WorldWideScience

Sample records for artificial intelligence applications

  1. Instructional Applications of Artificial Intelligence.

    Science.gov (United States)

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  2. Innovative applications of artificial intelligence

    Science.gov (United States)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  3. Medical applications of artificial intelligence

    CERN Document Server

    Agah, Arvin

    2013-01-01

    Enhanced, more reliable, and better understood than in the past, artificial intelligence (AI) systems can make providing healthcare more accurate, affordable, accessible, consistent, and efficient. However, AI technologies have not been as well integrated into medicine as predicted. In order to succeed, medical and computational scientists must develop hybrid systems that can effectively and efficiently integrate the experience of medical care professionals with capabilities of AI systems. After providing a general overview of artificial intelligence concepts, tools, and techniques, Medical Ap

  4. Training Applications of Artificial Intelligence.

    Science.gov (United States)

    1987-03-23

    nearifest tLer,sclvCs in ELO r operatii.L costs in the life C’VclE Of the ef’uijjteft. E F re\\ lously rcntione6 ey~ arrle of usingF the 1lirefineer...Ibid., p. 35. 4. Avron Barr and Edward Feigenbaum, The Handbook of Artificial Intelligence, Vol. 1, p. 2. 5. Wissam W. Ahmed, "Theories of Artificial...Barr, Avron and Geigenbaum, Edward A. ed. The Handbook of Arti- ficial Intelligence. Vol. 1. Stanford: heuristech Press. 1981. Gevartner, William B

  5. Artificial Intelligence--Applications in Education.

    Science.gov (United States)

    Poirot, James L.; Norris, Cathleen A.

    1987-01-01

    This first in a projected series of five articles discusses artificial intelligence and its impact on education. Highlights include the history of artificial intelligence and the impact of microcomputers; learning processes; human factors and interfaces; computer assisted instruction and intelligent tutoring systems; logic programing; and expert…

  6. Artificial Intelligence Applications to Testability.

    Science.gov (United States)

    1984-10-01

    develop crisp rules. 23 - ~. . . . . . . . . . . . This very large data base is far beyond human capacity to fully understand or translate * into an...TRAINING "-..,-’ Ruston M. Hunt, Richard L. Henneman , William B. Rouse, Characterizing the Develop- 9 ment of Human Expertise in Simulated Fault Diagnosis...information reduction), 2) Missile Guidance, 3) Robotic Tanks, 4) Intelligence ( translate language, read in interpretations based on dialects, local

  7. Applications of artificial intelligence to scientific research

    Science.gov (United States)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  8. Artificial intelligence

    CERN Document Server

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  9. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  10. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  11. Artificial Intelligence.

    Science.gov (United States)

    Waltz, David L.

    1982-01-01

    Describes kinds of results achieved by computer programs in artificial intelligence. Topics discussed include heuristic searches, artificial intelligence/psychology, planning program, backward chaining, learning (focusing on Winograd's blocks to explore learning strategies), concept learning, constraint propagation, language understanding…

  12. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    Science.gov (United States)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  13. Artificial intelligence applications in information and communication technologies

    CERN Document Server

    Bouguila, Nizar

    2015-01-01

    This book presents various recent applications of Artificial Intelligence in Information and Communication Technologies such as Search and Optimization methods, Machine Learning, Data Representation and Ontologies, and Multi-agent Systems. The main aim of this book is to help Information and Communication Technologies (ICT) practitioners in managing efficiently their platforms using AI tools and methods and to provide them with sufficient Artificial Intelligence background to deal with real-life problems.  .

  14. Artificial intelligence

    CERN Document Server

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  15. Artificial Intelligence

    CERN Document Server

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  16. Artificial intelligence and dynamic systems for geophysical applications

    CERN Document Server

    Gvishiani, Alexei

    2002-01-01

    The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers

  17. Application of temporal LNC logic in artificial intelligence

    Science.gov (United States)

    Adamek, Marek; Mulawka, Jan

    2016-09-01

    This paper presents the temporal logic inference engine developed in our university. It is an attempt to demonstrate implementation and practical application of temporal logic LNC developed in Cardinal Stefan Wyszynski University in Warsaw.1 The paper describes the fundamentals of LNC logic, architecture and implementation of inference engine. The practical application is shown by providing the solution for popular in Artificial Intelligence problem of Missionaries and Cannibals in terms of LNC logic. Both problem formulation and inference engine are described in details.

  18. Principles of artificial intelligence

    CERN Document Server

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  19. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    Science.gov (United States)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  20. Artificial Intelligence.

    Science.gov (United States)

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  1. Introduction to artificial intelligence

    Science.gov (United States)

    Cheeseman, P.; Gevarter, W.

    1986-01-01

    This paper presents an introductory view of Artificial Intelligence (AI). In addition to defining AI, it discusses the foundations on which it rests, research in the field, and current and potential applications.

  2. Heidegger and artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, G.

    1987-01-01

    The discipline of Artificial Intelligence, in its quest for machine intelligence, showed great promise as long as its areas of application were limited to problems of a scientific and situation neutral nature. The attempts to move beyond these problems to a full simulation of man's intelligence has faltered and slowed it progress, largely because of the inability of Artificial Intelligence to deal with human characteristic, such as feelings, goals, and desires. This dissertation takes the position that an impasse has resulted because Artificial Intelligence has never been properly defined as a science: its objects and methods have never been identified. The following study undertakes to provide such a definition, i.e., the required ground for Artificial Intelligence. The procedure and methods employed in this study are based on Heidegger's philosophy and techniques of analysis as developed in Being and Time. Results of this study show that both the discipline of Artificial Intelligence and the concerns of Heidegger in Being and Time have the same object; fundamental ontology. The application of Heidegger's conclusions concerning fundamental ontology unites the various aspects of Artificial Intelligence and provides the articulation which shows the parts of this discipline and how they are related.

  3. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  4. Artificial intelligence in medicine.

    Science.gov (United States)

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of different artificial intelligent techniques is presented in this paper along with the review of important clinical applications. RESULTS: The proficiency of artificial intelligent techniques has been explored in almost every field of medicine. Artificial neural network was the most commonly used analytical tool whilst other artificial intelligent techniques such as fuzzy expert systems, evolutionary computation and hybrid intelligent systems have all been used in different clinical settings. DISCUSSION: Artificial intelligence techniques have the potential to be applied in almost every field of medicine. There is need for further clinical trials which are appropriately designed before these emergent techniques find application in the real clinical setting. PMID:15333167

  5. Applications of Artificial Intelligence in Education--A Personal View.

    Science.gov (United States)

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  6. Trends in Artificial Intelligence.

    Science.gov (United States)

    Hayes, Patrick

    1978-01-01

    Discusses the foundations of artificial intelligence as a science and the types of answers that may be given to the question, "What is intelligence?" The paradigms of artificial intelligence and general systems theory are compared. (Author/VT)

  7. Applications of artificial intelligence technology to wastewater treatment fields in China

    Institute of Scientific and Technical Information of China (English)

    QING Xiao-xia; WANG Bo; MENG De-tao

    2005-01-01

    Current applications of artificial intelligence technology to wastewater treatment in China are summarized. Wastewater treatment plants use expert system mainly in the operation decision-making and fault diagnosis of system operation, use artificial neuron network for system modeling, water quality forecast and soft measure, and use fuzzy control technology for the intelligence control of wastewater treatment process. Finally, the main problems in applying artificial intelligence technology to wastewater treatment in China are analyzed.

  8. The handbook of artificial intelligence

    CERN Document Server

    Barr, Avron

    1982-01-01

    The Handbook of Artificial Intelligence, Volume II focuses on the improvements in artificial intelligence (AI) and its increasing applications, including programming languages, intelligent CAI systems, and the employment of AI in medicine, science, and education. The book first elaborates on programming languages for AI research and applications-oriented AI research. Discussions cover scientific applications, teiresias, applications in chemistry, dependencies and assumptions, AI programming-language features, and LISP. The manuscript then examines applications-oriented AI research in medicine

  9. An application of artificial intelligence for rainfall–runoff modeling

    Indian Academy of Sciences (India)

    Ali Aytek; M Asce; Murat Alp

    2008-04-01

    This study proposes an application of two techniques of artificial intelligence (AI) for rainfall–runoff modeling: the artificial neural networks (ANN) and the evolutionary computation (EC). Two different ANN techniques, the feed forward back propagation (FFBP) and generalized regression neural network (GRNN) methods are compared with one EC method, Gene Expression Programming (GEP) which is a new evolutionary algorithm that evolves computer programs. The daily hydrometeorological data of three rainfall stations and one streamflow station for Juniata River Basin in Pennsylvania state of USA are taken into consideration in the model development. Statistical parameters such as average, standard deviation, coefficient of variation, skewness, minimum and maximum values, as well as criteria such as mean square error (MSE) and determination coefficient (2) are used to measure the performance of the models. The results indicate that the proposed genetic programming (GP) formulation performs quite well compared to results obtained by ANNs and is quite practical for use. It is concluded from the results that GEP can be proposed as an alternative to ANN models.

  10. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  11. Artificial intelligence in nanotechnology

    Science.gov (United States)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  12. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  13. Artificial intelligence and psychiatry.

    Science.gov (United States)

    Servan-Schreiber, D

    1986-04-01

    This paper provides a brief historical introduction to the new field of artificial intelligence and describes some applications to psychiatry. It focuses on two successful programs: a model of paranoid processes and an expert system for the pharmacological management of depressive disorders. Finally, it reviews evidence in favor of computerized psychotherapy and offers speculations on the future development of research in this area.

  14. Artificial intelligence approach for spot application project system design

    Science.gov (United States)

    Lefevre, M. J.; Fisse, G.; Martin, E.; de Boissezon, H.; Galaup, M.

    1993-11-01

    Over the past four years, CNES has been engaged in a major programme focusing on the development of SPOT Operational Application Projects. With a total of sixty projects now complete, we can draw a number of meaningful conclusions and identify a number of objectives to be satisfied by advanced remote sensing methodology. One of the main conclusions points to the importance of human vision in studies on natural complex space imagery. This being so, visual recognition must be one of the main phases of the ``Pilot Project for the Application of Remote Sensing to Agricultural Statistics'': only human experts have the ability to make a meaningful analysis of Spot TM imagery. Non-expert operators will not be able to manage the subsequent rational production phase alone. The first part of this paper describes an approach to the formalization and modelling of expert know-how based on the use of artificial intelligence. The second part puts forward a cooperative operator/computer system based on a cognitive structure. Our proposal comprises 1) a specific knowledge base, 2) an ergonomic interface associated with functional software that is based on automatic image enhancement coupled with perception support functions.

  15. Soft computing in artificial intelligence

    CERN Document Server

    Matson, Eric

    2014-01-01

    This book explores the concept of artificial intelligence based on knowledge-based algorithms. Given the current hardware and software technologies and artificial intelligence theories, we can think of how efficient to provide a solution, how best to implement a model and how successful to achieve it. This edition provides readers with the most recent progress and novel solutions in artificial intelligence. This book aims at presenting the research results and solutions of applications in relevance with artificial intelligence technologies. We propose to researchers and practitioners some methods to advance the intelligent systems and apply artificial intelligence to specific or general purpose. This book consists of 13 contributions that feature fuzzy (r, s)-minimal pre- and β-open sets, handling big coocurrence matrices, Xie-Beni-type fuzzy cluster validation, fuzzy c-regression models, combination of genetic algorithm and ant colony optimization, building expert system, fuzzy logic and neural network, ind...

  16. Artificial Intelligence and Its Importance in Education.

    Science.gov (United States)

    Tilmann, Martha J.

    Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…

  17. Application of Artificial Intelligence For Euler Solutions Clustering

    Science.gov (United States)

    Mikhailov, V.; Galdeano, A.; Diament, M.; Gvishiani, A.; Agayan, S.; Bogoutdinov, Sh.; Graeva, E.; Sailhac, P.

    Results of Euler deconvolution strongly depend on the selection of viable solutions. Synthetic calculations using multiple causative sources show that Euler solutions clus- ter in the vicinity of causative bodies even when they do not group densely about perimeter of the bodies. We have developed a clustering technique to serve as a tool for selecting appropriate solutions. The method RODIN, employed in this study, is based on artificial intelligence and was originally designed for problems of classification of large data sets. It is based on a geometrical approach to study object concentration in a finite metric space of any dimension. The method uses a formal definition of cluster and includes free parameters that facilitate the search for clusters of given proper- ties. Test on synthetic and real data showed that the clustering technique successfully outlines causative bodies more accurate than other methods of discriminating Euler solutions. In complicated field cases such as the magnetic field in the Gulf of Saint Malo region (Brittany, France), the method provides geologically insightful solutions. Other advantages of the clustering method application are: - Clusters provide solutions associated with particular bodies or parts of bodies permitting the analysis of different clusters of Euler solutions separately. This may allow computation of average param- eters for individual causative bodies. - Those measurements of the anomalous field that yield clusters also form dense clusters themselves. The application of cluster- ing technique thus outlines areas where the influence of different causative sources is more prominent. This allows one to focus on areas for reinterpretation, using different window sizes, structural indices and so on.

  18. Analysis of artificial intelligence application%人工智能应用分析

    Institute of Scientific and Technical Information of China (English)

    韦燕

    2013-01-01

    With the rapid development of computer technology, artificial intelligence is applied more and more widely.This paper analyzes the specific application of the artificial intelligence from several aspects.%  随着计算机技术的快速发展,人工智能的应用越来越广泛。本文分别从几个方面对人工智能的具体应用进行分析。

  19. Artificial Intelligence in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Pengzhen Lu

    2012-01-01

    Full Text Available Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering.

  20. Investment Process in China's Mutual Funds and Application of Artificial Intelligence

    OpenAIRE

    Xie, Ningjia

    2008-01-01

    This paper explored the process of investment management in both theory and practice in China's mutual fund industry and reviewed the applications of artificial intelligence including Rule-based Expert Systems, Genetic Algorithms, Artificial Neural Network, and Support Vector Machines in financial forecasting, asset allocation and stocks selection. This study proposed the use of artificial neural network for stock selection which classifies stocks into undervalued stocks (+1), neutral st...

  1. Application of Artificial Intelligence to Reservoir Characterization - An Interdisciplinary Approach

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, B.G.; Gamble, R.F.; Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    2000-01-12

    The primary goal of this project is to develop a user-friendly computer program to integrate geological and engineering information using Artificial Intelligence (AI) methodology. The project is restricted to fluvially dominated deltaic environments. The static information used in constructing the reservoir description includes well core and log data. Using the well core and the log data, the program identifies the marker beds, and the type of sand facies, and in turn, develops correlation's between wells. Using the correlation's and sand facies, the program is able to generate multiple realizations of sand facies and petrophysical properties at interwell locations using geostatistical techniques. The generated petrophysical properties are used as input in the next step where the production data are honored. By adjusting the petrophysical properties, the match between the simulated and the observed production rates is obtained.

  2. Application of Artificial Intelligence for Bridge Deterioration Model.

    Science.gov (United States)

    Chen, Zhang; Wu, Yangyang; Li, Li; Sun, Lijun

    2015-01-01

    The deterministic bridge deterioration model updating problem is well established in bridge management, while the traditional methods and approaches for this problem require manual intervention. An artificial-intelligence-based approach was presented to self-updated parameters of the bridge deterioration model in this paper. When new information and data are collected, a posterior distribution was constructed to describe the integrated result of historical information and the new gained information according to Bayesian theorem, which was used to update model parameters. This AI-based approach is applied to the case of updating parameters of bridge deterioration model, which is the data collected from bridges of 12 districts in Shanghai from 2004 to 2013, and the results showed that it is an accurate, effective, and satisfactory approach to deal with the problem of the parameter updating without manual intervention.

  3. Application of Artificial Intelligence for Bridge Deterioration Model

    Directory of Open Access Journals (Sweden)

    Zhang Chen

    2015-01-01

    Full Text Available The deterministic bridge deterioration model updating problem is well established in bridge management, while the traditional methods and approaches for this problem require manual intervention. An artificial-intelligence-based approach was presented to self-updated parameters of the bridge deterioration model in this paper. When new information and data are collected, a posterior distribution was constructed to describe the integrated result of historical information and the new gained information according to Bayesian theorem, which was used to update model parameters. This AI-based approach is applied to the case of updating parameters of bridge deterioration model, which is the data collected from bridges of 12 districts in Shanghai from 2004 to 2013, and the results showed that it is an accurate, effective, and satisfactory approach to deal with the problem of the parameter updating without manual intervention.

  4. Introduction to the Special Issue on Innovative Applications of Artificial Intelligence 2015

    OpenAIRE

    Gunning, David; PARC; Yeh, Peter Z.; Nuance Communications

    2016-01-01

    This issue features expanded versions of articles selected from the 2015 AAAI Conference on Innovative Applications of Artificial Intelligence held in Austin, Texas. We present a selection of four articles describing deployed applications plus two more articles that discuss work on emerging applications.

  5. Introduction to the Special Issue on Innovative Applications of Artificial Intelligence

    OpenAIRE

    Porter, Bruce; Cheetham, William

    2007-01-01

    We are very pleased to republish here extended versions of a sample of the papers drawn from the Innovative Applications of Artificial Intelligence Conference (IAAI-06), which was held July 17-20, 2006, in Boston, Massachusetts. Three of these articles describe deployed applications and two describe emerging applications.

  6. Bayesian artificial intelligence

    CERN Document Server

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  7. Artificial Intelligence Research and Development: Proc. of the 11th International Conference of the Catalan Association for Artificial Intelligence

    OpenAIRE

    Alsinet, Teresa; Puyol-Gruart, Josep; Torras, Carme

    2008-01-01

    Artificial Intelligence Research and Development. Proceedings of the 11th International Conference of the Catalan Association for Artificial Intelligence. Volume 184 Frontiers in Artificial Intelligence and Applications Peer Reviewed

  8. Artificial intelligence in medicine.

    Science.gov (United States)

    Hamet, Pavel; Tremblay, Johanne

    2017-04-01

    Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application.

  9. Artificial intelligence in hematology.

    Science.gov (United States)

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  10. Artificial intelligence techniques in Prolog

    CERN Document Server

    Shoham, Yoav

    1993-01-01

    Artificial Intelligence Techniques in Prolog introduces the reader to the use of well-established algorithmic techniques in the field of artificial intelligence (AI), with Prolog as the implementation language. The techniques considered cover general areas such as search, rule-based systems, and truth maintenance, as well as constraint satisfaction and uncertainty management. Specific application domains such as temporal reasoning, machine learning, and natural language are also discussed.Comprised of 10 chapters, this book begins with an overview of Prolog, paying particular attention to Prol

  11. Artificial Intelligence Assists Ultrasonic Inspection

    Science.gov (United States)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  12. Web Intelligence and Artificial Intelligence in Education

    Science.gov (United States)

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  13. Artificial intelligence within AFSC

    Science.gov (United States)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  14. Applicability of artificial intelligence to reservoir induced earthquakes

    Science.gov (United States)

    Samui, Pijush; Kim, Dookie

    2014-06-01

    This paper proposes to use least square support vector machine (LSSVM) and relevance vector machine (RVM) for prediction of the magnitude (M) of induced earthquakes based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth (H) are used as input variables of the LSSVM and RVM. The output of the LSSVM and RVM is M. Equations have been presented based on the developed LSSVM and RVM. The developed RVM also gives variance of the predicted M. A comparative study has been carried out between the developed LSSVM, RVM, artificial neural network (ANN), and linear regression models. Finally, the results demonstrate the effectiveness and efficiency of the LSSVM and RVM models.

  15. Applications of artificial intelligence in safe human-robot interactions.

    Science.gov (United States)

    Najmaei, Nima; Kermani, Mehrdad R

    2011-04-01

    The integration of industrial robots into the human workspace presents a set of unique challenges. This paper introduces a new sensory system for modeling, tracking, and predicting human motions within a robot workspace. A reactive control scheme to modify a robot's operations for accommodating the presence of the human within the robot workspace is also presented. To this end, a special class of artificial neural networks, namely, self-organizing maps (SOMs), is employed for obtaining a superquadric-based model of the human. The SOM network receives information of the human's footprints from the sensory system and infers necessary data for rendering the human model. The model is then used in order to assess the danger of the robot operations based on the measured as well as predicted human motions. This is followed by the introduction of a new reactive control scheme that results in the least interferences between the human and robot operations. The approach enables the robot to foresee an upcoming danger and take preventive actions before the danger becomes imminent. Simulation and experimental results are presented in order to validate the effectiveness of the proposed method.

  16. Application of artificial intelligence in Geodesy - A review of theoretical foundations and practical examples

    Science.gov (United States)

    Reiterer, Alexander; Egly, Uwe; Vicovac, Tanja; Mai, Enrico; Moafipoor, Shahram; Grejner-Brzezinska, Dorota A.; Toth, Charles K.

    2010-12-01

    Artificial Intelligence (AI) is one of the key technologies in many of today's novel applications. It is used to add knowledge and reasoning to systems. This paper illustrates a review of AI methods including examples of their practical application in Geodesy like data analysis, deformation analysis, navigation, network adjustment, and optimization of complex measurement procedures. We focus on three examples, namely, a geo-risk assessment system supported by a knowledge-base, an intelligent dead reckoning personal navigator, and evolutionary strategies for the determination of Earth gravity field parameters. Some of the authors are members of IAG Sub-Commission 4.2 - Working Group 4.2.3, which has the main goal to study and report on the application of AI in Engineering Geodesy.

  17. Essentials of artificial intelligence

    CERN Document Server

    Ginsberg, Matt

    1993-01-01

    Since its publication, Essentials of Artificial Intelligence has beenadopted at numerous universities and colleges offering introductory AIcourses at the graduate and undergraduate levels. Based on the author'scourse at Stanford University, the book is an integrated, cohesiveintroduction to the field. The author has a fresh, entertaining writingstyle that combines clear presentations with humor and AI anecdotes. At thesame time, as an active AI researcher, he presents the materialauthoritatively and with insight that reflects a contemporary, first hand

  18. Artificial intelligence in power system optimization

    CERN Document Server

    Ongsakul, Weerakorn

    2013-01-01

    With the considerable increase of AI applications, AI is being increasingly used to solve optimization problems in engineering. In the past two decades, the applications of artificial intelligence in power systems have attracted much research. This book covers the current level of applications of artificial intelligence to the optimization problems in power systems. This book serves as a textbook for graduate students in electric power system management and is also be useful for those who are interested in using artificial intelligence in power system optimization.

  19. Automated Scheduling Via Artificial Intelligence

    Science.gov (United States)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  20. Risk assessment of sewer condition using artificial intelligence tools: application to the SANEST sewer system.

    Science.gov (United States)

    Sousa, V; Matos, J P; Almeida, N; Saldanha Matos, J

    2014-01-01

    Operation, maintenance and rehabilitation comprise the main concerns of wastewater infrastructure asset management. Given the nature of the service provided by a wastewater system and the characteristics of the supporting infrastructure, technical issues are relevant to support asset management decisions. In particular, in densely urbanized areas served by large, complex and aging sewer networks, the sustainability of the infrastructures largely depends on the implementation of an efficient asset management system. The efficiency of such a system may be enhanced with technical decision support tools. This paper describes the role of artificial intelligence tools such as artificial neural networks and support vector machines for assisting the planning of operation and maintenance activities of wastewater infrastructures. A case study of the application of this type of tool to the wastewater infrastructures of Sistema de Saneamento da Costa do Estoril is presented.

  1. Uncertainty in artificial intelligence

    CERN Document Server

    Kanal, LN

    1986-01-01

    How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

  2. Generative Artificial Intelligence : Philosophy and Theory of Artificial Intelligence

    NARCIS (Netherlands)

    van der Zant, Tijn; Kouw, Matthijs; Schomaker, Lambertus; Mueller, Vincent C.

    2013-01-01

    The closed systems of contemporary Artificial Intelligence do not seem to lead to intelligent machines in the near future. What is needed are open-ended systems with non-linear properties in order to create interesting properties for the scaffolding of an artificial mind. Using post-structuralistic

  3. Economic modeling using artificial intelligence methods

    CERN Document Server

    Marwala, Tshilidzi

    2013-01-01

    This book examines the application of artificial intelligence methods to model economic data. It addresses causality and proposes new frameworks for dealing with this issue. It also applies evolutionary computing to model evolving economic environments.

  4. Advanced Artificial Intelligence Technology Testbed

    Science.gov (United States)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  5. A Primer on Artificial Intelligence.

    Science.gov (United States)

    Leal, Ralph A.

    A survey of literature on recent advances in the field of artificial intelligence provides a comprehensive introduction to this field for the non-technical reader. Important areas covered are: (1) definitions, (2) the brain and thinking, (3) heuristic search, and (4) programing languages used in the research of artificial intelligence. Some…

  6. State-of-the-art review of some artificial intelligence applications in pile foundations

    Institute of Scientific and Technical Information of China (English)

    Mohamed A. Shahin

    2016-01-01

    Geotechnical engineering deals with materials (e.g. soil and rock) that, by their very nature, exhibit varied and uncertain behavior due to the imprecise physical processes associated with the formation of these materials. Modeling the behavior of such materials in geotechnical engineering applications is complex and sometimes beyond the ability of most traditional forms of physically-based engineering methods. Artificial intelligence (AI) is becoming more popular and particularly amenable to modeling the complex behavior of most geotechnical engineering applications because it has demonstrated superior predictive ability compared to traditional methods. This paper provides state-of-the-art review of some selected AI techniques and their applications in pile foundations, and presents the salient features associated with the modeling development of these AI techniques. The paper also discusses the strength and limitations of the selected AI techniques compared to other available modeling approaches.

  7. Application of an Artificial Intelligence Method for Velocity Calibration and Events Location in Microseismic Monitoring

    Science.gov (United States)

    Yang, Y.; Chen, X.

    2013-12-01

    Good quality hydraulic fracture maps are heavily dependent upon the best possible velocity structure. Particle Swarm Optimization inversion scheme, an artificial intelligence technique for velocity calibration and events location could serve as a viable option, able to produce high quality data. Using perforation data to recalibrate the 1D isotropic velocity model derived from dipole sonic logs (or even without them), we are able to get the initial velocity model used for consequential events location. Velocity parameters can be inverted, as well as the thickness of the layer, through an iterative procedure. Performing inversion without integrating available data is unlikely to produce reliable results; especially if there are only one perforation shot and a single poor-layer-covered array along with low signal/noise ratio signal. The inversion method was validated via simulations and compared to the Fast Simulated Annealing approach and the Conjugate Gradient method. Further velocity model refinement can be accomplished while calculating events location during the iterative procedure minimizing the residuals from both sides. This artificial intelligence technique also displays promising application to the joint inversion of large-scale seismic activities data.

  8. Artificial Intelligence in Space Platforms.

    Science.gov (United States)

    1984-12-01

    computer algorithms, there still appears to be a need for Artificial Inteligence techniques in the navigation area. The reason is that navigaion, in...RD-RI32 679 ARTIFICIAL INTELLIGENCE IN SPACE PLRTFORNSMU AIR FORCE 1/𔃼 INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGINEERING M A WRIGHT DEC 94...i4 Preface The purpose of this study was to analyze the feasibility of implementing Artificial Intelligence techniques to increase autonomy for

  9. 14th International Conference on Software Engineering, Artificial Intelligence Research, Management and Applications

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 14th International Conference on Software Engineering, Artificial Intelligence Research, Management and Applications (SERA 2016) held on June 8-10, 2016 at Towson University, USA. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication capture...

  10. An Application of Artificial Intelligence to the Implementation of Electronic Commerce

    Science.gov (United States)

    Srivastava, Anoop Kumar

    In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.

  11. Epistasis analysis using artificial intelligence.

    Science.gov (United States)

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data.

  12. Logical Foundations Of Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available The procedures of searching solutions to problems, in Artificial Intelligence, can be brought about, in many occasions, without knowledge of the Domain, and in other situations, with knowledge of it. This last procedure is usually called Heuristic Search. In such methods the matrix techniques reveal themselves as essential. Their introduction can give us an easy and precise way in the search of solution. Our paper explains how the matrix theory appears and fruitfully participates in A I, with feasible applications to Game Theory.

  13. Artificial Intelligence for Controlling Robotic Aircraft

    Science.gov (United States)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  14. Application of artificial intelligence to characterize naturally fractured zones in Hassi Messaoud Oil Field, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    El Ouahed, Abdelkader Kouider; Mazouzi, Amine [Sonatrach, Rue Djenane Malik, Hydra, Algiers (Algeria); Tiab, Djebbar [Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, 100 East Boyd Street, SEC T310, Norman, OK, 73019 (United States)

    2005-12-15

    In highly heterogeneous reservoirs classical characterization methods often fail to detect the location and orientation of the fractures. Recent applications of Artificial Intelligence to the area of reservoir characterization have made this challenge a possible practice. Such a practice consists of seeking the complex relationship between the fracture index and some geological and geomechanical drivers (facies, porosity, permeability, bed thickness, proximity to faults, slopes and curvatures of the structure) in order to obtain a fracture intensity map using Fuzzy Logic and Neural Network. This paper shows the successful application of Artificial Intelligence tools such as Artificial Neural Network and Fuzzy Logic to characterize naturally fractured reservoirs. A 2D fracture intensity map and fracture network map in a large block of Hassi Messaoud field have been developed using Artificial Neural Network and Fuzzy Logic. This was achieved by first building the geological model of the permeability, porosity and shale volume using stochastic conditional simulation. Then by applying some geomechanical concepts first and second structure directional derivatives, distance to the nearest fault, and bed thickness were calculated throughout the entire area of interest. Two methods were then used to select the appropriate fracture intensity index. In the first method well performance was used as a fracture index. In the second method a Fuzzy Inference System (FIS) was built. Using this FIS, static and dynamic data were coupled to reduce the uncertainty, which resulted in a more reliable Fracture Index. The different geological and geomechanical drivers were ranked with the corresponding fracture index for both methods using a Fuzzy Ranking algorithm. Only important and measurable data were selected to be mapped with the appropriate fracture index using a feed forward Back Propagation Neural Network (BPNN). The neural network was then used to obtain a fracture intensity

  15. Artificial intelligence metamodel comparison and application to wind turbine airfoil uncertainty analysis

    Directory of Open Access Journals (Sweden)

    Yaping Ju

    2016-05-01

    Full Text Available The Monte Carlo simulation method for turbomachinery uncertainty analysis often requires performing a huge number of simulations, the computational cost of which can be greatly alleviated with the help of metamodeling techniques. An intensive comparative study was performed on the approximation performance of three prospective artificial intelligence metamodels, that is, artificial neural network, radial basis function, and support vector regression. The genetic algorithm was used to optimize the predetermined parameters of each metamodel for the sake of a fair comparison. Through testing on 10 nonlinear functions with different problem scales and sample sizes, the genetic algorithm–support vector regression metamodel was found more accurate and robust than the other two counterparts. Accordingly, the genetic algorithm–support vector regression metamodel was selected and combined with the Monte Carlo simulation method for the uncertainty analysis of a wind turbine airfoil under two types of surface roughness uncertainties. The results show that the genetic algorithm–support vector regression metamodel can capture well the uncertainty propagation from the surface roughness to the airfoil aerodynamic performance. This work is useful to the application of metamodeling techniques in the robust design optimization of turbomachinery.

  16. One Decade of Universal Artificial Intelligence

    CERN Document Server

    Hutter, Marcus

    2012-01-01

    The first decade of this century has seen the nascency of the first mathematical theory of general artificial intelligence. This theory of Universal Artificial Intelligence (UAI) has made significant contributions to many theoretical, philosophical, and practical AI questions. In a series of papers culminating in book (Hutter, 2005), an exciting sound and complete mathematical model for a super intelligent agent (AIXI) has been developed and rigorously analyzed. While nowadays most AI researchers avoid discussing intelligence, the award-winning PhD thesis (Legg, 2008) provided the philosophical embedding and investigated the UAI-based universal measure of rational intelligence, which is formal, objective and non-anthropocentric. Recently, effective approximations of AIXI have been derived and experimentally investigated in JAIR paper (Veness et al. 2011). This practical breakthrough has resulted in some impressive applications, finally muting earlier critique that UAI is only a theory. For the first time, wit...

  17. Recent advances in knowledge-based paradigms and applications enhanced applications using hybrid artificial intelligence techniques

    CERN Document Server

    Jain, Lakhmi

    2014-01-01

    This book presents carefully selected contributions devoted to the modern perspective of AI research and innovation. This collection covers several areas of applications and motivates new research directions. The theme across all chapters combines several domains of AI research , Computational Intelligence and Machine Intelligence including an introduction to  the recent research and models. Each of the subsequent chapters reveals leading edge research and innovative solution that employ AI techniques with an applied perspective. The problems include classification of spatial images, early smoke detection in outdoor space from video images, emergent segmentation from image analysis, intensity modification in images, multi-agent modeling and analysis of stress. They all are novel pieces of work and demonstrate how AI research contributes to solutions for difficult real world problems that benefit the research community, industry and society.

  18. Progress and Challenge of Artificial Intelligence

    Institute of Scientific and Technical Information of China (English)

    Zhong-Zhi Shi; Nan-Ning Zheng

    2006-01-01

    Artificial Intelligence (AI) is generally considered to be a subfield of computer science, that is concerned to attempt simulation, extension and expansion of human intelligence. Artificial intelligence has enjoyed tremendous success over the last fifty years. In this paper we only focus on visual perception, granular computing, agent computing, semantic grid. Human-level intelligence is the long-term goal of artificial intelligence. We should do joint research on basic theory and technology of intelligence by brain science, cognitive science, artificial intelligence and others. A new cross discipline intelligence science is undergoing a rapid development. Future challenges are given in final section.

  19. Application of artificial intelligence methods for prediction of steel mechanical properties

    Directory of Open Access Journals (Sweden)

    Z. Jančíková

    2008-10-01

    Full Text Available The target of the contribution is to outline possibilities of applying artificial neural networks for the prediction of mechanical steel properties after heat treatment and to judge their perspective use in this field. The achieved models enable the prediction of final mechanical material properties on the basis of decisive parameters influencing these properties. By applying artificial intelligence methods in combination with mathematic-physical analysis methods it will be possible to create facilities for designing a system of the continuous rationalization of existing and also newly developing industrial technologies.

  20. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  1. Biomedical, Artificial Intelligence, and DNA Computing Photonics Applications and Web Engineering, Wilga, May 2012

    Science.gov (United States)

    Romaniuk, Ryszard S.

    2012-05-01

    This paper is the fifth part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with Biomedical, Artificial Intelligence and DNA Computing technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-270].

  2. A Definition of Artificial Intelligence

    OpenAIRE

    2012-01-01

    In this paper we offer a formal definition of Artificial Intelligence and this directly gives us an algorithm for construction of this object. Really, this algorithm is useless due to the combinatory explosion. The main innovation in our definition is that it does not include the knowledge as a part of the intelligence. So according to our definition a newly born baby also is an Intellect. Here we differs with Turing's definition which suggests that an Intellect is a person with knowledge gai...

  3. Formal Definition of Artificial Intelligence

    OpenAIRE

    Dobrev, Dimiter

    2005-01-01

    * This publication is partially supported by the KT-DigiCult-Bg project. A definition of Artificial Intelligence (AI) was proposed in [1] but this definition was not absolutely formal at least because the word "Human" was used. In this paper we will formalize the definition from [1]. The biggest problem in this definition was that the level of intelligence of AI is compared to the intelligence of a human being. In order to change this we will introduce some parameters to which AI ...

  4. Artificial Intelligence and Information Management

    Science.gov (United States)

    Fukumura, Teruo

    After reviewing the recent popularization of the information transmission and processing technologies, which are supported by the progress of electronics, the authors describe that by the introduction of the opto-electronics into the information technology, the possibility of applying the artificial intelligence (AI) technique to the mechanization of the information management has emerged. It is pointed out that althuogh AI deals with problems in the mental world, its basic methodology relies upon the verification by evidence, so the experiment on computers become indispensable for the study of AI. The authors also describe that as computers operate by the program, the basic intelligence which is concerned in AI is that expressed by languages. This results in the fact that the main tool of AI is the logical proof and it involves an intrinsic limitation. To answer a question “Why do you employ AI in your problem solving”, one must have ill-structured problems and intend to conduct deep studies on the thinking and the inference, and the memory and the knowledge-representation. Finally the authors discuss the application of AI technique to the information management. The possibility of the expert-system, processing of the query, and the necessity of document knowledge-base are stated.

  5. Application of Artificial Intelligence Methods of Tool Path Optimization in CNC Machines: A Review

    Directory of Open Access Journals (Sweden)

    Khashayar Danesh Narooei

    2014-08-01

    Full Text Available Today, in most of metal machining process, Computer Numerical Control (CNC machine tools have been very popular due to their efficiencies and repeatability to achieve high accuracy positioning. One of the factors that govern the productivity is the tool path travel during cutting a work piece. It has been proved that determination of optimal cutting parameters can enhance the machining results to reach high efficiency and minimum the machining cost. In various publication and articles, scientist and researchers adapted several Artificial Intelligence (AI methods or hybrid method for tool path optimization such as Genetic Algorithms (GA, Artificial Neural Network (ANN, Artificial Immune Systems (AIS, Ant Colony Optimization (ACO and Particle Swarm Optimization (PSO. This study presents a review of researches in tool path optimization with different types of AI methods that show the capability of using different types of optimization methods in CNC machining process.

  6. Thinking, Creativity, and Artificial Intelligence.

    Science.gov (United States)

    DeSiano, Michael; DeSiano, Salvatore

    This document provides an introduction to the relationship between the current knowledge of focused and creative thinking and artificial intelligence. A model for stages of focused and creative thinking gives: problem encounter/setting, preparation, concentration/incubation, clarification/generation and evaluation/judgment. While a computer can…

  7. Algorithms and architectures of artificial intelligence

    CERN Document Server

    Tyugu, E

    2007-01-01

    This book gives an overview of methods developed in artificial intelligence for search, learning, problem solving and decision-making. It gives an overview of algorithms and architectures of artificial intelligence that have reached the degree of maturity when a method can be presented as an algorithm, or when a well-defined architecture is known, e.g. in neural nets and intelligent agents. It can be used as a handbook for a wide audience of application developers who are interested in using artificial intelligence methods in their software products. Parts of the text are rather independent, so that one can look into the index and go directly to a description of a method presented in the form of an abstract algorithm or an architectural solution. The book can be used also as a textbook for a course in applied artificial intelligence. Exercises on the subject are added at the end of each chapter. Neither programming skills nor specific knowledge in computer science are expected from the reader. However, some p...

  8. Uncertainty in artificial intelligence

    CERN Document Server

    Levitt, TS; Lemmer, JF; Shachter, RD

    1990-01-01

    Clearly illustrated in this volume is the current relationship between Uncertainty and AI.It has been said that research in AI revolves around five basic questions asked relative to some particular domain: What knowledge is required? How can this knowledge be acquired? How can it be represented in a system? How should this knowledge be manipulated in order to provide intelligent behavior? How can the behavior be explained? In this volume, all of these questions are addressed. From the perspective of the relationship of uncertainty to the basic questions of AI, the book divides naturally i

  9. Improving Tools in Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-01-01

    Full Text Available The historical origin of the Artificial Intelligence (AI is usually established in the Dartmouth Conference, of 1956. But we can find many more arcane origins [1]. Also, we can consider, in more recent times, very great thinkers, as Janos Neumann (then, John von Neumann, arrived in USA, Norbert Wiener, Alan Mathison Turing, or Lofti Zadeh, for instance [12, 14]. Frequently AI requires Logic. But its Classical version shows too many insufficiencies. So, it was necessary to introduce more sophisticated tools, as Fuzzy Logic, Modal Logic, Non-Monotonic Logic and so on [1, 2]. Among the things that AI needs to represent are categories, objects, properties, relations between objects, situations, states, time, events, causes and effects, knowledge about knowledge, and so on. The problems in AI can be classified in two general types [3, 5], search problems and representation problems. On this last "peak", there exist different ways to reach their summit. So, we have [4] Logics, Rules, Frames, Associative Nets, Scripts, and so on, many times connected among them. We attempt, in this paper, a panoramic vision of the scope of application of such representation methods in AI. The two more disputable questions of both modern philosophy of mind and AI will be perhaps the Turing Test and the Chinese Room Argument. To elucidate these very difficult questions, see our final note.

  10. Artificial intelligence and computer vision

    CERN Document Server

    Li, Yujie

    2017-01-01

    This edited book presents essential findings in the research fields of artificial intelligence and computer vision, with a primary focus on new research ideas and results for mathematical problems involved in computer vision systems. The book provides an international forum for researchers to summarize the most recent developments and ideas in the field, with a special emphasis on the technical and observational results obtained in the past few years.

  11. The potential of artificial intelligence toys

    DEFF Research Database (Denmark)

    Dai, Zheng

    2008-01-01

    Artificial intelligence is moving to a next step of development and application areas. From electronic games to human-like robots, AI toy is a good choice for next step during this process. Technology-based design is fit to the development of AI toy. It can exert the advantages and explore more...... value for existing resources. It combines AI programs and common sensors to realize the function of intelligence input and output. Designers can use technology-based criteria to design and need to consider the possible issues in this new field. All of these aspects can be referenced from electronic game...

  12. Seventh Scandinavian Conference on Artificial Intelligence

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Mayoh, Brian Henry; Perram, John

    2001-01-01

    The book covers the seventh Scandinavian Conference on Artificial Intelligence, held at the Maersk Mc-Kinney Moller Institute for Production Technology at the University of Southern Denmark during the period 20-21 February, 2001. It continues the tradition established by SCAI of being one...... of the most important regional AI conferences in Europe, attracting high quality submissions from Scandinavia and the rest of the world, including the Baltic countries. The contents include robotics, sensor/motor intelligence, evolutionary robotics, behaviour-based systems, multi-agent systems, applications...

  13. Optimal Fuzzy PID Controller with Adjustable Factors and Its Application to Intelligent Artificial Legs

    Institute of Scientific and Technical Information of China (English)

    Tan Guanzheng(谭冠政); Xiao Hongfeng; Wang Yuechao

    2004-01-01

    A new kind of optimal fuzzy PID controller is proposed, which contains two parts. One is an on-line fuzzy inference mechanism and another is a conventional PID controller. In the fuzzy inference mechanism, three adjustable factors xp, xi, and xd are introduced. Their function is to further modify and optimize the result of the fuzzy inference to make the controller have the optimal control effect on a given object. The optimal values of these factors are determined based on the ITAE criterion and the flexible polyhedron search algorithm of Nelder and Mead. This PID controller has been used to control a D.C. motor of the intelligent artificial leg designed by the authors. The result of computer simulation indicates that the design of this controller is very effective and can be widely used to control different kinds of objects and processes.

  14. Open source hardware and software platform for robotics and artificial intelligence applications

    Science.gov (United States)

    Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-02-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.

  15. Computer science, artificial intelligence, and cybernetics: Applied artificial intelligence in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Rubinger, B.

    1988-01-01

    This sourcebook provides information on the developments in artificial intelligence originating in Japan. Spanning such innovations as software productivity, natural language processing, CAD, and parallel inference machines, this volume lists leading organizations conducting research or implementing AI systems, describes AI applications being pursued, illustrates current results achieved, and highlights sources reporting progress.

  16. Epistemology and artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, I.E.

    1987-01-01

    This study examines the concept of epistemic justification, with particular reference to establishing conditions under which this concept can be applied to computer reasoning systems: what is it, we ask, to say of a computer that it has arrived at an unjustified conclusion-that it has reasoned as it (rationally) ought not to have reasoned. This problem is important because of its relevance to the relations between the two conceptual schemes of mind, thought, and reasoning on the one hand, and of computers, programs, and computation on the other. The main findings are: (i) Certain epistemological concepts find natural application to some types of computer-reasoning systems. (ii) Such reasoning systems will themselves require these concepts to articulate the principles of reasoning they accept. (iii) Judgments involving the concept of epistemic justification can be explained in terms of the concepts thus identified. The present account of justification has a noncognitivist flavor: A theory is given of what it is to have certain beliefs involving the concept of epistemic justification by saying how such beliefs function; we remain silent as to what, if anything, those beliefs are about.

  17. Artificial intelligence and science education

    Science.gov (United States)

    Good, Ron

    Artificial intelligence (AI) is defined and related to intelligent computer-assisted instruction (ICAI) and science education. Modeling the student, the teacher, and the natural environment are discussed as important parts of ICAI and the concept of microworlds as a powerful tool for science education is presented. Optimistic predictions about ICAI are tempered with the complex, persistent problems of: 1) teaching and learning as a soft or fuzzy knowledge base, 2) natural language processing, and 3) machine learning. The importance of accurate diagnosis of a student's learning state, including misconceptions and naive theories about nature, is stressed and related to the importance of accurate diagnosis by a physician. Based on the cognitive science/AI paradigm, a revised model of the well-known Karplus/Renner learning cycle is proposed.

  18. Improving designer productivity. [artificial intelligence

    Science.gov (United States)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  19. Artificial intelligence a beginner's guide

    CERN Document Server

    Whitby, Blay

    2012-01-01

    Tomorrow begins right here as we embark on an enthralling and jargon-free journey into the world of computers and the inner recesses of the human mind. Readers encounter everything from the nanotechnology used to make insect-like robots, to computers that perform surgery, in addition to discovering the biggest controversies to dog the field of AI. Blay Whitby is a Lecturer on Cognitive Science and Artificial Intelligence at the University of Sussex UK. He is the author of two books and numerous papers.

  20. Economic reasoning and artificial intelligence.

    Science.gov (United States)

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people.

  1. Researches in Artificial Intelligence in Republic of Moldova

    Directory of Open Access Journals (Sweden)

    Yu. Pechersky

    1994-11-01

    Full Text Available The article presents a review of researches in the field of Artificial Intelligence in Republic of Moldova concerning pattern recognition and also theory and applications of intellectual knowledge based systems.

  2. Application of Artificial Intelligent For Armour Vehicle Detection Using Digital Image Processing For Aerial Application

    Directory of Open Access Journals (Sweden)

    Kamaruddin Abd Ghani

    2011-01-01

    Full Text Available This paper will presents a new automatic target recognition (ATR algorithm to detect targets such as battle tanks and armoured personal carriers especially that been used by Malaysia Armed Forces from air-to- ground scenario. Numerous friendly-fire incidents justify the need for identification of armour vehicle in both command control and weapon systems. Rapid and reliable identification of the targets at maximum surveillance is a challenging problem. In this paper work, the reliable method to segregate the potential target from the background scene such as Fourier Transform is applied before the extracted target will be process in order to get the detail of edges and boundaries using Hough Transform. The edges will provide sufficient information for the system to generate training data for Artificial Neural Network simulation to recognize the potential target image.

  3. Knowledge Based Concepts and Artificial Intelligence: Applications to Guidance and Control.

    Science.gov (United States)

    1987-08-01

    Princeton, 1976 . 11. Negoita, C.V ., "Expert Systems and Fuzzy, Systems," Benjamin/Cummings, Menlo Park, CA, 1985. 12. Prade, H. "A Computational...Approach to Approximate and Plausible Reasoning with Applications to Expert Systems," IEEE Transactions on Pattern Analysis and Machine Intelligence (3...ruslfe, erese At tire pr-en t11Ine, these data Ire entereed cI, the croil le by Lte operitre in replc to ’) -es triso aed by th e s ys tes. They could

  4. Fuzzy-GA PID controller with incomplete derivation and its application to intelligent bionic artificial leg

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 李安平

    2003-01-01

    An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.

  5. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. Final report, August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    1998-03-01

    The primary goal of the project is to develop a user-friendly computer program to integrate geological and engineering information using Artificial Intelligence (AI) methodology. The project is restricted to fluvially dominated deltaic environments. The static information used in constructing the reservoir description includes well core and log data. Using the well core and the log data, the program identifies the marker beds, and the type of sand facies, and in turn, develops correlations between wells. Using the correlations and sand facies, the program is able to generate multiple realizations of sand facies and petrophysical properties at interwell locations using geostatistical techniques. The generated petrophysical properties are used as input in the next step where the production data are honored. By adjusting the petrophysical properties, the match between the simulated and the observed production rates is obtained. Although all the components within the overall system are functioning, the integration of dynamic data may not be practical due to the single-phase flow limitations and the computationally intensive algorithms. The future work needs to concentrate on making the dynamic data integration computationally efficient.

  6. Artificial Intelligence in Education: An Exploration.

    Science.gov (United States)

    Cumming, Geoff

    1998-01-01

    Gives a brief outline of the development of Artificial Intelligence in Education (AIED) which includes psychology, education, cognitive science, computer science, and artificial intelligence. Highlights include learning environments; learner modeling; a situated approach to learning; and current examples of AIED research. (LRW)

  7. A DISTRIBUTED SMART HOME ARTIFICIAL INTELLIGENCE SYSTEM

    DEFF Research Database (Denmark)

    Lynggaard, Per

    2013-01-01

    A majority of the research performed today explore artificial intelligence in smart homes by using a centralized approach where a smart home server performs the necessary calculations. This approach has some disadvantages that can be overcome by shifting focus to a distributed approach where...... the artificial intelligence system is implemented as distributed as agents running parts of the artificial intelligence system. This paper presents a distributed smart home architecture that distributes artificial intelligence in smart homes and discusses the pros and cons of such a concept. The presented...... distributed model is a layered model. Each layer offers a different complexity level of the embedded distributed artificial intelligence. At the lowest layer smart objects exists, they are small cheap embedded microcontroller based smart devices that are powered by batteries. The next layer contains a more...

  8. Parallel processing for artificial intelligence 2

    CERN Document Server

    Kumar, V; Suttner, CB

    1994-01-01

    With the increasing availability of parallel machines and the raising of interest in large scale and real world applications, research on parallel processing for Artificial Intelligence (AI) is gaining greater importance in the computer science environment. Many applications have been implemented and delivered but the field is still considered to be in its infancy. This book assembles diverse aspects of research in the area, providing an overview of the current state of technology. It also aims to promote further growth across the discipline. Contributions have been grouped according to their

  9. Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine

    Directory of Open Access Journals (Sweden)

    Mojdeh Piran

    2014-01-01

    Full Text Available In this research, manage the Internal Combustion (IC engine modeling and a multi-input-multi-output artificial intelligence baseline chattering free sliding mode methodology scheme is developed with guaranteed stability to simultaneously control fuel ratios to desired levels under various air flow disturbances by regulating the mass flow rates of engine PFI and DI injection systems. Modeling of an entire IC engine is a very important and complicated process because engines are nonlinear, multi inputs-multi outputs and time variant. One purpose of accurate modeling is to save development costs of real engines and minimizing the risks of damaging an engine when validating controller designs. Nevertheless, developing a small model, for specific controller design purposes, can be done and then validated on a larger, more complicated model. Analytical dynamic nonlinear modeling of internal combustion engine is carried out using elegant Euler-Lagrange method compromising accuracy and complexity. A baseline estimator with varying parameter gain is designed with guaranteed stability to allow implementation of the proposed state feedback sliding mode methodology into a MATLAB simulation environment, where the sliding mode strategy is implemented into a model engine control module (“software”. To estimate the dynamic model of IC engine fuzzy inference engine is applied to baseline sliding mode methodology. The fuzzy inference baseline sliding methodology performance was compared with a well-tuned baseline multi-loop PID controller through MATLAB simulations and showed improvements, where MATLAB simulations were conducted to validate the feasibility of utilizing the developed controller and state estimator for automotive engines. The proposed tracking method is designed to optimally track the desired FR by minimizing the error between the trapped in-cylinder mass and the product of the desired FR and fuel mass over a given time interval.

  10. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. Annual report, October 1994--October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, D.; Thompson, L.; Shenoi, S.

    1996-01-01

    The basis of this research is to apply novel techniques from Artificial Intelligence and Expert Systems in capturing, integrating and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. The ultimate goal is to design and implement a single powerful expert system for use by small producers and independents to efficiently exploit reservoirs. The main challenge of the proposed research is to automate the generation of detailed reservoir descriptions honoring all the available soft and hard data that ranges from qualitative and semi-quantitative geological interpretations to numeric data obtained from cores, well tests, well logs and production statistics. Additional challenges are the verification and validation of the expert system, since much of the interpretation of the experts is based on extended experience in reservoir characterization. The overall project plan to design the system to create integrated reservoir descriptions begins by initially developing an AI-based methodology for producing large-scale reservoir descriptions generated interactively from geology and well test data. Parallel to this task is a second task that develops an AI-based methodology that uses facies-biased information to generate small-scale descriptions of reservoir properties such as permeability and porosity. The third task involves consolidation and integration of the large-scale and small-scale methodologies to produce reservoir descriptions honoring all the available data. The final task will be technology transfer. With this plan, the authors have carefully allocated and sequenced the activities involved in each of the tasks to promote concurrent progress towards the research objectives. Moreover, the project duties are divided among the faculty member participants. Graduate students will work in terms with faculty members.

  11. Text Classification using Artificial Intelligence

    CERN Document Server

    Kamruzzaman, S M

    2010-01-01

    Text classification is the process of classifying documents into predefined categories based on their content. It is the automated assignment of natural language texts to predefined categories. Text classification is the primary requirement of text retrieval systems, which retrieve texts in response to a user query, and text understanding systems, which transform text in some way such as producing summaries, answering questions or extracting data. Existing supervised learning algorithms for classifying text need sufficient documents to learn accurately. This paper presents a new algorithm for text classification using artificial intelligence technique that requires fewer documents for training. Instead of using words, word relation i.e. association rules from these words is used to derive feature set from pre-classified text documents. The concept of na\\"ive Bayes classifier is then used on derived features and finally only a single concept of genetic algorithm has been added for final classification. A syste...

  12. Artificial intelligence in medical diagnosis.

    Science.gov (United States)

    Szolovits, P; Patil, R S; Schwartz, W B

    1988-01-01

    In an attempt to overcome limitations inherent in conventional computer-aided diagnosis, investigators have created programs that simulate expert human reasoning. Hopes that such a strategy would lead to clinically useful programs have not been fulfilled, but many of the problems impeding creation of effective artificial intelligence programs have been solved. Strategies have been developed to limit the number of hypotheses that a program must consider and to incorporate pathophysiologic reasoning. The latter innovation permits a program to analyze cases in which one disorder influences the presentation of another. Prototypes embodying such reasoning can explain their conclusions in medical terms that can be reviewed by the user. Despite these advances, further major research and developmental efforts will be necessary before expert performance by the computer becomes a reality.

  13. Quality by design approach: application of artificial intelligence techniques of tablets manufactured by direct compression.

    Science.gov (United States)

    Aksu, Buket; Paradkar, Anant; de Matas, Marcel; Ozer, Ozgen; Güneri, Tamer; York, Peter

    2012-12-01

    The publication of the International Conference of Harmonization (ICH) Q8, Q9, and Q10 guidelines paved the way for the standardization of quality after the Food and Drug Administration issued current Good Manufacturing Practices guidelines in 2003. "Quality by Design", mentioned in the ICH Q8 guideline, offers a better scientific understanding of critical process and product qualities using knowledge obtained during the life cycle of a product. In this scope, the "knowledge space" is a summary of all process knowledge obtained during product development, and the "design space" is the area in which a product can be manufactured within acceptable limits. To create the spaces, artificial neural networks (ANNs) can be used to emphasize the multidimensional interactions of input variables and to closely bind these variables to a design space. This helps guide the experimental design process to include interactions among the input variables, along with modeling and optimization of pharmaceutical formulations. The objective of this study was to develop an integrated multivariate approach to obtain a quality product based on an understanding of the cause-effect relationships between formulation ingredients and product properties with ANNs and genetic programming on the ramipril tablets prepared by the direct compression method. In this study, the data are generated through the systematic application of the design of experiments (DoE) principles and optimization studies using artificial neural networks and neurofuzzy logic programs.

  14. Application of artificial intelligence technology in air traffic management%人工智能技术在空中交通管理中的应用

    Institute of Scientific and Technical Information of China (English)

    唐新春

    2015-01-01

    With the development of science and technology in our country,artificial intelligence technology because of its many advantages in many fields has been widely used,for the development of the aviation industry to a good role in promoting.This paper describes an overview of artificial intelligence technology,analyzed in the composition of artificial intelligence system of air traffic management, explore realization of artificial intelligence technology in air traffic management,to show the artificial intelligence technology in air traffic management using value,inspire people to constantly explore the application field of artificial intelligence technology,better service to economic development,improve people's life.%随着我国科学技术的发展,人工智能技术因其诸多优越性在多个领域得到了广泛的应用,也为航空业的发展起到很好的促进作用。本文阐述了人工智能的技术概况,分析了在空中交通管理人工智能系统的构成,探索人工智能技术在空中交通管理中实现的方式,旨在展现人工智能技术在空中交通管理方面运用价值,激发人们不断地探索人工智能技术的运用领域,更好的服务于经济的发展,改善人们的生活。

  15. Artificial Intelligence Research Branch future plans

    Science.gov (United States)

    Stewart, Helen (Editor)

    1992-01-01

    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.

  16. An Intensive Insulinotherapy Mobile Phone Application Built on Artificial Intelligence Techniques

    Science.gov (United States)

    Curran, Kevin; Nichols, Eric; Xie, Ermai; Harper, Roy

    2010-01-01

    Background Software to help control diabetes is currently an embryonic market with the main activity to date focused mainly on the development of noncomputerized solutions, such as cardboard calculators or computerized solutions that use “flat” computer models, which are applied to each person without taking into account their individual lifestyles. The development of true, mobile device-driven health applications has been hindered by the lack of tools available in the past and the sheer lack of mobile devices on the market. This has now changed, however, with the availability of pocket personal computer handsets. Method This article describes a solution in the form of an intelligent neural network running on mobile devices, allowing people with diabetes access to it regardless of their location. Utilizing an easy to learn and use multipanel user interface, people with diabetes can run the software in real time via an easy to use graphical user interface. The neural network consists of four neurons. The first is glucose. If the user's current glucose level is within the target range, the glucose weight is then multiplied by zero. If the glucose level is high, then there will be a positive value multiplied to the weight, resulting in a positive amount of insulin to be injected. If the user's glucose level is low, then the weights will be multiplied by a negative value, resulting in a decrease in the overall insulin dose. Results A minifeasibility trial was carried out at a local hospital under a consultant endocrinologist in Belfast. The short study ran for 2 weeks with six patients. The main objectives were to investigate the user interface, test the remote sending of data over a 3G network to a centralized server at the university, and record patient data for further proofing of the neural network. We also received useful feedback regarding the user interface and the feasibility of handing real-world patients a new mobile phone. Results of this short trial

  17. Archaeology and the application of artificial intelligence : case-studies on use-wear analysis of prehistoric flint tools

    NARCIS (Netherlands)

    Dries, Monique Henriëtte van den

    1998-01-01

    Artificial intelligence is an integrated part of our daily life and of many fields in research. In archaeology, however, it does not (yet) play an important role. In the past twenty years archaeologists have discussed the potentials of, in particular, expert systems. They have developed some valuabl

  18. Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities

    Science.gov (United States)

    Kousari, Mohammad Reza; Hosseini, Mitra Esmaeilzadeh; Ahani, Hossein; Hakimelahi, Hemila

    2017-01-01

    An effective forecast of the drought definitely gives lots of advantages in regard to the management of water resources being used in agriculture, industry, and households consumption. To introduce such a model applying simple data inputs, in this study a regional drought forecast method on the basis of artificial intelligence capabilities (artificial neural networks) and Standardized Precipitation Index (SPI in 3, 6, 9, 12, 18, and 24 monthly series) has been presented in Fars Province of Iran. The precipitation data of 41 rain gauge stations were applied for computing SPI values. Besides, weather signals including Multivariate ENSO Index (MEI), North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), NINO1+2, anomaly NINO1+2, NINO3, anomaly NINO3, NINO4, anomaly NINO4, NINO3.4, and anomaly NINO3.4 were also used as the predictor variables for SPI time series forecast the next 12 months. Frequent testing and validating steps were considered to obtain the best artificial neural networks (ANNs) models. The forecasted values were mapped in verification sector then they were compared with the observed maps at the same dates. Results showed considerable spatial and temporal relationships even among the maps of different SPI time series. Also, the first 6 months forecasted maps showed an average of 73 % agreements with the observed ones. The most important finding and the strong point of this study was the fact that although drought forecast in each station and time series was completely independent, the relationships between spatial and temporal predictions remained. This strong point mainly referred to frequent testing and validating steps in order to explore the best drought forecast models from plenty of produced ANNs models. Finally, wherever the precipitation data are available, the practical application of the presented method is possible.

  19. Introducing an operational method to forecast long-term regional drought based on the application of artificial intelligence capabilities

    Science.gov (United States)

    Kousari, Mohammad Reza; Hosseini, Mitra Esmaeilzadeh; Ahani, Hossein; Hakimelahi, Hemila

    2015-09-01

    An effective forecast of the drought definitely gives lots of advantages in regard to the management of water resources being used in agriculture, industry, and households consumption. To introduce such a model applying simple data inputs, in this study a regional drought forecast method on the basis of artificial intelligence capabilities (artificial neural networks) and Standardized Precipitation Index (SPI in 3, 6, 9, 12, 18, and 24 monthly series) has been presented in Fars Province of Iran. The precipitation data of 41 rain gauge stations were applied for computing SPI values. Besides, weather signals including Multivariate ENSO Index (MEI), North Atlantic Oscillation (NAO), Southern Oscillation Index (SOI), NINO1+2, anomaly NINO1+2, NINO3, anomaly NINO3, NINO4, anomaly NINO4, NINO3.4, and anomaly NINO3.4 were also used as the predictor variables for SPI time series forecast the next 12 months. Frequent testing and validating steps were considered to obtain the best artificial neural networks (ANNs) models. The forecasted values were mapped in verification sector then they were compared with the observed maps at the same dates. Results showed considerable spatial and temporal relationships even among the maps of different SPI time series. Also, the first 6 months forecasted maps showed an average of 73 % agreements with the observed ones. The most important finding and the strong point of this study was the fact that although drought forecast in each station and time series was completely independent, the relationships between spatial and temporal predictions remained. This strong point mainly referred to frequent testing and validating steps in order to explore the best drought forecast models from plenty of produced ANNs models. Finally, wherever the precipitation data are available, the practical application of the presented method is possible.

  20. Research on Applications of Artificial Intelligence in Specialized Robot%人工智能在特种机器人中应用的研究探讨

    Institute of Scientific and Technical Information of China (English)

    尹强; 高全杰; 曾艳红; 陈三华; 李公法

    2012-01-01

    Based on a brief introduction to the ability limitations of spex-ialized robots, several research contents of artificial intelligence closely related to specialized robots were illustrated. The development trends of applications of artificial intelligence in specialized robot were also discussed. The research work provides reference to the readers who have been engaged in intelligent research on specialized robot.%在简要介绍特种机器人能力局限性的基础上,阐述与特种机器人紧密相关的几项人工智能的研究内容,并进一步展望了人工智能在特种机器人中应用的发展趋势,为从事特种机器人智能研究工作的读者提供参考.

  1. Artificial intelligence: Learning to see and act

    Science.gov (United States)

    Schölkopf, Bernhard

    2015-02-01

    An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer games, demonstrating that it can adapt to a variety of tasks. See Letter p.529

  2. The application of artificial intelligence in the optimal design of mechanical systems

    Science.gov (United States)

    Poteralski, A.; Szczepanik, M.

    2016-11-01

    The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.

  3. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  4. Artificial intelligence techniques for rational decision making

    CERN Document Server

    Marwala, Tshilidzi

    2014-01-01

    Develops insights into solving complex problems in engineering, biomedical sciences, social science and economics based on artificial intelligence. Some of the problems studied are in interstate conflict, credit scoring, breast cancer diagnosis, condition monitoring, wine testing, image processing and optical character recognition. The author discusses and applies the concept of flexibly-bounded rationality which prescribes that the bounds in Nobel Laureate Herbert Simon's bounded rationality theory are flexible due to advanced signal processing techniques, Moore's Law and artificial intellig

  5. Artificial intelligence what everyone needs to know

    CERN Document Server

    Kaplan, Jerry

    2016-01-01

    Over the coming decades, Artificial Intelligence will profoundly impact the way we work and live. Whose interests should such systems serve? What limits should we place on their use? This book is a succinct introduction to the complex social, ethical, legal, and economic issues raised by the emergence of intelligent machines.

  6. Resources in Technology: Introduction to Artificial Intelligence.

    Science.gov (United States)

    Technology Teacher, 1987

    1987-01-01

    Introduces the concept of artificial intelligence, discusses where it is currently used, and describes an expert computer system that can be used in the technology laboratory. Included is a learning activity that describes ideas for using intelligent computers as problem-solving tools. (Author/CH)

  7. Artificial intelligence in the materials processing laboratory

    Science.gov (United States)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  8. Discrete PID Tuning Using Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Petr DOLEŽEL

    2009-06-01

    Full Text Available PID controllers are widely used in industry these days due to their useful properties such as simple tuning or robustness. While they are applicable to many control problems, they can perform poorly in some applications. Highly nonlinear system control with constrained manipulated variable can be mentioned as an example. The point of the paper is to string together convenient qualities of conventional PID control and progressive techniques based on Artificial Intelligence. Proposed control method should deal with even highly nonlinear systems. To be more specific, there is described new method of discrete PID controller tuning in this paper. This method tunes discrete PID controller parameters online through the use of genetic algorithm and neural model of controlled system in order to control successfully even highly nonlinear systems. After method description and some discussion, there is performed control simulation and comparison to one chosen conventional control method.

  9. Distributed Computing and Artificial Intelligence, 12th International Conference

    CERN Document Server

    Malluhi, Qutaibah; Gonzalez, Sara; Bocewicz, Grzegorz; Bucciarelli, Edgardo; Giulioni, Gianfranco; Iqba, Farkhund

    2015-01-01

    The 12th International Symposium on Distributed Computing and Artificial Intelligence 2015 (DCAI 2015) is a forum to present applications of innovative techniques for studying and solving complex problems. The exchange of ideas between scientists and technicians from both the academic and industrial sector is essential to facilitate the development of systems that can meet the ever-increasing demands of today’s society. The present edition brings together past experience, current work and promising future trends associated with distributed computing, artificial intelligence and their application in order to provide efficient solutions to real problems. This symposium is organized by the Osaka Institute of Technology, Qatar University and the University of Salamanca.

  10. Distributed computing and artificial intelligence : 10th International Conference

    CERN Document Server

    Neves, José; Rodriguez, Juan; Santana, Juan; Gonzalez, Sara

    2013-01-01

    The International Symposium on Distributed Computing and Artificial Intelligence 2013 (DCAI 2013) is a forum in which applications of innovative techniques for solving complex problems are presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. This conference is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and industry se...

  11. 9th International conference on distributed computing and artificial intelligence

    CERN Document Server

    Santana, Juan; González, Sara; Molina, Jose; Bernardos, Ana; Rodríguez, Juan; DCAI 2012; International Symposium on Distributed Computing and Artificial Intelligence 2012

    2012-01-01

    The International Symposium on Distributed Computing and Artificial Intelligence 2012 (DCAI 2012) is a stimulating and productive forum where the scientific community can work towards future cooperation in Distributed Computing and Artificial Intelligence areas. This conference is a forum in which  applications of innovative techniques for solving complex problems will be presented. Artificial intelligence is changing our society. Its application in distributed environments, such as the internet, electronic commerce, environment monitoring, mobile communications, wireless devices, distributed computing, to mention only a few, is continuously increasing, becoming an element of high added value with social and economic potential, in industry, quality of life, and research. These technologies are changing constantly as a result of the large research and technical effort being undertaken in both universities and businesses. The exchange of ideas between scientists and technicians from both the academic and indus...

  12. Artificial intelligence (AI) systems for interpreting complex medical datasets.

    Science.gov (United States)

    Altman, R B

    2017-02-09

    Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability.

  13. Artificial Intelligence In Computational Fluid Dynamics

    Science.gov (United States)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  14. Issues and challenges in artificial intelligence

    CERN Document Server

    Kulikowski, Juliusz; Mroczek, Teresa; Wtorek, Jerzy

    2014-01-01

    The importance of human-computer system interaction problems is increasing due to the growing expectations of users on general computer systems capabilities in human work and life facilitation. Users expect system which is not only a passive tool in human hands but rather an active partner equipped with a sort of artificial intelligence, having access to large information resources, being able to adapt its behavior to the human requirements and to collaborate with the human users.   This book collects examples of recent human-computer system solutions. The content of the book is divided into three parts. Part I is devoted to detection, recognition and reasoning in different circumstances and applications. Problems associated with data modeling, acquisition and mining are presented by papers collected in part II and part III is devoted to Optimization.

  15. Artificial Intelligence Software Engineering (AISE) model

    Science.gov (United States)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  16. Application of Artificial Intelligence to the Prediction of the Antimicrobial Activity of Essential Oils.

    Science.gov (United States)

    Daynac, Mathieu; Cortes-Cabrera, Alvaro; Prieto, Jose M

    2015-01-01

    Essential oils (EOs) are vastly used as natural antibiotics in Complementary and Alternative Medicine (CAM). Their intrinsic chemical variability and synergisms/antagonisms between its components make difficult to ensure consistent effects through different batches. Our aim is to evaluate the use of artificial neural networks (ANNs) for the prediction of their antimicrobial activity. Methods. The chemical composition and antimicrobial activity of 49 EOs, extracts, and/or fractions was extracted from NCCLS compliant works. The fast artificial neural networks (FANN) software was used and the output data reflected the antimicrobial activity of these EOs against four common pathogens: Staphylococcus aureus, Escherichia coli, Candida albicans, and Clostridium perfringens as measured by standardised disk diffusion assays. Results. ANNs were able to predict >70% of the antimicrobial activities within a 10 mm maximum error range. Similarly, ANNs were able to predict 2 or 3 different bioactivities at the same time. The accuracy of the prediction was only limited by the inherent errors of the popular antimicrobial disk susceptibility test and the nature of the pathogens. Conclusions. ANNs can be reliable, fast, and cheap tools for the prediction of the antimicrobial activity of EOs thus improving their use in CAM.

  17. An artificial intelligence framework for compensating transgressions and its application to diet management.

    Science.gov (United States)

    Anselma, Luca; Mazzei, Alessandro; Michieli, Franco De

    2017-02-27

    Today, there is considerable interest in personal healthcare. The pervasiveness of technology allows to precisely track human behavior; however, when dealing with the development of an intelligent assistant exploiting data acquired through such technologies, a critical issue has to be taken into account; namely, that of supporting the user in the event of any transgression with respect to the optimal behavior. In this paper we present a reasoning framework based on Simple Temporal Problems that can be applied to a general class of problems,, which we called "cake&carrot problems", to support reasoning in presence of human transgression. The reasoning framework offers a number of facilities to ensure a smart management of possible "wrong behaviors" by a user to reach the goals defined by the problem. This paper describes the framework by means of the prototypical use case of diet domain. Indeed, following a healthy diet can be a difficult task for both practical and psychological reasons and dietary transgressions are hard to avoid. Therefore, the framework is tolerant to dietary transgressions and adapts the following meals to facilitate users in recovering from such transgressions. Finally, through a simulation involving a real hospital menu, we show that the framework can effectively achieve good results in a realistic scenario.

  18. The application of artificial intelligent techniques to accelerator operations at McMaster University

    Science.gov (United States)

    Poehlman, W. F. S.; Garland, Wm. J.; Stark, J. W.

    1993-06-01

    In an era of downsizing and a limited pool of skilled accelerator personnel from which to draw replacements for an aging workforce, the impetus to integrate intelligent computer automation into the accelerator operator's repertoire is strong. However, successful deployment of an "Operator's Companion" is not trivial. Both graphical and human factors need to be recognized as critical areas that require extra care when formulating the Companion. They include interactive graphical user's interface that mimics, for the operator, familiar accelerator controls; knowledge of acquisition phases during development must acknowledge the expert's mental model of machine operation; and automated operations must be seen as improvements to the operator's environment rather than threats of ultimate replacement. Experiences with the PACES Accelerator Operator Companion developed at two sites over the past three years are related and graphical examples are given. The scale of the work involves multi-computer control of various start-up/shutdown and tuning procedures for Model FN and KN Van de Graaff accelerators. The response from licensing agencies has been encouraging.

  19. Knowledge representation an approach to artificial intelligence

    CERN Document Server

    Bench-Capon, TJM

    1990-01-01

    Although many texts exist offering an introduction to artificial intelligence (AI), this book is unique in that it places an emphasis on knowledge representation (KR) concepts. It includes small-scale implementations in PROLOG to illustrate the major KR paradigms and their developments.****back cover copy:**Knowledge representation is at the heart of the artificial intelligence enterprise: anyone writing a program which seeks to work by encoding and manipulating knowledge needs to pay attention to the scheme whereby he will represent the knowledge, and to be aware of the consequences of the ch

  20. Machine learning an artificial intelligence approach

    CERN Document Server

    Banerjee, R; Bradshaw, Gary; Carbonell, Jaime Guillermo; Mitchell, Tom Michael; Michalski, Ryszard Spencer

    1983-01-01

    Machine Learning: An Artificial Intelligence Approach contains tutorial overviews and research papers representative of trends in the area of machine learning as viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview of machine learning and explains why machines should learn. Part II covers important issues affecting the design of learning programs-particularly programs that learn from examples. It also describes inductive learning systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV a

  1. SOME PARADIGMS OF ARTIFICIAL INTELLIGENCE IN FINANCIAL COMPUTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Jerzy Balicki

    2015-12-01

    Full Text Available The article discusses some paradigms of artificial intelligence in the context of their applications in computer financial systems. The proposed approach has a significant po-tential to increase the competitiveness of enterprises, including financial institutions. However, it requires the effective use of supercomputers, grids and cloud computing. A reference is made to the computing environment for Bitcoin. In addition, we characterized genetic programming and artificial neural networks to prepare investment strategies on the stock exchange market.

  2. A PHILOSOPHICAL APPROACH TO ARTIFICIAL INTELLIGENCE AND ISLAMIC VALUES

    Directory of Open Access Journals (Sweden)

    Ali Akbar Ziaee

    2012-02-01

    Full Text Available Artificial Intelligence has the potential to empower humans through enhanced learning and performance. But if this potential is to be realized and accepted, the ethical aspects as well as the technical must be addressed. Many engineers claim that AI will be smarter than human brains, including scientific creativity, general wisdom and social skills, so we must consider it an important factor for making decisions in our social life and especially in our Islamic societies. The most important challenges will be the quality of representing the Islamic values like piety, obedience, Halal and Haram, and etc in the form of semantics. In this paper, I want to emphasize on the role of Divine Islamic values in the application of AI and discuss it according to philosophy of AI and Islamic perspective.Keywords- Value, expert, Community Development, Artificial Intelligence, Superintelligence, Friendly Artificial Intelligence

  3. Advanced solutions in power systems HVDC, facts, and artificial intelligence

    CERN Document Server

    Liu, Chen-Ching; Edris, Abdel-Aty

    2016-01-01

    Provides insight on both classical means and new trends in the application of power electronic and artificial intelligence techniques in power system operation and control This book presents advanced solutions for power system controllability improvement, transmission capability enhancement and operation planning. The book is organized into three parts. The first part describes the CSC-HVDC and VSC-HVDC technologies, the second part presents the FACTS devices, and the third part refers to the artificial intelligence techniques. All technologies and tools approached in this book are essential for power system development to comply with the smart grid requirements.

  4. Application of artificial intelligence to search ground-state geometry of clusters

    Science.gov (United States)

    Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.

    2002-08-01

    We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.

  5. Artificial Intelligence in Agricultural Applications%人工智能在农业生产中的应用进展

    Institute of Scientific and Technical Information of China (English)

    刘现; 郑回勇; 施能强; 刘玉梅; 林营志

    2013-01-01

    Artificial intelligence is the forefront of the 21 st Century technology development.Using the computer and control sciences,significant social and economic benefits have been realized.Its application to improve the production efficiency and management automation has become an essential task for the agricultural professionals as well.In China,the progress is seen crucial for the modernization and sustainability of its agriculture,and the continual improvements on the high-yield,high-efficiency and high-quality crops.%本文综述了人工智能技术在农业生产中的应用现状.采用分阶段描述的方法分别详细阐述目前人工智能各种技术在农业生产的产前、产中和产后各阶段的应用情况,总结人工智能在农业生产应用中的不足并展望其应用前景.由此可得,随着人工智能技术的不断成熟,利用人工智能技术提高农业生产的效率和农业生产管理的自动化水平越来越普遍,人工智能将为我国发展高产、高效、优质、可持续的现代化农业做出巨大贡献.

  6. Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley

    Science.gov (United States)

    Nema, Manish K.; Khare, Deepak; Chandniha, Surendra K.

    2017-03-01

    Estimation of evapotranspiration (ET) is an essential component of the hydrologic cycle, which is also requisite for efficient irrigation water management planning and hydro-meteorological studies at both the basin and catchment scales. There are about twenty well-established methods available for ET estimation which depends upon various meteorological parameters and assumptions. Most of these methods are physically based and need a variety of input data. The FAO-56 Penman-Monteith method (PM) for estimating reference evapotranspiration (ET0) is recommend for irrigation scheduling worldwide, because PM generally yields the best results under various climatic conditions. This study investigates the abilities of artificial neural networks (ANN) to improve the accuracy of monthly evaporation estimation in sub-humid climatic region of Dehradun. In the first part of the study, different ANN models, comprising various combinations of training function and number of neutrons were developed to estimate the ET0 and it has been compared with the Penman-Monteith (PM) ET0 as the ideal (observed) ET0. Various statistical approaches were considered to estimate the model performance, i.e. Coefficient of Correlation (r), Sum of Squared Errors, Root Mean Square Error, Nash-Sutcliffe Efficiency Index (NSE) and Mean Absolute Error. The ANN model with Levenberg-Marquardt training algorithm, single hidden layer and nine number of neutron schema was found the best predicting capabilities for the study station with Coefficient of Correlation (r) and NSE value of 0.996 and 0.991 for calibration period and 0.990 and 0.980 for validation period, respectively. In the subsequent part of the study, the trend analysis of ET0 time series revealed a rising trend in the month of March, and a falling trend during June to November, except August, with more than 90% significance level and the annual declining rate was found to 1.49 mm per year.

  7. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    Science.gov (United States)

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  8. Artificial intelligence: Deep neural reasoning

    Science.gov (United States)

    Jaeger, Herbert

    2016-10-01

    The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471

  9. How to improve WEEE management? Novel approach in mobile collection with application of artificial intelligence.

    Science.gov (United States)

    Król, Aleksander; Nowakowski, Piotr; Mrówczyńska, Bogna

    2016-04-01

    In global demand of improvement of electrical and electronic waste management systems, stakeholders look for effective collection systems that generate minimal costs. In this study we propose a novel model for application in mobile collection schemes - on demand that waste be taken back from household residents. This type of the waste equipment collection is comfortable for residents as they can indicate day and time windows for the take-back. Collecting companies are interested in lowering operational costs required for service. This lowering includes selection of a sufficient number of vehicles and employees, and then minimising the routes' length in order to achieve savings in fuel consumption, and lowering of emissions. In the proposed model we use a genetic algorithm for optimisation of the route length and number of vehicles and fuzzy logic for representation of the household residents' satisfaction on the take-back service provided by collection companies. Also, modern communication channels like websites or mobile phone applications can be used to send the waste equipment take-back request from the household, so it has the potential to be developed in future applications. The operation of the model has been presented in the case study of a city in southern Poland. The results can be useful for collecting companies and software producers for preparation of new applications to be used in waste collection.

  10. Strong Artificial Intelligence and National Security: Operational and Strategic Implications

    Science.gov (United States)

    2015-05-18

    FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Strong Artificial Intelligence and National Security 5a...Prominent business and science leaders believe that technological advances will soon allow humankind to develop artificial intelligence (AI) that...its potential strategic pitfalls. 15. SUBJECT TERMS Artificial Intelligence 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  11. Abstraction in artificial intelligence and complex systems

    CERN Document Server

    Saitta, Lorenza

    2013-01-01

    Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the K

  12. Employing Artificial Intelligence To Minimise Internet Fraud

    Directory of Open Access Journals (Sweden)

    Edward Wong Sek Khin

    2009-12-01

    Full Text Available Internet fraud is increasing on a daily basis with new methods for extracting funds from government, corporations, businesses in general, and persons appearing almost hourly. The increases in on-line purchasing and the constant vigilance of both seller and buyer have meant that the criminal seems to be one-step ahead at all times. To pre-empt or to stop fraud before it can happen occurs in the non-computer based daily transactions of today because of the natural intelligence of the players, both seller and buyer. Currently, even with advances in computing techniques, intelligence is not the current strength of any computing system of today, yet techniques are available which may reduce the occurrences of fraud, and are usually referred to as artificial intelligence systems.This paper provides an overview of the use of current artificial intelligence (AI techniques as a means of combating fraud.Initially the paper describes how artificial intelligence techniques are employed in systems for detecting credit card fraud (online and offline fraud and insider trading.Following this, an attempt is made to propose the using of MonITARS (Monitoring Insider Trading and Regulatory Surveillance Systems framework which use a combination of genetic algorithms, neural nets and statistical analysis in detecting insider dealing. Finally, the paper discusses future research agenda to the role of using MonITARS system.

  13. Dynamic Restructuring Of Problems In Artificial Intelligence

    Science.gov (United States)

    Schwuttke, Ursula M.

    1992-01-01

    "Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.

  14. A Starter's Guide to Artificial Intelligence.

    Science.gov (United States)

    McConnell, Barry A.; McConnell, Nancy J.

    1988-01-01

    Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)

  15. Application of Artificial Intelligence Techniques for the Control of the Asynchronous Machine

    Directory of Open Access Journals (Sweden)

    F. Khammar

    2016-01-01

    Full Text Available The induction machine is experiencing a growing success for two decades by gradually replacing the DC machines and synchronous in many industrial applications. This paper is devoted to the study of advanced methods applied to the command of the asynchronous machine in order to obtain a system of control of high performance. While the criteria for response time, overtaking, and static error can be assured by the techniques of conventional control, the criterion of robustness remains a challenge for researchers. This criterion can be satisfied only by applying advanced techniques of command. After mathematical modeling of the asynchronous machine, it defines the control strategies based on the orientation of the rotor flux. The results of the different simulation tests highlight the properties of robustness of algorithms proposed and suggested to compare the different control strategies.

  16. Artificial Intelligence in the Petroleum World Une enquête sur les applications de l'Intelligence Artificielle dans le monde pétrolier

    Directory of Open Access Journals (Sweden)

    Braunschweig B. L.

    2006-11-01

    Full Text Available This paper shows the main results of a survey conducted by the Institut Français du Pétrole (IFP on the applications of artificial intelligence (AI in the oil industry. The survey was made in 1989 by interviews with specialists from the petroleum industry and from the academic world. This investigation produced as a result a synthetic document which presents, on an anonymous and statistical basis, the major trends of research and applications involving artificial intelligence in the oil industry. All organizations which agreed to participate in this study are in possession of one copy of this document. This paper will try to highlight the major trends identified by the survey, and show some detailed results. The figures present the interview data base, which consists in 150+ application questionnaires and 30+ questionnaires on organizations. Début 1989, la Direction de Recherches Informatique Mathématiques Appliquées de l'Institut Français du Pétrole entamait une enquête destinée à faire le point sur l'intelligence artificielle (IA dans le monde pétrolier, afin de positionner les recherches effectuées à L'IFP par rapport au reste de la profession et définir de nouvelles orientations. Au cours de l'année 1989, nous avons rencontré lors de visites individuelles ou à l'occasion de congrès, journées spécialisées, une centaine de praticiens appliquant ou souhaitant appliquer les techniques IA dans toutes les facettes du métier pétrolier. Nous avons également fait remplir à ces personnes, la plupart du temps en notre présence, mais dans certains cas par courrier, des questionnaires sur l'état de l'IA au sein de leurs organisations. Le questionnaire pour une organisation se composait d'une part, d'une page sur la place de MA dans l'organisation, le nombre de projets, d'installations, leur nature, les outils mis en oeuvre et les personnes concernées; d'autre part, d'un questionnaire de quatre pages sur chaque application

  17. Intelligent PID controller based on ant system algorithm and fuzzy inference and its application to bionic artificial leg

    Institute of Scientific and Technical Information of China (English)

    谭冠政; 曾庆冬; 李文斌

    2004-01-01

    A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.

  18. Artificial Intelligence A New Synthesis

    CERN Document Server

    Nilsson, Nils J

    1998-01-01

    Intelligent agents are employed as the central characters in this new introductory text. Beginning with elementary reactive agents, Nilsson gradually increases their cognitive horsepower to illustrate the most important and lasting ideas in AI. Neural networks, genetic programming, computer vision, heuristic search, knowledge representation and reasoning, Bayes networks, planning, and language understanding are each revealed through the growing capabilities of these agents. The book provides a refreshing and motivating new synthesis of the field by one of AI's master expositors and leading re

  19. 人工智能技术在武器投放系统中的应用%Application of Artificial Intelligence Technology on Weapon Delivery Systems

    Institute of Scientific and Technical Information of China (English)

    顾云涛

    2013-01-01

    The application of artificial intelligence on armament adapt to the requirement of warfare which is rapid, accurate and efficient. The system which is combined artificial intelligence technology with weapon system is able to autonomous or semiautonomous accomplish the reconnaissance, searching, identify, aiming and attack missions. The concept research of the intelligent weapon delivery system is presented, the system is designed by using artificial intelligence technology and its function is described. And then, based on the current state of art, the tradeoff research is done between automate weapon delivery and pilot, making using of each merits in order to achieve the optimal performance.%人工智能的军事应用适应了快速、精确、高效的作战需求。人工智能技术与武器系统结合能够自主或半自主完成侦察、搜索、识别、瞄准、攻击目标等任务。本文对智能武器投放系统进行了概念研究,用人工智能技术对系统进行了设计,对系统功能上进行了描述。另外,分析了当前技术水平,对自动武器投放应用和驾驶员之间权衡研究,发挥各自优点,使整体性能达到最优。

  20. Real-time virtual reference service based on applicable artificial intelligence technologies:The début of the robot Xiaotu at Tsinghua University Library

    Institute of Scientific and Technical Information of China (English)

    Fei; YAO; Lei; JI; Chengyu; ZHANG; Wu; CHEN

    2011-01-01

    The adoption of applicable artificial intelligence technologies to library real-time virtual reference services is an innovative experimentation in one of the key areas of library services.Based on the open source software Artificial Linguistic Internet Computer Entity(A.L.I.C.E.)and a combined application of several other relevant supporting technologies for facilitating the use of the current existing library resources,Tsinghua University Library has recently developed a real-time smart talking robot,named Xiaotu,for the enhancement of its various service functions,such as reference services,book searching,Baidu Baike searching,self-directed learning,etc.The operation of Xiaotu is programmed into Renren website(a social networking website),which adds significantly an innovative feature to the modus operandi of the real-time virtual reference service at Tsinghua University Library.

  1. Performance evaluation of artificial intelligence classifiers for the medical domain.

    Science.gov (United States)

    Smith, A E; Nugent, C D; McClean, S I

    2002-01-01

    The application of artificial intelligence systems is still not widespread in the medical field, however there is an increasing necessity for these to handle the surfeit of information available. One drawback to their implementation is the lack of criteria or guidelines for the evaluation of these systems. This is the primary issue in their acceptability to clinicians, who require them for decision support and therefore need evidence that these systems meet the special safety-critical requirements of the domain. This paper shows evidence that the most prevalent form of intelligent system, neural networks, is generally not being evaluated rigorously regarding classification precision. A taxonomy of the types of evaluation tests that can be carried out, to gauge inherent performance of the outputs of intelligent systems has been assembled, and the results of this presented in a clear and concise form, which should be applicable to all intelligent classifiers for medicine.

  2. Managing a High Speed LAN using Distributed Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Ibrahiem M. M-El-Emary

    2006-01-01

    Full Text Available This study is concerned with a practical application of distributed artificial intelligence for managing the high data rate bus structured local area computer network that uses deterministic multiple access protocol. In the selected network that is managed using distributed artificial intelligence, the dynamic sharing of the available bandwidth among stations is achieved by forming "train to which each station may append a packet after issuing a reservation. Reservation and packet transmissions are governed by the reception of control packets (token issued by the network end stations. Managing approach that was suggested depends on using intelligent autonomous agents, which are responsible for various tasks among it: election of the end stations, the recovery from failures, and the insertion of new stations in the network. All these tasks are based on the use of special tokens.

  3. Artificial intelligence - New tools for aerospace project managers

    Science.gov (United States)

    Moja, D. C.

    1985-01-01

    Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.

  4. Applications of artificial intelligence 1993: Knowledge-based systems in aerospace and industry; Proceedings of the Meeting, Orlando, FL, Apr. 13-15, 1993

    Science.gov (United States)

    Fayyad, Usama M. (Editor); Uthurusamy, Ramasamy (Editor)

    1993-01-01

    The present volume on applications of artificial intelligence with regard to knowledge-based systems in aerospace and industry discusses machine learning and clustering, expert systems and optimization techniques, monitoring and diagnosis, and automated design and expert systems. Attention is given to the integration of AI reasoning systems and hardware description languages, care-based reasoning, knowledge, retrieval, and training systems, and scheduling and planning. Topics addressed include the preprocessing of remotely sensed data for efficient analysis and classification, autonomous agents as air combat simulation adversaries, intelligent data presentation for real-time spacecraft monitoring, and an integrated reasoner for diagnosis in satellite control. Also discussed are a knowledge-based system for the design of heat exchangers, reuse of design information for model-based diagnosis, automatic compilation of expert systems, and a case-based approach to handling aircraft malfunctions.

  5. Interaction between Software Engineering and Artificial Intelligence- A Review

    Directory of Open Access Journals (Sweden)

    Prince Jain

    2011-12-01

    Full Text Available Software engineering and artificial intelligence is the two field of the computer science. During the last decades, the disciplines of Artificial Intelligence and Software Engineering have developedseparately without the much exchange of research outcomes. However, both fields of computer science have different characteristics, benefits and limitations. This statement opens many possibilities and ideas for research. One idea is that the researcher applies the available methods, tools and techniques of Artificial Intelligence to Software Engineering and Software Engineering to Artificial Intelligence in a manner that good things, feature, characteristic and advantages of the both fields is taken up, and the limitations will reduces. During applicability, an intersection area is found between AI and SE, which forms the relation between AI and SE. The work in this paper discusses the factor that come while communicating between AI and SE such as Communication, objective, Problem and reasons for adopting. This work explores the framework of interaction on which both fields are communicate with each other. This framework has four major classes of interaction such as software support environment, AI tools and techniques in conventional software, Use of conventional software technology and Methodological considerations. This paper introduces the relation between AI and SE, and varioustechniques evolved while merging.

  6. ARTIFICIAL AND NATURAL INTELLIGENCE IN ANTHROPOGENIC EDUCATIONAL ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Sergey F. Sergeev

    2013-01-01

    Full Text Available In the present article we show the link between both artificial and natural intelligence and the system’s complexity during the life-cycle. Autopoetic’s type of living systems determines the differences between natural and artificial intelligence; artificial environments have an influence to the intelligence abilities development. We present the «diffusion intellect» concept where the diffusion intellect is considered as a synergistic unity of natural and artificial intellect in organized environments. 

  7. Artificial intelligence issues related to automated computing operations

    Science.gov (United States)

    Hornfeck, William A.

    1989-01-01

    Large data processing installations represent target systems for effective applications of artificial intelligence (AI) constructs. The system organization of a large data processing facility at the NASA Marshall Space Flight Center is presented. The methodology and the issues which are related to AI application to automated operations within a large-scale computing facility are described. Problems to be addressed and initial goals are outlined.

  8. Projective simulation for artificial intelligence

    CERN Document Server

    Briegel, Hans J

    2011-01-01

    We propose a notion of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied-cognitive-science approach to intelligent action and learning. While the scheme works entirely classically, it also provides a natural route for generalization to quantum-mechanical operation.

  9. Projective simulation for artificial intelligence

    Science.gov (United States)

    Briegel, Hans J.; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation. PMID:22590690

  10. Computational neuroscience for advancing artificial intelligence

    Directory of Open Access Journals (Sweden)

    Fernando P. Ponce

    2011-07-01

    Full Text Available resumen del libro de Alonso, E. y Mondragón, E. (2011. Hershey, NY: Medical Information Science Reference. La neurociencia como disciplinapersigue el entendimiento del cerebro y su relación con el funcionamiento de la mente a través del análisis de la comprensión de la interacción de diversos procesos físicos, químicos y biológicos (Bassett & Gazzaniga, 2011. Por otra parte, numerosas disciplinasprogresivamente han realizado significativas contribuciones en esta empresa tales como la matemática, la psicología o la filosofía, entre otras. Producto de este esfuerzo, es que junto con la neurociencia tradicional han aparecido disciplinas complementarias como la neurociencia cognitiva, la neuropsicología o la neurocienciacomputacional (Bengio, 2007; Dayan & Abbott, 2005. En el contexto de la neurociencia computacional como disciplina complementaria a laneurociencia tradicional. Alonso y Mondragón (2011 editan el libroComputacional Neuroscience for Advancing Artificial Intelligence: Models, Methods and Applications.

  11. Artificial Intelligence: Engineering, Science, or Slogan?

    OpenAIRE

    Nilsson, Nils J.

    1982-01-01

    This paper presents the view that artificial intelligence (AI) is primarily concerned with propositional languages for representing knowledge and with techniques for manipulating these representations. In this respect, AI is analogous to applied in a variety of other subject areas. Typically, AI research (or should be) more concerned with the general form and properties of representational languages and methods than it is with the context being described by these languages. Notable exceptions...

  12. Readings in artificial intelligence and software engineering

    Energy Technology Data Exchange (ETDEWEB)

    Rich, C.; Waters, R.C.

    1986-01-01

    Research at the intersection of artificial intelligence and software engineering is important to both AI researchers and software engineers. For AI, programming is a domain that stimulates research in knowledge representation and automated reasoning. In software engineering, AI techniques are being applied to a new generation of programming tools. This book covers a wide spectrum of work in this area. Some of the topics covered include deductive synthesis, program verification, and transformational approaches.

  13. Parallel processing for artificial intelligence 1

    CERN Document Server

    Kanal, LN; Kumar, V; Suttner, CB

    1994-01-01

    Parallel processing for AI problems is of great current interest because of its potential for alleviating the computational demands of AI procedures. The articles in this book consider parallel processing for problems in several areas of artificial intelligence: image processing, knowledge representation in semantic networks, production rules, mechanization of logic, constraint satisfaction, parsing of natural language, data filtering and data mining. The publication is divided into six sections. The first addresses parallel computing for processing and understanding images. The second discus

  14. Teachers and artificial intelligence. The Logo connection.

    Science.gov (United States)

    Merbler, J B

    1990-12-01

    This article describes a three-phase program for training special education teachers to teach Logo and artificial intelligence. Logo is derived from the LISP computer language and is relatively simple to learn and use, and it is argued that these factors make it an ideal tool for classroom experimentation in basic artificial intelligence concepts. The program trains teachers to develop simple demonstrations of artificial intelligence using Logo. The material that the teachers learn to teach is suitable as an advanced level topic for intermediate- through secondary-level students enrolled in computer competency or similar courses. The material emphasizes problem-solving and thinking skills using a nonverbal expressive medium (Logo), thus it is deemed especially appropriate for hearing-impaired children. It is also sufficiently challenging for academically talented children, whether hearing or deaf. Although the notion of teachers as programmers is controversial, Logo is relatively easy to learn, has direct implications for education, and has been found to be an excellent tool for empowerment-for both teachers and children.

  15. 11th International Conference on Distributed Computing and Artificial Intelligence

    CERN Document Server

    Bersini, Hugues; Corchado, Juan; Rodríguez, Sara; Pawlewski, Paweł; Bucciarelli, Edgardo

    2014-01-01

    The 11th International Symposium on Distributed Computing and Artificial Intelligence 2014 (DCAI 2014) is a forum to present applications of innovative techniques for studying and solving complex problems. The exchange of ideas between scientists and technicians from both the academic and industrial sector is essential to facilitate the development of systems that can meet the ever-increasing demands of today’s society. The present edition brings together past experience, current work and promising future trends associated with distributed computing, artificial intelligence and their application in order to provide efficient solutions to real problems. This year’s technical program presents both high quality and diversity, with contributions in well-established and evolving areas of research (Algeria, Brazil, China, Croatia, Czech Republic, Denmark, France, Germany, Ireland, Italy, Japan, Malaysia, Mexico, Poland, Portugal, Republic of Korea, Spain, Taiwan, Tunisia, Ukraine, United Kingdom), representing ...

  16. Artificial Intelligence and Robotic From the Past to Present

    Directory of Open Access Journals (Sweden)

    Elnaz Asgarifar

    2013-04-01

    Full Text Available This paper overviews the basic principles and recent advances in the Artificial Intelligent robotics and the utilization of robots in nowadays life and the various compass. The aim of the paper is to introduce the basic concepts of artificial intelligent techniques and present a survey about robots. In first section we have a survey on the concept of artificial intelligence and intelligence life; also we introduce two important factors in artificial intelligence. In the next section, we have overview on the basic elements of artificial intelligence. Then, another important section in this paper is intelligent robots and the behavior based robotics. The use of robots in nowadays life is in the various domains. We introduce one of them that are rehabilitation robots.

  17. Software tool for resolution of inverse problems using artificial intelligence techniques: an application in neutron spectrometry; Herramienta en software para resolucion de problemas inversos mediante tecnicas de inteligencia artificial: una aplicacion en espectrometria neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda M, V. H.; Martinez B, M. R.; Solis S, L. O.; Castaneda M, R.; Leon P, A. A.; Hernandez P, C. F.; Espinoza G, J. G.; Ortiz R, J. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, 98000 Zacatecas, Zac. (Mexico); Mendez, R. [CIEMAT, Departamento de Metrologia de Radiaciones Ionizantes, Laboratorio de Patrones Neutronicos, Av. Complutense 22, 28040 Madrid (Spain); Gallego, E. [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain); Sousa L, M. A. [Comision Nacional de Energia Nuclear, Centro de Investigacion de Tecnologia Nuclear, Av. Pte. Antonio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2016-10-15

    The Taguchi methodology has proved to be highly efficient to solve inverse problems, in which the values of some parameters of the model must be obtained from the observed data. There are intrinsic mathematical characteristics that make a problem known as inverse. Inverse problems appear in many branches of science, engineering and mathematics. To solve this type of problem, researches have used different techniques. Recently, the use of techniques based on Artificial Intelligence technology is being explored by researches. This paper presents the use of a software tool based on artificial neural networks of generalized regression in the solution of inverse problems with application in high energy physics, specifically in the solution of the problem of neutron spectrometry. To solve this problem we use a software tool developed in the Mat Lab programming environment, which employs a friendly user interface, intuitive and easy to use for the user. This computational tool solves the inverse problem involved in the reconstruction of the neutron spectrum based on measurements made with a Bonner spheres spectrometric system. Introducing this information, the neural network is able to reconstruct the neutron spectrum with high performance and generalization capability. The tool allows that the end user does not require great training or technical knowledge in development and/or use of software, so it facilitates the use of the program for the resolution of inverse problems that are in several areas of knowledge. The techniques of Artificial Intelligence present singular veracity to solve inverse problems, given the characteristics of artificial neural networks and their network topology, therefore, the tool developed has been very useful, since the results generated by the Artificial Neural Network require few time in comparison to other techniques and are correct results comparing them with the actual data of the experiment. (Author)

  18. Artificial intelligence, expert systems, computer vision, and natural language processing

    Science.gov (United States)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  19. Use of Artificial Intelligence in Real Property Valuation

    Directory of Open Access Journals (Sweden)

    Dr. N. B. Chaphalkar

    2013-06-01

    Full Text Available Real properties possess value which is dependent on numerous factors. Investors and owners of the property are interested in the maximum returns, it would fetch. Considering the amount of money involved in real estate, there is a need of accurate prediction of returns and associated risks. This necessitates use of Artificial Intelligence (AI prediction models. This study attempts to analyze and summarize AI techniques, which gives insight to application of various techniques for prediction related to property valuation. Comparison of various techniques shows that Artificial Neural Network (ANNand fuzzy logic are better suited if attributes and model parameters are appropriately selected.

  20. Neuro-Based Artificial Intelligence Model for Loan Decisions

    Directory of Open Access Journals (Sweden)

    Shorouq F. Eletter

    2010-01-01

    Full Text Available Problem statement: Despite the increase in consumer loans defaults and competition in the banking market, most of the Jordanian commercial banks are reluctant to use artificial intelligence software systems for supporting loan decisions. Approach: This study developed a proposed model that identifies artificial neural network as an enabling tool for evaluating credit applications to support loan decisions in the Jordanian Commercial banks. A multi-layer feed-forward neural network with backpropagation learning algorithm was used to build up the proposed model. Results: Different representative cases of loan applications were considered based on the guidelines of different banks in Jordan, to validate the neural network model. Conclusion: The results indicated that artificial neural networks are a successful technology that can be used in loan application evaluation in the Jordanian commercial banks.

  1. The use of artificial intelligence in the analysis of sports performance: a review of applications in human gait analysis and future directions for sports biomechanics.

    Science.gov (United States)

    Lapham, A C; Bartlett, R M

    1995-06-01

    Computers have played an important supporting role in the development of experimental and theoretical sports biomechanics. The role of the computer now extends from data capture and data processing through to mathematical and statistical modelling and simulation and optimization. This paper seeks to demonstrate that elevation of the role of the computer to involvement in the decision-making process, through the use of artificial intelligence techniques, would be a potentially rewarding future direction for the discipline. In the absence of significant previous work in this area, this paper reviews experiences in a parallel field of medical informatics, namely gait analysis. Research into the application of expert systems and neural networks to gait analysis is reviewed, observations made and comparisons drawn with the biomechanical analysis of sports performance. Brief explanations of the artificial intelligence techniques discussed in the paper are provided. The paper concludes that the creation of an expert system for a specific well-defined sports technique would represent a significant advance in the development of sports biomechanics.

  2. Artificial intelligence research in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Rigas, H.; Booth, T.; Briggs, F.; Murata, T.; Stone, H.S.

    1985-09-01

    The progress, goals and techniques being used in the Japanese fifth-generation computer program are assessed. The research is being performed in three phases: tool building, construction of parallel architecture machines, and evaluation and refinement. The first phase is well under way and has yielded designs for two prototype machines: a Personal Sequential Interface (PSI) workstation and the Delta machine (DM), a relational database machine. Kernel Language 0 (KL0), used for the PSI, is being expanded to KL1. The Mandala language is being applied in the DM. Applications have not received a great deal of attention at the government-funded research center, although the techniques developed are already being implemented in industry for machine and computer design and communications systems. 18 references.

  3. Non-Newtonian Aspects of Artificial Intelligence

    Science.gov (United States)

    Zak, Michail

    2016-05-01

    The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.

  4. Artificial Intelligence-The Emerging Technology

    Directory of Open Access Journals (Sweden)

    R. P. Shenoy

    1985-04-01

    Full Text Available Artificial Intelligence (AI, once considered as an obscure branch of computer science, is now having a growing number of adherents in a wide variety of fields. AI is particularly useful for combat automation in defence. The combined works of computer scientists and technologists and cognitive scientists have brought out for intelligent information processing knowledge is the key factor. In the last few years, AI has been tried out with a high degree of success in certain areas such as the Expert Systems and the Computer Vision Systems. Both these have great potential in target classification and identification, information fusion, multiradar Air Defence Network, C2 (Command andControl operations etc. in defence.

  5. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  6. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2013-05-01

    Full Text Available An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (perhaps ensuring that a set of foreseeable conditions trigger an appropriate response, this may be insufficient to fully characterize and validate safe system performance. An approach to validating the performance of an artificial intelligence system using a simple artificial intelligence test case producer (AITCP is presented. The AITCP allows the creation and simulation of prospective operating scenarios at a rate far exceeding that possible by human testers. Four scenarios for testing an autonomous navigation control system are presented: single actor in two-dimensional space, multiple actors in two-dimensional space, single actor in three-dimensional space, and multiple actors in three-dimensional space. The utility of using the AITCP is compared to that of human testers in each of these scenarios.

  7. Probabilistic machine learning and artificial intelligence.

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  8. The social implications of artificial intelligence.

    OpenAIRE

    Whitby, Blay

    2003-01-01

    For 18 years. I have been publishing books and papers on the subject of the social implications of Artificial Intelligence (AI). This is an area which is has been, and remains, in need of more academic attention of a serious nature than it currently receives. It will be useful to attempt a working definition of the field of AI at this stage. There is a considerable amount of disagreement as to what does and does not constitute AI and this often has important consequences for discussions of...

  9. Artificial intelligence applied to process signal analysis

    Science.gov (United States)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  10. Probabilistic machine learning and artificial intelligence

    Science.gov (United States)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  11. Markov decision processes in artificial intelligence

    CERN Document Server

    Sigaud, Olivier

    2013-01-01

    Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustr

  12. Beyond Artificial Intelligence toward Engineered Psychology

    Science.gov (United States)

    Bozinovski, Stevo; Bozinovska, Liljana

    This paper addresses the field of Artificial Intelligence, road it went so far and possible road it should go. The paper was invited by the Conference of IT Revolutions 2008, and discusses some issues not emphasized in AI trajectory so far. The recommendations are that the main focus should be personalities rather than programs or agents, that genetic environment should be introduced in reasoning about personalities, and that limbic system should be studied and modeled. Engineered Psychology is proposed as a road to go. Need for basic principles in psychology are discussed and a mathematical equation is proposed as fundamental law of engineered and human psychology.

  13. Distributed Artificial Intelligence: A Critical Review

    Science.gov (United States)

    Harmon, Laurel A.; Franklin, Robert F.

    1989-02-01

    A goal of Distributed Artificial Intelligence (DAI) has been the development of heuristics for problem-solving by logically distributed components (agents). The roles of organizational structure, communication and planning in addressing the central issue of coherence are discussed in the context of representative DAI simulation systems. Despite the range of DAI research, few organizing principles have emerged. We attribute this lack to a reliance on human models of cooperative processes. As the effectiveness of the models has broken down, improvements have come through incremental, compensatory changes, rather than through the development of new models. We argue for the importance of a higher level view of distributed problem-solving.

  14. Cognitive communications distributed artificial intelligence (DAI), regulatory policy and economics, implementation

    CERN Document Server

    Grace, David

    2012-01-01

    This book discusses in-depth the concept of distributed artificial intelligence (DAI) and its application to cognitive communications In this book, the authors present an overview of cognitive communications, encompassing both cognitive radio and cognitive networks, and also other application areas such as cognitive acoustics. The book also explains the specific rationale for the integration of different forms of distributed artificial intelligence into cognitive communications, something which is often neglected in many forms of technical contributions available today. Furthermore, t

  15. 中医研究中人工智能应用浅谈%Discussion on the application of artificial intelligence in TCM research

    Institute of Scientific and Technical Information of China (English)

    王纪贵

    2012-01-01

      目的:分析探讨人工智能在中医研究中的应用效果。方法:从数据挖掘、图像处理、模式识别和专家分析等几个方面来探讨人工智能的应用给中医研究带来的利好效果。结果:计算机科学的引入极大地促进和推动了中医的健康发展。结论:传统通个中医研究手段已经不能适应现代中医的发展了,我们应当引入新的现代化的研究手段,人工智能的引入能够对大量的中医数据和信息进行处理,极大地改善了中医研究手段,也极大地拓宽了中医研究的范围,是一种值得深入推广应用的中医研究手段。%  Objective:To analyze the application of artificial intelligence in TCM research. Methods:To explore positive effects of the application of artificial intelligence against TCM research from data mining, image processing, pattern recognition and expert analysis. Results:The introduce of computer science greatly improve and promote the healthy development of TCM. Conclusion:The TCM research methods has been unable to meet the development of modern TCM, we should introduce new modern research tools, and the introduction of artificial intelligence can deal with a large number of Chinese data and information, and greatly improve the means of TCM research, also greatly broaden the scope of the study of TCM, it is TCM research tools that worth further promoting and using.

  16. Artificial intelligence. Fears of an AI pioneer.

    Science.gov (United States)

    Russell, Stuart; Bohannon, John

    2015-07-17

    From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity.

  17. Predicting asthma exacerbations using artificial intelligence.

    Science.gov (United States)

    Finkelstein, Joseph; Wood, Jeffrey

    2013-01-01

    Modern telemonitoring systems identify a serious patient deterioration when it already occurred. It would be much more beneficial if the upcoming clinical deterioration were identified ahead of time even before a patient actually experiences it. The goal of this study was to assess artificial intelligence approaches which potentially can be used in telemonitoring systems for advance prediction of changes in disease severity before they actually occur. The study dataset was based on daily self-reports submitted by 26 adult asthma patients during home telemonitoring consisting of 7001 records. Two classification algorithms were employed for building predictive models: naïve Bayesian classifier and support vector machines. Using a 7-day window, a support vector machine was able to predict asthma exacerbation to occur on the day 8 with the accuracy of 0.80, sensitivity of 0.84 and specificity of 0.80. Our study showed that methods of artificial intelligence have significant potential in developing individualized decision support for chronic disease telemonitoring systems.

  18. New Imaginaries of the Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Stefano Bory

    2016-03-01

    Full Text Available The paper aims to investigate the relationship between the artificial intelligence as narrated by science fiction movies in the late five decades and the socio-technical imaginary related to intelligent systems.The first sci-fi movies in analysis shed away from the idea of a symbiotic interaction between humans and AI as forecast during the 1960s by informatics and AI scientists. Afterwards, from the 1970s to the 1990s, AI systems played mainly the role of mirrors for the crisis of human identity: in these narratives the AI is presented as a risk, a possible enemy for human kind. Finally, during the last twenty years, a new frontier of AI seems to emerge in the imaginary. More recent stories forecast a future in which intelligent systems try to take their own place in the human social environment.All these perspectives emerge in conjunction with innovations and technical experimentations, bringing back up the relationship between “legein” and “teukein” as theorized by Cornelius Castoriadis.

  19. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms.

    Science.gov (United States)

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-12-04

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.

  20. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    Science.gov (United States)

    Colombano, Silvano

    2000-01-01

    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  1. Application Model of Artificial Intelligence in Information Retrieval%人工智能在信息检索中的应用模式

    Institute of Scientific and Technical Information of China (English)

    闻伟

    2015-01-01

    概括了信息检索的概念,给出了计算机信息检索的发展现状和趋势,归纳分析了人工智能在信息检索中的应用,包括信息过滤中的应用、信息管理条形码检索中的应用、智能代理在信息检索中的应用以及组合神经网络/专家系统在信息检索中的应用。%This paper summarized the concept of information retrieval, and gave the development status and trend of computer information retrieval. The application of artificial intelligence in information retrieval was analyzed, including in the information filtering, information management bar code retrieval, intelligent agent in information retrieval, and combining neural network and expert system in information retrieval.

  2. Artificial Intelligence – Making an Intelligent personal assistant

    Directory of Open Access Journals (Sweden)

    Mr. Ankush Bhatia

    2015-12-01

    Full Text Available A bot in computing is an autonomous program on a network (especially the Internet which can interact with systems or users.[ Simpson, J., and Weiner, E. (1989] This document gives the description of how memory of an Artificial-Intelligence bot can be stored in an optimized way with a faster searching algorithm and how it can learn new things; the user wants the bot to learn. This paper gives the details of how a bot uses a an ordered tree data structure, called TRIE or a prefix tree to dynamically store the things it learns and what to reply when a person commands asks him something, with a little modification.

  3. Amplify scientific discovery with artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Yolanda; Greaves, Mark T.; Hendler, James; Hirsch, Hyam

    2014-10-10

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automated language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.

  4. WEEDS IDENTIFICATION USING EVOLUTIONARY ARTIFICIAL INTELLIGENCE ALGORITHM

    Directory of Open Access Journals (Sweden)

    Ahmed M. Tobal

    2014-01-01

    Full Text Available In a world reached a population of six billion humans increasingly demand it for food, feed with a water shortage and the decline of agricultural land and the deterioration of the climate needs 1.5 billion hectares of agricultural land and in case of failure to combat pests needs about 4 billion hectares. Weeds represent 34% of the whole pests while insects, diseases and the deterioration of agricultural land present the remaining percentage. Weeds Identification has been one of the most interesting classification problems for Artificial Intelligence (AI and image processing. The most common case is to identify weeds within the field as they reduce the productivity and harm the existing crops. Success in this area results in an increased productivity, profitability and at the same time decreases the cost of operation. On the other hand, when AI algorithms combined with appropriate imagery tools may present the right solution to the weed identification problem. In this study, we introduce an evolutionary artificial neural network to minimize the time of classification training and minimize the error through the optimization of the neuron parameters by means of a genetic algorithm. The genetic algorithm, with its global search capability, finds the optimum histogram vectors used for network training and target testing through a fitness measure that reflects the result accuracy and avoids the trial-and-error process of estimating the network inputs according to the histogram data.

  5. Beyond AI: Interdisciplinary Aspects of Artificial Intelligence

    CERN Document Server

    Romportl, Jan; Zackova, Eva; Beyond Artificial Intelligence : Contemplations, Expectations, Applications

    2013-01-01

    Products of modern artificial intelligence (AI) have mostly been formed by the views, opinions and goals of the “insiders”, i.e. people usually with engineering background who are driven by the force that can be metaphorically described as the pursuit of the craft of Hephaestus. However, since the present-day technology allows for tighter and tighter mergence of the “natural” everyday human life with machines of immense complexity, the responsible reaction of the scientific community should be based on cautious reflection of what really lies beyond AI, i.e. on the frontiers where the tumultuous ever-growing and ever-changing cloud of AI touches the rest of the world.   The chapters of this boo are based on the selected subset of the presentations that were delivered by their respective authors at the conference “Beyond AI: Interdisciplinary Aspects of Artificial Intelligence” held in Pilsen in December 2011.   From its very definition, the reflection of the phenomena that lie beyond AI must be i...

  6. Artificial intelligence in medicine: humans need not apply?

    Science.gov (United States)

    Diprose, William; Buist, Nicholas

    2016-05-06

    Artificial intelligence (AI) is a rapidly growing field with a wide range of applications. Driven by economic constraints and the potential to reduce human error, we believe that over the coming years AI will perform a significant amount of the diagnostic and treatment decision-making traditionally performed by the doctor. Humans would continue to be an important part of healthcare delivery, but in many situations, less expensive fit-for-purpose healthcare workers could be trained to 'fill the gaps' where AI are less capable. As a result, the role of the doctor as an expensive problem-solver would become redundant.

  7. Effect of altering local protein fluctuations using artificial intelligence

    Science.gov (United States)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  8. ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM

    Institute of Scientific and Technical Information of China (English)

    X.C. Li; W.X. Zhu; G. Chen; D.S. Mei; J. Zhang; K.M. Chen

    2003-01-01

    An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples,the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection.

  9. THE POTENTIAL OF ARTIFICIAL INTELLIGENCE IN SOUTH AFRICAN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    A.R. Greef

    2012-01-01

    Full Text Available This paper provides an introduction to the most commonly used Knowledge Based Systems (KBS's called Rule Based Systems, presents some benefits of using these systems if the application warrants their attention and provides an over-view of current R&D as well as industrial systems already implemented. Areas of manUfacturing that could use KES's within the South African context are suggested. A research programme investigating the use of KBS's in robotics in progress at the University of Stellenbosch demonstrating a number of useful properties associated with programming Artificial Intelligence (AI techniques using logic programming, is discussed.

  10. XII International Conference of the Italian Association on Artificial Intelligence

    CERN Document Server

    Semeraro, Giovanni; Vargiu, Eloisa; New Challenges in Distributed Information Filtering and Retrieval : DART 2011: Revised and Invited Papers

    2013-01-01

    This volume focuses on new challenges in distributed Information Filtering and Retrieval. It collects invited chapters and extended research contributions from the DART 2011 Workshop, held in Palermo (Italy), on September 2011, and co-located with the XII International Conference of the Italian Association on Artificial Intelligence. The main focus of DART was to discuss and compare suitable novel solutions based on intelligent techniques and applied to real-world applications. The chapters of this book present a comprehensive review of related works and state of the art. Authors, both practitioners and researchers, shared their results in several topics such as "Multi-Agent Systems", "Natural Language Processing", "Automatic Advertisement", "Customer Interaction Analytics", "Opinion Mining".

  11. Credit Scoring Model Hybridizing Artificial Intelligence with Logistic Regression

    Directory of Open Access Journals (Sweden)

    Han Lu

    2013-01-01

    Full Text Available Today the most commonly used techniques for credit scoring are artificial intelligence and statistics. In this paper, we started a new way to use these two kinds of models. Through logistic regression filters the variables with a high degree of correlation, artificial intelligence models reduce complexity and accelerate convergence, while these models hybridizing logistic regression have better explanations in statistically significance, thus improve the effect of artificial intelligence models. With experiments on German data set, we find an interesting phenomenon defined as ‘Dimensional interference’ with support vector machine and from cross validation it can be seen that the new method gives a lot of help with credit scoring.

  12. Inteligência Artificial: uma aplicação em uma indústria de processo contínuo Artificial Intelligence: an application in a continuous process industry

    Directory of Open Access Journals (Sweden)

    Miguel Afonso Sellitto

    2002-12-01

    Full Text Available Este trabalho descreve uma aplicação da lógica fuzzy de controle e do CBR (Raciocínio Baseado em Casos na indústria de processo contínuo. Essas técnicas são discutidas dentro do campo de conhecimentos da Inteligência Artificial, associadas ao processo de tomada de decisões empresariais. A Inteligência Artificial é apontada como um campo de conhecimentos que pode apoiar a tomada de decisões de um modo mais simples e mais preciso do que outros métodos, tais como a modelagem e a gestão por indicadores. As etapas para a construção de um sistema especialista, construído principalmente a partir de experiências empíricas humanas, também são discutidas. O trabalho se encerra apresentando uma rotina de tomada de decisão em um processo termoquímico na indústria cimenteira conduzida por um sistema especialista baseado em CBR e lógica fuzzy, e uma discussão sobre resultados comparados com operadores humanos nas mesmas condições.This paper describes an application of the fuzzy logic control and CBR in the continuous process industry. The techniques are discussed inside the larger branch of knowledge called Artificial Intelligence (AI, which can be related with the decision-making process in companies. Artificial Intelligence is pinpointed as a science that can support decisions in an easier and more precisely way than others methods as models and process indicators management. The steps for the erection of an Expert System, built mainly from human empirical experiences, are also discussed. The paper comes to an end by presenting a decision-making routine in a thermochemical process, in the cement industry, as performed by an Expert System decision-maker, based in CBR and fuzzy logic, and leading to a discussion about results and performance gains, in comparison with human-guided action in the same process.

  13. The Use of Artificial Intelligence on Finacial Market

    OpenAIRE

    Surynek, Jiří

    2013-01-01

    Diplomová práce se zabývá problematikou a následnou aplikací metod umělé inteligence na finančních trzích. Konkrétně se jedná o využití umělých neuronových sítí za účelem predikce hodnoty a určení trendu vývoje vybraného investičního nástroje. Vlastní řešení je vytvořeno ve vývojovém prostředí Matlab. This thesis focuses on the problem and application of artificial intelligence on the financial market. Especially, the use of artificial neural networks to forecast values and determine the t...

  14. Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks

    OpenAIRE

    2013-01-01

    Intrusion detection system (IDS) is regarded as the second line of defense against network anomalies and threats. IDS plays an important role in network security. There are many techniques which are used to design IDSs for specific scenario and applications. Artificial intelligence techniques are widely used for threats detection. This paper presents a critical study on genetic algorithm, artificial immune, and artificial neural network (ANN) based IDSs techniques used in wireless sensor netw...

  15. The National Artificial Intelligence Research And Development Strategic Plan

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — Executive Summary: Artificial intelligence (AI) is a transformative technology that holds promise for tremendous societal and economic benefit. AI has the potential...

  16. A Python Engine for Teaching Artificial Intelligence in Games

    OpenAIRE

    Riedl, Mark O.

    2015-01-01

    Computer games play an important role in our society and motivate people to learn computer science. Since artificial intelligence is integral to most games, they can also be used to teach artificial intelligence. We introduce the Game AI Game Engine (GAIGE), a Python game engine specifically designed to teach about how AI is used in computer games. A progression of seven assignments builds toward a complete, working Multi-User Battle Arena (MOBA) game. We describe the engine, the assignments,...

  17. The Role of Artificial Intelligence Technologies in Crisis Response

    CERN Document Server

    Khalil, Khaled M; Nazmy, Taymour T; Salem, Abdel-Badeeh M

    2008-01-01

    Crisis response poses many of the most difficult information technology in crisis management. It requires information and communication-intensive efforts, utilized for reducing uncertainty, calculating and comparing costs and benefits, and managing resources in a fashion beyond those regularly available to handle routine problems. In this paper, we explore the benefits of artificial intelligence technologies in crisis response. This paper discusses the role of artificial intelligence technologies; namely, robotics, ontology and semantic web, and multi-agent systems in crisis response.

  18. Load Forecasting with Artificial Intelligence on Big Data

    OpenAIRE

    Glauner, Patrick; State, Radu

    2016-01-01

    In the domain of electrical power grids, there is a particular interest in time series analysis using artificial intelligence. Machine learning is the branch of artificial intelligence giving computers the ability to learn patterns from data without being explicitly programmed. Deep Learning is a set of cutting-edge machine learning algorithms that are inspired by how the human brain works. It allows to self-learn feature hierarchies from the data rather than modeling hand-crafted features. I...

  19. Using artificial intelligence to automate remittance processing.

    Science.gov (United States)

    Adams, W T; Snow, G M; Helmick, P M

    1998-06-01

    The consolidated business office of the Allegheny Health Education Research Foundation (AHERF), a large integrated healthcare system based in Pittsburgh, Pennsylvania, sought to improve its cash-related business office activities by implementing an automated remittance processing system that uses artificial intelligence. The goal was to create a completely automated system whereby all monies it processed would be tracked, automatically posted, analyzed, monitored, controlled, and reconciled through a central database. Using a phased approach, the automated payment system has become the central repository for all of the remittances for seven of the hospitals in the AHERF system and has allowed for the complete integration of these hospitals' existing billing systems, document imaging system, and intranet, as well as the new automated payment posting, and electronic cash tracking and reconciling systems. For such new technology, which is designed to bring about major change, factors contributing to the project's success were adequate planning, clearly articulated objectives, marketing, end-user acceptance, and post-implementation plan revision.

  20. Interactive Video and Artificial Intelligence: A Convenient Marriage.

    Science.gov (United States)

    Midoro, V.; And Others

    1988-01-01

    Describes the theoretical framework of a research project aimed at exploring the new potentials for instructional systems offered by videodisc technology and artificial intelligence. A prototype of an intelligent tutoring system, "Earth," is described, and types of interactions in instructional systems are discussed as they relate to the learning…

  1. The Potential Role of Artificial Intelligence Technology in Education.

    Science.gov (United States)

    Salem, Abdel-Badeeh M.

    The field of Artificial Intelligence (AI) and Education has traditionally a technology-based focus, looking at the ways in which AI can be used in building intelligent educational software. In addition AI can also provide an excellent methodology for learning and reasoning from the human experiences. This paper presents the potential role of AI in…

  2. 人工智能在教育中的应用研究%Application and Research of Artificial Intelligence in Education

    Institute of Scientific and Technical Information of China (English)

    傅莉

    2012-01-01

    文章从理论的角度介绍了人工智能的概念以及对现阶段人工智能研究领域的主要研究方向进行了阐述.文中利用BP神经网络算法建立高校教学评估体系的评估模型,并通过MATLAB仿真,得到了比较满意的评价结果,具有广泛的适用性.%This paper introduces the concept of the artificial intelligence based on the theory,and introduceds the major research directions of the artificial intelligence at the present stage. This paper establishes the evaluation model of university teaching quality based on BP neural networks,and runs in MATLAB,it gains more satisfied conclusion, and it has the widespread serviceability.

  3. 3rd Workshop on "Combinations of Intelligent Methods and Applications"

    CERN Document Server

    Palade, Vasile

    2013-01-01

    The combination of different intelligent methods is a very active research area in Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that benefit from each of their components.  The 3rd Workshop on “Combinations of Intelligent Methods and Applications” (CIMA 2012) was intended to become a forum for exchanging experience and ideas among researchers and practitioners who are dealing with combining intelligent methods either based on first principles or in the context of specific applications. CIMA 2012 was held in conjunction with the 22nd European Conference on Artificial Intelligence (ECAI 2012).This volume includes revised versions of the papers presented at CIMA 2012.  .

  4. Artificial Intelligence based technique for BTS placement

    Science.gov (United States)

    Alenoghena, C. O.; Emagbetere, J. O.; Aibinu, A. M.

    2013-12-01

    The increase of the base transceiver station (BTS) in most urban areas can be traced to the drive by network providers to meet demand for coverage and capacity. In traditional network planning, the final decision of BTS placement is taken by a team of radio planners, this decision is not fool proof against regulatory requirements. In this paper, an intelligent based algorithm for optimal BTS site placement has been proposed. The proposed technique takes into consideration neighbour and regulation considerations objectively while determining cell site. The application will lead to a quantitatively unbiased evaluated decision making process in BTS placement. An experimental data of a 2km by 3km territory was simulated for testing the new algorithm, results obtained show a 100% performance of the neighbour constrained algorithm in BTS placement optimization. Results on the application of GA with neighbourhood constraint indicate that the choices of location can be unbiased and optimization of facility placement for network design can be carried out.

  5. Railway intelligent transportation system and its applications

    Institute of Scientific and Technical Information of China (English)

    Qin Yong; Jia Limin; Zhang Yuan

    2011-01-01

    With the development of artificial intelligence, communication, computer and other related technologies, it becomes feasible to rebuild traditional railway with such advanced technologies in order to establish a new generation railway transport system. The railway intelligent transportation system is the trend of railway transportation system in China, and it is also the research focus of international railway transport industry. This paper presents the definition, characters, architecture, key technologies and developing pattern of the RITS (railway intelligent transportation system). Then three typical applications are introduced. Finally, the prospect of the RITS is summarized.

  6. Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis

    Directory of Open Access Journals (Sweden)

    Jiqiang Niu

    2016-05-01

    Full Text Available In this article, we conducted the evaluation of artificial intelligence research from 1990–2014 by using bibliometric analysis. We introduced spatial analysis and social network analysis as geographic information retrieval methods for spatially-explicit bibliometric analysis. This study is based on the analysis of data obtained from database of the Science Citation Index Expanded (SCI-Expanded and Conference Proceedings Citation Index-Science (CPCI-S. Our results revealed scientific outputs, subject categories and main journals, author productivity and geographic distribution, international productivity and collaboration, and hot issues and research trends. The growth of article outputs in artificial intelligence research has exploded since the 1990s, along with increasing collaboration, reference, and citations. Computer science and engineering were the most frequently-used subject categories in artificial intelligence studies. The top twenty productive authors are distributed in countries with a high investment of research and development. The United States has the highest number of top research institutions in artificial intelligence, producing most single-country and collaborative articles. Although there is more and more collaboration among institutions, cooperation, especially international ones, are not highly prevalent in artificial intelligence research as expected. The keyword analysis revealed interesting research preferences, confirmed that methods, models, and application are in the central position of artificial intelligence. Further, we found interesting related keywords with high co-occurrence frequencies, which have helped identify new models and application areas in recent years. Bibliometric analysis results from our study will greatly facilitate the understanding of the progress and trends in artificial intelligence, in particular, for those researchers interested in domain-specific AI-driven problem-solving. This will be

  7. AN ARTIFICIAL INTELLIGENCE-BASED DISTANCE EDUCATION SYSTEM: Artimat

    Directory of Open Access Journals (Sweden)

    Vasif NABIYEV

    2013-04-01

    Full Text Available The purpose of this study is to evaluate the artificial intelligence-based distance education system called as ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed with 4 teachers and 59 students in 10th grade in an Anatolian High School in Trabzon. Many institutions and organizations in the world approach seriously to distance education besides traditional education. It is inevitable to use the distance education in teaching the problem solving skills in this different dimension of the education. In the studies in Turkey and abroad in the field of mathematics teaching, problem solving skills are generally stated not to be at the desired level and often expressed to have difficulty in teaching. For this reason, difficulties of the students in problem solving have initially been evaluated and the system has been prepared utilizing artificial intelligence algorithms according to the obtained results. In the evaluation of the findings obtained from the application, it has been concluded that the system is responsive to the needs of the students and is successful in general, but that conceptual changes should be made in order that students adapt to the system quickly.

  8. Artificial Intelligence Based Three-Phase Unified Power Quality Conditioner

    Directory of Open Access Journals (Sweden)

    Moleykutty George

    2007-01-01

    Full Text Available Power quality is an important measure of the performance of an electrical power system. This paper discusses the topology, control strategies using artificial intelligent (AI based controllers and the performance of a unified power quality conditioner (UPQC for power quality improvement. UPQC is an integration of shunt and series compensation to limit the harmonic contamination within 5 %, the limit imposed by IEEE-519 standard. The novelty of this paper lies in the application of neural network control (NNC algorithms such as model reference control (MRC, and nonlinear autoregressive-moving average (NARMA–L2 control to generate switching signals for the series compensator of the UPQC system. The entire system has been modeled using MATLAB 7.0 toolbox. Simulation results demonstrate the applicability of MRC and NARMA-L2 controllers for the control of UPQC.

  9. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    Science.gov (United States)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  10. International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems

    CERN Document Server

    Dash, Subhransu; Panigrahi, Bijaya

    2015-01-01

      The book is a collection of high-quality peer-reviewed research papers presented in Proceedings of International Conference on Artificial Intelligence and Evolutionary Algorithms in Engineering Systems (ICAEES 2014) held at Noorul Islam Centre for Higher Education, Kumaracoil, India. These research papers provide the latest developments in the broad area of use of artificial intelligence and evolutionary algorithms in engineering systems. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. It presents invited papers from the inventors/originators of new applications and advanced technologies.

  11. The Roles of Artificial Intelligence in Education: Current Progress and Future Prospects

    Science.gov (United States)

    McArthur, David; Lewis, Matthew; Bishary, Miriam

    2005-01-01

    This report begins by summarizing current applications of ideas from artificial intelligence (Al) to education. It then uses that summary to project various future applications of Al--and advanced technology in general--to education, as well as highlighting problems that will confront the wide­ scale implementation of these technologies in the…

  12. A Native Intelligence Metric for Artificial Systems

    Science.gov (United States)

    2002-08-01

    models of intelligence that will readily yield a NIM. Why not use linear systems theory as a model for a NIM? The successes of traditional linear...intelligence would be easily perceived by all. 1.5 The nature of a NIM Perhaps the solution is not in an analogy to linear systems theory , as has

  13. Computational Intelligence and Decision Making Trends and Applications

    CERN Document Server

    Madureira, Ana; Marques, Viriato

    2013-01-01

    This book provides a general overview and original analysis of new developments and applications in several areas of Computational Intelligence and Information Systems. Computational Intelligence has become an important tool for engineers to develop and analyze novel techniques to solve problems in basic sciences such as physics, chemistry, biology, engineering, environment and social sciences.   The material contained in this book addresses the foundations and applications of Artificial Intelligence and Decision Support Systems, Complex and Biological Inspired Systems, Simulation and Evolution of Real and Artificial Life Forms, Intelligent Models and Control Systems, Knowledge and Learning Technologies, Web Semantics and Ontologies, Intelligent Tutoring Systems, Intelligent Power Systems, Self-Organized and Distributed Systems, Intelligent Manufacturing Systems and Affective Computing. The contributions have all been written by international experts, who provide current views on the topics discussed and pr...

  14. Artificial intelligence for the CTA Observatory scheduler

    Science.gov (United States)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  15. 4th International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Karray, Fakhri; Jo, Jun; Sincak, Peter; Myung, Hyun

    2017-01-01

    This book covers all aspects of robot intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving researchers and practitioners with a timely dissemination of the recent progress on robot intelligence technology and its applications, based on a collection of papers presented at the 4th International Conference on Robot Intelligence Technology and Applications (RiTA), held in Bucheon, Korea, December 14 - 16, 2015. For better readability, this edition has the total of 49 article...

  16. 3rd International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Yang, Weimin; Jo, Jun; Sincak, Peter; Myung, Hyun

    2015-01-01

    This book covers all aspects of robot intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving researchers and practitioners with a timely dissemination of the recent progress on robot intelligence technology and its applications, based on a collection of papers presented at the 3rd International Conference on Robot Intelligence Technology and Applications (RiTA), held in Beijing, China, November 6 - 8, 2014. For better readability, this edition has the total 74 papers group...

  17. Analysis of the current status of artificial intelligence application in secondary education%人工智能在中学教育教学中的应用现状分析

    Institute of Scientific and Technical Information of China (English)

    王斐

    2013-01-01

    This paper studies the papers on artificial intelligence published from 2002 to 2012 in four major educational technology journals .It analyzes the knowledge of artificial intelligence part of the current high school compulsory and elective subject textbooks on information technology , reviews and reflects on the achievements and the existing problems of artificial intelligence allied in secondary school education and research .Then it analyzes the causes of the problems from different layers so as to provide suggestions on artificial intelligence subject teaching and in-depth application at secondary schools by referring to the existing research outcomes .%分析了2002-2012年间在教育技术类的四种主要期刊中刊登与人工智能相关的文献和现行高中信息技术必修教材及选修教材中人工智能部分的知识范畴,回顾并反思了人工智能在中学教学与研究中取得的成绩和存在的问题,并从不同层面分析了问题产生的原因,其目的在于借鉴学术界已有的研究成果,为中学人工智能课程的开展与人工智能在中学教育中的深层次应用提出建议。

  18. Artificial intelligence in the service of system administrators

    CERN Document Server

    Haen, Christophe; Bonaccorsi, E; Neufeld, N

    2012-01-01

    The LHCb online system relies on a large and heterogeneous IT infrastructure made from thousands of servers on which many different applications are running. They run a great variety of tasks: critical ones such as data taking and secondary ones like web servers. The administration of such a system and making sure it is working properly represents a very important workload for the small expert-operator team. Research has been performed to try to automatize (some) system administration tasks, starting in 2001 when IBM defined the so-called self objectives supposed to lead to autonomic computing. In this context, we present a framework that makes use of artificial intelligence and machine learning to monitor and diagnose at a low level and in a non intrusive way Linux-based systems and their interaction with software. Moreover, the multi agent approach we use, coupled with an object oriented paradigm architecture should increase our learning speed a lot and highlight relations between problems.

  19. Artificial intelligence for multi-mission planetary operations

    Science.gov (United States)

    Atkinson, David J.; Lawson, Denise L.; James, Mark L.

    1990-01-01

    A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.

  20. A Framework for Intelligent Instructional Systems: An Artificial Intelligence Machine Learning Approach.

    Science.gov (United States)

    Becker, Lee A.

    1987-01-01

    Presents and develops a general model of the nature of a learning system and a classification for learning systems. Highlights include the relationship between artificial intelligence and cognitive psychology; computer-based instructional systems; intelligent instructional systems; and the role of the learner's knowledge base in an intelligent…

  1. Artificial intelligence and robot responsibilities: innovating beyond rights.

    Science.gov (United States)

    Ashrafian, Hutan

    2015-04-01

    The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity.

  2. The Coming of Age of Artificial Intelligence in Medicine*

    Science.gov (United States)

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    Summary This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the discussants reflect on medical AI research during the subsequent years and attempt to characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems. PMID:18790621

  3. Cognitive Connected Vehicle Information System Design Requirement for Safety: Role of Bayesian Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Ata Khan

    2013-04-01

    Full Text Available Intelligent transportation systems (ITS are gaining acceptance around the world and the connected vehicle component of ITS is recognized as a high priority research and development area in many technologically advanced countries. Connected vehicles are expected to have the capability of safe, efficient and eco-driving operations whether these are under human control or in the adaptive machine control mode of operations. The race is on to design the capability to operate in connected traffic environment. The operational requirements can be met with cognitive vehicle design features made possible by advances in artificial intelligence-supported methodology, improved understanding of human factors, and advances in communication technology. This paper describes cognitive features and their information system requirements. The architecture of an information system is presented that supports the features of the cognitive connected vehicle. For better focus, information processing capabilities are specified and the role of Bayesian artificial intelligence is defined for data fusion. Example applications illustrate the role of information systems in integrating intelligent technology, Bayesian artificial intelligence, and abstracted human factors. Concluding remarks highlight the role of the information system and Bayesian artificial intelligence in the design of a new generation of cognitive connected vehicle.

  4. 2nd International Symposium on Intelligent Systems Technologies and Applications

    CERN Document Server

    Mitra, Sushmita; Thampi, Sabu; El-Alfy, El-Sayed

    2016-01-01

    This book constitutes the thoroughly refereed proceedings of the second International Symposium on Intelligent Systems Technologies and Applications (ISTA’16), held on September 21–24, 2016 in Jaipur, India. The 80 revised papers presented were carefully reviewed and selected from 210 initial submissions and are organized in topical sections on image processing and artificial vision, computer networks and distributed systems, intelligent tools and techniques and applications using intelligent techniques.

  5. Comparison of Artificial Intelligence Techniques for river flow forecasting

    Directory of Open Access Journals (Sweden)

    M. Firat

    2008-01-01

    Full Text Available The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS and Artificial Neural Network (ANN methods, Generalized Regression Neural Networks (GRNN and Feed Forward Neural Networks (FFNN, and Auto-Regressive (AR models for forecasting of daily river flow is investigated and Seyhan River and Cine River was chosen as case study area. For the Seyhan River, the forecasting models are established using combinations of antecedent daily river flow records. On the other hand, for the Cine River, daily river flow and rainfall records are used in input layer. For both stations, the data sets are divided into three subsets, training, testing and verification data set. The river flow forecasting models having various input structures are trained and tested to investigate the applicability of ANFIS and ANN and AR methods. The results of all models for both training and testing are evaluated and the best fit input structures and methods for both stations are determined according to criteria of performance evaluation. Moreover the best fit forecasting models are also verified by verification set which was not used in training and testing processes and compared according to criteria. The results demonstrate that ANFIS model is superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully applied and provide high accuracy and reliability for daily river flow forecasting.

  6. Algorithmic Randomness as Foundation of Inductive Reasoning and Artificial Intelligence

    CERN Document Server

    Hutter, Marcus

    2011-01-01

    This article is a brief personal account of the past, present, and future of algorithmic randomness, emphasizing its role in inductive inference and artificial intelligence. It is written for a general audience interested in science and philosophy. Intuitively, randomness is a lack of order or predictability. If randomness is the opposite of determinism, then algorithmic randomness is the opposite of computability. Besides many other things, these concepts have been used to quantify Ockham's razor, solve the induction problem, and define intelligence.

  7. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  8. Solving Systems of Equations with Techniques from Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Irina Maria Terfaloaga

    2015-07-01

    Full Text Available A frequent problem in numerical analysis is solving the systems of equations. That problem has generated in time a great interest among mathematicians and computer scientists, as evidenced by the large number of numerical methods developed. Besides the classical numerical methods, in the last years were proposed methods inspired by techniques from artificial intelligence. Hybrid methods have been also proposed along the time [15, 19]. The goal of this study is to make a survey of methods inspired from artificial intelligence for solving systems of equations

  9. Artificial intelligence library for html5 based games: DignityAI

    Directory of Open Access Journals (Sweden)

    Berkan Uslu

    2017-02-01

    Full Text Available Today, acceleration of internet and common use of web pages, revealed the necessity of work with any browser smoothly for each application without of requirement of any plug-in. Generally, HTML5 is a new body of standards which is formed with the combination of CSS and JavaScript. In this context, by analysing game engines developed for HTML5, their features and advantages are investigated. Although, these game engines are close to catch up with the level of popular game engines, it is seen that none of artificial intelligence library was developed for HTML5 based games up to now. In this study, DignityAI artificial intelligence library is developed to fill this deficiency. Developed library has ability to be integrated to all HTML5 games independently from game engine and to add artificial intelligence dynamics to these games.

  10. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    Science.gov (United States)

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology.

  11. Daddy’s Car: Artificial Intelligence as a Creative Tool for Copyright

    Directory of Open Access Journals (Sweden)

    Jaime Alberto Díaz Limón

    2016-12-01

    Full Text Available This year on September 19th, Sony CSL, a software developer company, announced to the world, the creation of the first musical work whose ownership belongs to Artificial Intelligence. This paper analyzes the legal consequences of such a statement, and it’s conceptual and legal limits within the Copyright Universe (with fundament on International Treaties; in order to assess whether we are in presence of new legal-authorial figure that invite us to think over the subjects of protection in our laws or whether the applicable normativity may resolve these hypotheses in favor Artificial Intelligence, instead of juridical persons.

  12. Northeast Artificial Intelligence Consortium Annual Report 1986. Volume 4. Part A. Hierarchical Region-Based Approach to Automatic Photointerpretation. Part B. Application of AI Techniques to Image Segmentation and Region Identification

    Science.gov (United States)

    1988-01-01

    MONITORING ORGANIZATION Northeast Artificial (If applicaole)nelincCostum(AcRome Air Development Center (COCU) Inteligence Consortium (NAIC)I 6c. ADDRESS...f, Offell RADC-TR-88-1 1, Vol IV (of eight) Interim Technical ReportS June 1988 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1986...13441-5700 EMENT NO NO NO ACCESSION NO62702F 5 8 71 " " over) I 58 27 13 " ൓ TITLE (Include Security Classification) NORTHEAST ARTIFICIAL INTELLIGENCE

  13. Inteligência artificial aplicada à Zootecnia Artificial intelligence in Animal Science

    Directory of Open Access Journals (Sweden)

    Ernane José Xavier Costa

    2009-07-01

    Full Text Available Os sistemas biológicos são surpreendentemente flexíveis pra processar informação proveniente do mundo real. Alguns organismos biológicos possuem uma unidade central de processamento denominada de cérebro. O cérebro humano consiste de 10(11 neurônios e realiza processamento inteligente de forma exata e subjetiva. A Inteligência Artificial (IA tenta trazer para o mundo da computação digital a heurística dos sistemas biológicos de várias maneiras, mas, ainda resta muito para que isso seja concretizado. No entanto, algumas técnicas como Redes neurais artificiais e lógica fuzzy tem mostrado efetivas para resolver problemas complexos usando a heurística dos sistemas biológicos. Recentemente o numero de aplicação dos métodos da IA em sistemas zootécnicos tem aumentado significativamente. O objetivo deste artigo é explicar os princípios básicos da resolução de problemas usando heurística e demonstrar como a IA pode ser aplicada para construir um sistema especialista para resolver problemas na área de zootecnia.Biological systems are surprising flexible in processing information in the real world. Some biological organisms have a central unit processing named brain. The human's brain, consisting of 10(11 neurons, realizes intelligent information processing based on exact and commonsense reasoning. Artificial intelligence (AI has been trying to implement biological intelligence in computers in various ways, but is still far from real one. Therefore, there are approaches like Symbolic AI, Artificial Neural Network and Fuzzy system that partially successful in implementing heuristic from biological intelligence. Many recent applications of these approaches show an increased interest in animal science research. The main goal of this article is to explain the principles of heuristic problem-solving approach and to demonstrate how they can be applied to building knowledge-based systems for animal science problem solving.

  14. Artificial Intelligence in Education--State of the Art and Perspectives. ZIFF Papiere 111.

    Science.gov (United States)

    Buiu, Catalin

    This review contains an overview of past and present trends in the application of what is called "artificial intelligence" in traditional face-to-face education and in distance education. The reviewed trends are illustrated with examples of research projects and results throughout the world. The first section of the review discusses intelligence…

  15. Artificial Neural Networks: A New Approach to Predicting Application Behavior.

    Science.gov (United States)

    Gonzalez, Julie M. Byers; DesJardins, Stephen L.

    2002-01-01

    Applied the technique of artificial neural networks to predict which students were likely to apply to one research university. Compared the results to the traditional analysis tool, logistic regression modeling. Found that the addition of artificial intelligence models was a useful new tool for predicting student application behavior. (EV)

  16. Review of Application of Genetic Algorithm in the Field of Artificial Intelligence%遗传算法在人工智能领域中的应用分析

    Institute of Scientific and Technical Information of China (English)

    刘晓英; 陈杰; 袁荣华; 杨俊峰

    2015-01-01

    Genetic algorithm (GA) is one of the main algorithms in swarm intelligence, which is used to solve the problems of complex nonlinear and uncertain. In recent years, genetic algorithm has been applied in the field of artificial intelligence, combined with rough set and fuzzy set. This paper studies the application of genetic algorithm in artificial intelligence field from two aspects:genetic algorithm, the application of artificial neural network and fuzzy control. The theory and a large number of examples show that the algorithm is robust and has good applicability. Genetic algorithm in the future will continue to develop, in addition to a wide range of applications in the field of artificial intelligence. We have reason to believe that the big data analysis and data mining will have a very good application prospect.%遗传算法(GA)是群智能领域的主要算法之一,用来求解非线性复杂问题或不确定性问题。近年来遗传算法被应用于人工智能领域,与粗糙集和模糊集等结合应用,取得了很好的进展与效果。本文从遗传算法“在人工神经网络中的应用”和“与模糊控制结合”两个方面,研究了遗传算法在人工智能领域的应用,经理论和大量的实例表明该算法鲁棒性强,具有很好的适用性。未来遗传算法还会不断发展,相信除了在人工智能领域的广泛应用之外,在大数据分析与数据挖掘方面也会有很好的应用前景。

  17. Solving Complex Logistics Problems with Multi-Artificial Intelligent System

    Directory of Open Access Journals (Sweden)

    Y.K. Tse

    2009-10-01

    Full Text Available The economy, which has become more information intensive, more global and more technologically dependent, is undergoing dramatic changes. The role of logistics is also becoming more and more important. In logistics, the objective of service providers is to fulfill all customers? demands while adapting to the dynamic changes of logistics networks so as to achieve a higher degree of customer satisfaction and therefore a higher return on investment. In order to provide high quality service, knowledge and information sharing among departments becomes a must in this fast changing market environment. In particular, artificial intelligence (AI technologies have achieved significant attention for enhancing the agility of supply chain management, as well as logistics operations. In this research, a multi-artificial intelligence system, named Integrated Intelligent Logistics System (IILS is proposed. The objective of IILS is to provide quality logistics solutions to achieve high levels of service performance in the logistics industry. The new feature of this agile intelligence system is characterized by the incorporation of intelligence modules through the capabilities of the case-based reasoning, multi-agent, fuzzy logic and artificial neural networks, achieving the optimization of the performance of organizations.

  18. An Artificial Intelligence-Based Distance Education System: Artimat

    Science.gov (United States)

    Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca

    2013-01-01

    The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…

  19. Evolution and Revolution in Artificial Intelligence in Education

    Science.gov (United States)

    Roll, Ido; Wylie, Ruth

    2016-01-01

    The field of Artificial Intelligence in Education (AIED) has undergone significant developments over the last twenty-five years. As we reflect on our past and shape our future, we ask two main questions: What are our major strengths? And, what new opportunities lay on the horizon? We analyse 47 papers from three years in the history of the…

  20. Artificial Intelligence: Is the Future Now for A.I.?

    Science.gov (United States)

    Ramaswami, Rama

    2009-01-01

    In education, artificial intelligence (AI) has not made much headway. In the one area where it would seem poised to lend the most benefit--assessment--the reliance on standardized tests, intensified by the demands of the No Child Left Behind Act of 2001, which holds schools accountable for whether students pass statewide exams, precludes its use.…

  1. Magical Stories: Blending Virtual Reality and Artificial Intelligence.

    Science.gov (United States)

    McLellan, Hilary

    Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…

  2. Some Notes About Artificial Intelligence as New Mathematical Tool

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available Mathematics is a mere instance of First-Order Predicate Calculus. Therefore it belongs to applied Monotonic Logic. So, we found the limitations of classical logic reasoning and the clear advantages of Fuzzy Logic and many other new interesting tools. We present here some of the more usefulness tools of this new field of Mathematics so-called Artificial Intelligence.

  3. Artificial Intelligence and the High School Computer Curriculum.

    Science.gov (United States)

    Dillon, Richard W.

    1993-01-01

    Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…

  4. Qualitative reasoning about physical systems: an artificial intelligence perspective

    NARCIS (Netherlands)

    Top, J.L.; Akkermans, J.M.; Breedveld, P.C.

    1991-01-01

    Some interdisciplinary issues concerning artificial intelligence (AI) are explored in relation to modelling in physics and engineering. A short survey is given of automated qualitative reasoning about physical systems, which in recent years has become an active research area in AI, and has been part

  5. Ethical Implications of an Experiment in Artificial Intelligence.

    Science.gov (United States)

    Levinson, Stephen E.

    2003-01-01

    Revisits the classic debate on whether there can be an artificial creation that behaves and uses language with intelligence and agency. Argues that many moral and spiritual objections to this notion are not grounded either ethically or empirically. (Author/VWL)

  6. Artificial Intelligence -- Research and Applications.

    Science.gov (United States)

    1976-06-01

    Design System for Simple and Ellipsis Resolution (Dialog Context Only) Examination of the CBC protocols revealed extensive use of anaphoric reference...that the Datalanguage be extended to accept the bindings between port fields and file fields to be done by physical position as well as by name, as the...structures, and to use network-encoded discourse histories in resolving anaphoric references and expanding elliptical inputs. The speech system upon

  7. Neuroscientific implications for situated and embodied artificial intelligence

    Science.gov (United States)

    Downing, Keith

    2007-03-01

    While classic artificial intelligence systems still struggle to incorporate commonsense knowledge properly, situated and embodied artificial intelligence (SEAI) aims to build animats that acquire a common-sense understanding of the world via interactions between simulated brains, bodies and environments. Neuroscientists believe that much of this common sense involves predictive models for physical activities, but the transfer of sensorimotor skill knowledge to cognition is non-trivial, indicating that SEAI may meet a daunting challenge of its own. This paper considers the neurological bases for implicit procedural and explicit declarative common sense, and the possibilities for its transfer from the former to the latter. This helps assess the prospects for SEAI eventually to surpass GOFAI (good old-fashioned AI) in the quest for generally intelligent systems.

  8. Artificial Intelligence Applied to the Command, Control, Communications, and Intelligence of the U.S. Central Command.

    Science.gov (United States)

    1983-06-06

    these components will be presented. 4.17 °°,. CHAPTER III FOOTNOTES 1. Arron Barr and Edward A. Feigenbaum, eds., Te Handbook gf Artificial Inteligence ol...RD-R137 205 ARTIFICIAL INTELLIGENCE APPLIED TO THE COMIMAND CONTROL i/i COMMUNICATIONS RND..(U) ARMY WAR COLL CARLISLE BARRACKS U PA J N ENVART 06...appropriate mlitary servic or *swesmment aency. ARTIFICIAL INTELLIGENCE APPLIED TO THE COMMAND, CONTROL, COMMUNICATIONS, AND INTELLIGENCE OF THE U.S. CENTRAL

  9. Teaching artificial intelligence to read electropherograms.

    Science.gov (United States)

    Taylor, Duncan; Powers, David

    2016-11-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells us about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. A technique that lends itself well to such a task of classification in the face of vast amounts of data is the use of artificial neural networks. These networks, inspired by the workings of the human brain, have been increasingly successful in analysing large datasets, performing medical diagnoses, identifying handwriting, playing games, or recognising images. In this work we demonstrate the use of an artificial neural network which we train to 'read' electropherograms and show that it can generalise to unseen profiles.

  10. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    Science.gov (United States)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  11. Text Analytics: the convergence of Big Data and Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Antonio Moreno

    2016-03-01

    Full Text Available The analysis of the text content in emails, blogs, tweets, forums and other forms of textual communication constitutes what we call text analytics. Text analytics is applicable to most industries: it can help analyze millions of emails; you can analyze customers’ comments and questions in forums; you can perform sentiment analysis using text analytics by measuring positive or negative perceptions of a company, brand, or product. Text Analytics has also been called text mining, and is a subcategory of the Natural Language Processing (NLP field, which is one of the founding branches of Artificial Intelligence, back in the 1950s, when an interest in understanding text originally developed. Currently Text Analytics is often considered as the next step in Big Data analysis. Text Analytics has a number of subdivisions: Information Extraction, Named Entity Recognition, Semantic Web annotated domain’s representation, and many more. Several techniques are currently used and some of them have gained a lot of attention, such as Machine Learning, to show a semisupervised enhancement of systems, but they also present a number of limitations which make them not always the only or the best choice. We conclude with current and near future applications of Text Analytics.

  12. Autonomous operations through onboard artificial intelligence

    Science.gov (United States)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  13. Artificial organic networks artificial intelligence based on carbon networks

    CERN Document Server

    Ponce-Espinosa, Hiram; Molina, Arturo

    2014-01-01

    This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        class...

  14. Decade Review (1999-2009): Artificial Intelligence Techniques in Student Modeling

    Science.gov (United States)

    Drigas, Athanasios S.; Argyri, Katerina; Vrettaros, John

    Artificial Intelligence applications in educational field are getting more and more popular during the last decade (1999-2009) and that is why much relevant research has been conducted. In this paper, we present the most interesting attempts to apply artificial intelligence methods such as fuzzy logic, neural networks, genetic programming and hybrid approaches such as neuro - fuzzy systems and genetic programming neural networks (GPNN) in student modeling. This latest research trend is a part of every Intelligent Tutoring System and aims at generating and updating a student model in order to modify learning content to fit individual needs or to provide reliable assessment and feedback to student's answers. In this paper, we make a brief presentation of methods used to point out their qualities and then we attempt a navigation to the most representative studies sought in the decade of our interest after classifying them according to the principal aim they attempted to serve.

  15. Philosophy and Theory of Artificial Intelligence

    CERN Document Server

    2013-01-01

    Can we make machines that think and act like humans or other natural intelligent agents? The answer to this question depends on how we see ourselves and how we see the machines in question. Classical AI and cognitive science had claimed that cognition is computation, and can thus be reproduced on other computing machines, possibly surpassing the abilities of human intelligence. This consensus has now come under threat and the agenda for the philosophy and theory of AI must be set anew, re-defining the relation between AI and Cognitive Science. We can re-claim the original vision of general AI from the technical AI disciplines; we can reject classical cognitive science and replace it with a new theory (e.g. embodied); or we can try to find new ways to approach AI, for example from neuroscience or from systems theory. To do this, we must go back to the basic questions on computing, cognition and ethics for AI. The 30 papers in this volume provide cutting-edge work from leading researchers that define where we s...

  16. Northeast Artificial Intelligence Consortium Annual Report. Volume 2. 1988 Discussing, Using, and Recognizing Plans (NLP)

    Science.gov (United States)

    1989-10-01

    Encontro Portugues de Inteligencia Artificial (EPIA), Oporto, Portugal, September 1985. [15] N. J. Nilsson. Principles Of Artificial Intelligence. Tioga...FI1 F COPY () RADC-TR-89-259, Vol II (of twelve) Interim Report October 1969 AD-A218 154 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL...7a. NAME OF MONITORING ORGANIZATION Northeast Artificial Of p0ilcabe) Intelligence Consortium (NAIC) Rome_____ Air___ Development____Center

  17. Unique Applications for Artificial Neural Networks. Phase 1

    Science.gov (United States)

    1991-08-08

    AD-A243 365’ l!1111iLI[li In M aR C ’ PHASE I FINAL REPORT Unique Applications for Artificial Neural Networks DARPA SBIR 90-115 Contract # DAAH01-91...Contents Unique Applications for Artificial Neural Networks Acknowledgments Table of Contents Abstract i 1.0 Introduction 1 2.0 The NGO-VRP Solver 2...34 solution is thus obtained through analogy. Because of this activity, artificial neural networks have emerged as a primary artificial intelligence

  18. Artificial immune system applications in computer security

    CERN Document Server

    Tan, Ying

    2016-01-01

    This book provides state-of-the-art information on the use, design, and development of the Artificial Immune System (AIS) and AIS-based solutions to computer security issues. Artificial Immune System: Applications in Computer Security focuses on the technologies and applications of AIS in malware detection proposed in recent years by the Computational Intelligence Laboratory of Peking University (CIL@PKU). It offers a theoretical perspective as well as practical solutions for readers interested in AIS, machine learning, pattern recognition and computer security. The book begins by introducing the basic concepts, typical algorithms, important features, and some applications of AIS. The second chapter introduces malware and its detection methods, especially for immune-based malware detection approaches. Successive chapters present a variety of advanced detection approaches for malware, including Virus Detection System, K-Nearest Neighbour (KNN), RBF networ s, and Support Vector Machines (SVM), Danger theory, ...

  19. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    Science.gov (United States)

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  20. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    Science.gov (United States)

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-01-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas. PMID:28232739

  1. Dynamic Analysis of Emotions through Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Susana Mejía M.

    2016-04-01

    Full Text Available Emotions have been demonstrated to be an important aspect of human intelligence and to play a significant role in human decision-making processes. Emotions are not only feelings but also processes of establishing, maintaining or disrupting the relation between the organism and the environment. In the present paper, several features of social and developmental Psychology are introduced, especially concepts that are related to Theories of Emotions and the Mathematical Tools applied in psychology (i.e., Dynamic Systems and Fuzzy Logic. Later, five models that infer emotions from a single event, in AV-Space, are presented and discussed along with the finding that fuzzy logic can measure human emotional states

  2. Synthetic biology routes to bio-artificial intelligence.

    Science.gov (United States)

    Nesbeth, Darren N; Zaikin, Alexey; Saka, Yasushi; Romano, M Carmen; Giuraniuc, Claudiu V; Kanakov, Oleg; Laptyeva, Tetyana

    2016-11-30

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI).

  3. Operation optimization of distributed generation using artificial intelligent techniques

    Directory of Open Access Journals (Sweden)

    Mahmoud H. Elkazaz

    2016-06-01

    Full Text Available Future smart grids will require an observable, controllable and flexible network architecture for reliable and efficient energy delivery. The use of artificial intelligence and advanced communication technologies is essential in building a fully automated system. This paper introduces a new technique for online optimal operation of distributed generation (DG resources, i.e. a hybrid fuel cell (FC and photovoltaic (PV system for residential applications. The proposed technique aims to minimize the total daily operating cost of a group of residential homes by managing the operation of embedded DG units remotely from a control centre. The target is formed as an objective function that is solved using genetic algorithm (GA optimization technique. The optimal settings of the DG units obtained from the optimization process are sent to each DG unit through a fully automated system. The results show that the proposed technique succeeded in defining the optimal operating points of the DGs that affect directly the total operating cost of the entire system.

  4. Artificial intelligence in the service of system administrators

    Science.gov (United States)

    Haen, C.; Barra, V.; Bonaccorsi, E.; Neufeld, N.

    2012-12-01

    The LHCb online system relies on a large and heterogeneous IT infrastructure made from thousands of servers on which many different applications are running. They run a great variety of tasks: critical ones such as data taking and secondary ones like web servers. The administration of such a system and making sure it is working properly represents a very important workload for the small expert-operator team. Research has been performed to try to automatize (some) system administration tasks, starting in 2001 when IBM defined the so-called “self objectives” supposed to lead to “autonomic computing”. In this context, we present a framework that makes use of artificial intelligence and machine learning to monitor and diagnose at a low level and in a non intrusive way Linux-based systems and their interaction with software. Moreover, the multi agent approach we use, coupled with an “object oriented paradigm” architecture should increase our learning speed a lot and highlight relations between problems.

  5. Artificial Intelligence (AI) Based Tactical Guidance for Fighter Aircraft

    Science.gov (United States)

    McManus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The Knowledge-Based Systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real-time in the Langley Differential Maneuvering Simulator (DMS), are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs. Alternate computing environments and programming approaches, including the use of parallel algorithms and heterogeneous computer networks are discussed, and the design and performance of a prototype concurrent TDG system are presented.

  6. Real-Time Connect 4 Game Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Ahmad M. Sarhan

    2009-01-01

    Full Text Available Problem statement: The study presented a design that converted connect 4 game into a real-time game by incorporating time restraints. Approach: The design used Artificial Intelligence (AI in implementing the connect 4 game. The AI for this game was based on influence mapping. Results: A waterfall-based AI software was developed for a Connect 4 game. Conclusion: A real time connect 4 game was successfully designed and implanted with GUI using C++ programming language.

  7. [I, Robot: artificial intelligence, uniqueness and self-consciousness].

    Science.gov (United States)

    Agrest, Martín

    2008-01-01

    The cinematographic version of the science fiction classical book by Isaac Asimov (I, Robot) is used as a starting point, from the Artificial Intelligence perspective, in order to analyze what it is to have a self. Uniqueness or the exchange impossibility and the continuity of being one self are put forward to understand the movie's characters as well as the possibilities of feeling self conscious.

  8. Exodus - Distributed artificial intelligence for Shuttle firing rooms

    Science.gov (United States)

    Heard, Astrid E.

    1990-01-01

    This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.

  9. Artificial Intelligence in Video Games: Towards a Unified Framework

    OpenAIRE

    Safadi, Firas

    2015-01-01

    The work presented in this dissertation revolves around the problem of designing artificial intelligence (AI) for video games. This problem becomes increasingly challenging as video games grow in complexity. With modern video games frequently featuring sophisticated and realistic environments, the need for smart and comprehensive agents that understand the various aspects of these environments is pressing. Although machine learning techniques are being successfully applied in a multitude of d...

  10. Artificial and Computational Intelligence in Games: Integration (Dagstuhl Seminar 15051)

    OpenAIRE

    Lucas, Simon M.; Mateas, Michael; Preuss, Mike; Spronck, Pieter; Togelius, Julian

    2015-01-01

    This report documents Dagstuhl Seminar 15051 "Artificial and Computational Intelligence in Games: Integration". The focus of the seminar was on the computational techniques used to create, enhance, and improve the experiences of humans interacting with and within virtual environments. Different researchers in this field have different goals, including developing and testing new AI methods, creating interesting and believable non-player characters, improving the game production pipeline, study...

  11. Future of artificial intelligence -- Art, not Science

    CERN Document Server

    Kupervasser, Oleg

    2011-01-01

    Now in the world the technologies relating to design of systems of artificial intellect (AI) actively develop. In this paper it would be desirable to consider not tactical, but strategic problems of this process. Now not many interesting papers on this topic are available, but they exist [1]. It is relating to a fact that most of serious experts is occupied by a solution of tactical problems and often does not think about farther prospects. However the situation at the beginning of cybernetics origin was not that. Then these problems were actively considered. Therefore we will construct our paper as a review of problems of cybernetics as they saw to participants of the symposium in 1961 [2]. We will try to give the review of these prospects from the point of view of the up-to-date physical and cybernetic science and its last reachings.

  12. Distinct Neurocognitive Strategies for Comprehensions of Human and Artificial Intelligence

    Science.gov (United States)

    Ge, Jianqiao; Han, Shihui

    2008-01-01

    Although humans have inevitably interacted with both human and artificial intelligence in real life situations, it is unknown whether the human brain engages homologous neurocognitive strategies to cope with both forms of intelligence. To investigate this, we scanned subjects, using functional MRI, while they inferred the reasoning processes conducted by human agents or by computers. We found that the inference of reasoning processes conducted by human agents but not by computers induced increased activity in the precuneus but decreased activity in the ventral medial prefrontal cortex and enhanced functional connectivity between the two brain areas. The findings provide evidence for distinct neurocognitive strategies of taking others' perspective and inhibiting the process referenced to the self that are specific to the comprehension of human intelligence. PMID:18665211

  13. 浅析人工智能技术在电气自动化控制中的应用%The application of artificial intelligence technology in electrical automation control

    Institute of Scientific and Technical Information of China (English)

    王茂茹

    2016-01-01

    近年来,随着社会经济的不断发展以及市场竞争的日趋激烈,人们对生产力水平与智能化程度要求也逐渐提高.在科学技术推动下,人工智能技术应运而生,能够解决传统人工技术中存在的问题,因而受到人们的广泛关注,尤其是在电气自动化控制领域中的应用,大大的减轻了人工劳动的负担,极大提高了企业工作的效率.因此,本文首先对人工智能技术的概念给出了阐述,并在此基础上介绍了其在电气自动化控制中的应用优势以及具体应用.%In recent years,with the continuous development of social economy and the increasingly fierce market competition,people on the level of productivity and intelligence requirements have gradually increased.In promoting science and technology,artificial intelligence technology,can solve the existing problems in the traditional manual techniques,which has been widely concerned,especially in the field of electrical automation control,greatly reduces the labor burden,which greatly improves the efficiency of the work of enterprises.Therefore,this paper gives an exposition of the concept of artificial intelligence technology,and on this basis,this paper introduces the application of the technology in the electrical automation control and the specific application.

  14. A REVIEW ON ARTIFICIAL INTELLIGENT SYSTEM FOR BEARING CONDITION MONITORING

    Directory of Open Access Journals (Sweden)

    PIYUSH M. PATEL,

    2011-02-01

    Full Text Available Artificial Intelligence (AI is an emerging technology. Research in AI is focused on developing computational approaches to intelligent behavior. The computer programs with which AI could be associated are primarily processes associated with complexity, ambiguity, ndecisiveness, and uncertainty. This present paper surveys the development of a condition monitoring procedure for different types ofbearings, which involves an artificial intelligence method as well as reviewed in order to examine the capability of AI methods and techniques to effectively address various hard-to-solve design tasks and issues relating different types of bearing fault. Although this review cannot be collectively exhaustive, it may be considered as a valuable guide for researchers who are interested in the domain of AI and wish to explore the opportunities offered by fuzzy logic, artificial neural networks and genetic algorithms for further improvement of conditioning monitoring for different types of bearing under different operating conditioning. Recent trends in research on conditioning monitoring using AI for different bearing have also been included.

  15. Novel applications of intelligent systems

    CERN Document Server

    Kasabov, Nikola; Filev, Dimitar; Jotsov, Vladimir

    2016-01-01

    In this carefully edited book some selected results of theoretical and applied research in the field of broadly perceived intelligent systems are presented. The problems vary from industrial to web and problem independent applications. All this is united under the slogan: "Intelligent systems conquer the world”. The book brings together innovation projects with analytical research, invention, retrieval and processing of knowledge and logical applications in technology. This book is aiming to a wide circle of readers and particularly to the young generation of IT/ICT experts who will build the next generations of intelligent systems.

  16. 13th International Symposium on Distributed Computing and Artificial Intelligence 2016

    CERN Document Server

    Semalat, Ali; Bocewicz, Grzegorz; Sitek, Paweł; Nielsen, Izabela; García, Julián; Bajo, Javier

    2016-01-01

    The 13th International Symposium on Distributed Computing and Artificial Intelligence 2016 (DCAI 2016) is a forum to present applications of innovative techniques for studying and solving complex problems. The exchange of ideas between scientists and technicians from both the academic and industrial sector is essential to facilitate the development of systems that can meet the ever-increasing demands of today’s society. The present edition brings together past experience, current work and promising future trends associated with distributed computing, artificial intelligence and their application in order to provide efficient solutions to real problems. This symposium is organized by the University of Sevilla (Spain), Osaka Institute of Technology (Japan), and the Universiti Teknologi Malaysia (Malaysia).

  17. Artificial Intelligence Controls Tape-Recording Sequence

    Science.gov (United States)

    Schwuttke, Ursula M.; Otamura, Roy M.; Zottarelli, Lawrence J.

    1989-01-01

    Developmental expert-system computer program intended to schedule recording of large amounts of data on limited amount of magnetic tape. Schedules recording using two sets of rules. First set incorporates knowledge of locations for recording of new data. Second set incorporates knowledge about issuing commands to recorder. Designed primarily for use on Voyager Spacecraft, also applicable to planning and sequencing in industry.

  18. An Artificial Intelligence Approach for Gears Diagnostics in AUVs.

    Science.gov (United States)

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-04-12

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

  19. An Artificial Intelligence Approach for Gears Diagnostics in AUVs

    Science.gov (United States)

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-01-01

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved. PMID:27077868

  20. An Artificial Intelligence Approach for Gears Diagnostics in AUVs

    Directory of Open Access Journals (Sweden)

    Graciliano Nicolás Marichal

    2016-04-01

    Full Text Available In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles, where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

  1. Readings in artificial intelligence and databases

    CERN Document Server

    Mylopoulos, John

    1988-01-01

    The interaction of database and AI technologies is crucial to such applications as data mining, active databases, and knowledge-based expert systems. This volume collects the primary readings on the interactions, actual and potential, between these two fields. The editors have chosen articles to balance significant early research and the best and most comprehensive articles from the 1980s. An in-depth introduction discusses basic research motivations, giving a survey of the history, concepts, and terminology of the interaction. Major themes, approaches and results, open issues and future

  2. Modeling Common-Sense Decisions in Artificial Intelligence

    Science.gov (United States)

    Zak, Michail

    2010-01-01

    A methodology has been conceived for efficient synthesis of dynamical models that simulate common-sense decision- making processes. This methodology is intended to contribute to the design of artificial-intelligence systems that could imitate human common-sense decision making or assist humans in making correct decisions in unanticipated circumstances. This methodology is a product of continuing research on mathematical models of the behaviors of single- and multi-agent systems known in biology, economics, and sociology, ranging from a single-cell organism at one extreme to the whole of human society at the other extreme. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the three most recent and relevant being Characteristics of Dynamics of Intelligent Systems (NPO -21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; Self-Supervised Dynamical Systems (NPO-30634), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72; and Complexity for Survival of Living Systems (NPO- 43302), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 62. The methodology involves the concepts reported previously, albeit viewed from a different perspective. One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Models of motor dynamics are used to simulate the observable behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. Autonomy is imparted to the decisionmaking process by feedback from mental to motor dynamics. This feedback replaces unavailable external information by information stored in the internal knowledge base. Representation

  3. Intelligent instrumentation principles and applications

    CERN Document Server

    Bhuyan, Manabendra

    2011-01-01

    With the advent of microprocessors and digital-processing technologies as catalyst, classical sensors capable of simple signal conditioning operations have evolved rapidly to take on higher and more specialized functions including validation, compensation, and classification. This new category of sensor expands the scope of incorporating intelligence into instrumentation systems, yet with such rapid changes, there has developed no universal standard for design, definition, or requirement with which to unify intelligent instrumentation. Explaining the underlying design methodologies of intelligent instrumentation, Intelligent Instrumentation: Principles and Applications provides a comprehensive and authoritative resource on the scientific foundations from which to coordinate and advance the field. Employing a textbook-like language, this book translates methodologies to more than 80 numerical examples, and provides applications in 14 case studies for a complete and working understanding of the material. Beginn...

  4. Application of artificial intelligence in sea cucumber cultivate expert system%人工智能在海参养殖专家系统中的应用

    Institute of Scientific and Technical Information of China (English)

    李剑; 韩胜菊; 常亚青; 聂尚宇

    2011-01-01

    设计并实现了海参养殖智能信息平台,以促进海参养殖的信息化,提高生产效率.通过人工神经网络找出影响海参生长和成活的规律,利用遗传算法进行全局搜索,找出能够使成活率和生长率最高的参数组合,使用最小二乘法限定遗传算法的搜索范围,使用模拟退火算法进行遗传算法的变异操作,进行局部搜索.系统投入运行,经过专家鉴定,系统计算结果合理.%An Intelligence information platform of sea cucumber cultivation was designed and built in order to promote the use of information in the field and improve the efficiency. The relation among the factors which work on the survival rate and growth rate of cucumber was researched through artificial neural network. The group of factors which make the highest survival rate and growth rate was found out by using Genetic Algorithm (GA). Some of the search area of genetic algorithms was limited by least-square method. The mutation operation of GA was mixed with simulated annealing algorithm. The system has been in use and get high value from the experts.

  5. Artificial intelligence support for scientific model-building

    Science.gov (United States)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  6. The Application of Artificial Intelligent Neural Network in Smart Grid%人工神经网络在电网中的应用

    Institute of Scientific and Technical Information of China (English)

    曹春耕; 吴琥; 李子欣; 张凡; 涂建坤

    2015-01-01

    智能输电网是人工智能神经网络的典型应用。其采用数据层、通信层、应用层网络结构,采用开放式的数据网络平台。交叉学科的服务商在数据网络平台进行应用层数据发掘与实现,为用户提供相互独立的产品,实现可持续的数据挖掘与应用。文章通过对人工神经网络技术原理进行分析,结合目前智能电网实际应用中出现的技术问题,以“电缆载流量分析系统”为例,介绍了闭环结构的柔性有限元模型,介绍了基于开放式数据平台实施数据挖掘或实现商用功能。%Smart grid is a typical application of artiifcial intelligent neural network. The network structure of smart grid is composed of the data layer, communication layer, application layer and it is the open data network platform. The service providers of interdisciplinary research are working for data mining and implementation to the application layer in the data network platform. They provide independent products for customers and realize the sustainable data mining and application. Through the analysis of the principle of artiifcial intelligent neural network technology, combined with the technical problem of practical application in smart grid and the example of" cable current carrying capacity analysis system ", the article introduces the lfexible ifnite element model, which is closed loop structure, data mining or implementation for commercial function based on open data network platform.

  7. Artificial intelligence in sports on the example of weight training.

    Science.gov (United States)

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  8. Artificial Intelligence in Sports on the Example of Weight Training

    Science.gov (United States)

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key points Artificial intelligence is a promising field for sport-related analysis. Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  9. Artificial Intelligence in Reverse Supply Chain Management: The State of the Art

    CERN Document Server

    Xing, Bo; Battle, Kimberly; Marwala, Tshildzi; Nelwamondo, Fulufhelo V

    2010-01-01

    Product take-back legislation forces manufacturers to bear the costs of collection and disposal of products that have reached the end of their useful lives. In order to reduce these costs, manufacturers can consider reuse, remanufacturing and/or recycling of components as an alternative to disposal. The implementation of such alternatives usually requires an appropriate reverse supply chain management. With the concepts of reverse supply chain are gaining popularity in practice, the use of artificial intelligence approaches in these areas is also becoming popular. As a result, the purpose of this paper is to give an overview of the recent publications concerning the application of artificial intelligence techniques to reverse supply chain with emphasis on certain types of product returns.

  10. Artificial intelligence techniques for embryo and oocyte classification.

    Science.gov (United States)

    Manna, Claudio; Nanni, Loris; Lumini, Alessandra; Pappalardo, Sebastiana

    2013-01-01

    One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology

  11. Using artificial intelligence to control fluid flow computations

    Science.gov (United States)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  12. Artificial intelligence techniques for scheduling Space Shuttle missions

    Science.gov (United States)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  13. Simulation of Artificial Intelligence for Automotive Air-conditioning System

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-mei; CHEN You-hua; CHEN Zhi-jiu

    2002-01-01

    The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.

  14. Chips challenging champions games, computers and artificial intelligence

    CERN Document Server

    Schaeffer, J

    2002-01-01

    One of the earliest dreams of the fledgling field of artificial intelligence (AI) was to build computer programs that could play games as well as or better than the best human players. Despite early optimism in the field, the challenge proved to be surprisingly difficult. However, the 1990s saw amazing progress. Computers are now better than humans in checkers, Othello and Scrabble; are at least as good as the best humans in backgammon and chess; and are rapidly improving at hex, go, poker, and shogi. This book documents the progress made in computers playing games and puzzles. The book is the

  15. Teaching Artificial Intelligence and Logic Programming in a Competitive Environment

    Directory of Open Access Journals (Sweden)

    Pedro RIBEIRO

    2009-04-01

    Full Text Available Motivation plays a key role in the learning process. This paper describes an experience in the context of undergraduate teaching of Artificial Intelligence at the Computer Science Department of the Faculty of Sciences in the University of Porto. A sophisticated competition framework, which involved Prolog programmed contenders and game servers, including an appealing GUI, was developed to motivate students on the deepening of the topics covered in class. We report on the impact that such a competitive setup caused on students' commitment, which surpassed our most optimistic expectations.

  16. PRONET: Basic concepts of a system of Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    S. Lasai

    1999-12-01

    Full Text Available In the work are expounded the principles and basic elements of a system of artificial intelligence. Knowledge representation develops according to the method settled for processing. A thing, a phenomenon can be determined or established by more modules subject to their state as well as the links and relations between them. The system creates a set of blocks (modules for which the concurrent work is pre- established. The volume of knowledge can be also increased without increasing the number of blocks.

  17. [Heart rate measurement algorithm based on artificial intelligence].

    Science.gov (United States)

    Chengxian, Cai; Wei, Wang

    2010-01-01

    Based on the heart rate measurement method using time-lapse image of human cheek, this paper proposes a novel measurement algorithm based on Artificial Intelligence. The algorithm combining with fuzzy logic theory acquires the heart beat point by using the defined fuzzy membership function of each sampled point. As a result, it calculates the heart rate by counting the heart beat points in a certain time period. Experiment shows said algorithm satisfies in operability, accuracy and robustness, which leads to constant practical value.

  18. Artificial Intelligence as a Business Forecasting and Error Handling Tool

    Directory of Open Access Journals (Sweden)

    Md. Tabrez Quasim

    2015-10-01

    Full Text Available  Any business enterprise must rely a lot on how well it can predict the future happenings. To cope up with the modern global customer demand, technological challenges, market competitions etc., any organization is compelled to foresee the future having maximum impact and least chances of errors. The traditional forecasting approaches have some limitations. That is why the business world is adopting the modern Artificial Intelligence based forecasting techniques. This paper has tried to present different types of forecasting and AI techniques that are useful in business forecasting. At the later stage we have also discussed the forecasting errors and the steps involved in planning the AI support system.

  19. Artificial intelligence and expert systems in-flight software testing

    Science.gov (United States)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  20. Artificial intelligence: Collective behaviors of synthetic micromachines

    Science.gov (United States)

    Duan, Wentao

    Synthetic nano- and micromotors function through the conversion of chemical free energy or forms of energy into mechanical motion. Ever since the first reports, such motors have been the subject of growing interest. In addition to motility in response to gradients, these motors interact with each other, resulting in emergent collective behavior like schooling, exclusion, and predator-prey. However, most of these systems only exhibit a single type of collective behavior in response to a certain stimuli. The research projects in the disseratation aim at designing synthetic micromotors that can exhibit transition between various collective behaviors in response to different stimuli, as well as quantitative understanding on the pairwise interaction and propulsion mechanism of such motors. Chapter 1 offers an overview on development of synthetic micromachines. Interactions and collective behaviors of micromotors are also summarized and included. Chapter 2 presents a silver orthophosphate microparticle system that exhibits collective behaviors. Transition between two collective patterns, clustering and dispersion, can be triggered by shift in chemical equilibrium upon the addition or removal of ammonia, in response to UV light, or under two orthogonal stimuli (UV and acoustic field) and powering mechanisms. The transitions can be explained by the self-diffusiophoresis mechanism resulting from either ionic or neutral solute gradients. Potential applications of the reported system in logic gates, microscale pumping, and hierarchical assembly have been demonstrated. Chapter 3 introduces a self-powered oscillatory micromotor system in which active colloids form clusters whose size changes periodically. The system consists of an aqueous suspension of silver orthophosphate particles under UV radiation, in the presence of a mixture of glucose and hydrogen peroxide. The colloid particles first attract with each other to form clusters. After a lag time of around 5min, chemical

  1. Artificial neural network applications in ionospheric studies

    Directory of Open Access Journals (Sweden)

    L. R. Cander

    1998-06-01

    Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.

  2. Non-Human Intelligence and Law : Remarks about Animal Intelligence and Artificial Intelligence

    OpenAIRE

    Desmoulin-Canselier, Sonia

    2012-01-01

    International audience; Le droit réserve-t-il une place pour les intelligences non humaines ? La réponse n’est pas aisée à apporter pour un juriste français. A partir d’observations réalisées sur l’intelligence animale et sur l’intelligence artificielle, quelques constats peuvent être dressés. Une reconnaissance juridique de ces intelligences non humaines est envisageable. Des éléments tirés des données de la science et des pratiques sociales plaident en ce sens. Néanmoins, les formes et les ...

  3. International Conference on Intelligent and Interactive Systems and Applications

    CERN Document Server

    Patnaik, Srikanta; Yu, Zhengtao

    2017-01-01

    This book provides the latest research findings and developments in the field of interactive intelligent systems, addressing diverse areas such as autonomous systems, Internet and cloud computing, pattern recognition and vision systems, mobile computing and intelligent networking, and e-enabled systems. It gathers selected papers from the International Conference on Intelligent and Interactive Systems and Applications (IISA2016) held on June 25–26, 2016 in Shanghai, China. Interactive intelligent systems are among the most important multi-disciplinary research and development domains of artificial intelligence, human–computer interaction, machine learning and new Internet-based technologies. Accordingly, these systems embrace a considerable number of application areas such as autonomous systems, expert systems, mobile systems, recommender systems, knowledge-based and semantic web-based systems, virtual communication environments, and decision support systems, to name a few. To date, research on interactiv...

  4. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    Science.gov (United States)

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg.

  5. Artificial intelligence methods in deregulated power systems operations

    Science.gov (United States)

    Ilic, Jovan

    With the introduction of the power systems deregulation, many classical power transmission and distribution optimization tools became inadequate. Optimal Power Flow and Unit Commitment are common computer programs used in the regulated power industry. This work is addressing the Optimal Power Flow and Unit Commitment in the new deregulated environment. Optimal Power Flow is a high dimensional, non-linear, and non-convex optimization problem. As such, it is even now, after forty years since its introduction, a research topic without a widely accepted solution able to encompass all areas of interest. Unit Commitment is a high dimensional, combinatorial problem which should ideally include the Optimal Power Flow in its solution. The dimensionality of a typical Unit Commitment problem is so great that even the enumeration of all the combinations would take too much time for any practical purposes. This dissertation attacks the Optimal Power Flow problem using non-traditional tools from the Artificial Intelligence arena. Artificial Intelligence optimization methods are based on stochastic principles. Usually, stochastic optimization methods are successful where all other classical approaches fail. We will use Genetic Programming optimization for both Optimal Power Flow and Unit Commitment. Long processing times will also be addressed through supervised machine learning.

  6. Artificial Intelligence Techniques for Automatic Screening of Amblyogenic Factors

    Science.gov (United States)

    Van Eenwyk, Jonathan; Agah, Arvin; Giangiacomo, Joseph; Cibis, Gerhard

    2008-01-01

    Purpose To develop a low-cost automated video system to effectively screen children aged 6 months to 6 years for amblyogenic factors. Methods In 1994 one of the authors (G.C.) described video vision development assessment, a digitizable analog video-based system combining Brückner pupil red reflex imaging and eccentric photorefraction to screen young children for amblyogenic factors. The images were analyzed manually with this system. We automated the capture of digital video frames and pupil images and applied computer vision and artificial intelligence to analyze and interpret results. The artificial intelligence systems were evaluated by a tenfold testing method. Results The best system was the decision tree learning approach, which had an accuracy of 77%, compared to the “gold standard” specialist examination with a “refer/do not refer” decision. Criteria for referral were strabismus, including microtropia, and refractive errors and anisometropia considered to be amblyogenic. Eighty-two percent of strabismic individuals were correctly identified. High refractive errors were also correctly identified and referred 90% of the time, as well as significant anisometropia. The program was less correct in identifying more moderate refractive errors, below +5 and less than −7. Conclusions Although we are pursuing a variety of avenues to improve the accuracy of the automated analysis, the program in its present form provides acceptable cost benefits for detecting ambylogenic factors in children aged 6 months to 6 years. PMID:19277222

  7. Intelligent computing systems emerging application areas

    CERN Document Server

    Virvou, Maria; Jain, Lakhmi

    2016-01-01

    This book at hand explores emerging scientific and technological areas in which Intelligent Computing Systems provide efficient solutions and, thus, may play a role in the years to come. It demonstrates how Intelligent Computing Systems make use of computational methodologies that mimic nature-inspired processes to address real world problems of high complexity for which exact mathematical solutions, based on physical and statistical modelling, are intractable. Common intelligent computational methodologies are presented including artificial neural networks, evolutionary computation, genetic algorithms, artificial immune systems, fuzzy logic, swarm intelligence, artificial life, virtual worlds and hybrid methodologies based on combinations of the previous. The book will be useful to researchers, practitioners and graduate students dealing with mathematically-intractable problems. It is intended for both the expert/researcher in the field of Intelligent Computing Systems, as well as for the general reader in t...

  8. Applications of Artificial Intelligence Methods in Elevator Traffic Pattern Recognition%人工智能方法在电梯交通模式识别中的应用

    Institute of Scientific and Technical Information of China (English)

    郑高

    2014-01-01

    电梯交通模式识别是一项重要的工作,其准确性直接影响到电梯群控系统的整体性能。文章论述了近年来人工神经网络、模糊逻辑、支持向量机、粒子群算法等人工智能方法在电梯交通模式识别中的应用,并指出了未来的发展方向。%Elevator traffic pattern recognition is an important work, its accuracy directly affects the overall performance of an elevator group control system. Applications of artificial intelligence methods such as artificial neural network (ANN), fuzzy logic, support vector machine (SVM) and particle swarm optimization (PSO) algorithm in elevator traffic pattern recognition in recent years are discussed in this paper, and the future development direction is pointed out.

  9. Games and Machine Learning: A Powerful Combination in an Artificial Intelligence Course

    Science.gov (United States)

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-01-01

    Project MLeXAI [Machine Learning eXperiences in Artificial Intelligence (AI)] seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense--a simple real-time strategy game…

  10. "It's Going to Kill Us!" and Other Myths about the Future of Artificial Intelligence

    Science.gov (United States)

    Atkinson, Robert D.

    2016-01-01

    Given the promise that artificial intelligence (AI) holds for economic growth and societal advancement, it is critical that policymakers not only avoid retarding the progress of AI innovation, but also actively support its further development and use. This report provides a primer on artificial intelligence and debunks five prevailing myths that,…

  11. QUESTION ANSWERING SYSTEM BERBASIS ARTIFICIAL INTELLIGENCE MARKUP LANGUAGE SEBAGAI MEDIA INFORMASI

    Directory of Open Access Journals (Sweden)

    Fajrin Azwary

    2016-04-01

    Full Text Available Artificial intelligence technology nowadays, can be processed with a variety of forms, such as chatbot, and the various methods, one of them using Artificial Intelligence Markup Language (AIML. AIML using template matching, by comparing the specific patterns in the database. AIML template design process begins with determining the necessary information, then formed into questions, these questions adapted to AIML pattern. From the results of the study, can be known that the Question-Answering System in the chatbot using Artificial Intelligence Markup Language are able to communicate and deliver information. Keywords: Artificial Intelligence, Template Matching, Artificial Intelligence Markup Language, AIML Teknologi kecerdasan buatan saat ini dapat diolah dengan berbagai macam bentuk, seperti ChatBot, dan berbagai macam metode, salah satunya menggunakan Artificial Intelligence Markup Language (AIML. AIML menggunakan metode template matching yaitu dengan membandingkan pola-pola tertentu pada database. Proses perancangan template AIML diawali dengan menentukan informasi yang diperlukan, kemudian dibentuk menjadi pertanyaan, pertanyaan tersebut disesuaikan dengan bentuk pattern AIML. Hasil penelitian dapat diperoleh bahwa Question-Answering System dalam bentuk ChatBot menggunakan Artificial Intelligence Markup Language dapat berkomunikasi dan menyampaikan informasi. Kata kunci : Kecerdasan Buatan, Pencocokan Pola, Artificial Intelligence Markup Language, AIML

  12. Where Artificial Intelligence and Neuroscience Meet: The Search for Grounded Architectures of Cognition

    Directory of Open Access Journals (Sweden)

    Frank van der Velde

    2010-01-01

    Full Text Available The collaboration between artificial intelligence and neuroscience can produce an understanding of the mechanisms in the brain that generate human cognition. This article reviews multidisciplinary research lines that could achieve this understanding. Artificial intelligence has an important role to play in research, because artificial intelligence focuses on the mechanisms that generate intelligence and cognition. Artificial intelligence can also benefit from studying the neural mechanisms of cognition, because this research can reveal important information about the nature of intelligence and cognition itself. I will illustrate this aspect by discussing the grounded nature of human cognition. Human cognition is perhaps unique because it combines grounded representations with computational productivity. I will illustrate that this combination requires specific neural architectures. Investigating and simulating these architectures can reveal how they are instantiated in the brain. The way these architectures implement cognitive processes could also provide answers to fundamental problems facing the study of cognition.

  13. International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems

    CERN Document Server

    Bhaskar, M; Panigrahi, Bijaya; Das, Swagatam

    2016-01-01

    The book is a collection of high-quality peer-reviewed research papers presented in the first International Conference on International Conference on Artificial Intelligence and Evolutionary Computations in Engineering Systems (ICAIECES -2015) held at Velammal Engineering College (VEC), Chennai, India during 22 – 23 April 2015. The book discusses wide variety of industrial, engineering and scientific applications of the emerging techniques. Researchers from academic and industry present their original work and exchange ideas, information, techniques and applications in the field of Communication, Computing and Power Technologies.

  14. A Suitable Artificial Intelligence Model for Inventory Level Optimization

    Directory of Open Access Journals (Sweden)

    Tereza Sustrova

    2016-05-01

    Full Text Available Purpose of the article: To examine suitable methods of artificial neural networks and their application in business operations, specifically to the supply chain management. The article discusses construction of an artificial neural networks model that can be used to facilitate optimization of inventory level and thus improve the ordering system and inventory management. For the data analysis from the area of wholesale trade with connecting material is used. Methodology/methods: Methods used in the paper consists especially of artificial neural networks and ANN-based modelling. For data analysis and preprocessing, MS Office Excel software is used. As an instrument for neural network forecasting MathWorks MATLAB Neural Network Tool was used. Deductive quantitative methods for research are also used. Scientific aim: The effort is directed at finding whether the method of prediction using artificial neural networks is suitable as a tool for enhancing the ordering system of an enterprise. The research also focuses on finding what architecture of the artificial neural networks model is the most suitable for subsequent prediction. Findings of the research show that artificial neural networks models can be used for inventory management and lot-sizing problem successfully. A network with the TRAINGDX training function and TANSIG transfer function and 6-8-1 architecture can be considered the most suitable for artificial neural network, as it shows the best results for subsequent prediction.. Conclusions resulting from the paper are beneficial for further research. It can be concluded that the created model of artificial neural network can be successfully used for predicting order size and therefore for improving the order cycle of an enterprise.

  15. Northeast Artificial Intelligence Consortium (NAIC). Volume 2. Discussing, Using, and Recognizing Plans

    Science.gov (United States)

    1990-12-01

    knowledge and meta-reasoning. In Proceedings of EP14-85 ("Encontro Portugues de Inteligencia Artificial "), pages 138-154, Oporto, Portugal, 1985. [19] N, J...See reverse) 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION Northeast Artificial Intelligence...ABSTRACTM-2.,-- The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and

  16. Evolvable mathematical models: A new artificial Intelligence paradigm

    Science.gov (United States)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  17. AIonAI: a humanitarian law of artificial intelligence and robotics.

    Science.gov (United States)

    Ashrafian, Hutan

    2015-02-01

    The enduring progression of artificial intelligence and cybernetics offers an ever-closer possibility of rational and sentient robots. The ethics and morals deriving from this technological prospect have been considered in the philosophy of artificial intelligence, the design of automatons with roboethics and the contemplation of machine ethics through the concept of artificial moral agents. Across these categories, the robotics laws first proposed by Isaac Asimov in the twentieth century remain well-recognised and esteemed due to their specification of preventing human harm, stipulating obedience to humans and incorporating robotic self-protection. However the overwhelming predominance in the study of this field has focussed on human-robot interactions without fully considering the ethical inevitability of future artificial intelligences communicating together and has not addressed the moral nature of robot-robot interactions. A new robotic law is proposed and termed AIonAI or artificial intelligence-on-artificial intelligence. This law tackles the overlooked area where future artificial intelligences will likely interact amongst themselves, potentially leading to exploitation. As such, they would benefit from adopting a universal law of rights to recognise inherent dignity and the inalienable rights of artificial intelligences. Such a consideration can help prevent exploitation and abuse of rational and sentient beings, but would also importantly reflect on our moral code of ethics and the humanity of our civilisation.

  18. Implementing Artificial Intelligence Behaviors in a Virtual World

    Science.gov (United States)

    Krisler, Brian; Thome, Michael

    2012-01-01

    In this paper, we will present a look at the current state of the art in human-computer interface technologies, including intelligent interactive agents, natural speech interaction and gestural based interfaces. We describe our use of these technologies to implement a cost effective, immersive experience on a public region in Second Life. We provision our Artificial Agents as a German Shepherd Dog avatar with an external rules engine controlling the behavior and movement. To interact with the avatar, we implemented a natural language and gesture system allowing the human avatars to use speech and physical gestures rather than interacting via a keyboard and mouse. The result is a system that allows multiple humans to interact naturally with AI avatars by playing games such as fetch with a flying disk and even practicing obedience exercises using voice and gesture, a natural seeming day in the park.

  19. Classification of artificial intelligence ids for smurf attack

    CERN Document Server

    Ugtakhbayar, N; Sodbileg, Sh

    2012-01-01

    Many methods have been developed to secure the network infrastructure and communication over the Internet. Intrusion detection is a relatively new addition to such techniques. Intrusion detection systems (IDS) are used to find out if someone has intrusion into or is trying to get it the network. One big problem is amount of Intrusion which is increasing day by day. We need to know about network attack information using IDS, then analysing the effect. Due to the nature of IDSs which are solely signature based, every new intrusion cannot be detected; so it is important to introduce artificial intelligence (AI) methods / techniques in IDS. Introduction of AI necessitates the importance of normalization in intrusions. This work is focused on classification of AI based IDS techniques which will help better design intrusion detection systems in the future. We have also proposed a support vector machine for IDS to detect Smurf attack with much reliable accuracy.

  20. 13th International Conference on Distributed Computing and Artificial Intelligence

    CERN Document Server

    Silvestri, Marcello; González, Sara

    2016-01-01

    The special session Decision Economics (DECON) 2016 is a scientific forum by which to share ideas, projects, researches results, models and experiences associated with the complexity of behavioral decision processes aiming at explaining socio-economic phenomena. DECON 2016 held in the University of Seville, Spain, as part of the 13th International Conference on Distributed Computing and Artificial Intelligence (DCAI) 2016. In the tradition of Herbert A. Simon’s interdisciplinary legacy, this book dedicates itself to the interdisciplinary study of decision-making in the recognition that relevant decision-making takes place in a range of critical subject areas and research fields, including economics, finance, information systems, small and international business, management, operations, and production. Decision-making issues are of crucial importance in economics. Not surprisingly, the study of decision-making has received a growing empirical research efforts in the applied economic literature over the last ...

  1. Implementing Human-like Intuition Mechanism in Artificial Intelligence

    CERN Document Server

    Dundas, Jitesh

    2011-01-01

    Human intuition has been simulated by several research projects using artificial intelligence techniques. Most of these algorithms or models lack the ability to handle complications or diversions. Moreover, they also do not explain the factors influencing intuition and the accuracy of the results from this process. In this paper, we present a simple series based model for implementation of human-like intuition using the principles of connectivity and unknown entities. By using Poker hand datasets and Car evaluation datasets, we compare the performance of some well-known models with our intuition model. The aim of the experiment was to predict the maximum accurate answers using intuition based models. We found that the presence of unknown entities, diversion from the current problem scenario, and identifying weakness without the normal logic based execution, greatly affects the reliability of the answers. Generally, the intuition based models cannot be a substitute for the logic based mechanisms in handling su...

  2. Quantum Interaction Approach in Cognition, Artificial Intelligence and Robotics

    CERN Document Server

    Aerts, Diederik; Sozzo, Sandro

    2011-01-01

    The mathematical formalism of quantum mechanics has been successfully employed in the last years to model situations in which the use of classical structures gives rise to problematical situations, and where typically quantum effects, such as 'contextuality' and 'entanglement', have been recognized. This 'Quantum Interaction Approach' is briefly reviewed in this paper focusing, in particular, on the quantum models that have been elaborated to describe how concepts combine in cognitive science, and on the ensuing identification of a quantum structure in human thought. We point out that these results provide interesting insights toward the development of a unified theory for meaning and knowledge formalization and representation. Then, we analyze the technological aspects and implications of our approach, and a particular attention is devoted to the connections with symbolic artificial intelligence, quantum computation and robotics.

  3. Direction for Artificial Intelligence to Achieve Sapiency Inspired by Homo Sapiens

    Directory of Open Access Journals (Sweden)

    Mahmud Arif Pavel

    2016-10-01

    Full Text Available Artificial intelligence technology has developed significantly in the past decades. Although many computational programs are able to approximate many cognitive abilities of Homo sapiens, the intelligence and sapience level of these programs are not even close to Homo sapiens. Rather than developing a computational system with the intelligent or sapient attribute, I propose to develop a system capable of performing functions that could deem as intelligent or sapient by Homo sapiens or others. I advocate converting current computational systems to educable systems that have built-in capabilities to learn and be taught with a universal programming language. The idea is that this attempt would help to attain computational actions in artificial means, which could be viewed as similar to human intelligent and sapient acts. Although this paper is seemingly speculative, some feasible elements are proposed to advance the field of Artificial Intelligence.

  4. [Artificial intelligence to assist clinical diagnosis in medicine].

    Science.gov (United States)

    Lugo-Reyes, Saúl Oswaldo; Maldonado-Colín, Guadalupe; Murata, Chiharu

    2014-01-01

    Medicine is one of the fields of knowledge that would most benefit from a closer interaction with Computer studies and Mathematics by optimizing complex, imperfect processes such as differential diagnosis; this is the domain of Machine Learning, a branch of Artificial Intelligence that builds and studies systems capable of learning from a set of training data, in order to optimize classification and prediction processes. In Mexico during the last few years, progress has been made on the implementation of electronic clinical records, so that the National Institutes of Health already have accumulated a wealth of stored data. For those data to become knowledge, they need to be processed and analyzed through complex statistical methods, as it is already being done in other countries, employing: case-based reasoning, artificial neural networks, Bayesian classifiers, multivariate logistic regression, or support vector machines, among other methodologies; to assist the clinical diagnosis of acute appendicitis, breast cancer and chronic liver disease, among a wide array of maladies. In this review we shift through concepts, antecedents, current examples and methodologies of machine learning-assisted clinical diagnosis.

  5. ARTIFICIAL INTELLIGENCE IN SPORTS BIOMECHANICS: NEW DAWN OR FALSE HOPE?

    Directory of Open Access Journals (Sweden)

    Roger Bartlett

    2006-12-01

    Full Text Available This article reviews developments in the use of Artificial Intelligence (AI in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques' and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics.

  6. Predicting chick body mass by artificial intelligence-based models

    Directory of Open Access Journals (Sweden)

    Patricia Ferreira Ponciano Ferraz

    2014-07-01

    Full Text Available The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks - with the variables dry-bulb air temperature, duration of thermal stress (days, chick age (days, and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs and neuro-fuzzy networks (NFNs. The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

  7. Implementation and Validation of Artificial Intelligence Techniques for Robotic Surgery

    Directory of Open Access Journals (Sweden)

    Aarshay Jain

    2014-03-01

    Full Text Available The primary focus of this study is implementation of Artificial Intelligence (AI technique for developing an inverse kinematics solution for the Raven-IITM surgical research robot [1]. First, the kinematic model of the Raven-IITM robot was analysed along with the proposed analytical solution [2] for inverse kinematics problem. Next, The Artificial Neural Network (ANN techniques was implemented. The training data for the same was careful selected by keeping manipulability constraints in mind. Finally, the results were verified using elliptical trajectories. The originally proposed analytical solution was found to be computationally inefficient, gave multiple solutions and its existence necessitates the use of the Standard Raven-IITM Tool [2]. The solution devised using ANN technique gave a single solution which was thirteen times faster than the original solution. Moreover, it is generic in nature and can be used for any type of tool. Thus, a novel solution for solving the inverse kinematics problem of the Raven-II surgical robot was formulated and confirmed.

  8. Improved RMR Rock Mass Classification Using Artificial Intelligence Algorithms

    Science.gov (United States)

    Gholami, Raoof; Rasouli, Vamegh; Alimoradi, Andisheh

    2013-09-01

    Rock mass classification systems such as rock mass rating (RMR) are very reliable means to provide information about the quality of rocks surrounding a structure as well as to propose suitable support systems for unstable regions. Many correlations have been proposed to relate measured quantities such as wave velocity to rock mass classification systems to limit the associated time and cost of conducting the sampling and mechanical tests conventionally used to calculate RMR values. However, these empirical correlations have been found to be unreliable, as they usually overestimate or underestimate the RMR value. The aim of this paper is to compare the results of RMR classification obtained from the use of empirical correlations versus machine-learning methodologies based on artificial intelligence algorithms. The proposed methods were verified based on two case studies located in northern Iran. Relevance vector regression (RVR) and support vector regression (SVR), as two robust machine-learning methodologies, were used to predict the RMR for tunnel host rocks. RMR values already obtained by sampling and site investigation at one tunnel were taken into account as the output of the artificial networks during training and testing phases. The results reveal that use of empirical correlations overestimates the predicted RMR values. RVR and SVR, however, showed more reliable results, and are therefore suggested for use in RMR classification for design purposes of rock structures.

  9. Approximate Matching as a Key Technique in Organization of Natural and Artificial Intelligence

    Science.gov (United States)

    Mack, Marilyn; Lapir, Gennadi M.; Berkovich, Simon

    2000-01-01

    The basic property of an intelligent system, natural or artificial, is "understanding". We consider the following formalization of the idea of "understanding" among information systems. When system I issues a request to system 2, it expects a certain kind of desirable reaction. If such a reaction occurs, system I assumes that its request was "understood". In application to simple, "push-button" systems the situation is trivial because in a small system the required relationship between input requests and desired outputs could be specified exactly. As systems grow, the situation becomes more complex and matching between requests and actions becomes approximate.

  10. Validating a UAV artificial intelligence control system using an autonomous test case generator

    Science.gov (United States)

    Straub, Jeremy; Huber, Justin

    2013-05-01

    The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.

  11. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, F.J.O. [Instituto de Engenharia Nuclear, Cidade Universitaria, Rio de Janeiro, CEP 21945-970, Caixa Postal 68550 (Brazil)], E-mail: fferreira@ien.gov.br; Crispim, V.R.; Silva, A.X. [DNC/Poli, PEN COPPE CT, UFRJ Universidade Federal do Rio de Janeiro, CEP 21941-972, Caixa Postal 68509, Rio de Janeiro (Brazil)

    2010-06-15

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials.

  12. A modern artificial intelligence Playware art tool for psychological testing of group dynamics

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2015-01-01

    of physical and functional modules, we created an artistic instantiation of such a concept with the Parallel Relational Universes, allowing arts alumni to remix artistic expressions. Here, we report the data emerged from a first pre-test, run with gymnasium's alumni. We then report both the artistic...... and the psychological findings. We describe the modern artificial intelligence implementation of this instrument. Between an art piece and a psychological test, at a first cognitive analysis, it seems to be a promising research tool. In the discussion we speculate about potential industrial applications, as well....

  13. Applications of intelligent telerobotic control

    Energy Technology Data Exchange (ETDEWEB)

    Herget, C.J.; Grasz, E.L.; Merrill, R.D.

    1991-10-01

    The telerobotics laboratory at Lawrence Livermore National Laboratory is a facility for developing and testing new concepts in robotics controls. Research and development is being conducted in computer vision; adaptive control; software architectures for real-time, intelligent control; artificial neural networks; fuzzy logic controllers; telepresence; and path planning and collision avoidance. The equipment in the telerobotics laboratory includes a six degree of freedom articulating robot arm with controller, gripper, and force and torque sensor; a 3D CAD workstation with software to model the work cell environment and simulate the robot dynamics; a six degree of freedom forceball for operator input to the telerobotics controller and the robot simulation; and a computer with a real-time operating system. Soon to be added are a 3D viewing system and a force reflecting hand controller. This paper describes one of the research and development efforts currently in progress on this program. 3 refs., 3 figs.

  14. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    Science.gov (United States)

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  15. An Application of Artificial Intelligence Electric Management System in University Apartment Fire-proof Subject%智能用电管理系统在高校学生公寓防火中的应用

    Institute of Scientific and Technical Information of China (English)

    杨旭东; 郝向民

    2015-01-01

    电气火灾在火灾统计中所占比例较高,年平均在30%左右,而高校学生公寓由于自身管理特点,因用电引起的火灾更是高达50~60%,影响了高校的正常教学秩序,学生公寓安全用电成为高校消防安全工作的重点和难点。为加强和规范高等学校的消防安全管理,预防和减少火灾危害,保障师生员工生命财产和学校财产安全,根据目前公寓楼消防安全管理状况,在学生公寓采用智能用电管理系统效果明显。本文结合实例对学校公寓楼智能用电管理系统进行了分析介绍,并对系统在高校公寓防火工作中的应用进行了探讨。%There is a high proportion of 30%in electrical fire disaster statistics. It rises up to 50%-60%in college student’s dormitory fire disaster because of college student’s special management features. So it gives a serious affect on college teaching and administration to change into a key and difficult point in the college campus’s fire control and protection system. In order to avoid fire affairs and reduce fire damage and protect all staff and students and college property, this paper showed that this technical prevention-college dormitory’s artificial intelligence electric management system had a good practical effect base on actual situation. This paper gave a deep investigation and analysis on college dormitory’s artificial intelligence electric management system with real examples to make a practical application about how to use this system to control and protect fire in college dormitory.

  16. Artificial Neural Networks Applications: from Aircraft Design Optimization to Orbiting Spacecraft On-board Environment Monitoring

    Science.gov (United States)

    Jules, Kenol; Lin, Paul P.

    2002-01-01

    This paper reviews some of the recent applications of artificial neural networks taken from various works performed by the authors over the last four years at the NASA Glenn Research Center. This paper focuses mainly on two areas. First, artificial neural networks application in design and optimization of aircraft/engine propulsion systems to shorten the overall design cycle. Out of that specific application, a generic design tool was developed, which can be used for most design optimization process. Second, artificial neural networks application in monitoring the microgravity quality onboard the International Space Station, using on-board accelerometers for data acquisition. These two different applications are reviewed in this paper to show the broad applicability of artificial intelligence in various disciplines. The intent of this paper is not to give in-depth details of these two applications, but to show the need to combine different artificial intelligence techniques or algorithms in order to design an optimized or versatile system.

  17. 3rd Euro-China Conference on Intelligent Data Analysis and Applications

    CERN Document Server

    Snášel, Václav; Sung, Tien-Wen; Wang, Xiao

    2017-01-01

    This book gathers papers presented at the ECC 2016, the Third Euro-China Conference on Intelligent Data Analysis and Applications, which was held in Fuzhou City, China from November 7 to 9, 2016. The aim of the ECC is to provide an internationally respected forum for scientific research in the broad areas of intelligent data analysis, computational intelligence, signal processing, and all associated applications of artificial intelligence (AI). The third installment of the ECC was jointly organized by Fujian University of Technology, China, and VSB-Technical University of Ostrava, Czech Republic. The conference was co-sponsored by Taiwan Association for Web Intelligence Consortium, and Immersion Co., Ltd.

  18. Intelligent control based on intelligent characteristic model and its application

    Institute of Scientific and Technical Information of China (English)

    吴宏鑫; 王迎春; 邢琰

    2003-01-01

    This paper presents a new intelligent control method based on intelligent characteristic model for a kind of complicated plant with nonlinearities and uncertainties, whose controlled output variables cannot be measured on line continuously. The basic idea of this method is to utilize intelligent techniques to form the characteristic model of the controlled plant according to the principle of combining the char-acteristics of the plant with the control requirements, and then to present a new design method of intelli-gent controller based on this characteristic model. First, the modeling principles and expression of the intelligent characteristic model are presented. Then based on description of the intelligent characteristic model, the design principles and methods of the intelligent controller composed of several open-loops and closed-loops sub controllers with qualitative and quantitative information are given. Finally, the ap-plication of this method in alumina concentration control in the real aluminum electrolytic process is in-troduced. It is proved in practice that the above methods not only are easy to implement in engineering design but also avoid the trial-and-error of general intelligent controllers. It has taken better effect in the following application: achieving long-term stable control of low alumina concentration and increasing the controlled ratio of anode effect greatly from 60% to 80%.

  19. A comprehensive overview of the applications of artificial life.

    Science.gov (United States)

    Kim, Kyung-Joong; Cho, Sung-Bae

    2006-01-01

    We review the applications of artificial life (ALife), the creation of synthetic life on computers to study, simulate, and understand living systems. The definition and features of ALife are shown by application studies. ALife application fields treated include robot control, robot manufacturing, practical robots, computer graphics, natural phenomenon modeling, entertainment, games, music, economics, Internet, information processing, industrial design, simulation software, electronics, security, data mining, and telecommunications. In order to show the status of ALife application research, this review primarily features a survey of about 180 ALife application articles rather than a selected representation of a few articles. Evolutionary computation is the most popular method for designing such applications, but recently swarm intelligence, artificial immune network, and agent-based modeling have also produced results. Applications were initially restricted to the robotics and computer graphics, but presently, many different applications in engineering areas are of interest.

  20. ARTIFICIAL INTELLIGENCE IN SPORTS ON THE EXAMPLE OF WEIGHT TRAINING

    Directory of Open Access Journals (Sweden)

    risto Novatchkov

    2013-03-01

    Full Text Available The overall goal of the present study was to illustrate the potential of artificial intelligence (AI techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice.

  1. On the Need for Artificial Intelligence and Advanced Test and Evaluation Methods for Space Exploration

    Science.gov (United States)

    Scheidt, D. H.; Hibbitts, C. A.; Chen, M. H.; Paxton, L. J.; Bekker, D. L.

    2017-02-01

    Implementing mature artificial intelligence would create the ability to significantly increase the science return from a mission, while potentially saving costs in mission and instrument operations, and solving currently intractable problems.

  2. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    Science.gov (United States)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  3. Promising synergies of simulation model management, software engineering, artificial intelligence, and general system theories

    Energy Technology Data Exchange (ETDEWEB)

    Oren, T.I.

    1982-01-01

    Simulation is viewed within the model management paradigm. Major components of simulation systems as well as elements of model management are outlined. Possible synergies of simulation model management, software engineering, artificial intelligence, and general system theories are systematized. 21 references.

  4. Color regeneration from reflective color sensor using an artificial intelligent technique.

    Science.gov (United States)

    Saracoglu, Ömer Galip; Altural, Hayriye

    2010-01-01

    A low-cost optical sensor based on reflective color sensing is presented. Artificial neural network models are used to improve the color regeneration from the sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. The artificial intelligent models presented in this work enable color regeneration from analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent technique enables the sensor probe for use of a colorimetric sensor that relates color changes to analog voltages.

  5. Integrating artificial and human intelligence into tablet production process.

    Science.gov (United States)

    Gams, Matjaž; Horvat, Matej; Ožek, Matej; Luštrek, Mitja; Gradišek, Anton

    2014-12-01

    We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data.

  6. Parameter tuning of PVD process based on artificial intelligence technique

    Science.gov (United States)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  7. Applying artificial intelligence to clinical guidelines: the GLARE approach.

    Science.gov (United States)

    Terenziani, Paolo; Montani, Stefania; Bottrighi, Alessio; Molino, Gianpaolo; Torchio, Mauro

    2008-01-01

    We present GLARE, a domain-independent system for acquiring, representing and executing clinical guidelines (GL). GLARE is characterized by the adoption of Artificial Intelligence (AI) techniques in the definition and implementation of the system. First of all, a high-level and user-friendly knowledge representation language has been designed. Second, a user-friendly acquisition tool, which provides expert physicians with various forms of help, has been implemented. Third, a tool for executing GL on a specific patient has been made available. At all the levels above, advanced AI techniques have been exploited, in order to enhance flexibility and user-friendliness and to provide decision support. Specifically, this chapter focuses on the methods we have developed in order to cope with (i) automatic resource-based adaptation of GL, (ii) representation and reasoning about temporal constraints in GL, (iii) decision making support, and (iv) model-based verification. We stress that, although we have devised such techniques within the GLARE project, they are mostly system-independent, so that they might be applied to other guideline management systems.

  8. Using artificial intelligence methods to design new conducting polymers

    Directory of Open Access Journals (Sweden)

    Ronaldo Giro

    2003-12-01

    Full Text Available In the last years the possibility of creating new conducting polymers exploring the concept of copolymerization (different structural monomeric units has attracted much attention from experimental and theoretical points of view. Due to the rich carbon reactivity an almost infinite number of new structures is possible and the procedure of trial and error has been the rule. In this work we have used a methodology able of generating new structures with pre-specified properties. It combines the use of negative factor counting (NFC technique with artificial intelligence methods (genetic algorithms - GAs. We present the results for a case study for poly(phenylenesulfide phenyleneamine (PPSA, a copolymer formed by combination of homopolymers: polyaniline (PANI and polyphenylenesulfide (PPS. The methodology was successfully applied to the problem of obtaining binary up to quinternary disordered polymeric alloys with a pre-specific gap value or exhibiting metallic properties. It is completely general and can be in principle adapted to the design of new classes of materials with pre-specified properties.

  9. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wali, W A; Hassan, K H; Cullen, J D; Al-Shamma' a, A I; Shaw, A; Wylie, S R, E-mail: w.wali@2009.ljmu.ac.uk [Built Environment and Sustainable Technologies Institute (BEST), School of the Built Environment, Faculty of Technology and Environment Liverpool John Moores University, Byrom Street, Liverpool L3 3AF (United Kingdom)

    2011-08-17

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  10. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    Science.gov (United States)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  11. A grounded theory of abstraction in artificial intelligence.

    Science.gov (United States)

    Zucker, Jean-Daniel

    2003-07-29

    In artificial intelligence, abstraction is commonly used to account for the use of various levels of details in a given representation language or the ability to change from one level to another while preserving useful properties. Abstraction has been mainly studied in problem solving, theorem proving, knowledge representation (in particular for spatial and temporal reasoning) and machine learning. In such contexts, abstraction is defined as a mapping between formalisms that reduces the computational complexity of the task at stake. By analysing the notion of abstraction from an information quantity point of view, we pinpoint the differences and the complementary role of reformulation and abstraction in any representation change. We contribute to extending the existing semantic theories of abstraction to be grounded on perception, where the notion of information quantity is easier to characterize formally. In the author's view, abstraction is best represented using abstraction operators, as they provide semantics for classifying different abstractions and support the automation of representation changes. The usefulness of a grounded theory of abstraction in the cartography domain is illustrated. Finally, the importance of explicitly representing abstraction for designing more autonomous and adaptive systems is discussed.

  12. Macrocell path loss prediction using artificial intelligence techniques

    Science.gov (United States)

    Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.

    2014-04-01

    The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.

  13. Classification of stilbenoid compounds by entropy of artificial intelligence.

    Science.gov (United States)

    Castellano, Gloria; Lara, Ana; Torrens, Francisco

    2014-01-01

    A set of 66 stilbenoid compounds is classified into a system of periodic properties by using a procedure based on artificial intelligence, information entropy theory. Eight characteristics in hierarchical order are used to classify structurally the stilbenoids. The former five features mark the group or column while the latter three are used to indicate the row or period in the table of periodic classification. Those stilbenoids in the same group are suggested to present similar properties. Furthermore, compounds also in the same period will show maximum resemblance. In this report, the stilbenoids in the table are related to experimental data of bioactivity and antioxidant properties available in the technical literature. It should be noted that stilbenoids with glycoxyl groups esterified with benzoic acid derivatives, in the group g11000 in the extreme right of the periodic table, show the greatest antioxidant activity as confirmed by experiments in the bibliography. Moreover, the second group from the right (g10111) contains E-piceatannol, which antioxidant activity is recognized in the literature. The experiments confirm our results of the periodic classification.

  14. Can Artificial Intelligences Suffer from Mental Illness? A Philosophical Matter to Consider.

    Science.gov (United States)

    Ashrafian, Hutan

    2017-04-01

    The potential for artificial intelligences and robotics in achieving the capacity of consciousness, sentience and rationality offers the prospect that these agents have minds. If so, then there may be a potential for these minds to become dysfunctional, or for artificial intelligences and robots to suffer from mental illness. The existence of artificially intelligent psychopathology can be interpreted through the philosophical perspectives of mental illness. This offers new insights into what it means to have either robot or human mental disorders, but may also offer a platform on which to examine the mechanisms of biological or artificially intelligent psychiatric disease. The possibility of mental illnesses occurring in artificially intelligent individuals necessitates the consideration that at some level, they may have achieved a mental capability of consciousness, sentience and rationality such that they can subsequently become dysfunctional. The deeper philosophical understanding of these conditions in mankind and artificial intelligences might therefore offer reciprocal insights into mental health and mechanisms that may lead to the prevention of mental dysfunction.

  15. An Examination of Application of Artificial Neural Network in Cognitive Radios

    Science.gov (United States)

    Bello Salau, H.; Onwuka, E. N.; Aibinu, A. M.

    2013-12-01

    Recent advancement in software radio technology has led to the development of smart device known as cognitive radio. This type of radio fuses powerful techniques taken from artificial intelligence, game theory, wideband/multiple antenna techniques, information theory and statistical signal processing to create an outstanding dynamic behavior. This cognitive radio is utilized in achieving diverse set of applications such as spectrum sensing, radio parameter adaptation and signal classification. This paper contributes by reviewing different cognitive radio implementation that uses artificial intelligence such as the hidden markov models, metaheuristic algorithm and artificial neural networks (ANNs). Furthermore, different areas of application of ANNs and their performance metrics based approach are also examined.

  16. On the track of Artificial Intelligence: Learning with Intelligent Personal Assistants

    Directory of Open Access Journals (Sweden)

    Nil Goksel Canbek

    2016-01-01

    Full Text Available In a technology dominated world, useful and timely information can be accessed quickly via Intelligent Personal Assistants (IPAs.  By the use of these assistants built into mobile operating systems, daily electronic tasks of a user can be accomplished 24/7. Such tasks like taking dictation, getting turn-by-turn directions, vocalizing email messages, reminding daily appointments, setting reminders, responding any factual questions and invoking apps can be completed by  IPAs such as Apple’s Siri, Google Now and Microsoft Cortana. The mentioned assistants programmed within Artificial Intelligence (AI do create an interaction between human and computer through a natural language used in digital communication. In this regard, the overall purpose of this study is to examine the potential use of IPAs that use advanced cognitive computing technologies and Natural Language Processing (NLP for learning. To achieve this purpose, the working system of IPAs is reviewed briefly within the scope of AI that has recently become smarter to predict, comprehend and carry out multi-step and complex requests of users.

  17. Artificial Intelligence Information Sources for the Beginner and Expert

    Science.gov (United States)

    1991-05-01

    Francaise de Robotique In- Expert Systems for Information Management dustrielle) Expert Systems in Government Symposium. Pro- Al & Society: The Jour...Newsletter Machine Intelligence. Robots: Jour. de I& Robotique Industreielle at Machine Intelligence and Pattern Recognition de la Productique

  18. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    Science.gov (United States)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  19. Techniques of artificial intelligence applied to the electric power expansion distribution system planning problem; Tecnicas de inteligencia artificial aplicadas ao problema de planejamento da expansao do sistema de distribuicao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Froes, Salete Maria

    1996-07-01

    A tool named Constrained Decision Problem (CDP), which is based on Artificial Intelligence and a specific application to Distribution System Planning is described. The CDP allows multiple objective optimization that does not, necessarily, result in a single optimal solution. First, a literature review covers published works related to Artificial Intelligence applications to Electric Power Distribution Systems, emphasizing feeder restoration and reconfiguration. Some concepts related to Artificial Intelligence are described, with particular attention to Planning and to Constrained Decision Problems. Following, an Electric Power System planning model is addressed by using the CDP tool. Some case studies illustrate the Distribution Planning model, which are compared with standard optimization models. Concluding, some comments establishing the possibilities of CDP applications are followed by a view on future developments. (author)

  20. Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases.

    Science.gov (United States)

    Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara

    2017-01-01

    Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.

  1. Artificial Intelligence and the Brave New World of Eclipsing Binaries

    Science.gov (United States)

    Devinney, E.; Guinan, E.; Bradstreet, D.; DeGeorge, M.; Giammarco, J.; Alcock, C.; Engle, S.

    2005-12-01

    The explosive growth of observational capabilities and information technology over the past decade has brought astronomy to a tipping point - we are going to be deluged by a virtual fire hose (more like Niagara Falls!) of data. An important component of this deluge will be newly discovered eclipsing binary stars (EBs) and other valuable variable stars. As exploration of the Local Group Galaxies grows via current and new ground-based and satellite programs, the number of EBs is expected to grow explosively from some 10,000 today to 8 million as GAIA comes online. These observational advances will present a unique opportunity to study the properties of EBs formed in galaxies with vastly different dynamical, star formation, and chemical histories than our home Galaxy. Thus the study of these binaries (e.g., from light curve analyses) is expected to provide clues about the star formation rates and dynamics of their host galaxies as well as the possible effects of varying chemical abundance on stellar evolution and structure. Additionally, minimal-assumption-based distances to Local Group objects (and possibly 3-D mapping within these objects) shall be returned. These huge datasets of binary stars will provide tests of current theories (or suggest new theories) regarding binary star formation and evolution. However, these enormous data will far exceed the capabilities of analysis via human examination. To meet the daunting challenge of successfully mining this vast potential of EBs and variable stars for astrophysical results with minimum human intervention, we are developing new data processing techniques and methodologies. Faced with an overwhelming volume of data, our goal is to integrate technologies of Machine Learning and Pattern Processing (Artificial Intelligence [AI]) into the data processing pipelines of the major current and future ground- and space-based observational programs. Data pipelines of the future will have to carry us from observations to

  2. Northeast Artificial Intelligence Consortium Annual Report 1987. Volume 2, Part B. Discussing, Using, and Recognizing Plans

    Science.gov (United States)

    1989-03-01

    1978. Williams. B.C. Qualitative Analysis of MOS Circuits. Artificial Inteligence . 1984. 24.. Wilson. K. From Association to Structure. Amsterdam:North...D-A208 378 RADC-TR-88-324, Vol II (of nine), Part B Interim Report March 1969 4. NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1987...II (of nine), Part B 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Northeast Artificial (ff ’aolicbl

  3. Artificial intelligence and Internet of Things in a “smart home” context

    DEFF Research Database (Denmark)

    Lynggaard, Per

    We are currently witnessing an evolution from building and home automation to smart homes, driven by progressing maturity of the Internet of Things and the use of artificial intelligence. However, significant technological challenges such as immature home intelligence, huge network and central...... with autonomous behavior, parallel processing, context awareness, and node communication. In particular, it introduces a novel approach to adapt and distribute the artificial intelligence to match the distributed system architecture in the smart home. The proposed solution addresses important issues such as real......-time learning, temporal detection with a high probability, battery lifetime, network communication, integration with smart objects, and embedded processing power. A multi-agent smart object model is provided to support the artificial intelligence framework with a new distributed architecture. This model focuses...

  4. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    Science.gov (United States)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  5. Evaluation of an artificial intelligence program for estimating occupational exposures.

    Science.gov (United States)

    Johnston, Karen L; Phillips, Margaret L; Esmen, Nurtan A; Hall, Thomas A

    2005-03-01

    Estimation and Assessment of Substance Exposure (EASE) is an artificial intelligence program developed by UK's Health and Safety Executive to assess exposure. EASE computes estimated airborne concentrations based on a substance's vapor pressure and the types of controls in the work area. Though EASE is intended only to make broad predictions of exposure from occupational environments, some occupational hygienists might attempt to use EASE for individual exposure characterizations. This study investigated whether EASE would accurately predict actual sampling results from a chemical manufacturing process. Personal breathing zone time-weighted average (TWA) monitoring data for two volatile organic chemicals--a common solvent (toluene) and a specialty monomer (chloroprene)--present in this manufacturing process were compared to EASE-generated estimates. EASE-estimated concentrations for specific tasks were weighted by task durations reported in the monitoring record to yield TWA estimates from EASE that could be directly compared to the measured TWA data. Two hundred and six chloroprene and toluene full-shift personal samples were selected from eight areas of this manufacturing process. The Spearman correlation between EASE TWA estimates and measured TWA values was 0.55 for chloroprene and 0.44 for toluene, indicating moderate predictive values for both compounds. For toluene, the interquartile range of EASE estimates at least partially overlapped the interquartile range of the measured data distributions in all process areas. The interquartile range of EASE estimates for chloroprene fell above the interquartile range of the measured data distributions in one process area, partially overlapped the third quartile of the measured data in five process areas and fell within the interquartile range in two process areas. EASE is not a substitute for actual exposure monitoring. However, EASE can be used in conditions that cannot otherwise be sampled and in preliminary

  6. The Application of Artificial Potential Field in Intelligent Unmanned Vehicle Obstacle Avoidance System%基于改进人工势场法的智能无人车路径规划仿真研究

    Institute of Scientific and Technical Information of China (English)

    刘洲洲

    2013-01-01

    The traditional artificial potential field fails in the local minimum path problem,so that the intelligent unmanned cars can not reach the target point.An improved method of angle offset is presented here,Introduce how intelligent unmanned vehicles sonar sensor works.The simulation results show the effectiveness of the method.%传统的人工势场法由于存在局部极小值问题,使智能无人车无法到达目标点.本文提出一种角度偏移的改进人工势场方法来进行避障的路径规划.介绍传统人工势场模型,详细介绍改进人工势场方法,并且对改进人工势场法进行仿真,实验证明方法的有效性.

  7. Artificial intelligence approach in analysis of DNA sequences.

    Science.gov (United States)

    Brézillon, P J; Zaraté, P; Saci, F

    1993-01-01

    We present an approach for designing a knowledge-based system, called Sequence Acquisition In Context (SAIC), that will be able to cooperate with a biologist in the analysis of DNA sequences. The main task of the system is the acquisition of the expert knowledge that the biologist uses for solving ambiguities from gel autoradiograms, with the aim of re-using it later for solving similar ambiguities. The various types of expert knowledge constitute what we call the contextual knowledge of the sequence analysis. Contextual knowledge deals with the unavoidable problems that are common in the study of the living material (eg noise on data, difficulties of observations). Indeed, the analysis of DNA sequences from autoradiograms belongs to an emerging and promising area of investigation, namely reasoning with images. The SAIC project is developed in a theoretical framework that is shared with other applications. Not all tasks have the same importance in each application. We use this observation for designing an intelligent assistant system with three applications. In the SAIC project, we focus on knowledge acquisition, human-computer interaction and explanation. The project will benefit research in the two other applications. We also discuss our SAIC project in the context of large international projects that aim to re-use and share knowledge in a repository.

  8. The Virtual UNICOS Process Expert: integration of Artificial Intelligence tools in Control Systems

    CERN Multimedia

    Vilches Calvo, I; Barillere, R

    2009-01-01

    UNICOS is a CERN framework to produce control applications. It provides operators with ways to interact with all process items from the most simple (e.g. I/O channels) to the most abstract objects (e.g. a part of the plant). This possibility of fine grain operation is particularly useful to recover from abnormal situations if operators have the required knowledge. The Virtual UNICOS Process Expert project aims at providing operators with means to handle difficult operation cases for which the intervention of process experts is usually requested. The main idea of project is to use the openness of the UNICOS-based applications to integrate tools (e.g. Artificial Intelligence tools) which will act as Process Experts to analyze complex situations, to propose and to execute smooth recovery procedures.

  9. Artificial intelligence technology assessment for the US Army Depot System Command

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, K A

    1991-07-01

    This assessment of artificial intelligence (AI) has been prepared for the US Army's Depot System Command (DESCOM) by Pacific Northwest Laboratory. The report describes several of the more promising AI technologies, focusing primarily on knowledge-based systems because they have been more successful in commercial applications than any other AI technique. The report also identifies potential Depot applications in the areas of procedural support, scheduling and planning, automated inspection, training, diagnostics, and robotic systems. One of the principal objectives of the report is to help decisionmakers within DESCOM to evaluate AI as a possible tool for solving individual depot problems. The report identifies a number of factors that should be considered in such evaluations. 22 refs.

  10. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Science.gov (United States)

    Pathak, Lakshmi; Singh, Vineeta; Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C K M; Mishra, B N

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  11. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Science.gov (United States)

    Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C. K. M.; Mishra, B. N.

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500. PMID:26368924

  12. 26th International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA/AIE)

    CERN Document Server

    Bosse, Tibor; Hindriks, Koen; Hoogendoorn, Mark; Jonker, Catholijn; Treur, Jan; Contemporary Challenges and Solutions in Applied Artificial Intelligence

    2013-01-01

      Since its origination in the mid-twentieth century, the area of Artificial Intelligence (AI) has undergone a number of developments. While the early interest in AI was mainly triggered by the desire to develop artifacts that show the same intelligent behavior as humans, nowadays scientists have realized that research in AI involves a multitude of separate challenges, besides the traditional goal to replicate human intelligence. In particular, recent history has pointed out that a variety of ‘intelligent’ computational techniques, part of which are inspired by human intelligence, may be successfully applied to solve all kinds of practical problems. This sub-area of AI, which has its main emphasis on applications of intelligent systems to solve real-life problems, is currently known under the term Applied Intelligence.   The objective of the International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA/AIE) is to promote and disseminate recent research ...

  13. Artificial intelligence and design: Opportunities, research problems and directions

    Science.gov (United States)

    Amarel, Saul

    1990-01-01

    The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions

  14. Application of Artificial Intelligence and Virtual Reality Technology in Rehabilitation Training of Patients with Autism%人工智能和虚拟现实技术在孤独症患者康复训练中的应用

    Institute of Scientific and Technical Information of China (English)

    张静; 常燕群

    2013-01-01

      在上世纪80年代,人们对孤独症的认识普遍不足,甚至把它归类为精神障碍。在近30多年的研究中,虽然其发病机制仍然未明,发病率却在逐年递增。孤独症临床表现各异,缺乏交流与互动,甚至生活不能自理,给家庭和社会带来了沉重的负担。目前治疗多以早期教育训练为主,但一对一的强化训练,在训练机构与专业人员水平参差不齐的今天,也不能满足患者的需求。寻求训练代理的想法,使研究人员发现了信息技术在孤独症训练领域的应用前景。全球在人工智能技术与虚拟技术应用于孤独症康复训练中的深入研究,至今已经取得了可喜的成果。%In the 1980s, many people lack of understanding of autism, it was even classified as a mental disorder. During nearly 30 years' study, although the pathogenesis is still unknown, but its incidence is increasing every year. Every 88 children in the United States have one was diagnosed with autism; the Boy's incidence was likely to 1/54, which is almost five times to the girl' s. The clinical manifestations of autism are various, lack of communication and interactive, even cannot provide life by themselves, became a heavy burden to the social and family. The primary treatments are kinds of education and rehabilitation training currently. Today, different levels of these training institutions and professional personnel, also cannot meet the needs of the patients. So, the idea of seeking training agent made the researchers found the prospect of information technology used in the field of autism rehabilitation training. Application of artificial intelligence technology and virtual technology application in autism rehabilitation over the world, have achieved great results so far, this paper made a preliminary summary and prospect.

  15. Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction

    Science.gov (United States)

    Afan, Haitham Abdulmohsin; El-shafie, Ahmed; Mohtar, Wan Hanna Melini Wan; Yaseen, Zaher Mundher

    2016-10-01

    An accurate model for sediment prediction is a priority for all hydrological researchers. Many conventional methods have shown an inability to achieve an accurate prediction of suspended sediment. These methods are unable to understand the behaviour of sediment transport in rivers due to the complexity, noise, non-stationarity, and dynamism of the sediment pattern. In the past two decades, Artificial Intelligence (AI) and computational approaches have become a remarkable tool for developing an accurate model. These approaches are considered a powerful tool for solving any non-linear model, as they can deal easily with a large number of data and sophisticated models. This paper is a review of all AI approaches that have been applied in sediment modelling. The current research focuses on the development of AI application in sediment transport. In addition, the review identifies major challenges and opportunities for prospective research. Throughout the literature, complementary models superior to classical modelling.

  16. Boolean logic in artificial intelligence and Turing degrees of Boolean-valued sets

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Maohua.

    1989-01-01

    Over the years a number of generalizations of recursion theory have been introduced and studied. In this dissertation the author presents yet another such generalization. Based on the concept of a weakly recursively presented Boolean algebra, he defines Boolean-valued sets, Boolean-valued recursive sets, and Boolean-valued recursively enumerable sets and discuss the basic relationships between a Boolean-valued set, its principal part, and its support. Then he generalizes many elementary concepts and results about recursive and recursively enumerable sets such as the s-m-n theorem, the recursion theorem, and the projection theorem, etc. to Boolean valued sets. By using finite and infinite injury arguments, he generalizes the Friedberg-Muchnik theorem, the theorem about nonrecursive low r.e. sets, the minimal pair theorem, and other results. Finally, he discusses the possible application of Boolean-valued logic in artificial intelligence, and gives an implementation of a parser for the four-valued Boolean logic.

  17. Artificial Intelligence, Evolutionary Computing and Metaheuristics In the Footsteps of Alan Turing

    CERN Document Server

    2013-01-01

    Alan Turing pioneered many research areas such as artificial intelligence, computability, heuristics and pattern formation.  Nowadays at the information age, it is hard to imagine how the world would be without computers and the Internet. Without Turing's work, especially the core concept of Turing Machine at the heart of every computer, mobile phone and microchip today, so many things on which we are so dependent would be impossible. 2012 is the Alan Turing year -- a centenary celebration of the life and work of Alan Turing. To celebrate Turing's legacy and follow the footsteps of this brilliant mind, we take this golden opportunity to review the latest developments in areas of artificial intelligence, evolutionary computation and metaheuristics, and all these areas can be traced back to Turing's pioneer work. Topics include Turing test, Turing machine, artificial intelligence, cryptography, software testing, image processing, neural networks, nature-inspired algorithms such as bat algorithm and cuckoo sear...

  18. Mobile Robot Localization and Navigation in Artificial Intelligence: Survey

    Directory of Open Access Journals (Sweden)

    G. Nirmala

    2017-01-01

    Full Text Available The potential applications for mobile robots are enormous. The mobile robots must quickly and robustly perform useful tasks in a previously unknown, dynamic and challenging environment. Mobile robot navigation plays a key role in all mobile robot activities and tasks such as path planning. Mobile robots are machines which navigate around their environment getting sensory information about that environment and performing actions dependent on this sensory information. Localization is basic to navigation. Various techniques have been described for estimating the orientation and positioning of a mobile robot. Navigation may be defined as the process of guiding the movement of intelligent vehicle systems from one location to another location with the support of various types of sensors to the different environments such as indoor, outdoor and other complex environments by using various navigation methods. This paper reviews the following mobile robot systems which are used in navigation for localization (1 Odometry (2 Magnetic compass (3 Active beacons (4 Global positioning system (5 Landmark navigation (6 Pattern matching.

  19. Brain-Like Artificial Intelligence for Automation – Foundations, Concepts and Implementation Examples

    Directory of Open Access Journals (Sweden)

    Rosemarie Velik

    2013-10-01

    Full Text Available Over the last decades, automation technology has made serious progress and can today automate a wide range of tasks having before needed human physical and mental abilities. Nevertheless, a number of important problem domains remain that cannot yet be handled by our current machines and computers. A few prominent examples are applications involving “realworld” perception, situation assessment, and decision-making tasks. Recently, researchers have suggested to use concepts of “Brain-Like Artificial Intelligence”, i.e. concepts inspired by the functioning principles of the human or animal brain, to further advance in these problem domains. This article discusses the potential of Brain-Like Artificial Intelligence for innovative automation solutions and reviews a number of approaches developed together with the ICT cognitive automation group of the Vienna University of Technology targeting the topics “real-world” perception, situation assessment, and decision-making for applications in building automation environments and autonomous agents. Additionally, it is demonstrated by a concrete example howsuch developments can also contribute to an advancement of the state of the art in the field of brain sciences.

  20. The Essential Turing Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma

    CERN Document Server

    2004-01-01

    The ideas that gave birth to the computer age. Alan Turing, pioneer of computing and WWII codebreaker, was one of the most important and influential thinkers of the twentieth century. In this volume for the first time his key writings are made available to a broad, non-specialist readership. They make fascinating reading both in their own right and for their historic significance: contemporary computational theory, cognitive science, artificial intelligence, and artificial life all spring from this ground-breaking work, which is also rich. in philosophical and logical insight. An introduction

  1. Artificial intelligence and exponential technologies business models evolution and new investment opportunities

    CERN Document Server

    Corea, Francesco

    2017-01-01

    Artificial Intelligence is a huge breakthrough technology that is changing our world. It requires some degrees of technical skills to be developed and understood, so in this book we are going to first of all define AI and categorize it with a non-technical language. We will explain how we reached this phase and what historically happened to artificial intelligence in the last century. Recent advancements in machine learning, neuroscience, and artificial intelligence technology will be addressed, and new business models introduced for and by artificial intelligence research will be analyzed. Finally, we will describe the investment landscape, through the quite comprehensive study of almost 14,000 AI companies and we will discuss important features and characteristics of both AI investors as well as investments. This is the “Internet of Thinks” era. AI is revolutionizing the world we live in. It is augmenting the human experiences, and it targets to amplify human intelligence in a future not so distant from...

  2. Color Regeneration from Reflective Color Sensor Using an Artificial Intelligent Technique

    Directory of Open Access Journals (Sweden)

    Hayriye Altural

    2010-09-01

    Full Text Available A low-cost optical sensor based on reflective color sensing is presented. Artificial neural network models are used to improve the color regeneration from the sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. The artificial intelligent models presented in this work enable color regeneration from analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent technique enables the sensor probe for use of a colorimetric sensor that relates color changes to analog voltages.

  3. 基于网络时代下的人工智能发展分析%Analysis of artificial intelligence development in Internet age

    Institute of Scientific and Technical Information of China (English)

    李宁

    2016-01-01

    网络时代的人工智能以计算机为核心,在认知科学、生物智能、物理学、网络科学等交叉学科领域的研究中已经有了较大的发展与创新。人工智能的水平越来越高,处理速度越来越快,为人类减轻了体力劳动或脑力劳动的负担,极大地改善了人类的生活质量和生产效率。在此叙述了人工智能发展的历程,以智能配网和以智慧城市为例分析基于网络时代下的人工智能的应用,并对人工智能发展趋势进行预估。该分析对人工智能的发展有着积极的意义。%The artificial intelligence in network age takes the computer as the core,and has great development and inno⁃vation in the research of the interdisciplinary field,including cognitive science,biological intelligence,physics and network science. The level of artificial intelligence is high,and processing speed is fast,which can reduce the burden of manual labour or mental work for human,and greatly improve the human life quality and production efficiency. The development process of arti⁃ficial intelligence is described,and the application of artificial intelligence in Internet age is analyzed by taking intelligent distri⁃bution network and smart city as the example. The development trend of artificial intelligence is estimated. This analysis has posi⁃tive meaning to analyze the development of artificial intelligence.

  4. Smart Collections: Can Artificial Intelligence Tools and Techniques Assist with Discovering, Evaluating and Tagging Digital Learning Resources?

    Science.gov (United States)

    Leibbrandt, Richard; Yang, Dongqiang; Pfitzner, Darius; Powers, David; Mitchell, Pru; Hayman, Sarah; Eddy, Helen

    2010-01-01

    This paper reports on a joint proof of concept project undertaken by researchers from the Flinders University Artificial Intelligence Laboratory in partnership with information managers from the Education Network Australia (edna) team at Education Services Australia to address the question of whether artificial intelligence techniques could be…

  5. Enhancement of submarine pressure hull steel ultrasonic inspection using imaging and artificial intelligence

    Science.gov (United States)

    Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard

    1995-06-01

    The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.

  6. Use of artificial intelligence in analytical systems for the clinical laboratory.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks.This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system.In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories.It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories.

  7. Inteligência biológica versus inteligência artificial: uma abordagem crítica Biologic intelligence versus artificial intelligence: a critical approach

    Directory of Open Access Journals (Sweden)

    Wilson Luiz Sanvito

    1995-09-01

    Full Text Available Após considerações iniciais sobre inteligência, um estudo comparativo entre inteligência biológica e inteligência artificial é feito. Os especialistas em Inteligência Artificial são de opinião que inteligência é simplesmente uma matéria de manipulação de símbolos físicos. Neste sentido, o objetivo da Inteligência Artificial é entender como a inteligência cerebral funciona em termos de conceitos e técnicas de engenharia. De modo diverso os filósofos da ciência acreditam que os computadores podem ter uma sintaxe, porém não têm uma semântica. No presente trabalho é ressaltado que o complexo cérebro/mente constitui um sistema monolítico, que funciona com funções emergentes em vários níveis de organização hierárquica. Esses níveis hierárquicos não são redutíveis um ao outro. Eles são, no mínimo, três (neuronal, funcional e semântico e funcionam dentro de um plano interacional. Do ponto de vista epistemológico, o complexo cérebro/mente se utiliza de mecanismos lógicos e não-lógicos para lidar com os problemas do dia-a-dia. A lógica é necessária para o processo do pensamento, porém não é suficiente. Ênfase é dada aos mecanismos não-lógicos (lógica nebulosa, heurística, raciocínio intuitivo, os quais permitem à mente desenvolver estratégias para encontrar soluções.After brief considerations about intelligence, a comparative study between biologic and artificial intelligence is made. The specialists in Artificial Intelligence found that intelligence is purely a matter of physical symbol manipulation. The enterprise of Artificial Intelligence aims to understand what we might call Brain Intelligence in terms of concepts and techniques of engineering. However the philosophers believed that computer-machine can have syntax, but can never have semantics. In other words, that they can follow rules, such as those of arithmetic or grammar, but not understand what to us are meanings of symbols

  8. Theory and applications of artificial endocrine system-an overview

    Institute of Scientific and Technical Information of China (English)

    CUI Wei; QIANG Sheng; GAO X Z

    2006-01-01

    Inspired by the biological endocrine system, the Artificial Endocrine System (AES) has been proposed and investigated during the past decade. As a novel branch of computational intelligence methods, it has its unique and distinguishing features. This paper intends to give an overview of the current research work in the AES. The preliminary theory of the AES, which is based on the simplified mathematic models of natural endocrine system, is first introduced here. Some typical AES algorithms and their applications are also briefly discussed. Finally, a few remarks and conclusions are made.

  9. Automatic system for radar echoes filtering based on textural features and artificial intelligence

    Science.gov (United States)

    Hedir, Mehdia; Haddad, Boualem

    2016-11-01

    Among the very popular Artificial Intelligence (AI) techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been retained to process Ground Echoes (GE) on meteorological radar images taken from Setif (Algeria) and Bordeaux (France) with different climates and topologies. To achieve this task, AI techniques were associated with textural approaches. We used Gray Level Co-occurrence Matrix (GLCM) and Completed Local Binary Pattern (CLBP); both methods were largely used in image analysis. The obtained results show the efficiency of texture to preserve precipitations forecast on both sites with the accuracy of 98% on Bordeaux and 95% on Setif despite the AI technique used. 98% of GE are suppressed with SVM, this rate is outperforming ANN skills. CLBP approach associated to SVM eliminates 98% of GE and preserves precipitations forecast on Bordeaux site better than on Setif's, while it exhibits lower accuracy with ANN. SVM classifier is well adapted to the proposed application since the average filtering rate is 95-98% with texture and 92-93% with CLBP. These approaches allow removing Anomalous Propagations (APs) too with a better accuracy of 97.15% with texture and SVM. In fact, textural features associated to AI techniques are an efficient tool for incoherent radars to surpass spurious echoes.

  10. Monitoring of operation with artificial intelligence methods; Betriebsueberwachung mit Verfahren der Kuenstlichen Intelligenz

    Energy Technology Data Exchange (ETDEWEB)

    Bruenninghaus, H. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). Geschaeftsbereich Systemtechnik

    1999-03-11

    Taking the applications `early detection of fires` and `reduction of burst of messages` as an example, the usability of artificial intelligence (AI) methods in the monitoring of operation was checked in a R and D project. The contribution describes the concept, development and evaluation of solutions to the specified problems. A platform, which made it possible to investigate different AI methods (in particular artificial neuronal networks), had to be creaated as a basis for the project. At the same time ventilation data had to be acquired and processed by the networks for the classification. (orig.) [Deutsch] Am Beispiel der Anwendungsfaelle `Brandfrueherkennung` und `Meldungsschauerreduzierung` wurde im Rahmen eines F+E-Vorhabens die Einsetzbarkeit von Kuenstliche-Intelligenz-Methoden (KI) in der Betriebsueberwachung geprueft. Der Beitrag stellt Konzeption, Entwicklung und Bewertung von Loesungsansaetzen fuer die genannten Aufgabenstellungen vor. Als Grundlage fuer das Vorhaben wurden anhand KI-Methoden (speziell: Kuenstliche Neuronale Netze -KNN) auf der Grundlage gewonnener und aufbereiteter Wetterdaten die Beziehungen zwischen den Wettermessstellen im Laufe des Wetterwegs klassifiziert. (orig.)

  11. 2nd International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Matson, Eric; Myung, Hyun; Xu, Peter; Karray, Fakhri

    2014-01-01

    We are facing a new technological challenge on how to store and retrieve knowledge and manipulate intelligence for autonomous services by intelligent systems which should be capable of carrying out real world tasks autonomously. To address this issue, robot researchers have been developing intelligence technology (InT) for “robots that think” which is in the focus of this book. The book covers all aspects of intelligence from perception at sensor level and reasoning at cognitive level to behavior planning at execution level for each low level segment of the machine. It also presents the technologies for cognitive reasoning, social interaction with humans, behavior generation, ability to cooperate with other robots, ambience awareness, and an artificial genome that can be passed on to other robots. These technologies are to materialize cognitive intelligence, social intelligence, behavioral intelligence, collective intelligence, ambient intelligence and genetic intelligence. The book aims at serving resear...

  12. Guidance for human interface with artificial intelligence systems

    Science.gov (United States)

    Potter, Scott S.; Woods, David D.

    1991-01-01

    The beginning of a research effort to collect and integrate existing research findings about how to combine computer power and people is discussed, including problems and pitfalls as well as desirable features. The goal of the research is to develop guidance for the design of human interfaces with intelligent systems. Fault management tasks in NASA domains are the focus of the investigation. Research is being conducted to support the development of guidance for designers that will enable them to make human interface considerations into account during the creation of intelligent systems.

  13. An Artificial Intelligence Tutor: A Supplementary Tool for Teaching and Practicing Braille

    Science.gov (United States)

    McCarthy, Tessa; Rosenblum, L. Penny; Johnson, Benny G.; Dittel, Jeffrey; Kearns, Devin M.

    2016-01-01

    Introduction: This study evaluated the usability and effectiveness of an artificial intelligence Braille Tutor designed to supplement the instruction of students with visual impairments as they learned to write braille contractions. Methods: A mixed-methods design was used, which incorporated a single-subject, adapted alternating treatments design…

  14. Artificial intelligence in process control: Knowledge base for the shuttle ECS model

    Science.gov (United States)

    Stiffler, A. Kent

    1989-01-01

    The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model.

  15. Synthesis and Analysis in Artificial Intelligence: The Role of Theory in Agent Implementation

    NARCIS (Netherlands)

    Raine, Roxanne B.; Akker, op den Rieks; Cai, Zhiqiang; Graesser, Arthur C.; McNamara, Danielle S.

    2009-01-01

    The domain of artificial intelligence (AI) progresses with extraordinary vicissitude. Whereas prior authors have divided AI into the two categories of analysis and synthesis, Raine and op den Akker distinguish between four types of AI: that of appearance, function, simulation and interpretation. The

  16. Artificial intelligence and finite element modelling for monitoring flood defence structures

    NARCIS (Netherlands)

    Pyayt, A.L.; Mokhov, I.I.; Kozionov, A.; Kusherbaeva, V.; Melnikova, N.B.; Krzhizhanovskaya, V.V.; Meijer, R.J.

    2011-01-01

    We present a hybrid approach to monitoring the stability of flood defence structures equipped with sensors. This approach combines the finite element modelling with the artificial intelligence for real-time signal processing and anomaly detection. This combined method has been developed for the Urba

  17. A 3D visible evaluation of landslide risk degree under integration of GIS and artificial intelligence

    Institute of Scientific and Technical Information of China (English)

    QIAO; Jianping; ZHU; Axing; CHEN; Yongbo; WANG; Rongxun

    2003-01-01

    Artificial intelligence has been used to obtain background factors (basic environmental factors) from landslide specialists. A 3D visible evaluation map may be charted by fuzzy evaluation, and the traditional plane map may be decoded into a 3D map by using factor weight from specialists system and technology of RS and GIS for quantitative sampling of these factors.

  18. ICCE/ICCAI 2000 Full & Short Papers (Artificial Intelligence in Education).

    Science.gov (United States)

    2000

    This document contains the full and short papers on artificial intelligence in education from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction) covering the following topics: a computational model for learners' motivation states in individualized tutoring system; a…

  19. Artificial Intelligence Is for Real: Undergraduate Students Should Know about It.

    Science.gov (United States)

    Liebowitz, Jay

    1988-01-01

    Discussion of the possibilities of introducing artificial intelligence (AI) into the undergraduate curriculum highlights the introduction of AI in an introduction to information processing course for business students at George Washington University. Topics discussed include robotics, expert systems prototyping in class, and the interdisciplinary…

  20. Telerobot task planning and reasoning: Introduction to JPL artificial intelligence research

    Science.gov (United States)

    Atkinson, D. J.

    1987-01-01

    A view of the capabilities and areas of artificial intelligence research which are required for autonomous space telerobotics extending through the year 2000 is given. In the coming years, JPL will be conducting directed research to achieve these capabilities, as well as drawing heavily on collaborative efforts conducted with other research laboratories.

  1. Keeping Pace with New Technology: An Introduction to Robotics, FORTH, and Artificial Intelligence.

    Science.gov (United States)

    Reck, Gene

    A course was developed to introduce students at a community college to four major areas of emphasis in emerging technologies: FORTH programming language, elementary electronic theory, robotics, and artificial intelligence. After a needs assessment indicated the importance of such a course, a pretest focusing on the four areas was given to students…

  2. Artificial Intelligence Tools for Grammar and Spelling Instruction.

    Science.gov (United States)

    Pijls, Fieny; And Others

    1987-01-01

    Discusses grammar and spelling instruction in The Netherlands for students aged 10-15 and describes an intelligent computer-assisted instructional environment consisting of a linguistic expert system, a didactic module, and a student interface. Three prototypes are described: BOUWSTEEN and COGO for analyzing sentences, and TDTDT for conjugating…

  3. Artificial Intelligence in Teaching and Learning: An Introduction.

    Science.gov (United States)

    Stubbs, Malcolm; Piddock, Peter

    1985-01-01

    Discussion of intelligent computer assisted learning (CAL) systems considers both those that offer natural language communication to the user and those that are adaptive, generative, or self-improving. Current interest in student-built learning environments (exemplified by work with LOGO and PROLOG) is examined, and obstacles to future intelligent…

  4. Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network.

    Science.gov (United States)

    Jahidin, A H; Megat Ali, M S A; Taib, M N; Tahir, N Md; Yassin, I M; Lias, S

    2014-04-01

    This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies.

  5. Proceedings of the International Conference on Information Systems Design and Intelligent Applications 2012

    CERN Document Server

    Avadhani, P; Abraham, Ajith

    2012-01-01

    This volume contains the papers presented at INDIA-2012: International conference on  Information system Design and Intelligent Applications held on January 5-7, 2012 in Vishakhapatnam, India. This conference was organized by Computer Society of India (CSI), Vishakhapatnam chapter well supported by Vishakhapatnam Steel, RINL, Govt of India. It contains 108 papers contributed by authors from six different countries across four continents. These research papers mainly focused on intelligent applications and various system design issues. The papers cover a wide range of topics of computer science and information technology discipline ranging from image processing, data base application, data mining, grid and cloud computing, bioinformatics among many others. The various intelligent tools like swarm intelligence, artificial intelligence, evolutionary algorithms, bio-inspired algorithms have been applied in different papers for solving various challenging IT related problems.

  6. A comparative study of artificial intelligent-based maximum power point tracking for photovoltaic systems

    Science.gov (United States)

    Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain

    2016-03-01

    Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.

  7. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    Directory of Open Access Journals (Sweden)

    Lakshmi Pathak

    Full Text Available Cholesterol oxidase (COD is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM, artificial neural network (ANN and genetic algorithm (GA have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  8. Artificial intelligence applied to fuel management in BWR type reactors; Inteligencia artificial aplicada a la administracion de combustible en reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J

    1998-10-01

    In this work two techniques of artificial intelligence, neural networks and genetic algorithms were applied to a practical problem of nuclear fuel management; the determination of the optimal fuel reload for a BWR type reactor. This is an important problem in the design of the operation cycle of the reactor. As a result of the application of these techniques, comparable or even better reloads proposals than those given by expert companies in the subject were obtained. Additionally, two other simpler problems in reactor physics were solved: the determination of the axial power profile and the prediction of the value of some variables of interest at the end of the operation cycle of the reactor. Neural networks and genetic algorithms have been applied to solve many problems of engineering because of their versatility but they have been rarely used in the area of fuel management. The results obtained in this thesis indicates the convenience of undertaking further work on this area and suggest the application of these techniques of artificial intelligence to the solution of other problems in nuclear reactor physics. (Author)

  9. 1st International Conference on Robot Intelligence Technology and Applications

    CERN Document Server

    Matson, Eric; Myung, Hyun; Xu, Peter

    2013-01-01

    In recent years, robots have been built based on cognitive architecture which has been developed to model human cognitive ability. The cognitive architecture can be a basis for intelligence technology to generate robot intelligence. In this edited book the robot intelligence is classified into six categories: cognitive intelligence, social intelligence, behavioral intelligence, ambient intelligence, collective intelligence and genetic intelligence. This classification categorizes the intelligence of robots based on the different aspects of awareness and the ability to act deliberately as a result of such awareness. This book aims at serving researchers and practitioners with a timely dissemination of the recent progress on robot intelligence technology and its applications, based on a collection of papers presented at the 1st International Conference on Robot Intelligence Technology and Applications (RiTA), held in Gwangju, Korea, December 16-18, 2012. For a better readability, this edition has the total 101 ...

  10. CardioSmart365: Artificial Intelligence in the Service of Cardiologic Patients

    Directory of Open Access Journals (Sweden)

    Efrosini Sourla

    2012-01-01

    Full Text Available Artificial intelligence has significantly contributed in the evolution of medical informatics and biomedicine, providing a variety of tools available to be exploited, from rule-based expert systems and fuzzy logic to neural networks and genetic algorithms. Moreover, familiarizing people with smartphones and the constantly growing use of medical-related mobile applications enables complete and systematic monitoring of a series of chronic diseases both by health professionals and patients. In this work, we propose an integrated system for monitoring and early notification for patients suffering from heart diseases. CardioSmart365 consists of web applications, smartphone native applications, decision support systems, and web services that allow interaction and communication among end users: cardiologists, patients, and general doctors. The key features of the proposed solution are (a recording and management of patients' measurements of vital signs performed at home on regular basis (blood pressure, blood glucose, oxygen saturation, weight, and height, (b management of patients' EMRs, (c cardiologic patient modules for the most common heart diseases, (d decision support systems based on fuzzy logic, (e integrated message management module for optimal communication between end users and instant notifications, and (f interconnection to Microsoft HealthVault platform. CardioSmart365 contributes to the effort for optimal patient monitoring at home and early response in cases of emergency.

  11. Basic Research in Artificial Intelligence and Foundations of Programming

    Science.gov (United States)

    1980-05-01

    Rover, Proc. 6th Int. Joint Conf. on Artiftial Intelligence, Tokyo, Japan, August 98. McCarthy, John. Ascribing Mental 1979, pp. 589-601. Qualities to...Semantics, Comunicaciones Tecnicas (in Spanish). Blue Series: monographs. Center 1 17. Nevatia, R., T.O. Binford; Structured for Research in Applied...Ron Goldman, AL Users’ Manual. + AIM-326 CS-725 136 pages, January 1979. Cost: 15.50 McCarthy, John, Ascribing Mental Qualities to Machines. This

  12. On introduction of artificial intelligence elements to heat power engineering

    Science.gov (United States)

    Dregalin, A. F.; Nazyrova, R. R.

    1993-10-01

    The basic problems of 'the thermodynamic intelligence' of personal computers have been outlined. The thermodynamic intellect of personal computers as a concept has been introduced to heat processes occurring in engines of flying vehicles. In particular, the thermodynamic intellect of computers is determined by the possibility of deriving formal relationships between thermodynamic functions. In chemical thermodynamics, a concept of a characteristic function has been introduced.

  13. 14th ACIS/IEEE International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    Studies in Computational Intelligence : Volume 492

    2013-01-01

    This edited book presents scientific results of the 14th ACIS/IEEE International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2013), held in Honolulu, Hawaii, USA on July 1-3, 2013. The aim of this conference was to bring together scientists, engineers, computer users, and students to share their experiences and exchange new ideas, research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the 17 outstanding papers from those papers accepted for presentation at the conference.  

  14. 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

    CERN Document Server

    2015-01-01

    This edited book presents scientific results of 15th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD 2014) held on June 30 – July 2, 2014 in Las Vegas Nevada, USA. The aim of this conference was to bring together scientists, engineers, computer users, and students to share their experiences and exchange new ideas, research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the 13 outstanding papers from those papers accepted for presentation at the conference.

  15. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Soteris A. Kalogirou, [Higher Technical Institute, Nicosia (Cyprus). Department of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. AI systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how AI techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of AI as a design tool in many areas of combustion engineering. 109 refs., 31 figs., 11 tabs.

  16. Artificial intelligence for the modeling and control of combustion processes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Kalogirou, S.A. [Higher Technical Inst., Nicosia, Cyprus (Greece). Dept. of Mechanical Engineering

    2003-07-01

    Artificial intelligence (AI) systems are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They can learn from examples, are fault tolerant in the sense that they are able to handle noisy and incomplete data, are able to deal with non-linear problems, and once trained can perform prediction and generalization at high speed. They have been used in diverse applications in control, robotics, pattern recognition, forecasting, medicine, power systems, manufacturing, optimization, signal processing, and social/psychological sciences. They are particularly useful in system modeling such as in implementing complex mappings and system identification. Al systems comprise areas like, expert systems, artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems, which combine two or more techniques. The major objective of this paper is to illustrate how Al techniques might play an important role in modeling and prediction of the performance and control of combustion process. The paper outlines an understanding of how AI systems operate by way of presenting a number of problems in the different disciplines of combustion engineering. The various applications of AI are presented in a thematic rather than a chronological or any other order. Problems presented include two main areas: combustion systems and internal combustion (IC) engines. Combustion systems include boilers, furnaces and incinerators modeling and emissions prediction, whereas, IC engines include diesel and spark ignition engines and gas engines modeling and control. Results presented in this paper, are testimony to the potential of Al as a design tool in many areas of combustion engineering. (author)

  17. A Review and Performance Investigation of NPCC Based UPQC by Using Various Artificial Intelligence Techniques

    Directory of Open Access Journals (Sweden)

    Venkata Rami Reddy K

    2017-03-01

    Full Text Available This paper presents a comprehensive review and performance investigation of Neutral Point Clamped Converter (NPCC based Unified Power Quality Conditioner (UPQC by using Artificial Intelligent (AI techniques. A Novel application of various levels of Diode Clamped Multi-Level Inverters [DCMLI] with Anti Phase Opposition and Disposition (APOD Pulse Width Modulation (PWM Scheme to Unified Power Quality Conditioner (UPQC. The Power Quality problem became a burning issues since the starting of high voltage AC transmission system. Hence, in this article it has been discussed to mitigate the PQ issues in high voltage AC systems through a three phase four wire Unified Power Quality Conditioner (UPQC under non-linear loads. The emphasised PQ problems such as voltage and current harmonics along with voltage sags and swells have also been discussed with improved performance. Also, it proposes to control the DCMLI based UPQC through conventional control schemes. Thus application of these control technique makes the system performance in par with the standards and also compared with existing system. The simulation results based on MATLAB/Simulink are discussed in detail to support the concept developed in the paper.

  18. 人工智能技术中计算机相关技术的运用解析%The use of artificial intelligence technology to resolve computer-related technology

    Institute of Scientific and Technical Information of China (English)

    金鑫

    2016-01-01

    随着我国科学技术的迅猛发展,人工智能技术也在许多领域得到了应用。而计算机相关技术作为人工智能技术的重要技术支撑,其在人工智能技术中的应用对于技术更新以及系统升级具有重要的作用。本文从人工智能技术中计算机相关技术的发展历程出发,对人工智能技术中计算机相关技术的发展方向进行了探究,并探讨了计算机人工智能技术的应用。%With therapid development of China's science and technology,Artificial intelligence technology also has been applied in many fields.And computer-related technology as artificial intelligence technology, an important technical support,Its application in artificial intelligence technology for technology updates and system upgrades an important role.From artificial intelligence technology in computer-related technology development process starting,Artificial intelligence technology in the development direction of computer-related technology has been explored,And explores the application of computer technology, artificial intelligence.

  19. Hybrid Systems for Knowledge Representation in Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Rajeswari P.V N

    2012-11-01

    Full Text Available There are few knowledge representation (KR techniques available for efficiently representing knowledge. However, with the increase in complexity, better methods are needed. Some researchers came up with hybrid mechanisms by combining two or more methods. In an effort to construct an intelligent computer system, a primary consideration is to represent large amounts of knowledge in a way that allows effective use and efficiently organizing information to facilitate making the recommended inferences. There are merits and demerits of combinations, and standardized method of KR is needed. In this paper, various hybrid schemes of KR were explored at length and details presented.

  20. An Integrated Conceptual Environment based on Collective Intelligence and Distributed Artificial Intelligence for Connecting People on Problem Solving

    Directory of Open Access Journals (Sweden)

    Vasile MAZILESCU

    2012-12-01

    Full Text Available This paper aims to analyze the different forms of intelligence within organizations in a systemic and inclusive vision, in order to conceptualize an integrated environment based on Distributed Artificial Intelligence (DAI and Collective Intelligence (CI. In this way we effectively shift the classical approaches of connecting people with people using collaboration tools (which allow people to work together, such as videoconferencing or email, groupware in virtual space, forums, workflow, of connecting people with a series of content management knowledge (taxonomies and documents classification, ontologies or thesauri, search engines, portals, to the current approaches of connecting people on the use (automatic of operational knowledge to solve problems and make decisions based on intellectual cooperation. The best way to use collective intelligence is based on knowledge mobilization and semantic technologies. We must not let computers to imitate people but to support people think and develop their ideas within a group. CI helps people to think together, while DAI tries to support people so as to limit human error. Within an organization, to manage CI is to combine instruments like Semantic Technologies (STs, knowledge mobilization methods for developing Knowledge Management (KM strategies, and the processes that promote connection and collaboration between individual minds in order to achieve collective objectives, to perform a task or to solve increasingly economic complex problems.

  1. Computational Intelligence Applications for Defense

    Science.gov (United States)

    2011-02-18

    Eds. Neurodynamics of Higher-Level Cognition and Consciousness. Heidelberg, Germany: Springer-Verlag, 2007. [29] L. I. Perlovsky, R. Kozma...Editorial - Neurodynamics of Cognition and Consciousness,” In Neurodynamics of Cognition and Consciousness, Perlovsky, L., R. Kozma, Eds., Springer...Intelligence Magazine, 2(3), 25-39, 2007. [74] L. I. Perlovsky, “Neural Dynamic Logic of Consciousness: the Knowledge Instinct,” In Neurodynamics

  2. Evolving Intelligent Systems Methodology and Applications

    CERN Document Server

    Angelov, Plamen; Kasabov, Nik

    2010-01-01

    From theory to techniques, the first all-in-one resource for EIS. There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on th

  3. A genetic-neural artificial intelligence approach to resins optimization; Uma metodologia baseada em inteligencia artificial para otimizacao de resinas

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Denise C.; Barros, Marcio P.; Lapa, Celso M.F.; Pereira, Claudio M.N.A. [Instituto de Engenharia Nuclear (IEN), Rio de Janeiro, RJ (Brazil)]. E-mail: lapa@ien.gov.br; mbarros@ien.gov.br

    2005-07-01

    This work presents a preliminary study about the viability and adequacy of a new methodology for the definition of one of the main properties of ion exchange resins used for isotopic separation. Basically, the main problem is the definition of pelicule diameter in case of pelicular ion exchange resins, in order to achieve the best performance in the shortest time. In order to achieve this, a methodology was developed, based in two classic techniques of Artificial Intelligence (AI). At first, an artificial neural network (NN) was trained to map the existing relations between the nucleus radius and the resin's efficiency associated with the exchange time. Later on, a genetic algorithm (GA) was developed in order to find the best pelicule dimension. Preliminary results seem to confirm the potential of the method, and this can be used in any chemical process employing ion exchange resins. (author)

  4. Artificial intelligence techniques to optimize the EDC/NHS-mediated immobilization of cellulase on Eudragit L-100.

    Science.gov (United States)

    Zhang, Yu; Xu, Jing-Liang; Yuan, Zhen-Hong; Qi, Wei; Liu, Yun-Yun; He, Min-Chao

    2012-01-01

    Two artificial intelligence techniques, namely artificial neural network (ANN) and genetic algorithm (GA) were combined to be used as a tool for optimizing the covalent immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) concentration, N-hydroxysuccinimide (NHS) concentration and coupling time were taken as independent variables, and immobilization efficiency was taken as the response. The data of the central composite design were used to train ANN by back-propagation algorithm, and the result showed that the trained ANN fitted the data accurately (correlation coefficient R(2) = 0.99). Then a maximum immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by GA is quite successful.

  5. Artificial Intelligence Techniques to Optimize the EDC/NHS-Mediated Immobilization of Cellulase on Eudragit L-100

    Science.gov (United States)

    Zhang, Yu; Xu, Jing-Liang; Yuan, Zhen-Hong; Qi, Wei; Liu, Yun-Yun; He, Min-Chao

    2012-01-01

    Two artificial intelligence techniques, namely artificial neural network (ANN) and genetic algorithm (GA) were combined to be used as a tool for optimizing the covalent immobilization of cellulase on a smart polymer, Eudragit L-100. 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) concentration, N-hydroxysuccinimide (NHS) concentration and coupling time were taken as independent variables, and immobilization efficiency was taken as the response. The data of the central composite design were used to train ANN by back-propagation algorithm, and the result showed that the trained ANN fitted the data accurately (correlation coefficient R2 = 0.99). Then a maximum immobilization efficiency of 88.76% was searched by genetic algorithm at a EDC concentration of 0.44%, NHS concentration of 0.37% and a coupling time of 2.22 h, where the experimental value was 87.97 ± 6.45%. The application of ANN based optimization by GA is quite successful. PMID:22942683

  6. 2015 Chinese Intelligent Systems Conference

    CERN Document Server

    Du, Junping; Li, Hongbo; Zhang, Weicun; CISC’15

    2016-01-01

    This book presents selected research papers from the 2015 Chinese Intelligent Systems Conference (CISC’15), held in Yangzhou, China. The topics covered include multi-agent systems, evolutionary computation, artificial intelligence, complex systems, computation intelligence and soft computing, intelligent control, advanced control technology, robotics and applications, intelligent information processing, iterative learning control, and machine learning. Engineers and researchers from academia, industry and the government can gain valuable insights into solutions combining ideas from multiple disciplines in the field of intelligent systems.

  7. Natural and artificial intelligence misconceptions about brains and neural networks

    CERN Document Server

    de Callataÿ, A

    1992-01-01

    How does the mind work? How is data stored in the brain? How does the mental world connect with the physical world? The hybrid system developed in this book shows a radically new view on the brain. Briefly, in this model memory remains permanent by changing the homeostasis rebuilding the neuronal organelles. These transformations are approximately abstracted as all-or-none operations. Thus the computer-like neural systems become plausible biological models. This illustrated book shows how artificial animals with such brains learn invariant methods of behavior control from their repeated action

  8. Adaptive Artificial Intelligence Based Model Base Controller: Applied to Surgical Endoscopy Telemanipulator

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2013-08-01

    Full Text Available This research involved developing a surgical robot assistant using an articulated PUMA robot running on a linear or nonlinear axis. The research concentrated on studying the artificial intelligence based switching computed torque controller to localization of an endoscopic tool. Results show that the switching artificial nonlinear control algorithm is capable to design a stable controller. For this system, error was used as the performance metric. Positioning of the endoscopic manipulator relative to the world coordinate frame was possible to within 0.05 inch. Error in maintaining a constant point in space is evident during repositioning however this was caused by limitations in the robot arm.

  9. ARTIFICIAL INTELLIGENCE PLANNING TECHNIQUES FOR ADAPTIVE VIRTUAL COURSE CONSTRUCTION

    Directory of Open Access Journals (Sweden)

    NÉSTOR DARÍO DUQUE

    2011-01-01

    Full Text Available El artículo tiene como objetivo proponer un modelo de planificación para la adaptación de cursos virtuales, basado en técnicas de inteligencia artificial, en particular usando el enfoque de sistema multi-agente (SMA y métodos de planificación en inteligencia artificial. El diseño y la implementación por medio de un SMA pedagógico y la definición de un framework para especificar la estrategia de adaptación permiten incorporar diversos enfoques pedagógicos y tecnológicos, de acuerdo a los puntos de vista del equipo de trabajo, lo cual resulta en una implementación e instalación concreta. Se incorpora un novedoso pre-planificador que permite la transparencia y la neutralidad en el modelo propuesto y también ofrece soporte para traducir los elementos del curso a las especificaciones de un problema de planificación. La última sección muestra la plataforma experimental SICAD + (Sistema Inteligente de Cursos ADaptativos, a través de un enfoque multiagente, que valida el modelo propuesto.

  10. Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan.

    Science.gov (United States)

    Liao, Pei-Hung; Hsu, Pei-Ti; Chu, William; Chu, Woei-Chyn

    2015-06-01

    This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics.

  11. DeepStack: Expert-level artificial intelligence in heads-up no-limit poker.

    Science.gov (United States)

    Moravčík, Matej; Schmid, Martin; Burch, Neil; Lisý, Viliam; Morrill, Dustin; Bard, Nolan; Davis, Trevor; Waugh, Kevin; Johanson, Michael; Bowling, Michael

    2017-03-02

    Artificial intelligence has seen several breakthroughs in recent years, with games often serving as milestones. A common feature of these games is that players have perfect information. Poker is the quintessential game of imperfect information, and a longstanding challenge problem in artificial intelligence. We introduce DeepStack, an algorithm for imperfect information settings. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning. In a study involving 44,000 hands of poker, DeepStack defeated with statistical significance professional poker players in heads-up no-limit Texas hold'em. The approach is theoretically sound and is shown to produce more difficult to exploit strategies than prior approaches.

  12. Games and machine learning: a powerful combination in an artificial intelligence course

    Science.gov (United States)

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-03-01

    Project MLeXAI (Machine Learning eXperiences in Artificial Intelligence (AI)) seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense - a simple real-time strategy game and Checkers - a classic turn-based board game. From the instructors' prospective, we examine aspects of design and implementation as well as the challenges and rewards of using the curricula. We explore students' responses to the projects via the results of a common survey. Finally, we compare the student perceptions from the game-based projects to non-game based projects from the first phase of Project MLeXAI.

  13. Reducing Energy Waste in Post-secondary Educational Institutions using Artificial Intelligence

    Science.gov (United States)

    Motta Cabrera, David Francisco

    This thesis focuses on computer-related and lighting energy consumption in post-secondary educational institutions. In this respect, artificial intelligence and data association mining are proposed as tools to identify and reduce energy waste. First, an artificial intelligence-based method for forecasting computer usage is proposed. Based on the models' forecast, workstations can be turned on and off, in order to strike a balance between energy savings and user comfort. The models are evaluated on different datasets and their results compared to commercially available alternatives. Second, a data association mining-based approach is proposed to uncover possible relationships between occupancy patterns and lighting-related energy waste in classrooms. A wireless data collection system is used to log data from both lighting consumption and occupancy states during a year. Next, energy savings results of using the proposed approach are compared to those of an occupancy-activated lighting control system for classrooms.

  14. Artificial Intelligence for Load Management Based On Load Shifting in the Textile Industry

    Directory of Open Access Journals (Sweden)

    Chaimongkon Chokpanyasuwan

    2015-02-01

    Full Text Available The target of any load management is to maintain a constant level of load. The important benefits of load management are reduction in maximum demand, reduction in power loss, better equipment utilization and saving through reduced maximum demand charges. Load shifting, one of the simplest methods of load management, is to reduce customer demand during the peak period by shifting the use of appliances and equipment to partial peak and on-peak periods. This paper proposes an application of artificial intelligent (AI optimization methods i.e. genetic algorithm (GA, particle swarm optimization (PSO and bee algorithm (BA to develop the load shifting and the same has been tried with the actual load data collected from the textile industry plant. The objective is to minimize the total electricity tariff cost. The methodology proposed can be used for determining the optimal response for textile industry under time varying tariffs such as flat rate and time of use (TOU.To show its efficiency, the AI methods are applied to solve the case studies in case of single process multi-jobs (SPMJ. The results show that the proposed methods are able to achieve the best solution efficiently and easy to implement.

  15. The Use of Artificial-Intelligence-Based Ensembles for Intrusion Detection: A Review

    Directory of Open Access Journals (Sweden)

    Gulshan Kumar

    2012-01-01

    Full Text Available In supervised learning-based classification, ensembles have been successfully employed to different application domains. In the literature, many researchers have proposed different ensembles by considering different combination methods, training datasets, base classifiers, and many other factors. Artificial-intelligence-(AI- based techniques play prominent role in development of ensemble for intrusion detection (ID and have many benefits over other techniques. However, there is no comprehensive review of ensembles in general and AI-based ensembles for ID to examine and understand their current research status to solve the ID problem. Here, an updated review of ensembles and their taxonomies has been presented in general. The paper also presents the updated review of various AI-based ensembles for ID (in particular during last decade. The related studies of AI-based ensembles are compared by set of evaluation metrics driven from (1 architecture & approach followed; (2 different methods utilized in different phases of ensemble learning; (3 other measures used to evaluate classification performance of the ensembles. The paper also provides the future directions of the research in this area. The paper will help the better understanding of different directions in which research of ensembles has been done in general and specifically: field of intrusion detection systems (IDSs.

  16. HCCI Intelligent Rapid Modeling by Artificial Neural Network and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    AbdoulAhad Validi

    2012-01-01

    Full Text Available A Dynamic model of Homogeneous Charge Compression Ignition (HCCI, based on chemical kinetics principles and artificial intelligence, is developed. The model can rapidly predict the combustion probability, thermochemistry properties, and exact timing of the Start of Combustion (SOC. A realization function is developed on the basis of the Sandia National Laboratory chemical kinetics model, and GRI3.0 methane chemical mechanism. The inlet conditions are optimized by Genetic Algorithm (GA, so that combustion initiates and SOC timing posits in the desired crank angle. The best SOC timing to achieve higher performance and efficiency in HCCI engines is between 5 and 15 degrees crank angle (CAD after top dead center (TDC. To achieve this SOC timing, in the first case, the inlet temperature and equivalence ratio are optimized simultaneously and in the second case, compression ratio is optimized by GA. The model’s results are validated with previous works. The SOC timing can be predicted in less than 0.01 second and the CPU time savings are encouraging. This model can successfully be used for real engine control applications.

  17. Real-time operation guide system for sintering process with artificial intelligence

    Institute of Scientific and Technical Information of China (English)

    FAN Xiao-hui; CHEN Xu-ling; JIANG Tao; LI Tao

    2005-01-01

    In order to optimize the sintering process, a real-time operation guide system with artificial intelligence was developed, mainly including the data acquisition online subsystem, the sinter chemical composition controller, the sintering process state controller, and the abnormal conditions diagnosis subsystem. Knowledge base of the sintering process controlling was constructed, and inference engine of the system was established. Sinter chemical compositions were controlled by the strategies of self-adaptive prediction, internal optimization and center on basicity. And the state of sintering was stabilized centering on permeability. In order to meet the needs of process change and make the system clear, the system has learning ability and explanation function. The software of the system was developed in Visual C++ programming language. The application of the system shows that the hitting accuracy of sinter compositions and burning through point prediction are more than 85%; the first-grade rate of sinter chemical composition, stability rate of burning through point and stability rate of sintering process are increased by 3%, 9% and 4%, respectively.

  18. Artificial intelligence and tutoring systems computational and cognitive approaches to the communication of knowledge

    CERN Document Server

    Wenger, Etienne

    2014-01-01

    Artificial Intelligence and Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge focuses on the cognitive approaches, methodologies, principles, and concepts involved in the communication of knowledge. The publication first elaborates on knowledge communication systems, basic issues, and tutorial dialogues. Concerns cover natural reasoning and tutorial dialogues, shift from local strategies to multiple mental models, domain knowledge, pedagogical knowledge, implicit versus explicit encoding of knowledge, knowledge communication, and practical and theoretic

  19. ENGINEERING ARTIFICIAL INTELLIGENCE FOR STRATEGIC MANAGEMENT OF EQUITABLE RESOURCE DISTRIBUTION IN NILE BASIN

    OpenAIRE

    2016-01-01

    Uganda, Tanzania, the Sudan, South Sudan, Rwanda, Kenya, Ethiopia, Egypt, DR Congo, and Burundi all make entitlement claims to the ecological system of the Nile Basin.  This region is rich in resources, yet prone to interstate conflict, drought, and other vulnerabilities.  Water resource conservation systems, alternative purification systems, and rainfall stimulation systems programmed by artificial intelligence can facilitate the establishment of transboundary partnerships that red...

  20. The use of artificial intelligence techniques to improve the multiple payload integration process

    Science.gov (United States)

    Cutts, Dannie E.; Widgren, Brian K.

    1992-01-01

    A maximum return of science and products with a minimum expenditure of time and resources is a major goal of mission payload integration. A critical component then, in successful mission payload integration is the acquisition and analysis of experiment requirements from the principal investigator and payload element developer teams. One effort to use artificial intelligence techniques to improve the acquisition and analysis of experiment requirements within the payload integration process is described.

  1. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    Science.gov (United States)

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  2. A Summary of the Twenty-Ninth AAAI Conference on Artificial Intelligence

    OpenAIRE

    2015-01-01

    The Twenty-Ninth AAAI Conference on Artificial Intelligence, (AAAI-15) was held in January 2015 in Austin, Texas (USA) The conference program was cochaired by Sven Koenig and Blai Bonet. This report contains reflective summaries of the main conference, the robotics program, the AI and robotics workshop, the virtual agent exhibition, the what's hot track, the competition panel, the senior member track, student and outreach activities, the student abstract and poster program, the doctoral conso...

  3. Artificial General Intelligence: Concept, State of the Art, and Future Prospects

    Science.gov (United States)

    Goertzel, Ben

    2014-12-01

    In recent years broad community of researchers has emerged, focusing on the original ambitious goals of the AI field - the creation and study of software or hardware systems with general intelligence comparable to, and ultimately perhaps greater than, that of human beings. This paper surveys this diverse community and its progress. Approaches to defining the concept of Artificial General Intelligence (AGI) are reviewed including mathematical formalisms, engineering, and biology inspired perspectives. The spectrum of designs for AGI systems includes systems with symbolic, emergentist, hybrid and universalist characteristics. Metrics for general intelligence are evaluated, with a conclusion that, although metrics for assessing the achievement of human-level AGI may be relatively straightforward (e.g. the Turing Test, or a robot that can graduate from elementary school or university), metrics for assessing partial progress remain more controversial and problematic.

  4. Evaluating the Risk of Metabolic Syndrome Based on an Artificial Intelligence Model

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2014-01-01

    Full Text Available Metabolic syndrome is worldwide public health problem and is a serious threat to people's health and lives. Understanding the relationship between metabolic syndrome and the physical symptoms is a difficult and challenging task, and few studies have been performed in this field. It is important to classify adults who are at high risk of metabolic syndrome without having to use a biochemical index and, likewise, it is important to develop technology that has a high economic rate of return to simplify the complexity of this detection. In this paper, an artificial intelligence model was developed to identify adults at risk of metabolic syndrome based on physical signs; this artificial intelligence model achieved more powerful capacity for classification compared to the PCLR (principal component logistic regression model. A case study was performed based on the physical signs data, without using a biochemical index, that was collected from the staff of Lanzhou Grid Company in Gansu province of China. The results show that the developed artificial intelligence model is an effective classification system for identifying individuals at high risk of metabolic syndrome.

  5. Fractional snow cover mapping from MODIS data using wavelet-artificial intelligence hybrid models

    Science.gov (United States)

    Moosavi, Vahid; Malekinezhad, Hossein; Shirmohammadi, Bagher

    2014-04-01

    This study was carried out to evaluate the wavelet-artificial intelligence hybrid models to produce fractional snow cover maps. At first, cloud cover was removed from MODIS data and cloud free images were produced. SVM-based binary classified ETM+ imagery were then used as reference maps in order to obtain train and test data for sub-pixel classification models. ANN and ANFIS-based modeling were performed using raw data (without wavelet-based preprocessing). In the next step, several mother wavelets and levels were used in order to decompose the original data to obtain wavelet coefficients. Then, the decomposed data were used for further modeling processes. ANN, ANFIS, wavelet-ANN and wavelet-ANFIS models were compared to evaluate the effect of wavelet transformation on the ability of artificial intelligence models. It was demonstrated that wavelet transformation as a preprocessing approach can significantly enhance the performance of ANN and ANFIS models. This study indicated an overall accuracy of 92.45% for wavelet-ANFIS model, 86.13% for wavelet-ANN, 72.23% for ANFIS model and 66.78% for ANN model. In fact, hybrid wavelet-artificial intelligence models can extract the characteristics of the original signals (i.e. model inputs) accurately through decomposing the non-stationary and complex signals into several stationary and simpler signals. The positive effect of fuzzification as well as wavelet transformation in the wavelet-ANFIS model was also confirmed.

  6. Transformer Protection by Using FL Based Artificial Intelligent Buchholz Relay against Incipient Faults

    Directory of Open Access Journals (Sweden)

    SOUMYADEEP SAMONTO

    2016-03-01

    Full Text Available Switchgear and Protection are the two vital terminology of Electrical power system. Normally the components of any switchgear needs better protection schemes to be set for a composite power system. Many explorers worked on artificial intelligent breaker but an indulgence of fuzzy theory is nevertheless very absent in case of buchholz relay. Here in this paper discussion has been drawn in favor of the Artificial Intelligent Buchholz (AIB relay where inputs are level of transformer oil and rate of oil rising due to over current. To fit with the transformer tank it is needed to measure level of transformer oil and the rate at which volume increasing. The constructional feature of a rate of rise pressure relay is taken into account in this work along with the working principle of a buchholz relay. The change in the inputs will give a crisp output to change the contacts state from normally closed to normally open by tripping via alarm circuit indeed like the basic buchholz relay does. The entire concept has been developed under MATLAB environment using Mamdani based Fuzzy Inference System. Experimental output data validates the implementation of Transformer Protection by Using Fuzzy Logic Based Artificial Intelligent Buchholz Relay.

  7. DSP applications in advanced, intelligent motion control: the future

    Energy Technology Data Exchange (ETDEWEB)

    Beierke, S. [Texas Instruments Deutschland GmBh, Freising (Germany); Vas, P. [Univ. of Aberdeen, Dept. of Engineering (United Kingdom)

    2000-08-01

    Recently there has been a rapid increase in the number of DSPs for various motion control applications. However, in the future, further significant increase is expected due to wider applications in existing and new areas (e.g. household appliances, automotive auxiliaries, micro-electromechanical systems, military applications, etc.). The present paper discusses the state-of-art Texas Instruments fixed point and floating point DSPs used in motion control applications and will also focus on future activities. Currently new chip technologies are being developed which involve copper interconnects, silicon-on-insulator wafers, insulators with- low dielectric constants, etc. It is expected that future single-chip DSPs for advanced intelligent motion control will have higher performance, reduced costs, simpler designs, will incorporate various sensors, different modules for optimised PWM generation, efficiency control, vector and direct torque control (sensorless and quasisensorless solutions as well), condition monitoring, selfcommissioning, artificial-intelligence-based control, etc. A manufacturer's task of implementing sensorless and/or quasisensorless torque control schemes for induction, synchronous and switched reluctance motor drives will be significantly reduced by the application of the newly developed DSPs. The paper will discuss these issues and will also show some implementation results in various sensorless (classical DTC; DTC with torque-ripple reduction schemes; vector) and quasisensorless ac drives (e.g. a vector controlled induction motor drive). (orig.)

  8. Topological Entropy Measure of Artificial Grammar Complexity for Use in Designing Experiments on Human Performance in Intelligence, Surveillance, and Reconnaissance (ISR) Tasks

    Science.gov (United States)

    2015-04-02

    2015. LIST OF ACRONYMS AG Artificial Grammar AGL Artificial Grammar Learning DRE Dominant Real Eigenvalues ISR Intelligence ...AFRL-RH-WP-TR-2015-0037 TOPOLOGICAL ENTROPY MEASURE OF ARTIFICIAL GRAMMAR COMPLEXITY FOR USE IN DESIGNING EXPERIMENTS ON HUMAN PERFORMANCE IN... INTELLIGENCE , SURVEILLANCE, AND RECONNAISSANCE (ISR) TASKS Richard Warren, Ph.D. Human Analyst Augmentation Branch 711 Human Performance Wing

  9. Advanced Methods and Applications in Computational Intelligence

    CERN Document Server

    Nikodem, Jan; Jacak, Witold; Chaczko, Zenon; ACASE 2012

    2014-01-01

    This book offers an excellent presentation of intelligent engineering and informatics foundations for researchers in this field as well as many examples with industrial application. It contains extended versions of selected papers presented at the inaugural ACASE 2012 Conference dedicated to the Applications of Systems Engineering. This conference was held from the 6th to the 8th of February 2012, at the University of Technology, Sydney, Australia, organized by the University of Technology, Sydney (Australia), Wroclaw University of Technology (Poland) and the University of Applied Sciences in Hagenberg (Austria). The  book is organized into three main parts. Part I contains papers devoted to the heuristic approaches that are applicable in situations where the problem cannot be solved by exact methods, due to various characteristics or  dimensionality problems. Part II covers essential issues of the network management, presents intelligent models of the next generation of networks and distributed systems ...

  10. ODESA: an intelligent unexploded ordnance detection application

    Science.gov (United States)

    Vennergrund, David A.; Watson, William

    1995-06-01

    This paper describes the Ordnance Detection Expert Support Application (ODESA). ODESA is an intelligent unexploded ordance (UXO) detection application that fuses data from a variety of single sensor detection systems to detect buried objects. The ODESA application implements two intelligent data fusion techniques, trained using reports of targets from detection systems and ground truth describing the exact location and type of emplaced UXO. One fusion method uses a genetic algortihm to generate rules and weights that predict the location and identity of buried objects. The other fusion method uses heuristics and conditional probabilities to predict the location of buried objects. Initial findings prove that both methods produce target reports that more accurately detect buried objects than any single detection system.

  11. Optimization of well placement geothermal reservoirs using artificial intelligence

    Science.gov (United States)

    Akın, Serhat; Kok, Mustafa V.; Uraz, Irtek

    2010-06-01

    This research proposes a framework for determining the optimum location of an injection well using an inference method, artificial neural networks and a search algorithm to create a search space and locate the global maxima. A complex carbonate geothermal reservoir (Kizildere Geothermal field, Turkey) production history is used to evaluate the proposed framework. Neural networks are used as a tool to replicate the behavior of commercial simulators, by capturing the response of the field given a limited number of parameters such as temperature, pressure, injection location, and injection flow rate. A study on different network designs indicates that a combination of neural network and an optimization algorithm (explicit search with variable stepping) to capture local maxima can be used to locate a region or a location for optimum well placement. Results also indicate shortcomings and possible pitfalls associated with the approach. With the provided flexibility of the proposed workflow, it is possible to incorporate various parameters including injection flow rate, temperature, and location. For the field of study, optimum injection well location is found to be in the southeastern part of the field. Specific locations resulting from the workflow indicated a consistent search space, having higher values in that particular region. When studied with fixed flow rates (2500 and 4911 m 3/day), a search run through the whole field located two locations which are in the very same region resulting in consistent predictions. Further study carried out by incorporating effect of different flow rates indicates that the algorithm can be run in a particular region of interest and different flow rates may yield different locations. This analysis resulted with a new location in the same region and an optimum injection rate of 4000 m 3/day). It is observed that use of neural network, as a proxy to numerical simulator is viable for narrowing down or locating the area of interest for

  12. Artificial intelligence based decision support for trumpeter swan management

    Science.gov (United States)

    Sojda, Richard S.

    2002-01-01

    The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988

  13. Artificial intelligence based event detection in wireless sensor networks

    NARCIS (Netherlands)

    Bahrepour, Majid

    2013-01-01

    Wireless sensor networks (WSNs) are composed of large number of small, inexpensive devices, called sensor nodes, which are equipped with sensing, processing, and communication capabilities. While traditional applications of wireless sensor networks focused on periodic monitoring, the focus of more r

  14. Sphericall: A Human/Artificial Intelligence interaction experience

    Directory of Open Access Journals (Sweden)

    Frack Gechter

    2014-12-01

    Full Text Available Multi-agent systems are now wide spread in scientific works and in industrial applications. Few applications deal with the Human/Multi-agent system interaction. Multi-agent systems are characterized by individual entities, called agents, in interaction with each other and with their environment. Multi-agent systems are generally classified into complex systems categories since the global emerging phenomenon cannot be predicted even if every component is well known. The systems developed in this paper are named reactive because they behave using simple interaction models. In the reactive approach, the issue of Human/system interaction is hard to cope with and is scarcely exposed in literature. This paper presents Sphericall, an application aimed at studying Human/Complex System interactions and based on two physics inspired multi-agent systems interacting together. The Sphericall device is composed of a tactile screen and a spherical world where agents evolve. This paper presents both the technical background of Sphericall project and a feedback taken from the demonstration performed during OFFF Festival in La Villette (Paris.

  15. The SP Theory of Intelligence: Benefits and Applications

    Directory of Open Access Journals (Sweden)

    J. Gerard Wolff

    2013-12-01

    Full Text Available This article describes existing and expected benefits of the SP theory ofintelligence, and some potential applications. The theory aims to simplify and integrate ideasacross artificial intelligence, mainstream computing, and human perception and cognition,with information compression as a unifying theme. It combines conceptual simplicitywith descriptive and explanatory power across several areas of computing and cognition.In the SP machine—an expression of the SP theory which is currently realized in theform of a computer model—there is potential for an overall simplification of computingsystems, including software. The SP theory promises deeper insights and better solutions inseveral areas of application including, most notably, unsupervised learning, natural languageprocessing, autonomous robots, computer vision, intelligent databases, software engineering,information compression, medical diagnosis and big data. There is also potential inareas such as the semantic web, bioinformatics, structuring of documents, the detection ofcomputer viruses, data fusion, new kinds of computer, and the development of scientifictheories. The theory promises seamless integration of structures and functions within andbetween different areas of application. The potential value, worldwide, of these benefits andapplications is at least $190 billion each year. Further development would be facilitatedby the creation of a high-parallel, open-source version of the SP machine, available toresearchers everywhere.

  16. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation

    Science.gov (United States)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2016-08-01

    In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.

  17. A multi-assets artificial stock market with zero-intelligence traders

    Science.gov (United States)

    Ponta, L.; Raberto, M.; Cincotti, S.

    2011-01-01

    In this paper, a multi-assets artificial financial market populated by zero-intelligence traders with finite financial resources is presented. The market is characterized by different types of stocks representing firms operating in different sectors of the economy. Zero-intelligence traders follow a random allocation strategy which is constrained by finite resources, past market volatility and allocation universe. Within this framework, stock price processes exhibit volatility clustering, fat-tailed distribution of returns and reversion to the mean. Moreover, the cross-correlations between returns of different stocks are studied using methods of random matrix theory. The probability distribution of eigenvalues of the cross-correlation matrix shows the presence of outliers, similar to those recently observed on real data for business sectors. It is worth noting that business sectors have been recovered in our framework without dividends as only consequence of random restrictions on the allocation universe of zero-intelligence traders. Furthermore, in the presence of dividend-paying stocks and in the case of cash inflow added to the market, the artificial stock market points out the same structural results obtained in the simulation without dividends. These results suggest a significative structural influence on statistical properties of multi-assets stock market.

  18. Markov Logic An Interface Layer for Artificial Intelligence

    CERN Document Server

    Domingos, Pedro

    2009-01-01

    Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random f

  19. Status and headway of the clinical application of artificial ligaments

    Directory of Open Access Journals (Sweden)

    Tianwu Chen

    2015-01-01

    Full Text Available The authors first reviewed the history of clinical application of artificial ligaments. Then, the status of clinical application of artificial ligaments was detailed. Some artificial ligaments possessed comparable efficacy to, and fewer postoperative complications than, allografts and autografts in ligament reconstruction, especially for the anterior cruciate ligament. At the end, the authors focused on the development of two types of artificial ligaments: polyethylene glycol terephthalate artificial ligaments and tissue-engineered ligaments. In conclusion, owing to the advancements in surgical techniques, materials processing, and weaving methods, clinical application of some artificial ligaments so far has demonstrated good outcomes and will become a trend in the future.

  20. Prediction of Human intestinal absorption of compounds using artificial intelligence techniques.

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-04-04

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. In current work, we are presenting a comprehensive study of prediction of absorption. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds with prediction accuracy of 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development.

  1. Seventh International Conference on Intelligent Systems and Knowledge Engineering - Foundations and Applications of Intelligent Systems

    CERN Document Server

    Li, Tianrui; Li, Hongbo

    2014-01-01

    These proceedings present technical papers selected from the 2012 International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2012), held on December 15-17 in Beijing. The aim of this conference is to bring together experts from different fields of expertise to discuss the state-of-the-art in Intelligent Systems and Knowledge Engineering, and to present new findings and perspectives on future developments. The proceedings introduce current scientific and technical advances in the fields of artificial intelligence, machine learning, pattern recognition, data mining, knowledge engineering, information retrieval, information theory, knowledge-based systems, knowledge representation and reasoning, multi-agent systems, and natural-language processing, etc. Furthermore they include papers on new intelligent computing paradigms, which combine new computing methodologies, e.g., cloud computing, service computing and pervasive computing with traditional intelligent methods. By presenting new method...

  2. Developing energy forecasting model using hybrid artificial intelligence method

    Institute of Scientific and Technical Information of China (English)

    Shahram Mollaiy-Berneti

    2015-01-01

    An important problem in demand planning for energy consumption is developing an accurate energy forecasting model. In fact, it is not possible to allocate the energy resources in an optimal manner without having accurate demand value. A new energy forecasting model was proposed based on the back-propagation (BP) type neural network and imperialist competitive algorithm. The proposed method offers the advantage of local search ability of BP technique and global search ability of imperialist competitive algorithm. Two types of empirical data regarding the energy demand (gross domestic product (GDP), population, import, export and energy demand) in Turkey from 1979 to 2005 and electricity demand (population, GDP, total revenue from exporting industrial products and electricity consumption) in Thailand from 1986 to 2010 were investigated to demonstrate the applicability and merits of the present method. The performance of the proposed model is found to be better than that of conventional back-propagation neural network with low mean absolute error.

  3. Artificial intelligence in pharmaceutical product formulation: neural computing

    Directory of Open Access Journals (Sweden)

    Svetlana Ibrić

    2009-10-01

    Full Text Available The properties of a formulation are determined not only by the ratios in which the ingredients are combined but also by the processing conditions. Although the relationships between the ingredient levels, processing conditions, and product performance may be known anecdotally, they can rarely be quantified. In the past, formulators tended to use statistical techniques to model their formulations, relying on response surfaces to provide a mechanism for optimazation. However, the optimization by such a method can be misleading, especially if the formulation is complex. More recently, advances in mathematics and computer science have led to the development of alternative modeling and data mining techniques which work with a wider range of data sources: neural networks (an attempt to mimic the processing of the human brain; genetic algorithms (an attempt to mimic the evolutionary process by which biological systems self-organize and adapt, and fuzzy logic (an attempt to mimic the ability of the human brain to draw conclusions and generate responses based on incomplete or imprecise information. In this review the current technology will be examined, as well as its application in pharmaceutical formulation and processing. The challenges, benefits and future possibilities of neural computing will be discussed.

  4. Comparison of artificial intelligence classifiers for SIP attack data

    Science.gov (United States)

    Safarik, Jakub; Slachta, Jiri

    2016-05-01

    Honeypot application is a source of valuable data about attacks on the network. We run several SIP honeypots in various computer networks, which are separated geographically and logically. Each honeypot runs on public IP address and uses standard SIP PBX ports. All information gathered via honeypot is periodically sent to the centralized server. This server classifies all attack data by neural network algorithm. The paper describes optimizations of a neural network classifier, which lower the classification error. The article contains the comparison of two neural network algorithm used for the classification of validation data. The first is the original implementation of the neural network described in recent work; the second neural network uses further optimizations like input normalization or cross-entropy cost function. We also use other implementations of neural networks and machine learning classification algorithms. The comparison test their capabilities on validation data to find the optimal classifier. The article result shows promise for further development of an accurate SIP attack classification engine.

  5. Implementation of Novel Medical Image Compression Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Mohammad Al-Rababah

    2016-05-01

    Full Text Available The medical image processing process is one of the most important areas of research in medical applications in digitized medical information. A medical images have a large sizes. Since the coming of digital medical information, the important challenge is to care for the conduction and requirements of huge data, including medical images. Compression is considered as one of the necessary algorithm to explain this problem. A large amount of medical images must be compressed using lossless compression. This paper proposes a new medical image compression algorithm founded on lifting wavelet transform CDF 9/7 joined with SPIHT coding algorithm, this algorithm applied the lifting composition to confirm the benefit of the wavelet transform. To develop the proposed algorithm, the outcomes compared with other compression algorithm like JPEG codec. Experimental results proves that the anticipated algorithm is superior to another algorithm in both lossy and lossless compression for all medical images tested. The Wavelet-SPIHT algorithm provides PSNR very important values for MRI images.

  6. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  7. Human factors issues in the use of artificial intelligence in air traffic control. October 1990 Workshop

    Science.gov (United States)

    Hockaday, Stephen; Kuhlenschmidt, Sharon (Editor)

    1991-01-01

    The objective of the workshop was to explore the role of human factors in facilitating the introduction of artificial intelligence (AI) to advanced air traffic control (ATC) automation concepts. AI is an umbrella term which is continually expanding to cover a variety of techniques where machines are performing actions taken based upon dynamic, external stimuli. AI methods can be implemented using more traditional programming languages such as LISP or PROLOG, or they can be implemented using state-of-the-art techniques such as object-oriented programming, neural nets (hardware or software), and knowledge based expert systems. As this technology advances and as increasingly powerful computing platforms become available, the use of AI to enhance ATC systems can be realized. Substantial efforts along these lines are already being undertaken at the FAA Technical Center, NASA Ames Research Center, academic institutions, industry, and elsewhere. Although it is clear that the technology is ripe for bringing computer automation to ATC systems, the proper scope and role of automation are not at all apparent. The major concern is how to combine human controllers with computer technology. A wide spectrum of options exists, ranging from using automation only to provide extra tools to augment decision making by human controllers to turning over moment-by-moment control to automated systems and using humans as supervisors and system managers. Across this spectrum, it is now obvious that the difficulties that occur when tying human and automated systems together must be resolved so that automation can be introduced safely and effectively. The focus of the workshop was to further explore the role of injecting AI into ATC systems and to identify the human factors that need to be considered for successful application of the technology to present and future ATC systems.

  8. An intelligent power factor corrector for power system using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Bayindir, R.; Colak, I. [Department of Electrical Education, Faculty of Technical Education, Gazi University, Besevler, 06500 Ankara (Turkey); Sagiroglu, S. [Department of Computer Engineering, Faculty of Engineering and Architecture, Celal Bayar Bulvari, Gazi University, Maltepe, 06570 Ankara (Turkey)

    2009-01-15

    An intelligent power factor correction approach based on artificial neural networks (ANN) is introduced. Four learning algorithms, backpropagation (BP), delta-bar-delta (DBD), extended delta-bar-delta (EDBD) and directed random search (DRS), were used to train the ANNs. The best test results obtained from the ANN compensators trained with the four learning algorithms were first achieved. The parameters belonging to each neural compensator obtained from an off-line training were then inserted into a microcontroller for on-line usage. The results have shown that the selected intelligent compensators developed in this work might overcome the problems occurred in the literature providing accurate, simple and low-cost solution for compensation. (author)

  9. Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques

    Science.gov (United States)

    Stottler, D.

    There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.

  10. Using simple artificial intelligence methods for predicting amyloidogenesis in antibodies

    Science.gov (United States)

    2010-01-01

    applications in evaluating engineered antibodies, and may be adapted for evaluating engineered proteins in general. PMID:20144194

  11. Advances in Intelligent Modelling and Simulation Artificial Intelligence-Based Models and Techniques in Scalable Computing

    CERN Document Server

    Khan, Samee; Burczy´nski, Tadeusz

    2012-01-01

    One of the most challenging issues in today’s large-scale computational modeling and design is to effectively manage the complex distributed environments, such as computational clouds, grids, ad hoc, and P2P networks operating under  various  types of users with evolving relationships fraught with  uncertainties. In this context, the IT resources and services usually belong to different owners (institutions, enterprises, or individuals) and are managed by different administrators. Moreover, uncertainties are presented to the system at hand in various forms of information that are incomplete, imprecise, fragmentary, or overloading, which hinders in the full and precise resolve of the evaluation criteria, subsequencing and selection, and the assignment scores. Intelligent scalable systems enable the flexible routing and charging, advanced user interactions and the aggregation and sharing of geographically-distributed resources in modern large-scale systems.   This book presents new ideas, theories, models...

  12. International Symposium on Intelligent Systems Technologies and Applications

    CERN Document Server

    Thampi, Sabu; Dasgupta, Soura; Srivastava, Praveen; ISTA

    2016-01-01

    This book contains a selection of refereed and revised papers from three special tracks: Ad-hoc and Wireless Sensor Networks, Intelligent Distributed Computing and, Business Intelligence and Big Data Analytics originally presented at the International Symposium on Intelligent Systems Technologies and Applications (ISTA), August 10-13, 2015, Kochi, India.  .

  13. Hybrid Modeling and Optimization of Manufacturing Combining Artificial Intelligence and Finite Element Method

    CERN Document Server

    Quiza, Ramón; Davim, J Paulo

    2012-01-01

    Artificial intelligence (AI) techniques and the finite element method (FEM) are both powerful computing tools, which are extensively used for modeling and optimizing manufacturing processes. The combination of these tools has resulted in a new flexible and robust approach as several recent studies have shown. This book aims to review the work already done in this field as well as to expose the new possibilities and foreseen trends. The book is expected to be useful for postgraduate students and researchers, working in the area of modeling and optimization of manufacturing processes.

  14. The singularity could artificial intelligence really out-think us (and would we want it to)?

    CERN Document Server

    Awret, Uziel; Chalmers, David

    2016-01-01

    This volume represents the combination of two special issues of the Journal of Consciousness Studies on the topic of the technological singularity. Could artificial intelligence really out-think us, and what would be the likely repercussions if it could? Leading authors contribute to the debate, which takes the form of a target chapter by philosopher David Chalmers, plus commentaries from the likes of Daniel Dennett, Nick Bostrom, Ray Kurzweil, Ben Goertzel, Frank Tipler, among many others. Chalmers then responds to the commentators to round off the discussion.

  15. Statistic Approach versus Artificial Intelligence for Rainfall Prediction Based on Data Series

    Directory of Open Access Journals (Sweden)

    Indrabayu

    2013-04-01

    Full Text Available This paper proposed a new idea in comparing two common predictors i.e. the statistic method and artificial intelligence (AI for rainfall prediction using empirical data series. The statistic method uses Auto- Regressive Integrated Moving (ARIMA and Adaptive Splines Threshold Autoregressive (ASTAR, most favorable statistic tools, while in the AI, combination of Genetic Algorithm-Neural Network (GA-NN is chosen. The results show that ASTAR gives best prediction compare to others, in term of root mean square (RMSE and following trend between prediction and actual.

  16. Validating an artificial intelligence human proximity operations system with test cases

    Science.gov (United States)

    Huber, Justin; Straub, Jeremy

    2013-05-01

    An artificial intelligence-controlled robot (AICR) operating in close proximity to humans poses risk to these humans. Validating the performance of an AICR is an ill posed problem, due to the complexity introduced by the erratic (noncomputer) actors. In order to prove the AICR's usefulness, test cases must be generated to simulate the actions of these actors. This paper discusses AICR's performance validation in the context of a common human activity, moving through a crowded corridor, using test cases created by an AI use case producer. This test is a two-dimensional simplification relevant to autonomous UAV navigation in the national airspace.

  17. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    Science.gov (United States)

    Nunes, Matheus Henrique; Görgens, Eric Bastos

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  18. Prediction of Metabolism of Drugs using Artificial Intelligence: How far have we reached?

    Science.gov (United States)

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2016-01-01

    Information about drug metabolism is an essential component of drug development. Modeling the drug metabolism requires identification of the involved enzymes, rate and extent of metabolism, the sites of metabolism etc. There has been continuous attempts in the prediction of metabolism of drugs using artificial intelligence in effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are number of predictive models available for metabolism using Support vector machines, Artificial neural networks, Bayesian classifiers etc. There is an urgent need to review their progress so far and address the existing challenges in prediction of metabolism. In this attempt, we are presenting the currently available literature models and some of the critical issues regarding prediction of drug metabolism.

  19. AN ARTIFICIAL INTELLIGENCE APPROACH FOR THE PREDICTION OF SURFACE ROUGHNESS IN CO2 LASER CUTTING

    Directory of Open Access Journals (Sweden)

    MILOŠ MADIĆ

    2012-12-01

    Full Text Available In laser cutting, the cut quality is of great importance. Multiple non-linear effects of process parameters and their interactions make very difficult to predict cut quality. In this paper, artificial intelligence (AI approach was applied to predict the surface roughness in CO2 laser cutting. To this aim, artificial neural network (ANN model of surface roughness was developed in terms of cutting speed, laser power and assist gas pressure. The experimental results obtained from Taguchi’s L25 orthogonal array were used to develop ANN model. The ANN mathematical model of surface roughness was expressed as explicit nonlinear function of the selected input parameters. Statistical results indicate that the ANN model can predict the surface roughness with good accuracy. It was showed that ANNs may be used as a good alternative in analyzing the effects of cutting parameters on the surface roughness.

  20. High voltage transmission lines studies with the use of artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Ekonomou, L. [A.S.PE.T.E. - School of Pedagogical and Technological Education, Department of Electrical Engineering Educators, N. Heraklion, 141 21 Athens (Greece)

    2009-12-15

    The paper presents an alternative approach for the studies of high voltage transmission lines based on artificial intelligence and more specifically artificial neural networks (ANNs). In contrast to the existing conventional-analytical techniques and simulations which are using in the calculations empirical and/or approximating equations, this approach is based only on actual field data and actual measurements. The proposed approach is applied on high voltage transmission lines in order to calculate the lightning outages, on grounding systems in order to assess the grounding resistance and on high voltage transmission lines' polluted insulators in order to estimate the critical flashover voltage. The obtained results are very close to the actual ones for all three case studies, something which clearly implies that the ANN approach is well working and has an acceptable accuracy, constituting an additional tool of electric engineers. (author)