) algorithm, Quantum Particle Swarm Optimization (QPSO) was proposed. The QPSO algorithm permits all particles to have a quantum behavior, where some sort of 'quantum motion' is imposed in the search process. When the QPSO is tested against a set of benchmarking functions, it showed superior performances as compared to classical PSO. The QPSO outperforms the classical one most of the time in convergence speed and achieves better levels for the fitness functions. The great advantage of QPSO algorithm is that it uses only one parameter control. The critical step or QPSO algorithm is the choice of suitable attractive potential field that can guarantee bound states for the particles moving in the quantum environment. In this article, one version of QPSO algorithm was tested with two types of potential well: delta-potential well harmonic oscillator. The main goal of this study is to show with of the potential field is the most suitable for use in QPSO in a solution of the Nuclear Reactor Reload Optimization Problem, especially in the cycle 7 of a Brazilian Nuclear Power Plant. All result were compared with the performance of its classical counterpart of the literature and shows that QPSO algorithm are well situated among the best alternatives for dealing with hard optimization problems, such as NRROP. (author)

  14. Inteligência artificial, tecnologias informacionais e seus possíveis impactos sobre as Ciências Sociais Artificial intelligence, informational technologies and their potential impacts on Social Sciences

    Directory of Open Access Journals (Sweden)

    Tom Dwyer

    2001-06-01

    Full Text Available Este artigo analisa algumas possibilidades de transformação das Ciências Sociais e, de maneira mais específica, na Sociologia, levantadas a partir do desenvolvimento e uso, nessas ciências, de tecnologias informacionais. Nas sociedades contemporâneas o aprofundamento do uso destas novas tecnologias pode trazer importantes conseqüências para as Ciências Sociais afetando, potencialmente, o ensino, a pesquisa e a construção de teoria. No Brasil podemos ver que um número crescente de informações é disponível em formato eletrônico, e estas podem ser analisadas para aumentar nossos conhecimentos sobre a sociedade. De fundamental importância é que o crescente recurso a tecnologias informacionais seja acompanhado por avanços na capacidade de teorização.This article examines some possibilities for change in Social Sciences and more specifically, on Sociology derived from development and use of informational technologies within that field. In contemporary societies, the growing use of those technologies may bring about important consequences for social sciences, potentially affecting teaching, research and theory building. In Brazil, there is more and more information available in electronic format, which could be analyzed to enlarge our knowledge about society. It is extremely important that the growing resorting to informational technologies is followed by advances in theorization abilities.

  15. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  16. A new method for temperature-field reconstruction during ultrasound-monitored cryosurgery using potential-field analogy.

    Science.gov (United States)

    Thaokar, Chandrajit; Rossi, Michael R; Rabin, Yoed

    2016-02-01

    The current study aims at developing computational tools in order to gain information about the thermal history in areas invisible to ultrasound imaging during cryosurgery. This invisibility results from the high absorption rate of the ultrasound energy by the frozen region, which leads to an apparent opacity in the cryotreated area and a shadow behind it. A proof-of-concept for freezing-front estimation is demonstrated in the current study, using the new potential-field analogy method (PFAM). This method is further integrated with a recently developed temperature-field reconstruction method (TFRM) to estimate the temperature distribution within the frozen region. This study uses prostate cryosurgery as a developmental model and trans-rectal ultrasound imaging as a choice of practice. Results of this study indicate that the proposed PFAM is a viable and computationally inexpensive solution to estimate the extent of freezing in the acoustic shadow region. Comparison of PFAM estimations and experimental data shows an average mismatch of less than 2 mm in freezing-front location, which is comparable to the uncertainty in ultrasound imaging. Comparison of the integrated PFAM + TFRM scheme with a full-scale finite-elements analysis (FEA) indicates an average mismatch of 0.9 mm for the freezing front location and 0.1 mm for the lethal temperature isotherm of -45 °C. Comparison of the integrated PFAM + TFRM scheme with experimental temperature measurements show a difference in the range of 2 °C and 6 °C for selected points of measurement. Results of this study demonstrate the integrated PFAM + TFRM scheme as a viable and computationally inexpensive means to gain information about the thermal history in the frozen region during ultrasound-monitored cryosurgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

    International Nuclear Information System (INIS)

    Charles Doret, S; Amini, Jason M; Wright, Kenneth; Volin, Curtis; Killian, Tyler; Ozakin, Arkadas; Denison, Douglas; Hayden, Harley; Pai, C-S; Slusher, Richart E; Harter, Alexa W

    2012-01-01

    Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled dc electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on dc electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains. (paper)

  18. Drift motion of a charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave

    International Nuclear Information System (INIS)

    Eliseev, Yu.N.; Stepanov, K.N.

    1983-01-01

    In the drift motion approximation solution of the problem is obtained on the motion of a nonrelativistic charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave under cherenkov and modified cyclotron resonances. The static radial electric field potential is supposed to be close to the parabolic one. The drift motion equations and their integrals are preseOted. The experimentally obtained effect of plasma ionic component division in the crossed fields under the excitation of ion cyclotron oscillations is explained with the help of the theory developed in the paper

  19. Potential fields & satellite missions: what they tell us about the Earth's core?

    Science.gov (United States)

    Mandea, M.; Panet, I.; Lesur, V.; de Viron, O.; Diament, M.; Le Mouël, J.

    2012-12-01

    Since the advent of satellite potential field missions, the search to find information they can carry about the Earth's core has been motivated both by an interest in understanding the structure of dynamics of the Earth's interior and by the possibility of applying new space data analysis. While it is agreed upon that the magnetic field measurements from space bring interesting information on the rapid variations of the core magnetic field and flows associated with, the question turns to whether the core process can have a signature in the space gravity data. Here, we tackle this question, in the light of the recent data from the GRACE mission, that reach an unprecedented precision. Our study is based on eight years of high-resolution, high-accuracy gravity and magnetic satellite data, provided by the GRACE and CHAMP satellite missions. From the GRACE CNES/GRGS geoid solutions, we have emphasized the long-term variability by using a specific post-processing technique. From the CHAMP magnetic data we have computed models for the core magnetic field and its temporal variations, and the flow at the top of the core. A correlation analysis between the gravity and magnetic gridded series indicates that the inter-annual changes in the core magnetic field - under a region from the Atlantic to Indian Oceans - coincide with similar changes in the gravity field. These results should be considered as a constituent when planning new Earth's observation space missions and future innovations relevant to both gravity (after GRACE Follow-On) and magnetic (after Swarm) missions.

  20. Artificial Intelligence: An Analysis of Potential Applications to Training, Performance Measurement, and Job Performance Aiding. Interim Report for Period September 1982-July 1983.

    Science.gov (United States)

    Richardson, J. Jeffrey

    This paper is part of an Air Force planning effort to develop a research, development, and applications program for the use of artificial intelligence (AI) technology in three target areas: training, performance measurement, and job performance aiding. The paper is organized in five sections that (1) introduce the reader to AI and those subfields…

  1. Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes.

    Science.gov (United States)

    Honda, Kohsuke; Maya, Shohei; Omasa, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Ohtake, Hisao

    2010-08-02

    Six thermophilic enzymes from Thermus thermophilus were used to construct an 'artificial bio-synthetic pathway' for the production of 2-deoxyribose 5-phosphate from fructose. By a simple operation using six recombinant Escherichia coli strains producing the thermophilic enzymes, respectively, fructose was converted to 2-deoxyribose 5-phosphate with a molar yield of 55%. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  3. Inversion of potential field data using the finite element method on parallel computers

    Science.gov (United States)

    Gross, L.; Altinay, C.; Shaw, S.

    2015-11-01

    In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.

  4. Field evidence for the potential of Rhodobacter capsulatus as Biofertilizer for flooded rice.

    Science.gov (United States)

    Gamal-Eldin, Hosny; Elbanna, Khaled

    2011-02-01

    In a previous study, we evaluated the effects of inoculating rice plants with the phototrophic purple nonsulfur bacterium Rhodobacter capsulatus (Rc) on growth and yield of rice in pots and lysimeter experiments and the results obtained have been highly encouraging. In this study, we carried out two field experiments: one in the experimental farm of the Faculty of Agriculture, Fayoum University, and the second in a farmer's field in Kafr El-sheikh, to assess the effects of Rc on growth and yield of rice in comparison and in combination with chemical nitrogen fertilizer (CNF) and farmyard manure. The results indicated that both biological and grain yields in all the Rc inoculated treatments were significantly higher than those in the uninoculated corresponding treatments in both fields. With regard to grain yield, the major factor for determining the effectiveness of any agricultural treatment, inoculation with Rc in combination with 50% of the recommended CNF rate gave a grain yield that was statistically equivalent to that obtained with 100% of the recommended CNF rate. These results provide a clear evidence for the potential of Rc as biofertilizer for flooded rice under field conditions.

  5. An assessment of potential applications with pulsed electric field in wines

    Directory of Open Access Journals (Sweden)

    Drosou Foteini

    2017-01-01

    Full Text Available Pulsed electric fields (PEF is a non-thermal processing technology that uses instantaneous, pulses of high voltage for a short period in the range of milliseconds to microseconds; the application of high intensity electric field on toasted wood chips leads to a quick diffusion of extractable molecules. Currently most PEF studies, in the field of oenology, have been focusing on the application of PEF as a pretreatment of grape musts by examining the microbial inactivation and the enhancement of polyphenol extraction. In this study a post-treatment of wine is introduced as method to enhance the wood flavor in the wine with a green noninvasive technology. Major phenolic aldehydes that have been identified as the characteristic compounds of oak volatile compounds were selected as markers and were analyzed instrumentally to compare the influence of PEF processing to non-treated samples. PEF treated samples brought about higher concentrations of the examined oak compounds in the samples treated with PEF, which may explain the advantages of its application. The modulation of the intensity of the electric field and the period of pulses influenced the concentrations of the volatile phenols that were leached out. Differences found between the assayed treatments indicate that PEF application could be a potential practice for a rapid extraction of volatile compounds from oak.

  6. 3D stochastic inversion and joint inversion of potential fields for multi scale parameters

    Science.gov (United States)

    Shamsipour, Pejman

    In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel

  7. Determining and uniformly estimating the gauge potential corresponding to a given gauge field on M4

    International Nuclear Information System (INIS)

    Mostow, M.; Shnider, S.; Ben-Gurion Univ. of the Negev, Beersheba

    1986-01-01

    In an earlier paper on the field copy problem, we proved that there exists a generic set of connections (gauge potentials) on a principle bundle with a semi-simple structure group over a four-dimensional base manifold for which the connection is uniquely determined by its curvature (gauge field). We conjectured that there exists a smaller, but still generic, set of connections for which the curvature map sending a connection to its curvature admits a continuous inverse with respect to the appropriate function space topologies. The conjecture says, in other words, that restricting to certain generic curvature 2-forms, one can determine and uniformly estimate the connection and its derivatives from the curvature and uniform estimates of its derivatives. In this Letter we give an affirmative answer to the conjecture and show, moreover, that the set of such connections contains an open dense set in the Whitney C ∞ topology. (orig.)

  8. Numerical Solutions of the Mean-Value Theorem: New Methods for Downward Continuation of Potential Fields

    Science.gov (United States)

    Zhang, Chong; Lü, Qingtian; Yan, Jiayong; Qi, Guang

    2018-04-01

    Downward continuation can enhance small-scale sources and improve resolution. Nevertheless, the common methods have disadvantages in obtaining optimal results because of divergence and instability. We derive the mean-value theorem for potential fields, which could be the theoretical basis of some data processing and interpretation. Based on numerical solutions of the mean-value theorem, we present the convergent and stable downward continuation methods by using the first-order vertical derivatives and their upward continuation. By applying one of our methods to both the synthetic and real cases, we show that our method is stable, convergent and accurate. Meanwhile, compared with the fast Fourier transform Taylor series method and the integrated second vertical derivative Taylor series method, our process has very little boundary effect and is still stable in noise. We find that the characters of the fading anomalies emerge properly in our downward continuation with respect to the original fields at the lower heights.

  9. Field-aligned current density versus electric potential characteristics for magnetospheric flux tubes

    International Nuclear Information System (INIS)

    Lemaire, J.; Scherer, M.

    1983-01-01

    The field-aligned current density (Jsub(tot)) is a non-linear function of the applied potential difference (phi) between the ionosphere and the magnetosphere. This nonlinear function has been calculated for plasma boundary conditions typical in a dayside cusp magnetic flux tube. The J-characteristic of such a flux tube changes when the temperatures of the warm magnetospheric electrons and of the cold ionospheric electrons are modified; it changes also when the relative density of the warm plasma is modified; the presence of trapped secondary electrons changes also the J-characteristic. The partial currents contributed by the warm and cold electrons, and by warm and cold ions are illustrated. The dynamic characteristic of an electric circuit depends on the static characteristic of each component of the sytem: i.e. the resistive ionosphere, the return current region, and the region of particle precipitation whose field-aligned current/voltage characteristics have been studied in this article

  10. Influence of the helical resonant fields on the plasma potential in the TBR-1 Tokamak

    International Nuclear Information System (INIS)

    Ribeiro, C.; Silva, R.P. da; Caldas, I.L.; Fagundes, A.N.; Sanada, E.K.

    1990-01-01

    This work describes an experimental work that are in progress in TBR-1 tokamak about the influence of resonant helical fields on the plasma potential. TBR-1 is a small tokamak in operation in the Physics Institute of University of Sao Paulo and used for basic research, diagnostic development and personal formation. Its main parameters are: R(Major Radius) = 0.30 m; a v (Vessel Radius) = 0.11 m; a(Plasma Radius) = 0.08 m; R/a(Aspect Ratio) = 3.75; B φ (Toroidal Field) = 5 kG; n e0 (Central Electron Density) ≅ 7 x 10 18 m -3 ; T e0 (central electron temperature) ≅ 200 eV. (Author)

  11. Evaluation of the potential for reduction in well spacing of the Bakken sand pool, Court Field

    Energy Technology Data Exchange (ETDEWEB)

    Majcher, M.B.; Estrada, C.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Nexen Inc., Calgary, AB (Canada); Archer, J.C. [Nexen Inc., Calgary, AB (Canada)

    2005-11-01

    For the past 15 years, the Court field has produced hydrocarbons from the Mississippian/Devonian middle Bakken sandstone reservoir. The formation is located in west central Saskatchewan and was deposited in a marine shelf environment and later reworked into tidally influenced sand ridges. Vertical wells and a waterflood recovery scheme have been used to produce heavy crude with an API gravity of 17. A better understanding of the reservoir behaviour is required in order to advance field development and maintain successful waterflood management. Three-dimensional seismic and well logs were used to map the structural complexity of the sand ridge. This study examined the feasibility of using production and seismic data to update and substantiate a simulation model which was used to evaluate downspace potential. Stratigraphic disparities were taken into account as discontinuous interbedded siltstones may be flow barriers that create anisotropy in the permeability zone. Grid orientation was altered to align axially with the permeability trends of the main sand ridge. This study also reviewed an earlier field simulation and generated an updated model. The potential to reduce well spacing was then identified and waterflood optimization of the middle Bakken reservoir was evaluated. It was concluded that the edges of the sand ridge and areas isolated from existing injectors have the greatest potential for infill drilling and additional water injection because of the high sinkhole density. It was noted that drilling edge regions with high oil saturations have a risk of low permeability zones, resulting in low production rates and the possibility of an ineffective waterflood scheme. Therefore, a successful waterflood in the edge zones would require injector-producer pairs in the equivalent sand facies. 4 refs., 36 figs.

  12. A combined vector potential-scalar potential method for FE computation of 3D magnetic fields in electrical devices with iron cores

    Science.gov (United States)

    Wang, R.; Demerdash, N. A.

    1991-01-01

    A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.

  13. A New Self-Constrained Inversion Method of Potential Fields Based on Probability Tomography

    Science.gov (United States)

    Sun, S.; Chen, C.; WANG, H.; Wang, Q.

    2014-12-01

    The self-constrained inversion method of potential fields uses a priori information self-extracted from potential field data. Differing from external a priori information, the self-extracted information are generally parameters derived exclusively from the analysis of the gravity and magnetic data (Paoletti et al., 2013). Here we develop a new self-constrained inversion method based on probability tomography. Probability tomography doesn't need any priori information, as well as large inversion matrix operations. Moreover, its result can describe the sources, especially the distribution of which is complex and irregular, entirely and clearly. Therefore, we attempt to use the a priori information extracted from the probability tomography results to constrain the inversion for physical properties. The magnetic anomaly data was taken as an example in this work. The probability tomography result of magnetic total field anomaly(ΔΤ) shows a smoother distribution than the anomalous source and cannot display the source edges exactly. However, the gradients of ΔΤ are with higher resolution than ΔΤ in their own direction, and this characteristic is also presented in their probability tomography results. So we use some rules to combine the probability tomography results of ∂ΔΤ⁄∂x, ∂ΔΤ⁄∂y and ∂ΔΤ⁄∂z into a new result which is used for extracting a priori information, and then incorporate the information into the model objective function as spatial weighting functions to invert the final magnetic susceptibility. Some magnetic synthetic examples incorporated with and without a priori information extracted from the probability tomography results were made to do comparison, results of which show that the former are more concentrated and with higher resolution of the source body edges. This method is finally applied in an iron mine in China with field measured ΔΤ data and performs well. ReferencesPaoletti, V., Ialongo, S., Florio, G., Fedi, M

  14. Cooling of ions trapped in potential wells produced by electromagnetic radiation fields

    International Nuclear Information System (INIS)

    Sobehart, J.R.

    1990-01-01

    The probability distributions for the ground state and the excited state of a two-level ion trapped in an harmonic potential well are studied. The ion is excited by electromagnetic radiation and relaxes back due to either spontaneous or stimulated emission. The photon statistics is considered Poissonian and the momentum transfer between the electromagnetic field and the ion is assumed discrete. The present results are closely related to the quantum treatment in the heavy particle limit as well as to those derived from previous semiclassical models. (Author) [es

  15. Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex

    Science.gov (United States)

    Smiley, John F.; Schroeder, Charles E.

    2017-01-01

    Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is

  16. Stroemgren and BV photometry of potential halo blue horizontal branch field stars

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, C; Sommer-Larsen, J

    1988-11-01

    Stroemgren four-colour and broadband BV photoelectric photometry has been obtained for a sample of potential halo blue horizontal branch stars in two high galactic latitude fields. The large majority of the stars observed are classified as blue horizontal branch stars on the basis of two different surface gravity indicators. Measurements of Ca K-line equivalent widths from medium-dispersion spectra of the stars confirm that most are Population II objects. No metal-rich A-stars were found beyond a few kpc from the galactic disc in the study of faint blue stars.

  17. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials

    DEFF Research Database (Denmark)

    Lindén, Henrik; Pettersen, Klas H; Einevoll, Gaute T

    2010-01-01

    of contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power...... spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low......The local field potential (LFP) is among the most important experimental measures when probing neural population activity, but a proper understanding of the link between the underlying neural activity and the LFP signal is still missing. Here we investigate this link by mathematical modeling...

  18. Susceptibility of the eggs of the field slug Deroceras reticulatum to contact with pesticides and substances of biological origin on artificial soil

    NARCIS (Netherlands)

    Iglesias, J.; Castillejo, J.; Ester, A.; Castro, R.; Lombardia, M.J.

    2002-01-01

    The toxicity of 14 substances, including a number of pesticides, to the eggs of the pest slug Deroceras reticulatum was determined in laboratory experiments. Eggs were kept in contact with a precisely defined artificial soil to which a range of concentrations of the test substances had been applied.

  19. [Preparation of nano-nacre artificial bone].

    Science.gov (United States)

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  20. Regularization and the potential of effective field theory in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Phillips, D.R.

    1998-04-01

    This paper examines the role that regularization plays in the definition of the potential used in effective field theory (EFT) treatments of the nucleon-nucleon interaction. The author considers N N scattering in S-wave channels at momenta well below the pion mass. In these channels (quasi-)bound states are present at energies well below the scale m π 2 /M expected from naturalness arguments. He asks whether, in the presence of such a shallow bound state, there is a regularization scheme which leads to an EFT potential that is both useful and systematic. In general, if a low-lying bound state is present then cutoff regularization leads to an EFT potential which is useful but not systematic, and dimensional regularization with minimal subtraction leads to one which is systematic but not useful. The recently-proposed technique of dimensional regularization with power-law divergence subtraction allows the definition of an EFT potential which is both useful and systematic

  1. Relationship of field-theory based single-boson-exchange potentials to static ones

    International Nuclear Information System (INIS)

    Amghar, A.; Desplanques, B.

    2000-01-01

    It is shown that field-theory based single-boson-exchange potentials cannot be identified to those of the Yukawa or Coulomb type that are currently inserted in the Schroedinger equation. The potential which is obtained rather correspond to this current single-boson-exchange potential corrected for the probability that the system under consideration is in a two-body component, therefore missing contributions due to the interaction of these two bodies while bosons are exchanged. The role of these contributions, which involve at least two-boson exchanges, is examined. The conditions that allow one to recover the usual single-boson-exchange potential are given. It is shown that the present results have some relation: (i) to the failure of the Bethe-Salpeter equation in reproducing the Dirac or Klein-Gordon equations in the limit where one of the constituents has a large mass, (ii) to the absence of corrections of relative order α log 1/α to a full calculation of the binding energy in the case of neutral massless bosons or (iii) to large corrections of wave-functions calculated perturbatively in some light-front approaches. Refs. 48 (author)

  2. Stability of the minimum of a SO(N)-invariant Higgs potential with reducible Higgs fields

    International Nuclear Information System (INIS)

    Thornburg, R.J.

    1986-01-01

    The present work takes up the problem of finding the absolute minimum of a SO(N)-invariant Higgs potential for the reducible representation of Higgs fields consisting of the antisymmetric (A) and symmetric (S) traceless second-rank tensors. The stability of the minimum under changes on the potential's parameters is also investigated. Potentials containing S alone, both A and S coupled by a positive semi-definite term are minimized. Eigenstates of the Higgs mass matrix are calculated and related to the behavior of the SO(N)-action. Previous results relying on the absence of pseudo-Goldstone models and a new application of the geometry of the action show that the minimum is stable under small changes of the parameters. It is thus stable in an open region of the full eleven-dimensional parameter space of the most general potential of its kind. The isotropy group of the minimum is found to be either SO(N-p) x SO(p-2) x SO(2) or U({N-p}/2) x U(p/2), and the relative magnitudes of the vacuum expectation values of A and S are not constrained. For SO(10), U(3) x U(2) contains the standard model. One-loop Renormalization Group β-functions are calculated for all parameters of the model

  3. Influence of external magnetic field, finite-size effects and chemical potential on the phase transition of a complex scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, E.; Castro, E.; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCTI, Rio de Janeiro, RJ (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)

    2017-10-15

    A scalar model is built, as a quantum field theory defined on a toroidal topology, to describe a phase transition in films subjected to periodic boundary conditions and influenced by an external and constant magnetic field. Criticality is studied and the relations between the critical temperature, the film thickness, the magnetic field strength and the chemical potential are investigated. Since the model describes a second-order phase transition a comparison with the Ginzburg-Landau theory is made. (orig.)

  4. Assessment of Potential Impact of Electromagnetic Fields from Undersea Cable on Migratory Fish Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Klimley, A. P. [Univ. of California, Davis, CA (United States); Wyman, M. T. [Univ. of California, Davis, CA (United States); Kavet, Rob [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)

    2016-09-28

    submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles crossing the cable path. We applied basic formulas to describe magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable not immediately or otherwise observable. The magnetic field profiles of 76 survey lines were regressed against the measured fields, representing eight days of measurement. Many profiles were dominated by field distortions caused by bridge structures or other submerged objects, and the cable contribution to the field was not detectable. The regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations. For the second objective, detailed gradiometer survey were examined. Distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the TBC. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. Finally, to assess the behavioral responses by migratory Chinook salmon and green sturgeon to a high- voltage power cable - the potential impacts effect of the TBC on fishes migrating

  5. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    Science.gov (United States)

    Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.

    2016-03-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  6. From interatomic interaction potentials via Einstein field equation techniques to time dependent contact mechanics

    International Nuclear Information System (INIS)

    Schwarzer, N

    2014-01-01

    In order to understand the principle differences between rheological or simple stress tests like the uniaxial tensile test to contact mechanical tests and the differences between quasistatic contact experiments and oscillatory ones, this study resorts to effective first principles. This study will show how relatively simple models simulating bond interactions in solids using effective potentials like Lennard-Jones and Morse can be used to investigate the effect of time dependent stress-induced softening or stiffening of these solids. The usefulness of the current study is in the possibility of deriving relatively simple dependences of the bulk-modulus B on time, shear and pressure P with time t. In cases where it is possible to describe, or at least partially describe a material by Lennard-Jones potential approaches, the above- mentioned dependences are even completely free of microscopic material parameters. Instead of bond energies and length, only specific integral parameters like Young’s modulus and Poisson’s ratio are required. However, in the case of time dependent (viscose) material behavior the parameters are not constants anymore. They themselves depend on time and the actual stress field, especially the shear field. A body completely consisting of so called standard linear solid interacting particles will then phenomenologically show a completely different and usually much more complicated mechanical behavior. The influence of the time dependent pressure-shear-induced Young’s modulus change is discussed with respect to mechanical contact experiments and their analysis in the case of viscose materials. (papers)

  7. Ore prospecting in the Iberian Pyrite Belt using seismic and potential-field data

    International Nuclear Information System (INIS)

    Carvalho, João; Pinto, Carlos; Sousa, Pedro; Matos, João Xavier

    2011-01-01

    Ore prospecting using gravimetric and magnetic data has become one of the traditional approaches used in past decades, often complemented with electric and electromagnetic methods. However, due to the problem of non-uniqueness inherent to potential-field modelling, constraints provided by structural methods such as seismic reflection are often used. During the exploration of polymetallic massive sulfide minerals in the Iberian Pyrite Belt, Figueira de Cavaleiros sector, located in the Sado Tertiary Basin, several gravimetric and magnetic anomalies were considered to be interesting targets. In order to reduce any ambiguity in the gravimetric modelling and to confirm the geological model of the area, two seismic reflection profiles were acquired. The interpretation of these profiles was assisted by three mechanical boreholes, two of which were located in the research area to make a seismostratigraphic interpretation. Unfortunately, the gravimetric modelling suggests that the anomaly has a lithological and structural origin and is not related to massive sulfides. Nevertheless, a good agreement between the seismic and potential-field data was achieved and new insights into the geological model for the region were obtained from this work, with accurate data about the Tertiary cover and Palaeozoic basement

  8. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.

    Science.gov (United States)

    Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas

    2016-01-01

    It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.

  9. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice

    Directory of Open Access Journals (Sweden)

    Jakob Jessberger

    2016-01-01

    Full Text Available It is well established that local field potentials (LFP in the rodent olfactory bulb (OB follow respiration. This respiration-related rhythm (RR in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG and nasal temperature (thermocouple; TC. During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.

  10. Hearing loss and potential hazards of metallic middle-ear implants in NMR-magnetic fields

    International Nuclear Information System (INIS)

    Huettenbrink, K.B.

    1987-01-01

    Concurrent with the expanding clinical applications of nuclear magnetic resonance (NMR) imaging, patients with metallic middle-ear implants will certainly be exposed to this strong magnetic field in the future. To determine potential hazards, associated with movements of steel- or Platinium stapes-prostheses, several tests were performed in a 0.5 tesla NMR unit and the induced forces were calculated. Although the commonly used paramagnetic steel-wire or platinium-alloys will not dislodge in vivo, ferromagnetic prostheses may present a hazardous risk. Prior to exposure to the magnetic field, information about the implanted material should therefore be obtained. A side-effect of the induced current flow is the attenuation of the sound-vibrations of the stapes prosthesis. This, 5-10 dB impairment of transmission develops only at a certain position of the patient's head, when the prosthesis vibrates perpendicularly to the magnetic field's Z-axis. Patients with a metallic prosthesis should be informed about this purely physical, harmless phenomenon prior to entering the NMR-cylinder. (orig.) [de

  11. Effects of magmatic processes on the potential Yucca Mountain repository: Field and computational studies

    International Nuclear Information System (INIS)

    Valentine, G.A.; Groves, K.R.; Gable, C.W.; Perry, F.V.; Crowe, B.M.

    1993-01-01

    Assessing the risk of future magmatic activity at a potential Yucca Mountain radioactive waste repository requires, in addition to event probabilities, some knowledge of the consequences of such activity. Magmatic consequences are divided into an eruptive component, which pertains to the possibility of radioactive waste being erupted onto the surface of Yucca Mountain, and a subsurface component, which occurs whether there is an accompanying eruption or not. The subsurface component pertains to a suite of processes such as hydrothermal activity, changes in country rock properties, and long term alteration of the hydrologic flow field which change the waste isolation system. This paper is the second in a series describing progress on studies of the effects of magmatic activity. We describe initial results of field analog studies at small volume basaltic centers where detailed measurements are being conducted of the amount of wall rock debris that can be erupted as a function of depth in the volcanic plumbing system. Constraints from field evidence of wall rock entrainment mechanisms are also discussed. Evidence is described for a mechanism of producing subhorizontal sills versus subvertical dikes, an issue that is important for assessing subsurface effects. Finally, new modeling techniques, which are being developed in order to capture the three dimensional complexities of real geologic situations in subsurface effects, are described

  12. Prediction for potential landslide zones using seismic amplitude in Liwan gas field, northern South China Sea

    Science.gov (United States)

    Li, Xishuang; Liu, Baohua; Liu, Lejun; Zheng, Jiewen; Zhou, Songwang; Zhou, Qingjie

    2017-12-01

    The Liwan (Lw) gas field located in the northern slope of the South China Sea (SCS) is extremely complex for its sea-floor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15° when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.

  13. Cross-field flow and electric potential in a plasma slab

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2013-08-01

    Full Text Available We consider cross-field plasma flow inside a field-aligned plasma slab embedded in a uniform background in a 1-dimensional geometry. This situation may arise, for instance, when long-lasting reconnection pulses inject plasma into the inner magnetosphere. The present paper presents a detailed analysis of the structure of the interfaces that separate the slab from the background plasma on either side; a fully kinetic model is used to do so. Since the velocity shear across both interfaces has opposite signs, and given the typical gyroradius differences between injected and background ions and electrons, the structure of both interfaces can be very different. The behaviour of the slab and its interfaces depends critically on the flow of the plasma transverse to the magnetic field; in particular, it is shown that there are bounds to the flow speed that can be supported by the magnetised plasma. Further complicating the picture is the effect of the potential difference between the slab and its environment.

  14. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)

    2012-06-15

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  15. Linear and nonlinear intersubband optical absorption in a disk-shaped quantum dot with a parabolic potential plus an inverse squared potential in a static magnetic field

    International Nuclear Information System (INIS)

    Liu Guanghui; Guo Kangxian; Wang Chao

    2012-01-01

    The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.

  16. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  17. ARTIFICIAL INTELLIGENCE CAPABILITIES FOR INCREASING ORGANIZATIONAL-TECHNOLOGICAL RELIABILITY OF CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    Ginzburg Alexander Vital`evich

    2018-02-01

    Full Text Available The technology of artificial intelligence is actively being mastered in the world but there is not much talk about the capabilities of artificial intelligence in construction industry and this issue requires additional elaboration. As a rule, the decision to invest in a particular construction project is made on the basis of an assessment of the organizational and technological reliability of the construction process. Artificial intelligence can be a convenient quality tool for identifying, analyzing and subsequent control of the “pure” risks of the construction project, which not only will significantly reduce the financial and time expenditures for the investor’s decision-making process but also improve the organizational-technological reliability of the construction process as a whole. Subject: the algorithm of creation of artificial intelligence in the field of identification and analysis of potential risk events is presented, which will facilitate the creation of an independent analytical system for different stages of construction production: from the sketch to the working documentation and conduction of works directly on the construction site. Research objectives: the study of the possibility, methods and planning of the algorithm of works for creation of artificial intelligence technology in order to improve the organizational-technological reliability of the construction process. Materials and methods: the developments in the field of improving the organizational and technological reliability of construction were studied through the analysis and control of potential “pure” risks of the construction project, and the work was also carried out to integrate the technology of artificial intelligence into the area being studied. Results: An algorithm for creating artificial intelligence in the field of identification of potential “pure” risks of construction projects was presented. Conclusions: the obtained results are useful

  18. Artificial Immune Networks: Models and Applications

    Directory of Open Access Journals (Sweden)

    Xian Shen

    2008-06-01

    Full Text Available Artificial Immune Systems (AIS, which is inspired by the nature immune system, has been applied for solving complex computational problems in classification, pattern rec- ognition, and optimization. In this paper, the theory of the natural immune system is first briefly introduced. Next, we compare some well-known AIS and their applications. Several representative artificial immune networks models are also dis- cussed. Moreover, we demonstrate the applications of artificial immune networks in various engineering fields.

  19. Insights into organic carbon oxidation potential during fluvial transport from laboratory and field experiments

    Science.gov (United States)

    Scheingross, J. S.; Dellinger, M.; Eglinton, T. I.; Fuchs, M. C.; Golombek, N.; Hilton, R. G.; Hovius, N.; Lupker, M.; Repasch, M. N.; Sachse, D.; Turowski, J. M.; Vieth-Hillebrand, A.; Wittmann, H.

    2017-12-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, hydropshere, biosphere and geosphere can be a major control on atmospheric carbon dioxide concentrations. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion, transport, and burial of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing increasing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport, where OC is in continual motion within an aerated river, or during periods of temporary storage in river floodplains which may be anoxic. The unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to mechanistically link geochemical and geomorphic processes which are required to develop models capable of predicting OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this knowledge gap, we investigated OC oxidation in controlled laboratory experiments and a simplified field setting. We performed experiments in annular flumes that simulate fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km. Preliminary experiments exploring both rock-derived and biospheric OC sources show minimal OC oxidation during active river transport, consistent with the idea that the majority of OC loss occurs during transient floodplain storage. These results are also consistent with new field data collected in the Rio Bermejo, Argentina, a lowland river traversing 800 km with no tributary inputs, where aged floodplain deposits have 3 to 10 times lower OC concentrations compared to modern river sediments. Together our field data and experiments support the hypothesis that oxidation of OC occurs primarily during

  20. AIonAI: a humanitarian law of artificial intelligence and robotics.

    Science.gov (United States)

    Ashrafian, Hutan

    2015-02-01

    The enduring progression of artificial intelligence and cybernetics offers an ever-closer possibility of rational and sentient robots. The ethics and morals deriving from this technological prospect have been considered in the philosophy of artificial intelligence, the design of automatons with roboethics and the contemplation of machine ethics through the concept of artificial moral agents. Across these categories, the robotics laws first proposed by Isaac Asimov in the twentieth century remain well-recognised and esteemed due to their specification of preventing human harm, stipulating obedience to humans and incorporating robotic self-protection. However the overwhelming predominance in the study of this field has focussed on human-robot interactions without fully considering the ethical inevitability of future artificial intelligences communicating together and has not addressed the moral nature of robot-robot interactions. A new robotic law is proposed and termed AIonAI or artificial intelligence-on-artificial intelligence. This law tackles the overlooked area where future artificial intelligences will likely interact amongst themselves, potentially leading to exploitation. As such, they would benefit from adopting a universal law of rights to recognise inherent dignity and the inalienable rights of artificial intelligences. Such a consideration can help prevent exploitation and abuse of rational and sentient beings, but would also importantly reflect on our moral code of ethics and the humanity of our civilisation.

  1. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part A: The core ingredients

    Science.gov (United States)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. The goal of Artificial Intelligence is focused on developing computational approaches to intelligent behavior. This goal is so broad - covering virtually all aspects of human cognitive activity - that substantial confusion has arisen as to the actual nature of AI, its current status and its future capability. This volume, the first in a series of NBS/NASA reports on the subject, attempts to address these concerns. Thus, this report endeavors to clarify what AI is, the foundations on which it rests, the techniques utilized, applications, the participants and, finally, AI's state-of-the-art and future trends. It is anticipated that this report will prove useful to government and private engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  2. Determination of a silane intermolecular force field potential model from an ab initio calculation

    International Nuclear Information System (INIS)

    Li, Arvin Huang-Te; Chao, Sheng D.; Chang, Chien-Cheng

    2010-01-01

    Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.

  3. Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials.

    Science.gov (United States)

    Houston, Brady; Blumenfeld, Zack; Quinn, Emma; Bronte-Stewart, Helen; Chizeck, Howard

    2015-01-01

    Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.

  4. Artificial intelligence approaches in statistics

    International Nuclear Information System (INIS)

    Phelps, R.I.; Musgrove, P.B.

    1986-01-01

    The role of pattern recognition and knowledge representation methods from Artificial Intelligence within statistics is considered. Two areas of potential use are identified and one, data exploration, is used to illustrate the possibilities. A method is presented to identify and separate overlapping groups within cluster analysis, using an AI approach. The potential of such ''intelligent'' approaches is stressed

  5. BSDWormer; an Open Source Implementation of a Poisson Wavelet Multiscale Analysis for Potential Fields

    Science.gov (United States)

    Horowitz, F. G.; Gaede, O.

    2014-12-01

    Wavelet multiscale edge analysis of potential fields (a.k.a. "worms") has been known since Moreau et al. (1997) and was independently derived by Hornby et al. (1999). The technique is useful for producing a scale-explicit overview of the structures beneath a gravity or magnetic survey, including establishing the location and estimating the attitude of surface features, as well as incorporating information about the geometric class (point, line, surface, volume, fractal) of the underlying sources — in a fashion much like traditional structural indices from Euler solutions albeit with better areal coverage. Hornby et al. (2002) show that worms form the locally highest concentration of horizontal edges of a given strike — which in conjunction with the results from Mallat and Zhong (1992) induces a (non-unique!) inversion where the worms are physically interpretable as lateral boundaries in a source distribution that produces a close approximation of the observed potential field. The technique has enjoyed widespread adoption and success in the Australian mineral exploration community — including "ground truth" via successfully drilling structures indicated by the worms. Unfortunately, to our knowledge, all implementations of the code to calculate the worms/multiscale edges (including Horowitz' original research code) are either part of commercial software packages, or have copyright restrictions that impede the use of the technique by the wider community. The technique is completely described mathematically in Hornby et al. (1999) along with some later publications. This enables us to re-implement from scratch the code required to calculate and visualize the worms. We are freely releasing the results under an (open source) BSD two-clause software license. A git repository is available at . We will give an overview of the technique, show code snippets using the codebase, and present visualization results for example datasets (including the Surat basin of Australia

  6. Potential formation in a collisionless plasma produced in an open magnetic field in presence of volume negative ion source

    International Nuclear Information System (INIS)

    Phukan, Ananya; Goswami, K. S.; Bhuyan, P. J.

    2014-01-01

    The electric potential near a wall for a multi-species plasma with volume produced negative ions in presence of axially varying magnetic field is studied following an analytical-numerical approach. A constant negative ion source is assumed throughout the plasma volume, along with finite temperature positive ions and Boltzmann electrons. The particles are assumed to be guided by an open magnetic field that has its maximum at the centre, and field strength decreasing towards the walls. The one dimensional (1D) Poisson equation is derived using an analytical approach, and then solved numerically to study the potential profiles. Effect of (a) negative ion production rate, (b) magnetic field profile, and (c) negative ion temperature on the potential profile has been investigated. A potential peak appears near the wall when the negative ion temperature and density are sufficiently high. Also, the presence of negative ions further decreases the potential in the plasma region for a finite Debye Length (λ D )

  7. Potential fields on the ventricular surface of the exposed dog heart during normal excitation.

    Science.gov (United States)

    Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S; Taccardi, B

    1983-06-01

    We studied the normal spread of excitation on the anterior and posterior ventricular surface of open-chest dogs by recording unipolar electrograms from an array of 1124 electrodes spaced 2 mm apart. The array had the shape of the ventricular surface of the heart. The electrograms were processed by a computer and displayed as epicardial equipotential maps at 1-msec intervals. Isochrone maps also were drawn. Several new features of epicardial potential fields were identified: (1) a high number of breakthrough points; (2) the topography, apparent widths, velocities of the wavefronts and the related potential drop; (3) the topography of positive potential peaks in relation to the wavefronts. Fifteen to 24 breakthrough points were located on the anterior, and 10 to 13 on the posterior ventricular surface. Some were in previously described locations and many others in new locations. Specifically, 3 to 5 breakthrough points appeared close to the atrioventricular groove on the anterior right ventricle and 2 to 4 on the posterior heart aspect; these basal breakthrough points appeared when a large portion of ventricular surface was still unexcited. Due to the presence of numerous breakthrough points on the anterior and posterior aspect of the heart which had not previously been described, the spread of excitation on the ventricular surface was "mosaic-like," with activation wavefronts spreading in all directions, rather than radially from the two breakthrough points, as traditionally described. The positive potential peaks which lay ahead of the expanding wavefronts moved along preferential directions which were probably related to the myocardial fiber direction.

  8. Artificial Intelligence for the Artificial Kidney: Pointers to the Future of a Personalized Hemodialysis Therapy.

    Science.gov (United States)

    Hueso, Miguel; Vellido, Alfredo; Montero, Nuria; Barbieri, Carlo; Ramos, Rosa; Angoso, Manuel; Cruzado, Josep Maria; Jonsson, Anders

    2018-02-01

    Current dialysis devices are not able to react when unexpected changes occur during dialysis treatment or to learn about experience for therapy personalization. Furthermore, great efforts are dedicated to develop miniaturized artificial kidneys to achieve a continuous and personalized dialysis therapy, in order to improve the patient's quality of life. These innovative dialysis devices will require a real-time monitoring of equipment alarms, dialysis parameters, and patient-related data to ensure patient safety and to allow instantaneous changes of the dialysis prescription for the assessment of their adequacy. The analysis and evaluation of the resulting large-scale data sets enters the realm of "big data" and will require real-time predictive models. These may come from the fields of machine learning and computational intelligence, both included in artificial intelligence, a branch of engineering involved with the creation of devices that simulate intelligent behavior. The incorporation of artificial intelligence should provide a fully new approach to data analysis, enabling future advances in personalized dialysis therapies. With the purpose to learn about the present and potential future impact on medicine from experts in artificial intelligence and machine learning, a scientific meeting was organized in the Hospital Universitari Bellvitge (L'Hospitalet, Barcelona). As an outcome of that meeting, the aim of this review is to investigate artificial intel ligence experiences on dialysis, with a focus on potential barriers, challenges, and prospects for future applications of these technologies. Artificial intelligence research on dialysis is still in an early stage, and the main challenge relies on interpretability and/or comprehensibility of data models when applied to decision making. Artificial neural networks and medical decision support systems have been used to make predictions about anemia, total body water, or intradialysis hypotension and are promising

  9. Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks

    DEFF Research Database (Denmark)

    Hagen, Espen; Dahmen, David; Stavrinou, Maria L

    2016-01-01

    on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network......With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical...... and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely...

  10. A Computationally Efficient Tool for Assessing the Depth Resolution in Potential-Field Inversion

    DEFF Research Database (Denmark)

    Paoletti, V.; Hansen, Per Christian; Hansen, Mads Friis

    In potential-field inversion problems, it can be dicult to obtain reliable information about the source distribution with respect to depth. Moreover, spatial resolution of the reconstructions decreases with depth, and in fact the more ill-posed the problem - and the more noisy the data - the less...... reliable the depth information. Based on earlier work using the singular value decomposition, we introduce a tool ApproxDRP which uses approximations of the singular vectors obtained by the iterative Lanczos bidiagonalization algorithm, making it well suited for large-scale problems. This tool allows...... successfully show the limitations of depth resolution resulting from noise in the data. This allows a reliable analysis of the retrievable depth information and effectively guides the user in choosing the optimal number of iterations, for a given problem....

  11. Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex

    Science.gov (United States)

    Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel

    2010-01-01

    Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272

  12. Point-particle effective field theory I: classical renormalization and the inverse-square potential

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P.; Hayman, Peter [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Williams, M. [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Zalavári, László [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada)

    2017-04-19

    Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential’s singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original problem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.

  13. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields.

    Science.gov (United States)

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao

    2017-03-01

    Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH 4 and N 2 O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH 4 emissions and GWP per unit of grain yield (yield-scaled CH 4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH 4 emissions and GWP, leading to higher yield-scaled CH 4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.

  14. Brownian Optogenetic-Noise-Photostimulation on the Brain Amplifies Somatosensory-Evoked Field Potentials

    Directory of Open Access Journals (Sweden)

    Nayeli Huidobro

    2017-08-01

    Full Text Available Stochastic resonance (SR is an inherent and counter-intuitive mechanism of signal-to-noise ratio (SNR facilitation in biological systems associated with the application of an intermediate level of noise. As a first step to investigate in detail this phenomenon in the somatosensory system, here we examined whether the direct application of noisy light on pyramidal neurons from the mouse-barrel cortex expressing a light-gated channel channelrhodopsin-2 (ChR2 can produce facilitation in somatosensory evoked field potentials. Using anesthetized Thy1-ChR2-YFP transgenic mice, and a new neural technology, that we called Brownian optogenetic-noise-photostimulation (BONP, we provide evidence for how BONP directly applied on the barrel cortex modulates the SNR in the amplitude of whisker-evoked field potentials (whisker-EFP. In all transgenic mice, we found that the SNR in the amplitude of whisker-EFP (at 30% of the maximal whisker-EFP exhibited an inverted U-like shape as a function of the BONP level. As a control, we also applied the same experimental paradigm, but in wild-type mice, as expected, we did not find any facilitation effects. Our results show that the application of an intermediate intensity of BONP on the barrel cortex of ChR2 transgenic mice amplifies the SNR of somatosensory whisker-EFPs. This result may be relevant to explain the improvements found in sensory detection in humans produced by the application of transcranial-random-noise-stimulation (tRNS on the scalp.

  15. Ground Field-Based Hyperspectral Imaging: A Preliminary Study to Assess the Potential of Established Vegetation Indices to Infer Variation in Water-Use Efficiency.

    Science.gov (United States)

    Pelech, E. A.; McGrath, J.; Pederson, T.; Bernacchi, C.

    2017-12-01

    Increases in the global average temperature will consequently induce a higher occurrence of severe environmental conditions such as drought on arable land. To mitigate these threats, crops for fuel and food must be bred for higher water-use efficiencies (WUE). Defining genomic variation through high-throughput phenotypic analysis in field conditions has the potential to relieve the major bottleneck in linking desirable genetic traits to the associated phenotypic response. This can subsequently enable breeders to create new agricultural germplasm that supports the need for higher water-use efficient crops. From satellites to field-based aerial and ground sensors, the reflectance properties of vegetation measured by hyperspectral imaging is becoming a rapid high-throughput phenotyping technique. A variety of physiological traits can be inferred by regression analysis with leaf reflectance which is controlled by the properties and abundance of water, carbon, nitrogen and pigments. Although, given that the current established vegetation indices are designed to accentuate these properties from spectral reflectance, it becomes a challenge to infer relative measurements of WUE at a crop canopy scale without ground-truth data collection. This study aims to correlate established biomass and canopy-water-content indices with ground-truth data. Five bioenergy sorghum genotypes (Sorghum bicolor L. Moench) that have differences in WUE and wild-type Tobacco (Nicotiana tabacum var. Samsun) under irrigated and rainfed field conditions were examined. A linear regression analysis was conducted to determine if variation in canopy water content and biomass, driven by natural genotypic and artificial treatment influences, can be inferred using established vegetation indices. The results from this study will elucidate the ability of ground field-based hyperspectral imaging to assess variation in water content, biomass and water-use efficiency. This can lead to improved opportunities to

  16. A vector field method on the distorted Fourier side and decay for wave equations with potentials

    CERN Document Server

    Donninger, Roland

    2016-01-01

    The authors study the Cauchy problem for the one-dimensional wave equation \\partial_t^2 u(t,x)-\\partial_x^2 u(t,x)+V(x)u(t,x)=0. The potential V is assumed to be smooth with asymptotic behavior V(x)\\sim -\\tfrac14 |x|^{-2}\\mbox{ as } |x|\\to \\infty. They derive dispersive estimates, energy estimates, and estimates involving the scaling vector field t\\partial_t+x\\partial_x, where the latter are obtained by employing a vector field method on the âeoedistortedâe Fourier side. In addition, they prove local energy decay estimates. Their results have immediate applications in the context of geometric evolution problems. The theory developed in this paper is fundamental for the proof of the co-dimension 1 stability of the catenoid under the vanishing mean curvature flow in Minkowski space; see Donninger, Krieger, Szeftel, and Wong, âeoeCodimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski spaceâe, preprint arXiv:1310.5606 (2013).

  17. Field Experience with and Potential for Multi-time Scale Grid Transactions from Responsive Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2014-08-01

    The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis is based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.

  18. Characteristics of electron cyclotron waves creating field-aligned and transverse plasma-potential structures

    International Nuclear Information System (INIS)

    Takahashi, K; Kaneko, T; Hatakeyama, R; Fukuyama, A

    2009-01-01

    Characteristics of electromagnetic waves of azimuthal mode number m = ±1 are investigated experimentally, analytically and numerically when the waves triggering the field-aligned and transverse plasma-potential structure modification near an electron cyclotron resonance (ECR) point are injected into an inhomogeneously magnetized plasma with high-speed ion flow. The waves of m = +1 and -1 modes generate an electric double layer near the ECR point at the radially central and peripheral areas of the plasma column, respectively, and the transverse electric fields are consequently formed. At these areas the waves have a right-handed polarization and are absorbed through the ECR mechanism, where the experimental and analytical results do show the polarization reversal along the radial axis. The numerical results by plasma analysis by finite element method (FEM)/wave analysis by FEM (PAF/WF) code show that the wave-absorption area is localized at the radially central and peripheral areas for m = +1 and -1 mode waves, respectively, being consistent with the experimental and analytical ones.

  19. Probing the interatomic potential of solids with strong-field nonlinear phononics

    Science.gov (United States)

    von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.

    2018-03-01

    Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.

  20. Are phantoms useful for predicting the potential of dose reduction in full-field digital mammography?

    International Nuclear Information System (INIS)

    Gennaro, Gisella; Katz, Luc; Souchay, Henri; Alberelli, Claudio; Maggio, Cosimo di

    2005-01-01

    A phantom study was performed in full-field digital mammography to investigate the opportunity and the magnitude of a possible dose reduction that would leave the image quality above the accepted thresholds associated with some classical phantoms. This preliminary work is intended to lay the groundwork for a future clinical study on the impact of dose reduction on clinical results. Three different mammography phantoms (ACR RMI 156, CIRS 11A and CDMAM 3.4) were imaged by a full-field digital mammography unit (GE Senographe 2000D) at different dose levels. Images were rated by three observers with softcopy reading and scoring methods specific to each phantom. Different types of data analysis were applied to the ACR (American College of Radiology) and the other two phantoms, respectively. With reference to the minimum acceptance score in screen/film accreditation programmes, the ACR phantom showed that about 45% dose reduction could be applied, while keeping the phantom scores above that threshold. A relative comparison was done for CIRS and CDMAM, for which no threshold is defined. CIRS scoring remained close to the reference level down to 40% dose reduction, the inter- and intra-observer variability being the main source of uncertainty. Contrast-detail curves provided by CDMAM overlapped down to 50% dose reduction, at least for object contrast values ranging between 30% and 3%. This multi-phantom study shows the potential of further reducing the dose in full-field digital mammography beyond the current values. A common dose reduction factor around 50% seems acceptable for all phantoms. However, caution is required before extrapolating the results for clinical use, given the limitations of these widely used phantoms, mainly related to their limited dynamic range and uniform background

  1. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  2. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor

    KAUST Repository

    Gao, Zhiyuan; Zhou, Jun; Gu, Yudong; Fei, Peng; Hao, Yue; Bao, Gang; Wang, Zhong Lin

    2009-01-01

    We have investigated the effects of piezoelectric potential in a ZnO nanowire on the transport characteristics of the nanowire based field effect transistor through numerical calculations and experimental observations. Under different straining

  3. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential

    Science.gov (United States)

    Huang, Qing-Guo; Pi, Shi

    2018-04-01

    The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.

  4. The dependence of potential well formation on the magnetic field strength and electron injection current in a polywell device

    International Nuclear Information System (INIS)

    Cornish, S.; Gummersall, D.; Carr, M.; Khachan, J.

    2014-01-01

    A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory

  5. Influence of DC electric field on the Lennard-Jones potential and phonon vibrations of carbon nanotube on catalyst

    International Nuclear Information System (INIS)

    Saeidi, Mohammadreza; Vaezzadeh, Majid; Badakhshan, Farzaneh

    2011-01-01

    Influence of DC electric field on carbon nanotube (CNT) growth in chemical vapor deposition is studied. Investigation of electric field effect in van der Waals interaction shows that increase in DC electric field raises the magnitude of attractive term of the Lennard-Jones potential. By using a theoretical model based on phonon vibrations of CNT on catalyst, it is shown that there is an optimum field for growth. Also it is observed that CNT under optimum electric field is longer than CNT in the absence of field. Finally, the relation between optimum DC electric field and type of catalyst is investigated and for some intervals of electric field, the best catalyst is introduced, which is very useful for experimental researches. -- Research highlights: → Influence of DC electric field on CNT growth in CVD. → Effect of electric field on van der Waals interaction between CNT and its catalyst. → Applying DC electric field increases attractive term of Lennard-Jonespotential. → There is an optimum DC field for CNT growth. → For catalyst with stronger van der Waals interaction, optimum field is smaller.

  6. Artificial light at night inhibits mating in a Geometrid moth

    NARCIS (Netherlands)

    van Geffen, Koert G.; van Eck, Emiel; de Boer, Rens A.; van Grunsven, Roy H.A.; Salis, Lucia; Berendse, Frank; Veenendaal, Elmar M.

    2015-01-01

    * Levels of artificial night lighting are increasing rapidly worldwide, subjecting nocturnal organisms to a major change in their environment. Many moth species are strongly attracted to sources of artificial night lighting, with potentially severe, yet poorly studied, consequences for development,

  7. Artificial intelligence in radiology.

    Science.gov (United States)

    Hosny, Ahmed; Parmar, Chintan; Quackenbush, John; Schwartz, Lawrence H; Aerts, Hugo J W L

    2018-05-17

    Artificial intelligence (AI) algorithms, particularly deep learning, have demonstrated remarkable progress in image-recognition tasks. Methods ranging from convolutional neural networks to variational autoencoders have found myriad applications in the medical image analysis field, propelling it forward at a rapid pace. Historically, in radiology practice, trained physicians visually assessed medical images for the detection, characterization and monitoring of diseases. AI methods excel at automatically recognizing complex patterns in imaging data and providing quantitative, rather than qualitative, assessments of radiographic characteristics. In this Opinion article, we establish a general understanding of AI methods, particularly those pertaining to image-based tasks. We explore how these methods could impact multiple facets of radiology, with a general focus on applications in oncology, and demonstrate ways in which these methods are advancing the field. Finally, we discuss the challenges facing clinical implementation and provide our perspective on how the domain could be advanced.

  8. Artificial sensory organs: latest progress.

    Science.gov (United States)

    Nakamura, Tatsuo; Inada, Yuji; Shigeno, Keiji

    2018-03-01

    This study introduces the latest progress on the study of artificial sensory organs, with a special emphasis on the clinical results of artificial nerves and the concept of in situ tissue engineering. Peripheral nerves have a strong potential for regeneration. An artificial nerve uses this potential to recover a damaged peripheral nerve. The polyglycolic acid collagen tube (PGA-C tube) is a bio-absorbable tube stuffed with collagen of multi-chamber structure that consists of thin collagen films. The clinical application of the PGA-C tube began in 2002 in Japan. The number of PGA-C tubes used is now beyond 300, and satisfactory results have been reported on peripheral nerve repairs. This PGA-C tube is also effective for patients suffering from neuropathic pain.

  9. Determining the true polarity and amplitude of synaptic currents underlying gamma oscillations of local field potentials.

    Directory of Open Access Journals (Sweden)

    Gonzalo Martín-Vázquez

    Full Text Available Fluctuations in successive waves of oscillatory local field potentials (LFPs reflect the ongoing processing of neuron populations. However, their amplitude, polarity and synaptic origin are uncertain due to the blending of electric fields produced by multiple converging inputs, and the lack of a baseline in standard AC-coupled recordings. Consequently, the estimation of underlying currents by laminar analysis yields spurious sequences of inward and outward currents. We devised a combined analytical/experimental approach that is suitable to study laminated structures. The approach was essayed on an experimental oscillatory LFP as the Schaffer-CA1 gamma input in anesthetized rats, and it was verified by parallel processing of model LFPs obtained through a realistic CA1 aggregate of compartmental units. This approach requires laminar LFP recordings and the isolation of the oscillatory input from other converging pathways, which was achieved through an independent component analysis. It also allows the spatial and temporal components of pathway-specific LFPs to be separated. While reconstructed Schaffer-specific LFPs still show spurious inward/outward current sequences, these were clearly stratified into distinct subcellular domains. These spatial bands guided the localized delivery of neurotransmitter blockers in experiments. As expected, only Glutamate but not GABA blockers abolished Schaffer LFPs when applied to the active but not passive subcellular domains of pyramidal cells. The known chemical nature of the oscillatory LFP allowed an empirical offset of the temporal component of Schaffer LFPs, such that following reconstruction they yield only sinks or sources at the appropriate sites. In terms of number and polarity, some waves increased and others decreased proportional to the concomitant inputs in native multisynaptic LFPs. Interestingly, the processing also retrieved the initiation time for each wave, which can be used to discriminate

  10. Development of a numerical modelling tool for combined near field and far field wave transformations using a coupling of potential flow solvers

    DEFF Research Database (Denmark)

    Verbrugghe, Tim; Troch, Peter; Kortenhaus, Andreas

    2016-01-01

    Wave energy converters (WECs) need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC farm...... of a wave-structure interaction solver and a wave propagation model, both based on the potential flow theory. This paper discusses the coupling method and illustrates the functionality with a proof-of-concept. Additionally, a projection of the evolution of the numerical tool is given. It can be concluded...... is complex; it is difficult to simulate both near field and far field effects with a single numerical model, with relatively fast computing times. Within this research a numerical tool is developed to model near-field and far-field wave transformations caused by WECs. The tool is based on the coupling...

  11. Artificial intelligence and computer vision

    CERN Document Server

    Li, Yujie

    2017-01-01

    This edited book presents essential findings in the research fields of artificial intelligence and computer vision, with a primary focus on new research ideas and results for mathematical problems involved in computer vision systems. The book provides an international forum for researchers to summarize the most recent developments and ideas in the field, with a special emphasis on the technical and observational results obtained in the past few years.

  12. Insights on the Understanding of the Circum-Caribbean Region from Potential Field Data

    Science.gov (United States)

    Garcia-Reyes, A.; Dyment, J.; Thebault, E.

    2017-12-01

    During decades, the nature, geometry and evolution of the Caribbean geological provinces and their boundaries have been topic of discussion and controversy. Great strike-slip faulting in the northern boundaries of the plate, and folding and thrusting structures related with Cretaceous magmatism have been used as indicators of the emplacement of the Caribbean plate between the Northamerican and Southamerican plates at least from the Late Cretaceous, which is the most accepted hypothesis. The exotic origin of the Caribbean plate has also been supported by presence of radiolarites, fauna, ages from rocks sampled from drilling and oceanic paleo-currents analyses. The high thickness of the sediments in most of the basins, the absence of drilling wells reaching the acoustic basement and the absence of identifiable patterns of magnetic anomalies constitute the limitations for the interpretation from potential field data. Potential field data allows tracking contrasts in the physical properties between two geological bodies if they are laterally exhibited. Hence its use is suitable to characterise the seafloor fabric but also to better delineate the boundaries between the geological provinces. In this research we are providing an interpretation from vertical gradients of gravity and reprocessed magnetic anomalies over the Caribbean region with the purpose of making a contribution to the understanding of this area. We are also using magnetic anomalies to determine the paleolatitude over those areas where seafloor spreading related anomalies are observed. Our results led us to propose a conceptual model of the origin of the Caribbean plate. Our model relates the Venezuelan basin with the Cretaceous `not-so-quite' magnetic isochrons; it proposes that the Colombian, Venezuelan and Grenada basins have oceanic crustal affinity and it reinterprets the Beata and Aves ridges as reactivated fracture zones - respectively - in which a magmatic event occurred during or after its

  13. Artificial intelligence techniques in Prolog

    CERN Document Server

    Shoham, Yoav

    1993-01-01

    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  14. Trends in telemedicine utilizing artificial intelligence

    Science.gov (United States)

    Pacis, Danica Mitch M.; Subido, Edwin D. C.; Bugtai, Nilo T.

    2018-02-01

    With the growth and popularity of the utilization of artificial intelligence (AI) in several fields and industries, studies in the field of medicine have begun to implement its capabilities in handling and analyzing data to telemedicine. With the challenges in the implementation of telemedicine, there has been a need to expand its capabilities and improve procedures to be specialized to solve specific problems. The versatility and flexibility of both AI and telemedicine gave the endless possibilities for development and these can be seen in the literature reviewed in this paper. The trends in the development of the utilization of this technology can be classified in to four: patient monitoring, healthcare information technology, intelligent assistance diagnosis, and information analysis collaboration. Each trend will be discussed and presented with examples of recent literature and the problems they aim to address. Related references will also be tabulated and categorized to see the future and potential of this current trend in telemedicine.

  15. Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays.

    Directory of Open Access Journals (Sweden)

    Rikkert Hindriks

    Full Text Available Planar intra-cortical electrode (Utah arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD underlying such recordings, however, requires "inverting" Poisson's equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs. Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to "invert" a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG and magnetoencephalographic (MEG inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task.

  16. Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models

    Science.gov (United States)

    Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T.

    2015-01-01

    Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo. PMID:26657024

  17. Computing the Local Field Potential (LFP from Integrate-and-Fire Network Models.

    Directory of Open Access Journals (Sweden)

    Alberto Mazzoni

    2015-12-01

    Full Text Available Leaky integrate-and-fire (LIF network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP. Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.

  18. Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials.

    Science.gov (United States)

    Lee, Mei-Yi; Lin, Yi-Ruu; Tu, Yi-Shu; Tseng, Yufeng Jane; Chan, Ming-Huan; Chen, Hwei-Hsien

    2017-02-28

    Sarcosine, a glycine transporter type 1 inhibitor and an N-methyl-D-aspartate (NMDA) receptor co-agonist at the glycine binding site, potentiates NMDA receptor function. Structurally similar to sarcosine, N,N-dimethylglycine (DMG) is also N-methyl glycine-derivative amino acid and commonly used as a dietary supplement. The present study compared the effects of sarcosine and DMG on NMDA receptor-mediated excitatory field potentials (EFPs) in mouse medial prefrontal cortex brain slices using a multi-electrode array system. Glycine, sarcosine and DMG alone did not alter the NMDA receptor-mediated EFPs, but in combination with glutamate, glycine and its N-methyl derivatives significantly increased the frequency and amplitude of EFPs. The enhancing effects of glycine analogs in combination with glutamate on EFPs were remarkably reduced by the glycine binding site antagonist 7-chlorokynurenate (7-CK). However, DMG, but not sarcosine, reduced the frequency and amplitude of EFPs elicited by co-application of glutamate plus glycine. D-cycloserine, a partial agonist at the glycine binding site on NMDA receptors, affected EFPs in a similar manner to DMG. Furthermore, DMG, but not sarcosine, reduced the frequencies and amplitudes of EFPs elicited by glutamate plus D-serine, another endogenous ligand for glycine binding site. These findings suggest that sarcosine acts as a full agonist, yet DMG is a partial agonist at glycine binding site of NMDA receptors. The molecular docking analysis indicated that the interactions of glycine, sarcosine, and DMG to NMDA receptors are highly similar, supporting that the glycine binding site of NMDA receptors is a critical target site for sarcosine and DMG.

  19. Localisation of the subthalamic nucleus in Parkinson's disease with neural beta and gamma activity of local field potentials

    NARCIS (Netherlands)

    Verhagen, R.; Zwartjes - de Klerk, D.G.M; Heida, Tjitske; Contarino, M.F.; de Bie, R.M.A.; van den Munckhof, P; Schuurman, P.R.; Martens, H.C.F.; Veltink, Petrus H.; Bour, L.J.

    2013-01-01

    To evaluate the nature of oscillatory activity in the subthalamic nucleus (STN) by means of intraoperative local field potential (LFP) recordings, its relationship with microelectrode recordings (MER) and its potential use to locate the STN and its sensorimotor sub-area in patients with Parkinson’s

  20. Integrated Potential-field Studies in Support of Energy Resource Assessment in Frontier Areas of Alaska

    Science.gov (United States)

    Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.

    2008-05-01

    In frontier areas of Alaska, potential-field studies play an important role in characterizing the geologic structure of sedimentary basins having potential for undiscovered oil and gas resources. Two such areas are the Yukon Flats basin in the east-central interior of Alaska, and the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska. The Yukon Flats basin is a potential source of hydrocarbon resources for local consumption and possible export. Knowledge of the subsurface configuration of the basin is restricted to a few seismic reflection profiles covering a limited area and one well. The seismic profiles were reprocessed and reinterpreted in preparation for an assessment of the oil and gas resources of the basin. The assessment effort required knowledge of the basin configuration away from the seismic profiles, as well as an understanding of the nature of the underlying basement. To extend the interpretation of the basin thickness across the entire area of the basin, an iterative Jachens-Moring gravity inversion was performed on gridded quasi-isostatic residual gravity anomaly data. The inversion was constrained to agree with the interpreted basement surface along the seismic profiles. In addition to the main sedimentary depocenter interpreted from the seismic data as having over 8 km of fill, the gravity inversion indicated a depocenter with over 7 km of fill in the Crooked Creek sub-basin. Results for the Crooked Creek sub-basin are consistent with magnetic and magnetotelluric modeling, but they await confirmation by drilling or seismic profiling. Whether hydrocarbon source rocks are present in the pre-Cenozoic basement beneath Yukon Flats is difficult to determine because extensive surficial deposits obscure the bedrock geology, and no deep boreholes penetrate basement. The color and texture patterns in a red-green-blue composite image consisting of reduced-to-the-pole aeromagnetic data (red), magnetic potential (blue), and

  1. Enhancement of the reproductive potential of Mallada boninensis Okamoto (Neuroptera: Chrysopidae, a predator of red spider mite infesting tea: An evaluation of artificial diets

    Directory of Open Access Journals (Sweden)

    Vasanthakumar Duraikkannu

    2012-01-01

    Full Text Available Green lacewing Mallada boninensis is an important predator of various soft-bodied arthropods, including red spider mites in tea. Efforts were made to develop mass rearing technology for this predator in a cost effective manner. Three combinations of artificial diets (Protinex (AD1, egg yolk (AD2 and royal jelly (AD3 based were evaluated in comparison with standard diet (Protinex + Honey. All the tested diets influenced the egg-laying capacity of M. boninensis. The egg yolk-based diet resulted in more egg production than the other two diets. Survival of all life stages of M. boninensis was also observed on each diet and no significant difference was noticed. Results revealed that the egg yolk-based diet is the best of the three diet combinations tested in view of high fecundity and survival rate of M. boninensis.

  2. Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields

    International Nuclear Information System (INIS)

    Sadooghi, N.; Anaraki, K. Sohrabi

    2008-01-01

    Using the general structure of the vacuum polarization tensor Π μν (k 0 ,k) in the infrared (IR) limit, k 0 →0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k 0 →0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T 4 α 5/2 , in addition to the expected T 4 α 3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li 2 (-(2α/π)(eB/m 2 )). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.

  3. The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying.

    Science.gov (United States)

    Onwude, Daniel I; Hashim, Norhashila; Abdan, Khalina; Janius, Rimfiel; Chen, Guangnan

    2018-03-01

    Drying is a method used to preserve agricultural crops. During the drying of products with high moisture content, structural changes in shape, volume, area, density and porosity occur. These changes could affect the final quality of dried product and also the effective design of drying equipment. Therefore, this study investigated a novel approach in monitoring and predicting the shrinkage of sweet potato during drying. Drying experiments were conducted at temperatures of 50-70 °C and samples thicknesses of 2-6 mm. The volume and surface area obtained from camera vision, and the perimeter and illuminated area from backscattered optical images were analysed and used to evaluate the shrinkage of sweet potato during drying. The relationship between dimensionless moisture content and shrinkage of sweet potato in terms of volume, surface area, perimeter and illuminated area was found to be linearly correlated. The results also demonstrated that the shrinkage of sweet potato based on computer vision and backscattered optical parameters is affected by the product thickness, drying temperature and drying time. A multilayer perceptron (MLP) artificial neural network with input layer containing three cells, two hidden layers (18 neurons), and five cells for output layer, was used to develop a model that can monitor, control and predict the shrinkage parameters and moisture content of sweet potato slices under different drying conditions. The developed ANN model satisfactorily predicted the shrinkage and dimensionless moisture content of sweet potato with correlation coefficient greater than 0.95. Combined computer vision, laser light backscattering imaging and artificial neural network can be used as a non-destructive, rapid and easily adaptable technique for in-line monitoring, predicting and controlling the shrinkage and moisture changes of food and agricultural crops during drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Numerical simulations of a sounding rocket in ionospheric plasma: Effects of magnetic field on the wake formation and rocket potential

    Science.gov (United States)

    Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.

    2017-09-01

    The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.

  5. Neuroscience-Inspired Artificial Intelligence.

    Science.gov (United States)

    Hassabis, Demis; Kumaran, Dharshan; Summerfield, Christopher; Botvinick, Matthew

    2017-07-19

    The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, however, communication and collaboration between the two fields has become less commonplace. In this article, we argue that better understanding biological brains could play a vital role in building intelligent machines. We survey historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes that may be key for advancing future research in both fields. Copyright © 2017. Published by Elsevier Inc.

  6. Toward relating the subthalamic nucleus spiking activity to the local field potentials acquired intranuclearly

    International Nuclear Information System (INIS)

    Michmizos, K P; Nikita, K S; Sakas, D

    2011-01-01

    Studies on neurophysiological correlates of the functional magnetic resonance imaging (fMRI) signals reveal a strong relationship between the local field potential (LFP) acquired invasively and metabolic signal changes in fMRI experiments. Most of these studies failed to reveal an analogous relationship between metabolic signals and the spiking activity. That would allow for the prediction of the neural activity exclusively from the fMRI signals. However, the relationship between fMRI signals and spiking activity can be inferred indirectly provided that the LFPs can be used to predict the spiking activity of the area. Until now, only the LFP–spike relationship in cortical areas has been examined. Herein, we show that the spiking activity can be predicted by the LFPs acquired in a deep nucleus, namely the subthalamic nucleus (STN), using a nonlinear cascade model. The model can reproduce the spike patterns inside the motor area of the STN that represent information about the motor plans. Our findings expand the possibility of further recruiting non-invasive neuroimaging techniques to understand the activity of the STN and predict or even control movement

  7. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    International Nuclear Information System (INIS)

    Hrycyna, Orest; Szydłowski, Marek

    2015-01-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory

  8. Derivative expansions of renormaliztion group effective potentials for φ4 field theories

    International Nuclear Information System (INIS)

    Shepard, J.R.; McNeil, J.A.

    1995-01-01

    We approximate an exact Renormalization Group (RG) equation for the flow of the effective action of φ 4 field theories by including next-to-leading order (NLO) terms in a derivative expansion. This level of approximation allows us to treat effects of wavefunction renormalization which are beyond the scope of the leading order (LO) formulation. We compare calculations based on a open-quote latticized close quotes version of our RG equation in 3 Euclidean dimensions directly with Monte Carlo (MC) results and find excellent overall agreement as well as substantial improvement over LO calculations. We solve the continuum form of our equation to find the Wilson fixed point and determine the critical exponent η (0.046). We also find the critical exponents ν (0.666) and ω (0.735). These latter two are in much improved agreement with open-quote world's bestclose quotes values com- pared to those obtained at LO (where no prediction for η is possible). We also find that the open-quote universal potential close-quote determined via MC methods by Tsypin can be understood quantitatively using our NLO RG equations. Careful analysis shows that ambiguities which plague open-quote smooth cutoffclose quotes formulations do not arise with our RG equations

  9. Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin

    Science.gov (United States)

    Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.

    2017-07-01

    The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.

  10. Uranium mineralization environment and prospecting potential of Dawan ore field in Nanling metallogenic belt

    International Nuclear Information System (INIS)

    Yang Shanghai

    2011-01-01

    Located in the middle part of Jiuyishan complex pluton, Nanling metallogenic belt, Dawan uranium ore field in Hunan Province is an important uranium-producing and rare metal, nonferrous metal cluster area due to the favourable mineralization environment. The Cambrian is the main uranium source bed and their contact zone to the pluton is the favorable part for mineralization. The uranium deposits which have been explored are all located in the exocontact zone of Jinjiling pluton in the middle part of Jiuyishan complex pluton which is composed of the independent eastern and western magma evolution centers. In the west center, Jinjiling pluton is closely related to uranium mineralization where the trinity geologic setting was formed with magma evolution, hydrothermal fluid action and mineralization. The deep slitted and large faults provide the pathway and thermodynamic source for circulating migration of mineralizing fluid. The uranium mineralization mainly occurred in crustal stress conversion period of Late Cretaceous and related to the tensive NW extending fault and deep originated fluid. The gravity, aero magnetic, airborne gamma-ray spectrometry anomalies and radioactivity hydrochemical anomaly are important criteria for uranium prospecting. Based on the analysis of regional uranium mineralization environment, the prospecting potential is forecasted. (authors)

  11. A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization

    Science.gov (United States)

    Liu, Shuang; Hu, Xiangyun; Liu, Tianyou

    2014-07-01

    Simulating natural ants' foraging behavior, the ant colony optimization (ACO) algorithm performs excellently in combinational optimization problems, for example the traveling salesman problem and the quadratic assignment problem. However, the ACO is seldom used to inverted for gravitational and magnetic data. On the basis of the continuous and multi-dimensional objective function for potential field data optimization inversion, we present the node partition strategy ACO (NP-ACO) algorithm for inversion of model variables of fixed shape and recovery of physical property distributions of complicated shape models. We divide the continuous variables into discrete nodes and ants directionally tour the nodes by use of transition probabilities. We update the pheromone trails by use of Gaussian mapping between the objective function value and the quantity of pheromone. It can analyze the search results in real time and promote the rate of convergence and precision of inversion. Traditional mapping, including the ant-cycle system, weaken the differences between ant individuals and lead to premature convergence. We tested our method by use of synthetic data and real data from scenarios involving gravity and magnetic anomalies. The inverted model variables and recovered physical property distributions were in good agreement with the true values. The ACO algorithm for binary representation imaging and full imaging can recover sharper physical property distributions than traditional linear inversion methods. The ACO has good optimization capability and some excellent characteristics, for example robustness, parallel implementation, and portability, compared with other stochastic metaheuristics.

  12. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    Directory of Open Access Journals (Sweden)

    Mohammad S. Islam

    2017-01-01

    Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.

  13. Mean-field potential approach for thermodynamic properties of lanthanide: Europium as a prototype

    Science.gov (United States)

    Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.

    2018-03-01

    In the present paper, a simple conjunction scheme [mean-field potential (MFP) + local pseudopotential] is used to study the thermodynamic properties of divalent lanthanide europium (Eu) at extreme environment. Present study has been carried out due to the fact that divalent nature of Eu arises because of stable half-filled 4f-shell at ambient condition, which has great influence on the thermodynamic properties at extreme environment. Due to such electronic structure, it is different from remaining lanthanides having incomplete 4f-shell. The presently computed results of thermodynamic properties of Eu are in good agreement with the experimental results. Looking to such success, it seems that the concept of MFP approach is successful to account contribution due to nuclear motion to the total Helmholtz free energy at finite temperatures and pressure-induced inter-band transfer of electrons for condensed state of matter. The local pseudopotential is used to evaluate cold energy and hence MFP accounts the s-p-d-f hybridization properly. Looking to the reliability and transferability along with its computational and conceptual simplicity, we would like to extend the present scheme for the study of thermodynamic properties of remaining lanthanides and actinides at extreme environment.

  14. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    Science.gov (United States)

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  15. Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.

    Science.gov (United States)

    Hagen, Espen; Dahmen, David; Stavrinou, Maria L; Lindén, Henrik; Tetzlaff, Tom; van Albada, Sacha J; Grün, Sonja; Diesmann, Markus; Einevoll, Gaute T

    2016-12-01

    With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm 2 patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail. © The Author 2016. Published by Oxford University Press.

  16. Decoding Pigeon Behavior Outcomes Using Functional Connections among Local Field Potentials.

    Science.gov (United States)

    Chen, Yan; Liu, Xinyu; Li, Shan; Wan, Hong

    2018-01-01

    Recent studies indicate that the local field potential (LFP) carries information about an animal's behavior, but issues regarding whether there are any relationships between the LFP functional networks and behavior tasks as well as whether it is possible to employ LFP network features to decode the behavioral outcome in a single trial remain unresolved. In this study, we developed a network-based method to decode the behavioral outcomes in pigeons by using the functional connectivity strength values among LFPs recorded from the nidopallium caudolaterale (NCL). In our method, the functional connectivity strengths were first computed based on the synchronization likelihood. Second, the strength values were unwrapped into row vectors and their dimensions were then reduced by principal component analysis. Finally, the behavioral outcomes in single trials were decoded using leave-one-out combined with the k -nearest neighbor method. The results showed that the LFP functional network based on the gamma-band was related to the goal-directed behavior of pigeons. Moreover, the accuracy of the network features (74 ± 8%) was significantly higher than that of the power features (61 ± 12%). The proposed method provides a powerful tool for decoding animal behavior outcomes using a neural functional network.

  17. Cosmological dynamics with non-minimally coupled scalar field and a constant potential function

    Energy Technology Data Exchange (ETDEWEB)

    Hrycyna, Orest [Theoretical Physics Division, National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Kraków (Poland)

    2015-11-01

    Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.

  18. Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats.

    Science.gov (United States)

    Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza

    2016-10-21

    Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R 2  = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.

  19. Insights into organic carbon oxidation potential during fluvial transport from controlled laboratory and natural field experiments

    Science.gov (United States)

    Scheingross, Joel S.; Dellinger, Mathieu; Golombek, Nina; Hilton, Robert G.; Hovius, Niels; Sachse, Dirk; Turowski, Jens M.; Vieth-Hillebrand, Andrea; Wittmann, Hella

    2017-04-01

    Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, biosphere and geosphere is thought to be a major control on atmospheric carbon dioxide (CO2) concentrations, and hence global climate. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion and transport of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering (France-Lanord and Derry, 1997; Bouchez et al., 2010). Despite field data showing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in both controlled laboratory experiments and a simplified field setting. We consider both rock-derived and biospheric OC. Our experiments simulated fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km in annular flumes while making time-series measurements of OC concentration in both the solid (POC) and dissolved (DOC) loads, as well as measurements of rhenium concentration, which serves as a proxy for the oxidation of rock-derived OC. These transport experiments were compared to static, control experiments where water and sediment in the same proportion were placed in still water. Initial results for transport of OC-rich soil show similar behavior between the transport and static

  20. ABCXYZ: vector potential (A) and magnetic field (B) code (C) for Cartesian (XYZ) geometry using general current elements

    International Nuclear Information System (INIS)

    Anderson, D.V.; Breazeal, J.; Finan, C.H.; Johnston, B.M.

    1976-01-01

    ABCXYZ is a computer code for obtaining the Cartesian components of the vector potential and the magnetic field on an observed grid from an arrangement of current-carrying wires. Arbitrary combinations of straight line segments, arcs, and loops are allowed in the specification of the currents. Arbitrary positions and orientations of the current-carrying elements are also allowed. Specification of the wire diameter permits the computation of well-defined fields, even in the interiors of the conductors. An optical feature generates magnetic field lines. Extensive graphical and printed output is available to the user including contour, grid-line, and field-line plots. 12 figures, 1 table

  1. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration.

    Science.gov (United States)

    Zhao, Zi-Fang; Li, Xue-Zhu; Wan, You

    2017-12-01

    The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

  2. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    Science.gov (United States)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  3. Comparison of S3-3 polar cap potential drops with the interplanetary magnetic field and models of magnetopause reconnection

    International Nuclear Information System (INIS)

    Wygant, J.R.; Torbert, R.B.; Mozer, F.S.

    1983-01-01

    Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement

  4. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  5. The Japanese artificial organs scene: current status.

    Science.gov (United States)

    Mitamura, Yoshinori; Murabayashi, Shun

    2005-08-01

    Artificial organs and regenerative medicine are the subjects of very active research and development (R&D) in Japan and various artificial organs are widely used in patients. Results of the R&D are presented at the annual conference of the Japanese Society for Artificial Organs (JSAO). Progress in the fields of artificial organs and regenerative medicine are reviewed annually in the Japanese Journal of Artificial Organs. The official English-language journal of JSAO, Journal of Artificial Organs, also publishes many original articles by Japanese researchers. Although the annual conference and the publications of JSAO provide the world with update information on artificial organs and regenerative medicine in Japan, the information is not always understood appropriately in the rest of the world, mainly due to language problems. This article therefore introduces the current status of artificial organs and regenerative medicine in Japan. Artificial hearts and metabolic support systems are reviewed here and other interesting areas such as regenerative medicine can be found elsewhere.

  6. Dynamic cardiomyoplasty using artificial muscle.

    Science.gov (United States)

    Suzuki, Yasuyuki; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Fukuda, Ikuo

    2008-01-01

    Dynamic cardiomyoplasty using latissimus dorsi muscle was previously used to compensate for congestive heart failure. Now, however, this method is not acceptable because the long-term result was not as expected owing to fatigue of the skeletal muscle. BioMetal fiber developed by Toki Corporation is one of the artificial muscles activated by electric current. The behavior of this fiber is similar to that of organic muscle. We made an artificial muscle like the latissimus dorsi using BioMetal fiber and tested whether we could use this new muscle as a cardiac supporting device. Testing one Biometal fiber showed the following performance: practical use maximal generative force was 30 g, exercise variation was 50%, and the standard driving current was 220 mA. We created a 4 x 12-cm tabular artificial muscle using 8 BioMetal fibers as a cardiac support device. We also made a simulation circuit composed of a 6 x 8-cm soft bag with unidirectional valves, reservoir, and connecting tube. The simulation circuit was filled with water and the soft bag was wrapped with the artificial muscle device. After powering the device electrically at 9 V with a current of 220 mA for each fiber, we measured the inside pressure and observed the movement of the artificial device. The artificial muscle contracted in 0.5 s for peak time and squeezed the soft bag. The peak pressure inside the soft bag was measured as 10 mmHg. Although further work will be needed to enhance the speed of deformability and movement simulating contraction, we conclude that artificial muscle may be potentially useful as a cardiac assistance device that can be developed for dynamic cardiomyoplasty.

  7. Local field potential correlates of auditory working memory in primate dorsal temporal pole.

    Science.gov (United States)

    Bigelow, James; Ng, Chi-Wing; Poremba, Amy

    2016-06-01

    Dorsal temporal pole (dTP) is a cortical region at the rostral end of the superior temporal gyrus that forms part of the ventral auditory object processing pathway. Anatomical connections with frontal and medial temporal areas, as well as a recent single-unit recording study, suggest this area may be an important part of the network underlying auditory working memory (WM). To further elucidate the role of dTP in auditory WM, local field potentials (LFPs) were recorded from the left dTP region of two rhesus macaques during an auditory delayed matching-to-sample (DMS) task. Sample and test sounds were separated by a 5-s retention interval, and a behavioral response was required only if the sounds were identical (match trials). Sensitivity of auditory evoked responses in dTP to behavioral significance and context was further tested by passively presenting the sounds used as auditory WM memoranda both before and after the DMS task. Average evoked potentials (AEPs) for all cue types and phases of the experiment comprised two small-amplitude early onset components (N20, P40), followed by two broad, large-amplitude components occupying the remainder of the stimulus period (N120, P300), after which a final set of components were observed following stimulus offset (N80OFF, P170OFF). During the DMS task, the peak amplitude and/or latency of several of these components depended on whether the sound was presented as the sample or test, and whether the test matched the sample. Significant differences were also observed among the DMS task and passive exposure conditions. Comparing memory-related effects in the LFP signal with those obtained in the spiking data raises the possibility some memory-related activity in dTP may be locally produced and actively generated. The results highlight the involvement of dTP in auditory stimulus identification and recognition and its sensitivity to the behavioral significance of sounds in different contexts. This article is part of a Special

  8. Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm

    Science.gov (United States)

    Chen, C.; Xia, J.; Liu, J.; Feng, G.

    2006-01-01

    result is that final solution is determined by the average model derived from multiple trials instead of one computation due to the randomness in a genetic algorithm procedure. These advantages were demonstrated by synthetic and real-world examples of inversion of potential-field data. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Spatial Representations in Local Field Potential Activity of Primate Anterior Intraparietal Cortex (AIP.

    Directory of Open Access Journals (Sweden)

    Sebastian J Lehmann

    Full Text Available The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013, and in particular in the anterior intraparietal cortex (AIP. To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta how different frequency bands of the local field potential (LFP in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively. Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.

  10. Theoretical analysis of the local field potential in deep brain stimulation applications.

    Directory of Open Access Journals (Sweden)

    Scott F Lempka

    Full Text Available Deep brain stimulation (DBS is a common therapy for treating movement disorders, such as Parkinson's disease (PD, and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics. The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.

  11. Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration

    Science.gov (United States)

    Mouser, Vivian H. M.; Levato, Riccardo; Bonassar, Lawrence J.; D’Lima, Darryl D.; Grande, Daniel A.; Klein, Travis J.; Saris, Daniel B. F.; Zenobi-Wong, Marcy; Gawlitta, Debby; Malda, Jos

    2016-01-01

    Three-dimensional (3D) bioprinting techniques can be used for the fabrication of personalized, regenerative constructs for tissue repair. The current article provides insight into the potential and opportunities of 3D bioprinting for the fabrication of cartilage regenerative constructs. Although 3D printing is already used in the orthopedic clinic, the shift toward 3D bioprinting has not yet occurred. We believe that this shift will provide an important step forward in the field of cartilage regeneration. Three-dimensional bioprinting techniques allow incorporation of cells and biological cues during the manufacturing process, to generate biologically active implants. The outer shape of the construct can be personalized based on clinical images of the patient’s defect. Additionally, by printing with multiple bio-inks, osteochondral or zonally organized constructs can be generated. Relevant mechanical properties can be obtained by hybrid printing with thermoplastic polymers and hydrogels, as well as by the incorporation of electrospun meshes in hydrogels. Finally, bioprinting techniques contribute to the automation of the implant production process, reducing the infection risk. To prompt the shift from nonliving implants toward living 3D bioprinted cartilage constructs in the clinic, some challenges need to be addressed. The bio-inks and required cartilage construct architecture need to be further optimized. The bio-ink and printing process need to meet the sterility requirements for implantation. Finally, standards are essential to ensure a reproducible quality of the 3D printed constructs. Once these challenges are addressed, 3D bioprinted living articular cartilage implants may find their way into daily clinical practice. PMID:28934880

  12. Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.

    Science.gov (United States)

    Martin, Kevan A C; Schröder, Sylvia

    2016-02-24

    The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.

  13. Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.

    Science.gov (United States)

    Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan

    2018-01-01

    In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep

  14. Organotin(IV) Carboxylates as Promising Potential Drug Candidates in the Field of Cancer Chemotherapy.

    Science.gov (United States)

    Sirajuddin, Muhammad; Ali, Saqib

    2016-01-01

    Medicinal inorganic chemistry plays an important role in exploring the properties of metal ions for the designing of new drugs. The field has been stimulated by the success of cis-platin, the world best selling anticancer drug and platinum complexes with reduced toxicity, oral activity and activity against resistant tumors are currently on clinical trial. The use of cis-platin is, however, severely limited by its toxic side-effects. This has stimulated chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. The discovery of new non-covalent interactions with the classical target, DNA, was the first developing step in the treatment of cancer. The use of organometallic compounds as a medicine is very common now a days because it offers potential advantages over the more common organic-based drugs. In this article we have highlighted the anticancer activity of the organotin(IV) carboxylates published in the last few years (from 2008 to 2016). In most cases they present lower IC50 values than those of cisplatin, which indicates their high activity against the cancer cell lines. The summarized data reveal that every year new organotin(IV) carboxylate complexes are synthesized with the aim of new anticancer agent with much better results than the than the corresponding activity of cis-platin or other clinically approved drugs. In addition to the advantages of high activity, compared to the platinum compound, tin complexes are much cheaper. Thus by using organotin carboxylate for clinical medicine, cost reduction, dosage reduction and effect enhancement will be reached. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Gulfs of Suez and Aqaba: New insights from recent satellite-marine potential field data

    Science.gov (United States)

    Almalki, Khalid A.; Mahmud, Syed A.

    2018-01-01

    Previous models and interpretations of crustal geometry and the nature of the crust under the Gulfs of Suez and Aqaba have generally been based on a local or small scale and have been limited due to a lack of data. The few studies that present larger scale crustal and uppermost mantle structure were dependent on one type of data with no consideration of other geological and/or geophysical features. Satellite-marine potential field data provide for the first time a full coverage dataset of the Gulfs of Suez and Aqaba as well as the Sinai area at the same scale which allows for a better understanding of crustal domains and geometry and the interplay between tectonic events. To that end, our forward models of magnetic and gravity data constrained by seismic data and available geological information in this area suggest that the crustal domains in the Gulf of Aqaba are more complicated than those in the Gulf of Suez. Our result supports continental rifting under most of the Gulf of Suez and a combination of transitional and continental crusts under the Gulf of Aqaba. Yet, there is no evidence of oceanic segment development in these gulfs. Regardless of oceanic or transitional crust, the models support a link between the Arabia and Sinai plates at the central Gulf of Aqaba. The data also support that Red Sea tectonism has no connection to or influence on both gulfs. The result suggests a continuation of lithological elements from land into the eastern part of the Gulf of Suez. Our synthesis and interpretations may play an important role in the reassessment of the tectonic history and extension of this important rift system.

  16. Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation.

    Directory of Open Access Journals (Sweden)

    Clinton B McCracken

    Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic

  17. Extensive management of field margins enhances their potential for off-site soil erosion mitigation.

    Science.gov (United States)

    Ali, Hamada E; Reineking, Björn

    2016-03-15

    Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion off-site by trapping eroded material. Here we analyse how local management affects the trapping capacity of field margins in a monsoon region of South Korea, contrasting intensively and extensively managed field margins on both steep and shallow slopes. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for each of four different types of field margins ("intensive managed flat", "intensive managed steep", "extensive managed flat" and "extensive managed steep") with Astroturf mats. The mats (n = 15/site) were placed before, within and after the field margin. Sediment was collected after each rain event until the end of the monsoon season. The effect of management and slope on sediment trapping was analysed using linear mixed effects models, using as response variable either the sediment collected within the field margin or the difference in sediment collected after and before the field margin. There was no difference in the amount of sediment reaching the different field margin types. In contrast, extensively managed field margins showed a large reduction in collected sediment before and after the field margins. This effect was pronounced in steep field margins, and increased with the size of rainfall events. We conclude that a field margin management promoting a dense vegetation cover is a key to mitigating negative off-site effects of soil erosion in monsoon regions, particularly in field margins with steep slopes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The change of electric potentials in the oral cavity after application of extremely low frequency pulsed magnetic field

    Directory of Open Access Journals (Sweden)

    Piotr Skomro

    2012-12-01

    Full Text Available Electric potentials occurring in the oral cavity deserve attention as they may cause various diseases and subjective feelings, which are very difficult to treat. The aim of this study was to evaluate the electric potentials within the oral cavity in patients with metal fillings and metal prosthetic restorations, after using a pulsed electromagnetic field. The study was carried out on 84 patients. The Viofor JPS Classic device was used in the treatment. It generates a pulsed electromagnetic field with low induction of the extremely low frequency (ELF range. Average values of electric potentials in the preliminary test were about the same in both groups; they were 148.8 mV and 145.5 mV. After another appliance of ELF fields there was found a steady decline in the average value of electric potentials in the study group. This decrease was statistically highly significant, while mean values of electric potentials in the control group were characterized by a slightly upward tendency. The obtained statistically significant reduction of electric potentials in the oral cavity of patients having metal fillings and metal prosthetic restorations, after application of the Viofor JPS Classic device, implies a huge impact of ELF pulsed electromagnetic field on inhibition of electrochemical processes, as well as on inhibition of dental alloy corrosion. 

  19. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  20. Artificial Disc Replacement

    Science.gov (United States)

    ... Spondylolisthesis BLOG FIND A SPECIALIST Treatments Artificial Disc Replacement (ADR) Patient Education Committee Jamie Baisden The disc ... Disc An artificial disc (also called a disc replacement, disc prosthesis or spine arthroplasty device) is a ...