WorldWideScience

Sample records for artificial neutrino source

  1. Opportunities of Gallium Sage experiment with artificial neutrino sources for investigation of neutrino to sterile states

    International Nuclear Information System (INIS)

    The unexpectedly low capture rate of neutrino in Ga source experiments in SAGE and GALLEX can be explained assuming electron neutrino transitions to sterile states with a mass-squared difference ∼ 1eV2. To test this oscillation hypothesis, we propose to place a very intense 51Cr source at the center of a 50 tonne target of gallium metal that is divided into two zones and to measure the neutrino capture rate in each zone. The Experiment has the potential to test neutrino oscillation transitions with mass-squared difference Δm2> 0.5 eV2. An optimized SAGE setup and 3 MCi source of 51Cr would provide a sensitivity to electron neutrino disappearance of a few percent.

  2. Reactor target from metal chromium for "pure" high-intensive artificial neutrino source

    Science.gov (United States)

    Gavrin, V. N.; Kozlova, Yu. P.; Veretenkin, E. P.; Logachev, A. V.; Logacheva, A. I.; Lednev, I. S.; Okunkova, A. A.

    2016-03-01

    The paper presents the first results of development of manufacturing technology of metallic chromium targets from highly enriched isotope 50Cr for irradiation in a high flux nuclear reactor to obtain a compact high intensity neutrino source with low content of radionuclide impurities and minimum losses of enriched isotope. The main technological stages are the hydrolysis of chromyl fluoride, the electrochemical reduction of metallic chromium, the hot isostatic pressing of chromium powder and the electrical discharge machining of chromium bars. The technological stages of hot isostatic pressing of chromium powder and of electrical discharge machining of Cr rods have been tested.

  3. Neutrino Sources and Properties

    CERN Document Server

    Vissani, Francesco

    2014-01-01

    In this lecture, prepared for PhD students, basic considerations on neutrino interactions, properties and sites of production are overviewed. The detailed content is as follows: Sect. 1, Weak interactions and neutrinos: Fermi coupling; definition of neutrinos; global numbers. Sect. 2, A list of neutrino sources: Explanatory note and examples (solar pp- and supernova-neutrinos). Sect. 3, Neutrinos oscillations: Basic formalism (Pontecorvo); matter effect (Mikheev, Smirnov, Wolfenstein); status of neutrino masses and mixings. Sect. 4, Modifying the standard model to include neutrinos masses: The fermions of the standard model; one additional operator in the standard model (Weinberg); implications. One summary table and several exercises offer the students occasions to check, consolidate and extend their understanding; the brief reference list includes historical and review papers and some entry points to active research in neutrino physics.

  4. Neutrino detection at a spallation source

    CERN Document Server

    Huang, Ming-Yang

    2015-01-01

    In this paper, we study the detection of accelerator neutrinos and supernova (SN) neutrinos at China Spallation Neutron Source (CSNS). Firstly, by using the code FLUKA, the processes of accelerator neutrinos production during the proton beam hitting on the tungsten target can be simulated, and the yield efficiency, numerical flux, average energy of different flavor neutrinos are given. Secondly, the detection of accelerator neutrinos through two reaction channels: the neutrino-electron reactions and the neutrino-carbon reactions, is studied, and the neutrino event numbers can be calculated. Finally, while considering the SN shock effects, the MSW effects, the neutrino collective effects, and the Earth matter effects, the detection of SN neutrinos on the Earth is studied. Then, the event numbers of SN neutrinos observed through various reaction channels are given.

  5. Probing neutrino nature at Borexino detector with chromium neutrino source

    CERN Document Server

    Sobków, W

    2016-01-01

    In this paper, we indicate a possibility of utilizing the intense chromium source ($\\sim 370 PBq$) in probing the neutrino nature in low energy neutrino experiments with the ultra-low threshold and background real-time Borexino detector located near the source ($\\sim 8 m$). We analyze the elastic scattering of electron neutrinos (Dirac or Majorana, respectively) on the unpolarized electrons in the relativistic neutrino limit. We assume that the incoming neutrino beam is the superposition of left-right chiral states. Left chiral neutrinos may be detected by the standard $V A$ and non-standard scalar $S_L$, tensor $T_L$ interactions, while right chiral ones partake only in the exotic $V + A$ and $S_R, T_R$ interactions. Our model-independent study is carried out for the flavour (current) neutrino eigenstates. We compute the expected event number for the standard $V-A$ interaction of the left chiral neutrinos using the current experimental values of standard couplings and in the case of left-right chiral superpo...

  6. Calorimetric method for determination of {sup 51}Cr neutrino source activity

    Energy Technology Data Exchange (ETDEWEB)

    Veretenkin, E. P., E-mail: veretenk@inr.ru; Gavrin, V. N.; Danshin, S. N.; Ibragimova, T. V.; Kozlova, Yu. P.; Mirmov, I. N. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2015-12-15

    Experimental study of nonstandard neutrino properties using high-intensity artificial neutrino sources requires the activity of the sources to be determined with high accuracy. In the BEST project, a calorimetric system for measurement of the activity of high-intensity (a few MCi) neutrino sources based on {sup 51}Cr with an accuracy of 0.5–1% is created. In the paper, the main factors affecting the accuracy of determining the neutrino source activity are discussed. The calorimetric system design and the calibration results using a thermal simulator of the source are presented.

  7. PREFACE: Neutrino physics at spallation neutron sources

    Science.gov (United States)

    Avignone, F. T.; Chatterjee, L.; Efremenko, Y. V.; Strayer, M.

    2003-11-01

    Unique because of their super-light masses and tiny interaction cross sections, neutrinos combine fundamental physics on the scale of the miniscule with macroscopic physics on the scale of the cosmos. Starting from the ignition of the primal p-p chain of stellar and solar fusion reactions that signal star-birth, these elementary leptons (neutrinos) are also critical players in the life-cycles and explosive deaths of massive stars and the production and disbursement of heavy elements. Stepping beyond their importance in solar, stellar and supernova astrophysics, neutrino interactions and properties influence the evolution, dynamics and symmetries of the cosmos as a whole. Further, they serve as valuable probes of its material content at various levels of structure from atoms and nuclei to valence and sea quarks. In the light of the multitude of physics phenomena that neutrinos influence, it is imperative to enhance our understanding of neutrino interactions and properties to the maximum. This is accentuated by the recent evidence of finite neutrino mass and flavour mixing between generations that reverberates on the plethora of physics that neutrinos influence. Laboratory experiments using intense neutrino fluxes would allow precision measurements and determination of important neutrino reaction rates. These can then complement atmospheric, solar and reactor experiments that have enriched so valuably our understanding of the neutrino and its repertoire of physics applications. In particular, intermediate energy neutrino experiments can provide critical information on stellar and solar astrophysical processes, along with advancing our knowledge of nuclear structure, sub-nuclear physics and fundamental symmetries. So where should we look for such intense neutrino sources? Spallation neutron facilities by their design are sources of intense neutrino pulses that are produced as a by-product of neutron spallation. These neutrino sources could serve as unique laboratories

  8. Detection of extended galactic sources with an underwater neutrino telescope

    International Nuclear Information System (INIS)

    In this study we investigate the discovery capability of a Very Large Volume Neutrino Telescope to Galactic extended sources. We focus on the brightest HESS gamma rays sources which are considered also as very high energy neutrino emitters. We use the unbinned method taking into account both the spatial and the energy distribution of high energy neutrinos and we investigate parts of the Galactic plane where nearby potential neutrino emitters form neutrino source clusters. Neutrino source clusters as well as isolated neutrino sources are combined to estimate the observation period for 5 sigma discovery of neutrino signals from these objects

  9. Extra galactic sources of high energy neutrinos

    CERN Document Server

    Waxman, E

    2005-01-01

    The main goal of the construction of large volume, high energy neutrino telescopes is the detection of extra-Galactic neutrino sources. The existence of such sources is implied by observations of ultra-high energy, >10^{19} eV, cosmic-rays (UHECRs), the origin of which is a mystery. The observed UHECR flux sets an upper bound to the extra-Galactic high energy neutrino intensity, which implies that the detector size required to detect the signal in the energy range of 1 TeV to 1 PeV is >=1 giga-ton, and much larger at higher energy. Optical Cerenkov neutrino detectors, currently being constructed under ice and water, are expected to achieve 1 giga-ton effective volume for 1 TeV to 1 PeV neutrinos. Coherent radio Cerenkov detectors (and possibly large air-shower detectors) will provide the >> 1 giga-ton effective volume required for detection at ~10^{19} eV. Detection of high energy neutrinos associated with electromagnetically identified sources will allow to identify the sources of UHECRs, will provide a uniq...

  10. Preliminary results from the Russian-American gallium experiment Cr-neutrino source measurement

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.R.; Abdurashitov, J.N.; Bowles, T.J.; Cherry, M.L.; Cleveland, B.T.; Daily, T.; Davis, R. Jr.; Gavrin, V.N.; Girin, S.V.; Gorbatchev, V.V.; Gusev, A.O.; Kalikhov, A.V.; Khairnasov, N.G.; Karaulov, V.N.; Knodel, T.V.; Kornoukhov, V.N.; Khomyakov, Yu.S.; Lande, K.; Lee, C.K.; Levitin, V.L.; Maev, V.I.; Mirmov, I.N.; Nazarenko, P.I.; Nico, J.S.; Pshukov, A.M.; Shalagin, A.M.; Shikhin, A.A.; Shkol`nik, V.S.; Skorikov, N.V.; Teasdale, W.A.; Veretenkin, E.P.; Vermul, V.M.; Wark, D.L.; Wildenhain, P.W.; Wilkerson, J.F.; Yants, V.; Zatsepin, G.T.; Zvonarev, A.V. [University of Washington, Seattle, WA 98195 (United States)]|[Institute for Nuclear Research, Russian Academy of Sciences, Moscow 1173122 (Russian Federation)]|[Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)]|[Louisiana State University, Baton Rouge, LA 70803 (United States)]|[University of Pennsylvania, Philadelphia, PA 19104 (United States)]|[Mangyshlak Atomic Energy Complex, Aktau (Kazakhstan)]|[Power Physics Institute, Obninsk (Russian Federation)

    1996-05-01

    The Russian-American Gallium Experiment has been collecting solar neutrino data since early 1990. The flux measurement of solar neutrinos is well below that expected from solar models. We discuss the initial results of a measurement of experimental efficiencies by exposing the gallium target to neutrinos from an artificial source. The capture rate of neutrinos from this source is very close to that which is expected. The result can be expressed as a ratio of the measured capture rate to the anticipated rate from the source activity. This ratio is 0.93 +0.15, -0.17 where the systematic and statistical errors have been combined. To first order the experimental efficiencies are in agreement with those determined during solar neutrino measurements and in previous auxiliary measurements. One must conclude that the discrepancy between the measured solar neutrino flux and that predicted by the solar models can not arise from an experimental artifact. (orig.).

  11. Sensitivity of the Baikal neutrino telescope NT-200 to point sources of very high energy neutrinos

    International Nuclear Information System (INIS)

    The sensitivity of the deep underwater muon and neutrino detector 'NT-200' in lake Baikal to point sources of extraterrestrial neutrinos is calculated. Results are given for different assumptions on the neutrino source spectrum and the reconstruction capabilities of the detector. (orig.)

  12. Detection of supernova neutrinos at spallation neutron sources

    Science.gov (United States)

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2016-07-01

    After considering supernova shock effects, Mikheyev-Smirnov-Wolfenstein effects, neutrino collective effects, and Earth matter effects, the detection of supernova neutrinos at the China Spallation Neutron Source is studied and the expected numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and the “beta fit” distribution respectively. Furthermore, the numerical calculation method of supernova neutrino detection on Earth is applied to some other spallation neutron sources, and the total expected numbers of supernova neutrinos observed through different reactions channels are given. Supported by National Natural Science Foundation of China (11205185, 11175020, 11275025, 11575023)

  13. On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes

    CERN Document Server

    Achterberg, A; Adams, J; Ahrens, J; Atlee, D W; Bahcall, J N; Bai, X; Baret, B; Bartelt, M; Barwick, S W; Bay, R; Beattie, K; Becka, T; Becker, J K; Becker, K H; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Boser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Chirkin, D; Clem, J; Collin, B; Conrad, J; Cooley, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Desiati, P; De Young, T; Dreyer, J; Duvoort, M R; Edwards, W R; Ehrlich, R; Ellsworth, R W; Evenson, P A; Fazely, A R; Feser, T; Filimonov, K; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Goldschmidt, A; Goodman, J A; Greene, M G; Grullon, S; Gross, A; Gunasingha, R M; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, D; Hardtke, R; Harenberg, T; Hart, J E; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Ishihara, A; Jacobsen, J; Japaridze, G S; Jones, A; Joseph, J M; Kampert, K H; Karle, A; Kawai, H; Kelley, J L; Kestel, M; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Köpke, L; Krasberg, M; Kühn, K; Landsman, H; Lang, R; Leich, H; Leuthold, M; Liubarsky, I; Lundberg, J; Madsen, J; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meli, A; Messarius, T; Mészáros, P; Minor, R H; Miocinovic, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Niessen, P; Nygren, D R; Ogelman, H; Olbrechts, P; Olivas, A; Patton, S; Peña-Garay, C; Pérez de los Heros, C; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Reinghaus, F; Resconi, E; Rhode, W; Ribordy, M; Richter, S; Rizzo, A; Robbins, S; Rott, C; Rutledge, D; Sander, H G; Schlenstedt, S; Schneider, D; Seckel, D; Seo, S H; Seunarine, S; Silvestri, A; Smith, A J; Solarz, M; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steffen, P; Steele, D; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Sulanke, K H; Sullivan, G W; Sumner, T J; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Toale, P A; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y R; Wendt, C; Wiebusch, C; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S; De Dios-Zornoza-Gomez, Juan; Biermann, P L

    2006-01-01

    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found.

  14. Expectation values of flavor-neutrino numbers with respect to neutrino-source hadron states --Neutrino oscillations and decay probabilities--

    CERN Document Server

    Fujii, Kanji

    2014-01-01

    On the basis of quantum field theory, we consider a unified description of various processes accompanied by neutrinos, namely weak decays and oscillation processes. The structures of the expectation values of flavor-neutrino numbers with respect to neutrino-source hadron state are investigated. Due to the smallness of neutrino masses, we naturally obtain the old (i.e. pre-mixing) formulas of decay probabilities. Together, it is shown that the oscillation formulas, similar to the usual ones, are applied irrespectively of the details of neutrino-producing processes. The derived oscillation formulas are the same in form as the usually used ones except for the oscillation length.

  15. Active Galactic Nuclei as High-Energy Neutrino Sources

    CERN Document Server

    Murase, Kohta

    2015-01-01

    Active galactic nuclei (AGN) are believed to be promising candidates of extragalactic cosmic-ray accelerators and sources, and associated high-energy neutrino and hadronic gamma-ray emission has been studied for many years. We review models of high-energy neutrino production in AGN, and discuss their implications for the latest IceCube observation of the diffuse neutrino intensity.

  16. The enriched chromium neutrino source for GALLEX

    International Nuclear Information System (INIS)

    The preparation and study of an intense source of neutrinos in the form of neutron irradiated materials which are enriched in Cr-50 for use in the GALLEX solar neutrino experiment are discussed. Chromyl fluoride gas is enriched in the Cr-50 isotope by gas centrifugation and subsequently converted to a very stable form of chromium oxide. The results of neutron activation analyses of such chromium samples indicate low levels of any long-lived activities, but show that short-lived activities, in particular Na-24, may be of concern. These results show that irradiating chromium oxide enriched in Cr-50 is preferable to irradiating either natural chromium or argon gas as a means of producing a neutrino source to calibrate the GALLEX detector. These results of the impurity level analysis of the enriched chromyl fluoride gas and its conversion to the oxide are also of interest to work in progress by other members of the Collaboration investigating an alternative conversion of the enriched gas to chromium metal. 35 refs., 12 figs., 5 tabs

  17. Detection of supernova neutrinos at spallation neutron sources

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2015-01-01

    After considering the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein effects, the neutrino collective effects, and the Earth matter effects, the detection of supernova neutrinos at China Spallation Neutron Sources is studied and the event numbers of different flavor supernova neutrinos observed through various reaction channels are calculated with the neutrino energy spectra described by the Fermi-Dirac distribution and "beta fit" distribution respectively. Furthermore, the numeric...

  18. FEASIBILITY STUDY II OF A MUON BASED NEUTRINO SOURCE.

    Energy Technology Data Exchange (ETDEWEB)

    GALLARDO,J.C.; OZAKI,S.; PALMER,R.B.; ZISMAN,M.

    2001-06-30

    The concept of using a muon storage ring to provide a well characterized beam of muon and electron neutrinos (a Neutrino Factory) has been under study for a number of years now at various laboratories throughout the world. The physics program of a Neutrino Factoryis focused on the relatively unexplored neutrino sector. In conjunction with a detector located a suitable distance from the neutrino source, the facility would make valuable contributions to the study of neutrino masses and lepton mixing. A Neutrino Factory is expected to improve the measurement accuracy of sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sup 2}{sub 32} and provide measurements of sin{sup 2}(2{theta}{sub 13}) and the sign of {Delta}m{sup 2}{sub 32}. It may also be able to measure CP violation in the lepton sector.

  19. Expectation values of flavor-neutrino numbers with respect to neutrino-source hadron states: Neutrino oscillations and decay probabilities

    International Nuclear Information System (INIS)

    On the basis of quantum field theory, we consider a unified description of various processes accompanied by neutrinos, namely, weak decays and oscillation processes. The structures of the expectation values of flavor-neutrino numbers with respect to the neutrino-source hadron state are investigated. Due to the smallness of neutrino masses, we naturally obtain the old (i.e., pre-mixing) formulas of decay probabilities. In addition, it is shown that the oscillation formulas, similar to the usual ones, are derived irrespectively of the details of neutrino-producing processes. The derived oscillation formulas are regarded as being the same in form as the usually adopted ones, except for some simple distinctions

  20. Constraining High-Energy Cosmic Neutrino Sources: Implications and Prospects

    CERN Document Server

    Murase, Kohta

    2016-01-01

    We consider limits on the local ($z=0$) density ($n_0$) of extragalactic neutrino sources set by the nondetection of steady high-energy neutrino sources producing $\\gtrsim30$ TeV muon multiplets in the present IceCube data, taking into account the redshift evolution, luminosity function and neutrino spectrum of the sources. We show that the lower limit depends weakly on source spectra and strongly on redshift evolution. We find $n_0\\gtrsim{10}^{-7}~{\\rm Mpc}^{-3}$ for standard candle sources evolving rapidly, $n_s\\propto{(1+z)}^3$, and $n_0\\gtrsim{10}^{-5}~{\\rm Mpc}^{-3}$ for nonevolving sources. The corresponding upper limits on their neutrino luminosity are $L_{{\

  1. New initiatives on lepton flavor violation and neutrino oscillation with high intense muon and neutrino sources

    CERN Document Server

    Kuno, Yoshitaka; Pakvasa, Sandip

    2002-01-01

    The area of physics involving muons and neutrinos has become exciting in particle physics. Using their high intensity sources, physicists undertake, in various ways, extensive searches for new physics beyond the Standard Model, such as tests of supersymmetric grand unification (SUSY-GUT) and precision measurements of the muon and neutrino properties, which will in future extend to ambitious studies such as determination of the three-generation neutrino mixing matrix elements and CP violation in the lepton sector. The physics of this field is advancing, with potential improvements of the source

  2. FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/Paranimf 1, 46730 Gandia (Spain); Aguilar, J. A.; Bigongiari, C. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC, Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I.; Aubert, J.-J.; Bertin, V. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Assis Jesus, A. C.; Astraatmadja, T.; Bogazzi, C. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B. [APC-Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet 75205 Paris Cedex 13 (France); Basa, S. [LAM-Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, 13388 Marseille Cedex 13 (France); Biagi, S. [INFN-Sezione di Bologna, Viale C. Berti-Pichat 6/2, 40127 Bologna (Italy); Bigi, A. [INFN-Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2011-12-10

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 {+-} 0.1 deg. The neutrino flux sensitivity is 7.5 Multiplication-Sign 10{sup -8}(E{sub {nu}}/ GeV){sup -2} GeV{sup -1} s{sup -1} cm{sup -2} for the part of the sky that is always visible ({delta} < -48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

  3. FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE

    International Nuclear Information System (INIS)

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 ± 0.1 deg. The neutrino flux sensitivity is 7.5 × 10–8(Eν/ GeV)–2 GeV–1 s–1 cm–2 for the part of the sky that is always visible (δ < –48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

  4. Search for high energy cosmic neutrino point sources with ANTARES

    International Nuclear Information System (INIS)

    The aim of this thesis is the search for high energy cosmic neutrinos emitted by point sources with the ANTARES neutrino telescope. The detection of high energy cosmic neutrinos can bring answers to important questions such as the origin of cosmic rays and the γ-rays emission processes. In the first part of the thesis, the neutrino flux emitted by galactic and extragalactic sources and the number of events which can be detected by ANTARES are estimated. This study uses the measured γ-ray spectra of known sources taking into account the γ-ray absorption by the extragalactic background light. In the second part of the thesis, the absolute pointing of the ANTARES telescope is evaluated. Being located at a depth of 2475 m in sea water, the orientation of the detector is determined by an acoustic positioning system which relies on low and high frequency acoustic waves measurements between the sea surface and the bottom. The third part of the thesis is a search for neutrino point sources in the ANTARES data. The search algorithm is based on a likelihood ratio maximization method. It is used in two search strategies; 'the candidate sources list strategy' and 'the all sky search strategy'. Analysing 2007+2008 data, no discovery is made and the world's best upper limits on neutrino fluxes from various sources in the Southern sky are established. (author)

  5. Right-handed neutrinos as the source of density perturbations

    International Nuclear Information System (INIS)

    We study the possibility that cosmological density perturbations are generated by the inhomogeneous decay of right-handed neutrinos. This will occur if a scalar field whose fluctuations are created during inflation is coupled to the neutrino sector. Robust predictions of the model are a detectable level of non-Gaussianity and, if standard leptogenesis is the source of the baryon asymmetry, a baryon isocurvature perturbations at the level of the present experimental constraints (author)

  6. Accelerator studies of neutrino oscillations

    CERN Document Server

    Ereditato, A

    2000-01-01

    The question of whether the neutrino has a non-vanishing mass plays acrucial role in particle physics. A massive neutrino would unambiguously reveal the existence of new physics beyond the Standard Model. In addition, it could have profound implications on astrophysics and cosmology, with effects on the evolution of the Universe. Experiments aiming at direct neutrino-mass measurements based on kinematics have not been able, so far, to measure the very small neutrino mass. Indirect measurements can be performed by exploiting reactions which may only occur for massive neutrinos. Neutrino oscillation is one of those processes. The mass difference between neutrino mass-eigenstates can be inferred from a phase measurement. This feature allows for high sensitivity experiments. Neutrinos from different sources can be used to search for oscillations: solar neutrinos, neutrinos produced in the interaction of cosmic rays with the atmosphere and artificially produced neutrinos from nuclear reactors and particle accelera...

  7. The 8Li Calibration Source for the Sudbury Neutrino Obervatory

    OpenAIRE

    Tagg, N. J.; Hamer, A; Sur, B.; Earle, E. D.; Helmer, R. L.; Jonkmans, G.; Moffat, B.A.; Simpson, J. J.

    2002-01-01

    A calibration source employing 8Li (t_1/2 = 0.838s) has been developed for use with the Sudbury Neutrino Observatory (SNO). This source creates a spectrum of beta particles with an energy range similar to that of the SNO 8B solar neutrino signal. The source is used to test the SNO detector's energy response, position reconstruction and data reduction algorithms. The 8Li isotope is created using a deuterium-tritium neutron generator in conjunction with a 11B target, and is carried to a decay c...

  8. Search for point sources of high energy neutrinos with Amanda

    International Nuclear Information System (INIS)

    Report of search for likely point sources for neutrinos observed by the Amanda detector. Places intensity limits on observable point sources. This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m2 for Eμ ∼ 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to Eν-2 and declination larger than +40o, we obtain E2 (dNν/dE) (le) 10-6 GeV cm-2 s-1 for an energy threshold of 10 GeV

  9. The 8Li Calibration Source for the Sudbury Neutrino Obervatory

    CERN Document Server

    Tagg, N J; Sur, B; Earle, E D; Helmer, R L; Jonkmans, G; Moffat, B A; Simpson, J J

    2002-01-01

    A calibration source employing 8Li (t_1/2 = 0.838s) has been developed for use with the Sudbury Neutrino Observatory (SNO). This source creates a spectrum of beta particles with an energy range similar to that of the SNO 8B solar neutrino signal. The source is used to test the SNO detector's energy response, position reconstruction and data reduction algorithms. The 8Li isotope is created using a deuterium-tritium neutron generator in conjunction with a 11B target, and is carried to a decay chamber using a gas/aerosol transport system. The decay chamber detects prompt alpha particles by gas scintillation in coincidence with the beta particles which exit through a thin stainless steel wall. A description is given of the production, transport, and tagging techniques along with a discussion of the performance and application of the source.

  10. A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source

    International Nuclear Information System (INIS)

    Gamma ray earthbound and satellite experiments have discovered, over the last years, many Galactic and extragalactic gamma ray sources. The detection of astrophysical neutrinos emitted by the same sources would imply that these astrophysical objects are charged cosmic ray accelerators and help to resolve the enigma of the origin of cosmic rays. A very large volume neutrino telescope will be able to detect these potential neutrino emitters. The apriori known direction of the neutrino source can be used to effectively suppress the 40K optical background and increase significantly the tracking efficiency through causality filters. We report on advancing filtering and prefit techniques using the known neutrino source direction and first results are presented

  11. A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source

    Energy Technology Data Exchange (ETDEWEB)

    Tsirigotis, A.G., E-mail: tsirigotis@eap.gr [Physics Laboratory, School of Science and Technology, Hellenic Open University (Greece); Leisos, A.; Tzamarias, S.E. [Physics Laboratory, School of Science and Technology, Hellenic Open University (Greece)

    2013-10-11

    Gamma ray earthbound and satellite experiments have discovered, over the last years, many Galactic and extragalactic gamma ray sources. The detection of astrophysical neutrinos emitted by the same sources would imply that these astrophysical objects are charged cosmic ray accelerators and help to resolve the enigma of the origin of cosmic rays. A very large volume neutrino telescope will be able to detect these potential neutrino emitters. The apriori known direction of the neutrino source can be used to effectively suppress the {sup 40}K optical background and increase significantly the tracking efficiency through causality filters. We report on advancing filtering and prefit techniques using the known neutrino source direction and first results are presented.

  12. A reconstruction method for neutrino induced muon tracks taking into account the apriori knowledge of the neutrino source

    CERN Document Server

    Tsirigotis, A G; Tzamarias, S E

    2012-01-01

    Gamma ray earthbound and satellite experiments have discovered, over the last years, many Galactic and extragalactic gamma ray sources. The detection of astrophysical neutrinos emitted by the same sources would imply that these astrophysical objects are charged cosmic ray accelerators and help to resolve the enigma of the origin of cosmic rays. A very large volume neutrino telescope will be able to detect these potential neutrino emitters. The apriori known direction of the neutrino source can be used to effectively suppress the $^{40}K$ optical background and increase significantly the tracking efficiency through causality filters. We report on advancing filtering and prefit techniques using the known neutrino source direction and first results are presented.

  13. High-energy neutrinos from sources in clusters of galaxies

    CERN Document Server

    Fang, Ke

    2016-01-01

    High-energy cosmic rays can be accelerated in clusters of galaxies, by mega-parsec scale shocks induced by accretion of gas during the formation of large-scale structure, or by powerful sources harbored in clusters. Once accelerated, the highest energy particles leave the cluster via almost rectilinear trajectories, while lower energy ones can be confined by the cluster magnetic field up to cosmological time and interact with the intracluster gas. Using a realistic model of the baryon distribution and the turbulent magnetic field in clusters, we studied the propagation and hadronic interaction of high-energy protons in the intracluster medium. We report the cumulative cosmic ray and neutrino spectra generated by galaxy clusters including embedded sources, and demonstrate that clusters can contribute a significant fraction of the observed IceCube neutrinos above 30 TeV while remaining undetected in high-energy cosmic rays and $\\gamma$ rays for reasonable choices of parameters and source scenarios.

  14. Neutrinos

    CERN Document Server

    de Gouvea, A; Scholberg, K; Zeller, G P; Alonso, J; Bernstein, A; Bishai, M; Elliott, S; Heeger, K; Hoffman, K; Huber, P; Kaufman, L J; Kayser, B; Link, J; Lunardini, C; Monreal, B; Morfin, J G; Robertson, H; Tayloe, R; Tolich, N; Abazajian, K; Akiri, T; Albright, C; Asaadi, J; Babu, K S; Balantekin, A B; Barbeau, P; Bass, M; Blake, A; Blondel, A; Blucher, E; Bowden, N; Brice, S J; Bross, A; Carls, B; Cavanna, F; Choudhary, B; Coloma, P; Connolly, A; Conrad, J; Convery, M; Cooper, R L; Cowen, D; da Motta, H; de Young, T; Di Lodovico, F; Diwan, M; Djurcic, Z; Dracos, M; Dodelson, S; Efremenko, Y; Ekelof, T; Feng, J L; Fleming, B; Formaggio, J; Friedland, A; Fuller, G; Gallagher, H; Geer, S; Gilchriese, M; Goodman, M; Grant, D; Gratta, G; Hall, C; Halzen, F; Harris, D; Heffner, M; Henning, R; Hewett, J L; Hill, R; Himmel, A; Horton-Smith, G; Karle, A; Katori, T; Kearns, E; Kettell, S; Klein, J; Kim, Y; Kim, Y K; Kolomensky, Yu; Kordosky, M; Kudenko, Yu; Kudryavtsev, V A; Lande, K; Lang, K; Lanza, R; Lau, K; Lee, H; Li, Z; Littlejohn, B R; Lin, C J; Liu, D; Liu, H; Long, K; Louis, W; Luk, K B; Marciano, W; Mariani, C; Marshak, M; Mauger, C; McDonald, K T; McFarland, K; McKeown, R; Messier, M; Mishra, S R; Mosel, U; Mumm, P; Nakaya, T; Nelson, J K; Nygren, D; Gann, G D Orebi; Osta, J; Palamara, O; Paley, J; Papadimitriou, V; Parke, S; Parsa, Z; Patterson, R; Piepke, A; Plunkett, R; Poon, A; Qian, X; Raaf, J; Rameika, R; Ramsey-Musolf, M; Rebel, B; Roser, R; Rosner, J; Rott, C; Rybka, G; Sahoo, H; Sangiorgio, S; Schmitz, D; Shrock, R; Shaevitz, M; Smith, N; Smy, M; Sobel, H; Sorensen, P; Sousa, A; Spitz, J; Strauss, T; Svoboda, R; Tanaka, H A; Thomas, J; Tian, X; Tschirhart, R; Tully, C; Van Bibber, K; Van de Water, R G; Vahle, P; Vogel, P; Walter, C W; Wark, D; Wascko, M; Webber, D; Weerts, H; White, C; White, H; Whitehead, L; Wilson, R J; Winslow, L; Wongjirad, T; Worcester, E; Yokoyama, M; Yoo, J; Zimmerman, E D

    2013-01-01

    This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos.

  15. SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE

    International Nuclear Information System (INIS)

    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = –46.°8 and decl. = –64.°9 and corresponds to a 2.2σ background fluctuation. In addition, upper limits on the flux normalization of an E –2 muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E –2 energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 × 10–8 GeV cm–2 s–1, depending on the exact location of the source

  16. SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC) - Universitat Politècnica de València. C/Paranimf 1, E-46730 Gandia (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, F-68008 Colmar (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, E-08800 Vilanova i la Geltrú, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo. de Correos 22085, E-46071 Valencia (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, F-13388 Marseille Cedex 13 (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, I-00185 Roma (Italy); and others

    2014-05-01

    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = –46.°8 and decl. = –64.°9 and corresponds to a 2.2σ background fluctuation. In addition, upper limits on the flux normalization of an E {sup –2} muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E {sup –2} energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 × 10{sup –8} GeV cm{sup –2} s{sup –1}, depending on the exact location of the source.

  17. Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

    CERN Document Server

    Achterberg, A; Adams, J; Ahrens, J; Andeen, K; Atlee, D W; Bahcall, J N; Bai, X; Baret, B; Barwick, S W; Bay, R; Beattie, K; Becka, T; Becker, J K; Becker, K H; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Bolmont, J; Boser, S; Botner, O; Bouchta, A; Braun, J; Burgess, C; Burgess, T; Castermans, T; Chirkin, D; Christy, B; Clem, J; Cowen, D F; D'Agostino, M V; Davour, A; Day, C T; De Clercq, C; Demirors, L; Descamps, F; Desiati, P; De Young, T; Díaz-Veléz, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Edwards, W R; Ehrlich, R; Eisch, J; Ellsworth, R W; Evenson, P A; Fadiran, O; Fazely, A R; Feser, T; Filimonov, K; Fox, B D; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Gerhardt, L; Goldschmidt, A; Goodman, J A; Gozzini, R; Grullon, S; Gross, A; Gunasingha, R M; Gurtner, M; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, D; Hardtke, R; Harenberg, T; Hart, J E; Hauschildt, T; Hays, D; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hodges, J; Hoffman, K D; Hommez, B; Hoshina, K; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Hulss, J P; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Jones, A; Joseph, J M; Kampert, K H; Karle, A; Kawai, H; Kelley, J L; Kestel, M; Kitamura, N; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Kowalski, M; Köpke, L; Krasberg, M; Kühn, K; Landsman, H; Leich, H; Leier, D; Leuthold, M; Liubarsky, I; Lundberg, J; Lunemann, J; Madsen, J; Mase, K; Matis, H S; McCauley, T; McParland, C P; Meli, A; Messarius, T; Mészáros, P; Miyamoto, H; Mokhtarani, A; Montaruli, T; Morey, A; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Niessen, P; Nygren, D R; Ogelman, H; Olivas, A; Patton, S; Peña-Garay, C; Pérez de los Heros, C; Piegsa, A; Pieloth, D; Pohl, A C; Porrata, R; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Robbins, S; Roth, P; Rott, C; Rutledge, D; Ryckbosch, D; Sander, H G; Sarkar, S; Schlenstedt, S; Schmidt, T; Schneider, D; Seckel, D; Seo, S H; Seunarine, S; Silvestri, A; Smith, A J; Solarz, M; Song, C; Sopher, J E; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steffen, P; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Strahler, E A; Straszheim, T; Sulanke, K H; Sullivan, G W; Sumner, T J; Taboada, I; Tarasova, O; Tepe, A; Thollander, L; Tilav, S; Tluczykont, M; Toale, P A; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; Voigt, B; Wagner, W; Walck, C; Waldmann, H; Walter, M; Wang, Y R; Wendt, C; Wiebusch, C; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S; De Dios-Zornoza-Gomez, Juan

    2006-01-01

    We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live-time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit \\Phi^{0}=(E/TeV)^\\gamma d\\Phi/dE to a point source flux of muon and tau neutrino (detected as muons arising from taus) is \\Phi_{\

  18. Solar neutrinos and the influences of opacity, thermal instability, additional neutrino sources, and a central black hole on solar models

    Science.gov (United States)

    Stothers, R. B.; Ezer, D.

    1972-01-01

    Significant quantities that affect the internal structure of the sun are examined for factors that reduce the temperature near the sun's center. The four factors discussed are: opacity, central black hole, thermal instability, and additional neutrino sources.

  19. Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Carloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J -L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Leonora, E; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Samtleben, D F E; Sapienza, P; Schmid, J; Schnabel, J; Schuller, J -P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2012-01-01

    In this paper, a time integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an $E_{\

  20. Solar neutrino experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, W. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)

    1996-11-01

    The present status of experimental solar neutrino research is reviewed. Updated results from the Homestake, Kamiokande, GALLEX and SAGE detectors all show a deficit when compared to recent standard solar model calculations. Two of these detectors, GALLEX and SAGE, have recently been checked with artificial {sup 51}Cr neutrino sources. It is shown that astrophysical scenarios to solve the solar neutrino problems are not favoured by the data. There is hope that the results of forthcoming solar neutrino experiments can provide the answers to the open questions. (author) 6 figs., 3 tabs., 36 refs.

  1. Search for Point Sources of High Energy Neutrinos with Final Data from AMANDA-II

    CERN Document Server

    Abbasi, R; Adams, J; Ahlers, M; Ahrens, J; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Baret, B; Barwick, S W; Bay, R; Bazo Alba, J L; Beattie, K; Becka, T; Becker, J K; Becker, K H; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Bohm, C; Bolmont, J; Boser, S; Botner, O; Braun, J; Breder, D; Burgess, T; Castermans, T; Chirkin, D; Christy, B; Clem, J; Cowen, D F; D'Agostino, M V; Danninger, M; Davour, A; Day, C T; Depaepe, O; De Clercq, C; Demirors, L; Descamps, F; Desiati, P; De Vries-Uiterweerd, G; De Young, T; Díaz-Veléz, J C; Dreyer, J; Dumm, J P; Duvoort, M R; Edwards, W R; Ehrlich, R; Eisch, J; Ellsworth, R W; Engdegard, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Filimonov, K; Finley, C; Foerster, M M; Fox, B D; Franckowiak, A; Franke, R; Gaisser, T K; Gallagher, J; Ganugapati, R; Gerhardt, L; Gladstone, L; Goldschmidt, A; Goodman, J A; Gozzini, R; Grant, D; Griesel, T; Gro, A; Grullon, S; Gunasingha, R M; Gurtner, M; Ha, C; Hallgren, A; Halzen, F; Han, K; Hanson, K; Hardtke, R; Hasegawa, Y; Heise, J; Helbing, K; Hellwig, M; Herquet, P; Hickford, S; Hill, G C; Hodges, J; Hoffman, K D; Hoshina, K; Hubert, D; Huelsnitz, W; Hughey, B; Hul, J P; Hulth, P O; Hultqvist, K; Hundertmark, S; Hussain, S; Imlay, R L; Inaba, M; Ishihara, A; Jacobsen, J; Japaridze, G S; Johansson, H; Joseph, J M; Kampert, K H; Kappes, A; Karg, T; Karle, A; Kawai, H; Kelley, J L; Kiryluk, J; Kislat, F; Klein, S R; Klepser, S; Kohnen, G; Kolanoski, H; Köpke, L; Kowalski, M; Kowarik, T; Krasberg, M; Kühn, K; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Lauer, R; Leich, H; Leier, D; Lewis, C; Lucke, A; Lundberg, J; Lunemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McParland, C P; Meagher, K; Meli, A; Merck, M; Messarius, T; Mészáros, P; Miyamoto, H; Mohr, A; Montaruli, T; Morse, R; Movit, S M; Munich, K; Nahnhauer, R; Nam, J W; Nieen, P; Nygren, D R; Odrowski, S; Olivas, A; Olivo, M; Ono, M; Panknin, S; Patton, S; Pérez de los Heros, C; Petrovic, J; Piegsa, A; Pieloth, D; Pohl, A C; Porrata, R; Potthoff, N; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Rizzo, A; Robbins, W J; Rodríguez, J; Roth, P; Rothmaier, F; Rott, C; Roucelle, C; Rutledge, D; Ryckbosch, D; Sander, H G; Sarkar, S; Satalecka, K; Schlenstedt, S; Schmidt, T; Schneider, D; Schultz, O; Seckel, D; Semburg, B; Seo, S H; Sestayo, Y; Seunarine, S; Silvestri, A; Smith, A J; Song, C; Spiczak, G M; Spiering, C; Stanev, T; Stezelberger, T; Stokstad, R G; Stoufer, M C; Stoyanov, S; Strahler, E A; Straszheim, T; Sulanke, K H; Sullivan, G W; Swillens, Q; Taboada, I; Tarasova, O; Tepe, A; Ter-Antonyan, S; Tilav, S; Tluczykont, M; Toale, P A; Tosi, D; Turcan, D; van Eijndhoven, N; Vandenbroucke, J; Van Overloop, A; Viscomi, V; Vogt, C; Voigt, B; Walck, C; Waldenmaier, T; Walter, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebusch, C H; Wiedemann, C; Wikström, G; Williams, D R; Wischnewski, R; Wissing, H; Woschnagg, K; Xu, X W; Yodh, G; Yoshida, S

    2008-01-01

    We present a search for point sources of high energy neutrinos using 3.8 years of data recorded by the AMANDA-II neutrino telescope during 2000-2006. Applying muon track reconstruction and quality criteria, we select 6595 candidate events, predominantly from atmospheric neutrinos. Our search reveals no indications of a neutrino point source. We place the most stringent limits to date on E$^{-2}$ neutrino fluxes from points in the Northern Sky, with an average upper limit of E$^{2}\\Phi_{\

  2. Intensive neutrino source on the base of lithium converter

    CERN Document Server

    Lyashuk, V I

    2015-01-01

    An intensive antineutrino source with a hard spectrum (with energy up to 13 MeV, average energy 6.5 MeV) can be realized on the base of beta-decay of short living isotope 8Li (0.84 s). The 8Li isotope (generated in activation of 7Li isotope) is a prime perspective antineutrino source owing to the hard antineutrino spectrum and square dependence of cross section on the energy. Up today nuclear reactors are the most intensive neutrino sources. Antineutrino reactor spectra have large uncertainties in the summary antineutrino spectrum at energy E>6 MeV. Use of 8Li isotope allows to decrease sharply the uncertainties or to exclude it completely. An intensive neutron fluxes are requested for rapid generation of 8Li isotope. The installations on the base of nuclear reactors can be an alternative for nuclear reactors as traditional neutron sources. It is possible creation of neutrino sources another in principle: on the base of tandem of accelerators, neutron generating targets and lithium converter. An intensive neu...

  3. The 16N Calibration Source for the Sudbury Neutrino Observatory

    OpenAIRE

    Dragowsky, M R; Hamer, A; Chan, Y. D.; Deal, R.; Earle, E. D.; Frati, W.; Gaudette, E.; Hallin, A.; Hearns, C.; Hewett, J.; Jonkmans, G.; Kajiyama, Y.; McDonald, A. B.; Moffat, B.A.; Norman, E B

    2001-01-01

    A calibration source using gamma-rays from 16N (t_1/2 = 7.13 s) beta-decay has been developed for the Sudbury Neutrino Observatory (SNO) for the purpose of energy and other calibrations. The 16N is produced via the (n,p) reaction on 16O in the form of CO2 gas using 14-MeV neutrons from a commercially available Deuterium-Tritium (DT) generator. The 16N is produced in a shielding pit in a utility room near the SNO cavity and transferred to the water volumes (D2O or H2O) in a CO2 gas stream via ...

  4. Finite size source effects and the correlation of neutrino transition probabilities through supernova turbulence

    OpenAIRE

    Kneller, James P.; Mauney, Alex W.

    2013-01-01

    (Abridged) The transition probabilities describing the evolution of a neutrino with a given energy along some ray through a turbulent supernova are random variates unique to each ray. If the source of the neutrinos were a point then all neutrinos of a given energy and emitted at the same time which were detected in some far off location would have seen the same turbulent profile therefore their transition probabilities would be exactly correlated. But if the source has a finite size then the ...

  5. Searches for Time Dependent Neutrino Sources with IceCube Data from 2008 to 2012

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; D\\'\\iaz-Vélez, J C; Dumm, J P; Dunkman, M; Eagan, R; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jero, K; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vanheule, S; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zoll, M

    2015-01-01

    In this paper searches for flaring astrophysical neutrino sources and sources with periodic emission with the IceCube neutrino telescope are presented. In contrast to time integrated searches, where steady emission is assumed, the analyses presented here look for a time dependent signal of neutrinos using the information from the neutrino arrival times to enhance the discovery potential. A search was performed for correlations between neutrino arrival times and directions as well as neutrino emission following time dependent lightcurves, sporadic emission or periodicities of candidate sources. These include active galactic nuclei, soft $\\gamma$-ray repeaters, supernova remnants hosting pulsars, micro-quasars and X-ray binaries. The work presented here updates and extends previously published results to a longer period that covers four years of data from 2008 April 5 to 2012 May 16 including the first year of operation of the completed 86-string detector. The analyses did not find any significant time dependen...

  6. Light at the end of the shower: An all-flavour neutrino point-source search with the ANTARES neutrino telescope

    NARCIS (Netherlands)

    T. Michael

    2016-01-01

    The ANTARES detector is the largest deep sea neutrino observatory to date. This thesis describes a search for cosmic neutrino sources with ANTARES. There are three different types (or flavours) of neutrinos and several possible event signatures in the detector. Until now, most analyses solely relied

  7. Prospects for Detecting a Neutrino Magnetic Moment with a Tritium Source and Beta-beams

    OpenAIRE

    McLaughlin, G. C.; Volpe, C.

    2003-01-01

    We compare the prospects for detecting a neutrino magnetic moment by the measurement of neutrinos from a tritium source, reactors and low-energy beta-beams. In all cases the neutrinos or antineutrinos are detected by scattering of electrons. We find that a large (20 MCurie) tritium source could improve the limit on the neutrino magnetic moment significantly, down to the level of a few $\\times 10^{-12}$ while low-energy beta-beams with sufficiently rapid production of ions could improve the li...

  8. Proposed Search for a Fourth Neutrino with a PBq Antineutrino Source

    International Nuclear Information System (INIS)

    Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV2. We show that this hypothesis can be tested with a PBq (ten kilocurie scale) 144Ce or 106Ru antineutrino beta source deployed at the center of a large low background liquid scintillator detector. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unambiguously determine neutrino mass differences and mixing angles.

  9. A New Method for Finding Point Sources in High-energy Neutrino Data

    CERN Document Server

    Fang, Ke

    2016-01-01

    The IceCube collaboration has reported the first detection of high-energy astrophysical neutrinos including $\\sim 50$ high-energy starting events, but no individual sources have been identified. It is therefore important to develop the most sensitive and efficient possible algorithms to identify point sources of these neutrinos. The most popular current method works by exploring a dense grid of possible directions to individual sources, and identifying the single direction with the maximum probability of having produced multiple detected neutrinos. This method has numerous strengths, but it is computationally intensive and, because it focuses on the single best location for a point source, additional point sources are not included in the evidence. We propose a new maximum likelihood method that uses the angular separations between all pairs of neutrinos in the data. Unlike existing autocorrelation methods for this type of analysis, which also use angular separations between neutrino pairs, our method incorpor...

  10. A new neutrino source for the study of the solar neutrino physics in the vacuum-matter transition region

    CERN Document Server

    Shin, Jae Won

    2016-01-01

    Production of a neutrino source through proton induced reaction is studied by using the particle transport code, GEANT4. Unstable isotope such as $^{27}$Si can be produced when $^{27}$Al target is bombarded by 15 MeV energetic proton beams. Through the beta decay process of the unstable isotope, a new electron-neutrino source in the 1.0 $\\sim$ 5.0 MeV energy range is obtained. Proton induced reactions are simulated with JENDL High Energy File 2007 (JENDL/HE-2007) data and other nuclear data. For radioactive decay processes, we use "G4RadioactiveDecay" model based on the Evaluated Nuclear Structure Data File (ENSDF). We suggest target systems required for future's solar neutrino experiments, in particular, for the vacuum-matter transition region. As for the detection system of the new neutrino source, we evaluate reaction rates for available radiochemical detectors and LENA type scintillator detector. Possibility of detecting sterile neutrinos is also discussed.

  11. Galactic sources of high energy neutrinos: Expectation from gamma-ray data

    CERN Document Server

    Sahakyan, N

    2015-01-01

    The recent results from ground based $\\gamma$-ray detectors (HESS, MAGIC, VERITAS) provide a population of TeV galactic $\\gamma$-ray sources which are potential sources of High Energy (HE) neutrinos. Since the $\\gamma$-rays and $\

  12. Obscured flat spectrum radio AGN as sources of high-energy neutrinos

    OpenAIRE

    Maggi, G.; Buitink, S.; Correa, P; De Vries, K. D.; Gentile, G.; Tavares, J. Leon; Scholten, O.; van Eijndhoven, N.; Vereecken, M.; Winchen, T.

    2016-01-01

    Active Galactic Nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no significance. Therefore, in this article we consider a specific sub-class of AGN for which an increased neutrino production is expected. This sub-class contains AGN for which their high-energy jet is ...

  13. Finite size source effects and the correlation of neutrino transition probabilities through supernova turbulence

    CERN Document Server

    Kneller, James P

    2013-01-01

    (Abridged) The transition probabilities describing the evolution of a neutrino with a given energy along some ray through a turbulent supernova are random variates unique to each ray. If the source of the neutrinos were a point then all neutrinos of a given energy and emitted at the same time which were detected in some far off location would have seen the same turbulent profile therefore their transition probabilities would be exactly correlated. But if the source has a finite size then the profiles seen by neutrinos emitted from different points at the source will have seen different turbulence and the correlation of the transition probabilities will be reduced. In this paper we study the correlation of the neutrino transition probabilities through turbulent supernova profiles as a function of the separation between the emission points using an isotropic and an anisotropic power spectrum for the random field used to model the turbulence. The spectral features in the high density resonance mixing channel of ...

  14. Detection potential to point-like neutrino sources with the NEMO-km3 telescope

    OpenAIRE

    Distefano, C.

    2006-01-01

    The NEMO Collaboration is conducting an R&D activity towards the construction of a Mediterranean km3 neutrino telescope. In this work, we present the results of Monte Carlo simulation studies on the capability of the proposed NEMO telescope to detect and identify point-like sources of high energy muon neutrinos.

  15. Type IIn supernovae as sources of high energy astrophysical neutrinos

    CERN Document Server

    Zirakashvili, V N

    2015-01-01

    It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration. We calculate the neutrino spectrum produced by an individual Type IIn supernova and the spectrum of neutrino background produced by IIn supernovae in the expanding Universe. We also found that the arrival direction of one Icecube neutrino candidate (track event 47) is at 1.35$^{\\circ }$ from Type IIn supernova 2005bx.

  16. Type IIn supernovae as sources of high energy astrophysical neutrinos

    Science.gov (United States)

    Zirakashvili, V. N.; Ptuskin, V. S.

    2016-05-01

    It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration. We calculate the neutrino spectrum produced by an individual Type IIn supernova and the spectrum of neutrino background produced by IIn supernovae in the expanding Universe. We also found that the arrival direction of one Icecube neutrino candidate (track event 47) is at 1.35° from Type IIn supernova 2005bx.

  17. Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

    Science.gov (United States)

    Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Andeen, K.; Atlee, D. W.; Bahcall, J. N.; Bai, X.; Baret, B.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Bolmont, J.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, C.; Burgess, T.; Castermans, T.; Chirkin, D.; Christy, B.; Clem, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; de Clercq, C.; Demirörs, L.; Descamps, F.; Desiati, P.; De Young, T.; Diaz-Velez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feser, T.; Filimonov, K.; Fox, B. D.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Gozzini, R.; Grullon, S.; Groß, A.; Gunasingha, R. M.; Gurtner, M.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Harenberg, T.; Hart, J. E.; Hauschildt, T.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hommez, B.; Hoshina, K.; Hubert, D.; Hughey, B.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Hülß, J.-P.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Karle, A.; Kawai, H.; Kelley, J. L.; Kestel, M.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Kowalski, M.; Köpke, L.; Krasberg, M.; Kuehn, K.; Landsman, H.; Leich, H.; Leier, D.; Leuthold, M.; Liubarsky, I.; Lundberg, J.; Lünemann, J.; Madsen, J.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meli, A.; Messarius, T.; Mészáros, P.; Miyamoto, H.; Mokhtarani, A.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Münich, K.; Nahnhauer, R.; Nam, J. W.; Nießen, P.; Nygren, D. R.; Ögelman, H.; Olivas, A.; Patton, S.; Peña-Garay, C.; Pérez de Los Heros, C.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robbins, S.; Roth, P.; Rott, C.; Rutledge, D.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Seckel, D.; Seo, S. H.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Solarz, M.; Song, C.; Sopher, J. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Steffen, P.; Stezelberger, T.; Stokstad, R. G.; Stoufer, M. C.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T. J.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Tluczykont, M.; Toale, P. A.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.

    2007-05-01

    We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit Φ0=((E)/(1TeV))γ·(dΦ)/(dE) to a point source flux of muon and tau neutrino (detected as muons arising from taus) is Φνμ+ν¯μ0+Φντ+ν¯τ0=11.1×10-11TeV-1cm-2s-1, in the energy range between 1.6 TeV and 2.5 PeV for a flavor ratio Φνμ+ν¯μ0/Φντ+ν¯τ0=1 and assuming a spectral index γ=2. It should be noticed that this is the first time we set upper limits to the flux of muon and tau neutrinos. In previous papers we provided muon neutrino upper limits only neglecting the sensitivity to a signal from tau neutrinos, which improves the limits by 10% to 16%. The value of the average upper limit presented in this work corresponds to twice the limit on the muon neutrino flux Φνμ+ν¯μ0=5.5×10-11TeV-1cm-2s-1. A stacking analysis for preselected active galactic nuclei and a search based on the angular separation of the events were also performed. We report the most stringent flux upper limits to date, including the results of a detailed assessment of systematic uncertainties.

  18. The 16N Calibration Source for the Sudbury Neutrino Observatory

    CERN Document Server

    Dragowsky, M R; Chan, Y D; Deal, R; Earle, E D; Frati, W; Gaudette, E; Hallin, A; Hearns, C; Hewett, J L; Jonkmans, G; Kajiyama, Y; McDonald, A B; Moffat, B A; Norman, E B; Sur, B; Tagg, N J

    2002-01-01

    A calibration source using gamma-rays from 16N (t_1/2 = 7.13 s) beta-decay has been developed for the Sudbury Neutrino Observatory (SNO) for the purpose of energy and other calibrations. The 16N is produced via the (n,p) reaction on 16O in the form of CO2 gas using 14-MeV neutrons from a commercially available Deuterium-Tritium (DT) generator. The 16N is produced in a shielding pit in a utility room near the SNO cavity and transferred to the water volumes (D2O or H2O) in a CO2 gas stream via small diameter capillary tubing. The bulk of the activity decays in a decay/trigger chamber designed to block the energetic beta-particles yet permit the primary branch 6.13 MeV gamma-rays to exit. Detection of the coincident beta-particles with plastic scintillator lining the walls of the decay chamber volume provides a tag for the SNO electronics. This paper gives details of the production, transfer, and triggering systems for this source along with a discussion of the source gamma-ray output and performance.

  19. Measurement of the response of a gallium metal solar neutrino experiment to neutrinos from a 51Cr source

    International Nuclear Information System (INIS)

    The neutrino capture rate measured by the Russian-American Gallium Experiment is well below that predicted by solar models. To check the response of this experiment to low-energy neutrinos, a 517 kCi source of 51Cr was produced by irradiating 512.7 g of 92.4%-enriched 50Cr in a high-flux fast neutron reactor. This source, which mainly emits monoenergetic 747-keV neutrinos, was placed at the center of a 13.1 ton target of liquid gallium and the cross section for the production of 71Ge by the inverse beta decay reaction 71Ga(νe,e-)71Ge was measured to be [5.55±0.60thinsp(stat)±0.32thinsp(syst)]x10-45thinspcm2. The ratio of this cross section to the theoretical cross section of Bahcall for this reaction is 0.95 ±0.12 (expt)-0.027+0.035 (theor) and to the cross section of Haxton is 0.87±0.11 (expt)±0.09 (theor). This good agreement between prediction and observation implies that the overall experimental efficiency is correctly determined and provides considerable evidence for the reliability of the solar neutrino measurement. copyright 1999 The American Physical Society

  20. The CNGS (CERN Neutrinos to Gran Sasso)

    CERN Multimedia

    CERN MultiMedia Productions & Gran Sasso Laboratory Communications

    2006-01-01

    This project aims at investigating the 'oscillation' of neutrinos. The project is motivated by the results obtained at the Superkamiokande detector in Japan and supported by other experiments, observing neutrinos produced by cosmic rays in the atmosphere. These experiments measure a significant deficit in the flux of deteced muon-type neutrinos. The features of this 'anomaly' could be explained by the hypothesis of neutrino oscillation, i.e. the conversion of a given neutrino type into another during their travel from the source to the detector (for example, muon-type to tau-type neutrino oscillation). The CNGS facility aims at directly detecting such neutrino oscillations and confirming this fascinating hypothesis with artificially produced neutrinos from an accelerator.

  1. SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE

    International Nuclear Information System (INIS)

    In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E –2ν spectrum, these flux limits are at 1-10 ×10–8 GeV cm–2 s–1 for declinations ranging from –90° to 40°. Limits for specific models of RX J1713.7–3946 and Vela X, which include information on the source morphology and spectrum, are also given.

  2. Monomethylmercury sources in a tropical artificial reservoir

    International Nuclear Information System (INIS)

    The distribution and speciation of mercury (Hg) in the water column, the inputs (wet deposition and tributaries) and the outputs (atmospheric evasion and outlet) of an artificial partially anoxic tropical lake (Petit-Saut reservoir, French Guiana) were investigated on a seasonal basis in order to appraise the cycling and transformations of this metal. The total mercury (HgT) concentrations in the oxygenated epilimnetic waters averaged 5 ± 3 pmol L-1 in the unfiltered samples (HgTUNF) and 4 ± 2 pmol L-1 in the dissolved (HgTD) phase (UNF averages 13 ± 6 pmol L-1 and the HgTD 8 ± 4 pmol L-1. The averages of MMHgP and MMHgD in hypolimnetic waters were two and three times the corresponding values of the epilimnion, 170 ± 90 pmol g-1 and 0.9 ± 0.5 pmol L-1, respectively. In the long dry and wet seasons, at the flooded forest and upstream dam sampling stations, the vertical profiles of MMHgD concentrations accounted for two distinct maxima: one just below the oxycline and the other near the benthic interface. Direct wet atmospheric deposition accounted for 14 moles yr-1 HgTUNF, with 0.7 moles yr-1 as MMHgUNF, while circa 76 moles yr-1 of HgTUNF, with 4.7 moles yr-1 as MMHgUNF, coming from tributaries. Circa 78 moles (∼17% as MMHg) are annually exported through the dam, while 23 moles yr-1 of Hg0 evolve in the atmosphere. A mass balance calculation suggests that the endogenic production of MMHgUNF attained 8.1 moles yr-1, corresponding to a methylation rate of 0.06% d-1. As a result, the Petit-Saut reservoir is a large man-made reactor that has extensively altered mercury speciation in favor of methylated species

  3. A New Method for Finding Point Sources in High-energy Neutrino Data

    Science.gov (United States)

    Fang, Ke; Miller, M. Coleman

    2016-08-01

    The IceCube collaboration has reported the first detection of high-energy astrophysical neutrinos, including ∼50 high-energy starting events, but no individual sources have been identified. It is therefore important to develop the most sensitive and efficient possible algorithms to identify the point sources of these neutrinos. The most popular current method works by exploring a dense grid of possible directions to individual sources, and identifying the single direction with the maximum probability of having produced multiple detected neutrinos. This method has numerous strengths, but it is computationally intensive and because it focuses on the single best location for a point source, additional point sources are not included in the evidence. We propose a new maximum likelihood method that uses the angular separations between all pairs of neutrinos in the data. Unlike existing autocorrelation methods for this type of analysis, which also use angular separations between neutrino pairs, our method incorporates information about the point-spread function and can identify individual point sources. We find that if the angular resolution is a few degrees or better, then this approach reduces both false positive and false negative errors compared to the current method, and is also more computationally efficient up to, potentially, hundreds of thousands of detected neutrinos.

  4. The Search for Neutrino Sources Beyond the Sun

    OpenAIRE

    Barwick, S.; Halzen, F.; P. B. Price

    1995-01-01

    The hope is that in the near future neutrino astronomy, born with the identification of thermonuclear fusion in the sun and the particle processes controlling the fate of a nearby supernova, will reach throughout and beyond our Galaxy and make measurements relevant to cosmology, astrophysics, cosmic-ray and particle physics. The construction of a high-energy neutrino telescope requires a huge volume of very transparent, deeply buried material such as ocean water or ice, which acts as the medi...

  5. Neutrinos from active black holes, sources of ultra high energy cosmic rays

    CERN Document Server

    Becker, Julia K

    2008-01-01

    A correlation between the highest energy Cosmic Rays (above ~60 EeV) and the distribution of Active Galactic Nuclei (AGN) gives rise to a prediction of neutrino production in the same sources. In this paper, we present a detailed AGN model, predicting neutrino production near the foot of the jet, where the photon field from the disk creates a high optical depth for proton-photon interactions. The protons escape from later shocks where the emission region is optically thin for proton-photon interactions. Consequently, Cosmic Rays are predicted to come from FR-I galaxies, independent of the orientation of the source. Neutrinos, on the other hand, are only observable from sources directing their jet towards Earth, i.e. flat spectrum radio quasars, due to the strongly beamed neutrino emission.

  6. Convoluted ν-Signals on 114Cd Isotope from Astrophysical and Laboratory Neutrino Sources

    Directory of Open Access Journals (Sweden)

    Vaitsa Tsakstara

    2015-01-01

    Full Text Available At first, we evaluate scattering cross sections of low, and intermediate-energy neutrinos scattered off the 114 Cd isotope, the most abundant Cd isotope present also in the COBRA detector (CdTe and CdZnTe materials which aims to search for double beta decay events and neutrino observations at Gran Sasso laboratory (LNGS. The coherent ν-nucleus channel addressed here is the dominant reaction channel of the neutral current ν-nucleus scattering. Our ν-nucleus cross sections (calculated with a refinement of the quasiparticle random-phase approximation, QRPA refer to the gs→gs transitions for ν-energies εν≤100 MeV. Subsequently, simulated ν-signals on 114 Cd isotope are derived. Towards this purpose, the required folded cross section comes out of simulation techniques by employing several low, and intermediate-energy neutrino distributions of the astrophysical ν-sources, like the solar, supernova, and Earth neutrinos, as well as the laboratory neutrinos, the reactor neutrinos, the pion-muon stopped neutrinos, and the β-beam neutrinos.

  7. Convoluted ν-Signals on 114Cd Isotope from Astrophysical and Laboratory Neutrino Sources

    International Nuclear Information System (INIS)

    At first, we evaluate scattering cross sections of low, and intermediate-energy neutrinos scattered off the 114Cd isotope, the most abundant Cd isotope present also in the COBRA detector (CdTe and CdZnTe materials) which aims to search for double beta decay events and neutrino observations at Gran Sasso laboratory (LNGS). The coherent ν-nucleus channel addressed here is the dominant reaction channel of the neutral current ν-nucleus scattering. Our ν-nucleus cross sections (calculated with a refinement of the quasiparticle random-phase approximation, QRPA) refer to the gs→gs transitions for ν-energies εν≤100 MeV. Subsequently, simulated ν-signals on 114Cd isotope are derived. Towards this purpose, the required folded cross section comes out of simulation techniques by employing several low, and intermediate-energy neutrino distributions of the astrophysical ν-sources, like the solar, supernova, and Earth neutrinos, as well as the laboratory neutrinos, the reactor neutrinos, the pion-muon stopped neutrinos, and the β-beam neutrinos

  8. Stirling/hydraulic artificial heart power source

    International Nuclear Information System (INIS)

    The REL power source combines the high efficiency of Stirling engines with the reliability, efficiency, and flexibility of hydraulic power transfer and control to ensure long system life and physiological effectiveness. Extended life testing has been achieved with an engine (2.6 years) and hydraulic actuator/controller (1.6 years). Peak power source efficiency is 15.5 percent on 5 to 10 watts delivered to the blood pump push plate with 33 watts steady thermal input. Planned incorporation of power source output control is expected to reduce daily average thermal input to 18 watts. Animal in-vivo tests with an assist heart have consistently demonstrated required performance by biological synchronization and effective ventricle relief. Volume and weight are 0.93 liter and 2.4 kg (excluding blood pump) with an additional 0.4 liter of low temperature foam insulation required to preclude tissue thermal damage. Carefully planned development of System 7 is expected to produce major reductions in size

  9. Radionuclide power source for artificial heart autonomic apparatus

    International Nuclear Information System (INIS)

    Works on creating autonomous artificial heart devices with radionuclide heat source are described. Calculated and experimental parameters of 238Pu base radionuclide thermoelectric RITEG generators designed for supplying perspective blood pump electric drives are presented. RITEG structure is described and the prospects of increasing its efficiency are shown

  10. Prospects for Detecting a Neutrino Magnetic Moment with a Tritium Source and Beta-beams

    CERN Document Server

    McLaughlin, G C

    2003-01-01

    We compare the prospects for detecting a neutrino magnetic moment by the measurement of neutrinos from a tritium source, reactors and low-energy beta-beams. In all cases the neutrinos or antineutrinos are detected by scattering of electrons. We find that a large (20 MCurie) tritium source could improve the limit on the neutrino magnetic moment significantly, down to the level of a few $\\times 10^{-12}$ while low-energy beta-beams with sufficiently rapid production of ions could improve the limits to the level of a few $\\times 10^{-11}$. The latter would require ion production at the rate of at least $10^{15}$ s$^{-1}$.

  11. Search for neutrino point sources with ANTARES 2007-2012 data

    International Nuclear Information System (INIS)

    Neutrinos are unique probes to study the high energy Universe, since they are neutral, only interact weakly and are stable. Furthermore, they can provide key information about several fundamental questions in Physics like the origin of cosmic rays and the nature of dark matter. The ANTARES neutrino telescope, installed in the Mediterranean Sea, has been taking data since 2007. In this paper we review the results concerning the search for point sources of cosmic neutrinos, using data of 2007–2012. Two main strategies have been followed: to look towards the direction of sources candidate to emmit neutrinos and to make an all-sky scan. Although no significant cluster has been found above the background, flux limits have been set at the level of E2φν90CL∼1–2×10−8 GeV cm−2s−1

  12. KamLAND, terrestrial heat sources and neutrino oscillations

    CERN Document Server

    Fiorentini, G; Lissia, M; Ricci, B; Schönert, S

    2003-01-01

    We comment on the first indication of geo-neutrino events from KamLAND and on the prospects for understanding Earth energetics. Practically all models of terrestrial heat production are consistent with data within the presently limited statistics, the fully radiogenic model being closer to the observed value ($\\approx 9$ geo-events). In a few years KamLAND should collect sufficient data for a clear evidence of geo-neutrinos, however discrimination among models requires a detector with the class and size of KamLAND far away from nuclear reactors. We also remark that the event ratio from Thorium and Uranium decay chains is well fixed $N(Th)/N(U) \\simeq 0.25$, a constraint that can be useful for determining neutrino oscillation parameters. We show that a full spectral analysis, including this constraint, further reduces the oscillation parameter space compared to an analysis with an energy threshold $E_{vis}>2.6 MeV$.

  13. VizieR Online Data Catalog: AGN neutrino source candidates (Achterberg+, 2006)

    Science.gov (United States)

    Achterberg, A.; Ackermann, M.; Adams, J.; Ahrens, J.; Atlee, D. W.; Bahcall, J. N.; Bair, X.; Baret, B.; Bartelt, M.; Barwick, S. W.; Bay, R.; Beattie, K.; Becka, T.; Becker, J. K.; Becker, K.-H.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Boeser, S.; Botner, O.; Bouchta, A.; Braun, J.; Burgess, C.; Burgess, T.; Castermans, T.; Chirkin, D.; Clem, J.; Collin, B.; Conrad, J.; Cooley, J.; Cowen, D. F.; D'Agostino, M. V.; Davour, A.; Day, C. T.; de Clercq, C.; Desiati, P.; De Young, T.; Dreyer, J.; Duvoort, M. R.; Edwards, W. R.; Ehrlich, R.; Ellsworth, R. W.; Evenson, P. A.; Fazely, A. R.; Feser, T.; Filimonov, K.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geenen, H.; Gerhardt, L.; Goldschmidt, A.; Goodman, J. A.; Greene, M. G.; Grullon, S.; Gross, A.; Gunasingha, R. M.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hardtke, D.; Hardtke, R.; Harenberg, T.; Hart, J. E.; Hauschildt, T.; Hays, D.; Heise, J.; Helbing, K.; Hellwig, M.; Herquet, P.; Hill, G. C.; Hodges, J.; Hoffman, K. D.; Hoshina, K.; Hubert, D.; Hughey, B.; Hulth, P. O.; Hultqvist, K.; Hundertmark, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Jones, A.; Joseph, J. M.; Kampert, K.-H.; Karle, A.; Kawai, H.; Kelley, J. L.; Kestel, M.; Kitamura, N.; Klein, S. R.; Klepser, S.; Kohnen, G.; Kolanoski, H.; Koepke, L.; Krasberg, M.; Kuehn, K.; Landsman, H.; Lang, R.; Leich, H.; Leuthold, M.; Liubarsky, I.; Lundbert, J.; Madsen, J.; Mase, K.; Matis, H. S.; McCauley, T.; McParland, C. P.; Meli, A.; Messarius, T.; Meszaros, P.; Minor, R. H.; Miocinovic, P.; Miyamoto, H.; Mokhtarani, A.; Montaruli, T.; Morey, A.; Morse, R.; Movit, S. M.; Munich, K.; Nahnhauer, R.; Nam, J. W.; Niessen, P.; Nygren, D. R.; Oegelman, H.; Olbrechts, Ph.; Olivas, A.; Patton, S.; Pena-Garay, C.; Perez de los Heros, C.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Pretz, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Razzaque, S.; Refflinghaus, F.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rizzo, A.; Robbins, S.; Rott, C.; Rutledge, D.; Sander, H.-G.; Schlenstedt, S.; Schneider, D.; Seckel, D.; Seo, S. H.; Seunarine, S.; Silvestri, A.; Smith, A. J.; Solarz, M.; Song, C.; Sopher, J. E.; Spiczak, G.M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Steffen, P.; Steele, D.; Stezelberger, T.; Stokstad, R.G.; Stoufer, M. C.; Stoyanov, S.; Sulanke, K.-H.; Sullivan, G. W.; Sumner, T.J.; Taboada, I.; Tarasova, O.; Tepe, A.; Thollander, L.; Tilav, S.; Toale, P. A.; Turcan, D.; Van Eijndhoven, T. J.; Vandenbroucke, J.; Voigt, B.; Wagner, W.; Walck, C.; Waldmann, H.; Walter, M.; Wang, Y.-R.; Wendt, C.; Wiesbusch, C. H.; Wikstroem, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zornoza, J. D.; Biermann, P.L.

    2007-02-01

    The sensitivity of a search for sources of TeV neutrinos can be improved by grouping potential sources together into generic classes in a procedure that is known as source stacking. In this paper, we define catalogs of Active Galactic Nuclei (AGN) and use them to perform a source stacking analysis. The grouping of AGN into classes is done in two steps: first, AGN classes are defined, then, sources to be stacked are selected assuming that a potential neutrino flux is linearly correlated with the photon luminosity in a certain energy band (radio, IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino production in AGN, this correlation is motivated by hadronic AGN models, as briefly reviewed in this paper. The source stacking search for neutrinos from generic AGN classes is illustrated using the data collected by the AMANDA-II high-energy neutrino detector during the year 2000. No significant excess for any of the suggested groups was found. (11 data files).

  14. TeV-PeV neutrinos over the atmospheric background: originating from two groups of sources?

    CERN Document Server

    He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming

    2013-01-01

    In addition to the two ~1 PeV neutrinos, the IceCube Collaboration recently reported a detection of 26 neutrino candidates at energies from 30 TeV to 250 TeV, implying a confidence level of 4.3\\sigma over the atmospheric background. We suggest that these TeV-PeV non-atmospheric neutrinos may originate from two groups of sources, motivated by the non-detection of neutrinos in the energy range 250 TeV- 1 PeV in current data. If intrinsic, the non-detection of 250 TeV-1 PeV neutrinos disfavors the single power-law spectrum model for the TeV-PeV non-atmospheric neutrinos at a confidence level of ~ 2\\sigma. We then interpret the current neutrino data with a two-component spectrum model. One has a flat spectrum with a cutoff at the energy ~ 250 TeV and the other has a sharp peak at ~1 PeV. The former is likely via pp collision while the latter may be generated by the photomeson interaction.

  15. Gamma rays and neutrinos from a cosmic ray source in the Galactic Center region

    CERN Document Server

    Supanitsky, A D

    2013-01-01

    The center of the our Galaxy is a region where very energetic phenomena take place. In particular powerful cosmic ray sources can be located in that region. The cosmic rays accelerated in these sources may interact with ambient protons and/or low energy photons producing gamma rays and neutrinos. The observation of these two types of secondary particles can be very useful for the identification of the cosmic ray sources and for the understanding of the physical processes occurring during acceleration. Motivated by the excess in the neutrino spectrum recently reported by the IceCube Collaboration, we study in detail the shape of the gamma ray and neutrino spectra originated from the interaction of cosmic ray protons with ambient protons for sources located in the Galactic Center region. We consider different models for proton acceleration and study the impact on the gamma ray and neutrino spectra. We also discuss the possibility to constrain and even identify a particular neutrino source by using the informati...

  16. Choked Jets and Low-Luminosity Gamma-Ray Bursts as Hidden Neutrino Sources

    CERN Document Server

    Senno, Nicholas; Meszaros, Peter

    2015-01-01

    We consider choked gamma-ray burst (GRB) jets as possible sources of high-energy cosmic neutrinos. We take into account the jet propagation physics and radiation constraints, which are relevant for high-energy neutrino production in dense environments. Efficient shock acceleration of cosmic rays inside a high density stellar environment is possible for sufficiently low-power jets and/or jets buried in an extended envelope, and such conditions are favorable also for the GRB jets to become stalled. Such choked jets may explain transrelativistic SNe and low-luminosity (LL) GRBs. Focusing on this possibility, we calculate the resulting neutrino spectra including the relevant microphysical processes such as multipion production in pp and pgamma interactions, as well as the energy losses of mesons and muons. We obtain diffuse neutrino spectra using the latest results on the luminosity function of LL GRBs. Although current uncertainties are large, we confirm that LL GRBs can potentially give a significant contributi...

  17. Prospects for Detecting Galactic Sources of Cosmic Neutrinos with IceCube: An Update

    CERN Document Server

    Halzen, Francis; Niro, Viviana

    2016-01-01

    Air-Cherenkov telescopes have mapped the Galactic plane at TeV energies. Here we evaluate the prospects for detecting the neutrino emission from sources in the Galactic plane assuming that the highest energy photons originate from the decay of pions, which yields a straightforward prediction for the neutrino flux from the decay of the associated production of charged pions. Four promising sources are identified based on having a large flux and a flat spectrum. We subsequently evaluate the probability of their identification above the atmospheric neutrino background in IceCube data as a function of time. We show that observing them over the twenty-year lifetime of the instrumentation is likely, and that some should be observable at the $3\\,\\sigma$ level with six years of data. In the absence of positive results, we derive constraints on the spectral index and cut-off energy of the sources, assuming a hadronic acceleration mechanism.

  18. Plutonium-238 as a heat source for the artificial heart

    International Nuclear Information System (INIS)

    A total artificial heart system powered for 10 years or more by a 238Pu heat source appears feasible in the near future. However, hypothetical risks and injury and apparent misunderstanding surround the application 238Pu. The consequences of 238Pu already released to the environment, the modes of human uptake of 238Pu and biological responses, the criticality aspects of 238Pu and the magnitude and effects of operational radiation exposures upon the recipient of a 238Pu heat source and the recipient's personal contacts is studied

  19. SUB-PeV NEUTRINOS FROM TeV UNIDENTIFIED SOURCES IN THE GALAXY

    International Nuclear Information System (INIS)

    The IceCube collaboration discovery of 28 high-energy neutrinos over the energy range 30 TeV ∼ν ∼ν ∼< 2 of the observed events. This is consistent with our analysis of the spatial distribution of the sub-PeV neutrinos and TeV UnID sources, which finds that a best-fit of one, and maximum of 3.8 (at 90% confidence), of the ≈16 non-atmospheric sub-PeV neutrinos may originate in the TeV UnID sources, with the remaining 75%-95% of events being drawn from an isotropic background. If our scenario is correct, we expect excess sub-PeV neutrinos to accumulate along the Galactic plane, within |l| ∼< ± 30° of the Galactic center and in the Cygnus region, as observations by IceCube and other high-energy neutrino facilities go forward. Our scenario also has implications for radio, X-ray, and TeV observations of the TeV UnID sources

  20. The Russian-American Gallium Experiment (SAGE) Cr Neutrino Source Measurement

    International Nuclear Information System (INIS)

    The solar neutrino capture rate measured by SAGE is well below that predicted by solar models. To check the overall experimental efficiency, we exposed 13tonnes of Ga metal to a reactor-produced 517kCi source of 51Cr. The ratio of the measured production rate to that predicted from the source activity is 0.95±0.11(stat)+0.05/-0.08(syst). This agreement verifies that the experimental efficiency is measured correctly, establishes that there are no unknown systematic errors at the 10% level, and provides considerable evidence for the reliability of the solar neutrino measurement. copyright 1996 The American Physical Society

  1. Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper

    CERN Document Server

    Bolozdynya, A; Efremenko, Y; Garvey, G T; Gudkov, V; Hatzikoutelis, A; Hix, W R; Louis, W C; Link, J M; Markoff, D M; Mills, G B; Patton, K; Ray, H; Scholberg, K; Van de Water, R G; Virtue, C; White, D H; Yen, S; Yoo, J

    2012-01-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.

  2. EEG dipole source localization using artificial neural networks

    International Nuclear Information System (INIS)

    Localization of focal electrical activity in the brain using dipole source analysis of the electroencephalogram (EEG), is usually performed by iteratively determining the location and orientation of the dipole source, until optimal correspondence is reached between the dipole source and the measured potential distribution on the head. In this paper, we investigate the use of feed-forward layered artificial neural networks (ANNs) to replace the iterative localization procedure, in order to decrease the calculation time. The localization accuracy of the ANN approach is studied within spherical and realistic head models. Additionally, we investigate the robustness of both the iterative and the ANN approach by observing the influence on the localization error of both noise in the scalp potentials and scalp electrode mislocalizations. Finally, after choosing the ANN structure and size that provides a good trade-off between low localization errors and short computation times, we compare the calculation times involved with both the iterative and ANN methods. An average localization error of about 3.5 mm is obtained for both spherical and realistic head models. Moreover, the ANN localization approach appears to be robust to noise and electrode mislocations. In comparison with the iterative localization, the ANN provides a major speed-up of dipole source localization. We conclude that an artificial neural network is a very suitable alternative for iterative dipole source localization in applications where large numbers of dipole localizations have to be performed, provided that an increase of the localization errors by a few millimetres is acceptable. (author)

  3. SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC) - Universitat Politecnica de Valencia. C/Paranimf 1, E-46730 Gandia (Spain); Al Samarai, I.; Aubert, J-J.; Bertin, V.; Brunner, J. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568 - 68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, E-08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M. C. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, F-13388 Marseille Cedex 13 (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Bigongiari, C. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, E-46071 Valencia (Spain); and others

    2012-11-20

    In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E {sup -2} {sub {nu}} spectrum, these flux limits are at 1-10 Multiplication-Sign 10{sup -8} GeV cm{sup -2} s{sup -1} for declinations ranging from -90 Degree-Sign to 40 Degree-Sign . Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.

  4. A Case for Radio Galaxies as the Sources of IceCube's Astrophysical Neutrino Flux

    CERN Document Server

    Hooper, Dan

    2016-01-01

    We present an argument that radio galaxies (active galaxies with mis-aligned jets) are likely to be the primary sources of the high-energy astrophysical neutrinos observed by IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated through the interactions of cosmic-ray protons with gas, these interactions can also produce a population of neutrinos with a flux and spectral shape similar to that measured by IceCube. We present a simple physical model in which high-energy cosmic rays are confined within the volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes of neutrinos and gamma rays. In addition to simultaneously accounting for the observations of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources for the highest energy cosmic rays.

  5. A case for radio galaxies as the sources of IceCube's astrophysical neutrino flux

    Science.gov (United States)

    Hooper, Dan

    2016-09-01

    We present an argument that radio galaxies (active galaxies with mis-aligned jets) are likely to be the primary sources of the high-energy astrophysical neutrinos observed by IceCube. In particular, if the gamma-ray emission observed from radio galaxies is generated through the interactions of cosmic-ray protons with gas, these interactions can also produce a population of neutrinos with a flux and spectral shape similar to that measured by IceCube. We present a simple physical model in which high-energy cosmic rays are confined within the volumes of radio galaxies, where they interact with gas to generate the observed diffuse fluxes of neutrinos and gamma rays. In addition to simultaneously accounting for the observations of Fermi and IceCube, radio galaxies in this model also represent an attractive class of sources for the highest energy cosmic rays.

  6. Beam simulation tools for GEANT4 (and neutrino source applications)

    International Nuclear Information System (INIS)

    Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the High Energy Physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. Although there are many computer programs for beam physics simulations, Geant4 is ideal to model a beam going through material or a system with a beam line integrated to a complex detector. There are many examples in the current international High Energy Physics programs, such as studies related to a future Neutrino Factory, a Linear Collider, and a very Large Hadron Collider

  7. Obscured flat spectrum radio AGN as sources of high-energy neutrinos

    CERN Document Server

    Maggi, G; Correa, P; de Vries, K D; Gentile, G; Tavares, J Leon; Scholten, O; van Eijndhoven, N; Vereecken, M; Winchen, T

    2016-01-01

    Active Galactic Nuclei (AGN) are believed to be one of the main source candidates for the high-energy (TeV-PeV) cosmic neutrino flux recently discovered by the IceCube neutrino observatory. Nevertheless, several correlation studies between AGN and the cosmic neutrinos detected by IceCube show no significance. Therefore, in this article we consider a specific sub-class of AGN for which an increased neutrino production is expected. This sub-class contains AGN for which their high-energy jet is pointing toward Earth. Furthermore, we impose the condition that the jet is obscured by gas or dust surrounding the AGN. A method is presented to determine the total column density of the obscuring medium, which is probed by determining the relative X-ray attenuation with respect to the radio flux as obtained from the AGN spectrum. The total column density allows us to probe the interaction of the jet with the surrounding matter which leads to additional neutrino production. Finally, starting from two different source cat...

  8. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources

    CERN Document Server

    Moharana, Reetanjali

    2015-01-01

    Cosmic neutrino events detected by the IceCube Neutrino Observatory with energy $\\gtrsim 30$ TeV have poor angular resolutions to reveal their origin. Ultrahigh-energy cosmic rays (UHECRs), with better angular resolutions at $>60$ EeV energies, can be used to check if the same astrophysical sources are responsible for producing both neutrinos and UHECRs. We test this hypothesis, with statistical methods which emphasize invariant quantities, by using data from the Pierre Auger Observatory, Telescope Array and past cosmic-ray experiments. We find that the arrival directions of the cosmic neutrinos are correlated with $\\ge 100$ EeV UHECR arrival directions at confidence level $\\approx 93\\%$. The strength of the correlation decreases with decreasing UHECR energy and no correlation exists at energy $\\sim 60$ EeV. A search in astrophysical databases within $3^\\circ$ of the arrival directions of UHECRs with energy $\\ge 100$ EeV, that are correlated with the IceCube cosmic neutrinos, resulted in 18 sources from the S...

  9. First combined search for neutrino point-sources in the southern sky with the ANTARES and IceCube neutrino telescopes

    Directory of Open Access Journals (Sweden)

    Barrios-Martí J.

    2016-01-01

    Full Text Available A search for cosmic neutrino point-like sources using the ANTARES and IceCube neutrino telescopes over the Southern Hemisphere is presented. The ANTARES data were collected between January 2007 and December 2012, whereas the IceCube data ranges from April 2008 to May 2011. An unbinned maximum likelihood method is used to search for a localized excess of muon events in the southern sky assuming an E−2 neutrino source spectrum. A search over a pre-selected list of candidate sources has also been carried out for different source assumptions: spectral indices of 2.0 and 2.5, and energy cutoffs of 1 PeV, 300 TeV and 100 TeV. No significant excess over the background has been found, and upper limits for the candidate sources are presented compared to the individual experiments.

  10. ICRC 2015 proceedings: First combined search for neutrino point-sources in the Southern Sky with the ANTARES and IceCube neutrino telescopes

    CERN Document Server

    ,

    2015-01-01

    A search for cosmic neutrino point-like sources using the ANTARES and IceCube neutrino telescopes over the Southern Hemisphere is presented. The ANTARES data was collected between January 2007 and December 2012, whereas the IceCube data ranges from April 2008 to May 2011. Clusters of muon neutrinos over the diffusely distributed background have been looked for by means of an unbinned maximum likelihood maximisation. This method is used to search for a localised excess of events over the whole Southern Sky assuming an $E^{-2}$ source spectrum. A search over a pre-selected list of candidate sources has also been carried out for different source assumptions: spectral indices of 2.0 and 2.5, and energy cutoffs of 1 PeV, 300 TeV and 100 TeV. No significant excess over the expected background has been found, and upper limits for the candidate sources are presented compared to the individual experiments.

  11. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    Science.gov (United States)

    Dornic, Damien; Brunner, Jurgen; Basa, Stéphane; Al Samarai, Imen; Bertin, Vincent; Boer, Michel; Busto, José; Escoffier, Stéphanie; Klotz, Alain; Mazure, Alain; Vallage, Bertrand; ANTARES Collaboration; TAROT Collaboration

    2011-01-01

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of “golden” neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  12. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    Energy Technology Data Exchange (ETDEWEB)

    Dornic, Damien, E-mail: dornic@cppm.in2p3.f [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); IFIC, Edificios Investigacion de Paterna, CSIC-Universitat de Valenciaa, Apdo. de correos 22085, 46071 Valencia (Spain); Brunner, Jurgen [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Basa, Stephane [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Al Samarai, Imen; Bertin, Vincent [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Boer, Michel [OHP, 04870 Saint Michel de l' Observatoire (France); Busto, Jose; Escoffier, Stephanie [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Klotz, Alain [OHP, 04870 Saint Michel de l' Observatoire (France); CESR, Observatiore Midi-Pyrenees, CNRS Universite de Toulouse, BP4346, 31028 Toulouse Cedex 04 (France); Mazure, Alain [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Vallage, Bertrand [CEA-IRFU, Centre de Saclay, 91191 Gif-sur-Yvette (France)

    2011-01-21

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of 'golden' neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  13. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    International Nuclear Information System (INIS)

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of 'golden' neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  14. Characterization of the proton ion source beam for the high intensity neutrino source at Fermilab

    Science.gov (United States)

    Tam, Wai-Ming

    Fermilab is considering an 8 GeV superconducting H-- linac with the primary mission of enabling 2MW beam power from the 120 GeV Fermilab Main Injector for a neutrino program. The High Intensity Neutrino Source (HINS) R&D program is underway to demonstrate the technical feasibility in a 30MeV prototype linac. The HINS Linac Front-end is composed of an ion source, a radio frequency quadrupole (RFQ), a medium energy beam transport and 16 room temperature Crossbar H-type cavities that accelerate the beam to 10 MeV. The cavities are separated by superconducting solenoids enclosed in individual cryostats. Beyond 10 MeV, the design uses superconducting spoke resonators. Recently, the HINS proton ion source has been successfully commissioned. It produces a 50 keV, 3 msec pulsed beam with a peak current greater than 20mA at 2.5 Hz. The beam is transported to the RFQ by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. All beam studies are based on data taken using the wire scanner. We start with interpreting the signal measured by the wire scanner. Then, we performed a beam-calibration to the steering dipole magnets. We then study transverse motion coupling due to solenoidal field by measuring beam rotation through solenoid. Analysis to these measurements is accompanied with beam physics modeling and particle tracking simulation. Also, transverse emittance was measured using two different methods and results are compared. Finally, a bunch shape monitor will be introduced. It is a high bandwidth instrumentation device that measures the longitudinal profile of a bunched proton/H- beam. HINS will use it for its 2.5MeV beam. Operational principle

  15. The First Combined Search for Neutrino Point-sources in the Southern Hemisphere with the ANTARES and IceCube Neutrino Telescopes

    Science.gov (United States)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; De Young, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-05-01

    We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E ‑2.5 and E ‑2 power-law spectra with different energy cut-offs.

  16. First combined search for neutrino point-sources in the Southern Hemisphere with the ANTARES and IceCube neutrino telescopes

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J; :,; Aartsen, M G; Abraham, K; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; D{\\'ı}az-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jero, K; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Pollmann,; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Te{š}ić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2015-01-01

    We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors which differ in size and location forms a window in the Southern sky where the sensitivity to point sources improves by up to a factor of two compared to individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the Southern sky and from a pre-selected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for $E^{-2.5}$ and $E^{-2}$ power-law spectra with different energy cut-offs.

  17. FIRST NEUTRINO POINT-SOURCE RESULTS FROM THE 22-STRING ICECUBE DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Klein, Spencer

    2009-05-14

    We present new results of searches for neutrino point sources in the northern sky, using data recorded in 2007-08 with 22 strings of the IceCube detector (approximately one-fourth of the planned total) and 275.7 days of livetime. The final sample of 5114 neutrino candidate events agrees well with the expected background of atmospheric muon neutrinos and a small component of atmospheric muons. No evidence of a point source is found, with the most significant excess of events in the sky at 2.2 {sigma} after accounting for all trials. The average upper limit over the northern sky for point sources of muon-neutrinos with E{sup -2} spectrum is E{sup 2} {Phi}{sub {nu}{sub {mu}}} < 1.4 x 10{sup -1} TeV cm{sup -2}s{sup -1}, in the energy range from 3 TeV to 3 PeV, improving the previous best average upper limit by the AMANDA-II detector by a factor of two.

  18. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, Michel [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Al Samarai, Imen, E-mail: samarai@cppm.in2p3.fr [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Akerlof, Carl [Randall Laboratory of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States); Basa, Stephane [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Bertin, Vincent [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Boer, Michel [OHP, 04870 Saint Michel de l' Observatoire (France); Brunner, Juergen; Busto, Jose; Dornic, Damien [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Klotz, Alain [OHP, 04870 Saint Michel de l' Observatoire (France); IRAP, 9 avenue du colonel Roche, 31028 Toulouse Cedex 4 (France); Schussler, Fabian; Vallage, Bertrand [CEA-IRFU, centre de Saclay, 91191 Gif-sur-Yvette (France); Vecchi, Manuela [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Zheng, Weikang [Randall Laboratory of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States)

    2012-11-11

    The ANTARES telescope is well suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all the times with a duty cycle close to unity and an angular resolution better than 0.5 Degree-Sign . Potential sources include gamma-ray bursts (GRBs), core collapse supernovae (SNe), and flaring active galactic nuclei (AGNs). To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated one or two times per month for special events such as two or more neutrinos coincident in time and direction or single neutrinos of very high energy. Since February 2009, ANTARES has sent 37 alert triggers to the TAROT and ROTSE telescope networks, 27 of them have been followed. First results on the optical images analysis to search for GRBs are presented.

  19. Neutrino factory near detector

    OpenAIRE

    Bogomilov, M.; Y. Karadzhov; Matev, R.; Tsenov, R.; Laing, A.; F.J.P. Soler

    2013-01-01

    The neutrino factory is a facility for future precision studies of neutrino oscillations. A so-called near detector is essential for reaching the required precision for a neutrino oscillation analysis. The main task of the near detector is to measure the flux of the neutrino beam. Such a high intensity neutrino source like a neutrino factory provides also the opportunity for precision studies of various neutrino interaction processes in the near detector. We discuss the design concepts of suc...

  20. Neutrino Physics with JUNO

    OpenAIRE

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Avanzini, Margherita Buizza; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio

    2015-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter,...

  1. The sup 8 Li calibration source for the Sudbury Neutrino Observatory

    CERN Document Server

    Tagg, N J; Sur, B; Earle, E D; Helmer, R L; Jonkmans, G; Moffat, B A; Simpson, J J

    2002-01-01

    A calibration source employing sup 8 Li (t sub 1 sub / sub 2 =0.838 s) has been developed for use with the Sudbury Neutrino Observatory (SNO). This source creates a spectrum of beta-particles with an energy range similar to that of the SNO sup 8 B solar neutrino signal. The source is used to test the SNO detector's energy response, position reconstruction and data reduction algorithms. The sup 8 Li isotope is created using a deuterium-tritium neutron generator in conjunction with a sup 1 sup 1 B target, and is carried to a decay chamber using a gas/aerosol transport system. The decay chamber detects prompt alpha-particles by gas scintillation in coincidence with the beta-particles which exit through a thin stainless steel wall. A description is given of the production, transport, and tagging techniques along with a discussion of the performance and application of the source.

  2. A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac

    International Nuclear Information System (INIS)

    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden, to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few μs with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground Water Cherenkov detector located in existing mines 300–600 km from Lund will make it possible to discover leptonic CP violation at 5 σ significance level in up to 50% of the leptonic Dirac CP-violating phase range. This experiment could also determine the neutrino mass hierarchy at a significance level of more than 3 σ if this issue will not already have been settled by other experiments by then. The mass hierarchy performance could be increased by combining the neutrino beam results with those obtained from atmospheric neutrinos detected by the same large volume detector. This detector will also be used to measure the proton lifetime, detect cosmological neutrinos and neutrinos from supernova explosions. Results on the sensitivity to leptonic CP violation and the neutrino mass hierarchy are presented

  3. Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    CERN Document Server

    Ahrens, J; Bai, X; Bay, R C; Becka, T; Becker, K H; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Blaufuss, E; Boersma, D J; Boser, S; Bohm, C; Botner, O; Bouchta, A; Bouhali, O; Burgess, T; Carithers, W; Castermans, T; Cavin, J; Chinowsky, W; Chirkin, D; Collin, B; Conrad, J; Cooley, J; Cowen, D F; Davour, A; De Clercq, C; De Young, T R; Desiati, P; Ehrlich, R; Ellsworth, R W; Evenson, P A; Fazely, A R; Feser, T; Gaisser, T K; Gallagher, J; Ganugapati, R; Geenen, H; Goldschmidt, A; Goodman, J A; Gunasingha, R M; Hallgren, A; Halzen, F; Hanson, K; Hardtke, R; Hauschildt, T; Hays, D; Helbing, K; Hellwig, M; Herquet, P; Hill, G C; Hubert, D; Hughey, B; Hulth, P O; Hultqvist, K; Hundertmark, S; Jacobsen, J; Japaridze, G S; Jones, A; Karle, A; Kawai, H; Kestel, M; Kitamura, N; Koch, R; Köpke, L; Kowalski, M; Lamoureux, J I; Leich, H; Liubarsky, I; Madsen, J; Matis, H S; McParland, C P; Messarius, T; Mészáros, P; Minaeva, Y; Minor, R H; Miocinovic, P; Miyamoto, H; Morse, R; Nahnhauer, R; Neunhoffer, T; Niessen, P; Nygren, D R; Ögelman, H B; Olbrechts, P; Patton, S; Paulos, R; Pérez de los Heros, C; Pohl, A C; Pretz, J; Price, P B; Przybylski, G T; Rawlins, K; Razzaque, S; Resconi, E; Rhode, W; Ribordy, M; Richter, S; Sander, H G; Schinarakis, K; Schlenstedt, S; Schneider, D; Schwarz, R; Seckel, D; Smith, A J; Solarz, M; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Steele, D; Steffen, P; Stezelberger, T; Stokstad, R G; Sulanke, K H

    2004-01-01

    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2...

  4. Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Sarkar, Subir; Koskinen, David Jason; Medici, Morten Ankersen

    2014-01-01

    introduction of improved reconstructions. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of......We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector. The total livetime of the combined data set is 1373 days. For an E –2 spectrum, the observed 90% C.L. flux upper limits are...

  5. Search for Sterile Neutrinos with a Radioactive Source at Daya Bay

    CERN Document Server

    Dwyer, D A; Littlejohn, B R; Vogel, P

    2011-01-01

    The far site detector complex of the Daya Bay reactor experiment is proposed as a location to search for sterile neutrinos with > eV mass. Antineutrinos from a 500 kCi 144Ce-144Pr beta-decay source (DeltaQ=2.996 MeV) would be detected by four identical 20-ton antineutrino targets. The site layout allows flexible source placement; several specific source locations are discussed. In one year, the 3+1 sterile neutrino hypothesis can be tested at essentially the full suggested range of the parameters Delta m^2_{new} and sin^22theta_{new} (90% C.L.). The backgrounds from six nuclear reactors at >1.6 km distance are shown to be manageable. Advantages of performing the experiment at the Daya Bay far site are described.

  6. Design of a neutrino source based on beta beams

    Science.gov (United States)

    Wildner, E.; Hansen, C.; Benedetto, E.; Jensen, E.; Stora, T.; Mendonca, T. Melo; Vlachoudis, V.; Bouquerel, E.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophime, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Chancé, A.; Payet, J.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Mezzetto, M.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Moro, R.; Palladino, V.; Gelli, N.; Mazzocco, M.; Signorini, C.; Hirsh, T. Y.; Hass, M.; Berkovits, D.; Stahl, A.; Schaumann, M.; Wehner, J.

    2014-07-01

    "Beta beams" produce collimated pure electron (anti)neutrino beams by accelerating beta active ions to high energies and having them decay in a racetrack shaped storage ring of 7 km circumference, the decay ring. EUROnu beta beams are based on CERN infrastructures and existing machines. Using existing machines may be an advantage for the cost evaluation, but will also constrain the physics performance. The isotope pair of choice for the beta beam is He6 and Ne18. However, before the EUROnu studies one of the required isotopes, Ne18, could not be produced in rates that satisfy the needs for physics of the beta beam. Therefore, studies of alternative beta emitters, Li8 and B8, with properties interesting for a beta beam have been proposed and have been studied within EUROnu. These alternative isotopes could be produced by using a small storage ring, in which the beam traverses a target, creating the Li8 and B8 isotopes. This production ring, the injection linac and the target system have been evaluated. Measurements of the cross section of the reactions to produce the beta beam isotopes show interesting results. A device to collect the produced isotopes from the target has been developed and tested. However, the yields of Li8 and B8, using the production ring for production of Li8 and B8, is not yet, according to simulations, giving the rates of isotopes that would be needed. Therefore, a new method of producing the Ne18 isotope has been developed and tested giving good production rates. A 60 GHz ECRIS prototype, the first in the world, was developed and tested for ion production with contributions from EUROnu. The decay ring lattices for the Li8 and B8 have been developed and the lattice for He6 and Ne18 has been optimized to ensure the high intensity ion beam stability.

  7. Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources

    Science.gov (United States)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter

    2016-04-01

    We consider gamma-ray burst (GRB) jets that are choked by extended material as sources of high-energy cosmic neutrinos. We take into account the jet propagation physics both inside the progenitor star and the surrounding dense medium. Radiation constraints, which are relevant for high-energy neutrino production, are considered as well. Efficient shock acceleration of cosmic rays is possible for sufficiently low-power jets and/or jets buried in a dense, extended wind or outer envelope. Such conditions also favor GRB jets to become stalled, and the necessary conditions for stalling are explicitly derived. Such choked jets may explain transrelativistic supernovae (SNe) and low-luminosity (LL) GRBs, giving a unified picture of GRBs and GRB-SNe. Focusing on this unified scenario for GRBs, we calculate the resulting neutrino spectra from choked jets, including the relevant microphysical processes such as multipion production in p p and p γ interactions, as well as the energy losses of mesons and muons. We obtain diffuse neutrino spectra using the latest results for the luminosity function of LL GRBs. Although uncertainties are large, we confirm that LL GRBs can potentially give a significant contribution to the diffuse neutrino flux. Our results are consistent with the present IceCube data and do not violate the stacking limits on classical high-luminosity GRBs. We find that high-energy neutrino production in choked jets is dominated by p γ interactions. These sources are dark in GeV-TeV gamma rays and do not contribute significantly to the Fermi diffuse gamma-ray background. Assuming stalled jets can launch a quasispherical shock in the dense medium, "precursor" TeV neutrinos emerging prior to the shock breakout gamma-ray emission can be used as smoking-gun evidence for a choked jet model for LL GRBs. Our results strengthen the relevance of wide field-of-view sky monitors with better sensitivities in the 1-100 keV range.

  8. High Power, High Energy Cyclotrons for Decay-At-Rest Neutrino Sources: The DAEdALUS Project

    CERN Document Server

    ,

    2011-01-01

    Neutrino physics is a forefront topic of today's research. Large detectors installed underground study neutrino properties using neutrino beams from muons decaying in flight. DAEdALUS looks at neutrinos from stopped muons, "decay at rest" (DAR) neutrinos. The DAR neutrino spectrum has effectively no electron antineutrinos (essentially all pi- are absorbed), so a detector with free protons is sensitive to appearance of nu-e-bar oscillating from nu-mu-bar via inverse-beta-decay (IBD). Oscillations are studied using sources relatively near the detector, but which explore the same physics as the high-energy neutrino beams from Long Baseline experiments. As the DAR spectrum is fixed, the baseline is varied: plans call for 3 accelerator-based neutrino sources at 1.5, 8 and 20 km with staggered beam-on times. Compact, cost-effective superconducting ring cyclotrons accelerating molecular hydrogen ions (H2+) to 800 MeV/n with stripping extraction are being designed by L. Calabretta and his group. This revolutionary de...

  9. A combined study of source, detector and matter non-standard neutrino interactions at DUNE

    CERN Document Server

    Blennow, Mattias; Ohlsson, Tommy; Pramanik, Dipyaman; Raut, Sushant K

    2016-01-01

    We simultaneously investigate source, detector and matter non-standard neutrino interactions at the proposed DUNE experiment. Our analysis is performed using a Markov Chain Monte Carlo exploring the full parameter space. We find that the sensitivity of DUNE to the standard oscillation parameters is worsened due to the presence of non-standard neutrino interactions. In particular, there are degenerate solutions in the leptonic mixing angle $\\theta_{23}$ and the Dirac CP-violating phase $\\delta$. We also compute the expected sensitivities at DUNE to the non-standard interaction parameters. We find that the sensitivities to the matter non-standard interaction parameters are substantially stronger than the current bounds (up to a factor of about 15). Furthermore, we discuss correlations between the source/detector and matter non-standard interaction parameters and find a degenerate solution in $\\theta_{23}$. Finally, we explore the effect of statistics on our results.

  10. The Russian-American Gallium Experiment (SAGE) Cr Neutrino Source Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Abdurashitov, J.; Gavrin, V.; Girin, S.; Gorbachev, V.; Ibragimova, T.; Kalikhov, A.; Khairnasov, N.; Knodel, T.; Kornoukhov, V.; Mirmov, I.; Shikhin, A.; Veretenkin, E.; Vermul, V.; Yants, V.; Zatsepin, G. [Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russia); Bowles, T.; Nico, J.; Teasdale, W.; Wark, D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cherry, M. [Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Karaulov, V.; Levitin, V.; Maev, V.; Nazarenko, P.; Shkolnik, V.; Skorikov, N. [Mangyshlak Atomic Energy Complex, Aktau, Republic of (Kazakhstan); Cleveland, B.; Daily, T.; Davis, R. Jr.; Lande, K.; Lee, C.; Wildenhain, P. [University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Khomyakov, Y.; Zvonarev, A. [Power Physics Institute, Obninsk (Russia); Elliott, S.; Wilkerson, J. [University of Washington, Seattle, Washington 98195 (United States)

    1996-12-01

    The solar neutrino capture rate measured by SAGE is well below that predicted by solar models. To check the overall experimental efficiency, we exposed 13tonnes of Ga metal to a reactor-produced 517kCi source of {sup 51}Cr. The ratio of the measured production rate to that predicted from the source activity is 0.95{plus_minus}0.11(stat)+0.05/{minus}0.08(syst). This agreement verifies that the experimental efficiency is measured correctly, establishes that there are no unknown systematic errors at the 10{percent} level, and provides considerable evidence for the reliability of the solar neutrino measurement. {copyright} {ital 1996 The American Physical Society.}

  11. A method for untriggered time-dependent searches for multiple flares from neutrino point sources

    International Nuclear Information System (INIS)

    A method for a time-dependent search for flaring astrophysical sources which can be potentially detected by large neutrino experiments is presented. The method uses a time-clustering algorithm combined with an unbinned likelihood procedure. By including in the likelihood function a signal term which describes the contribution of many small clusters of signal-like events, this method provides an effective way for looking for weak neutrino flares over different time-scales. The method is sensitive to an overall excess of events distributed over several flares which are not individually detectable. For standard cases (one flare) the discovery potential of the method is worse than a standard time-dependent point source analysis with unknown duration of the flare by a factor depending on the signal-to-background level. However, for flares sufficiently shorter than the total observation period, the method is more sensitive than a time-integrated analysis. (orig.)

  12. Two-Dimensional Core-Collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport

    CERN Document Server

    Pan, Kuo-Chuan; Hempel, Matthias; Thielemann, Friedrich-Karl

    2015-01-01

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation-hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn (1985) and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped particle and streaming particle components. Heavy neutrinos are described by a leakage scheme. Unlike the "ray-by-ray" approach in other multi-dimensional IDSA implementations in spherical coordinates, we use cylindrical coordinates and solve the trapped particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We perform Newtonian 1D and 2D ab initio simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 $M_\\odot$ progenitors from Woosley et al.~(2002) with the HS(DD2) equation of state. We obtai...

  13. The isotropic diffusion source approximation for supernova neutrino transport

    CERN Document Server

    Liebendörfer, M; Fischer, T

    2007-01-01

    Most astrophysical observations originate from matter that interacts with radiation or transported particles. We develop a pragmatic approximation in order to enable multi-dimensional simulations with basic radiative transfer when the computational resources are not sufficient to solve the complete Boltzmann transport equation. The distribution function of the transported particles is divided into trapped and streaming particle components. Their separate evolution equations are coupled by a source term that converts trapped particles into streaming particles. We determine this source term by requiring the correct diffusion limit. For a smooth transition to the free streaming regime, this 'diffusion source' is limited by the matter emissivity. The resulting streaming particle emission rates are integrated over space to obtain the streaming particle flux. A geometric estimate of the flux factor is used to convert the particle flux to the streaming particle density. The efficiency of the scheme results from the ...

  14. Artificial suntanning: spectral irradiance and hazard evaluation of ultraviolet sources.

    Science.gov (United States)

    Gies, H P; Roy, C R; Elliott, G

    1986-06-01

    High incidences of skin damage and skin cancer amongst Australians have resulted in numerous campaigns to encourage people to protect themselves against solar ultraviolet radiation (UVR). The detrimental effects of UV-B radiation have been known for some time but recently there has been concern over the effects of UV-A radiation which had been thought of as relatively harmless. The proliferation of solaria, which incorporate UV-A sources, prompted the issuing of an Australian standard dealing with technical and non-technical aspects of the artificial suntanning industry. The purpose of this study was to measure the irradiance and spectral distribution of the emission from sunbeds and other UVR sources used for tanning, to evaluate the hazard potential and also the compliance with the standard. It was found that the majority of the UV-A lamps evaluated met the requirements of the standard. The UV-B lamps and portable sunlamps are potentially hazardous and their use should be discouraged. In general, the survey of solaria highlighted the need for further education of the public and especially the users and operators of solaria, on the hazards of UVR and of protective measures required for its safe use. PMID:3710779

  15. Low-energy neutrinos

    OpenAIRE

    Ludhova, Livia

    2016-01-01

    There exist several kinds of sources emitting neutrinos in the MeV energy range. These low-energy neutrinos from different sources can be often detected by the same multipurpose detectors. The status-of-art of the feld of solar neutrinos, geoneutrinos, and the search for sterile neutrino with artifcial neutrino sources is provided here; other neutrino sources, as for example reactor or high-energy neutrinos, are described elsewhere. For each of these three felds, the present-day motivation an...

  16. Atmospheric Neutrinos

    CERN Document Server

    Gaisser, Thomas K

    2016-01-01

    In view of the observation by IceCube of high-energy astrophysical neutrinos, it is important to quantify the uncertainty in the background of atmospheric neutrinos. There are two sources of uncertainty, the imperfect knowledge of the spectrum and composition of the primary cosmic rays that produce the neutrinos and the limited understanding of hadron production, including charm, at high energy. This paper is an overview of both aspects.

  17. Galactic sources of high energy neutrinos: Expectation from gamma-ray data

    Science.gov (United States)

    Sahakyan, N.

    2016-07-01

    The recent results from ground based γ-ray detectors (HESS, MAGIC, VERITAS) provide a population of TeV galactic γ-ray sources which are potential sources of High Energy (HE) neutrinos. Since the γ-rays and ν-s are produced from decays of neutral and charged pions, the flux of TeV γ-rays can be used to estimate the upper limit of ν flux and vice versa; the detectability of ν flux implies a minimum flux of the accompanying γ-rays (assuming the internal and the external absorption of γ-rays is negligible). Using this minimum flux, it is possible to find the sources which can be detected with cubic-kilometer telescopes. I will discuss the possibility to detect HE neutrinos from powerful galactic accelerators, such as Supernova Remnants (SNRs) and Pulsar Wind Nebulae (PWNe) and show that likely only RX J1713.7-3946, RX J0852.0-4622 and Vela X can be detected by current generation of instruments (IceCube and Km3Net). It will be shown also, that galactic binary systems could be promising sources of HE ν-s. In particular, ν-s and γ-rays from Cygnus X-3 will be discussed during recent gamma-ray activity, showing that in the future such kind of activities could produce detectable flux of HE ν-s.

  18. Preliminary results from the 51Cr neutrino source experiment in GALLEX

    International Nuclear Information System (INIS)

    The GALLEX collaboration performed a second 51Cr neutrino source experiment during fall 1995. The full results from this second source experiment will not be available before the end of 1996. Meanwhile, we present a short description and preliminary results in this informal note. The (preliminary) value of the activity obtained form direct measurements has been found equal to (68.7 ±0.7) PBq (with 1-sigma error). This value, which is about 10% higher than the activity of the first source, was achieved by optimizing the irradiation conditions in the Siloacute e reactor and doing a longer irradiation of the enriched chromium. Preliminary results show that the ratio, R, of the radiochemically determined activity from 71Ge counting (57.1 ± PBq) to the directly measured activity is (0.83 ± 0.10). The combined value of R for the two source experiments is (0.92 ± 0.08)

  19. Potential of KM3NeT to observe galactic neutrino point-like sources

    Science.gov (United States)

    Trovato, Agata

    2016-07-01

    KM3NeT (http://www.km3net.org">http://www.km3net.org) will be the next-generation cubic-kilometre-scale neutrino telescope to be installed in the depths of the Mediterranean Sea. This location will allow for surveying the Galactic Centre, most of the Galactic Plane as well as a large part of the sky. We report KM3NeT discovery potential for the SNR RXJ1713.7-3946 and the PWN Vela X and its sensitivity to point-like sources with an E-2 spectrum.

  20. Gaseous source of 83mKr conversion electrons for the neutrino experiment KATRIN

    Science.gov (United States)

    Vénos, D.; Slezák, M.; Dragoun, O.; Inoyatov, A.; Lebeda, O.; Pulec, Z.; Sentkerestiová, J.; Špalek, A.

    2014-12-01

    The metastable 83mKr with short half-life of 1.83 h is intended as a space distributed source of monoenergetic electrons for energy calibration and systematic studies in the Karlsruhe tritium neutrino experiment (KATRIN). The efficient production of the parent radionuclide 83Rb at cyclotron U-120M was implemented. The release of the 83mKr from zeolite (molecular sieve), in which the parent radionuclide 83Rb (T1/2 = 86.2 d) was trapped, was studied under various conditions using the gamma spectroscopy. Residual gas analysis of ultra high vacuum over the zeolite was performed as well.

  1. The source of monoenergetic electrons for the monitoring of spectrometer in the KATRIN neutrino experiment

    CERN Document Server

    Slezák, Martin

    The international project KATRIN (KArlsruhe TRItium Neutrino experiment) is a next-generation tritium $\\beta$-decay experiment. It is designed to measure the electron anti-neutrino mass by means of a unique electron spectrometer with sensitivity of 0.2 eV/c$^2$. This is an improvement of one order of magnitude over the last results. Important part of the measurement will rest in continuous precise monitoring of high voltage of the KATRIN main spectrometer. The monitoring will be done by means of conversion electrons emitted from a solid source based on $^{83}$Rb decay. Properties of several of these sources are studied in this thesis by means of the semiconductor $\\gamma$-ray spectroscopy. Firstly, measurement of precise energy of the 9.4 keV nuclear transition observed in $^{83}$Rb decay, from which the energy of conversion electrons is derived, is reported. Secondly, measurement of activity distribution of the solid sources by means of the Timepix detector is described. Finally, a report on measurement of r...

  2. Measurement of the response of a Ga solar neutrino experiment to 37Ar source

    International Nuclear Information System (INIS)

    An intense 37Ar source was produced by the (n, α) reaction on 40Ca by irradiating 330 kg of calcium oxide in the fast neutron breeder reactor at Zarechny, Russia. The 37Ar was released from the solid target by dissolution in acid, collected from this solution, purified, sealed into a small source, and brought to the Baksan Neutrino Observatory, where it was used to irradiate 13 t of gallium metal in the Russian-American solar neutrino experiment SAGE. Ten exposures of the gallium to the source, whose initial strength was ∼ 409 ± 2kCi, were carried out during the period from April to September 2004. The 71Ge produced by the reaction 71Ga(νe, e-)71Ge was extracted, purified, and counted. The measured production rate was 11.0-0.9+1.0 (stat.) ±0.6 (syst.) atoms of 71Ge/d, which is 0.79-0.10+0.09 of the theoretically calculated production rate

  3. Neutrino sunshine

    International Nuclear Information System (INIS)

    deficit is taken very seriously, and has led to ideas of neutrino oscillations, and oscillation resonances. If the different neutrino varieties - electron, muon and tau - have a mass, then they can oscillate between themselves. A neutrino beam starting off as pure muon-type, for example, would change its composition as it went along. Setting limits on this behaviour is an important objective in neutrino experiments, with 'long baseline' studies - beams covering a long distance between source and detector, playing a vital role. Lincoln Wolfenstein, one of the architects of the new neutrino oscillation scenarios, says 'it is still not clear whether neutrinos have masses or not'. Laboratory experiments try to measure these masses, but so far only upper Unfits have been established. These studies are beginning to reach the limit of their sensitivity and are unlikely to improve drastically. 'But there is indirect evidence,' says Wolfenstein, 'that neutrinos are much lighter.' The solar neutrino problem is really to solar neutrino opportunity,' he continues. Future experiments with gallium and other new neutrino detection techniques, coupled with new high energy neutrino studies, will answer the question

  4. Probing of the neutrino magnetic moment at the level of 10-22 μB with an intense tritium source of (anti)neutrino and helium target (project)

    International Nuclear Information System (INIS)

    We present research results of the preparation project for the experimental measurement of the (anti)neutrino magnetic moment at the level of 10-12 μB using an intense tritium source of antineutrinos and a liquid helium scintillation detector. The neutrino detection in the scintillation detector is based on the scattering of neutrinos by the electrons of the helium atoms that produces fast electrons able to ionize and exciting helium atoms. The detection of the atomic radiation emitted during the relaxation process of the helium atoms and the knowledge of its parameters will allow us to conclude on the neutrino properties

  5. Probing of the neutrino magnetic moment at the level of 10{sup -22} μ{sub B} with an intense tritium source of (anti)neutrino and helium target (project)

    Energy Technology Data Exchange (ETDEWEB)

    Martemyanov, V.P.; Aleshin, V.I.; Tarasenko, V.G.; Tsinoev, V.G.; Sabelnikov, A.A. [NRC Kurchatov Institute, Moscow (Russian Federation); Yukhimchuk, A.A.; Popov, V.V.; Baluev, V.V.; Golubkov, A.N.; Klevtsov, V.G.; Kuryakin, A.V.; Sitdikov, D.T. [RFNC VNIIEF, Sarov (Russian Federation); Bogdanova, L.N. [SSC RF ITEP, Moscow (Russian Federation)

    2015-03-15

    We present research results of the preparation project for the experimental measurement of the (anti)neutrino magnetic moment at the level of 10{sup -12} μ{sub B} using an intense tritium source of antineutrinos and a liquid helium scintillation detector. The neutrino detection in the scintillation detector is based on the scattering of neutrinos by the electrons of the helium atoms that produces fast electrons able to ionize and exciting helium atoms. The detection of the atomic radiation emitted during the relaxation process of the helium atoms and the knowledge of its parameters will allow us to conclude on the neutrino properties.

  6. The Intermediate Neutrino Program

    CERN Document Server

    Adams, C; Ankowski, A M; Asaadi, J A; Ashenfelter, J; Axani, S N; Babu, K; Backhouse, C; Band, H R; Barbeau, P S; Barros, N; Bernstein, A; Betancourt, M; Bishai, M; Blucher, E; Bouffard, J; Bowden, N; Brice, S; Bryan, C; Camilleri, L; Cao, J; Carlson, J; Carr, R E; Chatterjee, A; Chen, M; Chen, S; Chiu, M; Church, E D; Collar, J I; Collin, G; Conrad, J M; Convery, M R; Cooper, R L; Cowen, D; Davoudiasl, H; De Gouvea, A; Dean, D J; Deichert, G; Descamps, F; DeYoung, T; Diwan, M V; Djurcic, Z; Dolinski, M J; Dolph, J; Donnelly, B; Dwyer, D A; Dytman, S; Efremenko, Y; Everett, L L; Fava, A; Figueroa-Feliciano, E; Fleming, B; Friedland, A; Fujikawa, B K; Gaisser, T K; Galeazzi, M; Galehouse, D C; Galindo-Uribarri, A; Garvey, G T; Gautam, S; Gilje, K E; Gonzalez-Garcia, M; Goodman, M C; Gordon, H; Gramellini, E; Green, M P; Guglielmi, A; Hackenburg, R W; Hackenburg, A; Halzen, F; Han, K; Hans, S; Harris, D; Heeger, K M; Herman, M; Hill, R; Holin, A; Huber, P; Jaffe, D E; Johnson, R A; Joshi, J; Karagiorgi, G; Kaufman, L J; Kayser, B; Kettell, S H; Kirby, B J; Klein, J R; Kolomensky, Yu G; Kriske, R M; Lane, C E; Langford, T J; Lankford, A; Lau, K; Learned, J G; Ling, J; Link, J M; Lissauer, D; Littenberg, L; Littlejohn, B R; Lockwitz, S; Lokajicek, M; Louis, W C; Luk, K; Lykken, J; Marciano, W J; Maricic, J; Markoff, D M; Caicedo, D A Martinez; Mauger, C; Mavrokoridis, K; McCluskey, E; McKeen, D; McKeown, R; Mills, G; Mocioiu, I; Monreal, B; Mooney, M R; Morfin, J G; Mumm, P; Napolitano, J; Neilson, R; Nelson, J K; Nessi, M; Norcini, D; Nova, F; Nygren, D R; Gann, G D Orebi; Palamara, O; Parsa, Z; Patterson, R; Paul, P; Pocar, A; Qian, X; Raaf, J L; Rameika, R; Ranucci, G; Ray, H; Reyna, D; Rich, G C; Rodrigues, P; Romero, E Romero; Rosero, R; Rountree, S D; Rybolt, B; Sanchez, M C; Santucci, G; Schmitz, D; Scholberg, K; Seckel, D; Shaevitz, M; Shrock, R; Smy, M B; Soderberg, M; Sonzogni, A; Sousa, A B; Spitz, J; John, J M St; Stewart, J; Strait, J B; Sullivan, G; Svoboda, R; Szelc, A M; Tayloe, R; Thomson, M A; Toups, M; Vacheret, A; Vagins, M; Van de Water, R G; Vogelaar, R B; Weber, M; Weng, W; Wetstein, M; White, C; White, B R; Whitehead, L; Whittington, D W; Wilking, M J; Wilson, R J; Wilson, P; Winklehner, D; Winn, D R; Worcester, E; Yang, L; Yeh, M; Yokley, Z W; Yoo, J; Yu, B; Yu, J; Zhang, C

    2015-01-01

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summ...

  7. Mean square number fluctuation for a fermion source and its dependence on neutrino mass for the universal cosmic neutrino background

    Indian Academy of Sciences (India)

    Swapnil S Jawkar; Sudhanshu S Jha

    2005-01-01

    Using the general formulation for obtaining chemical potential of an ideal Fermi gas of particles at temperature , with particle rest mass $m_{0}$ and average density $\\langle N \\rangle/V$ , the dependence of the mean square number fluctuation $\\langle N^{2} \\rangle/V$ on the particle mass $m_{0}$ has been calculated explicitly. The numerical calculations are exact in all cases whether rest mass energy $m_{0}c^{2}$ is very large (non-relativistic case), very small (ultrarelativistic case) or of the same order as the thermal energy $k_{B}T$ . Application of our results to the detection of the universal very low energy cosmic neutrino background (CNB), from any of the three species of neutrinos, shows that it is possible to estimate the neutrino mass of these species if from approximate experimental measurements of their momentum distribution one can extract, someday, not only the density $\\langle N_{} \\rangle/V$ but also the mean square fluctuation $\\langle N_{}^{2} \\rangle/V$. If at the present epoch, the universe is expanding much faster than thermalization rate for CNB, it is shown that our analysis leads to a scaled neutrino mass $m_{}$ instead of the actual mass $m_{0}.

  8. Workshop: Neutrino telescopes

    International Nuclear Information System (INIS)

    Despite being the most elusive of the known particles, neutrinos provide vital new physics insights. Most neutrino knowledge so far has come from studies using beams from reactors and accelerators, but in recent years important new contributions have resulted from investigation of natural neutrinos from cosmic rays, nearby stars (the sun), or distant sources, such as the 1987 supernova. The supernova observations marked the start of a new era in neutrino astronomy, but neutrino telescopes were anyway assured of an important ongoing role

  9. Neutrinos and the stars

    CERN Document Server

    Raffelt, Georg

    2012-01-01

    The role of neutrinos in stars is introduced for students with little prior astrophysical exposure. We begin with neutrinos as an energy-loss channel in ordinary stars and conversely, how stars provide information on neutrinos and possible other low-mass particles. Next we turn to the Sun as a measurable source of neutrinos and other particles. Finally we discuss supernova (SN) neutrinos, the SN 1987A measurements, and the quest for a high-statistics neutrino measurement from the next nearby SN. We also touch on the subject of neutrino oscillations in the high-density SN context.

  10. Global Analysis of the Source and Detector Nonstandard Interactions Using the Short Baseline Neutrino- and Antineutrino-Electron Scattering Data

    CERN Document Server

    Khan, Amir N

    2016-01-01

    We present a global analysis of the semileptonic and purely Leptonic nonuniversal and flavor-changing nonstandard neutrino interactions in all the known short-baseline neutrino- and antineutrino-electron scattering experiments. The nonstandard effects at the source and at the detector can be more transparent in these experiments because of the negligibly small ratio between the baselines and the neutrino energies, which is not enough for the neutrinos to oscillate, and thus can be sensitive to the new physics at the both ends. We use data from two electron-neutrino electron scattering experiments and six electron-antineutrino electron scattering experiments and combine them to find the best fits on the nonstandard parameters using the source-only, detector-only analyses, and then find the interplay between the two cases. The bounds obtained in some cases are stronger and new, in some cases comparable to the current ones, and in the other cases weaker. For instance, the bound obtained from the interplay betwee...

  11. Derivation of upward muon energy spectra in the TeV range produced by neutrinos from 3C273 AGN and diffuse atmospheric sources

    International Nuclear Information System (INIS)

    The neutrino-induced upward muon energy spectrum on Earth at the TeV energy range emitted by the point source 3C273 AGN has been calculated using the AGN-emitted neutrino spectrum of Szabo and Protheroe and the result has been compared with that expected from background neutrinos. The QCD-based model of Berezinsky et al. has been fairly employed to estimate the muon contribution due to the charge current interactions in rock. The diffuse neutrino-induced upward muon energy spectrum from AGN sources has also been estimated and compared with the expected results from the spectra of prompt neutrinos and atmospheric backgrounds. It is found that the upward muon fluxes generated by AGN neutrinos are dominating the Universe beyond 10 TeV muon energy

  12. Derivation of upward muon energy spectra in the TeV range produced by neutrinos from 3C273 AGN and diffuse atmospheric sources

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D.P. [Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Theoretical Physics

    1998-01-01

    The neutrino-induced upward muon energy spectrum on Earth at the TeV energy range emitted by the point source 3C273 AGN has been calculated using the AGN-emitted neutrino spectrum of Szabo and Protheroe and the result has been compared with that expected from background neutrinos. The QCD-based model of Berezinsky et al. has been fairly employed to estimate the muon contribution due to the charge current interactions in rock. The diffuse neutrino-induced upward muon energy spectrum from AGN sources has also been estimated and compared with the expected results from the spectra of prompt neutrinos and atmospheric backgrounds. It is found that the upward muon fluxes generated by AGN neutrinos are dominating the Universe beyond 10 TeV muon energy.

  13. A modified likelihood-method to search for point-sources in the diffuse astrophysical neutrino-flux in IceCube

    International Nuclear Information System (INIS)

    IceCube, a cubic-kilometer sized neutrino detector at the geographical South Pole, has recently measured a flux of high-energy astrophysical neutrinos. Although this flux has now been observed in multiple analyses, no point sources or source classes could be identified yet. Standard point source searches test many points in the sky for a point source of astrophysical neutrinos individually and therefore produce many trials. Our approach is to additionally use the measured diffuse spectrum to constrain the number of possible point sources and their properties. Initial studies of the method performance are shown.

  14. Neutrino Physics with JUNO

    CERN Document Server

    An, Fengpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Avanzini, Margherita Buizza; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Herve; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Goger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cecile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Mollenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M; McDonough, William F; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Bjorn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frederic; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2015-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\\%. Neutrino burst from a typical cor...

  15. Searches for extended and point-like neutrino sources with four years of IceCube data

    International Nuclear Information System (INIS)

    We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector. The total livetime of the combined data set is 1373 days. For an E –2 spectrum, the observed 90% C.L. flux upper limits are ∼10–12 TeV–1 cm–2 s–1 for energies between 1 TeV and 1 PeV in the northern sky and ∼10–11 TeV–1 cm–2 s–1 for energies between 100 TeV and 100 PeV in the southern sky. This represents a 40% improvement compared to previous publications, resulting from both the additional year of data and the introduction of improved reconstructions. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.

  16. Searches for extended and point-like neutrino sources with four years of IceCube data

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [School of Chemistry and Physics, University of Adelaide, Adelaide SA, 5005 Australia (Australia); Ackermann, M.; Berghaus, P. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A. [Département de physique Nucléaire et Corpusculaire, Université de Genève, CH-1211 Genève (Switzerland); Ahlers, M.; Arguelles, C.; BenZvi, S. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Ahrens, M. [Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm (Sweden); Altmann, D. [Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Anderson, T.; Arlen, T. C. [Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States); Auffenberg, J. [III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen (Germany); Bai, X. [Physics Department, South Dakota School of Mines and Technology, Rapid City, SD 57701 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Tjus, J. Becker [Fakultät für Physik and Astronomie, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Berley, D. [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Collaboration: IceCube Collaboration; and others

    2014-12-01

    We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86 string detector. The total livetime of the combined data set is 1373 days. For an E {sup –2} spectrum, the observed 90% C.L. flux upper limits are ∼10{sup –12} TeV{sup –1} cm{sup –2} s{sup –1} for energies between 1 TeV and 1 PeV in the northern sky and ∼10{sup –11} TeV{sup –1} cm{sup –2} s{sup –1} for energies between 100 TeV and 100 PeV in the southern sky. This represents a 40% improvement compared to previous publications, resulting from both the additional year of data and the introduction of improved reconstructions. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update the results of searches for neutrino emission from stacked catalogs of sources and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and upper limits on the flux of muon neutrinos are reported for the sources considered.

  17. Neutrino Geophysics at Baksan (Part II): Possible Studies of Antineutrino- and Radiogenic Heat Sources in Earth Interior

    OpenAIRE

    Domogatsky, G.; Kopeikin, V.; Mikaelyan, L.; Sinev, V.

    2004-01-01

    Antineutrinos born inside the Earth (``geoneutrinos'') carry out information of fundamental importance for understanding of the origin and evolution of our planet. We show that Baksan Neutrino Observatory is one of the best sites for detection and analysis of geoneutrinos using large liquid scintillation spectrometer. Also we present a short story of concept of Earth as antineutrino source (1960 - 2004 yy)

  18. Two-dimensional Core-collapse Supernova Simulations with the Isotropic Diffusion Source Approximation for Neutrino Transport

    Science.gov (United States)

    Pan, Kuo-Chuan; Liebendörfer, Matthias; Hempel, Matthias; Thielemann, Friedrich-Karl

    2016-01-01

    The neutrino mechanism of core-collapse supernova is investigated via non-relativistic, two-dimensional (2D), neutrino radiation-hydrodynamic simulations. For the transport of electron flavor neutrinos, we use the interaction rates defined by Bruenn and the isotropic diffusion source approximation (IDSA) scheme, which decomposes the transported particles into trapped-particle and streaming-particle components. Heavy neutrinos are described by a leakage scheme. Unlike the “ray-by-ray” approach in some other multidimensional supernova models, we use cylindrical coordinates and solve the trapped-particle component in multiple dimensions, improving the proto-neutron star resolution and the neutrino transport in angular and temporal directions. We provide an IDSA verification by performing one-dimensional (1D) and 2D simulations with 15 and 20 M⊙ progenitors from Woosley et al. and discuss the difference between our IDSA results and those existing in the literature. Additionally, we perform Newtonian 1D and 2D simulations from prebounce core collapse to several hundred milliseconds postbounce with 11, 15, 21, and 27 M⊙ progenitors from Woosley et al. with the HS(DD2) equation of state. General-relativistic effects are neglected. We obtain robust explosions with diagnostic energies Edia ≳ 0.1-0.5 B (1 B ≡ 1051 erg) for all considered 2D models within approximately 100-300 ms after bounce and find that explosions are mostly dominated by the neutrino-driven convection, although standing accretion shock instabilities are observed as well. We also find that the level of electron deleptonization during collapse dramatically affects the postbounce evolution, e.g., the neglect of neutrino-electron scattering during collapse will lead to a stronger explosion.

  19. Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS spallation source

    International Nuclear Information System (INIS)

    We study the possibility of using CsI[Na] scintillators as an advantageous target for the detection of coherent elastic neutrino-nucleus scattering (CENNS), using the neutrino emissions from the SNS spallation source at Oak Ridge National Laboratory. The response of this material to low-energy nuclear recoils like those expected from this process is characterized. Backgrounds are studied using a 2 kg low-background prototype crystal in a dedicated radiation shield. The conclusion is that a planned 14 kg detector should measure approximately 550 CENNS events per year above a demonstrated ∼7keVnr low-energy threshold, with a signal-to-background ratio sufficient for a first measurement of the CENNS cross-section. The cross-section for the 208Pb(νe,e−)208Bi reaction, of interest for future supernova neutrino detection, can be simultaneously obtained

  20. Search for time-independent neutrino emission from astrophysical sources with 3 yr of IceCube data

    International Nuclear Information System (INIS)

    We present the results of a search for neutrino point sources using the IceCube data collected between 2008 April and 2011 May with three partially completed configurations of the detector: the 40-, 59-, and 79-string configurations. The live-time of this data set is 1040 days. An unbinned maximum likelihood ratio test was used to search for an excess of neutrinos above the atmospheric background at any given direction in the sky. By adding two more years of data with improved event selection and reconstruction techniques, the sensitivity was improved by a factor of 3.5 or more with respect to the previously published results obtained with the 40-string configuration of IceCube. We performed an all-sky survey and a dedicated search using a catalog of a priori selected objects observed by other telescopes. In both searches, the data are compatible with the background-only hypothesis. In the absence of evidence for a signal, we set upper limits on the flux of muon neutrinos. For an E –2 neutrino spectrum, the observed limits are (0.9-5) × 10–12 TeV–1 cm–2 s–1 for energies between 1 TeV and 1 PeV in the northern sky and (0.9-23.2) × 10–12 TeV–1 cm–2 s–1 for energies between 102 TeV and 102 PeV in the southern sky. We also report upper limits for neutrino emission from groups of sources that were selected according to theoretical models or observational parameters and analyzed with a stacking approach. Some of the limits presented already reach the level necessary to quantitatively test current models of neutrino emission.

  1. High-energy neutrino production from photo-hadronic interactions of gamma rays from Active Galactic Nuclei at source

    CERN Document Server

    Arteaga-Velazquez, J C

    2013-01-01

    Recent astronomical observations reveal that Active Galactic Nuclei (AGN) are sources of high-energy radiation. For example, the Fermi-LAT and Hess telescopes have detected gamma-ray emissions from the cores of several types of AGN's. Even more, the Pierre Auger observatory has found a correlation of ultra-high energy cosmic ray events with the position of Active Galactic Nuclei, such as Centaurus A. In this way, according to particle physics, a flux of high-energy neutrinos should be expected from the interactions of cosmic and gamma-rays with the ambient matter and radiation at the source. In this work, estimations of the diffuse neutrino flux from AGN's arising from interactions of the gamma radiation with the gas and dust of the sources will be presented.

  2. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  3. Neutrino physics with nuclear reactors

    International Nuclear Information System (INIS)

    This is a lecture given at the Gif Summer School held in 1992 in Montpellier. It contains three chapters. These are devoted to neutrino oscillations, to the nuclear reactors used as neutrino sources, and to the experiments performed with neutrinos from nuclear reactors, respectively. The first chapter offers a theoretical frame, the second discusses the investigation capabilities of nuclear reactors as neutrino sources while the last one describes the experimental aspects. These aspects are related to the neutrino flux measurement and the flavor oscillation, the search for neutrino oscillation, the neutrino scattering on electrons, the neutrino decay, the coherent neutrino scattering on nuclei and the electron neutrino-electron antineutrino oscillations implied by the Majorana nature of neutrinos. In concluding the author points to the possible ways of refining these extremely subtle experiments, which will be approached in the near future. 117 refs., 9 figs., 11 tabs

  4. Artificial intelligence methods applied for quantitative analysis of natural radioactive sources

    International Nuclear Information System (INIS)

    Highlights: ► Basic description of artificial neural networks. ► Natural gamma ray sources and problem of detections. ► Application of neural network for peak detection and activity determination. - Abstract: Artificial neural network (ANN) represents one of artificial intelligence methods in the field of modeling and uncertainty in different applications. The objective of the proposed work was focused to apply ANN to identify isotopes and to predict uncertainties of their activities of some natural radioactive sources. The method was tested for analyzing gamma-ray spectra emitted from natural radionuclides in soil samples detected by a high-resolution gamma-ray spectrometry based on HPGe (high purity germanium). The principle of the suggested method is described, including, relevant input parameters definition, input data scaling and networks training. It is clear that there is satisfactory agreement between obtained and predicted results using neural network.

  5. Search for time-independent neutrino emission from astrophysical sources with 3 years of IceCube data

    CERN Document Server

    Aartsen, M G; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-01-01

    We present the results of a search for neutrino point sources using the IceCube data collected between April 2008 and May 2011 with three partially completed configurations of the detector: the 40-, 59- and 79-string configurations. The live-time of this data set are 1,040 days. An unbinned maximum likelihood ratio test was used to search for an excess of neutrinos above the atmospheric background at any given direction in the sky. By adding two more years of data with improved event selection and reconstruction techniques, the sensitivity was improved by a factor 3.5 or more with respect to the previously published results obtained with the 40-string configuration of IceCube. We performed an all-sky survey and a dedicated search using a catalog of \\textit{a priori} selected objects observed by other telescopes. In both searches, the data are compatible with the background-only hypothesis. In the absence of evidence for a signal, we set upper limits on the flux of muon neutrinos. For an E$^{-2}$ neutrino spec...

  6. Atrazine in Source Water Intended for Artificial Ground-Water Recharge, South-Central Kansas

    Science.gov (United States)

    Christensen, Victoria G.; Ziegler, Andrew C.

    1998-01-01

    Atrazine, an herbicide commonly applied to row crops, is of concern because of potential effects on water quality. This fact sheet describes atrazine in water from the Little Arkansas River in south-central Kansas. The river is being evaluated as a source of artificial recharge into the Equus Beds aquifer, which provides water for the city of Wichita.

  7. Blind Source Separation Based on Covariance Ratio and Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-01-01

    Full Text Available The computation amount in blind source separation based on bioinspired intelligence optimization is high. In order to solve this problem, we propose an effective blind source separation algorithm based on the artificial bee colony algorithm. In the proposed algorithm, the covariance ratio of the signals is utilized as the objective function and the artificial bee colony algorithm is used to solve it. The source signal component which is separated out, is then wiped off from mixtures using the deflation method. All the source signals can be recovered successfully by repeating the separation process. Simulation experiments demonstrate that significant improvement of the computation amount and the quality of signal separation is achieved by the proposed algorithm when compared to previous algorithms.

  8. Environment, safety, and health considerations for a neutrino source based on a muon storage ring

    International Nuclear Information System (INIS)

    The Neutrino Source presents a number of challenges in the general area of environment, safety, and health. It is the intent of this paper to identify these challenges and make a preliminary, but not detailed assessment of how they might be addressed and of their potential impact on the project. Some of the considerations which must be taken into account are very similar to those that have been encountered and solved during the construction and operation of other facilities at Fermilab and at similar laboratories elsewhere in the US and worldwide. Other considerations have not been encountered previously in connection with the construction and operation of accelerator laboratories. These novel issues will require particular attention as such a project proceeds to assure their timely resolution in a manner that is cost-effective and that meets the approval of the public. In this paper, both the conventional and the novel issues are discussed, with more emphasis on the latter. It is concluded here that with adequate planning in the design stages, these problems can be adequately addressed in a manner that merits the support of the Laboratory, the Department of Energy, and the public. An abbreviated version of this paper appears as Chapter 14 in the report of a recent feasibility study (Ho 00)and the figures have come from that work

  9. Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2014-01-01

    We present results on searches for point-like sources of neutrinos using four years of IceCube data, including the first year of data from the completed 86-string detector. The total livetime of the combined dataset is 1,373 days. For an E$^{-2}$ spectrum the median sensitivity at 90\\% C.L. is $\\sim 10^{-12}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 1 TeV$-$1 PeV in the northern sky and $\\sim 10^{-11}$ TeV$^{-1}$cm$^{-2}$s$^{-1}$ for energies between 100 TeV $-$ 100 PeV in the southern sky. The sensitivity has improved from both the additional year of data and the introduction of improved reconstructions compared to previous publications. In addition, we present the first results from an all-sky search for extended sources of neutrinos. We update results of searches for neutrino emission from stacked catalogs of sources, and test five new catalogs; two of Galactic supernova remnants and three of active galactic nuclei. In all cases, the data are compatible with the background-only hypothesis, and uppe...

  10. Searches for small-scale anisotropies from neutrino point sources with three years of IceCube data

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2014-01-01

    Recently, IceCube found evidence for a diffuse signal of astrophysical neutrinos in an energy range of $60\\,\\mathrm{TeV}$ to the $\\mathrm{PeV}$-scale. The origin of those events, being a key to understanding the origin of cosmic rays, is still an unsolved question. So far, analyses have not succeeded to resolve the diffuse signal into point-like sources. Searches including a maximum-likelihood-ratio test, based on the reconstructed directions and energies of the detected down- and up-going neutrino candidates, were also performed on IceCube data leading to the exclusion of bright point sources. In this paper, we present two methods to search for faint neutrino point sources in three years of IceCube data, taken between 2008 and 2011. The first method is an autocorrelation test, applied separately to the northern and southern sky. The second method is a multipole analysis, which expands the measured data in the northern hemisphere into spherical harmonics and uses the resulting expansion coefficients to separa...

  11. Artificial neural networks for neutron source localization within sealed tanks

    International Nuclear Information System (INIS)

    A modular back-propagation ANN has been implemented for the non-destructive localization of a source of Even Plutonium Isotopes (EPI) contained in sealed tanks. The ANN has been trained on data obtained from a simulation of a well counter (filtered and Fourier transformed signals of the neutron detectors surrounding the well counter) for known positions of the EPI. After training, the ANN can predict the position of EPI within sealed tanks from the corresponding detector signals. The introduction of median and majority ANNs has been found to significantly improve the accuracy of prediction. Furthermore, these ANNs perform in a satisfactory manner when noise is injected to the detector signals; prediction is corrupted in a manner which is directly related to the extent and amount of noise. The motivation for using back-propagation ANNs is twofold: on one hand (theoretical importance), they are capable of learning to approximate complex functions such as the strongly non-linear relation that exists between the neutron detector signals and the EPI position; on the other hand, they accomplish on-line localization which is of practical interest. (Author)

  12. Predictive ion source control using artificial neural network for RFT-30 cyclotron

    Science.gov (United States)

    Kong, Young Bae; Hur, Min Goo; Lee, Eun Je; Park, Jeong Hoon; Park, Yong Dae; Yang, Seung Dae

    2016-01-01

    An RFT-30 cyclotron is a 30 MeV proton accelerator for radioisotope production and fundamental research. The ion source of the RFT-30 cyclotron creates plasma from hydrogen gas and transports an ion beam into the center region of the cyclotron. Ion source control is used to search source parameters for best quality of the ion beam. Ion source control in a real system is a difficult and time consuming task, and the operator should search the source parameters by manipulating the cyclotron directly. In this paper, we propose an artificial neural network based predictive control approach for the RFT-30 ion source. The proposed approach constructs the ion source model by using an artificial neural network and finds the optimized parameters with the simulated annealing algorithm. To analyze the performance of the proposed approach, we evaluated the simulations with the experimental data of the ion source. The performance results show that the proposed approach can provide an efficient way to analyze and control the ion source of the RFT-30 cyclotron.

  13. Core-collapse supernova neutrinos and neutrino properties

    OpenAIRE

    Gava, J.; C. Volpe

    2008-01-01

    Core-collapse supernovae are powerful neutrino sources. The observation of a future (extra-)galactic supernova explosion or of the relic supernova neutrinos might provide important information on the supernova dynamics, on the supernova formation rate and on neutrino properties. One might learn more about unknown neutrino properties either from indirect effects in the supernova (e.g. on the explosion or on in the r-process) or from modifications of the neutrino time or energy distributions in...

  14. An artificial neural network approach to reconstruct the source term of a nuclear accident

    International Nuclear Information System (INIS)

    This work makes use of one of the main features of artificial neural networks, which is their ability to 'learn' from sets of known input and output data. Indeed, a trained artificial neural network can be used to make predictions on the input data when the output is known, and this feedback process enables one to reconstruct the source term from field observations. With this aim, an artificial neural networks has been trained, using the projections of a segmented plume atmospheric dispersion model at fixed points, simulating a set of gamma detectors located outside the perimeter of a nuclear facility. The resulting set of artificial neural networks was used to determine the release fraction and rate for each of the noble gases, iodines and particulate fission products that could originate from a nuclear accident. Model projections were made using a large data set consisting of effective release height, release fraction of noble gases, iodines and particulate fission products, atmospheric stability, wind speed and wind direction. The model computed nuclide-specific gamma dose rates. The locations of the detectors were chosen taking into account both building shine and wake effects, and varied in distance between 800 and 1200 m from the reactor.The inputs to the artificial neural networks consisted of the measurements from the detector array, atmospheric stability, wind speed and wind direction; the outputs comprised a set of release fractions and heights. Once trained, the artificial neural networks was used to reconstruct the source term from the detector responses for data sets not used in training. The preliminary results are encouraging and show that the noble gases and particulate fission product release fractions are well determined

  15. Coherent neutrino-nucleus scattering detection with a CsI[Na] scintillator at the SNS spallation source

    CERN Document Server

    Collar, J I; Fuller, E; Hai, M; Hossbach, T W; Orrell, J L; Perumpilly, G; Scholz, B

    2014-01-01

    We study the possibility of using CsI[Na] scintillators as an advantageous target for the detection of coherent elastic neutrino-nucleus scattering (CENNS), using the neutrino emissions from the SNS spallation source at Oak Ridge National Laboratory. The response of this material to low-energy nuclear recoils like those expected from this process is characterized. Backgrounds are studied using a 2 kg low-background prototype crystal in a dedicated radiation shield. The conclusion is that a planned 14 kg detector should measure approximately 550 CENNS events per year above a demonstrated $\\sim7$ keVnr low-energy threshold, with a signal-to-background ratio sufficient for a first measurement of the CENNS cross-section. The cross-section for the $^{208}$Pb($\

  16. Ambiguity in source flux of high-energy cosmic\\/astrophysical neutrinos Effects of bi-maximal mixing and quantum-gravity induced decoherence

    CERN Document Server

    Ahluwalia, D V

    2001-01-01

    For high energy cosmic neutrinos Athar, Jezabek, and Yasuda (AJY) have recently shown that the existing data on neutrino oscillations suggests that cosmic neutrino flux at the AGN/GRB source, F(nu_e):F(nu_mu):F(nu_tau) approx 1:2:0, oscillates to F(nu_e):F(nu_mu):F(nu_tau) approx 1:1:1. These results can be confirmed at AMANDA, Baikal, ANTARES and NESTOR, and other neutrino detectors with a good flavor resolution. Here, we re-derive the AJY result from quasi bi-maximal mixing, and show that observation of F(nu_e):F(nu_mu):F(nu_tau) approx 1:1:1 does not necessarily establish cosmic neutrino flux at the AGN/GRB source to be F(nu_e):F(nu_mu):F(nu_tau) approx 1:2:0. We also note that if the length scale for the quantum-gravity induced de-coherence for astrophysical neutrinos is of the order of a Mpc, then independent of the MNS matrix, the Liu-Hu-Ge (LHG) mechanism would lead to flux equalization for the cosmic/astrophysical neutrinos.

  17. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  18. A Compact $^{3}H(p,\\gamma)^{1}He$ 19.8-MeV Gamma-Ray Source for Energy Calibration at the Sudbury Neutrino Observatory

    CERN Document Server

    Poon, A W P; Waltham, C E; Browne, M C; Roberston, R G H; Kherani, N P; Mak, H B

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) is a new 1000-tonne D2O Cerenkov solar neutrino detector. A high energy gamma-ray source is needed to calibrate SNO beyond the 8B solar neutrino endpoint of 15 MeV. This paper describes the design and construction of a source that generates 19.8-MeV gamma rays using the 3H(p,gamma)4He reaction (``pt''), and demonstrates that the source meets all the physical, operational and lifetime requirements for calibrating SNO. An ion source was built into this unit to generate and to accelerate protons up to 30 keV, and a high purity scandium tritide target with a scandium-tritium atomic ratio of 1:2.0+/-0.2 was included. This pt source is the first self-contained, compact, and portable high energy gamma-ray source (E>10 MeV).

  19. Long-Baseline Neutrino Experiments

    CERN Document Server

    Diwan, M V; Qian, X; Rubbia, A

    2016-01-01

    We review long-baseline neutrino experiments in which neutrinos are detected after traversing macroscopic distances. Over such distances neutrinos have been found to oscillate among flavor states. Experiments with solar, atmospheric, reactor, and accelerator neutrinos have resulted in a coherent picture of neutrino masses and mixing of the three known flavor states. We will summarize the current best knowledge of neutrino parameters and phenomenology with our focus on the evolution of the experimental technique. We proceed from the first evidence produced by astrophysical neutrino sources to the current open questions and the goals of future research.

  20. Remark on Structure of Expectation Values of Flavor-Lepton Numbers with respect to Neutrino-Source Hadron States: Deviation from Fermi's Golden Relatio

    CERN Document Server

    Fujii, Kanji

    2016-01-01

    In our preceeding reports, we have pointed out that a unified description of weak decays accompanying neutrinos and the oscillation process is obtained on the basis of the expectation values of flavor-neutrino numbers with respect to the neutrino-source hadron state. In the present report, we investigate the effect on the expectation values due to the deviation from Fermi's golden relation, and give concrete features of these deviations in the case of $\\pi^+$ and $K^+$-decays under the simple situation with the $3$-momentum $\\vec{p_A}=0$ for $A=\\pi^+$, $K^+$. %numerical results under simple situations.

  1. Radiological Impact of artificial and naturally radiation sources. Report of the UNSCEAR, 2008

    International Nuclear Information System (INIS)

    Results in the report of the Scientific Committee of the United Nations for Study of the Effects of Atomic Radiations, presented in the 56th period of sessions in July 2008; values obtained from natural sources or from artificial ones are compared and, in accordance with their effects on humans. It is concluded that the most significant change in the situation, between reports, has been the increase in the medical exposure due to the increase in the number of computed tomography examinations. (author)

  2. Environmental 222Rn as a background source in the solar neutrino experiment GALLEX

    International Nuclear Information System (INIS)

    The radiochemical neutrino experiment GALLEX is described. Its aim is to measure the flux of low energy solar neutrinos. In this experiment it is essential to suppress strongly the background of environmental origin, like charged cosmic rays, neutrons and gamma rays. In low-level radioactivity measurements performed in deep underground laboratory where flux of charged comic rays is strongly reduced, radon (Rn) exhaled from rock or concrete walls forms a most important strong, time-dependent background component. In this work the impact of Rn on the GALLEX experiment has been discussed and attempts to recognize and minimize its influence on the counter background were described. 63 refs, 22 figs, 11 tabs

  3. Ultrahigh energy neutrino scattering onto relic light neutrinos in galactic halo as a possible source of highest energy extragalactic cosmic rays

    CERN Document Server

    Fargion, D; Salis, A

    1999-01-01

    The diffuse relic neutrinos with light mass are transparent to Ultrahigh energy (UHE) neutrinos at thousands EeV, born by photoproduction of pions by UHE protons on relic 2.73 K BBR radiation and originated in AGNs at cosmic distances. However these UHE $\

  4. Localization of a moving dipole source underwater using an artificial lateral line

    Science.gov (United States)

    Abdulsadda, Ahmad T.; Tan, Xiaobo

    2012-04-01

    Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. A nonlinear estimation problem is formulated based on an analytical model for the moving dipole-generated flow field, which is subsequently solved with the Gauss-Newton method. The effectiveness of the proposed approach is illustrated with simulation results.

  5. Gaseous source of 83mKr conversion electrons for the neutrino experiment KATRIN

    Czech Academy of Sciences Publication Activity Database

    Vénos, Drahoslav; Slezák, Martin; Dragoun, Otokar; Inoyatov, A.; Lebeda, Ondřej; Pulec, Zdeněk; Sentkerestiová, Jana; Špalek, Antonín

    2014-01-01

    Roč. 9, č. 12 (2014), s. 1-12. ISSN 1748-0221 R&D Projects: GA ČR(CZ) GAP203/12/1896 Institutional support: RVO:61389005 Keywords : detector alignment and calibration methods * spectrometers * neutrino detectors * dark matter detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.399, year: 2014

  6. High-energy cosmic neutrinos and photons from point sources, and implications for galactic confinement

    International Nuclear Information System (INIS)

    The power input into highly relativistic electrons at the Crab pulsar nearly equals the neutron star's rate of energy loss due to spin-down. (a) Assuming that a newly formed pulsar is an 10% efficient accelerator of cosmic rays (approximately efficiency), and (b) adopting Ruderman's estimates of the initial pulsar spin-down rate (4 x 1043 ergs /sec), we calculate the rate at which neutrinos are detected. In 1011 tons of water, in 4 months, and for Esub(ν) >= 4 TeV, one can expect approximately 6 x 105 to 108 neutrino events from a supernova at 10 Kpc, and 1 to 300 from 7.5 Mpc; about 1 supernova per year occurs at the latter distance. These rates correspond to the range of estimated values of the original rate of spin-down. For the closed galaxy model of Peters and Westergaard, the required rate of energy input into cosmic rays is less by about two orders of magnitude. In the latter case, only galactic supernovae are likely to generate observable fluxes of neutrinos. Strong radio galaxies like Cen A are powerful emitters of gamma rays between 1011 and 1012 eV, and Cen A should yield approximately 10 neutrino events per year in a 1011 ton detector. (author)

  7. Artificial neural networks applied in the spectrometry of a 239Pu-Be source

    International Nuclear Information System (INIS)

    To explore the potential use of a neutron source and to define the procedure to handle it under safety conditions, features like neutron spectrum and the ambient dose equivalent of the source must be known. The aim of this work was to determine the spectrum, the total fluence rate and the ambient dose equivalent of a 185 GBq 239Pu-Be neutron source. Using Monte Carlo methods the spectrum, the total fluence rate, and the ambient dose equivalent of a 239Pu-Be were calculated. The spectrum was calculated at 50, 100, 200 and 300 cm from the source in air using MCNP X and MCNP 4C codes. The neutron spectrum was also obtained, at 100 cm, using a Bonner sphere spectrometer whose count rates were used to unfold the neutron spectrum, the unfolding was carried out using an Artificial Neural Network for neutron spectrometry. With the spectrum, the total neutron fluence and the ambient dose equivalent were determined. Calculated results were compared with measured values where Monte Carlo results were smaller than those measured. These differences were attributed to the presence of 241Pu during the source manufacturing. In order to match calculated and measured quantities a 0.102 w/o of 241Pu was estimated. After corrections the differences between calculated and experimental results were 1%. This result shows the advantages of using Artificial Neural Networks technology in the unfolding of neutron spectrum using as a single piece of information the count rates of a Bonner sphere spectrometer. (author)

  8. A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper

    CERN Document Server

    Baussan, E; Bogomilov, M.; Bouquerel, E.; Cederkäll, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; Densham, C.; Dracos, M.; Ekelöf, T.; Eshraqi, M.; Fernandez Martinez, E.; Gaudiot, G.; Hall-Wilton, R.; Koutchouk, J.P.; Lindroos, M.; Matev, R.; McGinnis, D.; Mezzetto, M.; Miyamoto, R.; Mosca, L.; Ohlsson, T.; Öhman, H.; Osswald, F.; Peggs, S.; Poussot, P.; Ruber, R.; Tang, J.Y.; Tsenov, R.; Vankova-Kirilova, G.; Vassilopoulos, N.; Wildner, E.; Wurtz, J.

    2014-01-01

    Very intense neutrino beams and large neutrino detectors will be needed in order to enable the discovery of CP violation in the leptonic sector. We propose to use the proton linac of the European Spallation Source currently under construction in Lund, Sweden to deliver, in parallel with the spallation neutron production, a very intense, cost effective and high performance neutrino beam. The baseline program for the European Spallation Source linac is that it will be fully operational at 5 MW average power by 2022, producing 2 GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron production and 14 pulses/s for neutrino production. Furthermore, because of the high current required in the pulsed neutrino horn, the length of the pulses used for neutrino production needs to be compressed to a few $\\mu$s with the aid of an accumulator ring. A long baseline experiment using this Super Beam and a megaton underground ...

  9. Searches for heavy neutrinos from 35S, 14C, and 63Ni beta decay

    International Nuclear Information System (INIS)

    We have searched for the effect of a neutrino of mass 17 keV/c2 in the beta decay of 35S with an apparatus incorporating a high resolution solid state detector and a super conducting solenoid. The experimental mixing probability of the 17keV neutrino is consistent with zero. The experimental sensitivity is verified by measurements with a mixed source of 35S and 14C, which artificially produces a distortion in the beta spectrum similar to that expected from the massive neutrino. Recently, we have performed similar searches in the beta decay of 14C and 63Ni. Results of these new measurements will be presented

  10. Artificial intelligence search techniques for optimization of the cold source geometry

    International Nuclear Information System (INIS)

    Most optimization studies of cold neutron sources have concentrated on the numerical prediction or experimental measurement of the cold moderator optimum thickness which produces the largest cold neutron leakage for a given thermal neutron source. Optimizing the geometrical shape of the cold source, however, is a more difficult problem because the optimized quantity, the cold neutron leakage, is an implicit function of the shape which is the unknown in such a study. We draw an analogy between this problem and a state space search, then we use a simple Artificial Intelligence (AI) search technique to determine the optimum cold source shape based on a two-group, r-z diffusion model. We implemented this AI design concept in the computer program AID which consists of two modules, a physical model module and a search module, which can be independently modified, improved, or made more sophisticated. 7 refs., 1 fig

  11. Sudbury Neutrino Observatory

    Science.gov (United States)

    Beier, E. W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in Jan. 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical Cl-37 and Ga-71 experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  12. An artificial light source influences mating and oviposition of black soldier flies, Hermetia illucens.

    Science.gov (United States)

    Zhang, Jibin; Huang, Ling; He, Jin; Tomberlin, Jeffery K; Li, Jianhong; Lei, Chaoliang; Sun, Ming; Liu, Ziduo; Yu, Ziniu

    2010-01-01

    Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch for the quartz-iodine lamp and sunlight treatments occurred in approximately 4 days, and the hatch rate was similar between these two treatments. Larval and pupal development under these treatments required approximately 18 and 15 days at 28°C, respectively. Development of methods for mass rearing of H. illucens using artificial light will enable production of this fly throughout the year without investing in greenhouse space or requiring sunlight. PMID:21268697

  13. Field-theoretical treatment of neutrino oscillations

    OpenAIRE

    W. Grimus(University of Vienna, Faculty of Physics, Boltzmanngasse 5, A-1090 Vienna, Austria); Mohanty, S.; Stockinger, P.

    1999-01-01

    We discuss the field-theoretical approach to neutrino oscillations. This approach includes the neutrino source and detector processes and allows to obtain the neutrino transition or survival probabilities as cross sections derived from the Feynman diagram of the combined source -- detection process. In this context, the neutrinos which are supposed to oscillate appear as propagators of the neutrino mass eigenfields, connecting the source and detection processes.

  14. Neutrino physics with JUNO

    Science.gov (United States)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  15. Cosmic Neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  16. Status of High-Energy Neutrino Astronomy

    CERN Document Server

    Kowalski, Marek

    2014-01-01

    With the recent discovery of high-energy neutrinos of extra-terrestrial origin by the IceCube neutrino observatory, neutrino-astronomy is entering a new era. This review will cover currently operating open water/ice neutrino telescopes, the latest evidence for a flux of extra-terrestrial neutrinos and current efforts in the search for steady and transient neutrino point sources. Generalised constraints on potential astrophysical sources are presented, allowing to focus the hunt for the sources of the observed high-energy neutrinos.

  17. An Artificial Light Source Influences Mating and Oviposition of Black Soldier Flies, Hermetia illucens

    OpenAIRE

    Zhang, Jibin; Huang, Ling; He, Jin; Tomberlin, Jeffery K; Li, Jianhong; Lei, Chaoliang; Sun, Ming; Liu, Ziduo; Yu, Ziniu

    2010-01-01

    Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch ...

  18. Neutrino telescopes

    CERN Document Server

    Carr, J

    2002-01-01

    This review presents the scientific objectives and status of Neutrino Telescope Projects. The science program of these projects covers: neutrino astronomy, dark matter searches and measurements of neutrino oscillations. The two neutrino telescopes in operation: AMANDA and BAIKAL will be described together with the ANTARES neutrino telescope being built in the Mediterranean. (18 refs).

  19. Direct neutrino mass measurements

    Science.gov (United States)

    Thümmler, T.

    2011-07-01

    The determination of the neutrino rest mass plays an important role at the intersections of cosmology, particle physics and astroparticle physics. This topic is currently being addressed by two complementary approaches in laboratory experiments. Neutrinoless double beta decay experiments probe whether neutrinos are Majorana particles and determine an effective neutrino mass value. Single beta decay experiments such as KATRIN and MARE investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Owing to neutrino flavour mixing, the neutrino mass parameter appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β-spectroscopy close to the T 2 end-point with unprecedented precision and will reach a sensitivity of 200 meV/ c 2 (90% C.L.) on the neutrino rest mass.

  20. Neutrino properties from ultra-high energy cosmic neutrinos

    CERN Document Server

    Huang, Yanqi

    2015-01-01

    Neutrino properties can be constrained by the detection of ultra-high energy cosmic neutrinos (UHECNs). By using the updated global fitting results of neutrino mixing parameters, we present predictions on the neutrino flavor ratios at the Earth from three possibly astrophysical sources. Comparing with the latest IceCube data, we find that the normal hierarchy (NH) and inverted hierarchy (IH) cases from the initial ratios $\\phi_{\

  1. Nonlinear estimation-based dipole source localization for artificial lateral line systems

    International Nuclear Information System (INIS)

    As a flow-sensing organ, the lateral line system plays an important role in various behaviors of fish. An engineering equivalent of a biological lateral line is of great interest to the navigation and control of underwater robots and vehicles. A vibrating sphere, also known as a dipole source, can emulate the rhythmic movement of fins and body appendages, and has been widely used as a stimulus in the study of biological lateral lines. Dipole source localization has also become a benchmark problem in the development of artificial lateral lines. In this paper we present two novel iterative schemes, referred to as Gauss–Newton (GN) and Newton–Raphson (NR) algorithms, for simultaneously localizing a dipole source and estimating its vibration amplitude and orientation, based on the analytical model for a dipole-generated flow field. The performance of the GN and NR methods is first confirmed with simulation results and the Cramer–Rao bound (CRB) analysis. Experiments are further conducted on an artificial lateral line prototype, consisting of six millimeter-scale ionic polymer–metal composite sensors with intra-sensor spacing optimized with CRB analysis. Consistent with simulation results, the experimental results show that both GN and NR schemes are able to simultaneously estimate the source location, vibration amplitude and orientation with comparable precision. Specifically, the maximum localization error is less than 5% of the body length (BL) when the source is within the distance of one BL. Experimental results have also shown that the proposed schemes are superior to the beamforming method, one of the most competitive approaches reported in literature, in terms of accuracy and computational efficiency. (paper)

  2. Neutrinos from the Milky Way

    NARCIS (Netherlands)

    Visser, Erwin Lourens

    2015-01-01

    A guaranteed source of neutrinos is the production in cosmic ray interactions with the interstellar matter in our Galaxy. The signal has never been detected however and only an upper limit on this flux of neutrinos has been published by the AMANDA-II detector. The ANTARES neutrino telescope, located

  3. The neutrino telescope ANTARES

    Directory of Open Access Journals (Sweden)

    Gleixner Andreas

    2014-04-01

    Full Text Available The ANTARES neutrino telescope is currently the largest neutrino detector in the Northern Hemisphere. The detector consists of a three-dimensional array of 885 photomultiplier tubes, distributed along 12 lines, located at a depth of 2500 m in the Mediterranean Sea. The purpose of the experiment is the detection of high-energy cosmic neutrinos. The detection principle is based on the observation of Cherenkov-Light emitted by muons resulting from charged-current interactions of muon neutrinos in the vicinity of the detection volume. The main scientific targets of ANTARES include the search for astrophysical neutrino point sources, the measurement of the diffuse neutrino flux and the indirect search for dark matter.

  4. Artificially Structured Boundary for a high purity ion trap or ion source

    International Nuclear Information System (INIS)

    A plasma enclosed by an Artificially Structured Boundary (ASB) is proposed here as an alternative to existing ion source assemblies. In accelerator applications, many ion sources can have a limited lifetime or frequent service intervals due to sputtering and eventual degradation of the ion source assembly. Ions are accelerated towards the exit canal of positive ion sources, whereas, due to the biasing scheme, electrons or negative ions are accelerated towards the back of the ion source assembly. This can either adversely affect the experiment in progress due to sputtered contamination or compromise the integrity of the ion source assembly. Charged particle trajectories in the proximity of an ASB experience electromagnetic fields that are designed to hinder ion–surface interactions. Away from the ASB there is an essentially field free region. The field produced by an ASB is considered to consist of a periodic sequence of electrostatically plugged magnetic field cusps. A classical trajectory Monte Carlo simulation is extended to include electrostatic plugging of magnetic field cusps. The conditions necessary for charged particles to be reflected by the ASB are presented and quantified in terms of normalized parameters

  5. Neutrinos at extreme energies

    CERN Document Server

    Aloisio, Roberto

    2016-01-01

    We will review the production of neutrinos with PeV energies and above. Discussing two possible sources of this radiation: the propagation of ultra high energy cosmic rays and the decay of super heavy dark matter. The discussion will focus on the theoretical expectations on neutrino fluxes and on the detection capabilities of present and future experiments.

  6. Neutrino oscillations

    International Nuclear Information System (INIS)

    Lecture notes on neutrino oscillations are given, including some background about neutrino mixing and masses, descriptions of flavour oscillations and experimental attempts to detect them, matter effects and neutrino-antineutrino oscillations. (U.K.)

  7. A new source difference artificial neural network for enhanced positioning accuracy

    International Nuclear Information System (INIS)

    Integrated inertial navigation system (INS) and global positioning system (GPS) units provide reliable navigation solution compared to standalone INS or GPS. Traditional Kalman filter-based INS/GPS integration schemes have several inadequacies related to sensor error model and immunity to noise. Alternatively, multi-layer perceptron (MLP) neural networks with three layers have been implemented to improve the position accuracy of the integrated system. However, MLP neural networks show poor accuracy for low-cost INS because of the large inherent sensor errors. For the first time the paper demonstrates the use of knowledge-based source difference artificial neural network (SDANN) to improve navigation performance of low-cost sensor, with or without external aiding sources. Unlike the conventional MLP or artificial neural networks (ANN), the structure of SDANN consists of two MLP neural networks called the coarse model and the difference model. The coarse model learns the input–output data relationship whereas the difference model adds knowledge to the system and fine-tunes the coarse model output by learning the associated training or estimation error. Our proposed SDANN model illustrated a significant improvement in navigation accuracy of up to 81% over conventional MLP. The results demonstrate that the proposed SDANN method is effective for GPS/INS integration schemes using low-cost inertial sensors, with and without GPS

  8. Open source hardware and software platform for robotics and artificial intelligence applications

    Science.gov (United States)

    Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-02-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.

  9. Spectrometry and dosimetry of isotopic sources of neutrons by means of artificial neural networks

    International Nuclear Information System (INIS)

    The artificial neural networks technology has been applied to reconstruct the neutrons spectra of two isotopic sources: 252Cf, and 241Am-Be. Also, this technology has been applied to obtain the effective dose, E, and the personal dose equivalents, Hp(10) and environmental, H *(10). To obtain the spectra and the doses only were used the count rates produced in a Bonner Spheres spectrometer with a scintillator of 6LiI(Eu) of 0.4 φ x 0.4 cm2. The equivalent environmental dose and the spectra of the sources were also obtained by means of the reconstruction code BUNKIUT. When comparing the results obtained by means of both procedures it was found that they are consistent. (Author)

  10. Very high energy neutrino expectation from Fanaroff-Riley I sources

    CERN Document Server

    Marinelli, A

    2014-01-01

    Fanaroff-Riley I radiogalaxies have been observed in TeV gamma-rays during the last decades. The origin of the emission processes related with this energy band is still under debate. Here we consider the case of the two closest Fanaroff-Riley I objects: Centaurus A and M87. Their entire broadband spectral energy distributions and variability fluxes show evidences that leptonic models are not sufficient to explain their fluxes above 100 GeV. Indeed, both objects have been imaged by LAT instrument aboard of Fermi telescope with measured spectra well connected with one-zone leptonic models. However, to explain the TeV spectra obtained with campaigns by H.E.S.S., for Centaurus A, and by VERITAS, MAGIC and H.E.S.S. for M87, different emission processes must be introduced. In this work we evoke hadronic scenarios to describe the TeV gamma-ray fluxes observed and to obtain the expected neutrino counterparts for each considered TeV campaign. With the obtained neutrino spectra we calculate, through Monte Carlo simulat...

  11. Constraint on Neutrino Decay with Medium-Baseline Reactor Neutrino Oscillation Experiments

    CERN Document Server

    Abrahao, Thamys; Nunokawa, Hiroshi; Quiroga, Alexander A

    2015-01-01

    The experimental bound on lifetime of nu_3, the neutrino mass eigenstate with the smallest nu_e component, is much weaker than those of nu_1 and nu_2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (~ 50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on nu_3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed chi^2 analysis that the nu_3 lifetime divided by its mass, tau_3/ m_3, can be constrained to be tau_3/m_3 > 7.5 (5.5) x 10^{-11} s/eV at 95% (99%) C.L. by 100 kt.years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run.

  12. Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments

    Science.gov (United States)

    Abrahão, Thamys; Minakata, Hisakazu; Nunokawa, Hiroshi; Quiroga, Alexander A.

    2015-11-01

    The experimental bound on lifetime of ν 3, the neutrino mass eigenstate with the smallest ν e component, is much weaker than those of ν 1 and ν 2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (˜50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on ν3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed χ 2 analysis that the ν 3 lifetime divided by its mass, τ 3 /m 3, can be constrained to be τ 3 /m 3 > 7 .5 (5 .5) × 10-11 s/eV at 95% (99%) C.L. by 100 kt·years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run. We also discuss to what extent ν 3 decay affects mass-ordering determination and precision measurements of the mixing parameters.

  13. Neutrino physics

    International Nuclear Information System (INIS)

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac), of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end. (author)

  14. Neutrino Physics

    CERN Document Server

    Gil-Botella, I

    2013-01-01

    The fundamental properties of neutrinos are reviewed in these lectures. The first part is focused on the basic characteristics of neutrinos in the Standard Model and how neutrinos are detected. Neutrino masses and oscillations are introduced and a summary of the most important experimental results on neutrino oscillations to date is provided. Then, present and future experimental proposals are discussed, including new precision reactor and accelerator experiments. Finally, different approaches for measuring the neutrino mass and the nature (Majorana or Dirac) of neutrinos are reviewed. The detection of neutrinos from supernovae explosions and the information that this measurement can provide are also summarized at the end.

  15. Ultra- and extremely high energy neutrino astronomy

    OpenAIRE

    I. SokalskiINFN, Bari

    2014-01-01

    Scientific motivations for ultra- and extremely high energy neutrino astronomy are considered. Sources and expected fluxes of EHE/UHE neutrinos are briefly discussed. Operating and planned experiments on astrophysical neutrino detection are reviewed focusing on deep underwater/ice Cherenkov neutrino telescopes.

  16. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: Explaining the IceCube TeV-PeV neutrinos

    Science.gov (United States)

    Wang, Xiang-Yu; Liu, Ruo-Yu

    2016-04-01

    Cosmic ray interactions that produce high-energy neutrinos also inevitably generate high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background after they escape the sources. It was recently found that the high flux of neutrinos at ˜30 TeV detected by IceCube lead to a cumulative gamma-ray flux exceeding the Fermi isotropic gamma-ray background at 10-100 GeV, implying that the neutrinos are produced by hidden sources of cosmic rays, where GeV-TeV gamma rays are not transparent. Here we suggest that relativistic jets in tidal disruption events (TDEs) of supermassive black holes are such hidden sources. We consider the jet propagation in an extended, optically thick envelope around the black hole, which results from the ejected material during the disruption. While powerful jets can break free from the envelope, less powerful jets would be choked inside the envelope. The jets accelerate cosmic rays through internal shocks or reverse shocks and further produce neutrinos via interaction with the surrounding dense photons. All three TDE jets discovered so far are not detected by Fermi/LAT, suggesting that GeV-TeV gamma rays are absorbed in these jets. The cumulative neutrino flux from TDE jets can account for the neutrino flux observed by IceCube at PeV energies and may also account for the higher flux at ˜30 TeV if less powerful, choked jets are present in the majority of TDEs.

  17. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.; Schrempp, L.

    2006-06-15

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 10{sup 13} GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  18. Probing neutrino dark energy with extremely high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Recently, a new non-Standard Model neutrino interaction mediated by a light scalar field was proposed, which renders the big-bang relic neutrinos of the cosmic neutrino background a natural dark energy candidate, the so-called Neutrino Dark Energy. As a further consequence of this interaction, the neutrino masses become functions of the neutrino energy densities and are thus promoted to dynamical, time/redshift dependent quantities. Such a possible neutrino mass variation introduces a redshift dependence into the resonance energies associated with the annihilation of extremely high-energy cosmic neutrinos on relic anti-neutrinos and vice versa into Z-bosons. In general, this annihilation process is expected to lead to sizeable absorption dips in the spectra to be observed on earth by neutrino observatories operating in the relevant energy region above 1013 GeV. In our analysis, we contrast the characteristic absorption features produced by constant and varying neutrino masses, including all thermal background effects caused by the relic neutrino motion. We firstly consider neutrinos from astrophysical sources and secondly neutrinos originating from the decomposition of topological defects using the appropriate fragmentation functions. On the one hand, independent of the nature of neutrino masses, our results illustrate the discovery potential for the cosmic neutrino background by means of relic neutrino absorption spectroscopy. On the other hand, they allow to estimate the prospects for testing its possible interpretation as source of Neutrino Dark Energy within the next decade by the neutrino observatories ANITA and LOFAR. (Orig.)

  19. Which blazars are neutrino loud?

    International Nuclear Information System (INIS)

    Protons accelerated in the cores of active galactic nuclei can effectively produce neutrinos only if the soft radiation background in the core is sufficiently high. We find restrictions on the spectral properties and luminosity of blazars under which they can be strong neutrino sources. We analyze the possibility that the neutrino flux is highly beamed along the rotation axis of the central black hole. The enhancement of the neutrino flux compared to the GeV γ-ray flux from a given source makes the detection of neutrino point sources more probable. At the same time the smaller open angle reduces the number of possible neutrino-loud blazars compared to the number of γ-ray loud ones. We present a table of 15 blazars which are the most likely candidates for the detection by future neutrino telescopes

  20. Neutrino cosmology

    International Nuclear Information System (INIS)

    These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)

  1. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Ackermann, M.; Adams, J.;

    2014-01-01

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007–2010. These include parts of the 2005–2007 run and...... gravitational-wave emission energy of 10^−2  M_⊙c^2 at ∼150  Hz with ∼60  ms duration, and high-energy neutrino emission of 10^51  erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6×10^{−2}  Mpc^{−3} yr^{−1}. We also examine how combining information from...... gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era....

  2. Measuring light spectrum as a main indicator of artificial sources quality

    Directory of Open Access Journals (Sweden)

    Piotr Dąbrowski

    2015-05-01

    Full Text Available Objective: To compare different artificial light sources in different places where plant breeding is conduced. Methods: Measurements were conducted outdoor, in room, in greenhouse, under four panels with light emitting diodes, in phytotron, in dark room with various light sources and inside Sanyo versatile environmental chamber. The measurements were made by using SpectraPen SP100 (PSI, Czech Republic device. Results: Our result showed that spectrum measured outdoor during sunny day had only one peak at the wavelength of 485 nm (ca. 60000 relative units. On cloudy day, the trend of light spectrum curve was similar, but with lower values. At room conditions, the curve was more flat than outdoor. Under greenhouse conditions, the curve was similar to that measured outdoor. A few additional peaks on the curve appeared by adding high pressure sodium lamp. There were changes of curve under LED panels. Conclusions: It must be underlined that the most similar spectrum curve to daylight light has incandescent bulb and this light source should be preferred as support of daylight in greenhouses and as main source in phytotrons. Using high pressure sodium lamp in greenhouses as support of daylight cause increase in the red/far-red ratio and occurrence of a new peak on spectrum curve. The new possibilities are creating by LED panels with red and blue diodes.

  3. Measuring light spectrum as a main indicator of artificial sources quality

    Institute of Scientific and Technical Information of China (English)

    Piotr Dbrowski; Magdalena Danuta Cetner; IzabelaAnna Samborska; Mohamed Hazem Kalaji

    2015-01-01

    Objective: To compare different artificial light sources in different places where plant breeding is conduced. Methods: Measurements were conducted outdoor, in room, in greenhouse, under four panels with light emitting diodes, in phytotron, in dark room with various light sources and inside Sanyo versatile environmental chamber. The measurements were made by using SpectraPen SP100 (PSI, Czech Republic) device. Results: Our result showed that spectrum measured outdoor during sunny day had only one peak at the wavelength of 485 nm (ca. 60000 relative units). On cloudy day, the trend of light spectrum curve was similar, but with lower values. At room conditions, the curve was more flat than outdoor. Under greenhouse conditions, the curve was similar to that measured outdoor. A few additional peaks on the curve appeared by adding high pressure sodium lamp. There were changes of curve under LED panels. Conclusions: It must be underlined that the most similar spectrum curve to daylight light has incandescent bulb and this light source should be preferred as support of daylight in greenhouses and as main source in phytotrons. Using high pressure sodium lamp in greenhouses as support of daylight cause increase in the red/far-red ratio and occurrence of a new peak on spectrum curve. The new possibilities are creating by LED panels with red and blue diodes.

  4. Detection of metagalactic and galactic sources of very high-energy gamma-quanta and neutrinos with the mirror Cherenkov telescope SHALON

    International Nuclear Information System (INIS)

    Gamma-astronomy and neutrino astronomy are unique experimental possibilities to search for sources of high-energy cosmic rays (1012-1014eV). Experimental data on sources of γ-quanta with the energy >1TeV are characterized by the fact that observed metagalactic sources (active galactic nuclei), being different in power from galactic sources by the factor of 106-107, do not differ in the energy spectrum, F(>Eγ)∝Eγ-1.3+/-0.15. The power of the metagalactic sources and their unlimited number casts doubts on the assumption of a galactic origin of the observed cosmic-ray flux. It is possible to assume that the uniform cosmic-ray spectrum is formed by ''braking'' in multiple elastic or inelastic collisions with relict photons in intergalactic space. Thus, the observed distribution of protons and cosmic-ray nuclei with the spectral index 2.72+/-0.02 (=2.718..., the Napier's constant) may be a consequence of such a ''braking'' that warms up the relict photons. Problems in observation of extensive air showers generated by neutrinos are connected with an extremely small cross section of inelastic collisions of neutrinos with nuclei. However, two facts allow to search for showers generated by neutrinos: (1) a hadron cascade with the primary energy of more than 1012eV leaves a mountain ridge to the atmosphere from the depth ∼300g/cm2 without an essential loss of the total energy in the hadron cascade, and (2) air Cherenkov radiation from such hadron cascades will be observed with a 7.5km distant telescope over an area of more than 7x105m2. This partially compensates the small cross section of inelastic neutrino collisions

  5. Neutrino Physics

    Science.gov (United States)

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  6. Geometrical shape optimization of a cold neutron source using artificial intelligence strategies

    International Nuclear Information System (INIS)

    A new approach is developed for optimizing the geometrical shape of a cold neutron source to maximize its cold neutron outward leakage. An analogy is drawn between the shape optimization problem and a state space search, which is the fundamental problem in Artificial Intelligence applications. The new optimization concept is implemented in the computer code DAIT in which the physical model is represented by a two group, r-z geometry nodal diffusion method, and the state space search is conducted via the Nearest Neighbor algorithm. The accuracy of the nodal diffusion method solution is established on meshes of interest, and is shown to behave qualitatively the same as transport theory solutions. The dependence of the optimum shape and its value on several physical and search parameters is examined via numerical experimentation. 10 refs., 6 figs., 2 tabs

  7. Small neutrino masses from gravitational θ -term

    Science.gov (United States)

    Dvali, Gia; Funcke, Lena

    2016-06-01

    We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational θ -term leads to the emergence of a new bound neutrino state analogous to the η' meson of QCD. Then we show the consequent formation of a neutrino vacuum condensate, which effectively generates small neutrino masses. Afterwards we outline numerous phenomenological consequences of our neutrino mass generation model. The cosmological neutrino mass bound vanishes since we predict the neutrinos to be massless until the phase transition in the late Universe, T ˜meV . Coherent radiation of new light particles in the neutrino sector can be detected in prospective precision experiments. Deviations from an equal flavor rate due to enhanced neutrino decays in extraterrestrial neutrino fluxes can be observed in future IceCube data. These neutrino decays may also necessitate modified analyses of the original neutrino spectra of the supernova SN 1987A. The current cosmological neutrino background only consists of the lightest neutrinos, which, due to enhanced neutrino-neutrino interactions, either bind up, form a superfluid, or completely annihilate into massless bosons. Strongly coupled relic neutrinos could provide a contribution to cold dark matter in the late Universe, together with the new proposed particles and topological defects, which may have formed during neutrino condensation. These enhanced interactions could also be a source of relic neutrino clustering in our Galaxy, which possibly makes the overdense cosmic neutrino background detectable in the KATRIN experiment. The neutrino condensate provides a mass for the hypothetical B -L gauge boson, leading to a gravity-competing force detectable in short-distance measurements. Prospective measurements of the polarization intensities of gravitational waves can falsify our neutrino mass generation model.

  8. Neutrino Masses

    CERN Document Server

    Weinheimer, Christian

    2013-01-01

    The various experiments on neutrino oscillation evidenced that neutrinos have indeed non-zero masses but cannot tell us the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double $\\beta$-decay and the direct neutrino mass search by investigating single $\\beta$-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments with different techniques are being constructed, commissioned or are even running, which aim for a sensitivity on the neutrino ...

  9. Classifying Sources Influencing Indoor Air Quality (IAQ) Using Artificial Neural Network (ANN)

    Science.gov (United States)

    Mad Saad, Shaharil; Melvin Andrew, Allan; Md Shakaff, Ali Yeon; Mohd Saad, Abdul Rahman; Muhamad Yusof @ Kamarudin, Azman; Zakaria, Ammar

    2015-01-01

    Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC), base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room’s conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity. PMID:26007724

  10. Classifying Sources Influencing Indoor Air Quality (IAQ Using Artificial Neural Network (ANN

    Directory of Open Access Journals (Sweden)

    Shaharil Mad Saad

    2015-05-01

    Full Text Available Monitoring indoor air quality (IAQ is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC, base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room’s conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity.

  11. JUNO: a General Purpose Experiment for Neutrino Physics

    CERN Document Server

    Grassi, Marco

    2016-01-01

    JUNO is a 20 kt Liquid Scintillator Antineutrino Detector currently under construction in the south of China. This report reviews JUNO's physics programme related to all neutrino sources but reactor antineutrinos, namely neutrinos from supernova burst, solar neutrinos and geoneutrinos.

  12. Neutrino physics

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  13. Theoretical Aspects of Neutrino Physics

    International Nuclear Information System (INIS)

    Recent years have seen an extraordinary breakthrough in neutrino physics. Compelling experimental evidence indicates that, contrary to earlier believes, this fundamental particles have non zero masses and mix. Such properties are manifested in the oscillation phenomena in neutrino fluxes produced within the Sun, by cosmic rays, and in nuclear plants on the Earth, among other astrophysical and terrestrial sources. In these lecture we provide a short introduction to neutrino properties, mainly intended to give some basic elements of the physics of neutrino oscillations for beginners. We also discuss some of the theoretical questions raised on particle physics by the discovery of neutrino masses and mixings

  14. Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Andeen, K; Anderson, T; Ansseau, I; Anton, G; Archinger, M; Argüelles, C; Auffenberg, J; Axani, S; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blot, S; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Burgman, A; Carver, T; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Cross, R; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dujmovic, H; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Eller, P; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C -C; Franckowiak, A; Friedman, E; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Ghorbani, K; Giang, W; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Grant, D; Griffith, Z; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hansmann, T; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Hoshina, K; Huang, F; Huber, M; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Katz, U; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kim, M; Kintscher, T; Kiryluk, J; Kittler, T; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, M; Krückl, G; Krüger, C; Kunnen, J; Kunwar, S; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lauber, F; Lennarz, D; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mancina, S; Mandelartz, M; Maruyama, R; Mase, K; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Mohrmann, L; Montaruli, T; Moulai, M; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Peiffer, P; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pinat, E; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relethford, B; Relich, M; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Rysewyk, D; Sabbatini, L; Herrera, S E Sanchez; Sandrock, A; Sandroos, J; Sarkar, S; Satalecka, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Tenholt, F; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Rossem, M; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Weiss, M J; Wendt, C; Westerhoff, S; Whelan, B J; Wickmann, S; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wolf, M; Wood, T R; Woolsey, E; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2016-01-01

    We report constraints on the sources of ultra-high-energy cosmic ray (UHECR) above $10^{9}$ GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high energy neutrino-induced events which have deposited energies from $\\sim 10^6$ GeV to above $10^{11}$ GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \\pm 0.3) \\times 10^6$ GeV, the highest neutrino energies observed so far, and $(7.7 \\pm 2.0) \\times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6$\\sigma$. The hypothesis that the observed events are of cosmogenic origin is also rejected at $>$99% CL because of the limited deposited energy and the non-observation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on cosmogenic neutrino fluxes disfavor the UHECR sources having cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and $\\gam...

  15. Viable chaotic inflation as a source of neutrino masses and leptogenesis

    Science.gov (United States)

    Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T.

    2016-06-01

    We show that the seesaw mechanism as well as leptogenesis are natural outcomes of a viable chaotic inflation in supergravity. The inflation model contains two superfields, the inflaton and stabilizer fields, which, being singlets under the standard model gauge symmetry, naturally couple to the lepton and Higgs doublets. The inflaton decays into leptons and Higgs fields, and the reheating temperature is predicted to be of O (1013) GeV, for which thermal leptogenesis is possible. On the other hand, gravitinos are copiously produced, and various solutions to the gravitino problem are discussed. We also argue that, if the shift symmetry of the inflaton is explicitly broken down to a discrete one, neutrino Yukawa couplings are periodic in the inflaton field, and masses of leptons and Higgs do not blow up even if the inflaton takes super-Planckian field values. The inflaton potential is given by a sum of sinusoidal functions with different height and periodicity, the so-called multi-natural inflation. We show that the predicted scalar spectral index and tensor-to-scalar ratio lie in the region favored by the Planck data.

  16. Atmospheric neutrinos and neutrino oscillations

    International Nuclear Information System (INIS)

    The results on the composition of atmospheric neutrinos interacting in underground detectors and on the rate of atmospheric muon neutrino interactions in the earth surrounding the detectors are reviewed. So far, systematic errors on the neutrino flux and on the electrons and muons neutrino interaction identifications are not yet reliable enough to prove that atmospheric neutrinos oscillate before being detected. (author) 22 refs., 5 figs

  17. Source location of artificial acoustic emission in elbow-pipe joint using neural network

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Kyoji; Okamura, Yuka [The Univ. of Electro-communications, Chofu, Tokyo (Japan)

    2002-11-01

    A new technique to locate a defect, combining acoustic emission (AE) and neural network, is proposed to assess the structural integrity of a pipeline in operation. Computer simulations and experiments to locate the defect using artificial AE by means of a pencil lead break are conducted at an elbow-pipe joint. Arrival time differences of the AE wave from the AE source to four sensors with 150kHz resonance frequency are measured using an AE digital measuring system with four channel devices. Half the data and all data are used for leaning of the neural network and for estimating the locations, respectively. Source location error of the elbow-pipe joint in the experiment, as well as the simulation, was less than 1%. To confirm the detection of a crack extension in a pipe joint by the system, crack tip locations due to extension are obtained from a welded defect of a tensile specimen are determined. Results are obtained for the detection of the crack extension. (author)

  18. Source location of artificial acoustic emission in elbow-pipe joint using neural network

    International Nuclear Information System (INIS)

    A new technique to locate a defect, combining acoustic emission (AE) and neural network, is proposed to assess the structural integrity of a pipeline in operation. Computer simulations and experiments to locate the defect using artificial AE by means of a pencil lead break are conducted at an elbow-pipe joint. Arrival time differences of the AE wave from the AE source to four sensors with 150kHz resonance frequency are measured using an AE digital measuring system with four channel devices. Half the data and all data are used for leaning of the neural network and for estimating the locations, respectively. Source location error of the elbow-pipe joint in the experiment, as well as the simulation, was less than 1%. To confirm the detection of a crack extension in a pipe joint by the system, crack tip locations due to extension are obtained from a welded defect of a tensile specimen are determined. Results are obtained for the detection of the crack extension. (author)

  19. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  20. Popular species of edible mushrooms as a good source of zinc to be released to artificial digestive juices.

    Science.gov (United States)

    Zajac, M; Muszynska, B; Kala, K; Sikora, A; Opoka, W

    2015-10-01

    Because fruiting bodies of edible mushrooms accumulate elements very effectively, in this study for the first time we aimed at determining the degree of the release of zinc(II) ions to artificial digestive juices imitating the human gastrointestinal tract from freeze-dried popular edible mushroom fruiting bodies, such as Agaricus bisporus, Boletus badius and Cantharellus cibarius. For the analysis, anodic stripping voltammetry method was used. The amount of zinc released to artificial saliva within 1 minute ranged from 0.03 to 1.14 mg/100 g d.w. In gastric juice, the amounts were higher and ranged from 0.75 to 2.07 mg/100 g d.w. depending on the incubation time. After incubation of the freeze-dried edible mushroom fruiting bodies for 1 minute in artificial saliva, 15 in artificial gastric juice and then 150 minutes in artificial intestinal juice, it was found that the concentration of the released zinc in artificial intestinal juice was the highest and amounted to 6.44 mg/100 g d.w. The total average amount of zinc released from Boletus badius was the highest and this was estimated at 4.13 mg/100 g d.w. For the remaining two investigated species of A. bisporus and C. cibarius, the total amounts of zinc released into artificial digestive juices were only slightly lower and were estimated at 2.23 and 3.29 mg/100 g d.w. on average, respectively. It was demonstrated for the first time that mushrooms release zinc to artificial digestive juices imitating conditions in the human digestive tract and are a good source of this element. PMID:26579582

  1. Neutrino astrophysics

    International Nuclear Information System (INIS)

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric and solar neutrinos. The major role that neutrinos play in astrophysics and cosmology is illustrated. (author)

  2. Non-unitary neutrino propagation from neutrino decay

    International Nuclear Information System (INIS)

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature

  3. Non-unitary neutrino propagation from neutrino decay

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Berryman

    2015-03-01

    Full Text Available Neutrino propagation in space–time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  4. The ANTARES neutrino telescope

    CERN Document Server

    Zornoza, Juan de Dios

    2012-01-01

    The ANTARES collaboration completed the installation of the first neutrino detector in the sea in 2008. It consists of a three dimensional array of 885 photomultipliers to gather the Cherenkov photons induced by relativistic muons produced in charged-current interactions of high energy neutrinos close to/in the detector. The scientific scope of neutrino telescopes is very broad: the origin of cosmic rays, the origin of the TeV photons observed in many astrophysical sources or the nature of dark matter. The data collected up to now have allowed us to produce a rich output of physics results, including the map of the neutrino sky of the Southern hemisphere, search for correlations with GRBs, flaring sources, gravitational waves, limits on the flux produced by dark matter self-annihilations, etc. In this paper a review of these results is presented.

  5. Neutrino Astronomy with the IceCube Observatory

    CERN Document Server

    Kappes, Alexander

    2012-01-01

    IceCube is the first representative of the km^3 class of neutrino telescopes and currently the most sensitive detector to high-energy neutrinos. Its main mission is to search for Galactic and extragalactic sources of high-energy neutrinos, but it is also an excellent detector for the investigation of a variety of other highly topical astrophysics and particle physics topics like supernovae, dark matter and neutrino oscillations. After an introduction to neutrino astronomy and neutrino telescopes, this article presents a selection of latest results from the IceCube neutrino detector with respect to searches for cosmic high-energy neutrino sources.

  6. Neutrino masses

    CERN Document Server

    Buccella, F

    2004-01-01

    By requiring the lower limit for the lightest right-handed neutrino mass, obtained in the baryogenesis from leptogenesis scenario, and a Dirac neutrino mass matrix similar to the up-quark mass matrix we predict small values for the $\

  7. Neutrino astronomy

    International Nuclear Information System (INIS)

    In recent years, there has been considerable discussion on the field called neutrino astronomy which represents exciting prospect in that it deals with the radiations which are distinct from electromagnetic spectra. Because of the unique, enormously long interaction mean free path of neutrinos, this field can in principle give extremely valuable complementary information about the universe, in particular about the conditions in the core of the sun and the energy balance and extent of the galaxy. Remarkable difference is observed when outlining of the development of neutrino astronomy is attempted in a manner similar to that for radio astronomy. The development on solar neutrinos, calculation of solar neutrino flux, solar neutrino search experiments, efforts to resolve the discrepancy between theory and experiment concerning the neutrinos from the sun, chemistry consideration, nuclear physics problems, astrophysical calculation, neutrino physics and other physical accomplishments are reviewed in the report. (Iwase, T.)

  8. Oscillating neutrinos

    International Nuclear Information System (INIS)

    After a general introduction into the mixing of muon and electron neutrinos due to a possible mass difference between these particles some experiments for the study of neutrino oscillations are described. (HSI).

  9. Biological aspects of Argyrotaenia sphaleropa (Meyrick, 1909) (Lepidoptera: Tortricidae) in artificial diets with different protein sources

    International Nuclear Information System (INIS)

    Biology aspects of Argyrotaenia sphaleropa Meyrick fed on artificial diets with different protein sources were studied: D1-white bean, wheat germ, soybean protein and casein; D2-common bean and yeast and D3-common bean, yeast and wheat germ, evaluating the duration and viability of all developmental stages (egg, larval, prepupa and pupa) and of the total cycle (egg-adult), sex ratio, pupa weight, fecundity, longevity and life table of fertility. Tests were conducted in the laboratory at 25 ± 1 deg C, 65 ±10% RH and 14h of photophase. Duration of the egg stage was 6.6 days on all diets. The longest duration of larval and prepupal stages on D1 and pupal stages on D2, resulting in a longer duration of the total cycle on these two diets (30,9 and 30,8 days). The total viability was higher than 62% on all diets, and there was no statistical difference among the treatments. The number of instars was four or five on all treatments. The lowest fecundity was observed in D1. Based on the fertility life table, D3 was the most suitable diet for rearing A. sphaleropa, due to the lowest development time (T), the highest finite increasing rate (l), and total viability exceeding 75%. (author)

  10. Sterile Neutrino Search with MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Devan, Alena V. [College of William and Mary, Williamsburg, VA (United States)

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  11. Sterile Neutrino Search with MINOS

    International Nuclear Information System (INIS)

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, Δms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  12. Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube

    CERN Document Server

    Aartsen, M G; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Beatty, J J; Tjus, J Becker; Becker, K -H; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bos, F; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Felde, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gier, D; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hellwig, D; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Jurkovic, M; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Koob, A; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Kriesten, A; Krings, K; Kroll, G; Kroll, M; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Larsen, D T; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Medici, M; Meli, A; Meures, T; Miarecki, S; Middell, E; Middlemas, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Penek, Ö; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Rees, I; Reimann, R; Resconi, E; Rhode, W; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rongen, M; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Sandroos, J; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Tosi, D; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; Vandenbroucke, J; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wichary, C; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; :,; Aasi, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Alemic, A; Allen, B; Allocca, A; Amariutei, D; Andersen, M; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J S; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Augustus, H; Aulbert, C; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barbet, M; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bauchrowitz, J; Bauer, Th S; Baune, C; Bavigadda, V; Behnke, B; Bejger, M; Beker, M G; Belczynski, C; Bell, A S; Bell, C; Bergmann, G; Bersanetti, D; Bertolini, A; Betzwieser, J; Bilenko, I A; Billingsley, G; Birch, J; Biscans, S; Bitossi, M; Biwer, C; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bojtos, P; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, Sukanta; Bosi, L; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Buchman, S; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Burman, R; Buskulic, D; Buy, C; Cadonati, L; Cagnoli, G; Bustillo, J Calderón; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castaldi, G; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Celerier, C; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C; Colombini, M; Cominsky, L; Constancio, M; Conte, A; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J -P; Countryman, S; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Croce, R P; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Cutler, C; Dahl, K; Canton, T Dal; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; DeBra, D; Debreczeni, G; Degallaix, J; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M; Dickson, J; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dolique, V; Dominguez, E; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S; Eberle, T; Edo, T; Edwards, M; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fazi, D; Fehrmann, H; Fejer, M M; Feldbaum, D; Feroz, F; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P; Flaminio, R; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gair, J R; Gammaitoni, L; Gaonkar, S; Garufi, F; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Gräf, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C J; Gushwa, K; Gustafson, E K; Gustafson, R; Ha, J; Hall, E D; Hamilton, W; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hart, M; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hewitson, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Holt, K; Hopkins, P; Horrom, T; Hoske, D; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Huerta, E; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Idrisy, A; Ingram, D R; Inta, R; Islas, G; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; Jang, H; Jaranowski, P; Ji, Y; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karlen, J; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Keiser, G M; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, C; Kim, K; Kim, N G; Kim, N; Kim, S; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Kuehn, G; Kumar, A; Kumar, D Nanda; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lam, P K; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, J; Lee, P J; Leonardi, M; Leong, J R; Roux, A Le; Leroy, N; Letendre, N; Levin, Y; Levine, B; Lewis, J; Li, T G F; Libbrecht, K; Libson, A; Lin, A C; Littenberg, T B; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lopez, E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Lubinski, M J; Lück, H; Lundgren, A P; Ma, Y; Macdonald, E P; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R; Mageswaran, M; Maglione, C; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mangini, N M; Mansell, G; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; McLin, K; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meinders, M; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Minenkov, Y; Mingarelli, C M F; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Moggi, A; Mohan, M; Mohapatra, S R P; Moraru, D; Moreno, G; Morgado, N; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nielsen, A B; Nissanke, S; Nitz, A H; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Oh, J J; Oh, S H; Ohme, F; Omar, S; Oppermann, P; Oram, R; O'Reilly, B; Ortega, W; O'Shaughnessy, R; Osthelder, C; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palashov, O; Palomba, C; Pan, H; Pan, Y; Pankow, C; Paoletti, F; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Pele, A; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poteomkin, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S; Prestegard, T; Price, L R; Prijatelj, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qin, J; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Ramirez, K; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Recchia, S; Reed, C M; Regimbau, T; Reid, S; Reitze, D H; Reula, O; Rhoades, E; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S B; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J R; Sankar, S; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Scheuer, J; Schilling, R; Schilman, M; Schmidt, P; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Singh, R; Sintes, A M; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Son, E J; Sorazu, B; Souradeep, T; Staley, A; Stebbins, J; Steinke, M; Steinlechner, J; Steinlechner, S; Stephens, B C; Steplewski, S; Stevenson, S; Stone, R; Stops, D; Strain, K A; Straniero, N; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Tacca, M; Talukder, D; Tanner, D B; Tao, J; Tarabrin, S P; Taylor, R; Tellez, G; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Tshilumba, D; Tuennermann, H; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyachanin, S P; Wade, A R; Wade, L; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, M; Wang, X; Ward, R L; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Wiesner, K; Wilkinson, C; Williams, K; Williams, L; Williams, R; Williams, T D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M; Winkler, W; Wipf, C C; Wiseman, A G; Wittel, H; Woan, G; Wolovick, N; Worden, J; Wu, Y; Yablon, J; Yakushin, I; Yam, W; Yamamoto, H; Yancey, C C; Yang, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J -P; Zhang, Fan; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zucker, M E; Zuraw, S; Zweizig, J

    2014-01-01

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of $10^{-2}$ M$_\\odot$c$^2$ at $\\sim 150$ Hz with $\\sim 60$ ms duration, and high-energy neutrino emission of $10^{51}$ erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below $1.6 \\times 10^{-2}$ Mpc$^{-3}$yr$^{-1}$. We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave d...

  13. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos

    CERN Document Server

    Wang, Xiang-Yu

    2015-01-01

    Cosmic ray interactions that produce high-energy neutrinos also inevitably generate high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background after they escape the sources. It was recently found that, the high flux of neutrinos at $\\sim30$ TeV detected by IceCube lead to a cumulative gamma-ray flux exceeding the Fermi isotropic gamma-ray background at 10-100 GeV, implying that the neutrinos are produced by hidden sources of cosmic rays, where GeV-TeV gamma-rays are not transparent. Here we suggest that relativistic jets in tidal disruption events (TDEs) of supermassive black holes are such hidden sources. We consider the jet propagation in an extended,optically thick envelope around the black hole, which is resulted from the ejected material during the disruption. While powerful jets can break free from the envelope, less powerful jets would be choked inside the envelope. The jets accelerate cosmic rays through internal shocks or reverse shocks and further produce neutri...

  14. Neutrino Astrophysics

    OpenAIRE

    Haxton, W. C.

    2000-01-01

    A general overview of neutrino physics and astrophysics is given, starting with a historical account of the development of our understanding of neutrinos and how they helped to unravel the structure of the Standard Model. We discuss why it is so important to establish if neutrinos are massive and introduce the main scenarios to provide them a mass. The present bounds and the positive indications in favor of non-zero neutrino masses are discussed, including the recent results on atmospheric an...

  15. Neutrino Physics

    CERN Document Server

    Romanino, Andrea

    2012-01-01

    These lectures aim at providing a pedagogical overview of neutrino physics. We will mostly deal with standard neutrinos, the ones that are part of the Standard Model of particle physics, and with their standard dynamics, which is enough to understand in a coherent picture most of the rich data available. After introducing the basic theoretical framework, we will illustrate the experimental determination of the neutrino parameters and their theoretical implications, in particular for the origin of neutrino masses.

  16. Radiological impact of natural and artificial sources of ionizing radiation. Report UNSCEAR 2000

    International Nuclear Information System (INIS)

    The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was established by the General Assembly in 1995. It has the mandate to assess the levels and effects of ionizing radiation. During the last years UNSCEAR has undertaken a broad review of the natural and artificial sources of ionizing radiation. The results of these evaluations have been presented in a Report to the General Assembly with Scientific Annexes including extensive data for the world community (Report UNSCEAR 2000). The greatest contribution to radiation exposure comes from natural background sources. There are considerable variation in the exposures of the population depending on the altitude and latitude, characteristics of the soil and diet and the construction and ventilation features of houses. The global annual average per caput is 2.4 mSv with typical range 1 to 10 mSv. The next largest component comes from medical radiation examinations and treatments with an annual average of 0.4 mSv ranging from 0.04 to 1.0 mSv depending on the level o f medical care. The man-made practices, activities, and events in which radionuclides are released to the environment are always of much concern, but usually they contribute quite low to radiation exposure to humans. Atmospheric testing caused the greatest releases but nowadays very low residual annual levels of exposures persist (0.005 mSv). Nuclear Power production is responsible for only very low exposure and may reach in the future an average annual level of 0.0002 mSv. (Author)

  17. Neutrino tomography - Learning about the Earth's interior using the propagation of neutrinos

    OpenAIRE

    Winter, Walter

    2006-01-01

    Because the propagation of neutrinos is affected by the presence of Earth matter, it opens new possibilities to probe the Earth's interior. Different approaches range from techniques based upon the interaction of high energy (above TeV) neutrinos with Earth matter, to methods using the MSW effect on the neutrino oscillations of low energy (MeV to GeV) neutrinos. In principle, neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.) can be used. In this talk, we summariz...

  18. Neutrino Physics

    OpenAIRE

    Langacker, Paul; Erler, Jens; Peinado, Eduardo

    2005-01-01

    The theoretical and experimental bases of neutrino mass and mixing are reviewed. A brief chronological evolution of the weak interactions, the electroweak Standard Model, and neutrinos is presented. Dirac and Majorana mass terms are explained as well as models such as the seesaw mechanism. Schemes for two, three and four neutrino mixings are presented.

  19. Neutrino properties

    CERN Document Server

    Valle, José W F

    1996-01-01

    A brief sketch is made of the present observational status of neutrino properties, with emphasis on the hints from solar and atmospheric neutrinos, as well as cosmological data on the amplitude of primordial density fluctuations. Implications of neutrino mass in particle accelerators, astrophysics and cosmology are discussed.

  20. Neutrino Radar

    CERN Document Server

    Panigrahi, P K

    2002-01-01

    We point out that with improving our present knowledge of experimental neutrino physics it will be possible to locate nuclear powered vehicles like submarines, aircraft carriers and UFOs and detect nuclear testing. Since neutrinos cannot be shielded, it will not be possible to escape these detection. In these detectors it will also be possible to perform neutrino oscillation experiments during any nuclear testing.

  1. Solar neutrinos

    International Nuclear Information System (INIS)

    The problem with solar neutrinos is that there seem to be too few of them, at least near the top end of the spectrum, since the 37Cl detector finds only about 35% of the standard predicted flux. Various kinds of explanation have been offered: (a) the standard solar model is wrong, (b) neutrinos decay, (c) neutrinos have magnetic moments, (d) neutrinos oscillate. The paper surveys developments in each of these areas, especially the possible enhancement of neutrino oscillations by matter effects and adiabatic level crossing. The prospects for further independent experiments are also discussed. (author)

  2. A Novel Approach In The Detection Of Muon Neutrino To Tau Neutrino Oscillation From Extragalactic Neutrinos

    CERN Document Server

    Iyer, S R

    2001-01-01

    A novel approach is proposed for studying the νμ → ν τ oscillation and detection of extragalactic neutrinos. Active Galactic Nuclei (AGN), Gamma Ray Bursters (GRB) and Topological Defects are believed to be sources of ultrahigh energy νμ and ντ. These astrophysical sources provide a long baseline of 100Mpc, or more, for possible detection of νμ → ντ oscillation with mixing parameter Δm2 down to 10 −17 eV2, many orders of magnitude below the current accelerator experiments. The propagation characteristics of upward going muon and tau neutrinos is studied to show that high energy tau neutrinos cascade down in energy as they propagate through the Earth, producing an enhancement of the incoming tau neutrino flux in the low energy region. By contrast, high energy muon neutrinos get attenuated as they traverse the Earth. It is observed that the relative steepness of the incoming neutrino flux...

  3. Solar neutrinos and neutrino physics

    Science.gov (United States)

    Maltoni, Michele; Smirnov, Alexei Yu.

    2016-04-01

    Solar neutrino studies triggered and largely motivated the major developments in neutrino physics in the last 50 years. The theory of neutrino propagation in different media with matter and fields has been elaborated. It includes oscillations in vacuum and matter, resonance flavor conversion and resonance oscillations, spin and spin-flavor precession, etc. LMA MSW has been established as the true solution of the solar neutrino problem. Parameters θ_{12} and Δ m 2 21 have been measured; θ_{13} extracted from the solar data is in agreement with results from reactor experiments. Solar neutrino studies provide a sensitive way to test theory of neutrino oscillations and conversion. Characterized by long baseline, huge fluxes and low energies they are a powerful set-up to search for new physics beyond the standard 3 ν paradigm: new neutrino states, sterile neutrinos, non-standard neutrino interactions, effects of violation of fundamental symmetries, new dynamics of neutrino propagation, probes of space and time. These searches allow us to get stringent, and in some cases unique bounds on new physics. We summarize the results on physics of propagation, neutrino properties and physics beyond the standard model obtained from studies of solar neutrinos.

  4. Neutrino Factory

    CERN Document Server

    Bogomilov, M; Tsenov, R; Dracos, M; Bonesini, M; Palladino, V; Tortora, L; Mori, Y; Planche, T; Lagrange, J  B; Kuno, Y; Benedetto, E; Efthymiopoulos, I; Garoby, R; Gilardoini, S; Martini, M; Wildner, E; Prior, G; Blondel, A; Karadzhow, Y; Ellis, M; Kyberd, P; Bayes, R; Laing, A; Soler, F  J  P; Alekou, A; Apollonio, M; Aslaninejad, M; Bontoiu, C; Jenner, L  J; Kurup, A; Long, K; Pasternak, J; Zarrebini, A; Poslimski, J; Blackmore, V; Cobb, J; Tunnell, C; Andreopoulos, C; Bennett, J  R  J; Brooks, S; Caretta, O; Davenne, T; Densham, C; Edgecock, T  R; Fitton, M; Kelliher, D; Loveridge, P; McFarland, A; Machida, S; Prior, C; Rees, G; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Booth, C; Skoro, G; Back, J  J; Harrison, P; Berg, J  S; Fernow, R; Gallardo, J  C; Gupta, R; Kirk, H; Simos, N; Stratakis, D; Souchlas, N; Witte, H; Bross, A; Geer, S; Johnstone, C; Mokhov, N; Neuffer, D; Popovic, M; Strait, J; Striganov, S; Morfín, J  G; Wands, R; Snopok, P; Bogacz, S  A; Morozov, V; Roblin, Y; Cline, D; Ding, X; Bromberg, C; Hart, T; Abrams, R  J; Ankenbrandt, C  M; Beard, K  B; Cummings, M  A  C; Flanagan, G; Johnson, R  P; Roberts, T  J; Yoshikawa, C  Y; Graves, V  B; McDonald, K  T; Coney, L; Hanson, G

    2014-01-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that $\\theta_{13} > 0$. The measured value of $\\theta_{13}$ is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO$\

  5. Neutrino Lensing

    Institute of Scientific and Technical Information of China (English)

    LUO Xin-Lian

    2009-01-01

    Due to the intrinsic properties of neutrinos, the gravitational lens effect for a neutrino should be more colorful and meaningful than the normal lens effect of a photon. Other than the experiments operated at terrestrial laboratory, in principle, we can propose a completely new astrophysical method to determine not only the nature of the gravity of lens objects but also the mixing parameters of neutrinos by analyzing neutrino trajectories near the central objects.However, the angular, energy and time resolution of the neutrino telescopes are still comparatively poor, so we just concentrate on the two classical tests of general relativity, i.e.the angular deflection and the time delay of the neutrino by a lens object as a preparative work in this paper.In addition, some simple properties of neutrino lensing are investigated.

  6. Neutrino footprint in Large Scale Structure

    CERN Document Server

    Jimenez, Raul; Verde, Licia

    2016-01-01

    Recent constrains on the sum of neutrino masses inferred by analyzing cosmological data, show that detecting a non-zero neutrino mass is within reach of forthcoming cosmological surveys, implying a direct determination of the absolute neutrino mass scale. The measurement relies on constraining the shape of the matter power spectrum below the neutrino free streaming scale: massive neutrinos erase power at these scales. Detection of a lack of small-scale power, however, could also be due to a host of other effects. It is therefore of paramount importance to validate neutrinos as the source of power suppression at small scales. We show that, independent on hierarchy, neutrinos always show a footprint on large, linear scales; the exact location and properties can be related to the measured power suppression (an astrophysical measurement) and atmospheric neutrinos mass splitting (a neutrino oscillation experiment measurement). This feature can not be easily mimicked by systematic uncertainties or modifications in ...

  7. Inverse Problem Solution in Acoustic Emission Source Analysis : Classical and Artificial Neural Network Approach

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Chlada, Milan; Vodička, Josef

    New York : Springer, 2006 - (Delsanto, P.), s. 515-529 ISBN 0-387-33860-8 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * artificial neural network s * inverse problems Subject RIV: BI - Acoustics

  8. Propagation of ultra-high energy neutrinos in the cosmic neutrino background

    International Nuclear Information System (INIS)

    UHE cosmic neutrino interaction with the cosmic neutrino background (CνB) is expected to produce absorption dips in the UHE neutrino flux at energies above the threshold for Z-boson resonant production. The observation of these dips would constitute an evidence for the existence of the CnuB; they could also be used to determine the value of the relic neutrino masses as well as some features of the population of UHE neutrino sources. After breafly discussing the current prospects for relic neutrino spectroscopy, we present a calculation of the UHE neutrino transmission probability based on finite-temperature field theory which takes into account the thermal motion of the relic neutrinos. We then compare our results with the approximate expressions existing in the literature and discuss the influence of thermal effects on the absorption dips in the context of realistic UHE neutrino fluxes and favoured neutrino mass schemes

  9. ICFA neutrino panel report

    Science.gov (United States)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  10. Radiochemical solar neutrino experiments

    International Nuclear Information System (INIS)

    Radiochemical experiments have been crucial to solar neutrino research. Even today, they provide the only direct measurement of the rate of the proton-proton fusion reaction, p+p→d+e++νe, which generates most of the Sun's energy. We first give a little history of radiochemical solar neutrino experiments with emphasis on the gallium experiment SAGE - the only currently operating detector of this type. The combined result of all data from the Ga experiments is a capture rate of 67.6±3.7 SNU. For comparison to theory, we use the calculated flux at the Sun from a standard solar model, take into account neutrino propagation from the Sun to the Earth and the results of neutrino source experiments with Ga, and obtain 67.3-3.5+3.9 SNU. Using the data from all solar neutrino experiments we calculate an electron neutrino pp flux of φpp♁=(3.41-0.77+0.76)×1010/(cm2-s), which agrees well with the prediction from a detailed solar model of φpp♁=(3.30-0.14+0.13)×1010/(cm2-s). Four tests of the Ga experiments have been carried out with very intense reactor-produced neutrino sources and the ratio of observed to calculated rates is 0.88±0.05. One explanation for this unexpectedly low result is that the cross section for neutrino capture by the two lowest-lying excited states in 71Ge has been overestimated. We end with consideration of possible time variation in the Ga experiments and an enumeration of other possible radiochemical experiments that might have been.

  11. Neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, Christian [Institut fuer Kernphysik, Westfaelische Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 9, D-48149 Muenster (Germany); Zuber, Kai [Institut fuer Kern- und Teilchenphysik, Technische Universitaet Dresden, Zellescher Weg 19, D-01069 Dresden (Germany)

    2013-09-15

    The various experiments on neutrino oscillation evidence that neutrinos have indeed non-zero masses but cannot provide the absolute neutrino mass scale. This scale of neutrino masses is very important for understanding the evolution and the structure formation of the universe as well as for nuclear and particle physics beyond the present Standard Model. Complementary to deducing constraints on the sum of all neutrino masses from cosmological observations, two different methods to determine the neutrino mass scale in the laboratory are pursued: the search for neutrinoless double {beta}-decay and the direct neutrino mass search by investigating single {beta}-decays or electron captures. The former method is not only sensitive to neutrino masses but also probes the Majorana character of neutrinos and thus lepton number violation with high sensitivity. Currently quite a few experiments using different techniques are being constructed, commissioned, or are even running, which aim for a sensitivity on the neutrino mass of O(100) meV. The principal methods and these experiments are discussed in this short review. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. High Energy Neutrinos from Space

    CERN Document Server

    Gaisser, Thomas K

    2012-01-01

    This paper reviews the status of the search for high-energy neutrinos from astrophysical sources. Results from large neutrino telescopes in water (Antares, Baikal) and ice (IceCube) are discussed as well as observations from the surface with Auger and from high altitude with ANITA. Comments on IceTop, the surface component of IceCube are also included.

  13. Neutrino Oscillations With Two Sterile Neutrinos

    CERN Document Server

    Kisslinger, Leonard S

    2016-01-01

    This work estimates the probability of $\\mu$ to $e$ neutrino oscillation with two sterile neutrinos using a 5x5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4x4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  14. Using artificial sweeteners to identify contamination sources and infiltration zones in a coupled river-aquifer system

    Science.gov (United States)

    Bichler, Andrea; Muellegger, Christian; Hofmann, Thilo

    2014-05-01

    In shallow or unconfined aquifers the infiltration of contaminated river water might be a major threat to groundwater quality. Thus, the identification of possible contamination sources in coupled surface- and groundwater systems is of paramount importance to ensure water quality. Micropollutants like artificial sweeteners are promising markers for domestic waste water in natural water bodies. Compounds, such as artificial sweeteners, might enter the aquatic environment via discharge of waste water treatment plants, leaky sewer systems or septic tanks and are ubiquitously found in waste water receiving waters. The hereby presented field study aims at the (1) identification of contamination sources and (2) delineation of infiltration zones in a connected river-aquifer system. River bank filtrate in the groundwater body was assessed qualitatively and quantitatively using a combined approach of hydrochemical analysis and artificial sweeteners (acesulfame ACE) as waste water markers. The investigated aquifer lies within a mesoscale alpine head water catchment and is used for drinking water production. It is hypothesized that a large proportion of the groundwater flux originates from bank filtrate of a nearby losing stream. Water sampling campaigns in March and July 2012 confirmed the occurrence of artificial sweeteners at the investigated site. The municipal waste water treatment plant was identified as point-source for ACE in the river network. In the aquifer ACE was present in more than 80% of the monitoring wells. In addition, water samples were classified according to their hydrochemical composition, identifying two predominant types of water in the aquifer: (1) groundwater influenced by bank filtrate and (2) groundwater originating from local recharge. In combination with ACE concentrations a third type of water could be discriminated: (3) groundwater influence by bank filtrate but infiltrated prior to the waste water treatment plant. Moreover, the presence of ACE

  15. Status of Neutrino Astronomy - a mini-review on neutrino telescopes

    CERN Document Server

    Kappes, Alexander

    2011-01-01

    With the completion of the first cubic-kilometer class neutrino telescopes, IceCube, the race for the discovery of the first cosmic high-energy neutrino sources enters into a new phase. The usage of neutrinos as cosmic messengers has the potential to significantly enhance and extend our knowledge on Galactic and extragalactic sources of the high-energy universe. This article gives a short review on the status of neutrino telescopes and their sensitivities concentrating on point-like sources. It discusses the current upper limits on neutrino emissions and their implications for models of different source classes.

  16. Solar Neutrinos

    Science.gov (United States)

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  17. Direct Neutrino Mass measurements

    International Nuclear Information System (INIS)

    Neutrino oscillation experiments have shown that neutrino are massive particles, but they are not able to determine the absolute neutrino mass scale. The experiments dedicated to effective electron-neutrino mass determination are the ones based on kinematic analyses of electrons emitted in single β-decay as 3H and 187Re. Nowadays the electrostatic spectrometers and microcalorimeters, two complementary techniques, are the most sensitive detection principles. Two experiments, KATRIN and MARE, are currently being prepared to explore neutrino masses down to 0.2 eV. The KATRIN experiment, which combines an ultra-luminous windowless gaseous tritium source with a high resolution electrostatic spectrometer, will provide high precision in β-studies never achieved before. The MARE project aims at the direct and calorimetric measurement of the electron neutrino mass with sub-eV sensitivity. Although the baseline of the MARE project consists in a large array of rhenium based thermal detectors, a different option for the isotope is also being considered. This contribution gives an outlook for both experiments.

  18. KPipe: a decisive test for muon neutrino disappearance

    CERN Document Server

    Axani, Spencer N; Conrad, Janet M; Shaevitz, Mike H; Spitz, Josh; Wongjirad, Taritree

    2015-01-01

    The short baseline neutrino oscillation experiment, KPipe, is designed to perform a sensitive search for muon neutrino disappearance in the current global fit allowed regions for sterile neutrinos. KPipe is to be located at the Material Life Science Experimental Facility at J-PARC: the world's most intense source of 236~MeV, monoenergetic muon neutrinos. By measuring the $\

  19. Atmospheric neutrinos and discovery of neutrino oscillations

    International Nuclear Information System (INIS)

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. (author)

  20. Contributions of artificial lighting sources on light pollution in Hong Kong measured through a night sky brightness monitoring network

    CERN Document Server

    Pun, Chun Shing Jason; Leung, Wai Yan; Wong, Chung Fai

    2014-01-01

    Light pollution is a form of environmental degradation in which excessive artificial outdoor lighting, such as street lamps, neon signs, and illuminated signboards, affects the natural environment and the ecosystem. Poorly designed outdoor lighting not only wastes energy, money, and valuable Earth resources, but also robs us of our beautiful night sky. Effects of light pollution on the night sky can be evaluated by the skyglow caused by these artificial lighting sources, through measurements of the night sky brightness (NSB). The Hong Kong Night Sky Brightness Monitoring Network (NSN) was established to monitor in detail the conditions of light pollution in Hong Kong. Monitoring stations were set up throughout the city covering a wide range of urban and rural settings to continuously measure the variations of the NSB. Over 4.6 million night sky measurements were collected from 18 distinct locations between May 2010 and March 2013. This huge dataset, over two thousand times larger than our previous survey, for...

  1. Simulated impacts of artificial groundwater recharge and discharge of the source area and source volume of an Atlantic Coastal Plain Stream, Delaware, USA

    Science.gov (United States)

    Kasper, Joshua W.; Denver, Judish M.; McKenna, Thomas E.; Ullman, William J.

    2010-01-01

    A numerical groundwater-flow model was used to characterize the source area and volume of Phillips Branch, a baseflow-dominated stream incising a highly permeable unconfined aquifer on the low relief Delmarva Peninsula, USA. Particle-tracking analyses indicate that the source area (5.51 km2) is ~20% smaller than the topographically defined watershed (6.85 km2), and recharge entering ~37% of the surface watershed does not discharge to Phillips Branch. Groundwater residence time within the source volume ranges from a few days to almost 100 years, with 95% of the volume "flushing" within 50 years. Artificial discharge from groundwater pumping alters the shape of the source area and reduces baseflow due to the interception of stream flow paths, but has limited impacts on the residence time of groundwater discharged as baseflow. In contrast, artificial recharge from land-based wastewater disposal substantially reduces the source area, lowers the range in residence time due to the elimination of older flow paths to the stream, and leads to increased discharge to adjacent surface-water bodies. This research suggests that, in this and similar hydrogeologic settings, the "watershed" approach to water-resource management may be limited, particularly where anthropogenic stresses alter the transport of soluble contaminants through highly permeable unconfined aquifers.

  2. Inverse Problem Solution in Acoustic Emission Source Analysis: Classical and Artificial Neural Network Approaches

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Chlada, Milan; Vodička, Josef

    Torino : Springer, 2007 - (Delsanto, P.), s. 515-529 ISBN 0-387-33860-8 R&D Projects: GA ČR GA205/03/0071; GA ČR GA201/04/2102 Institutional research plan: CEZ:AV0Z20760514 Keywords : acoustic emission * artificial neural network s * inverse problems Subject RIV: BI - Acoustics

  3. Circular No 828 of 3 August 1972 concerning the use of artificial radioelements in unsealed sources in the biological and medical field

    International Nuclear Information System (INIS)

    This Circular prescribes the procedure for organizing the use of artificial radioisotopes in unsealed sources in medical establishments and for research purposes, and provides for prior authorization by the Ministry of Public Health. (NEA)

  4. Neutrino tomography - Learning about the Earth's interior using the propagation of neutrinos

    CERN Document Server

    Winter, W

    2006-01-01

    Because the propagation of neutrinos is affected by the presence of Earth matter, it opens new possibilities to probe the Earth's interior. Different approaches range from techniques based upon the interaction of high energy (above TeV) neutrinos with Earth matter, to methods using the MSW effect on the neutrino oscillations of low energy (MeV to GeV) neutrinos. In principle, neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.) can be used. In this talk, we summarize and compare different approaches with an emphasis on more recent developments. In addition, we point out other geophysical aspects relevant for neutrino oscillations.

  5. Solar Neutrinos

    CERN Document Server

    Bellini, G.; Ranucci, G.

    2010-01-01

    Solar neutrino investigation has represented one of the most active field of particle physics over the past decade, accumulating important and sometimes unexpected achievements. After reviewing some of the most recent impressive successes, the future perspectives of this exciting area of neutrino research will be discussed.

  6. Neutrino magnetohydrodynamics

    International Nuclear Information System (INIS)

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail

  7. Neutrino magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Haas, Fernando; Pascoal, Kellen Alves [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Mendonça, José Tito [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil)

    2016-01-15

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.

  8. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame.

    Science.gov (United States)

    Müller, Claudia E; Gerecke, Andreas C; Alder, Alfredo C; Scheringer, Martin; Hungerbühler, Konrad

    2011-05-01

    Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions. PMID:21310517

  9. Shielding Characteristics Using an Ultrasonic Configurable Fan Artificial Noise Source to Generate Modes - Experimental Measurements and Analytical Predictions

    Science.gov (United States)

    Sutliff, Daniel L.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14x22 wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8% scale model. The UCFANS is a 5.8% rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the program was to provide an estimate of the acoustic shielding benefits possible from mounting an engine on the upper surface of a wing; a flat plate model was used as the shielding surface. Simple analytical simulations were used to preview the radiation patterns - Fresnel knife-edge diffraction was coupled with a dense phased array of point sources to compute shielded and unshielded sound pressure distributions for potential test geometries and excitation modes. Contour plots of sound pressure levels, and integrated power levels, from nacelle alone and shielded configurations for both the experimental measurements and the analytical predictions are presented in this paper.

  10. Astrophysical Neutrino Event Rates and Sensitivity for Neutrino Telescopes

    OpenAIRE

    Albuquerque, Ivone F. M.; Lamoureux, Jodi; Smoot, George F.

    2001-01-01

    Spectacular processes in astrophysical sites produce high-energy cosmic rays which are further accelerated by Fermi-shocks into a power-law spectrum. These, in passing through radiation fields and matter, produce neutrinos. Neutrino telescopes are designed with large detection volumes to observe such astrophysical sources. A large volume is necessary because the fluxes and cross-sections are small. We estimate various telescopes' sensitivities and expected event rates from astrophysical sourc...

  11. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1974--August 31, 1975

    International Nuclear Information System (INIS)

    Results are reported from a study of the biological effects of radiation from mock plutonium power sources in dogs and a study of the feasibility of a tissue heat sink for waste heat from such sources in calves. It is also designed to evaluate effects of heat and radiation from plutonium sources in calves. The work is part of a program to evaluate the use of plutonium as a power source for an artificial heart device. A total of 60 dogs have been implanted with mock plutonium sources (producing a similar radiation flux as plutonium but having no associated heat) at levels of from 1 to 70 times the expected radiation flux from a 30 watt plutonium source. Results up to 4.5 years after implantation indicate that mammals may be able to tolerate the radiation flux from such sources. Results in calves indicate that 30 watts of additional endogenous heat can be dissipated to a connective tissue covered heat exchanger with a surface area of 494 cm2 providing a heat flux of 0.06 watts/cm2. (U.S.)

  12. Tau neutrinos underground: Signals of νμ→ντ oscillations with extragalactic neutrinos

    International Nuclear Information System (INIS)

    The appearance of high energy tau neutrinos due to νμ→ντ oscillations of extragalactic neutrinos can be observed by measuring the neutrino induced upward hadronic and electromagnetic showers and upward muons. We evaluate quantitatively the tau neutrino regeneration in the Earth for a variety of extragalactic neutrino fluxes. Charged-current interactions of the upward tau neutrinos below and in the detector, and the subsequent tau decay, create muons or hadronic and electromagnetic showers. The background for these events are muon neutrino and electron neutrino charged-current and neutral-current interactions, where in addition to extragalactic neutrinos, we consider atmospheric neutrinos. We find significant signal to background ratios for the hadronic combined with electromagnetic showers with energies above 10--100 TeV initiated by the extragalactic neutrinos. We show that the tau neutrinos from point sources also have the potential for discovery above a 1 TeV threshold. A kilometer-size neutrino telescope has a very good chance of detecting the appearance of tau neutrinos when both muon and hadronic combined with electromagnetic showers are detected

  13. KATRIN: Measuring the Mass Scale of Neutrinos

    Science.gov (United States)

    Oblath, Noah; Katrin Collaboration

    2011-10-01

    Over the past decade, experiments studying neutrinos from atmospheric, solar, and reactor sources have shown conclusively that neutrinos change flavor and, as a consequence, have a small but finite mass. However, the scale of neutrino masses remains an open question that is of great importance for many areas of physics. The most direct method to measure the neutrino mass scale is still via beta decay. The talk will focus primarily on the status of the KArlsruhe TRItium Neutrino experiment (KATRIN), currently under construction. KATRIN combines an ultra-luminous molecular windowless gaseous tritium source with a high-resolution integrating spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the neutrino mass is 0.2 eV at 90% C.L. In this talk I will discuss the status of the KATRIN experiment.

  14. Recent results of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The latest results from the ANTARES Neutrino Telescope are reported. Limits on a high energy neutrino diffuse flux have been set using for the first time both muon–track and showering events. The results for point sources obtained by ANTARES are also shown. These are the most stringent limits for the southern sky for neutrino energies below 100 TeV. Constraints on the nature of the cluster of neutrino events near the Galactic Centre observed by IceCube are also reported. In particular, ANTARES data excludes a single point–like neutrino source as the origin of this cluster. Looking for neutrinos coming from the Sun or the centre of the Galaxy, very competitive limits are set by the ANTARES data to the flux of neutrinos produced by self-annihilation of weakly interacting massive particles

  15. Neutrino orbital angular momentum in a plasma vortex

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, J.T. [IPFN and CFIF, Instituto Superior Tecnico, Lisboa (Portugal); Thide, B. [Swedish Institute of Space Science, Angstrom Lab., Uppsala (Sweden)

    2008-11-15

    It is shown that an electron neutrino beam, propagating in a background plasma, can be decomposed into orbital momentum (OAM) states, similar to the OAM photon states. Coupling between different OAM neutrino states, in the presence of a plasma vortex, is considered. We show that plasma vorticity can be transferred to the neutrino beam, which is relevant to the understanding of the neutrino sources in astrophysics. Observation of neutrino OAM states could eventually become possible. (authors)

  16. Neutrino orbital angular momentum in a plasma vortex

    OpenAIRE

    Mendonça, J. T.; Thidé, B.

    2008-01-01

    It is shown that an electron-neutrino beam, propagating in a background plasma, can be decomposed into orbital momentum (OAM) states, similar to the OAM photon states. Coupling between different OAM neutrino states, in the presence of a plasma vortex, is considered. We show that plasma vorticity can be transfered to the neutrino beam, which is relevant to the understanding of the neutrino sources in astrophysics. Observation of neutrino OAM states could eventually become possible.

  17. Status of the OPERA Neutrino Oscillation Experiment

    International Nuclear Information System (INIS)

    The OPERA neutrino detector at the underground Gran Sasso Laboratory (LNGS) was designed to perform the first detection of neutrino oscillations in appearance mode through the study of νμ → ντ oscillations. The apparatus consists of a lead/emulsion-film target complemented by electronic detectors. It is placed in the high-energy, long-baseline CERN neutrino beam (CNGS) 730 km away from the neutrino source. Runs with CNGS neutrinos were successfully carried out in 2008-2009 with the detector fully operational with its related facilities for the emulsion handling and analysis. (author)

  18. Geo-neutrino review

    Energy Technology Data Exchange (ETDEWEB)

    Tolich, N., E-mail: ntolich@u.washington.edu [Center for Experimental Nuclear Physics and Astrophysics, and Departments of Physics, University of Washington, Seattle, WA, 98195 (United States)

    2012-08-15

    The principal source of energy for dynamic processes of the earth, such as plate tectonics is thought to come from the radioactive decays of {sup 238}U, {sup 232}Th, and {sup 40}K within the earth. These decays produce electron-antineutrinos, so-called geo-neutrinos, the measurement of which near the earth's surface allows for a direct measure of the total radiogenic heat production in the earth. The KamLAND and Borexino experiments have both measured a geo-neutrino flux significantly greater than zero. As shown in these proceedings, more precise future measurements will significantly constrain earth composition models.

  19. Geo-neutrino review

    International Nuclear Information System (INIS)

    The principal source of energy for dynamic processes of the earth, such as plate tectonics is thought to come from the radioactive decays of 238U, 232Th, and 40K within the earth. These decays produce electron-antineutrinos, so-called geo-neutrinos, the measurement of which near the earth's surface allows for a direct measure of the total radiogenic heat production in the earth. The KamLAND and Borexino experiments have both measured a geo-neutrino flux significantly greater than zero. As shown in these proceedings, more precise future measurements will significantly constrain earth composition models.

  20. KARMEN: neutrino spectroscopy at ISIS

    Energy Technology Data Exchange (ETDEWEB)

    Drexlin, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Kernphysik

    1996-11-01

    The Karlsruhe-Rutherford Neutrino Experiment KARMEN at the spallation neutron facility ISIS investigates fundamental properties of neutrinos as well as their interactions with matter. Low energy neutrinos with energies up to 50 MeV emitted by the pulsed {nu}-source ISIS are detected by a 56 tonne high resolution liquid scintillation calorimeter. Clear {nu}-signatures allow a reliable search for neutrino oscillations of the type {nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub e} as well as a detailed investigation of neutrino-nucleus interactions in an energy range important for astrophysics. We present the results of the KARMEN experiment from data taking in the period from June 1990 - December 1995. (author) 9 figs., 10 refs.

  1. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Claudia E., E-mail: claudia.mueller@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Institute for Chemical and Bioengineering, ETH Zuerich, Wolfgang-Pauli-Strasse 10, 8093 Zuerich (Switzerland); Gerecke, Andreas C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Uberlandstrasse 129, 8600 Duebendorf (Switzerland); Alder, Alfredo C. [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlanstrasse 133, 8600 Duebendorf (Switzerland); Scheringer, Martin; Hungerbuehler, Konrad [Institute for Chemical and Bioengineering, ETH Zuerich, Wolfgang-Pauli-Strasse 10, 8093 Zuerich (Switzerland)

    2011-05-15

    Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions. - Highlights: > Consumer products are the most important source of PFAAs in Swiss surface waters. > Acesulfame proofs to be a good population marker in surface waters. > PFAA pattern analyses reveal specific industrial emissions. - The analysis of correlations between surface water concentrations of perfluorinated compounds (PFCs) and source parameters revealed that consumer products are the most important source for PFCs in Switzerland, whereas industry and atmospheric deposition make a minor contribution.

  2. Identification of perfluoroalkyl acid sources in Swiss surface waters with the help of the artificial sweetener acesulfame

    International Nuclear Information System (INIS)

    Anthropogenic perfluorinated compounds (PFCs), especially the perfluoroalkyl acids (PFAAs) are ubiquitously found in surface waters around the globe. Emissions from households, industries and also atmospheric transport/deposition are discussed as the possible sources. In this study, these sources are evaluated using Switzerland as the study area. Forty-four surface water locations in different rivers and an Alpine lake were investigated for 14 PFAAs, four precursors and acesulfame, an artificial sweetener used as a population marker. Concentrations of individual PFAAs were generally low, between 0.02 and 10 ng/L. Correlation analysis showed that some PFAAs concentrations correlated well with population and less with catchment area, indicating that emissions from population, i.e., from consumer products, is the most important source to surface waters in Switzerland. The correlation with the population marker acesulfame confirmed this observation but highlighted also a few elevated PFAA levels, some of which could be attributed to industrial emissions. - Highlights: → Consumer products are the most important source of PFAAs in Swiss surface waters. → Acesulfame proofs to be a good population marker in surface waters. → PFAA pattern analyses reveal specific industrial emissions. - The analysis of correlations between surface water concentrations of perfluorinated compounds (PFCs) and source parameters revealed that consumer products are the most important source for PFCs in Switzerland, whereas industry and atmospheric deposition make a minor contribution.

  3. A Search for Astrophysical Burst Signals at the Sudbury Neutrino Observatory

    CERN Document Server

    Aharmim, B; Anthony, A E; Barros, N; Beier, E W; Bellerive, A; Beltran, B; Bergevin, M; Biller, S D; Boudjemline, K; Boulay, M G; Cai, B; Chan, Y D; Chauhan, D; Chen, M; Cleveland, B T; Cox, G A; Dai, X; Deng, H; Detwiler, J A; DiMarco, M; Diamond, M D; Doe, P J; Doucas, G; Drouin, P -L; Duncan, F A; Dunford, M; Earle, E D; Elliott, S R; Evans, H C; Ewan, G T; Farine, J; Fergani, H; Fleurot, F; Ford, R J; Formaggio, J A; Gagnon, N; Goon, J TM; Graham, K; Guillian, E; Habib, S; Hahn, R L; Hallin, A L; Hallman, E D; Harvey, P J; Hazama, R; Heintzelman, W J; Heise, J; Helmer, R L; Hime, A; Howard, C; Huang, M; Jagam, P; Jamieson, B; Jelley, N A; Jerkins, M; Keeter, K J; Klein, J R; Kormos, L L; Kos, M; Kraus, C; Krauss, C B; Krueger, A; Kutter, T; Kyba, C C M; Lange, R; Law, J; Lawson, I T; Lesko, K T; Leslie, J R; Levine, I; Loach, J C; MacLellan, R; Majerus, S; Mak, H B; Maneira, J; Martin, R; McCauley, N; McDonald, A B; McGee, S R; Miller, M L; Monreal, B; Monroe, J; Nickel, B G; Noble, A J; O'Keeffe, H M; Oblath, N S; Ollerhead, R W; Gann, G D Orebi; Oser, S M; Ott, R A; Peeters, S J M; Poon, A W P; Prior, G; Reitzner, S D; Rielage, K; Robertson, B C; Robertson, R G H; Schwendener, M H; Secrest, J A; Seibert, S R; Simard, O; Simpson, J J; Sinclair, D; Skensved, P; Sonley, T J; Stonehill, L C; Tesic, G; Tolich, N; Tsui, T; Van Berg, R; VanDevender, B A; Virtue, C J; Wall, B L; Waller, D; Tseung, H Wan Chan; Wark, D L; Watson, P J S; Wendland, J; West, N; Wilkerson, J F; Wilson, J R; Wouters, J M; Wright, A; Yeh, M; Zhang, F; Zuber, K

    2013-01-01

    The Sudbury Neutrino Observatory (SNO) has confirmed the standard solar model and neutrino oscillations through the observation of neutrinos from the solar core. In this paper we present a search for neutrinos associated with sources other than the solar core, such as gamma-ray bursters and solar flares. We present a new method for looking for temporal coincidences between neutrino events and astrophysical bursts of widely varying intensity. No correlations were found between neutrinos detected in SNO and such astrophysical sources.

  4. Tritium neutrino mass experiments

    International Nuclear Information System (INIS)

    The current status of the experimental search for neutrino mass is reviewed, with emphasis on direct kinematic methods, such as the beta decay of tritium. The situation concerning the electron neutrino mass as measured in tritium beta decay is essentially unchanged from a year ago, although a great deal of experimental work is in progress. The ITEP group continues to find evidence for a nonzero mass, now slightly revised to 26(5) eV. After correcting for recently discovered errors in the energy loss distribution and source thickness, however, the Z/umlt u/rich group still claims and upper limit of 18 eV. There may be evidence for neutrino mass and mixing in the SN1987a data, in the same range suggested by the ITEP experiment. 42 refs., 3 figs

  5. Determinations of flavor ratios and flavor transitions of astrophysical neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guey-Lin; Liu, Tsung-Che; Lai, Kwang-Chang [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan (China); Huang, Minghuey [National United University, Lianda, Miaoli City, Miaoli County 360, Taiwan (China)

    2010-07-01

    We argue that effective flavor discrimination in neutrino telescopes is the key to probe the flavor ratios of astrophysical neutrinos at the source [1,3] and flavor transition mechanisms [2] of these neutrinos during their propagations from the source to the Earth. We first discuss how well one can reconstruct the flavor ratios of astrophysical neutrinos at the source, given achievable efficiencies of neutrino telescopes in flavor discriminations and expected understandings of neutrino mixing parameters in the future. It will be shown that the signatures for tau neutrinos are energy dependent, hence the methods for flavor reconstruction depend on neutrino energies as well. We then discuss how to probe flavor transition mechanisms of propagating astrophysical neutrinos. In this regard, we propose a model independent parametrization for neutrino flavor transitions, with the neutrino oscillation as a special case. We illustrate how one can determine parameters of this parameterization by neutrino telescope measurements. The situation with non-conservation of neutrino flux during neutrino propagations (such as that caused by neutrino decays) is also discussed. Refs.: [1] T. C. Liu, M. A. Huang and G. L. Lin, arXiv: 1004.5154. [2] K. C. Lai, G. L. Lin and T. C. Liu, arXiv: 1004.1583. [3] K. C. Lai, G. L. Lin and T. C. Liu, Phys. Rev. D80, 103005 (2009). (authors)

  6. Comparison of several artificial diets with different protein sources for massal rearing of Ecdytolopha aurantiana (Lima) (Lepidoptera: Tortricidae)

    International Nuclear Information System (INIS)

    The development of Ecdytolopha aurantiana (Lima) was compared among four artificial diets with different protein sources based on biological characteristics and fertility life table in order to have the insect available throughout the year for research in different areas. All diets with variable protein sources (D1= bean, yeast, wheat germ, soybean protein and casein; D2= corn flour, wheat germ, and yeast; D3= soybean protein, and wheat germ; D4= bean, yeast and wheat germ) allowed the insect to developed at 27 +- 2 deg C; RH 65 +- 10% and 14 h photophase. In all diets the insect presented four instars with several other similar biological characteristics. Since diet D2 (corn flour, wheat germ and yeast) provided the lowest development time, the highest viability, a high value of finite ratio of increase (ll), besides being of low cost and easy preparation, it can be considered as the most adequate for laboratory rearing of E. aurantiana. Balanced nutrients showed more important than the nutritional value of the components of the diet for this insect which is, for the first time, fed on artificial diet. (author)

  7. Validation of flux measurements with artificial sources: simulating CH4 from cows and NH3 emissions from medium plot scales

    Science.gov (United States)

    Sintermann, Jörg; Felber, Raphael; Häni, Christoph; Ammann, Christof; Neftel, Albrecht

    2014-05-01

    Mitigation of ammonia (NH3) emissions with detrimental environmental effects as well as of greenhouse gas emissions (GHG: CO2, N2O, CH4) are key challenges faced by the agricultural production sector. While NH3 originates mainly from polluted surfaces, e.g. after slurry application, the main source for CH4 emissions are cows and other ruminating animals, representing point sources. There are two widespread state-of-the-art techniques to determine agricultural emissions: eddy covariance (EC) flux measurements and Lagrangian stochastic (LS) dispersion modelling, namely the WindTrax (WT) model. Whereas GHG emissions can be measured with both techniques, NH3 emissions are usually not feasible with EC measurements due to the stickiness of NH3 molecules on surfaces. In addition, point sources render difficulties for the interpretation of EC flux data. We tested the EC technique and the WT model using artificial sources with known gas release rates. i) The effect of a point source on EC fluxes was investigated by placing an artificial CH4 source with known release rate upwind of the EC tower at two different heights and during different wind conditions. ii) The WT model was checked with a NH3 release grid of 314 m2 of known source strength. Ambient NH3 concentrations were measured by open path DOAS systems and impinger sampling. The CH4 concentration timeseries influenced by the point source showed a similar pattern as in the presence of cows upwind of the EC system. CH4 release rates from the point source were reproduced by the EC flux measurement with stationary background conditions only. The experiments with the NH3 release showed that WT performs well for emission determination, even in complex terrain (asphalt surrounded by grassland) with associated micrometeorology, given a realistic description of the vertical profile of wind velocity. Calculated gas recoveries ranged between 73 to 105%. Such a result is encouraging considering the immanent uncertainties from a

  8. Biological effects of implanted nuclear energy sources for artificial heart devices. Progress report, September 1, 1975--August 31, 1976

    International Nuclear Information System (INIS)

    A total of sixty dogs were implanted with radioisotope-powered artificial heart systems producing radiation fluxes similar to that of plutonium-238, but having no associated heat, at levels of from one to seventy times the radiation flux expected from a 30-watt plutonium-238 source. Results from studies lasting up to 6 years after implantation indicate that these animals, and by inference human beings, may be able to tolerate the radiation flux from 30-watt 238Pu power sources. Results of heat dissipation studies in calves indicate that it may be possible to induce a vascularized connective tissue capsule sufficient to dissipate 30 watts of additional heat from a surface area of approximately 500 cm sq., allowing a heat flux of 0.06 watts per cm sq

  9. Neutrino physics

    International Nuclear Information System (INIS)

    The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics. (c) 2000 American Association of Physics Teachers

  10. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  11. Neutrino masses and oscillations

    International Nuclear Information System (INIS)

    New effects related to refraction of neutrinos in different media are reviewed and implication of the effects to neutrino mass and mixing are discussed. Patterns of neutrino masses and mixing implied by existing hints/bounds are described. Recent results on neutrino mass generation are presented. They include neutrino masses in SO(10) GUT's and models with anomalous U(1), generation of neutrino mass via neutrino-neutralino mixing, models of sterile neutrino. (author). 95 refs, 9 figs

  12. Theoretical Results on Neutrinos

    CERN Document Server

    Zhou, Shun

    2015-01-01

    In this talk, I first summarize our current knowledge about the fundamental properties of neutrinos and emphasize the remaining unsolved problems in neutrino physics. Then, recent theoretical results on neutrino mass models are introduced. Different approaches to understanding tiny neutrino masses, lepton flavor mixing and CP violation are presented. Finally, I report briefly some new progress in the studies of astrophysical neutrinos, including keV sterile neutrinos, supernova neutrinos and ultrahigh-energy cosmic neutrinos.

  13. Sterile neutrinos

    Science.gov (United States)

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  14. Constraints and Tests of the OPERA Superluminal Neutrinos

    International Nuclear Information System (INIS)

    The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10-5. We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process π→μ+νμ kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3x10-7. Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured by the IceCube Collaboration can constrain the LIV parameter to the level of 10-12. The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.

  15. Neutrino oscillations in Gallium and reactor experiments and cosmological effects of a light sterile neutrino

    International Nuclear Information System (INIS)

    Neutrino oscillations is a very well studied phenomenon and the observations from Solar, very-long-baseline Reactor, Atmospheric and Accelerator neutrino oscillation experiments give very robust evidence of three-neutrino mixing. On the other hand, some experimental data have shown anomalies that could be interpreted as indication of exotic neutrino physics beyond three-neutrino mixing. Furthermore, from a cosmological point of view, the possibility of extra light species contributing as a subdominant hot (or warm) component of the Universe is still interesting. In the first part of this Thesis, we focused on the anomaly observed in the Gallium radioactive source experiments. These experiments were done to test the Gallium solar neutrino detectors GALLEX and SAGE, by measuring the electron neutrino flux produced by intense artificial radioactive sources placed inside the detectors. The measured number of events was smaller than the expected one. We interpreted this anomaly as a possible indication of the disappearance of electron neutrinos and, in the effective framework of two-neutrino mixing, we obtained sin22θ ≥ 0.03 and Δm2 ≥ 0.1 eV2. We also studied the compatibility of this result with the data of the Bugey and Chooz reactor antineutrino disappearance experiments. We found that the Bugey data present a hint of neutrino oscillations with 0.02 ≤ sin22θ ≤ 0.07 and Δm2 ≅ 1.95 eV2, which is compatible with the Gallium allowed region of the mixing parameters. Then, combining the data of Bugey and Chooz, the data of Gallium and Bugey, and the data of Gallium, Bugey and Chooz, we found that this hint persists, with an acceptable compatibility of the experimental data. Furthermore, we analyzed the experimental data of the I.L.L., S.R.S, and Gosgen nuclear Reactor experiments. We obtained a good fit of the I.L.L. data, showing 1 and 2σ allowed regions in the oscillation parameters space. However, the combination of I.L.L. data with the Bugey data showed

  16. Monochromatic neutrinos from massive fourth generation neutrino annihilation in the Sun and Earth

    International Nuclear Information System (INIS)

    Accumulation inside the Earth and Sun of heavy (with the mass of 50 GeV) primordial neutrinos and antineutrinos of the fourth generation and their successive annihilation is considered. The minimal estimations of annihilational fluxes of monochromatic e, μ, τ neutrinos (neutrinos and antineutrinos) with the energy of 50 GeV are 4.1·10-6cm-2·s-1 from the Earth core and 1.1·10-7cm-2·s-1 from the Sun core. That makes the analysis of underground neutrino observatory data the additional source of information on the existence of massive stable 4th generation neutrino. It is shown that due to the kinetic equilibrium between the influx of the neutrinos and their annihilation the existence of new U(1)-gauge interaction of the 4th generation neutrino does not virtually influence the estimations of annihilational e-, μ-, τ-neutrino fluxes

  17. Attraction of Chagas disease vectors (Triatominae to artificial light sources in the canopy of primary Amazon rainforest

    Directory of Open Access Journals (Sweden)

    Marcelo CM Castro

    2010-12-01

    Full Text Available Adult triatomines occasionally fly into artificially lit premises in Amazonia. This can result in Trypanosoma cruzi transmission to humans either by direct contact or via foodstuff contamination, but the frequency of such behaviour has not been quantified. To address this issue, a light-trap was set 45 m above ground in primary rainforest near Manaus, state of Amazonas, Brazil and operated monthly for three consecutive nights over the course of one year (432 trap-hours. The most commonly caught reduviids were triatomines, including 38 Panstrongylus geniculatus, nine Panstrongylus lignarius, three Panstrongylus rufotuberculatus, five Rhodnius robustus, two Rhodnius pictipes, one Rhodnius amazonicus and 17 Eratyrus mucronatus. Males were collected more frequently than females. The only month without any catches was May. Attraction of most of the known local T. cruzi vectors to artificial light sources is common and year-round in the Amazon rainforest, implying that they may often invade premises built near forest edges and thus become involved in disease transmission. Consequently, effective Chagas disease prevention in Amazonia will require integrating entomological surveillance with the currently used epidemiological surveillance.

  18. Neutrino radiation hazards: A paper tiger

    International Nuclear Information System (INIS)

    Neutrinos are present in the natural environment due to terrestrial, solar, and cosmic sources and are also produced at accelerators both incidentally and intentionally as part of physics research programs. Progress in fundamental physics research has led to the creation of beams of neutrinos of ever-increasing intensity and/or energy. The large size and cost associated with these beams attracts, and indeed requires, public interest, support, and some understanding of the 'exotic' particles produced, including the neutrinos. Furthermore, the very word neutrino ('little neutral one', as coined by Enrico Fermi) can lead to public concern due to confusion with 'neutron', a word widely associated with radiological hazards. Adding to such possible concerns is a recent assertion, widely publicized, that neutrinos from astronomical events may have led to the extinction of some biological species. Presented here are methods for conservatively estimating the dose equivalent due to neutrinos as well as an assessment of the possible role of neutrinos in biological extinction processes. It is found that neutrinos produced by the sun and modern particle accelerators produce inconsequential dose equivalent rates. Examining recent calculations concerning neutrinos incident upon the earth due to stellar collapse, it is concluded that it is highly unlikely that these neutrinos caused the mass extinctions of species found in the paleontological record. Neutrino radiation hazards are, then, truly a 'paper tiger'. 14 refs., 1 fig., 1 tab

  19. Electric effects induced by artificial seismic sources at Somma-Vesuvius volcano

    Directory of Open Access Journals (Sweden)

    Rosa Di Maio

    2013-11-01

    Full Text Available In this paper, we present a series of self-potential measurements at Somma-Vesuvius volcanic area acquired in conjunction with an active seismic tomography survey. The aim of our study is both to provide further confirmation to the occurrence of seismo-electric coupling and to identify sites suitable for self-potential signal monitoring at Somma-Vesuvius district. The data, which were collected along two perpendicular dipoles, show significant changes on the natural electric field pattern. These variations, attributable to electrokinetic processes triggered by the artificial seismic waves, were observed after explosions occurred at a distance less than 5 km from the SP dipole arrays. In particular, we found that the NW-SE component of the natural electric field was more sensible to the shots than the NE-SW one, and the major effects did not correspond to the nearest shots. Such evidences were interpreted considering the underground electrical properties as deduced by previous detailed resistivity and self-potential surveys performed in the study area.

  20. Predicting the impacts of climate change on nonpoint source pollutant loads from agricultural small watershed using artificial neural network.

    Science.gov (United States)

    Lee, Eunjeong; Seong, Chounghyun; Hakkwan, Kim; Park, Seungwoo; Kang, Moonseong

    2010-01-01

    This study described the development and validation of an artificial neural network (ANN) for the purpose of analyzing the effects of climate change on nonpoint source (NPS) pollutant loads from agricultural small watershed. The runoff discharge was estimated using ANN algorithm. The performance of ANN modelwas examined using observed data from s tudy watershed. The simulationresults agreed well with observed values during calibration and validation periods. NPS pollutant loads were calculated from load-discharge relationship driven by long-term monitoring data. LARS-WG (Long Ashton Research Station-Weather Generator) model was used to generate rainfall data. The calibrated ANN model and load-discharge relationship with the generated data from LARS-WGwere applied to analyze the effects of climate change on NPS pollutant loads from the agricultural small watershed. The results showed that the ANN model provided valuable approach i n estimating future runof f discharge, and the NPS pollutantloads. PMID:20923094

  1. Inverse β- decay of /sup 40/Ar: A new approach for observing MeV neutrinos from laboratory and astrophysical sources

    International Nuclear Information System (INIS)

    Inverse β- decay of /sup 40/Ar to its isobaric analog state in /sup 40/K should occur with a large cross section (σ) for neutrino (ν/sub e/) capture above a threshold of E/sub th/ -- 5.885 MeV. The ν/sub e/ capture is distinguished by a characteristic γ-ray coincidence signature. With a σ typically larger than that for (e,ν/sub e/) scattering, the new capture mode of detection should significantly enhance the sensitivity and usefulness of liquid-Ar chambers as ν/sub e/ spectrometers at meson factories and for astrophysical sources such as the Sun, cosmic rays, and collapsing stars

  2. High energy neutrinos from GRBs

    Energy Technology Data Exchange (ETDEWEB)

    De Paolis, F.; Ingrosso, G.; Orlando, D.; Perrone, L

    2001-05-01

    It is by now recognized that GRBs can accelerate protons to relativistic energies and that high density media may be present nearby the source. We compute the high-energy {gamma}-ray and neutrino fluxes from the decay of pions produced through the interaction of accelerated protons with nucleons in the surrounding medium. Then, we estimate the flux of high-energy muons induced on a detector by upward-going neutrinos interacting through charge current processes with the surrounding matter.

  3. High energy neutrinos from GRBs

    International Nuclear Information System (INIS)

    It is by now recognized that GRBs can accelerate protons to relativistic energies and that high density media may be present nearby the source. We compute the high-energy γ-ray and neutrino fluxes from the decay of pions produced through the interaction of accelerated protons with nucleons in the surrounding medium. Then, we estimate the flux of high-energy muons induced on a detector by upward-going neutrinos interacting through charge current processes with the surrounding matter

  4. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    Science.gov (United States)

    Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels

  5. Neutrino Tomography Learning About The Earth's Interior Using The Propagation Of Neutrinos

    Science.gov (United States)

    Winter, Walter

    2006-12-01

    Because the propagation of neutrinos is affected by the presence of Earth matter, it opens new possibilities to probe the Earth’s interior. Different approaches range from techniques based upon the interaction of high energy (above TeV) neutrinos with Earth matter, to methods using the MSW effect on the oscillations of low energy (MeV to GeV) neutrinos. In principle, neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.) can be used. In this talk, we summarize and compare different approaches with an emphasis on more recent developments. In addition, we point out other geophysical aspects relevant for neutrino oscillations.

  6. Experimental study of the atmospheric neutrino backgrounds for proton decay to positron and neutral pion searches in water Cherenkov detectors

    OpenAIRE

    Blondel, Alain; Borghi, Silvia; Cervera Villanueva, Anselmo; Schroeter, Raphaël; K2K Collaboration

    2007-01-01

    The atmospheric neutrino background for proton decay to positron and neutral pion in ring imaging water Cherenkov detectors is studied with an artificial accelerator neutrino beam for the first time. In total, about 314,000 neutrino events corresponding to about 10 megaton-years of atmospheric neutrino interactions were collected by a 1,000 ton water Cherenkov detector (KT). The KT charged-current single neutral pion production data are well reproduced by simulation programs of neutrino and s...

  7. Field-Theoretical Treatment of Neutrino Oscillations: The Strength of the Canonical Oscillation Formula

    OpenAIRE

    W. Grimus(University of Vienna, Faculty of Physics, Boltzmanngasse 5, A-1090 Vienna, Austria); Mohanty, S.; Stockinger, P.

    1999-01-01

    We discuss conceptual aspects of neutrino oscillations with the main emphasis on the field-theoretical approach. This approach includes the neutrino source and detector processes and allows to obtain the neutrino transition or survival probabilities as cross sections derived from the Feynman diagram of the combined source - detection process. In this context, the neutrinos which are supposed to oscillate appear as propagators of the neutrino mass eigenfields, connecting the source and detecti...

  8. Updating neutrino magnetic moment constraints

    Directory of Open Access Journals (Sweden)

    B.C. Cañas

    2016-02-01

    Full Text Available In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs, discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1×10−11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1|≤5.6×10−11μB, |Λ2|≤4.0×10−11μB, and |Λ3|≤3.1×10−11μB (90% C.L., irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.

  9. Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes

    OpenAIRE

    Albuquerque, Ivone F. M.; Smoot, George F.

    2001-01-01

    Neutrino telescopes with large detection volumes can demonstrate that the current indications of neutrino oscillation are correct or if a better description can be achieved with non-standard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of non-standard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest ad...

  10. Neutrino Data and Neutrino-Antineutrino Transition

    CERN Document Server

    Alexeyev, E N

    2005-01-01

    A problem, whether a neutrino-antineutrino transition could be responsible for the muon neutrino deficit found in underground experiments (Super-Kamiokande, MACRO, Soudan 2) and in the accelerator long-baseline K2K experiment, is discussed in this paper. The intention of the work is not consideration of concrete models for muon neutrino-antineutrino transition but a desire to attract an attention to another possibility of understanding the nature of the measured muon neutrino deficit in neutrino experiments.

  11. The Diffuse Supernova Neutrino Background

    CERN Document Server

    Beacom, John F

    2010-01-01

    The Diffuse Supernova Neutrino Background (DSNB) is the weak glow of MeV neutrinos and antineutrinos from distant core-collapse supernovae. The DSNB has not been detected yet, but the Super-Kamiokande (SK) 2003 upper limit on the electron antineutrino flux is close to predictions, now quite precise, based on astrophysical data. If SK is modified with dissolved gadolinium to reduce detector backgrounds and increase the energy range for analysis, then it should detect the DSNB at a rate of a few events per year, providing a new probe of supernova neutrino emission and the cosmic core-collapse rate. If the DSNB is not detected, then new physics will be required. Neutrino astronomy, while uniquely powerful, has proven extremely difficult -- only the Sun and the nearby Supernova 1987A have been detected to date -- so the promise of detecting new sources soon is exciting indeed.

  12. Analysis of Dual Rotating Rake Data from the NASA Glenn Advanced Noise Control Fan Duct with Artificial Sources

    Science.gov (United States)

    Dahl, Milo D.; Sutliff, Daniel L.

    2014-01-01

    The Rotating Rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. Initially, the mode amplitudes and phases were quantified from a single rake measurement at one axial location. To directly measure the modes propagating in both directions within a duct, a second rake was mounted to the rotating system with an offset in both the axial and the azimuthal directions. The rotating rake data analysis technique was then extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode levels at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode amplitudes for the modes propagating in both directions within the duct. Validation experiments have been conducted using artificial acoustic sources. Results are shown for the measurement of the standing waves in the duct from sound generated by one and two acoustic sources that are separated into the component modes propagating in both directions within the duct. Measured reflection coefficients from the open end of the duct are compared to analytical predictions.

  13. A compact sup 3 H(p,gamma) sup 4 He 19.8 MeV gamma-ray source for energy calibration at the Sudbury Neutrino Observatory

    CERN Document Server

    Poon, A W P; Waltham, C E; Browne, M C; Robertson, R G H; Kherani, N P; Mak, H B

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) is a new 1000-t D sub 2 O Cherenkov solar neutrino detector. A high-energy gamma-ray source is needed to calibrate SNO beyond the sup 8 B solar neutrino endpoint of 15 MeV. This paper describes the design and construction of a source that generates 19.8 MeV gamma rays using the sup 3 H(p,gamma) sup 4 He reaction (''pT''), and demonstrates that the source meets all the physical, operational and lifetime requirements for calibrating SNO. An ion source was built into this unit to generate and to accelerate protons up to 30 keV, and a high-purity scandium tritide target with a scandium-tritium atomic ratio of 1 : 2.0+-0.2 was included. This pT source is the first self-contained, compact, and portable high-energy gamma-ray source (E subgamma>10 MeV). (authors)

  14. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  15. Are Neutrinos Democratic?

    CERN Document Server

    Karl, G

    2002-01-01

    We generalize the notion of democratic mixing matrices for neutrinos and propose a scheme in which the electron neutrino is a superposition of three different mass eigenstates with equal weights. This scheme accounts for the recent SNO results as well as atmospheric muon neutrino and electron neutrino data. The outcomes of reactor neutrino and accelerator experiments are also discussed.

  16. Alternatives to Outdoor Daylight Illumination for Photodynamic Therapy—Use of Greenhouses and Artificial Light Sources

    Directory of Open Access Journals (Sweden)

    Catharina M. Lerche

    2016-02-01

    Full Text Available Daylight-mediated photodynamic therapy (daylight PDT is a simple and pain free treatment of actinic keratoses. Weather conditions may not always allow daylight PDT outdoors. We compared the spectrum of five different lamp candidates for indoor “daylight PDT” and investigated their ability to photobleach protoporphyrin IX (PpIX. Furthermore, we measured the amount of PpIX activating daylight available in a glass greenhouse, which can be an alternative when it is uncomfortable for patients to be outdoors. The lamps investigated were: halogen lamps (overhead and slide projector, white light-emitting diode (LED lamp, red LED panel and lamps used for conventional PDT. Four of the five light sources were able to photobleach PpIX completely. For halogen light and the red LED lamp, 5000 lux could photobleach PpIX whereas 12,000 lux were needed for the white LED lamp. Furthermore, the greenhouse was suitable for daylight PDT since the effect of solar light is lowered only by 25%. In conclusion, we found four of the five light sources and the greenhouse usable for indoor daylight PDT. The greenhouse is beneficial when the weather outside is rainy or windy. Only insignificant ultraviolet B radiation (UVB radiation passes through the greenhouse glass, so sun protection is not needed.

  17. Alternatives to Outdoor Daylight Illumination for Photodynamic Therapy-Use of Greenhouses and Artificial Light Sources.

    Science.gov (United States)

    Lerche, Catharina M; Heerfordt, Ida M; Heydenreich, Jakob; Wulf, Hans Christian

    2016-01-01

    Daylight-mediated photodynamic therapy (daylight PDT) is a simple and pain free treatment of actinic keratoses. Weather conditions may not always allow daylight PDT outdoors. We compared the spectrum of five different lamp candidates for indoor "daylight PDT" and investigated their ability to photobleach protoporphyrin IX (PpIX). Furthermore, we measured the amount of PpIX activating daylight available in a glass greenhouse, which can be an alternative when it is uncomfortable for patients to be outdoors. The lamps investigated were: halogen lamps (overhead and slide projector), white light-emitting diode (LED) lamp, red LED panel and lamps used for conventional PDT. Four of the five light sources were able to photobleach PpIX completely. For halogen light and the red LED lamp, 5000 lux could photobleach PpIX whereas 12,000 lux were needed for the white LED lamp. Furthermore, the greenhouse was suitable for daylight PDT since the effect of solar light is lowered only by 25%. In conclusion, we found four of the five light sources and the greenhouse usable for indoor daylight PDT. The greenhouse is beneficial when the weather outside is rainy or windy. Only insignificant ultraviolet B radiation (UVB) radiation passes through the greenhouse glass, so sun protection is not needed. PMID:26938525

  18. Neutrino cave

    CERN Multimedia

    1977-01-01

    Here the end of the underground decay tunnel, its window and beam stopper. On the left one sees the end of the last quadrupole of the neutrino narrow-band beam, and the detectors measuring the beam profile. Further downstream one sees two Beam Current Transformers (BCT, see photo 7801005) measuring the beam intensity, and a Cerenkov counter.

  19. Neutrino horn

    CERN Multimedia

    1967-01-01

    View of the new neutrino horn installed in its blockhouse from the target end. Protons pass through the 2mm hole in the centre of the small fluorescent screen, hitting the target immediately behind it. The circular tubes carry pressurized cooling water.

  20. J-PARC Press Release: Electron neutrino oscillation detected at T2K

    CERN Multimedia

    T2K Press Office

    2011-01-01

    Tsukuba, Japan, June 15, 2011. The T2K experiment, whose primary purpose is to study neutrino interactions at a large distance from their source, has detected 6 electron neutrino candidate events based on the data collected before March 11, 2011. For the first time, it was possible to observe an indication that muon neutrinos are able to transform into electron neutrinos over a distance of 295 km through the quantum mechanical phenomena of neutrino flavor oscillations.   The Super-Kamiokande detector, in Japan. © 2011, High Energy Accelerator Research Organization, KEK. The T2K experiment is searching for the neutrino oscillation phenomena, where particular types of neutrinos transform into other types of neutrinos. These observations help determine neutrino masses, as well elucidating the uncharted nature of neutrinos, such as the relationship among three neutrino generations (types). T2K aims at the world’s best sensitivity by detecting neutrinos with the Super-Kamiokande d...

  1. Sterile neutrinos and IceCube

    International Nuclear Information System (INIS)

    Although the framework for oscillations of the three neutrino flavors in the Standard Model has been convincingly established, indications persist that it may be incomplete. Challenges are coming from the LSND and MiniBooNe short-baseline experiments, from the neutrino sources used in the Gallex and Sage solar neutrino experiments and, more recently, from an a-posteriori analysis of reactor neutrino experiments. One way to accommodate the reported anomalies, if real, is to introduce one or more sterile neutrinos in the mass range δm2 ∼ 1eV2. TeV atmospheric neutrinos propagating through the Earth undergo resonant oscillations in the presence of sterile neutrinos; a clear signature in a neutrino telescope like IceCube is the the change in shape of the zenith-energy distribution of the atmospheric neutrinos. IceCube detects more than 100,000 atmospheric neutrinos per year. Statistics do not limit such a measurement, but the uncertainties in modeling the expectations of the conventional 3-flavor scenario, including the systematics of the detector, do. We review the status and future perspectives of understanding the zenith and energy response of IceCube in the TeV energy range.

  2. Neutrino experiments

    International Nuclear Information System (INIS)

    After participating in a several experiments near the reactor at Bugey, at distances from 15 to 100 m from the reactor the laboratory joined a collaboration for search of effect of neutrino oscillations at longer distances (1 km) from the neutrinos' point of origin. The zone covered by this experiment raises a particular interest because the results of several underground experiments on the atmospheric neutrinos indicated that oscillation could appear in this zone. The Chooz collaboration, reported here, joined three American universities (Philadelphia, New Mexico and Irvine), two Italian universities (Pisa and Trieste), the Kurchatov Institute in Moscow and two French laboratories (the LAPP in Annecy and the College de France). The first data have been recorded during the autumn of 1996 prior to the commissioning of the reactors (2 x 4200 MWth), to measure the background noise. The detector is a target of 6 t liquid scintillator doped with Gd, sunk in 120 t non-doped liquid scintillator separated by thin transparent wall. The target is viewed by 192 photomultipliers. The scintillator liquids are carried up to the detector and then to the exterior tanks by a tunnel of 200 m length and a height gradient of 15 m. The fragility of the detector imposes a simultaneous filling of its components, with an accuracy of the order of 1 cm. A 200 MHz sampling system of the photomultiplier pulses signing the neutrino interaction was developed in order to obtain simultaneously information on the pulse-height, timing and shape. This experiment could serve as a prototype for heavier experiments conceived in US, in Russia at Rovno and Krasnoyarsk, and in France, at 15 km from the Perry reactor, at 500 m underground. Still more ambitious is the Japan project at Kamioka, at 160 m distance from a nuclear reactor. The experiment at Perry will push the electron neutrino upper mass estimates down to 0.01 eV

  3. Precision measurement of neutrino oscillation parameters at INO-ICAL detector

    Indian Academy of Sciences (India)

    Daljeet Kaur; Md Naimuddin; Sanjeev Kumar Verma

    2016-02-01

    A magnetized Iron CALorimeter (ICAL) detector at the India-based neutrino observatory (INO) is used to study neutrino oscillation sensitivity using atmospheric muon neutrino source. The ICAL detector will be able to detect muon tracks and hadron showers produced by neutrino interactions with the iron target. We have performed precision measurement analysis for the atmospheric neutrino oscillation parameters with the muon neutrino events, generated by Monte Carlo NUANCE event generator. A marginalized 2 analysis based on reconstructed neutrino energy and muon zenith angle binning scheme has been performed to determine the sensitivity for the atmospheric neutrino mixing parameters, ${\\rm sin}^{2} \\theta_{23}$ and $|\\Delta m^{2}_{23}|$.

  4. Nuclear effects in neutrino-nucleus interactions

    CERN Document Server

    Barbaro, Maria B

    2009-01-01

    An accurate description of the nuclear response functions for neutrino scattering in the Gev region is essential for the interpretation of present and future neutrino oscillation experiments. Due to the close similarity of electromagnetic and weak scattering processes, we will review the status of the scaling approach and of relativistic modeling for the inclusive electron scattering response functions in the quasielastic and $\\Delta$-resonance regions. In particular, recent studies have been focused on scaling violations and the degree to which these imply modifications of existing predictions for neutrino reactions. We will discuss sources and magnitude of such violations, emphasizing similarities and differences between electron and neutrino reactions.

  5. Neutrino Astronomy: A New Window to the Universe

    OpenAIRE

    Grupen, Claus

    1996-01-01

    Neutrino astronomy offers the prospect to be able to look into the interior of compact astrophysical objects which may be the sources of cosmic radiation. This paper describes the results on neutrino observations from the sun and the supernova SN1987A along with an outlook on neutrino astronomy beyond the TeV scale.

  6. Recent Results from the AMANDA-II neutrino telescope

    OpenAIRE

    Groß, Andreas; Collaboration, The AMANDA

    2005-01-01

    AMANDA-II is an operating neutrino telescope located at the South Pole. Recent results of AMANDA are presented, including the examination of the diffuse neutrino flux, permanent and transient point source analyses, and indirect dark matter searches. A brief outlook on the IceCube neutrino telescope currently under construction at the South Pole is given.

  7. GRB neutrino detection via time profile stacking

    CERN Document Server

    van Eijndhoven, Nick

    2007-01-01

    A method is presented for the identification of high-energy neutrinos from gamma ray bursts by means of a large-scale neutrino telescope. The procedure makes use of a time profile stacking technique of observed neutrino induced signals in correlation with satellite observations. By selecting a rather wide time window, a possible difference between the arrival times of the gamma and neutrino signals may also be identified. This might provide insight in the particle production processes at the source. By means of a toy model it will be demonstrated that a statistically significant signal can be obtained with a km$^{3}$-scale neutrino telescope on a sample of 500 gamma ray bursts for a signal rate as low as 1 detectable neutrino for 3% of the bursts.

  8. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES detector, located in the deep sea 40 km off the French coast, is the largest neutrino telescope in the northern hemisphere. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons created in neutrino interactions in and around the detector. The main goal of ANTARES is to search for astrophysical neutrinos in the TeV-PeV range. This comprises searches for a diffuse cosmic neutrino flux and for fluxes from possible galactic and extragalactic sources of neutrinos. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES detector is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles

  9. Selected results from the ANTARES neutrino telescope

    CERN Document Server

    Mangano, Salvatore

    2012-01-01

    The ANTARES telescope is the largest underwater neutrino telescope existing at present. It is based on the detection of Cherenkov light produced in sea water by neutrino-induced muons. The detector, consisting of a tri-dimensional array of 885 photomultipliers arranged on twelve vertical lines, is located at a depth of 2475 m in the Mediterranean Sea, 40 km off the French coast. The main goal of the experiment is to probe the Universe by means of neutrino events in an attempt to investigate the nature of high energy astrophysical sources, to contribute to the identification of cosmic ray sources, and to explore the nature of dark matter. In this contribution we will review the status of the detector, illustrate its operation and performance, and present the first results from the analysis carried out on atmospheric muons and neutrinos, as well as from the search for astrophysical neutrino sources.

  10. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge

    KAUST Repository

    Maeng, Sungkyu

    2010-07-01

    Natural treatment systems such as bank filtration (BF) and artificial recharge (via an infiltration basin) are a robust barrier for many organic micropollutants (OMPs) and may represent a low-cost alternative compared to advanced drinking water treatment systems. This study analyzes a comprehensive database of OMPs at BF and artificial recharge (AR) sites located near Lake Tegel in Berlin (Germany). The focus of the study was on the derivation of correlations between the removal efficiencies of OMPs and key factors influencing the performance of BF and AR. At the BF site, shallow monitoring wells located close to the Lake Tegel source exhibited oxic conditions followed by prolonged anoxic conditions in deep monitoring wells and a production well. At the AR site, oxic conditions prevailed from the recharge pond along monitoring wells to the production well. Long residence times of up to 4.5 months at the BF site reduced the temperature variation during soil passage between summer and winter. The temperature variations were greater at the AR site as a consequence of shorter residence times. Deep monitoring wells and the production well located at the BF site were under the influence of ambient groundwater and old bank filtrate (up to several years of age). Thus, it is important to account for mixing with native groundwater and other sources (e.g., old bank filtrate) when estimating the performance of BF with respect to removal of OMPs. Principal component analysis (PCA) was used to investigate correlations between OMP removals and hydrogeochemical conditions with spatial and temporal parameters (e.g., well distance, residence time and depth) from both sites. Principal component-1 (PC1) embodied redox conditions (oxidation-reduction potential and dissolved oxygen), and principal component-2 (PC2) embodied degradation potential (e.g., total organic carbon and dissolved organic carbon) with the calcium carbonate dissolution potential (Ca2+ and HCO3 -) for the BF site

  11. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge.

    Science.gov (United States)

    Maeng, Sung Kyu; Ameda, Emmanuel; Sharma, Saroj K; Grützmacher, Gesche; Amy, Gary L

    2010-07-01

    Natural treatment systems such as bank filtration (BF) and artificial recharge (via an infiltration basin) are a robust barrier for many organic micropollutants (OMPs) and may represent a low-cost alternative compared to advanced drinking water treatment systems. This study analyzes a comprehensive database of OMPs at BF and artificial recharge (AR) sites located near Lake Tegel in Berlin (Germany). The focus of the study was on the derivation of correlations between the removal efficiencies of OMPs and key factors influencing the performance of BF and AR. At the BF site, shallow monitoring wells located close to the Lake Tegel source exhibited oxic conditions followed by prolonged anoxic conditions in deep monitoring wells and a production well. At the AR site, oxic conditions prevailed from the recharge pond along monitoring wells to the production well. Long residence times of up to 4.5 months at the BF site reduced the temperature variation during soil passage between summer and winter. The temperature variations were greater at the AR site as a consequence of shorter residence times. Deep monitoring wells and the production well located at the BF site were under the influence of ambient groundwater and old bank filtrate (up to several years of age). Thus, it is important to account for mixing with native groundwater and other sources (e.g., old bank filtrate) when estimating the performance of BF with respect to removal of OMPs. Principal component analysis (PCA) was used to investigate correlations between OMP removals and hydrogeochemical conditions with spatial and temporal parameters (e.g., well distance, residence time and depth) from both sites. Principal component-1 (PC1) embodied redox conditions (oxidation-reduction potential and dissolved oxygen), and principal component-2 (PC2) embodied degradation potential (e.g., total organic carbon and dissolved organic carbon) with the calcium carbonate dissolution potential (Ca(2+) and HCO(3)(-)) for the BF

  12. Flavor distribution of UHE cosmic neutrino oscillations at neutrino telescopes

    Science.gov (United States)

    Xing, Zhi-Zhong

    2009-04-01

    If the ultrahigh-energy (UHE) cosmic neutrinos produced from a distant astrophysical source can be measured at a km-size neutrino telescope such as the IceCube or KM3NeT, they will open a new window to understand the nature of flavor mixing and to probe possible new physics. Considering the conventional UHE cosmic neutrino source with the flavor ratio φe:φμ:φτ=1:2:0, I point out two sets of conditions for the flavor democracy φeT:φμT:φτT=1:1:1 to show up at neutrino telescopes: either θ13=0 and θ23=π/4 (CP invariance) or δ=±π/2 and θ23=π/4 (CP violation) in the standard parametrization of the 3×3 neutrino mixing matrix V. Allowing for slight μ-τ symmetry breaking effects characterized by Δ∈[-0.1,+0.1], I find φeT:φμT:φτT=(1-2Δ):(1+Δ):(1+Δ) as a good approximation. Another possibility to constrain Δ is to detect the ν flux of E≈6.3PeV via the Glashow resonance channel νe→W→anything. I also give some brief comments on (1) possible non-unitarity of V in the seesaw framework and its effects on the flavor distribution at neutrino telescopes and (2) a generic description and determination of the cosmic neutrino flavor composition at distant astrophysical sources.

  13. Neutrino refraction by the cosmic neutrino background

    CERN Document Server

    Diaz, J S

    2015-01-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  14. Neutrino refraction by the cosmic neutrino background

    Science.gov (United States)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  15. Acquisition of spectral reflectance data using an artificial source of hemispherical illumination

    Science.gov (United States)

    Williams, Darrel L.; Wood, Frank M., Jr.; Case, David W.

    1988-01-01

    An integrating hemisphere illumination system has been developed to facilitate the collection of spectral reflectance factor measurements of targets of interest in a laboratory environment. One of the most significant advantages associated with such an illumination source is that repeated measurements can be made over an extended period of time, for a variety of targets, under nearly identical illumination and viewing angle conditions. The illumination system consists of a 76 cm (30 in.) aluminum hemisphere coated internally with barium sulfate paint. Illumination is provided by sixteen 62 watt quartz halogen bulbs with tungsten filaments. A simple metal structure has been developed to hold the hemisphere and all peripheral equipment, such as spectrometers, radiometers, and cameras, in place during data collection. The entire set up can be easily disassembled and packed in airline-approved shipping cases to facilitate transportation to laboratory facilities located near any study area. The illumination system is described briefly, and numerous plots of radiance and spectral reflectance are provided to illustrate the performance and utility of the apparatus.

  16. Measuring neutrino mass without neutrinos!

    CERN Document Server

    Peach, Kenneth J

    2004-01-01

    Neutrinoless double beta decay offers the most precise (if challenging) way of measuring the absolute mass of the neutrino. Particle Physics met at the Rutherford Appleton Laboratory last autumn to discuss wether the UK should take a lead in setting up such an experiment

  17. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    Sandip Pakvasa

    2000-01-01

    I review explanations for the three neutrino anomalies (solar, atmospheric and LSND) which go beyond the `conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well.

  18. Neutrino beams and experiments

    International Nuclear Information System (INIS)

    After a brief review of the early history of neutrino experiments, the principle of neutrino beams at proton accelerators is described and a survey of neutrino experiments since 1963 is given. ((orig.))

  19. Astrophysical Neutrino Event Rates and Sensitivity for Neutrino Telescopes

    CERN Document Server

    Albuquerque, I F M; Smoot, G F; Albuquerque, Ivone F.M.; Lamoureux, Jodi; Smoot, George F.

    2001-01-01

    Spectacular processes in astrophysical sites produce high-energy cosmic rays which are further accelerated by Fermi-shocks into a power-law spectrum. These, in passing through radiation fields and matter, produce neutrinos. Neutrino telescopes are designed with large detection volumes to observe such astrophysical sources. A large volume is necessary because the fluxes and cross-sections are small. We estimate various telescopes' sensitivity and expected event rates from astrophysical sources of high-energy neutrinos. We find that an ideal detector of km^2 incident area can be sensitive to a flux of neutrinos integrated over energy from 10^5 and 10^{7} GeV as low as 1.3 * 10^(-8) * E^(-2) (GeV/cm^2 s sr) which is three times smaller than the Waxman-Bachall conservative upper limit on potential neutrino flux. Detection from point sources is possible from known bursts and unlikely if there is no prior knowledge of the location and time of the burst. A real detector will have degraded performance.

  20. The Solar Solution: Tracking the Sun with Low Energy Neutrinos

    OpenAIRE

    Hartman, Nicole; Sekula, Stephen

    2016-01-01

    As neutrinos become a significant background for projected dark matter experiments, the community will become concerned with determining if events counted in a dark matter experiment are good dark matter candidates or low-energy neutrinos from astrophysical sources. We investigate the feasibility of using neutrino-electron scattering in a terrestrial detector medium as a means to determine the flight direction of the original, low-energy solar neutrino.Using leading-order weak interactions in...

  1. Neutrino masses from SUSY: Different contributions and their implications

    Indian Academy of Sciences (India)

    Sudhir K Vempati

    2000-01-01

    We discuss the various sources of neutrino masses in supersymmetric standard models with explicit lepton number violation. We show that the bilinear lepton number violating soft terms in models with either bilinear or trilinear lepton number violating couplings in the superpotential, play an important role in determining the neutrino mass spectrum. A comparative study of the neutrino mass spectrum and its implications for the present neutrino anomalies in these models is presented.

  2. Experimental Neutrino Physics

    OpenAIRE

    Zuber, K.

    2008-01-01

    It's been a remarkable decade in neutrino physics. Ten years ago this summer, at the 1998 neutrino conference in Takayama, the Super-Kamiokande collaboration reported the observation of neutrinos changing flavor, thereby establishing the existence of neutrino mass. A few years later, the SNO experiment solved the long-standing solar neutrino problem demonstrating that it too was due to neutrino oscillation. Just a few years after that, these effects were confirmed and the oscillation paramete...

  3. Neutrino masses and ordering via gravitational waves, photon and neutrino detections

    CERN Document Server

    Langaeble, Kasper; Sannino, Francesco

    2016-01-01

    We define the theoretical framework and deduce the conditions under which multi-messenger astronomy can constrain neutrino masses and unveil their ordering. The framework uses time differences between the arrival of neutrinos and the other two light messengers, i.e. light and gravitons, emitted in astrophysical catastrophes. We argue that it is possible to decrease the upper bound on the absolute mass of the lightest neutrino to less than about $0.02$~eV for astrophysical sources at around 10~Mpc and with neutrino energies of about $5$~MeV. We also show that the potential observation of neutrinos from astrophysical sources located at distances of hundreds of mega parsec similar to the one discovered by the LIGO collaboration \\cite{Abbott:2016blz} leads to stronger constraints on neutrino properties.

  4. Performance prediction between horizontal and vertical source heat pump systems for greenhouse heating with the use of artificial neural networks

    Science.gov (United States)

    Benli, Hüseyin

    2015-11-01

    This paper presents the suitability of artificial neural networks (ANNs) to predict the performance and comparison between a horizontal and a vertical ground source heat pump system. Performance forecasting is the precondition for the optimal control and energy saving operation of heat pump systems. In this study, performance parameters such as air temperature entering condenser fan-coil unit, air temperature leaving condenser fan-coil unit, and ground temperatures (2 and 60 m) obtained experimental studies are input data; coefficient of performance of system (COPsys) is in output layer. The back propagation learning algorithm with three different variants such as Levenberg-Marguardt, Pola-Ribiere conjugate gradient, and scaled conjugate gradient, and also tangent sigmoid transfer function were used in the network so that the best approach can be found. The results showed that LM with three neurons in the hidden layer is the most suitable algorithm with maximum correlation coefficients R2 of 0.999, minimum root mean square RMS value and low coefficient variance COV. The reported results confirmed that the use of ANN for performance prediction of COPsys,H-V is acceptable in these studies.

  5. Artificially induced hotspots in Bi2Sr2CaCu2O8 mesa terahertz sources

    Science.gov (United States)

    Hao, Yang; Welp, Ulrich; Koshelev, Alexei; Vlasko-Vlasov, Vitalii; Kwok, Wai-Kwong; Kadowaki, Kazuo; Benseman, Timothy

    Mesa-shaped devices comprising stacked Intrinsic Josephson Junctions (IJJs) in the high-temperature superconductor Bi2Sr2CaCu2O8 can be used as compact sources of coherent terahertz radiation. Achieving high emission levels of THz emission power from these devices depends on efficient synchronization of the approximately 600 IJJs in the stack. Theoretical simulations of stacked IJJs, as well as some empirical results, suggest that thermal inhomogeneity of the stack may enhance THz emission power. There are a number of possible mechanisms by which this might occur, including a hotspot acting as a local resistive shunt for the IJJs (thus altering the spread of bias voltages in the stack and the junction damping dynamics) or by local self-heating reducing the phase-stiffness of the superconducting condensate in critical locations. Here we report results of artificially inducing local heating in these devices with thin film micro-heaters patterned on their surfaces, in order to determine which mechanism(s) could be responsible for self-heating-induced THz emission enhancement. Sample patterning was performed at the Center for Nanoscale Materials, an Office of Science user facility, supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  6. Neutrinos: Theory and Phenomenology

    CERN Document Server

    Parke, Stephen J

    2013-01-01

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  7. Neutrinos: Theory and Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  8. Neutrinos: theory and phenomenology

    International Nuclear Information System (INIS)

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino standard model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed. (paper)

  9. Extraterrestrial high energy neutrino fluxes

    International Nuclear Information System (INIS)

    With the aid of using the most recent cosmic ray spectra up to 2x1020 eV, production spectra of high-energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh-energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high-energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND-type detector are discussed in the context of the Weinberg-Salam model with sin2 theta/sub ω/ = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high-energy neutrino production models are also discussed. It appears that important high-energy neutrino astronomy may be possible with DUMAND, but very long observing times are required

  10. Extraterrestrial high energy neutrino fluxes

    Science.gov (United States)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  11. Extraterrestrial high energy neutrino fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1979-06-01

    With the aid of using the most recent cosmic ray spectra up to 2x10/sup 20/ eV, production spectra of high-energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh-energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high-energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND-type detector are discussed in the context of the Weinberg-Salam model with sin/sup 2/ theta/sub ..omega../ = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high-energy neutrino production models are also discussed. It appears that important high-energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  12. Supernova neutrinos

    International Nuclear Information System (INIS)

    In the first part of his in-depth article on the 1987 supernova, David Schramm of the University of Chicago and the NASA/Fermilab Astrophysics Centre reviewed the background to supernovae, the composition of massive stars and the optical history of SN 1987A, and speculated on what the 1987 remnant might be. In such a Type II supernova, gravitational pressure crushes the atoms of the star's interior producing neutron matter, or even a black hole, and releasing an intense burst of neutrinos. 1987 was the first time that physicists were equipped (but not entirely ready!) to intercept these particles, and in the second part of his article, David Schramm covers the remarkable new insights from the science of supernova neutrino astronomy, born on 23 February 1987

  13. Flavor instabilities in the neutrino line model

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Huaiyu, E-mail: duan@unm.edu; Shalgar, Shashank, E-mail: shashankshalgar@unm.edu

    2015-07-30

    A dense neutrino medium can experience collective flavor oscillations through nonlinear neutrino–neutrino refraction. To make this multi-dimensional flavor transport problem more tractable, all existing studies have assumed certain symmetries (e.g., the spatial homogeneity and directional isotropy in the early universe) to reduce the dimensionality of the problem. In this work we show that, if both the directional and spatial symmetries are not enforced in the neutrino line model, collective oscillations can develop in the physical regimes where the symmetry-preserving oscillation modes are stable. Our results suggest that collective neutrino oscillations in real astrophysical environments (such as core-collapse supernovae and black-hole accretion discs) can be qualitatively different from the predictions based on existing models in which spatial and directional symmetries are artificially imposed.

  14. What can we learn from neutrino electron scattering?

    CERN Document Server

    De Gouvêa, A; Gouvea, Andre de; Jenkins, James

    2006-01-01

    Precision tests of the standard model are essential for constraining models of new physics. Neutrino-electron elastic scattering offers a clean probe into many electroweak effects that are complimentary to the more canonical measurements done at collider facilities. Such reactions are rare, even as compared with the already tiny cross-sections for neutrino-nucleon scattering, and competitive precision measurements have historically been challenging to obtain. Due to new existing and proposed high-flux neutrino sources, this is about to change. We present a topical survey of precision measurements that can be done with neutrino-electron scattering in light of these new developments. Specifically, we consider four distinct neutrino sources: nuclear reactors, neutrino factories, beta-beams, and conventional beams. For each source we estimate the expected future precision of several representative observables, including the weak mixing angle, neutrino magnetic moments, and potential leptonic Z' couplings. We find...

  15. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES detector, located 40 km off the French coast, is the largest deep-sea neutrino telescope in the world. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons produced by neutrino interactions in and around the detector. The primary goal of ANTARES is to search for astrophysical neutrinos in the TeV–PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical sources such as active galactic nuclei or galactic sources. The search program also includes multi messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles. The most recent results are reported. (author)

  16. Neutrino astrophysics: A research briefing

    International Nuclear Information System (INIS)

    This report contains the following discussions on neutrino astrophysics: ongoing solar neutrino experiments; solar neutrino experiments under construction; developing new solar neutrino detectors; high-energy neutrinos; high-energy neutrino experiments under construction; and a kilometer-scale high-energy neutrino telescope

  17. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  18. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    International Nuclear Information System (INIS)

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z0. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (1021-1025-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the line shape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality

  19. A search for sterile neutrinos at the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pittam, Robert Neil [Univ. of Oxford (United Kingdom)

    2010-01-01

    MINOS is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory in Illinois, USA. The experiment was designed to study neutrino oscillation phenomena. The vμ beam produced by the NuMI beam facility at FNAL is used along with two functionally identical detectors. The Near Detector at FNAL and a Far Detector 735 km away in the Soudan Underground Laboratory in northern Minnesota. Comparison of the observed spectra of neutrinos at the two detectors provides the evidence for neutrino oscillations. This thesis presents work on the postulated phenomena of sterile neutrinos. Oscillations between active and sterile neutrinos will lead to a deficit in the expected rate of measured Neutral Current interactions at the Far Detector. A technique for selecting Neutral Current events utilizing an Artificial Neural Network is presented with resulting overall efficiency of 91.1% and purity of 66.0%. A method of predicting the expected Charged and Neutral Current energy spectra at the Far Detector given the data recorded at the Near Detector is presented. A model to search for oscillations between sterile and active neutrinos is developed. Sources of systematic uncertainty that can effect the results of the analysis are discussed. The analysis developed is applied to a Standard Model 3 flavour oscillation model as a cross check under the scenarios with and without ve appearance. The oscillation parameters measured by this model are Δm322 = (2.39-0.15+0.23) x 10-3 eV2 and θ23 = 0.727-0.11+0.22 for the no ve appearance result. An analysis of the resulting prediction reveals no evidence for active neutrino disappearance. The analysis is then performed using the 4 flavour neutrino oscillation model developed. Again this is done under the 2 scenarios of ve appearance and no ve appearance

  20. A search for sterile neutrinos at the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pittam, Robert Neil; /Oxford U.

    2010-08-01

    MINOS is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory in Illinois, USA. The experiment was designed to study neutrino oscillation phenomena. The {nu}{sub {mu}} beam produced by the NuMI beam facility at FNAL is used along with two functionally identical detectors. The Near Detector at FNAL and a Far Detector 735 km away in the Soudan Underground Laboratory in northern Minnesota. Comparison of the observed spectra of neutrinos at the two detectors provides the evidence for neutrino oscillations. This thesis presents work on the postulated phenomena of sterile neutrinos. Oscillations between active and sterile neutrinos will lead to a deficit in the expected rate of measured Neutral Current interactions at the Far Detector. A technique for selecting Neutral Current events utilizing an Artificial Neural Network is presented with resulting overall efficiency of 91.1% and purity of 66.0%. A method of predicting the expected Charged and Neutral Current energy spectra at the Far Detector given the data recorded at the Near Detector is presented. A model to search for oscillations between sterile and active neutrinos is developed. Sources of systematic uncertainty that can effect the results of the analysis are discussed. The analysis developed is applied to a Standard Model 3 flavour oscillation model as a cross check under the scenarios with and without {nu}{sub e} appearance. The oscillation parameters measured by this model are {Delta}m{sub 32}{sup 2} = (2.39{sub -0.15}{sup +0.23}) x 10{sup -3} eV{sup 2} and {theta}{sub 23} = 0.727{sub -0.11}{sup +0.22} for the no {nu}{sub e} appearance result. An analysis of the resulting prediction reveals no evidence for active neutrino disappearance. The analysis is then performed using the 4 flavour neutrino oscillation model developed. Again this is done under the 2 scenarios of {nu}{sub e} appearance and no {nu}{sub e} appearance. The results of this analysis are {Delta

  1. Neutrino 2004: Collection of Presentations

    International Nuclear Information System (INIS)

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments

  2. Neutrino 2004: Collection of Presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The scientific program covers the latest developments in neutrino physics, astrophysics and related topics through a set of invited talks and 2 poster sessions. The following issues are addressed: - solar neutrinos, - atmospheric neutrinos, - short and long baseline experiments, - neutrino oscillations, - double beta decay, - direct neutrino mass limits, - theory for neutrino masses, neutrino telescopes and ultra-high energy neutrinos, - dark matter searches, - neutrino in astrophysics and cosmology, and - future projects beams and experiments.

  3. Study of Neutrino Interactions in MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Richa [Panjab Univ., Chandigarh (India)

    2014-01-01

    MINOS stands for Main Injector Neutrino Oscillation Search. It is a long baseline experiment located in the USA and is composed of two detectors. The Near Detector is at Fermilab, 1 km from the source of neutrinos. The Far Detector is in Minnesota at a distance of 735 km from the source. Both detectors are steel scintillator tracking calorimeters. MINOS searches for neutrino oscillations by comparing the neutrino energy spectrum at the Far Detector with that obtained from a prediction based on the spectrum at the Near Detector. The primary aim of MINOS is to measure the atmospheric oscillation parameters Δm2 32 and θ23. CPT symmetry requires that these parameters should be same for neutrinos and antineutrinos. Di erences between neutrino and antineutrino oscillations would be an indication of new physics beyond the neutrino-Standard Model ( SM). Additionally, violation of Lorentz or CPT symmetry could also give rise to oscillations di erent from that expected from the SM predictions, such as neutrino to antineutrino transitions.

  4. Muons and Neutrinos 2007

    CERN Document Server

    Gaisser, Thomas K

    2008-01-01

    This paper is the written version of the rapporteur talk on Section HE-2, muons and neutrinos, presented at the 30th International Cosmic Ray Conference, Merida, Yucatan, July 11, 2007. Topics include atmospheric muons and neutrinos, solar neutrinos and astrophysical neutrinos as well as calculations and instrumentation related to these topics.

  5. Light Sterile Neutrinos

    CERN Document Server

    Giunti, Carlo

    2015-01-01

    The indications in favor of the existence of light sterile neutrinos at the eV scale found in short-baseline neutrino oscillation experiments is reviewed. The future perspectives of short-baseline neutrino oscillation experiments and the connections with beta-decay measurements of the neutrino masses and with neutrinoless double-beta decay experiments are discussed.

  6. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    J G Learned

    2000-07-01

    With the announcement of new evidence for muon neutrino disappearance observed by the super-Kamiokande experiment, the more than a decade old atmospheric neutrino anomaly moved from a possible indication for neutrino oscillations to an apparently inescapable fact. The evidence is reviewed, and new indications are presented that the oscillations are probably between muon and tau neutrinos. Implications and future directions are discussed.

  7. ABSOLUTE NEUTRINO MASSES

    DEFF Research Database (Denmark)

    Schechter, J.; Shahid, M. N.

    2012-01-01

    We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos.......We discuss the possibility of using experiments timing the propagation of neutrino beams over large distances to help determine the absolute masses of the three neutrinos....

  8. Measuring the activity of a {sup 51}Cr neutrino source based on the gamma-radiation spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Gorbachev, V. V., E-mail: vvgor-gfb1@mail.ru; Gavrin, V. N.; Ibragimova, T. V.; Kalikhov, A. V.; Malyshkin, Yu. M.; Shikhin, A. A. [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2015-12-15

    A technique for the measurement of activities of intense β sources by measuring the continuous gamma-radiation (internal bremsstrahlung) spectra is developed. A method for reconstructing the spectrum recorded by a germanium semiconductor detector is described. A method for the absolute measurement of the internal bremsstrahlung spectrum of {sup 51}Cr is presented.

  9. Neutrinos in Nuclear Physics

    CERN Document Server

    McKeown, R D

    2014-01-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  10. Neutrinos in Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, Bob [bmck@jlab.org

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  11. The solar neutrinos epopee

    CERN Document Server

    Lasserre, T

    2003-01-01

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos nu sub e emitted by the sun are converted into muon neutrinos (nu submu) and tau neutrinos (nu subtau), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the ...

  12. Neutrino electromagnetic properties

    CERN Document Server

    Giunti, Carlo

    2008-01-01

    The main goal of the paper is to give a short review on a neutrino electromagnetic properties. In the introductory part of the paper a summary on what we really know about neutrinos is given: we discuss the basics of neutrino mass and mixing as well as the phenomenology of neutrino oscillations. This is important for the further discussion on a neutrino electromagnetic properties that starts with derivation of the neutrino electromagnetic vertex function in the most general form, that follows from the requirement of Lorentz invariance, for both the Dirac and Majorana cases. Then the problem of a neutrino form factors definition and calculation within gauge models is considered. In particular, we discuss a neutrino electric charge form factor and charge radius, dipole magnetic and electric and anapole form factors. Available experimental constraints on a neutrino electromagnetic properties are also reviewed, and the most important experiments on obtaining limits on a neutrino magnetic moment are discussed. A s...

  13. Measurement of Atmospheric Neutrino Oscillations with Very Large Volume Neutrino Telescopes

    Directory of Open Access Journals (Sweden)

    J. P. Yáñez

    2015-01-01

    Full Text Available Neutrino oscillations have been probed during the last few decades using multiple neutrino sources and experimental set-ups. In the recent years, very large volume neutrino telescopes have started contributing to the field. First ANTARES and then IceCube have relied on large and sparsely instrumented volumes to observe atmospheric neutrinos for combinations of baselines and energies inaccessible to other experiments. Using this advantage, the latest result from IceCube starts approaching the precision of other established technologies and is paving the way for future detectors, such as ORCA and PINGU. These new projects seek to provide better measurements of neutrino oscillation parameters and eventually determine the neutrino mass ordering. The results from running experiments and the potential from proposed projects are discussed in this review, emphasizing the experimental challenges involved in the measurements.

  14. Measuring atmospheric neutrino oscillations with neutrino telescopes

    International Nuclear Information System (INIS)

    Neutrino telescopes with large detection volumes can demonstrate whether the current indications of neutrino oscillation are correct or if a better description can be achieved with nonstandard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of nonstandard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely instrumented strings to the AMANDA II detector makes oscillation observations feasible. Such a configuration is competitive with current and proposed experiments

  15. Measuring Atmospheric Neutrino Oscillations with Neutrino Telescopes

    CERN Document Server

    Albuquerque, I F M; Albuquerque, Ivone F.M.; Smoot, George F.

    2001-01-01

    Neutrino telescopes with large detection volumes can demonstrate that the current indications of neutrino oscillation are correct or if a better description can be achieved with non-standard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of non-standard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely-instrumented strings to the AMANDA II detector makes observations feasible. Such a configuration is competitive with current and proposed experiments.

  16. Measuring atmospheric neutrino oscillations with neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Ivone F. M.; Smoot, George F.

    2001-09-01

    Neutrino telescopes with large detection volumes can demonstrate whether the current indications of neutrino oscillation are correct or if a better description can be achieved with nonstandard alternatives. Observations of contained muons produced by atmospheric neutrinos can better constrain the allowed region for oscillations or determine the relevant parameters of nonstandard models. We analyze the possibility of neutrino telescopes measuring atmospheric neutrino oscillations. We suggest adjustments to improve this potential. An addition of four densely instrumented strings to the AMANDA II detector makes oscillation observations feasible. Such a configuration is competitive with current and proposed experiments.

  17. Impact of cosmic neutrinos on the gravitational-wave background

    CERN Document Server

    Mangilli, A; Matarrese, S; Riotto, Antonio

    2008-01-01

    We obtain the equation governing the evolution of the cosmological gravitational-wave background, accounting for the presence of cosmic neutrinos, up to second order in perturbation theory. In particular, we focus on the epoch during radiation dominance, after neutrino decoupling, when neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultra-relativistic particles. Besides recovering the standard damping effect due to neutrinos, a new source term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The importance of such a source term, so far completely disregarded in the literature, is related to the high velocity dispersion of neutrinos in the considered epoch; its computation requires solving the full second-order Boltzmann equation for collisionless neutrinos.

  18. Impact of cosmic neutrinos on the gravitational-wave background

    International Nuclear Information System (INIS)

    We obtain the equation governing the evolution of the cosmological gravitational-wave background, accounting for the presence of cosmic neutrinos, up to second order in perturbation theory. In particular, we focus on the epoch during radiation dominance, after neutrino decoupling, when neutrinos yield a relevant contribution to the total energy density and behave as collisionless ultrarelativistic particles. Besides recovering the standard damping effect due to neutrinos, a new source term for gravitational waves is shown to arise from the neutrino anisotropic stress tensor. The importance of such a source term, so far completely disregarded in the literature, is related to the high velocity dispersion of neutrinos in the considered epoch; its computation requires solving the full second-order Boltzmann equation for collisionless neutrinos.

  19. Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

    Science.gov (United States)

    Di Crescenzo, A.; OPERA Collaboration

    2016-05-01

    The OPERA experiment observed ν μ → ν τ oscillations in the atmospheric sector. To this purpose the hybrid OPERA detector was exposed to the CERN Neutrinos to Gran Sasso beam from 2008 to 2012, at a distance of 730 km from the neutrino source. Charged-current interactions of ν τ were searched for through the identification of τ lepton decay topologies. The five observed ν τ interactions are consistent with the expected number of events in the standard three neutrino framework. Based on this result, new limits on the mixing parameters of a massive sterile neutrino may be set. Preliminary results of the analysis performed in the 3+1 neutrino framework are here presented.

  20. Neutrino Mass Models

    OpenAIRE

    King, S. F.

    2003-01-01

    This is a review article about neutrino mass models, particularly see-saw models involving three active neutrinos which are capable of describing both the atmospheric neutrino oscillation data, and the large mixing angle MSW solar solution, which is now uniquely specified by recent data. We briefly review the current experimental status, show how to parametrise and construct the neutrino mixing matrix, and present the leading order neutrino Majorana mass matrices. We then introduce the see-sa...

  1. Resolving the reactor neutrino anomaly with the KATRIN neutrino experiment

    Science.gov (United States)

    Formaggio, J. A.; Barrett, J.

    2011-11-01

    The KArlsruhe TRItium Neutrino experiment (KATRIN) combines an ultra-luminous molecular tritium source with an integrating high-resolution spectrometer to gain sensitivity to the absolute mass scale of neutrinos. The projected sensitivity of the experiment on the electron neutrino mass is 200 meV at 90% C.L. With such unprecedented resolution, the experiment is also sensitive to physics beyond the Standard Model, particularly to the existence of additional sterile neutrinos at the eV mass scale. A recent analysis of available reactor data appears to favor the existence of such a sterile neutrino with a mass splitting of | Δmsterile | 2 ⩾ 1.5eV2 and mixing strength of sin2 2θsterile = 0.17 ± 0.08 at 95% C.L. Upcoming tritium beta decay experiments should be able to rule out or confirm the presence of the new phenomenon for a substantial fraction of the allowed parameter space.

  2. A CERN-based high-intensity high-energy proton source for long baseline neutrino oscillation experiments with next-generation large underground detectors for proton decay searches and neutrino physics and astrophysics

    CERN Document Server

    Rubbia, A

    2010-01-01

    The feasibility of a European next-generation very massive neutrino observatory in seven potential candidate sites located at distances from CERN ranging from 130 km to 2300 km, is being considered within the LAGUNA design study. The study is providing a coordinated technical design and assessment of the underground research infrastructure in the various sites, and its coherent cost estimation. It aims at a prioritization of the sites within summer 2010 and a start of operation around 2020. In addition to a rich non-accelerator based physics programme including the GUT-scale with proton decay searches, the detection of a next-generation neutrino superbeam tuned to measure the flavor-conversion oscillatory pattern (i.e. 1st and 2nd oscillation maxima) would allow to complete our understanding of the leptonic mixing matrix, in particular by determining the neutrino mass hierarchy and by studying CP-violation in the leptonic sector, thereby addressing the outstanding puzzle of the origin of the excess of matter ...

  3. Initial report from the ICFA Neutrino Panel

    CERN Document Server

    Cao, J; Duchesneau, D; Funchal, R; Geer, S; Kim, S B; Kobayashi, T; Long, K; Maltoni, M; Mezzetto, M; Mondal, N; Shiozawa, M; Sobczyk, J; Tanaka, H A; Wascko, M; Zeller, G

    2014-01-01

    In July 2013 ICFA established the Neutrino Panel with the mandate "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development a neutrino factory as a future intense source of neutrinos for particle physics experiments". This, the Panel's Initial Report, presents the conclusions drawn by the Panel from three regional "Town Meetings" that took place between November 2013 and February 2014. After a brief introduction and a short summary of the status of the knowledge of the oscillation parameters, the report summarises the approved programme and identifies opportunities for the development of the field. In its conclusions, the Panel recognises that to maximise the discovery potential of the accelerator-based neutrino-oscillation programme it will be essential to exploit the infrastructures that exist at CERN, FNAL and J-PARC and the expertise and resources that reside in laboratories and institutes ar...

  4. Recent developments in neutrino physics

    International Nuclear Information System (INIS)

    I shall attempt to summarize recent developments in the experimental situation in neutrino physics. The paper will deal with recent results, drawing on either published work or research that has been presented in preprint form, as there is an adequate supply of interesting and controversial data restricting oneself to these generally more reliable sources. The discussion of the theoretical implication of these experimental results will be presented in the following paper by Boris Kayser. The topics to be covered in this presentation are: direct measurements of bar νe mass via beta endpoint studies; status of solar neutrino observations; status of ''17-keV neutrino'' reports; and the use of νp elastic scattering to determine the ''strange quark'' content of the proton. 2 refs., 15 figs., 9 tabs

  5. Muon neutrino disappearance at MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, R [Indiana Univ., Bloomington, IN (United States)

    2009-08-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be Δm322 = 2.45+0.12-0.12 x 10-3 eV2 and sin232) = 1.00-0.04+0.00 (> 0.90 at 90% confidence level).

  6. Muon neutrino disappearance at MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, R.; /Indiana U.

    2009-08-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be {Delta}m{sub 32}{sup 2} = 2.45{sub +0.12}{sup -0.12} x 10{sub -3} eV{sup 2} and sin{sup 2}(2{theta}{sub 32}) = 1.00{sub -0.04}{sup +0.00} (> 0.90 at 90% confidence level).

  7. Search for a diffuse flux of extragalactic neutrinos with the IceCube neutrino observatory

    International Nuclear Information System (INIS)

    Since the discovery of cosmic rays it has been one of the major research goals to identify the sources and acceleration mechanisms behind these high-energy particles observed from space, with energies up to several EeV. The study of high-energy charged particles and photons has advantages and disadvantages: the detection techniques for charged cosmic rays are very advanced though high-energy charged nuclei are not able to reveal their sources due to magnetic deflection. In the last years, there have been discoveries of many gamma-ray sources, where photon fluxes up to energies of 100 TeV have been observed. However, the universe is opaque to photons with energies larger than 100 TeV since gamma rays interact with the cosmic microwave background. Neutrinos suffer from neither of these limitations. They are ideal messenger particles in order to investigate the sources of cosmic rays since they propagate unaffected, but their detection is difficult and no extraterrestrial neutrino sources at high energies have yet been found. The IceCube experiment, located at the geographic South Pole, was built in order to detect high-energy neutrinos from the universe. It was completed in December 2010 and is the largest neutrino observatory on Earth. It detects neutrinos via their interaction with the Antarctic ice inside and around the detection volume. In these interactions, high-energy leptons are produced, which follow the direction of the initial neutrino and produce a cone of Cherenkov light along their path. This light is detected by optical sensors deployed in the instrumented volume. The search for a diffuse neutrino flux is a very promising approach to look for an extragalactic flux of astrophysical neutrinos. Its sensitivity is mainly based on neutrino energies since astrophysical neutrinos are expected to be more energetic than atmospheric neutrinos. It searches for an astrophysical flux from the sum of all sources in the universe. These sources can be individually

  8. Simulation study of neutrino nucleus cross section measurement in a segmented detector at a spallation neutron source

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen-Wei; DING Ming-Ming; CHEN Shao-Min; WANG Zhe; ZHANG Feng; GAO Yuan-Ning

    2012-01-01

    Knowledge ofνe-Fe/Pb differential cross sections for νe energy below several tens of MeV scale is believed to be crucial in understanding supernova physics.In a segmented detector at a spallation neutron source,νe energy reconstructed from the electron range measurement is strongly affected because both multiple scattering and electromagnetic showers occur along the electron passage in target materials.In order to estimate these effects,a simulation study has been performed with a cube block model assuming perfect tracking precision.The energy spectrum distortion is observed to be proportional to the atomic number of the target material.Feasibility of unfolding the distorted νe energy spectrum is studied for both Fe and Pb.An evaluation of the statistical accuracy attainable is therefore provided for a segmented detector.

  9. Molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    The goal of the molybdenum solar neutrino experiment is to deduce the 8B solar neutrino flux, averaged over the past several million years, from the concentration of 98Tc in a deeply buried molybdenum deposit. The experiment is important to an understanding of stellar processes because it will shed light on the reason for the discrepancy between theory and observation of the chlorine solar neutrino experiment. Possible reasons for the discrepancy may lie in the properties of neutrinos (neutrino oscillations or massive neutrinos) or in deficiencies of the standard solar model. The chlorine experiment only measures the 8B neutrino flux in current times and does not address possible temporal variations in the interior of the sun, which are also not considered in the standard model. In the molybdenum experiment, we plan to measure 98Tc (4.2 Myr), also produced by 8B neutrinos, and possibly 97Tc (2.6 Myr), produced by lower energy neutrinos

  10. Neutrinos and Supernovae

    International Nuclear Information System (INIS)

    Core-collapse supernovae are one of the few astrophysical environments in which neutrinos play a dominant role. Neutrinos emission is the means by which a newly-born neutron star formed in a core-collapse event cools. Neutrinos may play a significant role in causing the supernova explosion. Finally neutrinos may significantly affect the nucleosynthesis occurring in the layers of the exploding star that are eventually ejected into interstellar space. This paper reviews some interesting neutrino-nucleus processes that may occur in the cores of exploding massive stars and then discusses some effects neutrinos may have on explosive nucleosynthesis in supernovae

  11. Democratic Neutrino Mixing Reexamined

    CERN Document Server

    Fritzsch, Harald; Fritzsch, Harald; Xing, Zhi-zhong

    2004-01-01

    We reexamine the democratic neutrino mixing ansatz, in which the mass matrices of charged leptons and Majorana neutrinos arise respectively from the explicit breaking of S(3)_L x S(3)_R and S(3) flavor symmetries. It is shown that a democracy term in the neutrino sector can naturally allow the ansatz to fit the solar neutrino mixing angle \\theta_sun \\approx 33^\\circ. We predict \\sin^2 2\\theta_atm \\approx 0.95 for atmospheric neutrino mixing and J \\approx 1.2% for leptonic CP violation in neutrino oscillations without any fine-tuning. Direct relations between the model parameters and experimental observables are also discussed.

  12. Experimental Neutrino Physics: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  13. Status and commissioning of the Karlsruhe tritium neutrino experiment KATRIN

    Science.gov (United States)

    Thuemmler, Thomas; Katrin Collaboration

    2013-10-01

    Neutrino properties, and especially the determination of the neutrino rest mass, play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double β decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. Experiments based on single β decay investigate electrons close to their kinematic endpoint in order to determine the neutrino mass by a modelindependent method. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. Applying an ultra-luminous molecular windowless gaseous tritium source and an integrating high-resolution spectrometer of MAC-E filter type, it allows β spectroscopy close to the tritium endpoint with unprecedented precision and will reach a sensitivity of 200 meV/c2 (90% C.L.) on the neutrino mass.

  14. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Adams, C.; et al.

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  15. Optical and X-ray early follow-up of ANTARES neutrino alerts

    NARCIS (Netherlands)

    Adrian-Martinez, S.; van Haren, H.; Antares Collaboration

    2016-01-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays withmatter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrialhigh-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yetbeen discovered. Tra

  16. Software for neutrino acoustic detection and localization

    Science.gov (United States)

    Bouhadef, B.

    2009-06-01

    The evidence of the existing of UHE (E>10eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  17. Software for neutrino acoustic detection and localization

    International Nuclear Information System (INIS)

    The evidence of the existing of UHE (E>1019eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  18. Software for neutrino acoustic detection and localization

    Energy Technology Data Exchange (ETDEWEB)

    Bouhadef, B. [INFN Sezione Pisa, Polo Fibonacci, Largo Bruno Pontecorvo 3, 56127 Pisa (Italy); Dipartimento di Fisica, ' E. Fermi' University of Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)], E-mail: bouhadef@df.unipi.it

    2009-06-01

    The evidence of the existing of UHE (E>10{sup 19}eV) cosmic rays and its possible connection to UHE neutrino suggests the building of an acoustic telescope for neutrino, exploiting thermo-acoustic effect. We present software for neutrino acoustic signal detection and localization. The main points discussed here are the sea noise model, the determination of time differences of arrival (TDOA) between hydrophones signals, the source localization algorithm, and the telescope geometry effect. The effect of TDOAs errors and telescope geometry on the localization accuracy is also discussed.

  19. High-precision Q-value and mass measurements for neutrino physics with TRIGA-TRAP and commissioning of an on-line ion source for TRIGA-SPEC

    International Nuclear Information System (INIS)

    The observation of neutrinoless double-electron capture would prove the Majorana character of neutrinos. Transitions with an energy degeneracy of the initial and final state show a resonant enhancement of the decay rate and would be important for neutrino physics experiments. In order to identify such transitions, precise Q-value measurements with Penning-trap mass spectrometers play a key role. In this thesis, the resonance condition of neutrinoless double-electron capture in 106Cd, 108Cd, and 184Os was investigated by Q-value measurements with the Penning-trap mass spectrometer TRIGA-TRAP. In addition, the Q value of the double-beta decay in 110Pd was measured. A high-voltage platform and an on-line ion source for the ionization of shortlived neutron-rich fission products for the TRIGA-SPEC experiment located at the research reactor TRIGA Mainz has been commissioned and tested. The aim is to provide a radioactive ion beam for high-precision mass spectrometry and collinear laser spectroscopy. For the extraction from the TRIGA reactor, the fission products are attached to aerosol particles and transported with a gas-jet system to the on-line ion source. This ion source has to cope with a high gas load and has to destroy the bond between fission product and aerosol particle. It was investigated, whether an 2.45 GHz ECR ion source is suited for this task.

  20. Extragalactic star-forming galaxies with hypernovae and supernovae as high-energy neutrino and gamma-ray sources: the case of the 10 TeV neutrino data

    CERN Document Server

    Senno, Nicholas; Murase, Kohta; Baerwald, Philipp; Rees, Martin J

    2015-01-01

    In light of the latest IceCube data, we discuss the implications of the cosmic ray energy input from hypernovae and supernovae into the Universe, and their propagation in the hosting galaxy and galaxy clusters or groups. The magnetic confinement in these environments may lead to efficient $pp$ collisions, resulting in a diffuse neutrino spectrum extending from PeV down to 10 TeV energies, with a spectrum and flux level compatible with that recently reported by IceCube. If the diffuse 10 TeV neutrino background largely comes from such the CR reservoirs, the corresponding diffuse gamma-ray background should be compatible with the recent \\textit{Fermi} data. In this scenario, the CR energy input from hypernovae should be dominant over that of supernovae, implying that the starburst scenario does not work if the supernova energy budget is a factor of two larger than the hypernova energy budget. Thus, this strong case scenario can be supported or ruled out in near future.

  1. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  2. Collective neutrino oscillations in nonspherical geometry

    International Nuclear Information System (INIS)

    The rich phenomenology of collective neutrino oscillations has been studied only in one-dimensional or spherically symmetric systems. Motivated by the nonspherical example of coalescing neutron stars, presumably the central engines of short gamma-ray bursts, we use the Liouville equation to formulate the problem for general source geometries. Assuming the neutrino ensemble displays self-maintained coherence, the problem once more becomes effectively one-dimensional along the streamlines of the overall neutrino flux. This approach for the first time provides a formal definition of the 'single-angle approximation' frequently used for supernova neutrinos and allows for a natural generalization to nonspherical geometries. We study the explicit example of a disk-shaped source as a proxy for coalescing neutron stars.

  3. IceCube's Neutrinos: The beginning of extra-Galactic neutrino astrophysics?

    CERN Document Server

    Waxman, E

    2013-01-01

    The flux, spectrum and angular distribution of the excess neutrino signal detected by IceCube between 50TeV and 2PeV are inconsistent with those expected for Galactic sources. The coincidence of the excess, $E_\

  4. Neutrino physics and astrophysics

    International Nuclear Information System (INIS)

    The plenary reports of Neutrino '80 are presented by experts in neutrino physics and astrophysics. Their International Conference on Neutrino Physics and Astrophysics was held in Erice (Italy), June 23 through 28, 1980. The proceedings include reviews of part research, the history of neutrino research and coverage of recent results and theoretical speculations. Topics include high- and low-energy neutrino astrophysics, weak charged and neutral currents, low and intermediate weak interactions, neutrino oscillations, and parity violation in atoms and nuclei conservation laws. Weak interactions in lepton-lepton and lepton-nucleon collisions, beam dump experiments, new theoretical ideas, and future developments in accelerators and detectors are also included. The topics are introduced by a historical perspective section and then grouped under the headings of neutrino astrophysics, weak charged currents, weak neutral currents, low and intermediate energy interactions, conservation laws, weak interactions in electron and hadron experiments, and a final section on future accelerator, new neutrino detection technology and concluding remarks

  5. Introduction to sterile neutrinos

    CERN Document Server

    Volkas, R R

    2002-01-01

    Model-building issues raised by the prospect of light sterile neutrinos are discussed in a pedagogical way. I first review the na\\"{\\i}ve proposal that sterile neutrinos be identified with ``right handed neutrinos''. A critical discussion of the simple expedient of adding three gauge singlet fermions to the usual minimal standard model matter content is followed by an examination of right handed neutrinos in extended theories. I introduce the terminology of ``fully sterile'' and ``weakly sterile'' to classify varieties usually conflated under the sterile neutrino banner. After introducing the concepts of ``technical naturalness'' and plain ``naturalness'', the unbearable lightness of being a sterile neutrino is confronted. This problem is used to motivate mirror neutrinos, whose connection with pairwise maximal mixing is emphasised. Some brief remarks about phenomenology are made throughout. The impossibility of identifying the sole sterile neutrino of the currently favoured $2 + 2$ and $3 + 1$ phenomenologic...

  6. The LENA neutrino observatory

    International Nuclear Information System (INIS)

    LENA (Low Energy Neutrino Astronomy) is a future 50 kt liquid scintillator detector. The project is currently in its design phase and is part of the European LAGUNA-LBNO design study. Due to its low energy threshold, high energy resolution and good background discrimination capabilities, LENA features a very rich physics program for neutrinos with energies below 50 MeV. The high target mass will allow to study geoneutrinos and solar neutrinos with unreached statistics. Furthermore, in case of a supernova in our Galaxy, LENA will provide an energy, time and flavor resolved analysis of the neutrino pulse. It is also sensitive to the diffuse supernova neutrino background. Additionally, LENA is big enough to study GeV neutrinos like atmospheric neutrinos or neutrinos from a long distance beam. Due to its large mass, LENA can also search for the proton decay.

  7. Trans-Alps neutrinos

    CERN Multimedia

    2006-01-01

    "A beam of neutrinos manufactured at CERN shot through the Alps for the first time on 18 August. The beam will feed two neutrino oscillation experiments 730km away at the Gran Sasso National Laobratory near Rome, Italy." (1 page)

  8. Solar Neutrino Problem

    Science.gov (United States)

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  9. Neutrino Cross section Future

    CERN Document Server

    Gollapinni, Sowjanya

    2016-01-01

    The study of neutrino-nucleus interactions has recently received renewed attention due to their importance in interpreting the neutrino oscillation data. Over the past few years, there has been continuous disagreement between neutrino cross section data and predictions due to lack of accurate nuclear models suitable for modern experiments which use heavier nuclear targets. Also, the current short and long-baseline neutrino oscillation experiments focus in the few GeV region where several distinct neutrino processes come into play resulting in complex nuclear effects. Despite recent efforts, more experimental input is needed to improve nuclear models and reduce neutrino interaction systematics which are currently dominating oscillation searches together with neutrino flux uncertainties. A number of new detector concepts with diverse neutrino beams and nuclear targets are currently being developed to provide necessary inputs required for next generation oscillation experiments. This paper summarizes these effor...

  10. Electromagnetic Properties of Neutrinos

    Directory of Open Access Journals (Sweden)

    C. Broggini

    2012-01-01

    theoretical predictions. We discuss also the phenomenology of a neutrino charge radius and radiative decay. Finally, we describe the theory of neutrino spin and spin-flavor precession in a transverse magnetic field and we summarize its phenomenological applications.

  11. On the origin of high-energy cosmic neutrinos

    International Nuclear Information System (INIS)

    Recently, the IceCube collaboration made a big announcement of the first discovery of high-energy cosmic neutrinos. Their origin is a new interesting mystery in astroparticle physics, but the present data may give us hints of connection to cosmic-ray and/or gamma-ray sources. We will look over possible scenarios for the cosmic neutrino signal, and emphasize the importance of multimessenger approaches in order to identify the PeV neutrino sources and get crucial clues to the cosmic-ray origin. We also discuss some possibilities to study neutrino properties and probe new physics

  12. The ANTARES telescope neutrino alert system

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J-L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J-P.; Schuessler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2012-01-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on c

  13. A study of the neutrino-gravitation interaction

    International Nuclear Information System (INIS)

    A study of the neutrino-gravitation interaction is made in the framework of Einstein-Dirac coupled equations. Two classes of solutions are obtained, corresponding to two specific physical situations. One cosmological model with expansion is obtained, having neutrinos as the only curvature source; their properties and the parameters which can to characterize the solution as a cosmological model are studied. The second class of solutions corresponds to a naive complete model of a spherically symmetric star emitting neutrinos: the inner region is suposed to be built up of a spherically symmetric distribution of a perfect fluid, bounded in space and which emitts neutrinos; the star matter is considered transparent for neutrinos; the outer region contains only neutrinos and gravitational field. The problem of neutrino compatibility with spherically symmetric gravitational fields is examined. The local conservation laws and the function conditions of the inner and outer solutions in the fluid surface are studied and permit to characterize two kinds of solutions. In one case, the solution describes the neutrino emission phase, with consequent configuration contraction, immediately before the fluid to be completely contained in the interior of the schwarzchild radius, when the neutrino emission and the star contraction stop. The other possibility can correspond to a quasi-stationary configuration, with neutrino emission, where the relativistic equation of radiative equilibrium permits to define the equivalent of 'Radiation pressure' for neutrinos, which acts in the same sense of the gravitational pressure. (L.C.)

  14. Detection of Supernova Neutrinos

    OpenAIRE

    Bekman, B.; Holeczek, J.; Kisiel, J.

    2004-01-01

    Matter effects on neutrino oscillations in both, a supernova and the Earth, change the observed supernova neutrino spectra. We calculate the expected number of supernova neutrino interactions for ICARUS, SK and SNO detectors as a function of the distance which they traveled in the Earth. Calculations are performed for supernova type II at 10kpc from the Earth, using standard supernova neutrino fluxes described by thermal Fermi--Dirac distributions and the PREM I Earth matter density profile.

  15. Neutrinos Mass and Mixing

    CERN Document Server

    González-Garciá, M Concepción

    1998-01-01

    I review the status of neutrino masses and mixings in the light of the solar and atmospheric neutrino data. The result from the LSND experiment and the possible role of neutrinos as hot dark matter are also included. I also discuss the simplest schemes proposed to reconcile these data which include a light sterile neutrino in addition to the three standard ones. Implications for future experiments are commented.

  16. Status of Neutrino Oscillations

    OpenAIRE

    J.W.F. Valle

    2001-01-01

    Solar and atmospheric neutrino data require physics beyond the Standard Model of particle physics. The simplest, most generic, but not yet unique, interpretation of the data is in terms of neutrino oscillations. I summarize the results of the latest three-neutrino oscillation global fit of the data, in particular the bounds on the angle $\\theta_{13}$ probed in reactor experiments. Even though not implied by the data, bi-maximal neutrino mixing emerges as an attractive possibility either in hi...

  17. Field theoretical approach to neutrino problem

    International Nuclear Information System (INIS)

    Full text: As a way to study the neutrino oscillation on the basis of field theory, the present author and T.Shimomura has proposed in 2004 the expectation value approach of charged or neutral lepton number with respect to a neutrino-source hadron such as a charged pion. Characteristic theoretical results including the recent ones for long as well as short distances in different experimental situations are reported. (authors)

  18. Search for cosmic neutrinos with ANTARES

    OpenAIRE

    Bogazzi, Claudio

    2014-01-01

    A time integrated search for cosmic neutrinos is discussed in this thesis using four years of data collected by the ANTARES experiment. No statistically significant signal was found, therefore upper limits on the neutrino flux were derived. Limits for specific models of RX J1713.7-3946, Vela X and Crab Nebula which include information on the source morphology and spectrum, are also given.

  19. ANTARES, a large underwater neutrino detector

    International Nuclear Information System (INIS)

    The development and construction of the ANTARES detector are presented. The physics of underwater neutrino detection is discussed, with emphasis on the research potential concerning new physics (mainly new elementary mechanisms), relevant to this conference and with a summary of research on high-energy neutrino astrophysical sources. The collaboration is currently deploying various instrumental setups in deep water in order to measure site qualities and optimize the detector parameters. Strings of optical modules connected to the shore are under construction

  20. Astrophysical and terrestrial neutrinos in Supernova detectors

    International Nuclear Information System (INIS)

    Supernova (SN) explosions are the place of very fundamental phenomena, whose privileged messengers are neutrinos. But such events are very rare. Then, SN detection has to be combined with other purposes. The recent developments of SN detectors have been associated with developments of underground particle physics (proton decay, monopoles ...). But here, I will restrict myself to discuss the possibilities for a supernova detector to be sensitive to other sources of neutrinos, astrophysical or terrestrial

  1. Supernova Neutrinos: Theory

    OpenAIRE

    Tamborra, Irene

    2016-01-01

    Neutrinos play a key role in core-collapse supernova explosions. Carrying information from deep inside the stellar core, neutrinos are direct probes of the supernova mechanism. Intriguing recent developments on the role of neutrinos in supernovae are reviewed, as well as our current understanding of the flavor conversions in the stellar envelope, and the detection perspectives of the next burst.

  2. Solar neutrino oscillations

    International Nuclear Information System (INIS)

    The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena

  3. The Tau neutrino

    International Nuclear Information System (INIS)

    In the summer 2000 the first direct demonstration of the Tau neutrino was announced. After describing some Physical history lines emphasizing the development of the Neutrino Physics, the article describes the experiment which lead to the direct discovery of the Tau neutrino

  4. Solar neutrinos, helioseismology and the solar internal dynamics

    International Nuclear Information System (INIS)

    Neutrinos are fundamental particles ubiquitous in the Universe and whose properties remain elusive despite more than 50 years of intense research activity. This review illustrates the importance of solar neutrinos in astrophysics, nuclear physics and particle physics. After a description of the historical context, we remind the reader of the noticeable properties of these particles and of the stakes of the solar neutrino puzzle. The standard solar model triggered persistent efforts in fundamental physics to predict the solar neutrino fluxes, and its constantly evolving predictions have been regularly compared with the detected neutrino signals. Anticipating that this standard model could not reproduce the internal solar dynamics, a seismic solar model was developed which enriched theoretical neutrino flux predictions with in situ observation of acoustic and gravity waves propagating in the Sun. This seismic model contributed to the stabilization of the neutrino flux predictions. This review recalls the main historical steps, from the pioneering Homestake mine experiment and the GALLEX-SAGE experiments capturing the first proton-proton neutrinos. It emphasizes the importance of the SuperKamiokande and SNO detectors. Both experiments demonstrated that the solar-emitted electron neutrinos are partially transformed into other neutrino flavors before reaching the Earth. This sustained experimental effort opens the door to neutrino astronomy, with long-base lines and underground detectors. The success of BOREXINO in detecting the 7Be neutrino signal alone instills confidence in physicists' ability to detect each neutrino source separately. It justifies the building of a new generation of detectors to measure the entire solar neutrino spectrum in greater detail, as well as supernova neutrinos. A coherent picture has emerged from neutrino physics and helioseismology. Today, new paradigms take shape in these two fields: neutrinos are massive particles, but their masses are

  5. Neutrino observations from the Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D2O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar νe flux and the total flux of all active neutrino species. Solar neutrinos from the decay of 8B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to νe, the ES reaction also has a small sensitivity to νμ and ντ. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from 8B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The νe flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3σ. This is evidence for an active neutrino component, in additional to νe, in the solar neutrino flux. These results also allow the first experimental determination of the total active 8B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions

  6. Neutrino observations from the Sudbury Neutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton,J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; Blevis, I.; Boardman, R.J.; Boger, J.; Bonvin, E.; Boulay, M.G.; Bowler,M.G.; Bowles, T.J.; Brice, S.J.; Browne, M.C.; Bullard, T.V.; Buhler, G.; Cameron, J.; Chan, Y.D.; Chen, H.H.; Chen, M.; Chen, X.; Cleveland, B.T.; Clifford, E.T.H.; Cowan, J.H.M.; Cowen, D.F.; Cox, G.A.; Dai, X.; Dalnoki-Veress, F.; Davidson, W.F.; Doe, P.J.; Doucas, G.; Dragowsky,M.R.; Duba, C.A.; Duncan, F.A.; Dunford, M.; Dunmore, J.A.; Earle, E.D.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Ferraris, A.P.; Ford, R.J.; Formaggio, J.A.; Fowler, M.M.; Frame, K.; Frank, E.D.; Frati, W.; Gagnon, N.; Germani, J.V.; Gil, S.; Graham, K.; Grant, D.R.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hamer, A.S.; Hamian, A.A.; Handler, W.B.; Haq, R.U.; Hargrove, C.K.; Harvey, P.J.; Hazama, R.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hepburn, J.D.; Heron, H.; Hewett, J.; Hime, A.; Hykawy, J.G.; Isaac,M.C.P.; Jagam, P.; Jelley, N.A.; Jillings, C.; Jonkmans, G.; Kazkaz, K.; Keener, P.T.; Klein, J.R.; Knox, A.B.; Komar, R.J.; Kouzes, R.; Kutter,T.; Kyba, C.C.M.; Law, J.; Lawson, I.T.; Lay, M.; Lee, H.W.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Locke, W.; Luoma, S.; Lyon, J.; Majerus, S.; Mak, H.B.; Maneira, J.; Manor, J.; Marino, A.D.; McCauley, N.; McDonald,D.S.; McDonald, A.B.; McFarlane, K.; McGregor, G.; Meijer, R.; Mifflin,C.; Miller, G.G.; Milton, G.; Moffat, B.A.; Moorhead, M.; Nally, C.W.; Neubauer, M.S.; Newcomer, F.M.; Ng, H.S.; Noble, A.J.; Norman, E.B.; Novikov, V.M.; O' Neill, M.; Okada, C.E.; Ollerhead, R.W.; Omori, M.; Orrell, J.L.; Oser, S.M.; Poon, A.W.P.; Radcliffe, T.J.; Roberge, A.; Robertson, B.C.; Robertson, R.G.H.; Rosendahl, S.S.E.; Rowley, J.K.; Rusu, V.L.; Saettler, E.; Schaffer, K.K.; Schwendener,M.H.; Schulke, A.; Seifert, H.; Shatkay, M.; Simpson, J.J.; Sims, C.J.; et al.

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  7. Neutrino Observations from the Sudbury Neutrino Observatory

    Science.gov (United States)

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  8. An Appraisal of Muon Neutrino Disappearance at Short Baseline Neutrino Beams

    CERN Document Server

    Stanco, Luca; Longhin, Andrea; Bertolin, Alessandro; Laveder, Marco

    2013-01-01

    Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long standing problem of new Physics beyond the Standard Model. The recent measurements of the third mixing angle $\\theta_{13}$ in the standard mixing oscillation scenario encourage to pursue the still missing results on the leptonic CP violation and the absolute neutrino masses. However, several puzzling and incomplete measurements are in place which deserve an exhaustive evaluation and study. We will report about the present situation of the muon disappearance measurements at small $L/E$ in the context of the current CERN project to revitalize the neutrino field in Europe and the search for sterile neutrinos. We will then illustrate the achievements that a double muon spectrometer can attain in terms of discovery of new neutrino states, performing a newly developed analysis.

  9. The neutrino mass hierarchy measurement with a neutrino telescope in the Mediterranean Sea: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tsirigotis, A. G. [Physics Laboratory, Hellenic Open University (Greece); Collaboration: KM3NeT Collaboration

    2014-11-18

    With the measurement of a non zero value of the θ{sub 13} neutrino mixing parameter, interest in neutrinos as source of the baryon asymmetry of the universe has increased. Among the measurements of a rich and varied program in near future neutrino physics is the determination of the mass hierarchy. We present the status of a study of the feasibility of using a densely instrumented undersea neutrino detector to determine the mass hierarchy, utilizing the Mikheyev-Smirnov-Wolfenstein (MSW) effect on atmospheric neutrino oscillations. The detector will use technology developed for KM3NeT. We present the systematic studies of the optimization of a detector in the required 5–10 GeV energy regime. These studies include new tracking and interaction identification algorithms as well as geometrical optimizations of the detector.

  10. Pion production in neutrino-nucleus collisions

    CERN Document Server

    Hernández, E; Vacas, M J Vicente

    2013-01-01

    We compare our pion production results with recent MiniBooNE data measured in mineral oil. Our total cross sections lie below experimental data for neutrino energies above 1 GeV. Differential cross sections show our model produces too few high energy pions in the forward direction as compared to data. The agreement with experiment improves by artificially removing pion final state interaction.

  11. Energy reconstruction of high energy muon and neutrino events in KM3NeT

    Directory of Open Access Journals (Sweden)

    Drakopoulou Evangelia

    2016-01-01

    Full Text Available KM3NeT will be a European deep-sea infrastructure of neutrino telescopes covering a volume of several cubic kilometers in the Mediterranean Sea aiming to search for high energy neutrinos from galactic and extragalactic sources. This analysis focuses on muons coming from neutrino charged-current interactions. In large water Cherenkov detectors the reconstructed muon is used to approximate the neutrino direction and energy, thus providing information on the astrophysical neutrino source. Muon energy estimation is also critical for the differentiation of neutrinos originating from astrophysical sources from neutrinos generated in the atmosphere which constitute the detector background. We describe a method to determine the muon and neutrino energy employing a Neural Network. An energy resolution of approximately 0.27 has been achieved for muons at the TeV range.

  12. Dark matter astrophysical uncertainties and the neutrino floor

    OpenAIRE

    O'Hare, Ciaran A. J.

    2016-01-01

    The search for weakly interacting massive particles (WIMPs) by direct detection faces an encroaching background due to coherent neutrino-nucleus scattering. For a given WIMP mass the cross section at which neutrinos constitute a dominant background is dependent on the uncertainty on the flux of each neutrino source from either the Sun, supernovae or atmospheric cosmic ray collisions. However there are also considerable uncertainties with regard to the astrophysical ingredients to the predicte...

  13. The Russian-American Gallium solar neutrino Experiment

    International Nuclear Information System (INIS)

    The Russian-American Gallium solar neutrino Experiment (SAGE) is described. The solar neutrino flux measured by 31 extractions through October, 1993 is presented. The result of 69 ± 10-7+5 SNU is to be compared with a standard solar model prediction of 132 SNU. The status of a 51Cr neutrino source irradiation to test the overall operation of the experiment is also presented

  14. The Sudbury Neutrino Observatory

    International Nuclear Information System (INIS)

    The Sudbury Neutrino Observatory is a second-generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible

  15. The Sudbury Neutrino Observatory

    CERN Document Server

    Boger, J; Rowley, J K; Carter, A L; Hollebone, B; Kessler, D; Blevis, I; Dalnoki-Veress, F; De Kok, A; Farine, J; Grant, D R; Hargrove, C K; Laberge, G; Levine, I; McFarlane, K W; Mes, H; Noble, A T; Novikov, V M; O'Neill, M; Shatkay, M; Shewchuk, C; Sinclair, D; Clifford, E T H; Deal, R; Earle, E D; Gaudette, E; Milton, G; Sur, B; Bigu, J; Cowan, J H M; Cluff, D L; Hallman, E D; Haq, R U; Hewett, J L; Hykawy, J G; Jonkmans, G; Michaud, R; Roberge, A; Roberts, J; Saettler, E; Schwendener, M H; Seifert, H; Sweezey, D; Tafirout, R; Virtue, C J; Beck, D N; Chan, Y D; Chen, X; Dragowsky, M R; Dycus, F W; González, J; Isaac, M C P; Kajiyama, Y; Köhler, G W; Lesko, K T; Moebus, M C; Norman, E B; Okada, C E; Poon, A W P; Purgalis, P; Schülke, A; Smith, A R; Stokstad, R G; Turner, S; Zlimen, I; Anaya, J M; Bowles, T J; Brice, S J; Esch, E I; Fowler, M M; Goldschmidt, A; Hime, A; McGirt, A F; Miller, G G; Teasdale, W A; Wilhelmy, J B; Wouters, J M; Anglin, J D; Bercovitch, M; Davidson, W F; Storey, R S; Biller, S; Black, R A; Boardman, R J; Bowler, M G; Cameron, J; Cleveland, B; Ferraris, A P; Doucas, G; Heron, H; Howard, C; Jelley, N A; Knox, A B; Lay, M; Locke, W; Lyon, J; Majerus, S; Moorhead, M E; Omori, Mamoru; Tanner, N W; Taplin, R K; Thorman, M; Wark, D L; West, N; Barton, J C; Trent, P T; Kouzes, R; Lowry, M M; Bell, A L; Bonvin, E; Boulay, M; Dayon, M; Duncan, F; Erhardt, L S; Evans, H C; Ewan, G T; Ford, R; Hallin, A; Hamer, A; Hart, P M; Harvey, P J; Haslip, D; Hearns, C A W; Heaton, R; Hepburn, J D; Jillings, C J; Korpach, E P; Lee, H W; Leslie, J R; Liu, M Q; Mak, H B; McDonald, A B; MacArthur, J D; McLatchie, W; Moffat, B A; Noel, S; Radcliffe, T J; Robertson, B C; Skensved, P; Stevenson, R L; Zhu, X; Gil, S; Heise, J; Helmer, R L; Komar, R J; Nally, C W; Ng, H S; Waltham, C E; Allen, R C; Buhler, G; Chen, H H; Aardsma, G; Andersen, T; Cameron, K; Chon, M C; Hanson, R H; Jagam, P; Karn, J; Law, J; Ollerhead, R W; Simpson, J J; Tagg, N; Wang, J X; Alexander, C; Beier, E W; Cook, J C; Cowen, D F; Frank, E D; Frati, W; Keener, P T; Klein, J R; Mayers, G; McDonald, D S; Neubauer, M S; Newcomer, F M; Pearce, R J; Van de Water, R G; Van Berg, R; Wittich, P; Ahmad, Q R; Beck, J M; Browne, M C; Burritt, T H; Doe, P J; Duba, C A; Elliott, S R; Franklin, J E; Germani, J V; Green, P; Hamian, A A; Heeger, K M; Howe, M; Meijer-Drees, R; Myers, A; Robertson, R G H; Smith, M W E; Steiger, T D; Van Wechel, T; Wilkerson, J F

    2000-01-01

    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.

  16. Direct Neutrino Mass Searches

    Science.gov (United States)

    VanDevender, B. A.

    2009-12-01

    Neutrino flavor oscillation experiments have demonstrated that the three Standard Model neutrino flavor eigenstates are mixed with three mass eigenstates whose mass eigenvalues are nondegenerate. The oscillation experiments measure the differences between the squares of the mass eigenvalues but tell us nothing about their absolute values. The unknown absolute neutrino mass scale has important implications in particle physics and cosmology. Beta decay endpoint measurements are presented as a model-independent method to measure the absolute neutrino mass. The Karlsruhe Tritium Neutrino Experiment (KATRIN) is explored in detail.

  17. Decay of reactor neutrinos

    OpenAIRE

    Vogel, P.

    1984-01-01

    We consider the decay of massive neutrinos which couple to electrons and are, therefore, produced in nuclear reactors. Lifetime limits for the γ and electron-positron decay modes of these neutrinos are deduced from the experimental limit on the singles count rate in the detector used to study neutrino oscillations at the Gösgen reactor. The dominantly coupled neutrinos are light, and their invariant-lifetime limit tc.m. / mν is 1-3 sec/eV. The subdominantly coupled heavy neutrinos with mass 1...

  18. Geo-neutrinos

    Directory of Open Access Journals (Sweden)

    L. Ludhova

    2012-08-01

    Full Text Available Geo-neutrinos, electron anti-neutrinos produced in β-decays of naturally occurring radioactive isotopes in the Earth, are a unique direct probe of our planet's interior. After a brief introduction about the Earth (mostly for physicists and the very basics about the neutrinos and anti-neutrinos (mostly for geologists, I describe the geo-neutrinos' properties and the main aims of their study. An overview of the latest experimental results obtained by KamLand and Borexino experiments is provided. A short overview of future perspectives of this new inter-disciplinary field is given.

  19. Non-standard neutrino interactions in the Earth and the flavor of astrophysical neutrinos

    CERN Document Server

    Gonzalez-Garcia, M C; Martinez-Soler, Ivan; Song, Ningqiang

    2016-01-01

    We study the modification of the detected flavor content of ultra high-energy astrophysical neutrinos in the presence of non-standard interactions of neutrinos with the Earth matter. Unlike the case of new physics affecting the propagation from the source to the Earth, non-standard Earth matter effects induce a dependence of the flavor content on the arrival direction of the neutrino. We find that, within the current limits on non-standard neutrino interaction parameters, large deviations from the standard 3-nu oscillation predictions can be expected, in particular for fluxes dominated by one flavor at the source. Conversely they do not give sizable corrections to the expectation of equalized flavors in the Earth for sources dominated by production via pion-muon decay-chain.

  20. The molybdenum solar neutrino experiment

    International Nuclear Information System (INIS)

    The only new solar neutrino measurement which is actively underway at this time is the Mo geological experiment. This experiment measures the high energy 8B neutrinos, as does the 37Cl experiment but because the products are very long-lived, their concentrations in the ore should be related to the average condition in the interior of the sun over approximately the past 10 million years. The absorption of a neutrino in the 9.6% abundant 97Mo isotope produces 97Tc (half-life of 2.6 x 106y) and in 24.1% abundant 98Mo, 98Tc (4.2 x 106y). Several conditions must be met before it can be assumed that measurements of the long-lived Tc isotopes in Mo ore will result in a usefully accurate value for the solar neutrino flux. There is only one known suitable source of molybdenum ore, in Colorado. The separation procedure to obtain the Tc isotopes and the use of resonance ionization mass spectroscopy for the isotope analysis are not yet sensitive enough. However, improvements are possible and are currently being investigated. (U.K.)

  1. Sudbury neutrino observatory proposal

    International Nuclear Information System (INIS)

    This report is a proposal by the Sudbury Neutrino Observatory (SNO) collaboration to develop a world class laboratory for neutrino astrophysics. This observatory would contain a large volume heavy water detector which would have the potential to measure both the electron-neutrino flux from the sun and the total solar neutrino flux independent of neutrino type. It will therefore be possible to test models of solar energy generation and, independently, to search for neutrino oscillations with a sensitivity many orders of magnitude greater than that of terrestrial experiments. It will also be possible to search for spectral distortion produced by neutrino oscillations in the dense matter of the sun. Finally the proposed detector would be sensitive to neutrinos from a stellar collapse and would detect neutrinos of all types thus providing detailed information on the masses of muon- and tau-neutrinos. The neutrino detector would contain 1000 tons of D20 and would be located more than 2000 m below ground in the Creighton mine near Sudbury. The operation and performance of the proposed detector are described and the laboratory design is presented. Construction schedules and responsibilities and the planned program of technical studies by the SNO collaboration are outlined. Finally, the total capital cost is estimated to be $35M Canadian and the annual operating cost, after construction, would be $1.8 M Canadian, including the insurance costs of the heavy water

  2. The solar neutrinos epopee

    International Nuclear Information System (INIS)

    The 2002 year has been fruitful for the neutrino physics. First, the Sudbury Neutrino Observatory (SNO) experiment has shown that the electron neutrinos νe emitted by the sun are converted into muon neutrinos (νμ) and tau neutrinos (ντ), thus closing the 30 years old problem of solar neutrinos deficit. This discovery validates the model of nuclear energy production inside the sun but it shakes the theory describing the weak interactions between the fundamental constituents of matter. This theory considers the neutrinos (and the photons) as massless particles, while the taste conversion phenomenon necessarily implies that neutrinos have a mass. In October 2000, the Universe exploration by the cosmic neutrinos is jointly recognized by R. Davis (USA) and M. Koshiba (Japan) who received the Nobel price of physics. Finally, in December 2000, the KamLAND experiment quantitatively demonstrated the neutrinos metamorphosis by detecting a deficit in the flux of electron antineutrinos coming from the surrounding Japanese nuclear reactors. This digest article describes step by step the epopee of solar neutrinos and shows how several generations of physicists have resolved one of the mystery of modern physics. (J.S.)

  3. Neutrino physics with an intense \

    CERN Document Server

    Henning, R

    2010-01-01

    We study some of the physics potential of an intense $1\\,\\mathrm{MCi}$ $^{51}\\mathrm{Cr}$ source combined with the {\\sc Majorana Demonstrator} enriched germanium detector array. The {\\sc Demonstrator} will consist of detectors with ultra-low radioactive backgrounds and extremely low energy thresholds of~$\\sim 400\\,\\mathrm{eV}$. We show that it can improve the current limit on the neutrino magnetic dipole moment. We briefly discuss physics applications of the charged-current reaction of the $^{51}\\mathrm{Cr} neutrino with the $^{73}\\mathrm{Ge} isotope. Finally, we argue that the rate from a realistic, intense tritium source is below the detectable limit of even a tonne-scale HPGe experiment

  4. Detection of Supernova Neutrinos

    CERN Document Server

    Gil-Botella, Inés

    2016-01-01

    The neutrino burst from a core-collapse supernova can provide information about the star explosion mechanism and the mechanisms of proto neutron star cooling but also about the intrinsic properties of the neutrino such as flavor oscillations. One important question is to understand to which extent can the supernova and the neutrino physics be decoupled in the observation of a single supernova. The capabilities of present and future large underground neutrino detectors to yield information about the time and flavor dependent neutrino signal from a future galactic supernova are described in this paper. Neutrinos from past cosmic supernovae are also observable and their detection will improve our knowledge of the core-collapse rates and average neutrino emission. A comparison between the different experimental techniques is included.

  5. Physics of Neutrino Oscillation

    CERN Document Server

    Mondal, Spandan

    2015-01-01

    The Standard Model of particle physics describes neutrinos as massless, chargeless elementary particles that come in three different flavours. However, recent experiments indicate that neutrinos not only have mass, but also have multiple mass eigenstates that are not identical to the flavour states, thereby indicating mixing. As an evidence of mixing, neutrinos have been observed to change from one flavour to another during their propagation, a phenomenon called neutrino oscillation. We have studied the reasons and derived the probabilities of neutrino flavour change, both in vacuum and in matter. We have also studied the parameters affecting this probability. We have discussed the special case of two-neutrino oscillations. Lastly, we have discussed some basic properties of neutrinos that are reflected in the previous derivations and highlighted a few relevant open problems. To begin with, we have also studied the relevant topics in introductory High Energy Physics and Quantum Mechanics to familiarize with th...

  6. Minimalistic Neutrino Mass Model

    CERN Document Server

    De Gouvêa, A; Gouvea, Andre de

    2001-01-01

    We consider the simplest model which solves the solar and atmospheric neutrino puzzles, in the sense that it contains the smallest amount of beyond the Standard Model ingredients. The solar neutrino data is accounted for by Planck-mass effects while the atmospheric neutrino anomaly is due to the existence of a single right-handed neutrino at an intermediate mass scale between 10^9 GeV and 10^14 GeV. Even though the neutrino mixing angles are not exactly predicted, they can be naturally large, which agrees well with the current experimental situation. Furthermore, the amount of lepton asymmetry produced in the early universe by the decay of the right-handed neutrino is very predictive and may be enough to explain the current baryon-to-photon ratio if the right-handed neutrinos are produced out of thermal equilibrium. One definitive test for the model is the search for anomalous seasonal effects at Borexino.

  7. Artificial Limbs

    Science.gov (United States)

    ... you are missing an arm or leg, an artificial limb can sometimes replace it. The device, which ... activities such as walking, eating, or dressing. Some artificial limbs let you function nearly as well as ...

  8. Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer-metal composite flow sensors

    Science.gov (United States)

    Abdulsadda, Ahmad T.; Tan, Xiaobo

    2013-04-01

    Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. Based on an analytical model for the moving dipole-generated flow field, we formulate a nonlinear estimation problem that aims to minimize the error between the measured and model-predicted magnitudes of flow velocities at the sensor sites, which is subsequently solved with the Gauss-Newton scheme. A sliding discrete Fourier transform (SDFT) algorithm is proposed to efficiently compute the evolving signal magnitudes based on the flow velocity measurements. Simulation indicates that it is adequate and more computationally efficient to use only the signal magnitudes corresponding to the dipole vibration frequency. Finally, experiments conducted with an artificial lateral line consisting of six ionic polymer-metal composite (IPMC) flow sensors demonstrate that the proposed scheme is able to simultaneously locate the moving dipole and estimate its vibration amplitude and traveling speed with small errors.

  9. Forming of the regional core transport network taking into account the allocation of alternative energy sources based on artificial intelligence methods

    Directory of Open Access Journals (Sweden)

    Marina ZHURAVSKAYA

    2014-12-01

    Full Text Available In the modern world the alternative energy sources, which considerably depend on a region, play more and more significant role. However, the transition of regions to new energy sources lead to the change of transport and logistic network configuration. The formation of optimal core transport network today is a guarantee of the successful economic development of a region tomorrow. The present article studies the issue of advanced core transport network development in a region based on the experience of European and Asian countries and the opportunity to adapt the best foreign experience to Russian conditions. On the basis of artificial intelligence methods for forest industry complex of Sverdlovskaya Oblast the algorithm of problem solution of an optimal logistic infrastructure allocation is offered and some results of a regional transport network are presented. These methods allowed to solve the set task in the conditions of information uncertainty. There are suggestions on the improvement of transport and logistic network in the territory of Sverdlovskaya Oblast. Traditionally the logistics of mineral fuel plays main role in regions development. Actually it is required to develop logistic strategic plans to be able to provide different possibilities of power-supply, flexible enough to change with the population density, transport infrastructure and demographics of different regions. The problem of logistic centers allocation was studied by many authors. The approach, offered by the authors of this paper is to solve the set of tasks by applying artificial intelligence methods, such as fuzzy set theory and genetic algorithms.

  10. Underwater tracking of a moving dipole source using an artificial lateral line: algorithm and experimental validation with ionic polymer–metal composite flow sensors

    International Nuclear Information System (INIS)

    Motivated by the lateral line system of fish, arrays of flow sensors have been proposed as a new sensing modality for underwater robots. Existing studies on such artificial lateral lines (ALLs) have been mostly focused on the localization of a fixed underwater vibrating sphere (dipole source). In this paper we examine the problem of tracking a moving dipole source using an ALL system. Based on an analytical model for the moving dipole-generated flow field, we formulate a nonlinear estimation problem that aims to minimize the error between the measured and model-predicted magnitudes of flow velocities at the sensor sites, which is subsequently solved with the Gauss–Newton scheme. A sliding discrete Fourier transform (SDFT) algorithm is proposed to efficiently compute the evolving signal magnitudes based on the flow velocity measurements. Simulation indicates that it is adequate and more computationally efficient to use only the signal magnitudes corresponding to the dipole vibration frequency. Finally, experiments conducted with an artificial lateral line consisting of six ionic polymer–metal composite (IPMC) flow sensors demonstrate that the proposed scheme is able to simultaneously locate the moving dipole and estimate its vibration amplitude and traveling speed with small errors. (paper)

  11. Application of chemometric analysis and self Organizing Map-Artificial Neural Network as source receptor modeling for metal speciation in river sediment

    International Nuclear Information System (INIS)

    Present study deals with the river Ganga water quality and its impact on metal speciation in its sediments. Concentration of physico-chemical parameters was highest in summer season followed by winter and lowest in rainy season. Metal speciation study in river sediments revealed that exchangeable, reducible and oxidizable fractions were dominant in all the studied metals (Cr, Ni, Cu, Zn, Cd, Pb) except Mn and Fe. High pollution load index (1.64–3.89) recommends urgent need of mitigation measures. Self-organizing Map-Artificial Neural Network (SOM-ANN) was applied to the data set for the prediction of major point sources of pollution in the river Ganga. - Highlights: • Impact of river water quality on metal speciation in its sediments. • Sequential Extraction Process was opted for metal speciation study. • Total Acid Digestion was opted for total metal concentration assessment. • Chemometric and Self-Organizing Map-Artificial Neural Network were applied. - Metal speciation study helps to assess the risk caused by metals in river sediments. ANN-SOM along with other chemometric tools can act as an effective source apportionment model

  12. Spectrometry and dosimetry of isotopic sources of neutrons by means of artificial neural networks; Espectrometria y dosimetria de fuentes isotopicas de neutrones mediante redes neuronales artificiales

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M; Martinez B, M. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C/Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain); Barquero, R., E-mail: fermineutron@yahoo.co [Hospital del Rio Hortega, C/Dulzaina No. 2, 47012 Valladolid (Spain)

    2010-09-15

    The artificial neural networks technology has been applied to reconstruct the neutrons spectra of two isotopic sources: {sup 252}Cf, and {sup 241}Am-Be. Also, this technology has been applied to obtain the effective dose, E, and the personal dose equivalents, Hp(10) and environmental, H *(10). To obtain the spectra and the doses only were used the count rates produced in a Bonner Spheres spectrometer with a scintillator of {sup 6}LiI(Eu) of 0.4 {phi} x 0.4 cm{sup 2}. The equivalent environmental dose and the spectra of the sources were also obtained by means of the reconstruction code BUNKIUT. When comparing the results obtained by means of both procedures it was found that they are consistent. (Author)

  13. A one-stage cultivation process for lipid- and carbohydrate-rich biomass of Scenedesmus obtusiusculus based on artificial and natural water sources.

    Science.gov (United States)

    Schulze, Christian; Reinhardt, Jakob; Wurster, Martina; Ortiz-Tena, José Guillermo; Sieber, Volker; Mundt, Sabine

    2016-10-01

    A one-stage cultivation process of the microalgae Scenedesmus obtusiusculus with medium based on natural water sources was developed to enhance lipids and carbohydrates. A medium based on artificial sea water, Baltic Sea water and river water with optimized nutrient concentrations compared to the standard BG-11 for nitrate (-75%), phosphate and iron (-90%) was used for cultivation. Although nitrate exhaustion over cultivation resulted in nitrate limitation, growth of the microalgae was not reduced. The lipid content increased from 6.0% to 19.9%, an increase in oleic and stearic acid was observed. The unsaponifiable matter of the lipid fraction was reduced from 19.5% to 11.4%. The carbohydrate yield rose from 45% to 50% and the protein content decreased from 32.4% to 15.9%. Using natural water sources with optimized nutrient concentrations could open the opportunity to modulate biomass composition and to reduce the cultivation costs. PMID:27394996

  14. A survey of sources of incoherent artificial optical radiation in a hospital environment in accordance with European Directive 2006/25/EC: evaluation of the related exposure risk.

    Science.gov (United States)

    Cavatorta, Claudia; Lualdi, Manuela; Meroni, Silvia; Polita, Giovanni; Bolchi, Mauro; Pignoli, Emanuele

    2016-03-01

    The evaluation of incoherent artificial optical radiation (AOR) exposure in hospital environments is a complex task due to the variety of sources available. This study has been designed to provide a proposal for the precautionary assessment of the related risk. This survey suggested that, in our Institution, at least three kinds of AOR sources required specific investigations: ambient lighting, theatre operating lighting and ultraviolet radiation (UVR) sources. For each kind of evaluated sources a specific measurement approach was developed. All irradiance measurements were made using a commercial spectroradiometer. The obtained results were compared with the appropriate exposure limit values (ELVs) defined in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and adopted by the European Directive 2006/25/EC. The risk related to the evaluated AOR exposure was finally assessed according to our risk matrix. According to our results, the emission of ambient lighting in the actual exposure conditions was always in accordance with the ELVs and the related risk was classifiable as not relevant. The risk related to the exposure to theatre operating lighting resulted not negligible, especially when two or more sources were used with focal spots overlapping on reflective objects. UVR sources emission may represent a health hazard depending, in particular, on the set up of the device containing the source. In case of laminar flow cabinets and closed transilluminators, if the UVR source is well contained within an enclosure with interlock, it presents no risk of exposure. Otherwise, the emission arising from UVR lamps, open transilluminators or sources not provided with interlock, may represent a risk classifiable as high even in the actual working conditions. The personal protective equipment used by workers were also assessed and their suitability was discussed. PMID:26909554

  15. Coherency in Neutrino-Nucleus Elastic Scattering

    CERN Document Server

    Kerman, S; Deniz, M; Wong, H T; Chen, J -W; Li, H B; Lin, S T; Liu, C -P; Yue, Q

    2016-01-01

    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter ($\\alpha$) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold and target nucleus are studied. The ranges of $\\alpha$ which can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in $\\alpha$ would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to $\\alpha$>0.95 are derived.

  16. Coherency in neutrino-nucleus elastic scattering

    Science.gov (United States)

    Kerman, S.; Sharma, V.; Deniz, M.; Wong, H. T.; Chen, J.-W.; Li, H. B.; Lin, S. T.; Liu, C.-P.; Yue, Q.; Texono Collaboration

    2016-06-01

    Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter (α ) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold, and target nucleus are studied. The ranges of α that can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in α would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to α >0.95 are derived.

  17. Acoustic Transmitters for Underwater Neutrino Telescopes

    CERN Document Server

    Ardid, Miguel; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to...

  18. Accelerator-based neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  19. Short distance neutrino oscillations with Borexino

    Directory of Open Access Journals (Sweden)

    Caminata A.

    2016-01-01

    Full Text Available The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on Chromium and Cerium, respectively, which deployed under the experiment, in a location foreseen on purpose at the time of the construction of the detector, will emit two intense beams of neutrinos (Cr and anti-neutrinos (Ce. Interacting in the active volume of the liquid scintillator, each beam would create an unmistakable spatial wave pattern in case of oscillation of the νe (or ν̅e into the sterile state: such a pattern would be the smoking gun proving the existence of the new sterile member of the neutrino family. Otherwise, its absence will allow setting a very stringent limit on its existence.

  20. Properties of neutrinos: Recent results

    International Nuclear Information System (INIS)

    Recent progress in experimental determinations of the properties of neutrinos is summarized. In particular, the extensive work on direct kinematic measurements of neutrino mass, on neutrino counting and on neutrino oscillations is highlighted. It is concluded that there may already be sufficient information to fix the masses of the neutrinos, but the evidence is still far from convincing. 63 refs., 13 figs

  1. The Story of the Neutrino

    CERN Document Server

    Rajasekaran, G

    2016-01-01

    This is an elementary review of the history and physics of neutrinos. The story of the discovery of neutrino mass through neutrino oscillations is described in some detail. Experiments on solar neutrinos and atmospheric neutrinos played an important part. Recent advances are summarized and future developments are indicated.

  2. Introduction to direct neutrino mass measurements and KATRIN

    Science.gov (United States)

    Thümmler, T.; Katrin Collaboration

    2012-08-01

    The properties of neutrinos and especially their rest mass play an important role at the intersections of cosmology, particle physics and astroparticle physics. At present there are two complementary approaches to address this topic in laboratory experiments. The search for neutrinoless double beta decay probes whether neutrinos are Majorana particles and determines an effective neutrino mass value. On the other hand experiments such as MARE, KATRIN and the recently proposed Project 8 will investigate the spectral shape of β-decay electrons close to their kinematic endpoint in order to determine the neutrino rest mass with a model-independent method. Here, because of neutrino flavour mixing, the neutrino mass appears as an average of all neutrino mass eigenstates contributing to the electron neutrino. The KArlsruhe TRItium Neutrino experiment (KATRIN) is currently the experiment in the most advanced status of commissioning. It combines an ultra-luminous molecular windowless gaseous tritium source with an integrating high-resolution spectrometer of MAC-E filter type. It will investigate the neutrino rest mass with 0.2 eV/c (90% C.L.) sensitivity and allow β spectroscopy close to the T endpoint at 18.6 keV with unprecedented precision.

  3. Solar neutrino observations and neutrino oscillations

    International Nuclear Information System (INIS)

    The results of recent Kamiokande-II and 37Cl solar-neutrino experiments are quantitatively analyzed assuming the Mikheyev-Smirnov-Wolfenstein solution to the solar-neutrino problem. It is found that the parameter region known as the ''large mass'' solution to the solar-neutrino problem is disfavored by a little more than 1 σ while the ''small mass'' and ''large angle'' solutions are in good agreement at this level. The implications on this analysis from time variations in the data are discussed

  4. On a theory of neutrino oscillations with entanglement

    International Nuclear Information System (INIS)

    We show that the standard expression for the neutrino oscillation length can be confirmed even in theoretical approaches that take into account entanglement between the neutrino and its interaction partners. We show this in particular for the formalism developed in arXiv:1004.1847. Finally, we shed some light on the question why plane-wave approaches to the neutrino oscillation problem can yield the correct result for the oscillation length even though they do not explicitly account for the localization of the neutrino source and the detector.

  5. Ultra-high energy neutrino interactions and compositeness

    International Nuclear Information System (INIS)

    This paper reviews the arguments leading to the suggestion that muon-rich extensive air showers (EAS) and underground muon bursts associated with point sources in the sky may be caused by neutrinos rather than photons. If quarks and leptons possess a substructure with a characteristic energy scale Λ, neutrinos are capable of interacting with cross sections much larger than predicted by the standard model, once the CMS energy exceeds Λ. The authors give estimates of the energy and angular distributions of hard anomalous neutrino interactions. Experiments are suggested in order to distinguish between photon and neutrino primaries

  6. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason [Univ. College London, Bloomsbury (United Kingdom)

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  7. Neutrinos, atoms and gravity

    International Nuclear Information System (INIS)

    A interesting overview of ongoing developments in neutrino physics and recent advances in atomic and optical physics and in gravitation emerged from the recent 'Moriond' Workshop on Perspectives in Neutrinos, Atomic Physics and Gravitation Theory, held from January 30 to February 6 at Villars sur Ollon in the Swiss Alps. Neutrino physics is a Moriond tradition, and the Workshop began with presentations of new measurements of the tritium beta spectrum by the Livermore and Mainz groups, setting limits on the mass of electron (anti)neutrino of 8 eV and 7.2 eV respectively. It is puzzling that the five most advanced experiments setting upper limits on the electron (anti)neutrino mass (Livermore, Los Alamos, Mainz, Tokyo and Zurich) report negative best-fit values for the square of the neutrino mass, with a weighted average of -59 ±177 ± 26 eV2. This corresponds to an excess of counts near the tritium endpoint, rather than a deficit which would indicate a nonzero neutrino mass. Gerry Stephenson presented a possible explanation, invoking a very light (or massless) scalar boson coupled only to neutrinos. Perhaps more plausibly, a systematic effect may be the cause, and further studies are underway. Nonetheless, the limits are unlikely to change significantly, and the results exclude electron neutrinos as the possible dominant component of dark matter. The solar neutrino problem persists

  8. MINOS Sterile Neutrino Search

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, David Jason; /University Coll. London

    2009-09-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the {nu}{sub {mu}} {yields} V{sub {tau}} transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling {approx}2.5 x 10{sup 20} protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  9. Neutrino oscillations and supersymmetry

    International Nuclear Information System (INIS)

    The Super-Kamiokande experiment measured the atmospheric muon and electron neutrinos. The standard model predicts a ratio of 2, while Super-Kamiokande and others measure a much smaller value (1.30±0.02 for Super-Kamiokande). But Super-Kamiokande can also measure roughly the direction and the energy of the neutrinos. The zenith angle dependence for the muon neutrinos suggests that the muon neutrinos oscillate into a third neutrino species either into the τ neutrino or a sterile neutrino. This finding is investigated within the supersymmetric model. The neutrinos mix with the neutralinos, this means the wino, the bino and the two higgsinos. The 7 x 7 mass matrix is calculated on the tree level. One finds that the mass matrix has three linearly dependent rows which means, that two masses are zero. They are identified with the two lightest neutrino masses. The fit of the Super-Kamiokande data to oscillations between three neutrinos yields together with the result of supersymmetry that the third neutrino mass lies between 2 · 10-2 and 10-1 [eV]. The two lightest neutrino masses are in supersymmetry on the tree level zero. The averaged electron neutrino mass which is the essential parameter in the neutrinoless double beta decay νe> = mν3 · P3e ≤ 0.8 · 10-2 [eV] (95 % confidence limit). It is derived from the Super-Kamiokande data in this supersymmetric model to be two orders smaller than the best value (l[eV]) from the neutrinoless double beta decay. (author)

  10. A Dark Matter Signature for Condensed Neutrinos

    OpenAIRE

    Morley, P. D.; Buettner, D. J.

    2016-01-01

    We derive the signature for condensed neutrino objects (CNOs) as the primary source of Dark Matter. Restricting our source data to minimize systematic errors, we find that by just using weak lensing data and Sunyaev-Zel'dovich data, that there may be a weak CNO signature.

  11. The cuore potential as a coherent interaction based observatory for supernova neutrinos

    OpenAIRE

    Biassoni,, P.

    2013-01-01

    The sensitivity of CUORE experiment to the observation of supernova neutrinos via neutrino-nucleus coherent scattering is studied. The possibility of constraining supernova model parameters with an observation is also considered, like the chance of observing coherent scattering with a stopped pion neutrino source. Other aspects of the PhD activity are described as well.

  12. On the Predictivity of Neutrino Mass Sum Rules

    CERN Document Server

    Gehrlein, Julia; Spinrath, Martin

    2016-01-01

    Correlations between light neutrino observables are arguably the strongest predictions of lepton flavour models based on (discrete) symmetries, except for the very few cases which unambiguously predict the full set of leptonic mixing angles. A subclass of these correlations are neutrino mass sum rules, which connect the three (complex) light neutrino mass eigenvalues among each other. This connection constrains both the light neutrino mass scale and the Majorana phases, so that mass sum rules generically lead to a non-zero value of the lightest neutrino mass and to distinct predictions for the effective mass probed in neutrinoless double beta decay. However, in nearly all cases known, the neutrino mass sum rules are not exact and receive corrections from various sources. We introduce a formalism to handle these corrections perturbatively in a model-independent manner, which overcomes issues present in earlier approaches. Our ansatz allows us to quantify the modification of the predictions derived from neutrin...

  13. The Solar Solution: Tracking the Sun with Low Energy Neutrinos

    CERN Document Server

    Hartman, Nicole

    2016-01-01

    As neutrinos become a significant background for projected dark matter experiments, the community will become concerned with determining if events counted in a dark matter experiment are good dark matter candidates or low-energy neutrinos from astrophysical sources. We investigate the feasibility of using neutrino-electron scattering in a terrestrial detector medium as a means to determine the flight direction of the original, low-energy solar neutrino.Using leading-order weak interactions in the Standard Model and constrains from energy and momentum conservation, we developed a simple simulation that suggests that 68% of the time the ejected electron would be within 0.99 radians of the incident neutrino's direction. This suggests that it may be fruitful to pursue low-energy neutrino detection capability that can utilize such ejected electrons.

  14. RECENT DEVELOPMENTS IN ULTRA-HIGH ENERGY NEUTRINO ASTRONOMY

    Directory of Open Access Journals (Sweden)

    Peter K. F. Grieder

    2013-12-01

    Full Text Available We outline the current situation in ultrahigh energy (UHE cosmic ray physics, pointing out the remaining problems, in particular the puzzle concerning the origin of the primary radiation and the role of neutrino astronomy for locating the sources. Various methods for the detection of UHE neutrinos are briefly described and their merits compared. We give an account of the achievements of the existing optical Cherenkov neutrino telescopes, outline the possibility of using air fluorescence and particle properties of air showers to identify neutrino induced events, and discuss various pioneering experiments employing radio and acoustic detection of extremely energetic neutrinos. The next generation of space, ground and sea based neutrino telescopes now under construction or in the planning phase are listed.

  15. Measurement of electron neutrino appearance with the MINOS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Joshua Adam Alpern; /Harvard U.

    2009-05-01

    MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity muon neutrino beam to investigate the phenomena of neutrino oscillations. By measuring the neutrino interactions in a detector near the neutrino source and again 735 km away from the production site, it is possible to probe the parameters governing neutrino oscillation. The majority of the {nu}{sub {mu}} oscillate to {nu}{sub {tau}} but a small fraction may oscillate instead to {nu}{sub e}. This thesis presents a measurement of the {nu}{sub e} appearance rate in the MINOS far detector using the first two years of exposure. Methods for constraining the far detector backgrounds using the near detector measurements is discussed and a technique for estimating the uncertainty on the background and signal selection are developed. A 1.6{sigma} excess over the expected background rate is found providing a hint of {nu}{sub e} appearance.

  16. Future perspectives in neutrino physics: The Laguna-LBNO case

    CERN Document Server

    Buizza Avanzini, M

    2013-01-01

    LAGUNA-LBNO is a Design Study funded by the European Commission to develop the de- sign of a deep underground neutrino observatory; its physics program involves the study of neutrino oscillations at long baselines, the investigation of the Grand Unication of elemen- tary forces and the detection of neutrinos from known and unknown astrophysical sources. Building on the successful format and on the ndings of the previous LAGUNA Design Study, LAGUNA-LBNO is more focused and is specically considering Long Baseline Neutrino Oscil- lations (LBNO) with neutrino beams from CERN. Two sites, Frejus (in France at 130 km) and Pyhasalmi (in Finland at 2300 km), are being considered. Three dierent detector technolo- gies are being studied: Water Cherenkov, Liquid Scintillator and Liquid Argon. Recently the LAGUNA-LBNO consortium has submitted an Expression of Interest for a very long baseline neutrino experiment, selecting as a rst priority the option of a Liquid Argon detector at Pyhasalmi.

  17. Galactic abundances as a relic neutrino detection scheme

    DEFF Research Database (Denmark)

    Riis, Anna Sejersen; Thomas Zinner, Nikolaj; Hannestad, Steen

    2011-01-01

    We propose to use the threshold-free process of neutrino capture on beta-decaying nuclei (NCB) using all available candidate nuclei in the Milky Way as target material in order to detect the presence of the Cosmic neutrino background. By integrating over the lifetime of the galaxy one might be able...... decays. Secondly, relic neutrinos have so low energy that their de Broglie wavelengths are macroscopic and they may therefore scatter coherently on the electronic cloud of the candidate atoms. One must therefore compare the cross sections for the two processes (induced beta-decay by neutrino capture, and...... coherent scattering of the neutrinos on atomic nuclei) before drawing any conclusions. Finally, the density of target nuclei in the galaxy must be calculated. We assume supernovae as the only production source and approximate the neutrino density as a homogenous background. Here we perform the full...

  18. The next-generation liquid-scintillator neutrino observatory LENA

    CERN Document Server

    Wurm, Michael; Bezrukov, Leonid B; Bick, Daniel; Blümer, Johannes; Choubey, Sandhya; Ciemniak, Christian; D'Angelo, Davide; Dasgupta, Basudeb; Dighe, Amol; Domogatsky, Grigorij; Dye, Steve; Eliseev, Sergey; Enqvist, Timo; Erykalov, Alexey; von Feilitzsch, Franz; Fiorentini, Gianni; Fischer, Tobias; Göger-Neff, Marianne; Grabmayr, Peter; Hagner, Caren; Hellgartner, Dominikus; Hissa, Johannes; Horiuchi, Shunsaku; Janka, Hans-Thomas; Jaupart, Claude; Jochum, Josef; Kalliokoski, Tuomo; Kuusiniemi, Pasi; Lachenmaier, Tobias; Lazanu, Ionel; Learned, John G; Lewke, Timo; Lombardi, Paolo; Lorenz, Sebastian; Lubsandorzhiev, Bayarto; Ludhova, Livia; Loo, Kai; Maalampi, Jukka; Mantovani, Fabio; Marafini, Michela; Maricic, Jelena; Undagoitia, Teresa Marrodán; McDonough, William F; Miramonti, Lino; Mirizzi, Alessandro; Meindl, Quirin; Mena, Olga; Möllenberg, Randolph; Nahnhauer, Rolf; Nesterenko, Dmitry; Novikov, Yuri N; Nuijten, Guido; Oberauer, Lothar; Pakvasa, Sandip; Palomares-Ruiz, Sergio; Pallavicini, Marco; Pascoli, Silvia; Patzak, Thomas; Peltoniemi, Juha; Potzel, Walter; Räihä, Tomi; Raffelt, Georg G; Ranucci, Gioacchino; Razzaque, Soebur; Rummukainen, Kari; Sarkamo, Juho; Sinev, Valerij; Spiering, Christian; Stahl, Achim; Thorne, Felicitas; Tippmann, Marc; Tonazzo, Alessandra; Trzaska, Wladyslaw H; Vergados, John D; Wiebusch, Christopher; Winter, Jürgen

    2011-01-01

    We propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a next-generation neutrino observatory on the scale of 50 kt. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. LENA's physics objectives comprise the observation of astrophysical and terrestrial neutrino sources as well as the investigation of neutrino oscillations. In the GeV energy range, the search for proton decay and long-baseline neutrino oscillation experiments complement the low-energy program. Based on the considerable expertise present in European and international research groups, the technical design is sufficiently mature to allow for an early start of detector realization.

  19. Acquire information about neutrino parameters by detecting supernova neutrinos

    OpenAIRE

    Huang, Ming-Yang; Guo, Xin-Heng; Young, Bing-Lin

    2010-01-01

    We consider the supernova shock effects, the Mikheyev-Smirnov-Wolfenstein (MSW) effects, the collective effects, and the Earth matter effects in the detection of type II supernova neutrinos on the Earth. It is found that the event number of supernova neutrinos depends on the neutrino mass hierarchy, the neutrino mixing angle $\\theta_{13}$, and neutrino masses. Therefore, we propose possible methods to identify the mass hierarchy and acquire information about $\\theta_{13}$ and neutrino masses ...

  20. A search for Gamma Ray Burst Neutrinos in AMANDA

    NARCIS (Netherlands)

    Duvoort, M.R.

    2009-01-01

    To date, no neutrinos with energies in or above the GeV range have been identified from astrophysical objects. The aim of the two analyses described in this dissertation is to observe high-energy muon neutrinos from Gamma Ray Bursts (GRBs). GRBs are distant sources, which were discovered by satellit

  1. The Nuclear Physics of Solar and Supernova Neutrino Detection

    OpenAIRE

    Haxton, W. C.

    1999-01-01

    This talk provides a basic introduction for students interested in the responses of detectors to solar, supernova, and other low-energy neutrino sources. Some of the nuclear physics is then applied in a discussion of nucleosynthesis within a Type II supernova, including the r-process and the neutrino process.

  2. High Energy Neutrinos from Recent Blazar Flares

    CERN Document Server

    Halzen, Francis

    2016-01-01

    The energy density of cosmic neutrinos measured by IceCube matches the one observed by Fermi in extragalactic photons that predominantly originate in blazars. This has inspired attempts to match Fermi sources with IceCube neutrinos. A spatial association combined with a coincidence in time with a flaring source may represent a smoking gun for the origin of the IceCube flux. In June 2015, the Fermi Large Area Telescope observed an intense flare from blazar 3C 279 that exceeded the steady flux of the source by a factor of forty for the duration of a day. We show that IceCube is likely to observe neutrinos, if indeed hadronic in origin, in data that are still blinded at this time. We also discuss other opportunities for coincident observations that include a recent flare from blazar 1ES 1959+650 that previously produced an intriguing coincidence with AMANDA observations.

  3. Transmission of neutrinos through matter

    Indian Academy of Sciences (India)

    L Wolfenstein

    2000-01-01

    Neutrinos travel through matter with negligible absorption except in very extreme situations. However, the index of refraction of neutrinos can play an important role in the oscillation of one type of neutrino to another when passing through matter.

  4. Neutrinos and dark energy

    International Nuclear Information System (INIS)

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  5. Neutrinos and dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Schrempp, L.

    2008-02-15

    From the observed late-time acceleration of cosmic expansion arises the quest for the nature of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally qualifies for a connection with the Dark Energy sector and as a result could play a key role for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and phenomenological consequences arising from non-standard neutrino interactions, which dynamically link the cosmic neutrino background and a slowly-evolving scalar field of the dark sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino process which is sensitive to neutrino masses. We work out, both semi-analytically and numerically, the generic clear-cut signatures arising from a possible time variation of neutrino masses which we compare to the corresponding results for constant neutrino masses. Finally, we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of Dark Energy within the next decade. A second independent analysis deals with the recently challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic perturbations, driven by the new scalar force felt between neutrinos. Within the framework of linear cosmological perturbation theory, we derive the equation of motion of the neutrino perturbations in a model-independent way. This equation allows to deduce an analytical stability condition which translates into a comfortable upper bound on the scalar-neutrino coupling which is determined by the ratio of the densities in cold dark

  6. Neutrinos from Type Ia Supernovae I: The Deflagration-To-Detonation Transition Scenario

    OpenAIRE

    Wright, Warren P.; Nagaraj, Gautam; Kneller, James P.; Scholberg, Kate; Seitenzahl, Ivo R.

    2016-01-01

    It has long been recognized that the neutrinos detected from the next core-collapse supernova in the Galaxy have the potential to reveal important information about the dynamics of the explosion and the nucleosynthesis conditions as well as allowing us to probe the properties of the neutrino itself. The neutrinos emitted from thermonuclear - Type Ia - supernovae also possess the same potential, although these supernovae are dimmer neutrino sources. For the first time, we calculate the time, e...

  7. Solar neutrino detection

    CERN Document Server

    Miramonti, Lino

    2009-01-01

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  8. Jiangmen Underground Neutrino Observatory

    CERN Document Server

    He, Miao

    2014-01-01

    The Jiangmen Underground Neutrino Observatory (JUNO) is a multipurpose neutrino-oscillation experiment designed to determine the neutrino mass hierarchy and to precisely measure oscillation parameters by detecting reactor antineutrinos, observe supernova neutrinos, study the atmospheric, solar neutrinos and geo-neutrinos, and perform exotic searches, with a 20 kiloton liquid scintillator detector of unprecedented $3\\%$ energy resolution (at 1 MeV) at 700-meter deep underground and to have other rich scientific possibilities. Currently MC study shows a sensitivity of the mass hierarchy to be $\\overline{\\Delta\\chi^2}\\sim 11$ and $\\overline{\\Delta\\chi^2}\\sim 16$ in a relative and an absolute measurement, respectively. JUNO has been approved by Chinese Academy of Sciences in 2013, and an international collaboration was established in 2014. The civil construction is in preparation and the R$\\&$D of the detectors are ongoing. A new offline software framework was developed for the detector simulation, the event ...

  9. Neutrino Astrophysics And Cosmology

    CERN Document Server

    Abazajian, Kevork N

    2001-01-01

    Although physical cosmology is becoming a field rich in data, the theoretical basis for several aspects of standard cosmological models are spectacularly devoid of firm foundations. On the other hand, the standard model of particle physics has successfully described an enormous quantity of experimental data, with one exception lying in the neutrino sector from observations of the atmospheric neutrino flux. This dissertation intersects both fields, as an interplay of the problems confronting theoretical cosmology and the tremendous success of the standard model of particle physics. And, in return, the successes of the standard cosmology may give insights into new particle physics, particularly neutrino physics. In this interplay, this dissertation studies the production of sterile neutrino dark matter in the early universe, constraints on this scenario, including radiative decays in galactic clusters. The effects of nonthermal neutrinos resulting from neutrino transformation on big bang nucleosynthesis are stu...

  10. Remarks upon neutrino mixing hypothesis

    International Nuclear Information System (INIS)

    It is shown that various versions of the neutrino mixing hypothesis and theoretical descriptions are in contradiction with generally accepted facts and principles. The possible alternative formulation of the neutrino oscillation theory there is also presented and it is shown under what conditions this theory reproduces the known oscillation probability formula. In our approach (flavor) neutrinos are Dirac particles. In the case of Majorana neutrinos, or the nonrelativistic neutrinos (i.e. relic neutrinos), the problem could be more complicated. (Authors)

  11. Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes

    CERN Document Server

    Shoemaker, Ian M

    2015-01-01

    The flavor of cosmic neutrinos may help unveil their sources and could reveal the presence of new physics in the neutrino sector. We consider the impacts of next-generation neutrino detectors, including the planned upgrade to neutrino detector--IceCube-Gen2, which is well-positioned to make dramatic improvements in both flavor and spectral measurements. We show that various models in neutrino physics beyond the Standard Model, such as neutrino decay, pseudo-Dirac states, and neutrino self-scattering, may be found or strongly constrained at IceCube-Gen2 and KM3NeT. We find that the additional flavor discriminants given by Glashow resonance events and so-called "double-bang" topologies improve the ability to access the flavor of the cosmic high-energy neutrinos and probe the BSM physics. In addition, although the details depend on source properties, Glashow resonance events have the additional feature of being able to inform us of the relative strengths of neutrino and antineutrino emission, which may help us d...

  12. Neutrino Physics (theory)

    OpenAIRE

    Langacker, Paul

    2004-01-01

    Nonzero neutrino masses are the first definitive need to extend the standard model. After reviewing the basic framework, I describe the status of some of the major issues, including tests of the basic framework of neutrino masses and mixings; the question of Majorana vs. Dirac; the spectrum, mixings, and number of neutrinos; models, with special emphasis on constraints from typical superstring constructions (which are not consistent with popular bottom-up assumptions); and other implications.

  13. Neutrinos from gravitational collapse

    International Nuclear Information System (INIS)

    Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs

  14. Solar neutrinos: a scientific puzzle

    International Nuclear Information System (INIS)

    An experiment designed to capture neutrinos produced by solar thermonuclear reactions is a crucial one for the theory of stellar evolution. The conventional wisdom regarding nuclear fusion as the energy source for main sequence stars like the sun is briefly outlined. It is assumed that the sun shines because of fusion reactions similar to those envisioned for terrestrial fusion reactors. The basic solar process is the fusion of four protons to form an alpha particle, two positrons (e+), and two neutrinos (νsub(e)), i.e., 4p → α + 2e+ + 2νsub(e). The principal reactions are shown and the percentage of each reaction is given. Several experiments carried out toward this aim are discussed. (B.G.)

  15. Accelerator Neutrino Programme at FERMILAB

    International Nuclear Information System (INIS)

    The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOA. The major experiment in the beamline to DUSEL will be LBNE. (author)

  16. Neutrino physics from Cosmology

    CERN Document Server

    Hannestad, Steen

    2013-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties.

  17. Nonlinear growing neutrino cosmology

    Science.gov (United States)

    Ayaita, Youness; Baldi, Marco; Führer, Florian; Puchwein, Ewald; Wetterich, Christof

    2016-03-01

    The energy scale of dark energy, ˜2 ×10-3 eV , is a long way off compared to all known fundamental scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the onset of the Universe's accelerated expansion in recent cosmic history, addressing the why-now problem of dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—even if the fully nonlinear structure formation and backreaction are taken into account, which were previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈2 . Nevertheless, a nonlinear stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background observable.

  18. Introduction to neutrino physics

    CERN Document Server

    Totsuka, Y

    2003-01-01

    An elementary particle 'neutrino' was born in Pauli's conjecture 70 years ago. Its study has made remarkable contributions to establishing the weak interactions and the electro-weak unification theory. Recently much interest has been directed to investigating the intrinsic properties of the neutrinos and important experimental results on their masses and mixings were obtained. This article introduces several experiments that have made breakthroughs in neutrino physics. Also presented is a personal view of what should be done in future to further develop neutrino physics. This article is devoted to Professor Koshiba's 2002 Nobel Prize in physics. (author)

  19. Neutrino physics from Cosmology

    International Nuclear Information System (INIS)

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties.

  20. Neutrino-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, H.; /Tufts U.; Garvey, G.; /Los Alamos; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.